
Distributed (Parallel) Simulation with ns-3
WNS3 2015 Tutorial, Castelldefels (Barcelona), Spain

Peter D. Barnes, Jr (LLNL)
Ken Renard (ARL)

https://www.nsnam.org/wiki/AnnualTraining2015
May 12, 2015

2

§  Faster execution
•  Measure ~104 packet receives/wall clock second/core

§  Large models, too big for one compute node
§  Heavy-weight nodes

•  DCE applications
•  Virtual machines
•  Core routers with large forwarding tables

Why should you care about
distributed (parallel) simulation?

Motivation

3

§  Reduce simulation run-time for large, complex network
simulations
•  Complex models require more CPU cycles and memory
—  MANETs, robust radio devices
—  More realistic application-layer models and traffic loading
—  Load balancing among CPUs

•  Potential to enable real-time performance for NS-3 emulation

§  Enable larger simulated networks
•  Distribute memory footprint to reduce swap usage
•  Potential to reduce impact of N2 problems such as global routing

§  Allows network researchers to run multiple simulations
and collect significant data

Motivation for High Performance,
Scalable Network Simulation

Motivation

4

ns-3 Execution Scaling

§  10~4 packets/core/sec

•  Independent of model
size

•  100 cores is 100x faster
than 1 core

Nikolaev, et al, SIMUTools 2013

Motivation

5

How many hardware threads do you
have?
This laptop

§  MacBook Pro, mid
2009

§  Intel Core 2 Duo:
2 hardware threads

My other computer

§  BlueGene/Q
•  Currently TOP500 #3
•  8M hardware threads

Motivation

6

§  Motivation
§  Intro to MPI
§  Parallel Discrete Event Simulation (PDES)
§  PDES in ns-3
§  Constructing models
§  Example
§  Error Conditions
§  Performance
§  Future Capabilities

Outline
Motivation

MPI

PDES

ns-3

Models

Example

Errors

Future

Performance

Big topics. Focus on the
concepts and terms needed

to understand //ns-3

7

Parallelizing ns-3 Models Is
Straightforward , But…

https://xkcd.com/1205

Motivation

8

And the Reality…

https://xkcd.com/1319

Motivation

9

MPI Topics
§  Core features

§  API specification

§  Ranks and
communicators

§  Point-to-point
messages

§  Collectives

§  Getting and using
MPI

§  Examples
•  Hello World
•  Simple messaging
•  Ghost cell pattern

MPI

10

§  De facto standard programming model for parallel
scientific codes (but see Charm++ for an alternative)

§  Basic functionality is sending messages (data) between
processes, which are called ranks

§  Core features
•  API specification
—  ~Language independent (FORTRAN, C, C++, Python, Java,…)
—  Supports (doesn’t preclude) high performance and scalability

•  Point-to-point (src,dst) messaging, as well as collectives
—  Broadcast, reduction (compute min value), …

•  Works equally well on distributed and shared memory

Message Passing Interface (MPI)
Features 1

MPI

ht
tp

s:
//c

om
pu

tin
g.

lln
l.g

ov
/tu

to
ria

ls
/m

pi
/

11

§  API specification, implementation up to “vendor”
•  Vary in performance, runtime launch, …
•  Architecture-specific libraries can target specialized

hardware
—  High-speed interconnects: Infiniband, PAMI, …
—  Specialized network topologies: Fat-tree, Dragonfly, 5-d torus
—  Specialized network interfaces: low-latency, high-throughput
—  Multi-path routing

•  Multiple implementations can coexist (but not
interoperate)
—  OpenMPI, MPICH, IBM, …
—  Language-specific: mpi4py, mpiJava, …

MPI Features 2

MPI

12

MPI Concepts
Ranks and Communicators
§  Processes are called ranks

§  Communicator
•  Group of ranks, numbered [0,R)

within the group
•  Enables separating messages

by purpose
•  Initial default communicator is

MPI_COMM_WORLD
•  Several functions for creating

communicators, to support
specific topologies

ns-3
Communicator

ns-3 Rank 0

ns-3 Rank 1

ns-3 Rank N
Service

Communicator

Service Rank 0

Service Rank 1

Service Rank M

MPI

13

Send a message to a specific rank in a communicator
•  MPI_Send(data, data_length, data_type,  
 destination, tag, communicator)	
—  Data/data_length Message contents
—  data_type MPI-defined data types

