
ns-3 Direct Code Execution (DCE)
Manual

Release 1.1

Direct Code Execution project

August 30, 2013

CONTENTS

1 Introduction 3
1.1 Overview . 3
1.2 Manual Structure . 3
1.3 DCE Outlook . 3
1.4 Supported Features . 3
1.5 Tested Applications . 4
1.6 Tested Environment . 4

2 Quick Start Guide 5
2.1 Introduction . 5
2.2 Build DCE . 5
2.3 Examples . 6

3 User’s Guide 11
3.1 Setup Guide . 11
3.2 Basic Use Cases . 12
3.3 Advanced Use Cases . 20
3.4 Technical Information . 24

4 Developer’s Guide (To Be Available Soon) 31
4.1 Kernel Developer Information . 31
4.2 DCE - POLL IMPLEMENTATION . 42

5 How It Works (To Be Available Soon) 45
5.1 Introduction . 45
5.2 Main classes and main data structures . 45
5.3 Follow a very simple example . 47

6 Subprojects of DCE 53
6.1 CCNx . 53
6.2 Quagga . 53
6.3 iperf . 53
6.4 ping/ping6 . 54
6.5 ip (iproute2 package) . 54
6.6 umip (Mobilt IPv6 daemon) . 54
6.7 Linux kernel (from 2.6.36 to 3.7 version) . 54
6.8 thttpd . 54
6.9 torrent . 54

7 About 55

i

7.1 Contacts . 55

ii

iii

iv

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

This is the manual of Direct Code Execution (DCE).

• Doxygen: Documentation of the public APIs of the DCE

• Manual (this document) for the latest release and development tree

This document is written in reStructuredText for Sphinx and is maintained in the doc/ directory of ns-3-dce’s source
code.

CONTENTS 1

http://www.nsnam.org/docs/dce/doxygen/index.html
http://www.nsnam.org/docs/dce/release/latest/manual/html/index.html
http://www.nsnam.org/docs/dce/manual/html/index.html
http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org/

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

1.1 Overview

Direct Code Execution (DCE) is a module for ns-3 that provides facilities to execute, within ns-3, existing implemen-
tations of userspace and kernelspace network protocols or applications without source code changes. For example
instead of using the pseudo application provided by ns-3 V4PingHelper you can use the true ping.

1.2 Manual Structure

This document consists of the following parts:

0. Quick Start Guide: The document describes a quick instruction of DCE.

1. User’s Guide: The document is for people who will use DCE to experiment.

1.3 DCE Outlook

• To run an application using DCE, it is not necessary to change its sources. However you will need to recompile
them.

• The simulation is executed wholly within a single process which greatly facilitates the debugging.

• DCE is very memory-efficient, thanks to the way it loads the executables similarly to shared libraries.

1.4 Supported Features

• Simulation with POSIX socket application (no manual modifications)

• C/C++ applications

• Simulation with Linux kernel implemented network protocol

• IPv4/IPv6

• TCP/UDP/DCCP

• running with POSIX socket applications and ns-3 socket applications

• configuration via sysctl-like interface

• multiple nodes debugging with single gdb interface

3

http://www.nsnam.org/

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

• memory analysis by single valgrind execution with multiple nodes

• Variance of network stacks

• ns-3 native stack (IPv4/IPv6, partially)

• network simulation cradle network stack (IPv4 TCP only)

• Linux network stack (IPv4/IPv6/others)

• per-node configuration/stdin input

• per-node syslog/stdout/stderr files output

1.5 Tested Applications

• CCNx

• Quagga

• iperf

• ping/ping6

• ip (iproute2 package)

• Mobilt IPv6 daemon (umip)

• Linux kernel (from 2.6.36 to 3.7 versions)

• http server (thttpd)

• torrent (libtorrent from rasterbar + opentracker)

1.6 Tested Environment

Currently, DCE only supports Linux-based operating system. DCE has been tested on the following distributions:

• Ubuntu 10.04 32bit/64bit

• Ubuntu 10.10 32bit/64bit

• Ubuntu 11.04 32bit/64bit

• Ubuntu 11.10 32bit/64bit

• Ubuntu 12.04 32bit/64bit

• Ubuntu 12.10 64bit

• Fedora 14 32bit/64bit

• Fedora 15 32bit/64bit

• Fedora 16 32bit/64bit

• Fedora 18 32bit

but you can try on the others (e.g., CentOS, RHEL). If you got run on another distribution, please let us know.

4 Chapter 1. Introduction

CHAPTER

TWO

QUICK START GUIDE

2.1 Introduction

The DCE ns-3 module provides facilities to execute within ns-3 existing implementations of userspace and kernelspace
network protocols.

As of today, the Quagga routing protocol implementation, the CCNx CCN implementation, and recent versions of
the Linux kernel network stack are known to run within DCE, hence allowing network protocol experimenters and
researchers to use the unmodified implementation of their protocols for real-world deployments and simulations.

2.2 Build DCE

DCE offers two major modes of operation:

1. The basic mode, where DCE use the ns-3 TCP stacks,

2. The advanced mode, where DCE uses a Linux network stack instead.

2.2.1 Building DCE basic mode

First you need to download Bake using Mercurial and set some variables:

hg clone http://code.nsnam.org/bake bake
export BAKE_HOME=‘pwd‘/bake
export PATH=$PATH:$BAKE_HOME
export PYTHONPATH=$PYTHONPATH:$BAKE_HOME

then you must to create a directory for DCE and install it using bake:

mkdir dce
cd dce
bake.py configure -e dce-ns3-|version|
bake.py download
bake.py build

note that dce-ns3-1.1 is the DCE version 1.1 module. If you would like to use the development version of DCE module,
you can specify dce-ns3-dev as a module name for bake.

the output should look likes this:

5

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

Installing selected module and dependencies.
Please, be patient, this may take a while!
>> Downloading ccnx
>> Download ccnx - OK
>> Downloading iperf
>> Download iperf - OK
>> Downloading ns-3-dev-dce
>> Download ns-3-dev-dce - OK
>> Downloading dce-ns3
>> Download dce-ns3 - OK
>> Building ccnx
>> Built ccnx - OK
>> Building iperf
>> Built iperf - OK
>> Building ns-3-dev-dce
>> Built ns-3-dev-dce - OK
>> Building dce-ns3
>> Built dce-ns3 - OK

2.2.2 Building DCE advanced mode (with Linux kernel)

If you would like to try Linux network stack instead of ns-3 network stack, you can try the advanced mode. The
difference to build the advanced mode is the different module name dce-linux instead of dce-ns3 (basic mode).

mkdir dce
cd dce
bake.py configure -e dce-linux-|version|
bake.py download
bake.py build

note that dce-linux-1.1 is the DCE version 1.1 module. If you would like to use the development version of DCE
module, you can specify dce-linux-dev as a module name for bake.

2.3 Examples

If you got succeed to build DCE, you can try an example script which is already included in DCE package.

2.3.1 Example: Simple UDP socket application

This example execute the binaries named udp-client and udp-server under ns-3 using DCE. These 2 binaries are written
using POSIX socket API in order to send and receive UDP packets.

If you would like to see what is going on this script, please refer to the user’s guide.

$ cd source/ns-3-dce
$./waf --run dce-udp-simple
$ ls

elf-cache files-0 exitprocs
$ ls -lR files-0

files-0:
total 4
drwxr-x--- 3 furbani planete 4096 Sep 2 17:02 var

files-0/var:

6 Chapter 2. Quick Start Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

total 4
drwxr-x--- 4 furbani planete 4096 Sep 2 17:02 log

files-0/var/log:
total 8
drwxr-x--- 2 furbani planete 4096 Sep 2 17:02 53512
drwxr-x--- 2 furbani planete 4096 Sep 2 17:02 53513

files-0/var/log/53512:
total 12
-rw------- 1 furbani planete 12 Sep 2 17:02 cmdline
-rw------- 1 furbani planete 185 Sep 2 17:02 status
-rw------- 1 furbani planete 0 Sep 2 17:02 stderr
-rw------- 1 furbani planete 21 Sep 2 17:02 stdout

files-0/var/log/53513:
total 12
-rw------- 1 furbani planete 22 Sep 2 17:02 cmdline
-rw------- 1 furbani planete 185 Sep 2 17:02 status
-rw------- 1 furbani planete 0 Sep 2 17:02 stderr
-rw------- 1 furbani planete 22 Sep 2 17:02 stdout

This simulation produces two directories, the content of elf-cache is not important now for us, but files-0 is. files-0
contains first node’s file system, it also contains the output files of the dce applications launched on this node. In the
/var/log directory there are some directories named with the virtual pid of corresponding DCE applications. Under
these directories there is always 4 files:

1. cmdline: which contains the command line of the corresponding DCE application, in order to help you to
retrieve what is it,

2. stdout: contains the stdout produced by the execution of the corresponding application,

3. stderr: contains the stderr produced by the execution of the corresponding application.

4. status: contains a status of the corresponding process with its start time. This file also contains the end time and
exit code if applicable.

Before launching a simulation, you may also create files-xx directories and provide files required by the applications
to be executed correctly.

2.3.2 Example: iperf

This example shows the usage of iperf with DCE. You are able to generate traffic by well-know traffic generator iperf
in your simulation. For more detail of the scenario description, please refer to the user’s guide.

Once you successfully installed DCE with bake, you can execute the example using iperf.

cd source/ns-3-dce
./waf --run dce-iperf

As we saw in the previous example the experience creates directories containing the outputs of different executables,
take a look at the server (node 1) output:

$ cat files-1/var/log/*/stdout
--
Server listening on TCP port 5001
TCP window size: 124 KByte (default)
--
[4] local 10.1.1.2 port 5001 connected with 10.1.1.1 port 49153

2.3. Examples 7

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

[ID] Interval Transfer Bandwidth
[4] 0.0-11.2 sec 5.75 MBytes 4.30 Mbits/sec

the client (node-0) output bellow:

$ cat files-0/var/log/*/stdout
--
Client connecting to 10.1.1.2, TCP port 5001
TCP window size: 124 KByte (default)
--
[3] local 10.1.1.1 port 49153 connected with 10.1.1.2 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0- 1.0 sec 640 KBytes 5.24 Mbits/sec
[3] 1.0- 2.0 sec 512 KBytes 4.19 Mbits/sec
[3] 2.0- 3.0 sec 640 KBytes 5.24 Mbits/sec
[3] 3.0- 4.0 sec 512 KBytes 4.19 Mbits/sec
[3] 4.0- 5.0 sec 512 KBytes 4.19 Mbits/sec
[3] 5.0- 6.0 sec 640 KBytes 5.24 Mbits/sec
[3] 6.0- 7.0 sec 512 KBytes 4.19 Mbits/sec
[3] 7.0- 8.0 sec 640 KBytes 5.24 Mbits/sec
[3] 8.0- 9.0 sec 512 KBytes 4.19 Mbits/sec
[3] 9.0-10.0 sec 640 KBytes 5.24 Mbits/sec
[3] 0.0-10.2 sec 5.75 MBytes 4.72 Mbits/sec

if you have already built the advanced mode, you can use Linux network stack over iperf.

cd source/ns-3-dce
./waf --run "dce-iperf --kernel=1"

the command line option –kernel=1 makes the simulation use the Linux kernel stack instead of ns-3 network stack.

$ cat files-1/var/log/*/stdout
--
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
--
[4] local 10.1.1.2 port 5001 connected with 10.1.1.1 port 60120
[ID] Interval Transfer Bandwidth
[4] 0.0-11.2 sec 5.88 MBytes 4.41 Mbits/sec

$ cat files-0/var/log/*/stdout
--
Client connecting to 10.1.1.2, TCP port 5001
TCP window size: 16.0 KByte (default)
--
[3] local 10.1.1.1 port 60120 connected with 10.1.1.2 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0- 1.0 sec 512 KBytes 4.19 Mbits/sec
[3] 1.0- 2.0 sec 640 KBytes 5.24 Mbits/sec
[3] 2.0- 3.0 sec 640 KBytes 5.24 Mbits/sec
[3] 3.0- 4.0 sec 512 KBytes 4.19 Mbits/sec
[3] 4.0- 5.0 sec 640 KBytes 5.24 Mbits/sec
[3] 5.0- 6.0 sec 512 KBytes 4.19 Mbits/sec
[3] 6.0- 7.0 sec 640 KBytes 5.24 Mbits/sec
[3] 7.0- 8.0 sec 640 KBytes 5.24 Mbits/sec
[3] 8.0- 9.0 sec 512 KBytes 4.19 Mbits/sec
[3] 9.0-10.0 sec 640 KBytes 5.24 Mbits/sec
[3] 0.0-10.2 sec 5.88 MBytes 4.84 Mbits/sec

8 Chapter 2. Quick Start Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

Interestingly, the two results between two network stacks are slightly different, though the difference is out of scope
of this document.

