

The ns-3 LTE module by the LENA project

Nicola Baldo nicola.baldo@cttc.es

High level requirements

- Support the evaluation of:
 - Radio-level performance
 - End-to-end QoE
- Allow the prototyping of algorithms for:
 - QoS-aware Packet Scheduling
 - Radio Resource Management
 - Inter-cell Interference Coordination
 - Self Organized Networks
 - Cognitive / Dynamic Spectrum Access
- Scalability requirements:
 - Several 10s to a few 100s of eNBs
 - Several 100s to a few 1000s of UEs

Design approach

- Simulation is a tradeoff between:
 - Detail of the model
 - Implementation complexity and run-time scalability
- Choose min detail that satisfies requirements
 - Minimize implementation complexity
 - Minimize difficulty in using the simulator

(Some) Important Design Choices

- FemtoForum LTE MAC Scheduler API
- Radio signal model granularity: Resource Block
 - Symbol-level model not affordable
 - Simplified Channel & PHY model
- Realistic Data Plane Protocol stack model
 - Realistic RLC, PDCP, S1-U, X2-U
 - Allow proper interaction with IP networking
 - Allow end-to-end QoE evaluations
- Hybrid Control Plane model:
 - Realistic RRC model
 - Simplified S1-C, X2-C and S11 models
- Simplified EPC
 - One MME and one SGW
 - SGW and PGW in the same node (no S5/S8 interface)
- Focus on connected mode
 - RRC connected, EMM Registered, ECM connected

Centre Tecnològic

de Telecomunicacions de Catalunya

-

LENA model overview

Nicola Baldo - The LENA ns-3 module

End-to-end Data Plane protocol stack

Radio Propagation models

- Buildings model
 - Add buildings to network topology
- Path loss model
 - Okumura Hata (outdoor)
 - ITU-R P1411 LOS & NLOS (outdoor)
 - ITU-R P1238 (indoor)
 - External & internal wall losses
 - Log-normal shadowing
 - Pathloss logic chooses correct model depending on node position
- Fast fading model
 - Trace-based
 - Freq & time dependent
- Antenna models
 - Isotropic

Nicola Baldo - The LENA ns-3 module - Sectorial (cosine & parabolic shape)

PHY model

- Only FDD is modeled
- Freq domain granularity: RB
- Time domain granularity: 1 TTI, further divided into
 - DL: ctrl, data
 - UL: ctrl+data, SRS
- Gaussian Interference model
- CQI feedback
- Signal processing not modeled accurately
- \Rightarrow use error model
- SISO propagation model
- MIMO modeled as SINR gain over SISO
 - different gains for different TX modes
- Supports different freqs and bandwidths per eNB
 - leveraging on the ns-3 Spectrum module

PHY Data error model

- Transport Block error model
- Used for PDSCH and PUSCH
- based on Link-to-System Mapping
 - SINR measured per Resource Block
 - Mutual Information Effective SINR Mapping (MIESM)
 - BLER curves from dedicated link-level LTE simulations
 - Error probability per codeblock
 - Multiple codeblocks per Transport Block

BLER Curves

d) MCS 8

a) MCS 9

b) MCS 10

d) MCS 12

c) MCS 11

a) MCS 21

c) MCS 23

d) MCS 24

a) MCS 17

c) MCS 19

CTTC⁹

Centre Tecnològic de Telecomunicacions de Catalunya

HARQ model

- Models Incremental Redundancy (IR) Type 2
- Asyncrhonous model for DL
- Synchronous model for UL
- Retransmissions managed by Scheduler
- Integrated with error model

MAC & Scheduler model

- Resource allocation model:
 - allocation type 0
 - RBs grouped into RBGs
 - localized mapping approach
- Adaptive Modulation and Coding
 - two algorithms working on reported CQI feedback
 - "Piro" model: based on analytical BER (very conservative)
 - "Vienna" model: aim at max 10% BLER based on error model curves
 - Dynamic TX mode selection supported
 - but no adaptive algorithm currently implemented
- Transport Block model
 - Mimics 3GPP structure
 - mux RLC PDU onto MAC PDU
 - Virtual MAC Headers and CEs (no real bits)
 - MAC overhead not modeled
 - Consistent with requirements (scheduler neglects MAC OH) 12