 Or a custom data type (i.e, a struct)
—  destination Rank Number
—  tag Application tag to distinguish types
—  communicator

•  Matching MPI_Recv()	
•  Blocking and non-blocking versions
•  Various optimized calls, for managing memory
•  Wait for a message, test for new messages

MPI Concepts
Point-to-Point Messages

MPI

14

Higher level patterns involving more than 2 ranks
§  Synchronization

•  MPI_Barrier	
§  Data movement

•  MPI_Bcast  
MPI_Scatter  
MPI_Gather  
MPI_Allgather	

§  Reductions
•  MPI_Reduce  
MPI_Allreduce	

§  Combinations
•  MPI_Reduce_scatter  
MPI_Alltoall  
MPI_Scan	

MPI Concepts 3
Collective Communications

MPI

15

MPI Full API

MPI

Environment Management
MPI_Abort	 MPI_Errorhandler_create	 MPI_Errorhandler_free	 MPI_Errorhandler_get	 MPI_Errorhandler_set	 MPI_Error_class	
MPI_Error_string	 MPI_Finalize	 MPI_Get_processor_name	 MPI_Get_version	 MPI_Init	 MPI_Initialized	
MPI_Wtick	 MPI_Wtime	

Point-to-Point Communication
MPI_Bsend	 MPI_Bsend_init	 MPI_Buffer_attach	 MPI_Buffer_detach	 MPI_Cancel	 MPI_Get_count	
MPI_Get_elements	 MPI_Isend	 MPI_Iprobe	 MPI_Irecv	 MPI_Irsend	 MPI_Isend	
MPI_Issend	 MPI_Probe	 MPI_Recv	 MPI_Recv_init	 MPI_Request_free	 MPI_Rsend	
MPI_Rsend_init	 MPI_Ssend	 MPI_Ssend_init	 MPI_Start	 MPI_Startall	 MPI_Test	
MPI_Test_cancelled	 MPI_Testall	 MPI_Testany	 MPI_Testsome	 MPI_Wait	 MPI_Waitall	
MPI_Waitany	 MPI_Waitsome	

Collective Communication
MPI_Allgather	 MPI_Allgatherv	 MPI_Allreduce	 MPI_Alltoall	 MPI_Alltoallv	 MPI_Barrier	
MPI_Bcast	 MPI_Gather	 MPI_Gatherv	 MPI_Op_create	 MPI_Op_free	 MPI_Reduce	
MPI_Reduce_scatter	 MPI_Scan	 MPI_Scatter	 MPI_Scatterv	

Process Group
MPI_Group_compare	 MPI_Group_difference	 MPI_Group_excl	 MPI_Group_free	 MPI_Group_incl	 MPI_Group_intersection	
MPI_Group_range_excl	 MPI_Group_range_incl	 MPI_Group_rank	 MPI_Group_size	 MPI_Group_translate_ran	 MPI_Group_union	

Communicators
MPI_Comm_compare	 MPI_Comm_create	 MPI_Comm_dup	 MPI_Comm_free	 MPI_Comm_group	 MPI_Comm_rank	
MPI_Comm_remote_group	 MPI_Comm_remote_size	 MPI_Comm_size	 MPI_Comm_split	 MPI_Comm_test_inter	 MPI_Intercomm_create	
MPI_Intercomm_merge	

Derived Types
MPI_Type_commit	 MPI_Type_contiguous	 MPI_Type_extent	 MPI_Type_free	 MPI_Type_hindexed	 MPI_Type_hvector	
MPI_Type_indexed	 MPI_Type_lb	 MPI_Type_size	 MPI_Type_struct	 MPI_Type_ub	 MPI_Type_vector	

Virtual Topology
MPI_Cart_coords	 MPI_Cart_create	 MPI_Cart_get	 MPI_Cart_map	 MPI_Cart_rank	 MPI_Cart_shift	
MPI_Cart_sub	 MPI_Cartdim_get	 MPI_Dims_create	 MPI_Graph_create	 MPI_Graph_get	 MPI_Graph_map	
MPI_Graph_neighbors	 MPI_Graph_neighbors_cou

nt	
MPI_Graphdims_get	 MPI_Topo_test	

Miscellaneous
MPI_Address	 MPI_Attr_delete	 MPI_Attr_get	 MPI_Attr_put	 MPI_Keyval_create	 MPI_Keyval_free	
MPI_Pack	 MPI_Pack_size	 MPI_Pcontrol	 MPI_Unpack	

16

§  Check your package manager
§  Only the API defined

•  Tool names and configuration vary
•  OpenMPI commands used here for illustration

§  Building your code
•  Typically a compiler wrapper script, to ensure correct includes and

libraries: $ mpicc …	
•  Often hidden inside your build system (Makefile, wscript)

§  Multiple executables
•  Possible to run different executables on different ranks
•  But job launch commands depend on package, so not portable
•  Typically build everything into one executable, select functions

based on rank id at runtime

Getting and Using MPI

MPI

17

Getting and Using MPI

§  Where to run ranks?

