
NEPI: Network Experiment
Programming Interface

Alina Quereilhac
{alina.quereilhac@inria.fr}

Team DIANA
INRIA Sophia Antipolis, France

Network experiment resources

 To conduct network experiments we need resources
 A resource can be a node in your lab or in a public

 testbed, a virtual machine, a ns-3 simulation, or
 even an application …
 There is a large offer of resources for network

 experimentation provided by different platforms
 But different platforms are accessed and used in

 different ways, making it necessary to master different
 tools and technologies

2

Network experiment resources

3

How to make it easier to take advantage of
 the wide offer of network experimentation

 resources?

NEPI - One tool for many platforms

 NEPI is a tool that provides a uniform API to run
 experiments on many platforms

Allows to manage resources on different platforms
 using a same tool

Allows to mix simulated, emulated and live
 resources on a same experiment

4

User
API

User
API

NEPI
Wired TestbedWired Testbed

Simulation
Environment

Simulation
Environment

Emulation
Environment

Emulation
Environment

NEPI - Network experiment management

 NEPI is a framework to manage network
 experiments

 Supports different stages of experiment life-cycle

 Design Execution

5

(Offline)

Experiment design

6

 Experiment design

 Generate XML describing an experiment
 Describe resources to be used (e.g. nodes, channels,etc)
 Describe resource relationships(e.g. app1 runs on node1)
 Describe resource configuration
 Describe results to be collected

 Provide enough detail to enable reproduction

 This XML will be used as input for execution

7

 Experiment representation

 An experiment is described as a graph of
'Boxes and Connectors'

 Boxes represent resources
 Connectors define constraints between resources
 Boxes have attributes
 Boxes are associated to traces (results)

8

Link

Node Node Application

 Boxes & Backends

 Boxes have types (e.g. ns3::Node, Planetlab::Node)
 Boxes belong to only 1 backend (platform)
 Backend instances are represented as squares
 Boxes are assigned a Global Unique Identifier (guid)

ns3::Node

ns3::P2PDevice ns3::P2PDevice

ns3::Node

ns3::P2PChannel

ns-3 backend
ns3::V4Ping

9

 Connectors

 Connectors are identified by names
 Boxes can have many connectors
 Not all boxes can be connected to all connectors
 There are rules for allowed connections defined by:

(BoxType1, ConnectorType1, BoxType2, ConnectorType2)

 Connection rules are mapped to deployment behavior
during experiment deployment 10

ns3::Node

ns3::Application

apps

ns3::Channel

node
OK

devs
NO

10

 Attributes

 Boxes hold a list of attributes
 Attributes expose the resource configuration
 Attributes are define by {name, value, type}
 The attribute type allows to validate the value

PlanetLab::Node

Hostname: nepi1.pl.sophia.inria.fr – String

Min. CPU: 30 – Integer

Architecture: x86_64 - String

11

 Traces

 Boxes hold a list of traces which can be activated
 A trace defines data to be collected into a file during
experiment execution
 This data can be obtained from measurements or
application output (e.g. stderr, tcpdump)
 Different boxes expose different traces

12

PlanetLab::Application

● Stdout
● Stderr

 Hybrid experiment design

 Boxes from different testbeds can be interconnected
 as well

 Connections are not arbitrary (e.g. can't connect a
 ns3::V4Ping to a PlanetLab::Node)

13

ns3::Node

ns3::P2PDevice ns3::P2PDevice

ns3::Node

ns3::P2PChannel

ns-3 backend
ns3::Special
Device other::Device

other::Node

Other backend

other::App

So, how do we actually design an
experiment using NEPI?

14

Using NEPI

 There are 2 ways of using NEPI
NEF (graphical user interface)
● Is a PyQt desktop application
● Allows to Drag&Drop Boxes & interconnect them

Python script
● NEPI is implemented in Python
● The nepi.design module provides design support

15

NEF, Network Experiment Frontend

16

Python script – design I

 Import NEPI design module

17

from nepi.core.design import ExperimentDescription, FactoriesProvider

 Instantiate ExperimentDescription

exp_desc = ExperimentDescription ()

testbed_id = "ns3"
provider = FactoriesProvider(testbed_id)
tbd_desc = exp_desc.add_testbed_description(provider)

 Create a backend instance (testbed description)

Python script – design II

 Create and configure boxes

18

chan = tbd_desc.create("ns3::PointToPointChannel")
chan.set_attribute_value("Delay", "0ns")