MAC Scheduler implementations

- Round Robin (RR)
- Proportional Fair (PF)
- Maximum Throughput (MT)
- Throughput to Average (TTA)
- Blind Average Throughput (BET) GSoC 2012
- Token Bank Fair Queue (TBFQ)
- Priority Set Scheduler (PSS)
- All implementations based on the **FemtoForum API**
- The above algorithms are for downlink only
- For <u>uplink</u>, all current implementations use the same Round Robin algorithm

CTTC⁹

Tecnològic de Telecomunicacions de Catalunya

Random Access model

- Random Access preamble transmission
 - Ideal model: no propagation / error model
 - Collisions modeled with protocol interference model
 - No capture effect \Rightarrow contention resolution not modeled
- Random Access Response (RAR)
 - ideal message, no error model
 - resource consumption can be modeled by scheduler
- message3
 - UL grant allocated by Scheduler
 - PDU with actual bytes, subject to error model
- Supported modes:
 - Contention based (for connection establishment)
 - Non-contention based (for handover)

RLC Model

- Supported modes:
 - RLC TM, UM, AM as per 3GPP specs
 - RLC SM: simplified full-buffer model
- **Features**
 - PDUs and headers with real bits (following 3GPP specs)
 - Segmentation
 - Fragmentation
 - Reassembly
 - SDU discard
 - Status PDU (AM only)
 - PDU retx (AM only)

PDCP model

- Simplified model supporting the following:
 - Headers with real bytes following 3GPP specs
 - transfer of data (both user and control plane)
 - maintenance of PDCP SNs
 - transfer of SN status (for handover)
- Unsupported features

Centre

Tecnològic

de Catalunya

de Telecomunicacions

- header compression and decompression using ROHC
- in-sequence delivery of upper layer PDUs at re-establishment of lower layers
- duplicate elimination of lower layer SDUs at re-establishment of lower layers for radio bearers mapped on RLC AM
- ciphering and deciphering of user plane data and control plane data
- integrity protection and integrity verification of control plane data
- timer based discard

CTTC⁹

Centre Tecnològic de Telecomunicacions de Catalunya

RRC Model

- Modeled features:
 - System Information (MIB, SIBs)
 - Generation at eNB
 - Reception and processing at UE
 - RRC Connection Establishment
 - RRC Connection Reconfiguration, supporting:
 - SRB1 and DRB setup
 - SRS configuration index reconfiguration
 - PHY TX mode (MIMO) reconfiguration
 - Mobility Control Info (handover)
- Model architecture:
 - LteUeRrc: UE RRC logic
 - LteEnbRrc + UeManager: eNB RRC logic
 - Two models for RRC messages
 - Ideal RRC: SRBs not used, no resources consumed, no errors
 - Real RRC: actual RRC PDUs (ASN.1 encoding) over SRBs

RRC UE state machine

Centre Tecnològic

de Catalunya

de Telecomunicacions

NAS model

- Focus on NAS Active state
 - EMM Registered, ECM connected, RRC connected
- Logical interaction with MME
 - NAS PDUs not implemented
- Functionality
 - UE Attachment (transition to NAS Active state)
 - EPS Bearer activation
 - Multiplexing of data onto active EPS Bearers
 - Based on Traffic Flow Templates
 - Both UDP and TCP over IPv4 are supported
- Unsupported features
 - PLMN and CSG selection
 - Idle mode (tracking are update, paging...)