•  Single computer: typically
defaults to all hardware threads

•  Ad hoc cluster: --hostfile
node names and max number
of ranks

•  HPC cluster: typically via a
batch job system, which selects
physical nodes and launches
jobs as a shell script

•  “Overcommitment”: running
more ranks than cores or
hardware threads

§  Launching
$ mpirun –n <nranks> <executable>	
•  Need to launch on each host

MPI

Example OpenMPI Hosts File
# This is an example hostfile. Comments begin with #	
#	
# The following node is a single processor machine:	
foo.example.com	
	
# The following node is a dual-processor machine:	
bar.example.com slots=2	
	
# The following node is a quad-processor machine, 	
# over-subscribing disallowed	
yow.example.com slots=4 max-slots=4	

Example OpenMPI Build and Run
$ mpicxx -o hello hello.cc	
$ mpirun -np 4 ./hello	
Hello World from rank 3 of 4 (35986)	
Hello World from rank 0 of 4 (35983)	
Hello World from rank 1 of 4 (35984)	
Hello World from rank 2 of 4 (35985)	

18

Parallel Hello World

§  Typical Structure

1.  Include header
2.  Initialize MPI with

command-line args
3.  Get world size, my

rank index
4.  Parallel code

•  Send messages,
synchronize…

5.  Clean shutdown

6. Build and Launch

MPI

Example OpenMPI Build and Run
$ mpicxx -o hello hello.cc	
$ mpirun -n 4 ./hello	
Hello World from rank 3 of 4 (35986)	
Hello World from rank 0 of 4 (35983)	
Hello World from rank 1 of 4 (35984)	
Hello World from rank 2 of 4 (35985)	

hello.cc	
#include <mpi.h>	
	
int	
main (int argc, char **argv)	
{	
 int size, rank, rc;	
	
 rc = MPI_Init (&argc, &argv);	
 if (rc != MPI_SUCCESS)	
 MPI_Abort(MPI_COMM_WORLD, rc);	
	
 MPI_Comm_size (MPI_COMM_WORLD, &size);	
 MPI_Comm_rank (MPI_COMM_WORLD, &rank);	
	
 printf ("Hello World from rank %d of %d	
 (%d)\n", rank, size, getpid ());	
	
 MPI_Finalize();	
}	

1

2

3

4

5

6

19

Simple Messaging Example

Rank0 --“Hello”--> Rank1 	

§  Typical Structure
1.  Check #ranks
2.  Message data buffers
3.  Each rank runs

different code
4.  Sends paired with Recv
5.  Send and Recv data

lengths, types match

MPI

Example OpenMPI Build and Run
$ mpicxx -o hello hello.cc	
$ mpirun -np 4 ./hello	
Hello World from rank 3 of 4 (35986)	
Hello World from rank 0 of 4 (35983)	
Hello World from rank 1 of 4 (35984)	
Hello World from rank 2 of 4 (35985)	

Parallel Body of send1.cc	
if (size < 2) {	
 printf ("Need two ranks\n");	
 MPI_Abort(MPI_COMM_WORLD, 0);	
 }	
	
char *msg = (char *)"Hello";	
int msg_len = strlen(msg);	
char in_msg[msg_len + 1]; // leave space to add null	
	
if (rank == 0) {	
 int dest = 1;	
 rc = MPI_Send (msg, msg_len, MPI_CHAR, dest,	
 0, MPI_COMM_WORLD);	
}	
	
if (rank == 1) {	
 int count = 0;	
 MPI_Status stat;	
	
 rc = MPI_Recv (&in_msg, msg_len, MPI_CHAR,	
 MPI_ANY_SOURCE, 0, MPI_COMM_WORLD,	
 &stat);	
 in_msg[msg_len] = (char) 0;	
 MPI_Get_count (&stat, MPI_CHAR, &count);	
 printf("Rank %d received message \"%s\" (%d) “	
 “from rank %d tag %d.\n",	
 rank, in_msg, count,	
 stat.MPI_SOURCE, stat.MPI_TAG);	
}	

1

2

3

4 5

Example OpenMPI Build and Run
$ mpicxx -o send1 send1.cc 	
$ mpirun -np 4 ./send1	
Rank 1 received message "Hello" (5) from rank 0 tag 0.	