2.3. Examples 9

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

10 Chapter 2. Quick Start Guide

CHAPTER

THREE

USER’S GUIDE

This document is for the people who want to use your application in ns-3 using DCE.

Direct Code Execution (DCE) allows us to use POSIX socket-based applications as well as Linux kernel network
stack.

3.1 Setup Guide

In order to install DCE you must follow the tutorial Build DCE.

Installation result

The result of the installation process is the creation of libraries from source of DCE and that of ns-3 and also some
tools and sources of an optional Linux kernel if you have also chosen to use the stack of a Linux kernel. Below you
will find the main directories:

|-- bakefile.xml Bake internal configuration file (generated by bake.py configure command).
|-- bakeSetEnv.sh Bake generated file used to configure environmental variable.
|-- build Target directory of |ns3| Core and DCE compilation.
| |-- bin
| |-- bin_dce
| |-- etc
| |-- include
| |-- lib
| |-- sbin
| |-- share
| |-- usr
| +-- var
+-- source Source directory during ’bake.py download’. Listed files below depend on the configuration of bake.

|-- ccnx
|-- ccnx-0.6.2.tar.gz
|-- ns-3-dce
| |-- build
| |-- doc Documentation source
| |-- elf-cache
| |-- example Example scenarios using DCE
| |-- files-0
| |-- files-1
| |-- files-2
| |-- files-3
| |-- files-5
| |-- helper The source code directory for helper library
| |-- model The source code directory for DCE core

11

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

| |-- myscripts Sub-module and ad-hoc script directory
| |-- netlink Netlink module
| |-- ns3waf waf extension used by DCE
| |-- test Test script directory
| |-- testpy-output Directory used for test results
| +-- utils Utilities used by DCE
|-- elf-loader
|-- iperf
|-- iperf-2.0.5-source.tar.gz
|-- iproute
|-- iproute2-2.6.38.tar.bz2
|-- iputils
|-- iputils-s20101006.tar.bz2
|-- mptcp
|-- net-next-sim-2.6.36
|-- ns-3-dev-dce
|-- pybindgen-user
|-- quagga
|-- quagga-0.99.20.tar.gz
|-- thttpd
|-- thttpd-2.25b.tar.gz
|-- umip
|-- wget
+-- wget-1.14.tar.gz

3.2 Basic Use Cases

3.2.1 Using your userspace protocol implementation

As explained in How It Works (To Be Available Soon), DCE needs to relocate the executable binary in memory, and
these binary files need to be built with specific compile/link options.

In order to this you should follow the two following rules:

1. Compile your objects using this gcc flag: -fPIC for exemple : gcc -fPIC -c foo.c

1. (option) Some application needs to be compile with -U_FORTIFY_SOURCE so that the application doesn’t
use alternative symbols including __chk (like memcpy_chk).

2. Link your executable using this gcc flag: -pie for exemple : gcc -o foo -pie foo.o

3. Verify the produced executable using readelf utility in order to display the ELF file header and to verify that
your exe is of type DYN indicating that DCE should be able to relocate and virtualize it under ns-3 virtual world
and network. For exemple : readelf -h foo|grep Type: ==> Type: DYN (Shared object
file)

4. Check also that your executable runs as expected outside of ns-3 and DCE.

Install the target executable

Copy the executable file produced in a specified directory in the variable environment DCE_PATH so that DCE can
find it. (FIXME: to be updated)

12 Chapter 3. User’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

Write a ns-3 script

Now that you have compiled your executable you can use it within ns-3 script with the help of a set of DCE Helper
Class:

HELPER
CLASS
NAME

INCLUDE
NAME

DESCRIPTION

DceMan-
agerHelper

ns3/dce-
manager-
helper.h

A DceManager is a DCE internal class which manage the execution of the
executable you will declare to run within ns-3; The DceManagerHelper is the tool
you will use within your script to parameter and install DceManager on the ns-3
nodes where you plan to run binaries.

DceAppli-
cation-
Helper

ns3/dce-
application-
helper.h

You will use this helper in order to define which application you want to run
within ns-3 by setting the name of the binary its optionals arguments , its
environment variables, and also optionaly if it take its input from a file instead of
stdin.
This class can be derived if you need to do more preparation before running your
application. Often applications need configuration file to work properly, for
example if you look at the contents of the helper named CcnClientHelper you will
see that his job is to create the key files needed for the operation of CCNx’s
applications.

LinuxStack-
Helper

ns3/linux-
stack-
helper.h

This helper is used to configure parameters of Linux kernel when we are using the
advanced mode.

CcnClien-
tHelper

ns3/ccn-
client-
helper.h

This helper is a subclass of DceApplicationHelper, its jobs is to create keys files
used by ccnx executables in order to run them correctly within NS3.

Quagga-
Helper

ns3/quagga-
helper.h

This helper is a subclass of DceApplicationHelper. It will help you to setup
Quagga applications.

Note that the table above indicates the name of includes, so you can look at the comments in them, but in reality for
DCE use you need to include only the file ns3/dce-module.h.

The directory named myscripts is a good place to place your scripts. To create a new script you should create a
new directory under myscripts, and put your sources and a configuration file for waf build system, this file should
be named wscript. For starters, you may refer to the contents of the directory myscripts/ping.

For more detail, please refer DCE API (doxygen) document.

Compile the script

To compile simply execute the command waf. The result must be under the directory named
build/bin/myscripts/foo/bar where foo is your directory and bar your executable according to the content
of your wscript file.

Launch the script

Simply launch your script like any other program.

$./waf --run bar

3.2. Basic Use Cases 13

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

Results

The execution of the apps using DCE generates special files which reflect the execution thereof. On each node DCE
creates a directory /var/log, this directory will contain subdirectory whose name is a number. This number is the
pid of a process. Each of these directories contains the following files cmdline, status, stdout, stderr. The
file cmdline recalls the name of the executable run followed arguments. The file status contains an account of
the execution and dating of the start; optionally if the execution is completed there is the date of the stop and the return
code. The files stdout and stderr correspond to the standard output of the process in question.

Example: DCE Simple UDP (dce-udp-simple)

The example uses two POSIX socket-based application in a simulation. Please take time to look at the source dce-
udp-simple.cc:

int main (int argc, char *argv[])
{

CommandLine cmd;
cmd.Parse (argc, argv);

NodeContainer nodes;
nodes.Create (1);

InternetStackHelper stack;
stack.Install (nodes);

DceManagerHelper dceManager;
dceManager.Install (nodes);

DceApplicationHelper dce;
ApplicationContainer apps;

dce.SetStackSize (1<<20);

dce.SetBinary ("udp-server");
dce.ResetArguments();
apps = dce.Install (nodes.Get (0));
apps.Start (Seconds (4.0));

dce.SetBinary ("udp-client");
dce.ResetArguments();
dce.AddArgument ("127.0.0.1");
apps = dce.Install (nodes.Get (0));
apps.Start (Seconds (4.5));

Simulator::Stop (Seconds(1000100.0));
Simulator::Run ();
Simulator::Destroy ();

return 0;
}

You can notice that we create a ns-3 Node with an Internet Stack (please refer to ns-3 doc. for more info), and we can
also see 2 new Helpers:

1. DceManagerHelper which is used to Manage DCE loading system in each node where DCE will be used.

2. DceApplicationHelper which is used to describe real application to be lauched by DCE within ns-3 simulation
environnement.

14 Chapter 3. User’s Guide

http://www.nsnam.org/documentation/

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

Example: DCE with iperf(dce-iperf)

The example uses iperf traffic generator in a simulation. The scenario is here:

$ cat source/dce/example/dce-iperf.cc
#include "ns3/network-module.h"
#include "ns3/core-module.h"
#include "ns3/internet-module.h"
#include "ns3/dce-module.h"
#include "ns3/point-to-point-module.h"
#include "ns3/applications-module.h"
#include "ns3/netanim-module.h"
#include "ns3/constant-position-mobility-model.h"
#include "ccnx/misc-tools.h"

using namespace ns3;
// ===
//
// node 0 node 1
// +----------------+ +----------------+
// | | | |
// +----------------+ +----------------+
// | 10.1.1.1 | | 10.1.1.2 |
// +----------------+ +----------------+
// | point-to-point | | point-to-point |
// +----------------+ +----------------+
// | |
// +---------------------+
// 5 Mbps, 2 ms
//
// 2 nodes : iperf client en iperf server
//
// Note : Tested with iperf 2.0.5, you need to modify iperf source in order to
// allow DCE to have a chance to end an endless loop in iperf as follow:
// in source named Thread.c at line 412 in method named thread_rest
// you must add a sleep (1); to break the infinite loop....
// ===
int main (int argc, char *argv[])
{

bool useKernel = 0;
bool useUdp = 0;
std::string bandWidth = "1m";
CommandLine cmd;
cmd.AddValue ("kernel", "Use kernel linux IP stack.", useKernel);
cmd.AddValue ("udp", "Use UDP. Default false (0)", useUdp);
cmd.AddValue ("bw", "BandWidth. Default 1m.", bandWidth);
cmd.Parse (argc, argv);

NodeContainer nodes;
nodes.Create (2);

PointToPointHelper pointToPoint;
pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
pointToPoint.SetChannelAttribute ("Delay", StringValue ("1ms"));

NetDeviceContainer devices;
devices = pointToPoint.Install (nodes);

DceManagerHelper dceManager;

3.2. Basic Use Cases 15

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

dceManager.SetTaskManagerAttribute("FiberManagerType", StringValue ("UcontextFiberManager"));

if (!useKernel)
{

InternetStackHelper stack;
stack.Install (nodes);

}
else
{

dceManager.SetNetworkStack ("ns3::LinuxSocketFdFactory", "Library", StringValue ("liblinux.so"));
LinuxStackHelper stack;
stack.Install (nodes);

}

Ipv4AddressHelper address;
address.SetBase ("10.1.1.0", "255.255.255.252");
Ipv4InterfaceContainer interfaces = address.Assign (devices);

// setup ip routes
Ipv4GlobalRoutingHelper::PopulateRoutingTables ();

dceManager.Install (nodes);

DceApplicationHelper dce;
ApplicationContainer apps;

dce.SetStackSize (1<<20);

// Launch iperf client on node 0
dce.SetBinary ("iperf");
dce.ResetArguments();
dce.ResetEnvironment();
dce.AddArgument ("-c");
dce.AddArgument ("10.1.1.2");
dce.AddArgument ("-i");
dce.AddArgument ("1");
dce.AddArgument ("--time");
dce.AddArgument ("10");
if (useUdp)
{

dce.AddArgument ("-u");
dce.AddArgument ("-b");
dce.AddArgument (bandWidth);

}

apps = dce.Install (nodes.Get (0));
apps.Start (Seconds (0.7));
apps.Stop (Seconds (20));

// Launch iperf server on node 1
dce.SetBinary ("iperf");
dce.ResetArguments();
dce.ResetEnvironment();
dce.AddArgument ("-s");
dce.AddArgument ("-P");
dce.AddArgument ("1");
if (useUdp)
{

16 Chapter 3. User’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

dce.AddArgument ("-u");
}

apps = dce.Install (nodes.Get (1));

pointToPoint.EnablePcapAll (useKernel?"iperf-kernel":"iperf-ns3", false);

apps.Start (Seconds (0.6));

setPos (nodes.Get (0), 1, 10, 0);
setPos (nodes.Get (1), 50,10, 0);

Simulator::Stop (Seconds(40.0));
Simulator::Run ();
Simulator::Destroy ();

return 0;
}

This scenario is simple there is 2 nodes linked by a point 2 point link, the node 0 launch iperf as a client via the
command iperf -c 10.1.1.2 -i 1 –time 10 and the node 1 launch iperf as a server via the command iperf -s -P 1. You
can follow this to launch the experiement:

3.2.2 Using your in-kernel protocol implementation

(TBA)

3.2.3 Creating your protocol implementation as a DCE sub-module

If your application has a configuration file to modify the behavior of applications, introducing a particular Helper class
will be helpful to handle your application. In this section, we will give you an advanced way of using your application
with DCE.