 Interconnect boxes using connectors
iface = ns3_desc.create("ns3::PointToPointNetDevice")
iface.connector("chan").connect(chan.connector("dev2"))

 Enable traces
iface.enable_trace(“P2PPcapTrace”)

 Add IP addresses
ip = iface.add_address()
ip.set_attribute_value("Address", "10.0.0.2")

Experiment execution

19

 Experiment execution

 Different stages of execution

20

Deployment Control Result collection

● Resource discovery
& provision

● Resource configuration
● Software installation
● Application launch

● Modify configuration
● Monitor running status

● Download result files

 Experiment Controller

 The Experiment Controller (EC) is the entity
responsible to orchestrate execution
 The EC receives as input the XML experiment
 description generated during design
 The EC can be launched from a user machine
and automates experiment deployment (without
user intervention)

NEPI
EC

Wired
Testbed

Wired
Testbed

Simulation
Environment

Simulation
Environment

Emulation
Environment

Emulation
Environment

Automatic
● Node provisioning
● Software installation
● Application launch

XML

21

 Tesbed controllers

 NEPI uses two levels of controllers
One global generic experiment controller (EC)
Many testbed controllers (TC)

 TCs “know” about environment specific behavior
 New environments can be supported by implementing
 new testbed controllers

22

Wired TestbedWired Testbed

Simulation
Environment

Simulation
Environment

Emulation
Environment

Emulation
Environment

TCTC

TCTC

TCTC

EC

NEPI

 Experiment deployment

 Deployment consists of a sequence of predefined
 steps
 The EC sends messages to instruct TCs to perform
required actions on each step

231

Establish
connections

Start
applications

ns-3 Simulation
process

ns-3 Simulation
processTC

ns-3

TC
ns-3

EC

EC sends to TC
CREATE (ns3::Node)

1

2
TC instantiates
ns3::Node object

ns3::NodeConfigure
resources

Create
resources

Setup
environments

 Configure traces

 During resource configuration a TC will invoke the
 trace function for all enabled traces

 Trace functions are defined by the developer of a
 NEPI backend (not by the user)

24

 def p2ppcap_trace(testbed_instance, guid, trace_id):
 node_guid = _get_node_guid(testbed_instance, guid)
 element = testbed_instance._elements[guid]
 filename = "trace-p2p-node-%d-dev-%d.pcap" % (node_guid, guid)
 filepath = _follow_trace(testbed_instance, guid, trace_id, filename)
 helper = testbed_instance.ns3.PointToPointHelper()
 helper.EnablePcap(filepath, element, explicitFilename = True)

 Traces generate result files that are stored locally
 where they were generated and can be downloaded
 by the user at any moment

 Establish connections

 Connection rules are mapped to connection functions
(BoxType1, ConnectorType1, BoxType2, ConnectorType2)

 A connection function receives the guids of the boxes
to be connected

def connect_node_device(testbed_instance, node_guid, device_guid):
 node = testbed_instance._elements[node_guid]
 device = testbed_instance._elements[device_guid]
 node.AddDevice(device)

 The EC will automatically invoke the connection
 functions for all connections during deployment

 Connection functions are defined by the developer
 of a NEPI backend (not by the user)

25

 How do we run an experiment
with NEPI?

26

Run experiment using NEF

27

Python script – experiment start

 Import NEPI execution module
from nepi.core.execute import ExperimentController

28

xml = exp_desc.to_xml()

 General XML experiment description

controller = ExperimentController(xml)

 Instantiate the experiment controller (EC)

controller.start()

 Start the experiment

Python script – experiment control

 Modify configuration during run-time
time.sleep(5)
controller.set(chan.guid, "Delay", "10s")
time.sleep(5)
controller.set(chan.guid, "Delay", "0s")

 Wait until some application has finished
while not controller.is_finished(app.guid):
 time.sleep(0.5)

29

Python script – experiment control

 Modify configuration during run-time
time.sleep(5)
controller.set(chan.guid, "Delay", "10s")
time.sleep(5)
controller.set(chan.guid, "Delay", "0s")

30

 Wait until some application has finished
while not controller.is_finished(app.guid):
 time.sleep(0.5)

 For the moment control capabilities are limited
 We are working to improve control API

Start application X after application Y started
Start application X at time T

Python script – result collect

 A result can be retrieved from any remote location
 invoking the “trace” method

result = controller.trace(iface.guid, "P2PPcapTrace")

31

 Then it can be stored in a local file
f = open(“result.pcap”, “w”)
f.write(result)
f.close()

 Results can be retrieved while the experiment is
 running

Python script – experiment stop

 Stopping the controller stops running applications
 and flushes result files

controller.stop()

controller.shutdown()

 Controller shutdown releases resources. After
 shutdown results are no longer available

32

Hybrid experiment
example

33

Hybrid experiment

 Can we use ns-3 to evaluate video traffic on mobile
 Wireless environments without implementing a video
 traffic model?