20

Stencil Partitioning

Partitioning with Ghosts

§  Decomposition
•  Need neighbors’ data: stencil
•  Some neighbors are remote

§  Solution:
•  Ghosts replicate data
•  Two-phase execution
—  Exchange neighbor data

Communication
—  Compute local update

Computation

Maximize computation/communication. Overlap computation and communication.

ht
tp

://
pe

op
le

.c
sa

il.
m

it.
ed

u/
fre

d/
gh

os
t_

ce
ll.

pd
f

Ghost Cell Design Pattern

MPI

21

PDES Topics
§  Discrete Event

Simulation
•  Mathematical paradigm

and time control
•  State and time

evolution
•  Event scheduling
•  Time consuming

processes

§  Parallel DES
•  Logical processors
•  Causality
•  Granted-time

synchronization
•  Lookahead
•  Null-message

synchronization

PDES

22

Classification of Simulation
Techniques

Mathematical Paradigm

Static vs. dynamic time control

Parallelism?

Synchronization Style

Load Distribution

Simulation

ContinuousDiscrete

Time-SteppedEvent-Driven

SequentialParallel

ConservativeOptimistic

StaticDynamic

PDES

23

Mathematical Paradigm
Aspect

Form of model Discrete systems
Automata, agents, particle systems,
stochastic processes, etc.

Ordinary or partial
differential equations

Time, space, state Continuous or discrete All continuous
State changes Discontinuous in time

Constant between state changes
Continuous in time
Occasional discontinuities
Piecewise differentiable

Mathematical tools Probability and statistics Numerical analysis

ContinuousDiscrete

§  Discrete simulation is natural when there are no
underlying physical equations

PDES

24

Time Control
Aspect

Event times Dynamically computed Statically chosen
Time resolution (Ideally) Floating point time

Zero lower limit on resolution:
inherently multi-scale

(Usually) Integer time
Nonzero lower limit on resolution

Event distribution
in space and time

Sparse and irregular Dense and regular

Appropriate for Irregular, asynchronous
and/or multi-scale models

Spatially and temporally
regular models

Time-SteppedEvent-Driven

§  Event-driven execution imposes no timescale
•  Supports simulation with wide dynamic range in

natural time scales and/or long quiescent periods

PDES

25

DES State and Time Evolution
§  State values change

discontinuously in simulation
time
•  Constant between state changes
•  Time interval between state

changes is not fixed

§  Computation (real world time)
required to compute new state
value
•  Computation occurs at a fixed

value of simulation time

§  Rate of model evolution not
fixed
•  Faster or slower than real time
•  (Best effort) real time, to

interoperate with external real
systems

S
ta

te
 V

al
ue

Computation Time11:15:04 11:20:19

Simulation Time00:00:00 18:45:07

PDES

26

DES Event Scheduling
§  Objects communicate by

sending messages =
schedule events
•  Event is a function call, to be

executed Δt in the future–no
backwards arrows

•  Typically an event schedules
one or more future events

§  All event types allowed
•  Event to self
•  Event sends multiple

messages
•  Event sends no messages
•  Events can tie
•  Non-FIFO scheduling

Si
m

ul
at

io
n

Sp
ac

e
Simulation Time

Object A

Object B

PDES

27

Sequential DES Main Event Loop
createInitialObjects();	
eventList.insert(initialEvents); // Priority queue on event time	
	
while (!(terminationCondition() || eventList.empty())) do 	
{	
 event e = eventList.removeMinSimTime(); // Choose next event	
	
 simTime = e.getEventTime(); // Set virtual time and unpack event	
 object = e.getEventObject();	
 method = e.getMethod();	
 args = e.getArgs();	
	
 object.method(args); // Invoke the event method	
 // May change state of object	
 // May schedule future events	
 // May create or destroy objects	
 // May cancel (delete) future events	
}	
	
finalize();	

PDES

Clean separation between Simulator and Application Model.

28

Modeling Time-Consuming Process
§  Model state values

change at an instant
in simulation time
•  So how to model time-

consuming processes?