Some of existing submodule are following this way. You can find ns-3-dce-quagga and ns-3-dce-umip as examples to
add sub-module.

Obtaining DCE sub-module template

First of all, you could start with referring sub module template available as follows.

hg clone http://code.nsnam.org/thehajime/ns-3-dce-submodule (your module name)

The template consists of, wscript, helper, test and documentation. You could rename all/some of them for your module.
Then, put ns-3-dce-submodule directory under ns-3-dce/myscripts/. This will be required to build under ns-3-
dce module as an extension (sub-module) of dce.

3.2. Basic Use Cases 17

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

Writing wscript

Writing bakeconf.xml (optional)

Implementing helper class (optional)

Writing examples (optional)

3.2.4 Global DCE Configurations

Parameters

The DCE specifics variables are essentially two PATH like variables: so within them you may put paths separated by
‘:’ character.

DCE_PATH is used by DCE to find the executable you want to launch within ns-3 simulated network. This variable
is used when you reference the executable using a relative form like ‘ping’.

DCE_ROOT is similar to DCE_PATH but it is used when you use an absolute form for exemple ‘/bin/bash’.

Please pay attention that executables that you will place in the directories indicated in the previous variables should
be recompiled accordingly to the rules defined in the next chapter.

(FIXME: to be updated)

Tweaking

DCE is configurable with NS3 Attributes. Refer to the following table:

ATTRIBUTE NAME DESCRIPTION VALUES EXAMPLES
FiberManagerType The TaskManager is used

to switch the execution con-
text between threads and
processes.

UcontextFiberManager
the more efficient.
PthreadFiberManager
helpful with gdb to see the
threads. This is the de fault.

--ns3::TaskManager::FiberManagerType=UcontextFiberManager
dceManager.SetTaskManagerAttribute("FiberManagerType",
StringValue("UcontextFiberManager"));
--ns3::TaskManager::FiberManagerType=PthreadFiberManager

LoaderFactory The LoaderFactory is used
to load the hosted binaries.

CoojaLoaderFactory is
the default and the only one
that supports fork.
DlmLoaderFactory is the
more efficient. To use it you
have two ways:

• use dce-runner
• link using ldso as

default interpreter.

--ns3::DceManagerHelper::LoaderFactory=ns3::CoojaLoaderFactory[]
$ dce-runner
my-dce-ns3-script
OR
gcc -o
my-dce-ns3-script
Wl,--dynamic-linker=PATH2LDSO/ldso
...
$
my-dce-ns3-script
--ns3::DceManagerHelper::LoaderFactory=ns3::Dl
mLoaderFactory[]
dceManager.SetLoader("ns3::DlmLoaderFactory");

3.2.5 DCE Cradle

This document describes what DCE Cradle is, how we can use it, how we extend it.

Tutorials and how to reproduce the experiment of WNS3 2013 paper is available dce-cradle-usecase.

18 Chapter 3. User’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

What is DCE Cradle?

DCE Cradle enables us to use Linux kernel via Direct Code Execution from the ns-3 native socket application. Appli-
cations can access it via ns-3 socket API. Currently (20th Nov. 2012) the following sockets are available:

• IPv4 UDP

• IPv4 TCP

• IPv4 RAW socket

• IPv4 DCCP

Installing DCE Cradle

DCE Cradle is already integrated in ns-3-dce module. You can just build and install DCE as instructed in the parent
document.

How to use it

OnOffHelper onoff = OnOffHelper ("ns3::LinuxTcpSocketFactory",
InetSocketAddress (interfaces.GetAddress (1), 9));

How to extend it

(To be added)

Article

The project originally started during GSoC project 2012

the paper (to be added if it will be published)

3.2.6 Aspect-based Tracing

Aspect-based tracing, provided by libaspect, allows us to use tracing facility with unmodified code.

One of contradictions when we use DCE is, tracing, how to put trace sources into unmodified code. While DCE gives
an opportunity to use unmodified codes as simulation protocols, one might want to investigate which function is called
or how many messages of a particular protocol are exchanged.

ns-3 originally has a nice feature of tracing with such a purpose, with on-demand trace connector to obtain additional
information. Instead of inserting TraceSource into the original code, DCE gives dynamic trace points with this library,
based on the idea of aspect-based tracing.

For more detail, see the Chapter 6.3.2 of the thesis.

Quick Start

To put trace sources without modifying the original code, aspcpp::HookManager gives trace hooks into arbitrary source
codes and functions.

3.2. Basic Use Cases 19

http://www.nsnam.org/wiki/index.php/GSOC2012Projects#Allow_ns-3_native_applications_to_use_the_ns-3-linux_linux_kernel_stack
http://cutebugs.net/files/thesis.pdf

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

#include <hook-manager.h>

HookManager hooks;
hooks.AddHookBySourceAndFunction ("ip_input.c", "::ip_rcv", &IpRcv);
hooks.AddHookByFunction ("::process_backlog", &ProcBacklog);
hooks.AddHookByFunction ("::arp_xmit", &ArpXmit);

The above examples specifies file name and functions with callback functions in the simulation script.

Limitations

• July 10th, 2013: aspect-based tracing (libaspect) is in the alpha release state. It might be updated frequently.

• Callback function has no argument that it can investigate the contents of buffer that each function handles.

3.3 Advanced Use Cases

3.3.1 Using Alternative, Fast Loader

DCE optionally supports an alternative ELF loader/linker, so-called elf-loader, in order to replace system-provided
linker/loader module. The intention of the loader is to support unlimited number of instances used by dlmopen
call, which provides DCE to load a single ELF binary to multiple different memory space. dlmopen-based loader
(ns3::DlmLoaderFactory) is much faster than another default one (ns3::CoojaLOaderFactory), but few issues are re-
main so, this is optional.

To Speedup Run-time

In order to use DlmLoaderFactory, you can add command-line argument of waf.

./waf --run dce-tcp-simple --dlm

if you are in the ./waf shell mode, the following command should be used instead.

./build/bin/dce-runner ./build/bin/dce-tcp-simple

3.3.2 Debugging your protocols with DCE

Gdb

It is possible to use gdb to debug a script DCE/ns-3. As explained somewhere in the execution of a script is monopro-
cess, then you can put breakpoints in both sources of DCE and those of binaries hosted by DCE.

Install

Although it is not strictly necessary, it is recommended that you recompile a CVS Gdb for use with ns-3-dce. First,
download::

cvs -d :pserver:anoncvs@sourceware.org:/cvs/src login
{enter "anoncvs" as the password}
cvs -d :pserver:anoncvs@sourceware.org:/cvs/src co gdb

20 Chapter 3. User’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

Note that you might consider looking at http://sourceware.org/gdb/current/ to obtain more efficient (cpu/bandwidth-
wise) download instructions.

Anyway, now, you can build::

cd gdb
./configure
make

And, then, invoke the version of gdb located in gdb/gdb instead of your system-installed gdb whenever you need to
debug a DCE-based program.

Using

If you use gdb (a CVS or stable version), do not forget to execute the following command prior to running any DCE-
based program::

(gdb) handle SIGUSR1 nostop
Signal StopPrintPass to programDescription
SIGUSR1 NoYesYesUser defined signal 1
(gdb)

An alternate way to do this and avoid having to repeat this command ad-nauseam involves creating a .gdbinit file in
your ns-3-dce directory and putting this inside::

handle SIGUSR1 nostop

Helpful debugging hints

There are a couple of functions which are useful to put breakpoints into:

• ns3::DceManager::StartProcessDebugHook

Put a breakpoint in a specif node in a simulation

If you got a trouble in your protocol during interactions between distributed nodes, you want to investigate a specific
state of the protocol in a specific node. In a usual system, this is a typical case of using distributed debugger (e.g.,
ddt, or mpirun xterm -e gdb –args xxx), but it is annoying task in general due to the difficulty of controlling distributed
nodes and processes.

DCE gives an easy interface to debug distributed applications/protocols by the single-process model of its architecture.

The following is an example of debugging Mobile IPv6 stack (of Linux) in a specific node (i.e., home agent). A special
function dce_debug_nodeid() is useful if you put a break condition in a gdb session.

(gdb) b mip6_mh_filter if dce_debug_nodeid()==0
Breakpoint 1 at 0x7ffff287c569: file net/ipv6/mip6.c, line 88.
<continue>

(gdb) bt 4
#0 mip6_mh_filter (sk=0x7ffff7f69e10, skb=0x7ffff7cde8b0)

at net/ipv6/mip6.c:109
#1 0x00007ffff2831418 in ipv6_raw_deliver (skb=0x7ffff7cde8b0,

nexthdr=135)
at net/ipv6/raw.c:199

#2 0x00007ffff2831697 in raw6_local_deliver (skb=0x7ffff7cde8b0,
nexthdr=135)

3.3. Advanced Use Cases 21

http://sourceware.org/gdb/current/

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

at net/ipv6/raw.c:232
#3 0x00007ffff27e6068 in ip6_input_finish (skb=0x7ffff7cde8b0)

at net/ipv6/ip6_input.c:197
(More stack frames follow...)

Valgrind

(FIXME: simple session using valgrind)

3.3.3 Testing your protocols with DCE

Since DCE allows protocol implementations to expose network conditions (packet losses, reordering, and errors) with
the interactions among distributed nodes, which is not easily available by traditional user-mode virtualization tools,
exercising your code is easily done with a single simulation script.

Coverage Test

Improving code coverage with writing test programs is one of headache; - writing test program is annoying, - preparing
test network tends to be short-term, and - the result is not reproducible.

This text describes how to measure code coverage of protocol implementations with DCE.

1. build target implementations (applications, kernel stack) with profile option

2. run test program with DCE

3. parse the result of test coverage

Setup

First, you need to compile your application with additional flags. -fprofile-arcs -ftest-coverage is used for a compila-
tion flag (CFLAGS/CXXFLAGS), and -fprofile-arcs is used for a linker flag (LDFLAGS).

gcc -fprofile-arcs -ftest-coverage -fPIC -c foo.c
gcc -fprofile-arcs -pie foo.o -o newapp

Write Test Program

Next, write a test program like ns-3 simulation script for your application (i.e., newapp).

$ cat myscripts/dce-newapp.cc

int main (int argc, char *argv[])
{

CommandLine cmd;
cmd.Parse (argc, argv);

NodeContainer nodes;
nodes.Create (2);

InternetStackHelper stack;
stack.Install (nodes);

22 Chapter 3. User’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

DceManagerHelper dceManager;
dceManager.Install (nodes);

DceApplicationHelper dce;
ApplicationContainer apps;

// application on node 0
dce.SetBinary ("newapp");
dce.ResetArguments();
apps = dce.Install (nodes.Get (0));
apps.Start (Seconds (4.0));

// application on node 1
dce.SetBinary ("newapp");
dce.ResetArguments();
apps = dce.Install (nodes.Get (1));
apps.Start (Seconds (4.5));

Simulator::Stop (Seconds(100.0));
Simulator::Run ();
Simulator::Destroy ();

return 0;
}

Run Test

Then, test your application as normal ns-3 (and DCE) simulation execution.

./waf --run dce-newapp

If you successfully finish your test, you will see the coverage data files (i.e., gcov data files) with a file extension .gcda.

$ find ./ -name "*.gcda"

./files-0/home/you/are/here/ns-3-dce/newapp.gcda

./files-1/home/you/are/here/ns-3-dce/newapp.gcda

Parse Test Result

We use lcov utilities as a parse of coverage test result.