Centre Tecnològic de Telecomunicacions de Catalunya

S1 interface model

- S1-U (user data plane)
 - Realistic model including GTP-U implementation
 - Data packets forwarded over GTP/UDP/IPv4
 - Communication over ns3::PointToPoint links
- S1-C (control plane)
 - abstract model, no PDUs exchanged
 - Supported S1-AP primitives:
 - INITIAL UE MESSAGE
 - INITIAL CONTEXT SETUP REQUEST
 - INITIAL CONTEXT SETUP RESPONSE
 - PATH SWITCH REQUEST
 - PATH SWITCH REQUEST ACKNOWLEDGE

X2 interface model

- X2-U (data plane)
 - GTP/UDP/IPv4 over ns3::PointToPoint (similar to S1-U)
- X2-C (control plane)
 - Messages as PDUs over ns3::PointToPoint links
 - Handover primitives:
 - HANDOVER REQUEST
 - HANDOVER REQUEST ACK
 - HANDOVER PREPARATION FAILURE
 - SN STATUS STRANSFER
 - UE CONTEXT RELEASE
 - SON primitives:
 - LOAD INFORMATION
 - RESOURCE STATUS UPDATE

S11 interface model

- abstract model
 - no GTP-C PDUs exchanged between MME and SGW
- Supported primitives:
 - CREATE SESSION REQUEST
 - CREATE SESSION RESPONSE
 - MODIFY BEARER REQUEST
 - MODIFY BEARER RESPONSE

Centre Tecnològic de Telecomunicacions de Catalunya

Simulation Configuration

- Done via ns-3 attribute system
- Several configurable attributes per LTE object
- Default attribute values can be configured:
 - Via input config file
 - Via command line
 - within simulation program
- Per-instance attribute values can be configured:
 - Within siulation program
 - Using GtkConfigStore

Centre Tecnològic de Telecomunicacions de Catalunya

Simulation Ouput

- Lots of KPIs available at different levels:
 - Channel
 - SINR maps
 - pathloss matrices
 - PHY
 - TB tx / rx traces
 - RSRP/RSRQ traces
 - MAC
 - UL/DL scheduling traces
 - RLC and PDCP
 - Time-averaged PDU tx / rx stats
 - IP and application stats
 - Can be obtained with usual ns-3 means
 - FlowMonitor, PCAP traces, get stats directly from app, etc.

y-coordinate (m)

Example: 3GPP dual stripe scenario

Example: 3GPP dual stripe scenario

Nicola Baldo - The LENA ns-3 module

Centre Tecnològic de Telecomunicacions de Catalunya

- Huge effort in testing:
 - Unit tests
 - Checking that a specific module works properly
 - System test
 - Checking that the whole LTE model works properly
 - Validation tests
 - Validating simulation output against theoretical performance in a set of known cases
 - Valgrind test coverage
 - Systematically check for memory errors
 - memory corruption, leaks, etc. due to programming errors
 - Build tests
 - Provided by ns-3 project for stable LENA code
 - Verify correct build on all supported plaftorms

Work in progress by the LENA team

- UE Measurements
- Automatic Neighbor Relations
- Idle mode cell selection
- Handover decision

Check it out!

http://iptechwiki.cttc.es/LTE-EPC_Network_Simulator_(LENA)

Backup slides

End-to-end Data Plane architecture (as implemented in ns-3)

End-to-end Data Plane architecture (same but with UL data flow instead of DL)

Tecnològic de Telecomunicacions de Catalunya

LTE Data Plane protocol stack: UE

Tecnològic de Telecomunicacions de Catalunya

LTE Data Plane protocol stack: eNB

PHY and Channel architecture: UE

PHY and Channel architecture: eNB

CTTC Centre Tecnològic

Tecnològic de Telecomunicacions de Catalunya

LTE Ctrl Plane protocol stack: UE

LTE Ctrl Plane protocol stack: eNB

Centre Tecnològic de Telecomunicacions

de Catalunya

39

TC⁹

Centre Tecnològic de Telecomunicacions de Catalunya

Execution time [s]

Execution time performance

(5s sim time, 1 UE per eNB, full traffic)

Nicola Baldo - The LENA ns-3 module