§  Finite state machine
•  Model state is the FSM

state
•  Events cause FSM

transitions, schedule
future transitions

FS
M

 S
ta

te
s

Simulation Time

Busy

Waiting

GoBusy() {
 m_State = State::Busy;
 Schedule(tBusy, &GoWaiting);
}

tBusy

GoWaiting()Go
Bu

sy
()

PDES

29

http://www.enggprojects.in/2011/07/adaptive-de-clustering-of-data.html

LP 1

LP 2

LP 3

Parallel Discrete Event Simulation
§  Decompose model

into Logical
Processes
•  Separate objects and

event queues
•  Execute independently
•  Events for other LPs

become messages
•  ~ MPI Ranks

Parallel execution must produce exact same results as sequential!

PDES

30

PDES Execution: LPs Advance
Independently
§  Sometimes ahead in

virtual time,
sometimes behind

§  More or less real time
per event

§  Never backwards!
•  Hallmark of

conservative execution
(Ask me about
optimistic execution J)

PDES

31

Need for Synchronization of LPs:
Prevent Causality Violations
§  Sequential event

sequence
§  LP 2’s perspective:

§  Arrival of LP1 event

Lo
gi

ca
l P

ro
ce

ss

Simulation Time

LP 1

LP 2

Simulation Time

LP 2

Next Event

Simulation Time

LP 2

In the past!

Need to guarantee no messages arrive in the past (for conservative PDES).

PDES

32

Granted Time Window
Synchronization
§  If we could guarantee no remote

events will arrive before
GrantedTime
•  All events before GrantedTime are

safe
•  At GrantedTime need to

synchronize:
—  Receive and schedule events from

other LPs
—  Compute new GrantedTime

§  Performance
•  Even workload distribution limits

cpu idle time
•  Maximize GrantedTime to execute

more events in parallel between
synchronization

PDES

33

Lookahead and LBTS Provide the
Granted Time Guarantee
§  Model must provide Lookahead

•  Minimum delay for remote events
—  Example: network channel link latency

+ transmission time for smallest packet

§  Lower Bound Time Stamp (LBTS)
•  Min next event time across all LPs

§  GrantedTime = LBTS + Lookahead

§  Synchronization across LPs is
expensive
•  Typically barrier (to wait for slowest LP)
•  Plus (at least one) all gather or

reduction
•  Each of these is log(NLP) in time

Finding large Lookahead is key to performance

LP2 Event Queue
local event
local event

local event
earliest

next event

local event
local event

Si
m

ul
at

io
n

Ti
m

e

GrantedTime

GrantedTime

Lookahead

LBTS

NOW

PDES

34

http://www.enggprojects.in/2011/07/adaptive-de-clustering-of-data.html

§  GrantedTime assumes
all LPs can message all
other LPs

§  But my LP graph is
sparse. Why synchronize
with everyone?
•  Every message sent could

communicate my virtual
time

•  Guarantee at least one
message every Lookahead

•  Send Null-message when
necessary

Simulation Time

LP NULL

NOW

Simulation Time

LP NULL NULL

NOW

Null-Message Alternative for Static
and Sparse LP Graphs

PDES

35

§  Much of this material from a short course
presented spring 2014
•  David Jefferson, LLNL, co-inventor of Optimistic PDES
•  15 sessions

•  Slides and videos publicly available:
http://pdes-course-2014.ucllnl.org

To Learn More…

•  Sequential DES
•  Ties, LBTS, Lookahead
•  Chandy, Misra, Bryant: YAWNS
•  Deadlock
•  Null Messages
•  Dynamic Object Creation
•  Critical Path
•  Speedup

•  Optimistic DES, TimeWarp
•  Global Virtual Time
•  Commitment
•  Checkpointing
•  Rollback and Reverse

Computation
•  Dynamic Load Balancing
•  Mixed Discrete and Continuous

PDES

36

Parallel ns-3
§  History

§  PDES in ns-3

§  Mechanics
•  Enabling
•  Running

§  PDES Simulators
•  GrantedTime	
•  NullMessage	

§  Parallel Models 1
•  The easy way

§  Lookahead

§  Under the covers:
•  PointToPointRemoteChannel	
•  PointToPointNetDevice	

§  Parallel Models 2
•  The hard way
•  Limitations

ns-3

37

§  Initial release in ns-3.8
•  J. Pelkey and G. Riley, “Distributed Simulation with MPI in

ns-3,” WNS3 2011, Barcelona, Spain.
•  Roots from:
—  Parallel/Distributed ns (pdns)
—  Georgia Tech Network Simulator (GTNetS)