Put the compiler (gcc) generated files (*.gcno) in the result directory,

cp *.gcno ./files-0/home/you/are/here/ns-3-dce/
cp *.gcno ./files-1/home/you/are/here/ns-3-dce/

then run the lcov and genhtml command to generate coverage information of your test program.

lcov -c -d .-b . -o test.info
genhtml test.info -o html

You will see the following output and generated html pages.

Reading data file test.info
Found 8 entries.
Writing .css and .png files.

3.3. Advanced Use Cases 23

http://ltp.sourceforge.net/coverage/lcov.php

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

Generating output.
Processing file ns-3-dce/example/udp-server.cc
genhtml: Use of uninitialized value in subtraction (-) at /usr/bin/genhtml line 4313.
Processing file ns-3-dce/example/udp-client.cc
genhtml: Use of uninitialized value in subtraction (-) at /usr/bin/genhtml line 4313.
Processing file /usr/include/c++/4.4/iostream
Processing file /usr/include/c++/4.4/ostream
Processing file /usr/include/c++/4.4/bits/ios_base.h
Processing file /usr/include/c++/4.4/bits/locale_facets.h
Processing file /usr/include/c++/4.4/bits/char_traits.h
Processing file /usr/include/c++/4.4/bits/basic_ios.h
Writing directory view page.
Overall coverage rate:

lines......: 49.3% (35 of 71 lines)
functions..: 31.6% (6 of 19 functions)

Fuzz Test

(TBA, about integration of trinity)

Regression Test

(TBA)

3.4 Technical Information

3.4.1 DCE in a Nutshell

File System

To start a program in the world of ns-3 you must indicate on which node it will be launched. Once launched this
program will have access only to the file system corresponding to the node that corresponds to a directory on your
machine called file-X where X is the decimal number of the corresponding node. The file-X directories are created by
DCE, only when they do not already exist. Also note that the contents of this directory is not cleared when starting
the script. So you can copy the files required for the operation of your executables in the tree nodes. If possible it is
best that you create these files from the script itself in order to simplify maintenance. DCE provides some helpers for
creating configuration files necessary to the execution of certain apps like CCNx and Quagga.

24 Chapter 3. User’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

Network

Your program running in a ns-3 node views the network defined by the script for this node.

Time

Time perceived by your executable is the simulated time of ns-3. Also note that DCE supports real time scheduler of
ns-3 with the same limitations.

3.4.2 Limitations

• Currently the POSIX API (libc) is not fully supported by DCE. However there are already about 400 methods
supported. As the goal of DCE is to allow to execute network applications, many methods related to the network
are supported for example socket, connect, bind, listen, read, write, poll, select. The next
chapter list the applications well tested using DCE.

• Some methods are not usable with all options of DCE. For more details refer to chapter Coverage API that lists
all the supported methods.

• The scheduler is not as advanced as that of a kernel, for example if an infinite loop in a hosted application, DCE
can not get out, but this should not happen in applications written correctly.

3.4.3 API Coverage

Below there is the list of the systems calls supported by DCE, the column named Type represents how the system call
is implemented ie:

1. DCE the method is fully rewritten,

2. NATIVE the real corresponding system call is used.

Table 3.1: API Coverage

System Call Name Domain Include file Type Remarks
gettimeofday Date & Time sys/time.h DCE
time Date & Time time.h DCE
asctime, ctime, gmtime, localtime Date & Time time.h DCE
asctime_r, ctime_r, gmtime_r, localtime_r, mktime, strftime Date & Time time.h NATIVE
clock_gettime Date & Time time.h NATIVE Should not be NATIVE, do not use for now.
read IO unistd.h DCE
write IO unistd.h DCE
writev IO sys/uio.h DCE
clearerr IO stdio.h DCE
setbuf, setbuffer, setlinebuf, setvbuf IO stdio.h DCE
fseek, ftell, rewind, fgetpos, fsetpos IO stdio.h DCE
printf IO stdio.h DCE
fprintf IO stdio.h NATIVE
sprintf, snprintf IO stdio.h NATIVE
asprintf, vasprintf IO stdio.h NATIVE
dprintf, vdprintf IO stdio.h NATIVE
fgetc, fgetc_unlocked IO stdio.h DCE
getc, getc_unlocked IO stdio.h NATIVE

Continued on next page

3.4. Technical Information 25

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

Table 3.1 – continued from previous page
System Call Name Domain Include file Type Remarks

getchar, getchar_unlocked IO stdio.h DCE
_IO_getc IO stdio.h DCE
fputc, fputc_unlocked IO stdio.h DCE
putc, putc_unlocked IO stdio.h NATIVE
putchar, putchar_unlocked IO stdio.h DCE
_IO_putc IO stdio.h DCE
fgets, fgets_unlocked IO stdio.h DCE
fputs, fputs_unlocked IO stdio.h DCE
puts IO stdio.h DCE
ungetc IO stdio.h DCE
fclose IO stdio.h DCE
fcloseall IO stdio.h DCE
fopen, fdopen64, fdopen, freopen IO stdio.h DCE
fflush, fflush_unlocked IO stdio.h DCE
fread, fread_unlocked IO stdio.h DCE
fwrite, fwrite_unlocked IO stdio.h DCE
ferror, ferror_unlocked IO stdio.h DCE
feof, feof_unlocked IO stdio.h DCE
fileno, fileno_unlocked IO stdio.h DCE
perror IO stdlib.h DCE
vprintf IO stdarg.h DCE
vfprintf, vsprintf, vsnprintf IO stdarg.h NATIVE
fcntl IO fcntl.h DCE
dup, dup2 IO unistd.h DCE
open, open64 IO fcntl.h DCE
close IO unistd.h DCE
unlink IO unistd.h DCE
remove IO stdio.h DCE
mkdir IO sys/stat.h DCE
rmdir IO unistd.h DCE
select IO unistd.h DCE
isatty IO unistd.h DCE
ioctl IO sys/ioctl.h DCE
poll IO poll.h DCE
getcwd, getwd, get_current_dir_name IO unistd.h DCE
chdir, fchdir IO unistd.h DCE
alphasort, alphasort64, versionsort IO dirent.h NATIVE
umask IO sys/stat.h DCE
truncate, ftruncate IO unistd.h DCE
ttyname IO unistd.h DCE
lseek IO unistd.h DCE
euidaccess, eaccess IO unistd.h DCE
pathconf IO unistd.h NATIVE
getpwnam, getpwuid, endpwent IO pwd.h DCE
opendir, fdopendir IO dirent.h DCE
readdir, readdir_r IO dirent.h DCE
closedir IO dirent.h DCE
dirfd IO dirent.h DCE
rewinddir IO dirent.h DCE

Continued on next page

26 Chapter 3. User’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

Table 3.1 – continued from previous page
System Call Name Domain Include file Type Remarks

scandir IO dirent.h DCE
unlinkat IO fcntl.h DCE
pread, pwrite IO unistd.h DCE
uname Kernel sys/utsname.h DCE
sysconf Kernel unistd.h NATIVE
calloc, malloc, free, realloc Memory Allocation stdlib.h DCE
mmap, mmap64, munmap Memory Mappings sys/map.h DCE
htonl Networking arpa/inet.h NATIVE
htons Networking arpa/inet.h NATIVE
ntohl Networking arpa/inet.h NATIVE
htonl Networking arpa/inet.h NATIVE
ntohs Networking arpa/inet.h NATIVE
socket Networking sys/socket.h DCE Not all flavour are supported pleaselook at the doxygen doc.
getsockname Networking sys/socket.h DCE
getpeername Networking sys/socket.h DCE
bind Networking sys/socket.h DCE
connect Networking sys/socket.h DCE
inet_aton, inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof Networking arpa/inet.h NATIVE
inet_ntop Networking arpa/inet.h DCE
inet_pton Networking arpa/inet.h NATIVE
getsockopt, setsockopt Networking sys/socket.h DCE
listen Networking sys/socket.h DCE
accept Networking sys/socket.h DCE
shutdown Networking sys/socket.h DCE
send, sendto, sendmsg Networking sys/socket.h DCE
recv, recvfrom, recvmsg Networking sys/socket.h DCE
gethostbyname, gethostbyname2 Networking netdb.h DCE
getaddrinfo, freeaddrinfo, gai_strerror Networking netdb.h DCE
gethostent, sethostent, endhostset, hstrerror Networking netdb.h NATIVE
herror Networking netdb.h DCE
getprotoent, getprotobyname, getprotonumber, setprotoent, endprotoent Networking netdb.h NATIVE
getservent, getservbyname, getservbyport, setservent, endservent Networking netdb.h NATIVE
if_nametoindex Networking net/if.h DCE
getnameinfo Networking sys/socket.h DCE
ether_aton_r Networking netinet/ether.h NATIVE
atexit Process stdlib.h DCE
getpid, getppid Process unistd.h DCE
getuid, geteuid Process unistd.h DCE
setuid Process unistd.h DCE
setgid Process unistd.h DCE
seteuid, setegid Process unistd.h DCE
setreuid, setregid Process unistd.h DCE
setresuid, setresgid Process unistd.h DCE
sched_yield Process sched.h DCE
exit Process unistd.h DCE
getenv Process stdlib.h DCE
putenv Process stdlib.h DCE
setenv, unsetenv Process stdlib.h DCE
clearenv Process stdlib.h DCE

Continued on next page

3.4. Technical Information 27

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

Table 3.1 – continued from previous page
System Call Name Domain Include file Type Remarks

fork Process unistd.h DCE Supported only with the Cooja Loader.
abort Process stdlib.h DCE
execl, execlp, execle, execv, execvp, execve Process unistd.h DCE Supported only with the pthread fiber manager.
wait, waitpid Process sys/wait.h DCE
sbrk Process unistd.h DCE
getpagesize Process unistd.h DCE
getgid, getegid Process unistd.h DCE
gethostname Process unistd.h DCE
getpgrp Process unistd.h DCE
pipe Process unistd.h DCE
__sigsetjmp, siglongjmp Process setjmp.h NATIVE Experimental, please do not use them.
getdtablesize Process unistd.h NATIVE
random, srandom Random stdlib.h DCE
rand, srand Random stdlib.h DCE
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 Random stdlib.h DCE
drand48_r, erand48_r, lrand48_r, nrand48_r, mrand48_r, jrand48_r, srand48_r, seed48_r, lcong48_r Random stdlib.h DCE
signal Signal signal.h DCE
sigaction Signal signal.h DCE
sigemptyset, sigfillset, sigaddset, sigdelset, sigismember Signal signal.h NATIVE
sigprocmask Signal signal.h DCE
qsort Sort stdlib.h NATIVE
strerror, strerror_h String string.h NATIVE
setlocale String locale.h DCE Do nothing at all
strcoll String string.h NATIVE
uselocale String locale.h NATIVE
newlocale String locale.h NATIVE
wctob String wchar.h NATIVE
btowc String wchar.h NATIVE
memset String string.h NATIVE
memcpy String string.h NATIVE
bcopy String string.h NATIVE
memcmp String string.h NATIVE
memmove String string.h NATIVE
memchr String string.h NATIVE
strcpy, strncpy String string.h NATIVE
strcat, strncat String string.h NATIVE
strcmp, strncmp String string.h NATIVE
strlen, strnlen String string.h NATIVE
strspn, strcspn String string.h NATIVE
strchr, strrchr String string.h NATIVE
strcasecmp, strncasecmp String string.h NATIVE
strdup, strndup String string.h DCE
getopt, getopt_long String unistd.h DCE
atoi, atol, atoll, atof String stdlib.h NATIVE
strtol, strtoll String stdlib.h DCE
strtoul, strtoull String stdlib.h DCE
strtod String stdlib.h DCE
toupper, tolower String ctype.h NATIVE
index, rindex String strings.h NATIVE