34

Emulated
node 1

Emulated
node 2

TAP
Device

TAP
Device

Server Client

ns-3
simulation

FdNet
Device

FdNet
Device

Mobile
station

Wireless
channel

AP

Hybrid experiment demo with NEF

35

ns3 ::FdNetDevice

 FdNetDevice is a ns-3 device which can read and
 write traffic using a file descriptor provided by the user

 The file descriptor can be associated to a TAP device,
 to a raw socket, to a user space process generating
 and consuming traffic, etc

 The user can have full freedom to define how external
 traffic is generated and ns-3 traffic is consumed

 Can be used independently from NEPI
 For more info → http://nepi.inria.fr/wiki/FdNetDevice
 Reviews are wanted for the fd-net-device module !!

ns-3
simulation

User defined
Traffic

FdNet
Device

36

http://nepi.inria.fr/wiki/FdNetDevice

Python script – hybrid experiment I

 Using FdNetDevice example

vim nepi/examples/fd_cross_testbed_experiment.py

ns3_provider = FactoriesProvider("ns3")
ns3_desc = exp_desc.add_testbed_description(ns3_provider)
ns3_desc.set_attribute_value("SimulatorImplementationType",
"ns3::RealtimeSimulatorImpl")
ns3_desc.set_attribute_value("ChecksumEnabled", True)

 Create ns-3 backend

37

netns_provider = FactoriesProvider("netns")
netns_desc = exp_desc.add_testbed_description(netns_provide

 Create netns backend

Python script – hybrid experiment II

 Create a ns-3 Node box and its protocol stack

node = ns3_desc.create("ns3::Node")
ipv4 = ns3_desc.create("ns3::Ipv4L3Protocol")
arp = ns3_desc.create("ns3::ArpL3Protocol")
icmp = ns3_desc.create("ns3::Icmpv4L4Protocol")
udp = ns3_desc.create("ns3::UdpL4Protocol")
node.connector("protos").connect(ipv4.connector("node"))
node.connector("protos").connect(arp.connector("node"))
node.connector("protos").connect(icmp.connector("node"))
node.connector("protos").connect(udp.connector("node"))

38

fddev = ns3_desc.create("ns3::FdNetDevice")
node.connector("devs").connect(fddev.connector("node"))
ip = fddev.add_address()
ip.set_attribute_value("Address", "10.0.1.1")

 Create a FdNetDevice box

Python script – hybrid experiment III

 Create a netns Node box
netns_node = netns_desc.create("Node")

39

fddev.connector("->fd").connect(tap.connector("fd->"))

 Connect the ns-3 FdNetDevice with the netns TAP

 Create a TAP interface box
tap = netns_desc.create("TapNodeInterface")
tap.set_attribute_value("up", True)
netns_node.connector("devs").connect(tap.connector("node"))
ip = tap.add_address()
ip.set_attribute_value("Address", "10.0.1.2")

Supported backends

40

Backends

 Currently supports 4 backends

41

NETNS

PlanetLab

 Worldwide distributed network, composed of
 thousands of nodes interconnected through the
 Internet

 Nodes are shared by multiple experiments
 PlanetLab Central: http://www.planet-lab.org

 PlanetLab Europe: http://www.planet-lab.eu

42

http://www.planet-lab.org/
http://www.planet-lab.eu/

Netns

 Light-weight virtual machine to emulate Ethernet
 networks

Run arbitrary applications inside the virtual machines
Uses the Linux host real network stack
Uses LXC Linux Containers technology (netns)
Uses link emulation based on packet scheduling (netem)
More info: http://nepi.inria.fr/wiki/netns

43

http://nepi.inria.fr/wiki/netns

OMF

 A Control and Management Framework for
 Networking Testbed

Originally designed for Wireless testbeds
Many Wireless deployments open to researchers
 (NICTA, NITOS, w-Ilab.t,..)
More info: http://mytestbed.net/projects/omf
Support in NEPI is an ongoing effort

