Network Simulation in the Classroom for Teaching Networking Fundamentals

George F. Riley Georgia Institute of Technology

History

- ECE6110
 - "CAD For Computer Networks"
 - First taught circa 1999
- 1999 2001
 - Opnet Network Modeler
- 2001-2004
 - NS-2
- 2005-2009
 - GTNetS
- 2010 Present
 - NS-3

Purpose (intended)

- How to design and create a network simulator
- Discrete Event Processing and Event Handlers
- Models for various Network Components
 - Channels
 - Network Interfaces
 - Lots of others
- Construct Topologies
 - Nodes
 - Links
 - Queues
- Data demands (Applications)
- Metrics
 - Goodput, link utilization, packet loss, overhead, etc.

Purpose (actual)

- Understand Behavior of Packet-Based Networks Under a variety of conditions
- Use Simulation as a tool, but moreover use it to measure some network behavior as independent variables are adjust, and anticipate and explain measured resuts.
- For example,
 - What is the performance of a TCP flow as a function of kernel buffer size (receiver window), segment size, and queue limit?
 - How does performance vary if queue limit is in units of packets versus units of bytes?
 - Under what conditions will the RED queuing method perform better than the standard "FIFO" (Drop Tail) approach?

Assignment 1

- Measure performance (goodput) of a single TCP flow through a single bottleneck link
- Vary the following parameters:
 - Segment size 128, 256, 512
 - Queue Limit 2000, 8000, 32000, 64000 bytes
 - Window Size 2000, 8000, 32000, 64000 bytes
- Part 2 10 Simultaneous flows
 - Random start times for a short interval (0 to 100ms)
 - Observe and report on fairness

Lab 1 – Sample Results

GoodPut: Seg Size vs Reciever Window

Figure 2. Goodput as a function of SegSize vs RcvWin

Lab 1 – Sample Results

Kevin Jeffay's "Tuning Red" Paper

- Laboratory Experiment to compare RED vs. DropTail
- Realistic? Web browsing models
- "Simulated" performance of up to 4000 simultaneous web browsing sessions
- 100Mb to 10Mb bottleneck link
- Varying queue size (DropTail)
- Varying RED parameters (minTh,maxTh,maxP,Wq)
- Compare Response Time

Figure 2: Experimental laboratory network diagram.

queue length of 120 elements.

10

Figure 11: The performance of RED at different loads. $w_q = 1/512$, $max_p = 1/10$, $min_{th} = 30$, $max_{th} = 90$, qlen = 480.

Lab 2 – Compare RED to DropTail

- Construct arbitrary topology
 - At least two bottleneck links for every flow
 - Compare "Goodput" as a function of Red (various parameters) and Drop Tail
- Form a Conclusion!
 - Which is better, RED or DropTail
 - Provide metrics to support the claim

Lab 2 Sample Results

Throughput vs. Traffic Load

Lab 2 Sample Results

Figure: RED V.S. Droptail, Varying Bottleneck Link Delay

Wireless Measurements - RoofNet

- Aguayo, SigComm 2004
- Reports on a measurement study of Cambridge "RoofNet"
- "Active measurement" approch
 - Generate UDP traffic and random sources, measure packet delivery ratio at all others.
- Results highly variable and inconclusive
- Performance of actual physical medium difficult to model

The RoofNet Network

RoofNet Sample Results

17

RoofNet Sample Results 2

Lab 3 – Wireless Efficiency Measurements

- Construct Mobile Wireless Network
 - 1km x 1km; 2km, 2km regions
 - Varying node count 20 to 1000
 - Varying Transmitter power (1mW to 500mW)
 - Varying traffic intensity (0.1 to 0.9)
 - Varying routing protocol, OLSR, AODV
- Measure and report on "efficiency"

Final Projects

- Worm Model Propagation
 - Recreate results from Sharif/Riley, 2005
- Compare network simulators 802.11 model
 - NS2, GTNetS,NS3
 - Similar to Reddy/Riley 2006
- Tuning Red
 - Recreate the results from Jeffay 2004
- Compare ns-3 wireless models

Jeffay Final Project, Sample Results

Questions?