Continued on next page

28 Chapter 3. User’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

Table 3.1 – continued from previous page
System Call Name Domain Include file Type Remarks

strtok, strtok_r String string.h NATIVE
sscanf String stdio.h NATIVE
basename, dirname String libgen.h NATIVE
bindtextdomain, textdomain, gettext String libintl.h NATIVE
mbrlen String wchar.h NATIVE
strtoimax, strtoumax String inttypes.h NATIVE
openlog, syslog, closelog, vsyslog, setlogmask Syslog syslog.h DCE
pthread_create Thread pthread.h DCE
pthread_exit Thread pthread.h DCE
pthread_self Thread pthread.h DCE
pthread_once Thread pthread.h DCE
pthread_getspecific, pthread_setspecific Thread pthread.h DCE
pthread_key_create Thread pthread.h DCE
pthread_key_delete Thread pthread.h DCE
pthread_mutex_destroy, pthread_mutex_init Thread pthread.h DCE
pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock Thread pthread.h DCE
pthread_mutexattr_destroy, pthread_mutexattr_init Thread pthread.h DCE
pthread_mutexattr_settype Thread pthread.h DCE
pthread_cancel Thread pthread.h DCE
pthread_kill Thread pthread.h DCE
pthread_join Thread pthread.h DCE
pthread_detach Thread pthread.h DCE
pthread_cond_destroy, pthread_cond_init Thread pthread.h DCE
pthread_cond_broadcast, pthread_cond_signal Thread pthread.h DCE
pthread_cond_timedwait, pthread_cond_wait Thread pthread.h DCE
pthread_condattr_destroy, pthread_condattr_init Thread pthread.h DCE
sem_init Thread Synchronization semaphore.h DCE
sem_destroy Thread Synchronization semaphore.h DCE
sem_post Thread Synchronization semaphore.h DCE
sem_wait, sem_trywait, sem_timedwait Thread Synchronization semaphore.h DCE
sem_getvalue Thread Synchronization semaphore.h DCE
sleep, usleep Timer unistd.h DCE
nanosleep Timer time.h DCE
getitimer, setitimer Timer sys/time.h DCE
timerfd_create, timerfd_settime, timerfd_gettime Timer sys/timerfd.h DCE
getgrnam Users & Groups grp.h NATIVE
getrusage Users & Groups sys/resource.h NATIVE

3.4. Technical Information 29

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

30 Chapter 3. User’s Guide

CHAPTER

FOUR

DEVELOPER’S GUIDE (TO BE
AVAILABLE SOON)

This document is for the people who want to develop DCE itself.

4.1 Kernel Developer Information

This technical documentation is intended for developers who want to build a Linux kernel in order to use with DCE. A
first part will describe the architecture and the second will show how we went from a net-next kernel 2.6 has a Linux
kernel-stable 3.4.5.

4.1.1 Prerequisite

You must be familiar with ns-3, DCE and Linux Kernel Developpement.

4.1.2 Download

The source code can be found in the following repository: http://code.nsnam.org/furbani/ns-3-linux. You must use
mercurial to download the source code.

4.1.3 Goal

The goal of this work is to use the real implementation of the Linux Network Stack within the Simulation environ-
nement furnished by ns-3.

4.1.4 Solution

The solution chosen was to use the Linux kernel source, compile the Net part and make a dynamic library and interface
the result with DCE.

The following schema show the differents parts between a software user space application and the hardware network.

31

http://code.nsnam.org/furbani/ns-3-linux

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

The following schema show the same application running under DCE and ns-3 and using a real kernel network stack:

32 Chapter 4. Developer’s Guide (To Be Available Soon)

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

The green parts are implemented in ns-3-linux source files, the grays parts comes from the Linux kernel sources and
are not modified at all or with only few changes. Application should not be modified at all.

4.1. Kernel Developer Information 33

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

4.1.5 Concepts

If you need a more theorical documentation you can read the chapter 4.5 of this Ph.D thesis Experimentation Tools for
Networking Research.

4.1.6 List of files and usage

After doing the cloning of the source,

$ hg clone http://code.nsnam.org/furbani/ns-3-linux
destination directory: ns-3-linux
requesting all changes
adding changesets
adding manifests
adding file changes
added 62 changesets with 274 changes to 130 files
updating to branch default
125 files updated, 0 files merged, 0 files removed, 0 files unresolved

Below are the files delivered under the directory ns-3-linux:

$ ls ns-3-linux/
generate-autoconf.py generate-linker-script.py kernel-dsmip6.patch kernel.patch Makefile Makefile.print processor.mk README sim

The main file is the Makefile its role is to recover the kernel source, compile the NET part of the kernel and all that is
necessary for the operation, the end result is a shared library that can be loaded by DCE.

$ ls ns-3-linux/sim
cred.c glue.c Kconfig pid.c random.c seq.c sim-socket.c softirq.c tasklet.c timer.c
defconfig hrtimer.c Makefile print.c sched.c sim.c slab.c sysctl.c tasklet-hrtimer.c workqueue.c
fs.c include modules.c proc.c security.c sim-device.c socket.c sysfs.c time.c

$ ls ns-3-linux/sim/include
asm generated sim-assert.h sim.h sim-init.h sim-printf.h sim-types.h

These directories contains the architecture specific code and the code doing the interface between the kernel and DCE
and ns-3. Ideally we should not change a line of code outside the kernel arch portion, but in practice we make small
changes : see the patchs files.

Recall: the code of Linux source is mainly C so it is very easy to port to new architecture, the architecture specific
code is contained in a specific directory under arch/XXX directory where XXX name recall the processor used. In our
case we have chosen to create a special architecture for our environment NS3 + DCE, we called sim.

4.1.7 Interfaces between Kernel and DCE

In order to install a kernel on a Node DCE do the following steps:

1. Load the shared library containing the kernel compilation result,

2. Call the init function called sim_init, this method is located in the just loaded library,

3. This sim_init method is called with a parameter which is a struct containing functions pointers to DCE methods
able to be callable from the kernel part,

4. in return the sim_init fill a struct containing function pointers in kernel part which will be used by DCE to
interract with the kernel part.

5. before finish sim_init must initialize the kernel to put it in a running state ready to be usable.

34 Chapter 4. Developer’s Guide (To Be Available Soon)

http://cutebugs.net/files/thesis.pdf
http://cutebugs.net/files/thesis.pdf

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

Kernel -> DCE

Methods (there is also one variable) of DCE called by the kernels are the following:

• LinuxSocketFdFactory::Vprintf

• LinuxSocketFdFactory::Malloc

• LinuxSocketFdFactory::Free

• LinuxSocketFdFactory::Memcpy

• LinuxSocketFdFactory::Memset

• LinuxSocketFdFactory::Random

• LinuxSocketFdFactory::EventScheduleNs

• LinuxSocketFdFactory::EventCancel

• CurrentNs

• LinuxSocketFdFactory::TaskStart

• LinuxSocketFdFactory::TaskWait

• LinuxSocketFdFactory::TaskCurrent

• LinuxSocketFdFactory::TaskWakeup

• LinuxSocketFdFactory::TaskYield

• LinuxSocketFdFactory::DevXmit

• LinuxSocketFdFactory::SignalRaised

• LinuxSocketFdFactory::PollEvent

there are located in the source file linux-socket-fd-factory.cc of DCE.

DCE -> Kernel

Methods of Kernel (sim part) called by DCE are the following:

• task_create

• task_destroy

• task_get_private

• sock_socket

• sock_close

• sock_recvmsg

• sock_sendmsg

• sock_getsockname

• sock_getpeername

• sock_bind

• sock_connect

• sock_listen

• sock_shutdown

4.1. Kernel Developer Information 35

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

• sock_accept

• sock_ioctl

• sock_setsockopt

• sock_getsockopt

• sock_poll

• sock_pollfreewait

• dev_create

• dev_destroy

• dev_get_private

• dev_set_address

• dev_set_mtu

• dev_create_packet

• dev_rx

• sys_iterate_files

• sys_file_read

• sys_file_write

the corresponding sources are located in the sim directory.

4.1.8 Build net-next 2.6 kernel

All build operations are done using the make command with the Makefile file under the directory ns-3-linux.

Make Setup

First you should call make setup in order to download the source of the kernel:

$ make setup
git clone git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git net-next-2.6; cd net-next-2.6 && git reset --hard \
fed66381d65a35198639f564365e61a7f256bf79
Cloning into net-next-2.6...
remote: Counting objects: 2441000, done.
remote: Compressing objects: 100% (377669/377669), done.
Receiving objects: 100% (2441000/2441000), 493.28 MiB | 28.45 MiB/s, done.
remote: Total 2441000 (delta 2043525), reused 2436782 (delta 2039307)
Resolving deltas: 100% (2043525/2043525), done.
Checking out files: 100% (33319/33319), done.

This sources correspond to a specific version well tested with DCE the net-next 2.6 and git tag =
fed66381d65a35198639f564365e61a7f256bf79.

Now the directory net-next-2.6 contains the kernel sources.

Make Menuconfig

Use make menuconfig to configure your kernel, note that modules are not supported by our architecture so options
chosen as modules will not be included in the result kernel.

36 Chapter 4. Developer’s Guide (To Be Available Soon)

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

Build

Finally make will compile all the needed sources and produce a file named libnet-next-2.6.so: this is the library
contains our net-next kernel suitable for DCE usage.

Usage

To use this kernel you should:

1. configure DCE in order to compile using the includes under sim directories to have the good interfaces between
DCE and the kernel. For this you should give to the waf configure the path to the ns-3-linux directory ie:

$./waf configure ----enable-kernel-stack=/ABSOLUTE-PATH-TO/ns-3-linux

2. In your ns-3 scenario you should indicate the good kernel file: (the file should be located in a directory presents
in the DCE_PATH env. variable)

dceManager.SetNetworkStack("ns3::LinuxSocketFdFactory", "Library", StringValue ("libnet-next-2.6.so"));

Test

Use DCE unit test:

$./waf --run "test-runner --verbose"
PASS process-manager 9.470ms
PASS Check that process "test-empty" completes correctly. 0.920ms
PASS Check that process "test-sleep" completes correctly. 0.080ms
PASS Check that process "test-pthread" completes correctly. 0.110ms
PASS Check that process "test-mutex" completes correctly. 0.200ms
PASS Check that process "test-once" completes correctly. 0.070ms
PASS Check that process "test-pthread-key" completes correctly. 0.070ms
PASS Check that process "test-sem" completes correctly. 0.080ms
PASS Check that process "test-malloc" completes correctly. 0.060ms
PASS Check that process "test-malloc-2" completes correctly. 0.060ms
PASS Check that process "test-fd-simple" completes correctly. 0.070ms
PASS Check that process "test-strerror" completes correctly. 0.070ms
PASS Check that process "test-stdio" completes correctly. 0.240ms
PASS Check that process "test-string" completes correctly. 0.060ms
PASS Check that process "test-netdb" completes correctly. 3.940ms
PASS Check that process "test-env" completes correctly. 0.050ms
PASS Check that process "test-cond" completes correctly. 0.160ms
PASS Check that process "test-timer-fd" completes correctly. 0.060ms
PASS Check that process "test-stdlib" completes correctly. 0.060ms
PASS Check that process "test-fork" completes correctly. 0.120ms
PASS Check that process "test-select" completes correctly. 0.320ms
PASS Check that process "test-nanosleep" completes correctly. 0.070ms
PASS Check that process "test-random" completes correctly. 0.090ms
PASS Check that process "test-local-socket" completes correctly. 0.820ms
PASS Check that process "test-poll" completes correctly. 0.320ms
PASS Check that process "test-exec" completes correctly. 0.380ms
PASS Check that process "test-iperf" completes correctly. 0.070ms
PASS Check that process "test-name" completes correctly. 0.080ms
PASS Check that process "test-pipe" completes correctly. 0.160ms
PASS Check that process "test-dirent" completes correctly. 0.070ms
PASS Check that process "test-socket" completes correctly. 0.270ms
PASS Check that process "test-bug-multi-select" completes correctly. 0.260ms
PASS Check that process "test-tsearch" completes correctly. 0.080ms

4.1. Kernel Developer Information 37

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

All is OK.

4.1.9 net-next 2.6 to linux-stable 3.4.5

Now we will try to use a more recent linux kernel. We start with a fresh clone of the ns-3-linux sources.

Makefile

First we need to modify the makefile in order to change the kernel downloaded. For that we need to modify the value
of 2 variables:

1. KERNEL_DIR=linux-stable

2. KERNEL_VERSION=763c71b1319c56272e42cf6ada6994131f0193a7

3. KERNEL_DOWNLOAD=git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

Also we need to remove the patch target named .target.ts because the patch will not pass for this newer version of
kernel.