§  Publications
•  K. Renard, et al, “A Performance and Scalability Evaluation

of the ns-3 Distributed Scheduler,” SimuTools 2012
•  S. Nikolaev, et al, “Performance of Distributed ns-3 Network

Simulator,” SimuTools 2013
•  WNS3 2015

Parallel ns-3 History

ns-3

38

PDES in ns-3
Sequential ns-3

§  LP is implicit
•  ns3::Simulator	

§  Event messages
•  Explicit future function

calls
Schedule (delay, &fn,…)	

§  Virtual time discipline
DefaultSimulatorImpl	
RealtimeSimulatorImpl	
VisualSimulatorImpl	

Parallel ns-3
§  Each rank is an LP
§  Event messages

•  Local to LP: explicit
future function calls

•  Remote: implicit message
send

§  Virtual time discipline
DistributedSimulatorImpl	
NullMessageSimulatorImpl	

§  Lookahead (later)

ns-3

39

Enabling Parallel ns-3
§  Configure with --enable-mpi	

•  Tries to run mpic++
—  Recognizes OpenMPI and

MPICH libraries

•  Defines NS3_MPI and
either NS3_OPENMPI or
NS3_MPICH

§  Followed by usual build

Configuring ns-3 With MPI
$./waf configure --enable-mpi
Setting top to : ...
...
---- Summary of optional NS-3 features:
Build profile : debug
...
MPI Support : enabled
...
'configure' finished successfully (1.295s)

$./waf build
...

ns-3

40

§  Waf can’t distinguish sequential and parallel
•  Need to specify mpirun and number of ranks explicitly

Running Parallel ns-3 Scripts

Running Parallel Scripts with waf and mpirun	
$./waf --run simple-distributed
Waf: Entering directory `build/debug'
Waf: Leaving directory `build/debug'
'build' finished successfully (2.118s)
This simulation requires 2 and only 2 logical processors.
Command [‘build/debug/src/mpi/examples/ns3-dev-simple-distributed-debug'] exited with code 1

Multiple ranks on a single computer:
$./waf --run simple-distributed --command-template="mpirun -np 2 %s"
Waf: Entering directory `build/debug'
Waf: Leaving directory `build/debug'
'build' finished successfully (2.104s)
At time 1.02264s packet sink received 512 bytes from 10.1.1.1 port 49153 total Rx 512 bytes
At time 1.0235s packet sink received 512 bytes from 10.1.2.1 port 49153 total Rx 512 bytes
At time 1.02437s packet sink received 512 bytes from 10.1.3.1 port 49153 total Rx 512 bytes
At time 1.02524s packet sink received 512 bytes from 10.1.4.1 port 49153 total Rx 512 bytes

Multiple computers:
$ mpirun –np 2 ./waf –run simple-distributed

ns-3

41

§  Use environment variable
$ NS_GLOBAL_VALUE=\  
 “SimulatorImplementationType=ns3::NullMessageSimulatorImpl”
\	
 ./waf --run ...	

§  Use command line:

Switching Between GrantedTime and
NullMessage Simulators

Selecting the Parallel Simulator from the Command Line
bool nullmsg = false;	
CommandLine cmd;	
cmd.AddValue ("nullmsg", "Enable the use of null-message synchronization", nullmsg);	
cmd.Parse (argc,argv);	
...	
if(nullmsg) {	
 GlobalValue::Bind ("SimulatorImplementationType",	
 StringValue ("ns3::NullMessageSimulatorImpl"));	
} else {	
 GlobalValue::Bind ("SimulatorImplementationType",	
 StringValue ("ns3::DistributedSimulatorImpl"));	
}	
MpiInterface::Enable (&argc, &argv);	

ns-3

42

§  All ranks construct the full topology
•  All Nodes, NetDevices and Channels
—  Label Nodes with rank: Node::Node (uint32_t systemId)	

•  All Internet stacks and addresses
•  Good
—  Single code for model construction, runs sequential and parallel
—  Event execution happens in parallel
—  Enables GOD and NIx-vector routing to work

•  Bad
—  Memory is used for nodes/stacks/devices that “belong” to other ranks

(But come to my talk tomorrow J)

§  Install local applications only
•  Non-local nodes (not on my rank) should not have applications

Constructing Distributed Models
The Easy Way

ns-3

43

Where to Get Lookahead?
§  Primarily from link latency

§  What about shared
channels like CSMA or
wireless?
•  Latency can be zero
•  Multiple NetDevices
Ø Can’t span ranks!