44

http://mytestbed.net/projects/omf

Related work

45

Related work I

 SAFE - Simulation Automation Framework for Experiments
http://redmine.eg.bucknell.edu/perrone/projects/framework

Manages multiple independent replications of ns-3
NEPI is not a ns-3 specific controller

 CORE – Common Open Research Emulator
http://cs.itd.nrl.navy.mil/work/core/

Mixes container based emulation with ns-3 models
NEPI aims at mixing any type of resources

 EMULAB
http://www.emulab.net/

Supports emulation and live experimentation on Emulab
 facility

Uses NS format to describe network topologies (same
 experiment can be simulated with one description)

NEPI aims to be independent from a particular facility

46

http://redmine.eg.bucknell.edu/perrone/projects/framework
http://cs.itd.nrl.navy.mil/work/core/
http://www.emulab.net/

Related work II

 OMF - cOntrol and Management Framework
http://mytestbed.net/projects/omf

Controls resources running OMF management software
NEPI aims at managing resources without having to

 modify them
 TEAGLE

http://trac.panlab.net/trac/wiki

Controls Panlab federated resources through the Panlab
 Teagle portal

NEPI aims at being extensible by any user to support
 arbitrary resources (there is no central coordination or
 administration instance)

47

http://mytestbed.net/projects/omf
http://trac.panlab.net/trac/wiki

Related work III

 ProtoGENI
http://www.protogeni.net/

Supports resource provisioning through SFA but does not
 support resource control

NEPI aims at supporting both provisioning and control
 PLUSH & NEBULA

http://plush.cs.williams.edu/nebula/

Supports exp life-cycle control for PlanetLab resources
NEPI aims to be independent from a particular facility

48

http://www.protogeni.net/
http://plush.cs.williams.edu/nebula/

Related work IV

 NEPI attempts to be a general solution to provide
 life-cycle control support for non specific platform
 resources

 Other similar tools are different in that they:
Target specific facility resources (e.g. Emulab,

 SAFE, Plush)
Require modifying resources by pre-running

 specific code (e.g. OMF RC)
Resolve only one part of experiment life-cycle

 (e.g. ProtoGeni)

49

Future steps

50

Future steps

 New improved version of NEPI
Replace TestbedControllers by ResourceControllers
Support description of resource run time behavior

 (e.g. start app1 after app2)
Support “high-level” experiment description
Support running “a same” experiment on different

 platforms

 Implement new testbed federation architecture
 (Openlab and Fed4FIRE initiatives)

 SFA (provisioning) + FRCP (control)
Testbeds implementing SFA + FRCP will be supported

 “out of the box” by NEPI
Support simulation as a resource through FRCP using

 ns-3 simulator

51

People

 Lucia Guevgeozian
 Julien Tribino
 Claudio Freire
 Martin Ferrari
 Mathieu Lacage
 Thierry Turletti
 Walid Dabbous

52

1

 Visit NEPI wiki page for more information and
 examples http://nepi.inria.fr
 Tutorials and source code available!

53

More info

http://nepi.inria.fr/

Thank you

http://nepi.inria.fr
alina.quereilhac@inria.fr

http://nepi.inria.fr/

Questions?

http://nepi.inria.fr
alina.quereilhac@inria.fr

?Questions?

http://nepi.inria.fr/

Extending NEPI

56

Adding a new backend

1

 NEPI was designed to be extended for
 arbitrary environments
 Steps to create a new backend
1. Add a new directory under src/nepi/testbeds/

(e.g. src/nepi/testbeds/omf)
2. Add a metadata.py file and define all the boxes,

connector and attributes for the boxes
3. Implement the functions to be invoked on each

type of box upon creation, connection, start, stop
4. Add a execute.py file and extend the

 TestbedController class, adding environment
 specific behavior

57

Adding new ns-3 models

1

 Build the Python bindings for the new model
 Add an import to the new module to
 src/nepi/testbeds/ns3/ns3_bindings_import.py

 Add metadata for the new model
1. Add new attributes to

src/nepi/testbeds/ns3/attributes_metadata.py

2. Add new connectors to
 src/nepi/testbeds/ns3/connectors_metadata.py

3. Add new traces to
 src/nepi/testbeds/ns3/traces_metadata.py

4. Add new box types to
 src/nepi/testbeds/ns3/factories_metadata.py

58

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	SOMMAIRE
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	merci
	Slide 56
	Slide 57
	Slide 58