First Build

Now we can try to build:

$ make defconfig
$ make menuconfig
$ make
mkdir -p sim/
cc -O0 -g3 -D__KERNEL__ -Wall -Wstrict-prototypes -Wno-trigraphs -fno-inline -iwithprefix ./linux-stable/include -DKBUILD_BASENAME=\"clnt\" -fno-strict-aliasing -fno-common -fno-delete-null-pointer-checks -fno-stack-protector -DKBUILD_MODNAME=\"nsc\" -DMODVERSIONS -DEXPORT_SYMTAB -include autoconf.h -U__FreeBSD__ -D__linux__=1 -Dlinux=1 -D__linux=1 -I./sim/include -I./linux-stable/include -fpic -DPIC -D_DEBUG -I/home/furbani/dev/dce/dev/etude_kernel/V3/ns-3-linux -DCONFIG_64BIT -c sim/fs.c -o sim/fs.o
In file included from ./linux-stable/include/asm-generic/bitops.h:12:0,

from ./sim/include/asm/bitops.h:4,
from ./linux-stable/include/linux/bitops.h:22,
from ./linux-stable/include/linux/thread_info.h:52,
from ./linux-stable/include/linux/preempt.h:9,
from ./linux-stable/include/linux/spinlock.h:50,
from ./linux-stable/include/linux/wait.h:24,
from ./linux-stable/include/linux/fs.h:385,
from sim/fs.c:1:

./linux-stable/include/linux/irqflags.h:66:0: warning: "raw_local_irq_restore" redefined

./sim/include/asm/irqflags.h:8:0: note: this is the location of the previous definition
In file included from ./linux-stable/include/linux/wait.h:24:0,

from ./linux-stable/include/linux/fs.h:385,
from sim/fs.c:1:

./linux-stable/include/linux/spinlock.h:58:25: fatal error: asm/barrier.h: No such file or directory
compilation terminated.
make: *** [sim/fs.o] Error 1

Ok now we will try to fix the compilation errors trying not to change too the kernel source. In the following we will
list the main difficulties encountered.

First Error

Recall: the linux source directory include/asm-generic contains a C reference implementation of some code that
should be written in assembly langage for the target architecture. So this code is intented to help the developper to
port to new architectures. So our sim implementation use many of these asm-generic include files. The first warning

38 Chapter 4. Developer’s Guide (To Be Available Soon)

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

show that our code redefine a method defined elsewhere in kernel sources, so the fix is to remove our definition of this
function in opur file named sim/include/asm/irqflags.h.

Second Error

The file asm/barrier.h is missing, we just create under sim/include/asm directory and the implementation is to include
the generic one ie: include/asm-generic/barrier.h.

Change in sim method

Another problem arise the function named kern_mount_data defined in sim/fs.c do not compile any more. So we
need to investigate about this function:

1. Where this function is located in the real code: in linux/fs/namespace.c

2. Why it is reimplemented in sim/fs.c: if you look at our Makefile why try to not compile all the kernel we focus
on the net part only, you can see this line in the Makefile :

dirs=kernel/ mm/ crypto/ lib/ drivers/base/ drivers/net/ net/

in fact we include only this directories. So at this time we can comment the failing line and insert a sim_assert (false);
in order to continue to fix the compilation errors, and then when we will do the first run test we will see if this method
is called and if yes we will need to do a better fix. Remark: sim_assert (false); is a macro used to crash the execution,
we often place it in functions that we need to emulate because required by the linker but that should never be called.

Change in our makefile

After we have the following problem while compiling sim/glue.c the macro IS_ENABLED is not defined. After some
search we found that we need to include linux/kconfig.h in many files. So we modify our makefile to fix like this:

-fno-stack-protector \
-DKBUILD_MODNAME=\"nsc\" -DMODVERSIONS -DEXPORT_SYMTAB \

- -include autoconf.h \
+ -include $(SRCDIR)$(KERNEL_DIR)/include/linux/kconfig.h \

-U__FreeBSD__ -D__linux__=1 -Dlinux=1 -D__linux=1 \
-I$(SRCDIR)sim/include -I$(SRCDIR)$(KERNEL_DIR)/include \
$(AUTOCONF): generate-autoconf.py $(KERNEL_DIR)/.config timeconst.h
./generate-autoconf.py $(KERNEL_DIR)/.config > $@

+ cp autoconf.h sim/include/generated/autoconf.h
+

timeconst.h: $(KERNEL_DIR)/.config
perl $(SRCDIR)$(KERNEL_DIR)/kernel/timeconst.pl $(CONFIG_HZ) > $@

Change in kernel source

Our sim/slab.c do not compile, in this case we want to use our implementation of memory allocation and to do this it
is easier to modify slightly an include file in the kernel sources include/linux/slab.h :

--- a/include/linux/slab.h
+++ b/include/linux/slab.h
@@ -185,6 +185,8 @@ size_t ksize(const void *);
#include <linux/slub_def.h>
#elif defined(CONFIG_SLOB)
#include <linux/slob_def.h>

4.1. Kernel Developer Information 39

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

+#elif defined(CONFIG_SIM)
+#include <asm/slab.h>
#else
#include <linux/slab_def.h>
#endif

As we have already written we do not recommend to change the kernel sources to facilitate future upgrades.

First Launch

After a few corrections we finally get a library containing the kernel named liblinux-stable.so. At this moment we
need to try it using DCE. For the beginning we will try with test-runner executable.

./test.py
assert failed. cond="handle != 0", msg="Could not open elf-cache/0/libnet-next-2.6.so elf-cache/0/liblinux-stable.so: undefined symbol: noop_llseek", file=../model/cooja-loader-factory.cc, line=225
terminate called without an active exception
Aborted (core dumped)

We can see that a symbol is not defined : noop_llseek. We find this symbol defined in the kernel source named
fs/read_write.cc. We need to choose a way to add this symbol in our kernel library, we can:

• rewrite it in a source under our sim directory,

• or add it in our makefile.

In this case we choose the second solution so we need to modify our makefile, first we see that the directory fs is not
present in the dirs entry, so we need to add it in the write order (order is the same as found in the kernel Makefile
defined by the variable named vmlinux-main); we also need to indicate that we want only the object read_write.o:

@@ -51,7 +52,7 @@
AUTOCONF=autoconf.h
note: the directory order below matters to ensure that we match the kernel order
-dirs=kernel/ mm/ crypto/ lib/ drivers/base/ drivers/net/ net/
+dirs=kernel/ mm/ fs/ crypto/ lib/ drivers/base/ drivers/net/ net/
empty:=
space:= $(empty) $(empty)
colon:= :

@@ -67,11 +68,12 @@
ctype.o string.o kasprintf.o rbtree.o sha1.o textsearch.o vsprintf.o \
rwsem-spinlock.o scatterlist.o ratelimit.o hexdump.o dec_and_lock.o \
div64.o

+fs/_to_keep=read_write.o

Fake Function

We continue to try our kernel library, now another symbol is missing generic_file_aio_read, this symbol is defined in
the source mm/filemap.cc, it is referenced at least by read_write.c. In this case we decided to create a fake function
because the source mm/filemap.cc is voluminous and we do not want to take all the kernel sources. So we create a
new source under sim directory named sim/filemap.c the body of the function is sim_assert (false); so if this function
called sometimes we will be warned and we will write a more accurate version.

Assert

Later we meet again the function kern_mount_data, thanks to the presence of the sim_assert:

40 Chapter 4. Developer’s Guide (To Be Available Soon)

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

0x00007ffff5c8c572 in kern_mount_data (fs=<optimized out>, data=<optimized out>) at sim/fs.c:52
52 sim_assert (false);
(gdb) bt
#0 0x00007ffff5c8c572 in kern_mount_data (fs=<optimized out>, data=<optimized out>) at sim/fs.c:52
#1 0x00007ffff5d85923 in sock_init () at linux-stable/net/socket.c:2548
#2 0x00007ffff5c8d3aa in sim_init (exported=<optimized out>, imported=<optimized out>, kernel=<optimized out>) at sim/sim.c:169
#3 0x00007ffff7d9151b in ns3::LinuxSocketFdFactory::InitializeStack (this=0x65bde0) at ../model/linux-socket-fd-factory.cc:535
#4 0x00007ffff7d95ce4 in ns3::EventMemberImpl0::Notify (this=0x6597a0) at /home/furbani/dev/dce/dev/build/include/ns3-dev/ns3/make-event.h:94
#5 0x00007ffff76b10a8 in ns3::EventImpl::Invoke (this=0x6597a0) at ../src/core/model/event-impl.cc:39
#6 0x00007ffff7d8ff7c in ns3::LinuxSocketFdFactory::ScheduleTaskTrampoline (context=0x6597a0) at ../model/linux-socket-fd-factory.cc:373
#7 0x00007ffff7d3b7d4 in ns3::TaskManager::Trampoline (context=0x65d170) at ../model/task-manager.cc:250
#8 0x00007ffff7d37acd in ns3::PthreadFiberManager::Run (arg=0x65d5d0) at ../model/pthread-fiber-manager.cc:398
#9 0x00000034be206ccb in start_thread () from /lib64/libpthread.so.0
#10 0x00000034bd6e0c2d in clone () from /lib64/libc.so.6
(gdb)

So this function is called by the initialisation, we must provide an implementation for it:

// Implementation taken from vfs_kern_mount from linux/namespace.c
struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
{

static struct mount local_mnt;
struct mount *mnt = &local_mnt;
struct dentry *root = 0;

memset (mnt,0,sizeof (struct mount));
if (!type)

return ERR_PTR(-ENODEV);
int flags = MS_KERNMOUNT;
char *name = type->name;
if (flags & MS_KERNMOUNT)

mnt->mnt.mnt_flags = MNT_INTERNAL;

root = type->mount(type, flags, name, data);
if (IS_ERR(root)) {

return ERR_CAST(root);
}

mnt->mnt.mnt_root = root;
mnt->mnt.mnt_sb = root->d_sb;
mnt->mnt_mountpoint = mnt->mnt.mnt_root;
mnt->mnt_parent = mnt;

// br_write_lock(vfsmount_lock); DCE is monothreaded , so we do not care of lock here
list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);

// br_write_unlock(vfsmount_lock); DCE is monothreaded , so we do not care of lock here

return &mnt->mnt;
}

Here we do not want to integrate all the code namespace.c, so we copy and paste the function named
kern_mount_data. This solution has the advantage of minimizing code size, the disadvantage is that it can intro-
duce problems if the next version of the kernel need changes in this function.

4.1.10 Conclusion

We will not describe the rest of the port here. But after some iteration we end up with a version that works correctly.
Sometimes we should not hesitate to use gdb to trace the actual execution and correct accordingly code. The rules that

4.1. Kernel Developer Information 41

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

we can gain from this experience’s are as follows:

1. Be patient,

2. Try to not modify the kernel sources,

3. Be pragmatic,

4. Try to not import all the kernel code into our library,

5. Do not hesitate to go back and test other alternatives.

4.2 DCE - POLL IMPLEMENTATION

4.2.1 Introduction

The implementation of the poll system call is inspired by the Linux kernel, therefore we well study first the kernel poll
implementation.

Kernel implementation

Firstly in the kernel every type of file descriptor (file, socket, pipe ...) must provide a function named poll and conform
to this prototype:

int poll(struct file *file, poll_table *pwait);

Where file is a pointer to a structure representing the file (it looks like this in C++) and pwait is a pointer to a poll
table, pwait may be NULL, we will see later why. The return integer of this function is a mask of poll events which
have already occured on the corresponding file descriptor. The behavior of this function is as follows: 1. It is not a
blocking function, it immediately returns the mask of events regardless of event desired by the caller of poll. 2. if
pwait is not NULL then it add pwait in the wait queue of file, and secondly a pointer to the wait queue is stored in the
poll table pwait.

Thus an event on the file will ascend to the poll, and in the opposite direction when the poll ends it can de-register
itself from the wait queue of the file.