§  Only PointToPoint links
can cross ranks
•  Global Lookahead is

smallest cross-rank latency

Sender Receiver

Send
Event Start Tx

End Tx

End Rx

Packet Size
Channel BW

Link Latency

Receive
Event

C
ha

nn
el

 B
us

y

Link Latency Start Rx

ns-3

44

Under the Covers:
PointToPointHelper::Install

Sequential

Distributed

src/point-to-point/helper/point-to-point-helper.cc	

bool useNormalChannel = true;	
Ptr<PointToPointChannel> channel = 0;	
	
if (MpiInterface::IsEnabled ()) {	
 uint32_t currSystemId = MpiInterface::GetSystemId ();	
 if (a->GetSystemId () != currSystemId || 	
 b->GetSystemId () != currSystemId) {	
 useNormalChannel = false;	
 }	
}	
if (useNormalChannel) {	
 channel = 	
 m_channelFactory.Create<PointToPointChannel> ();	
} else {	
 channel = 	
 m_remoteChannelFactory.Create<PointToPointRemoteChannel> ();	
	
 Ptr<MpiReceiver> mpiRecA = CreateObject<MpiReceiver> ();	
 mpiRecA->SetReceiveCallback 	
 (MakeCallback (&PointToPointNetDevice::Receive, devA));	
 devA->AggregateObject (mpiRecA);	
	
 // Same for b	
}	

Distributed

ns-3

45

§  MpiInterface::SendPacket()	
—  Packet data
—  Receive time – Local Now() + Latency + Packet Tx duration
—  Remote SystemId (rank)
—  Remote NodeId
—  Remote InterfaceId

•  Serialize packet and destination data
•  Send to remote rank with non-blocking MPI_Isend()	

Under the Covers: Sending a Packet
from PointToPointNetDevice	

PointToPointNetDevice Call Chain
PointToPointNetDevice::Send() {	
 TransmitStart() {	
 PointToPointRemoteChannel::TransmitStart() {	
 MpiInterface::SendPacket();	

ns-3

46

At end of GrantedTime, DistributedSimulatorImpl calls
GrantedTimeWindowMpiInterface::ReceiveMessages()	

§  Reads all pending MPI messages
•  Deserialize target Receive time, NodeId and InterfaceId
•  Deserialize packet data
•  Find Node by NodeId

•  Find NetDevice on Node with correct InterfaceId
•  Get MpiReceiver object aggregated to the NetDevice	
—  MpiReceiver merely holds the correct NetDevice Callback

•  Schedule MpiReceiver::Receive event at Receive time

Under the Covers: Getting a Remote
Packet to the PointToPointNetDevice

ns-3

47

§  Choose partitioning strategy
•  Label contiguous regions which

can’t be partitioned
—  CSMA and wireless

•  Select regions which will share a rank
—  Find large point-to-point latencies for good Lookahead
—  Minimize communication between ranks

§  Build topology as normal, assigning Nodes to ranks
CreateObject<Node> (rankId)	

§  Rewrite topology to improve
partitioning
•  CSMA with only 2 nodes
•  Move latency

Building a Distributed ns-3
Simulation

Models

48

§  Use the ghost cell design pattern to save memory
•  Only create local Nodes, Applications, Internet stacks, NetDevices and

Channels
•  Plus “ghost” nodes: remote endpoint of PointToPointRemoteChannel

§  Requires manual intervention
•  Global and NIX routing do not see entire topology

—  Add static, default routes manually. Hint: IPv6 allows for more “aggregatable” routes
•  Ghost nodes will likely have incorrect remote NodeId, InterfaceId
•  Must align interface identifiers by hand in same fashion

Constructing Distributed Models
The Hard Way

Models

49

§  Partitioning is a manual process
§  Partitioning is restricted to Point-To-Point links

only
•  Partitioning within a wireless network is not supported
—  Lookahead is very small and dynamic

§  Need full topology in all LPs
•  Exception with careful node ordering, interface

numbering, and manual routing

Limitations of Distributed NS3

Models

50

1.  Include mpi-module.h
2. Same topology, split across Point-to-point link

1

2

Example
examples/tutorial/third.cc src/mpi/examples/third-distributed.cc
(These have diverged slightly in ns-3-dev. Differences minimized here.)