Now that we know the function poll of file, we can study the poll system call, here the following pseudo code com-
mented:

POLL(....)
{

poll_table table; // This table will contain essentially the list of wait queues that need to wake me,
// and also information about the current thread in order to be awakened.

poll_table *pwait=&table; // pointer to current poll table.

while (true)
{

foreach(fd) // For each file descriptor ...
{

file *file = get_file(fd); // Retrieve **file** data structure corresponding to fd.

if (!file)
mask = POLLNVAL; // fd does not correspond to an open file.

else
mask = file->poll (file, pwait); // During the first loop pwait is not NULL.

if (mask)

42 Chapter 4. Developer’s Guide (To Be Available Soon)

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

{
count++; // Increases the number of responses

pwait = NULL; // Once we have at least one response POLL should not be blocking,
// so we nullify the pointer to the poll table in order to not register the poll table to more file descriptors.

}
}
pwait = NULL; // For the next loops we must not re-register to the wait queue of files.

if (count) break; // we have a result.
if (timeout) break; // it is too late.

Wait(timeout); // Put to sleep until awakening from a file or because of the time limit.
}
poll_freewait(&table); // Removes the reference to the poll table from each file’s wait queue.

return count;
}

DCE implementation

As we have already seen, the poll will look like that of the kernel. Firstly we create a virtual method named Poll in the
class UnixFd. This method will do the same job that the function poll seen early in the struct file of the kernel linux
implementation. Before writing the function dce_poll which is our implementation of poll we need to create some
classes for mimic the role of the poll table and the wait queues.

So we add 2 sources files named wait-queue.h and wait-queue.cc in order to implements poll table and wait queue.

It is also on this occasion that I deleted all the objects used to wait which was allocated on the stack, and I replaced by
objects allocated in the heap. Concerning the dce-poll function it looks like the kernel one with some differences. The
more important difference is that the PollTable can not be allocated on the stack so it cannot be a local variable, so the
PollTable object is allocated with a C++ new. I guess you’re wondering why the poll table can not be allocated on the
stack, it is because of the fork implementation of DCE. Indeed, if a process makes a fork, this creates another stack
which use the same memory addresses, thus another thread of the same process can not use an object allocated on this
stack, and when a event of a file want to wake up the poll thread it will use especially this poll table. So allocating the
Poll Table in the heap generates a side effect which is that we need to release this memory if another thread call exit
while we are within the dce-poll. So we need to register the Poll Table somewhere in a DCE data, and the DCE place
choosen is the thread struct (in file model/process.h), because each thread can be in doing a poll. Thus there is a new
field in struct thread which is:

PollTable *pollTable; // No 0 if a poll is running on this thread

There is another reason to have this field, this reason arises from the fact that a file descriptor can be shared by
multiple processes (thanks to dup fork ...), thus when a process exit while doing a poll, we need to deregister from the
corresponding wait queues refered by the poll table.

Poll kernel implementation

Concerning the kernel implementation the dce-poll method is the same but the difference cames from the Poll method
specialized implementation of the class herited from UnixFd and which correspond to a File Descriptor open with the
help of the Kernel Linux. For example the class LinuxSocketFd represents a socket which is opened in the kernel,
therefore the method poll of LinuxSocketFdFactory will do much work.

Now look at the interface between DCE and the kernel, in the direction DCE to kernel, we use 2 functions which are
sock_poll and sock_pollfreewait, and in the other direction there is sim_poll_event. sock_poll obviously has the
same semantics as the kernel poll. sock_poll has the following signature:

4.2. DCE - POLL IMPLEMENTATION 43

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

void sock_poll (struct SimSocket *s, void *ret);

where s represents the socket int the kernel and ret is a pointer to a data structure of type struct poll_table_ref:

struct poll_table_ref
{

int ret;
void *opaque;

};

This structure allows the kernel to pass a reference to the poll table DCE via the opaque field. This reference will be
used by the kernel only to warn DCE that event just happened on socket, this using the function sim_poll_event (void
*ref). In return this function modifies the value of opaque and assign it a pointer to a core structure which represents
an entry in the wait queue of the socket. This value will be used by DCE for unregister it from the wait queue using
the function sock_pollfreewait function (void * ref). The field ret is also affected in return and it contain the mask of
poll events which have already occured on the corresponding socket. Most of the kernel code is in the file sim-socket.c
it consists of two structures, and the following functions:

NAME DESCRIPTION
sim_pollwake Function called by the kernel when the arrival of an event on the socket, if the event is

expected by DCE, the function forwards it to DCE.
sim_pollwait Function called by the kernel, its role is to register the poll table in the wait queue.
sim_sock_poll Function called by DCE, it is the interface between the DCE’s poll and the kernel’s poll.
sim_sock_pollfreewaitFunction called by DCE allows it to unregister from the wait queue.
struct
poll_table_ref

This is the same struct as that of DCE.

struct
sim_ptable_entry

This is used for the entry in the wait queue of the socket.

TODO add example , gdb breakpoint to follow the behavior in live

44 Chapter 4. Developer’s Guide (To Be Available Soon)

CHAPTER

FIVE

HOW IT WORKS (TO BE AVAILABLE
SOON)

If your are interrested to know why DCE exists and how it can works, you should read this document Experimentation
Tools for Networking Research (and in particular the chapter 4) written by the principal author of DCE Mathieu
Lacage. Also you can read the sources too.

5.1 Introduction

You know that the goal of DCE is to execute actual binaries within ns-3. More precisely a binary executed by DCE
perceives time and space of ns-3, rather than the real environnenent.

To do this, DCE does a job equivalent to an operating system like:

1. DCE loads in memory the code and data of executable,

2. DCE plays the role of intermediary between the executable and the environment through the systems functions
called by executables,

3. DCE manages and monitors the execution of processes and handles liberate the memory and close open files
when the stop process.

4. DCE manages the scheduling of the various virtual processes and threads.

5.2 Main classes and main data structures

5.2.1 DceManager

The DceManager is somewhat the entry point of DCE. It will create virtual processes and manages their execution.
There is an instance of DceManager which is associated to each node which need to virtualize the execution of a
process. In reality, the developer uses the classes DceManagerHelper and DceApplicationHelper.

I invite you to look at the source code dce-manager.cc and dce-manager.h and particularly the public methods Start,
Stop, Exit, Wakeup, Wait and Yield; the following private methods are also important: CreateProcess, Prepare-
DoStartProcess, DoStartProcess, AllocatePid, TaskSwitch, CleanupThread and LoadMain. The Start method is
called when starting the executable, if you look at, it begins by initializing an object of type struct Process. struct
Process is very important, it contains information about the virtual processes that DCE creates, this type is described
below. Start then also initializes a structure of type struct thread, it represents the principal thread in which the main
entry of the executable will run. Finally Start asks the TaskManager to create a new Task and to start this one using
the method DceManager::DoStartProcess as the entry point.

45

http://cutebugs.net/files/thesis.pdf
http://cutebugs.net/files/thesis.pdf

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

Class TaskManager is a major class of DCE, it is described below.

5.2.2 Process

struct process contains everything you need to describe a process, I invite you to study the source code in the file
process.h.

This structure contains references to standard objects for example a list of open files via a vector of FILE *, but it
contains also the references to objects useful to manage DCE threads, the memory allocated by the process ...

Field openFiles represents the open file descriptors of the process, the key is the fd and the value a pointer to an object
of type DCE FileUsage. The field threads contains all the threads in the process see description below. Field loader
is a pointer to the Loader used to load the corresponding code.

The alloc field is important it is a pointer to the memory allocator used to allocate the memory used by this process, at
the end of the process it will liberate all the memory allocated so as simple and efficient.

5.2.3 Thread

struct thread represents a thread, It contains various fields including a pointer to the process to which it belongs, and
also a pointer to Task object described later.

5.2.4 Taskmanager and Task

The TaskManager manages the Tasks, ie the threads of virtualized processes by DCE. It allows you to create new
task. It controls the activity of the task by the following methods: Stop, Wakeup, Sleep and Yield. A Task possesses
a stack which contains the call stack functions. There is one instance of TaskManager per node. The implementation
of TaskManager is based on a class of type FiberManager described below.

5.2.5 FiberManager

FiberManager actually implements the creation of the execution contexts. These contexts are called fiber. Fiber-
Manager offers the following:

1. Create a context, it returns a fiber

2. Delete a fiber

3. Yield hand to another fiber

DCE provides two implementations:

1. PthreadFiberManager, which is based on the pthread library,

2. UcontextFiberManager which is based on the POSIX API functions offered by ucontext.h: makecontext,
getcontext and setcontext.

I invite you to watch the corresponding man.

5.2.6 LoaderFactory and Loader

The Loader is a very important object of DCE. A DCE Loader loads the executable code in memory of a special
way, load several times the same executable, while isolating each of the other executable. The Loader must link the
executable loaded with the 3 libraries emulated ie lib C, lib pthread and lib rt. The same way the libraries used by the
executable must also be linked with the emulated libraries.

46 Chapter 5. How It Works (To Be Available Soon)

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

DCE offers several actually Loader:

1. CoojaLoader: it has the following characteristics: it loads into memory only a copy of the code, by cons it
duplicates data (ie global variables and static). For each change of context there are 2 memory copies: backup
data of the current context then restoration of context memory that will take control. Comment: it is rather
reliable,the size of the copied memory size depends on the total static and global variables, and in general there
is little, in a well designed executable.

2. DlmLoader : Uses a specialized loader to not duplicate the code but only the data but without special operations
to do when changing context. Comment: offers the best performance in memory and cpu, but not very reliable
especially during the unloading phase.

5.3 Follow a very simple example

After theory, do a bit of practice. Follow the execution of very simple example.

You can find the used sample under the directory named myscripts/sleep. This executable used by the scenario do
only a sleep of ten seconds:

#include <unistd.h>

int main(int c, char **v)
{

sleep (10);

return 1;
}

The ns-3/DCE scenario execute tenseconds one time starting at time zero:

#include "ns3/core-module.h"
#include "ns3/dce-module.h"

using namespace ns3;

int main (int argc, char *argv[])
{

NodeContainer nodes;
nodes.Create (1);

DceManagerHelper dceManager;
dceManager.Install (nodes);

DceApplicationHelper dce;
ApplicationContainer apps;

dce.SetStackSize (1<<20);

dce.SetBinary ("tenseconds");
dce.ResetArguments ();
apps = dce.Install (nodes.Get (0));
apps.Start (Seconds (0.0));

Simulator::Stop (Seconds(30.0));
Simulator::Run ();
Simulator::Destroy ();

}

5.3. Follow a very simple example 47

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

First we can launch tenseconds binary:

$./build/bin_dce/tenseconds

after 10 seconds you retrieve the prompt.

Then we can try the DCE scenario:

:: $./build/myscripts/sleep/bin/dce-sleep

This time the test is almost instantaneous, because the scenario is very simple and it uses the simulated time.

Same test by activating logs:

$ NS_LOG=DefaultSimulatorImpl ./build/myscripts/sleep/bin/dce-sleep
DefaultSimulatorImpl:DefaultSimulatorImpl(0x6928c0)
DefaultSimulatorImpl:SetScheduler(0x6928c0, ns3::MapScheduler[])
0s -1 DefaultSimulatorImpl:ScheduleWithContext(0x6928c0, 0, 0, 0x692ab0)
0s -1 DefaultSimulatorImpl:ScheduleWithContext(0x6928c0, 0, 0, 0x695220)
0s -1 DefaultSimulatorImpl:Stop(0x6928c0, 30000000000)
0s -1 DefaultSimulatorImpl:Schedule(0x6928c0, 30000000000, 0x692c10)
0s -1 DefaultSimulatorImpl:Run(0x6928c0)
0s -1 DefaultSimulatorImpl:ProcessOneEvent(): [LOGIC] handle 0
0s 0 DefaultSimulatorImpl:Schedule(0x6928c0, 0, 0x695630)
0s 0 DefaultSimulatorImpl:ProcessOneEvent(): [LOGIC] handle 0
0s 0 DefaultSimulatorImpl:ProcessOneEvent(): [LOGIC] handle 0
0s 0 DefaultSimulatorImpl:ProcessOneEvent(): [LOGIC] handle 0
0s 0 DefaultSimulatorImpl:Schedule(0x6928c0, 10000000000, 0x6954c0)
0s 0 DefaultSimulatorImpl:ProcessOneEvent(): [LOGIC] handle 10000000000
10s 0 DefaultSimulatorImpl:ProcessOneEvent(): [LOGIC] handle 10000000000
10s 0 DefaultSimulatorImpl:ProcessOneEvent(): [LOGIC] handle 30000000000
30s -1 DefaultSimulatorImpl:Stop(0x6928c0)
DefaultSimulatorImpl:Destroy(0x6928c0)
DefaultSimulatorImpl:Destroy(): [LOGIC] handle destroy 0x6928a0
DefaultSimulatorImpl:DoDispose(0x6928c0)
DefaultSimulatorImpl:~DefaultSimulatorImpl(0x6928c0)

We can see that an event occurs at 30s it is the end of the simulation corresponding to the line:

Simulator::Stop (Seconds(30.0));

We can also see that at 10s an event occurs, this is the end of our sleep(10).