51

examples/tutorial/third.cc src/mpi/examples/third-distributed.cc

1. Different log component name
2. Command line argument to select Null message

1

2

Example

52

examples/tutorial/third.cc src/mpi/examples/third-distributed.cc

1. Condition on NS3_MPI	
2. Null message selector
3.  Initialize MPI
4. Get rank #, number of ranks
5. Check number of ranks
6. Use symbolic names for each rank
7. Create point-to-point nodes

1

2

3

4

5

6

7

Example

53

examples/tutorial/third.cc src/mpi/examples/third-distributed.cc

1. Create CSMA nodes on one rank
2. Create Wifi nodes on another rank

1

2

Example

54

examples/tutorial/third.cc src/mpi/examples/third-distributed.cc

1.  Install devices, addresses and
Internet stack everywhere

2.  Install applications only on rank-
local nodes

1

2

2

Example

55

examples/tutorial/third.cc src/mpi/examples/third-distributed.cc

1. Enable PCAP tracing on local
nodes?

2. Close MPI cleanly

1

2

Example

56

Script Output–Identical

$./waf --run third-distributed \  
--command-template="mpirun -n 2 %s --tracing"	
Waf: Entering directory `build/debug'	
Waf: Leaving directory `build/debug'	
'build' finished successfully (2.050s)	
At time 2s client sent 1024 bytes to 10.1.2.4 port 9	
At time 2.01796s server received 1024 bytes from 10.1.3.3 port 49153	
At time 2.01796s server sent 1024 bytes to 10.1.3.3 port 49153	
At time 2.03364s client received 1024 bytes from 10.1.2.4 port 9	
	

$./waf –run third	
Waf: Entering directory `build/debug'	
Waf: Leaving directory `build/debug'	
'build' finished successfully (2.152s)	
At time 2s client sent 1024 bytes to 10.1.2.4 port 9	
At time 2.01796s server received 1024 bytes from 10.1.3.3 port 49153	
At time 2.01796s server sent 1024 bytes to 10.1.3.3 port 49153	
At time 2.03364s client received 1024 bytes from 10.1.2.4 port 9	
	

Example

57

§  Can't use distributed simulator without MPI
compiled in	
•  Not finding or building with MPI libraries
Ø Reconfigure NS-3 and rebuild

§  assert failed. cond="pNode && pMpiRec", file=../
src/mpi/model/mpi-interface.cc, line=413	
•  Mis-aligned node or interface IDs

Cryptic Error Conditions

Errors

58

Performance Optimizations
§  Larger Lookahead

§  Synchronization cost grows
exponentially with LP count
•  More work per LP is better
•  Speed gains up to 102-3 ranks,

depending on model

§  Appropriate performance
metric
•  Events/sec can be misleading

with varying event cost
•  Packet transmissions (or

receives) per wall-clock time

Performance

59

§  Linear scaling out to 128 ranks

Parallel Performance with Large
Computation Load: 802.11+OLSR

Performance

60

§  Performance drops at modest number of ranks

Parallel Performance with Small
Computation Load: CSMA+Static

Performance

61

§  Automatic memory scaling
•  Automatic ghost nodes, globally unique node IDs
•  (See my talk tomorrow J)

§  Automatic partitioning, ghost alignment
§  Distributed Real Time

•  Versus simultaneous real-time emulations:
—  LP-to-LP messaging gives greater Lookahead than independent

ns-3 instances connected by emulated network devices

§  Scalable default routing
•  AS-like routing between LPs
•  Scalable replacement for GOD or Nix-vector routing with

ghost nodes

Work in Progress

Future

62

(Mostly) Parallel Partitioning Tools

model/

$ sector -F model.filelist

$ partition -f

Many of:
*.xndl
*.xndl.gz
*.xndl.gzip

128 files
123 GB

model.filelist
8K

128 files
123 GB

model.sectors.xndl.gz
2.7 GB

model.sector.metis
14 GB

model.metis.part.<nparts>
1.4 GB

partition-model <first-rank> <last-rank>

XmlSimulator.cc

One per rank of:
*.xndl
*.xndl.gz
*.xndl.gzip

128 files
123 GB

Serial Code

Parallel Code

$ gpmetis model.sector.metis <nparts>

Future