Now we do the same experiment using the debugger:

$ gdb ./build/myscripts/sleep/bin/dce-sleep
(gdb) b ns3::DceManager::DoStartProcess
(gdb) b ns3::DceManager::Start
(gdb) run
Breakpoint 4, ns3::DceManager::Start (this=0x630c50, name=..., at ../model/dce-manager.cc:403
403 NS_LOG_FUNCTION (this << name << stackSize << args.size () << envs.size ());
(gdb) bt
#0 ns3::DceManager::Start (this=0x630c50, name=.....) at ../model/dce-manager.cc:403
#1 0x00007ffff7cb5e19 in ns3::DceApplication::StartApplication (this=0x633520) at ../model/dce-application.cc:79
#2 0x00007ffff71dea6e in ns3::EventMemberImpl0::Notify (this=0x633650) at ./ns3/make-event.h:94
#3 0x00007ffff76148af in ns3::EventImpl::Invoke (this=0x633650) at ../src/core/model/event-impl.cc:45
#4 0x00007ffff76194c3 in ns3::DefaultSimulatorImpl::ProcessOneEvent (this=0x6308e0) at ../src/core/model/default-simulator-impl.cc:140
#5 0x00007ffff761986a in ns3::DefaultSimulatorImpl::Run (this=0x6308e0) at ../src/core/model/default-simulator-impl.cc:193
#6 0x00007ffff76155dd in ns3::Simulator::Run () at ../src/core/model/simulator.cc:160
#7 0x00000000004075af in main (argc=1, argv=0x7fffffffdaa8) at ../myscripts/sleep/dce-sleep.cc:25

(gdb) info thread

48 Chapter 5. How It Works (To Be Available Soon)

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

Id Target Id Frame

* 1 Thread 0x7ffff6600740 (LWP 7977) "dce-sleep" ns3::DceManager::Start (this=0x630c50,) at ../model/dce-manager.cc:403

You can notice that:

1. We have two breakpoints.

2. After run the first stop is in ns3::DceManager:Start.

3. At this time there is only one thread.

4. We are currently processing an event, this event was scheduled by the call apps.Start (Seconds (0.0)); of our
scenario.

Now we continue our execution:

(gdb) continue
Continuing.
[New Thread 0x7ffff65fc700 (LWP 8159)]
[Switching to Thread 0x7ffff65fc700 (LWP 8159)]

Breakpoint 3, ns3::DceManager::DoStartProcess (context=0x633d50) at ../model/dce-manager.cc:274
274 Thread *current = (Thread *)context;
(gdb) info thread

Id Target Id Frame

* 2 Thread 0x7ffff65fc700 (LWP 8159) "dce-sleep" ns3::DceManager::DoStartProcess (context=0x633d50) at ../model/dce-manager.cc:274
1 Thread 0x7ffff6600740 (LWP 7977) "dce-sleep" pthread_cond_wait@@GLIBC_2.3.2 () at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:162

(gdb) bt
#0 ns3::DceManager::DoStartProcess (context=0x633d50) at ../model/dce-manager.cc:274
#1 0x00007ffff7d21b90 in ns3::TaskManager::Trampoline (context=0x633bd0) at ../model/task-manager.cc:267
#2 0x00007ffff7d1da87 in ns3::PthreadFiberManager::Run (arg=0x634040) at ../model/pthread-fiber-manager.cc:402
#3 0x00000034be206ccb in start_thread (arg=0x7ffff65fc700) at pthread_create.c:301
#4 0x00000034bd6e0c2d in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:115

You can notice that:

1. Now there is a second thread

2. Gdb break execution in ns3::DceManager::DoStartProcess in the context of the second thread

This second thread is the thread corresponding to the main thread of our hosted executable tenseconds, if you look at
ns3::DceManager::DoStartProcess you can notice that we are on the point of calling the main of tenseconds:

void
DceManager::DoStartProcess (void *context)
{

Thread *current = (Thread *)context;
int (*main)(int, char **) = PrepareDoStartProcess (current);
int retval = 127;

if (main)
{

StartProcessDebugHook ();
retval = main (current->process->originalArgc, current->process->originalArgv);

}
dce_exit (retval);

}

You can also see that the pointer to the main is the result of the method ns3::DceManager::PrepareDoStartProcess.
Now we can put a breakpoint before the sleep of tenseconds and follow the code of sleep:

5.3. Follow a very simple example 49

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

(gdb) break tenseconds.c:5
(gdb) continue
Breakpoint 1, main (c=1, v=0x630b30) at ../myscripts/sleep/tenseconds.c:5
5 sleep (10);
(gdb) list
(gdb) step
sleep () at ../model/libc-ns3.h:193
193 DCE (sleep)
(gdb) step
dce_sleep (seconds=10) at ../model/dce.cc:226
226 Thread *current = Current ();
(gdb) list
224 unsigned int dce_sleep (unsigned int seconds)
225 {
226 Thread *current = Current ();
227 NS_LOG_FUNCTION (current << UtilsGetNodeId ());
228 NS_ASSERT (current != 0);
229 current->process->manager->Wait (Seconds (seconds));
230 return 0;
231 }
(gdb) bt
#0 dce_sleep (seconds=10) at ../model/dce.cc:226
#1 0x00007ffff62cdcb9 in sleep () at ../model/libc-ns3.h:193
#2 0x00007ffff5c36725 in main (c=1, v=0x630b30) at ../myscripts/sleep/tenseconds.c:5
#3 0x00007ffff7c9b0bb in ns3::DceManager::DoStartProcess (context=0x633d50) at ../model/dce-manager.cc:281
#4 0x00007ffff7d21b90 in ns3::TaskManager::Trampoline (context=0x633bd0) at ../model/task-manager.cc:267
#5 0x00007ffff7d1da87 in ns3::PthreadFiberManager::Run (arg=0x634040) at ../model/pthread-fiber-manager.cc:402
#6 0x00000034be206ccb in start_thread (arg=0x7ffff65fc700) at pthread_create.c:301
#7 0x00000034bd6e0c2d in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:115
(gdb) info thread

Id Target Id Frame

* 2 Thread 0x7ffff65fc700 (LWP 15233) "dce-sleep" dce_sleep (seconds=10) at ../model/dce.cc:226
1 Thread 0x7ffff6600740 (LWP 15230) "dce-sleep" pthread_cond_wait@@GLIBC_2.3.2 () at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:162

(gdb)

We can notice that sleep call dce_sleep which call Wait, this Wait method is from the class TaskManager. TaskMan-
ager is a major class of DCE and we will detail it below. Basically Wait schedules and event in ns-3 event queue
(in order to be woken up after sleep time) and give the control to another Task. Now we can put a breakpoint in
ns3::DefaultSimulatorImpl::ProcessOneEvent and see the time advance up to 10s:

gdb) b ns3::DefaultSimulatorImpl::ProcessOneEvent
Breakpoint 2 at 0x7ffff7619207: file ../src/core/model/default-simulator-impl.cc, line 131.
(gdb) c
Continuing.
[Switching to Thread 0x7ffff6600740 (LWP 3942)]
Breakpoint 2, ns3::DefaultSimulatorImpl::ProcessOneEvent (this=0x6308e0) at ../src/core/model/default-simulator-impl.cc:131
warning: Source file is more recent than executable.
131 Scheduler::Event next = m_events->RemoveNext ();
(gdb) n
133 NS_ASSERT (next.key.m_ts >= m_currentTs);
(gdb) n
134 m_unscheduledEvents--;
(gdb) n
136 NS_LOG_LOGIC ("handle " << next.key.m_ts);
(gdb) n
137 m_currentTs = next.key.m_ts;
(gdb) n
138 m_currentContext = next.key.m_context;

50 Chapter 5. How It Works (To Be Available Soon)

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

(gdb) p m_currentTs
$1 = 10000000000
(gdb)

This next event will wake the thread 2 will therefore complete the sleep of our scenario.

In summary we saw briefly that DCE uses the events of ns-3 to schedule the execution between different tasks.

5.3. Follow a very simple example 51

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

52 Chapter 5. How It Works (To Be Available Soon)

CHAPTER

SIX

SUBPROJECTS OF DCE

Below are the list of the tested applications with DCE.

• CCNx
• Quagga
• iperf
• ping/ping6
• ip (iproute2 package)
• umip (Mobilt IPv6 daemon)
• Linux kernel (from 2.6.36 to 3.7 version)
• thttpd
• torrent

6.1 CCNx

CCNx is an open source implementation of Content Centric Networking. All the C written executables are supported
and none of the Java ones. The versions tested are those between 0.4.0 and 0.6.1 included.

For more detail document, see dce-ccnx.

6.2 Quagga

Quagga is a routing software suite, providing implementations of OSPFv2, OSPFv3, RIP v1 and v2, RIPng and BGP-4
for Unix platforms, particularly FreeBSD, Linux, Solaris and NetBSD. For more information, see the latest support
document.

6.3 iperf

iperf from the following archive http://walami.googlecode.com/files/iperf-2.0.5.tar.gz as been tested. It is the exception
that proves the rule. That is to say that this particular example requires a change in its code. In the source file named
Thread.c at line 412 in the function named thread_rest you must add a sleep(1) in order to help DCE to
break the infinite loop.

53

http://www.ccnx.org/about/
http://www.quagga.net/about.php
http://walami.googlecode.com/files/iperf-2.0.5.tar.gz

ns-3 Direct Code Execution (DCE) Manual, Release 1.1

6.4 ping/ping6

Ping from the following archive http://www.skbuff.net/iputils/iputils-s20101006.tar.bz2 is supported.

6.5 ip (iproute2 package)

6.6 umip (Mobilt IPv6 daemon)

The umip (Usagi-Patched Mobile IPv6 stack) support on DCE enables the users to reuse routing protocol implemen-
tations of Mobile IPv6. UMIP now supports Mobile IPv6 (RFC3775), Network Mobility (RFC3963), Proxy Mobile
Ipv6 (RFC5213), etc, and can be used these protocols implementation as models of network simulation.

For more information, see the latest support document.

6.7 Linux kernel (from 2.6.36 to 3.7 version)

(TBA)

6.8 thttpd

(TBA)

6.9 torrent

(TBA)

54 Chapter 6. Subprojects of DCE

http://www.skbuff.net/iputils/iputils-s20101006.tar.bz2
http://umip.org

CHAPTER

SEVEN

ABOUT

The creator of DCE is Mathieu Lacage.

The current maintainers and developers are Hajime Tazaki and Frédéric Urbani.

7.1 Contacts

frederic.urbani AT inria.fr
tazaki AT sfc.wide.ad.jp
mathieu.lacage AT cutebugs.net

55

	Introduction
	Overview
	Manual Structure
	DCE Outlook
	Supported Features
	Tested Applications
	Tested Environment

	Quick Start Guide
	Introduction
	Build DCE
	Examples

	User's Guide
	Setup Guide
	Basic Use Cases
	Advanced Use Cases
	Technical Information

	Developer's Guide (To Be Available Soon)
	Kernel Developer Information
	DCE - POLL IMPLEMENTATION

	How It Works (To Be Available Soon)
	Introduction
	Main classes and main data structures
	Follow a very simple example

	Subprojects of DCE
	CCNx
	Quagga
	iperf
	ping/ping6
	ip (iproute2 package)
	umip (Mobilt IPv6 daemon)
	Linux kernel (from 2.6.36 to 3.7 version)
	thttpd
	torrent

	About
	Contacts

