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§  Faster execution 
•  Measure ~104 packet receives/wall clock second/core 

§  Large models, too big for one compute node 
§  Heavy-weight nodes 

•  DCE applications 
•  Virtual machines 
•  Core routers with large forwarding tables 

Why should you care about 
distributed (parallel) simulation? 

Motivation 
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§  Reduce simulation run-time for large, complex network 
simulations 
•  Complex models require more CPU cycles and memory 
—  MANETs, robust radio devices 
—  More realistic application-layer models and traffic loading 
—  Load balancing among CPUs 

•  Potential to enable real-time performance for NS-3 emulation 

§  Enable larger simulated networks 
•  Distribute memory footprint to reduce swap usage 
•  Potential to reduce impact of N2 problems such as global routing 

§  Allows network researchers to run multiple simulations 
and collect significant data 

Motivation for High Performance, 
Scalable Network Simulation 

Motivation 
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ns-3 Execution Scaling 
 
§  10~4 packets/core/sec 

•  Independent of model 
size 

•  100 cores is 100x faster 
than 1 core 

Nikolaev, et al, SIMUTools 2013 

Motivation 
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How many hardware threads do you 
have? 
This laptop 

§  MacBook Pro, mid 
2009 

§  Intel Core 2 Duo: 
2 hardware threads 

My other computer 

§  BlueGene/Q 
•  Currently TOP500 #3 
•  8M hardware threads 

Motivation 
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§  Motivation 
§  Intro to MPI 
§  Parallel Discrete Event Simulation (PDES) 
§  PDES in ns-3 
§  Constructing models 
§  Example 
§  Error Conditions 
§  Performance 
§  Future Capabilities 

Outline 
Motivation 

MPI 

PDES 

ns-3 

Models 

Example 

Errors 

Future 

Performance 

Big topics.  Focus on the 
concepts and terms needed 

to understand //ns-3 
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Parallelizing ns-3 Models Is 
Straightforward , But… 

https://xkcd.com/1205 

Motivation 
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And the Reality… 

https://xkcd.com/1319 

Motivation 
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MPI Topics 
§  Core features 

§  API specification 

§  Ranks and 
communicators 

§  Point-to-point 
messages 

§  Collectives 

§  Getting and using 
MPI 

§  Examples 
•  Hello World 
•  Simple messaging 
•  Ghost cell pattern 

MPI 
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§  De facto standard programming model for parallel 
scientific codes (but see Charm++ for an alternative) 

§  Basic functionality is sending messages (data) between 
processes, which are called ranks 

§  Core features 
•  API specification 
—  ~Language independent (FORTRAN, C, C++, Python, Java,…) 
—  Supports (doesn’t preclude) high performance and scalability 

•  Point-to-point (src,dst) messaging, as well as collectives 
—  Broadcast, reduction (compute min value), … 

•  Works equally well on distributed and shared memory 

Message Passing Interface (MPI) 
Features 1 

MPI 
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§  API specification, implementation up to “vendor” 
•  Vary in performance, runtime launch, … 
•  Architecture-specific libraries can target specialized 

hardware 
—  High-speed interconnects:  Infiniband, PAMI, … 
—  Specialized network topologies:  Fat-tree, Dragonfly, 5-d torus 
—  Specialized network interfaces: low-latency, high-throughput 
—  Multi-path routing 

•  Multiple implementations can coexist (but not 
interoperate) 
—  OpenMPI, MPICH, IBM, … 
—  Language-specific: mpi4py, mpiJava, … 

MPI Features 2 

MPI 
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MPI Concepts 
Ranks and Communicators 
§  Processes are called ranks 

§  Communicator 
•  Group of ranks, numbered [0,R) 

within the group 
•  Enables separating messages 

by purpose 
•  Initial default communicator is 

MPI_COMM_WORLD 
•  Several functions for creating 

communicators, to support 
specific topologies 

 

ns-3 
Communicator 

ns-3 Rank 0 

ns-3 Rank 1 

ns-3 Rank N 
Service 

Communicator 

Service Rank 0 

Service Rank 1 

Service Rank M 

MPI 
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Send a message to a specific rank in a communicator 
•  MPI_Send(data, data_length, data_type,  
         destination, tag, communicator)	
—  Data/data_length  Message contents 
—  data_type  MPI-defined data types 

 Or a custom data type (i.e, a struct) 
—  destination  Rank Number 
—  tag  Application tag to distinguish types 
—  communicator   

•  Matching MPI_Recv()	
•  Blocking and non-blocking versions 
•  Various optimized calls, for managing memory 
•  Wait for a message, test for new messages 

MPI Concepts 
Point-to-Point Messages 

MPI 
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Higher level patterns involving more than 2 ranks 
§  Synchronization 

•  MPI_Barrier	
§  Data movement 

•  MPI_Bcast  
MPI_Scatter  
MPI_Gather  
MPI_Allgather	

§  Reductions 
•  MPI_Reduce  
MPI_Allreduce	

§  Combinations 
•  MPI_Reduce_scatter  
MPI_Alltoall  
MPI_Scan	

MPI Concepts 3 
Collective Communications 

MPI 
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MPI Full API 
 

MPI 

Environment Management 
MPI_Abort	 MPI_Errorhandler_create	 MPI_Errorhandler_free	 MPI_Errorhandler_get	 MPI_Errorhandler_set	 MPI_Error_class	
MPI_Error_string	 MPI_Finalize	 MPI_Get_processor_name	 MPI_Get_version	 MPI_Init	 MPI_Initialized	
MPI_Wtick	 MPI_Wtime	

Point-to-Point Communication 
MPI_Bsend	 MPI_Bsend_init	 MPI_Buffer_attach	 MPI_Buffer_detach	 MPI_Cancel	 MPI_Get_count	
MPI_Get_elements	 MPI_Isend	 MPI_Iprobe	 MPI_Irecv	 MPI_Irsend	 MPI_Isend	
MPI_Issend	 MPI_Probe	 MPI_Recv	 MPI_Recv_init	 MPI_Request_free	 MPI_Rsend	
MPI_Rsend_init	 MPI_Ssend	 MPI_Ssend_init	 MPI_Start	 MPI_Startall	 MPI_Test	
MPI_Test_cancelled	 MPI_Testall	 MPI_Testany	 MPI_Testsome	 MPI_Wait	 MPI_Waitall	
MPI_Waitany	 MPI_Waitsome	

Collective Communication 
MPI_Allgather	 MPI_Allgatherv	 MPI_Allreduce	 MPI_Alltoall	 MPI_Alltoallv	 MPI_Barrier	
MPI_Bcast	 MPI_Gather	 MPI_Gatherv	 MPI_Op_create	 MPI_Op_free	 MPI_Reduce	
MPI_Reduce_scatter	 MPI_Scan	 MPI_Scatter	 MPI_Scatterv	

Process Group 
MPI_Group_compare	 MPI_Group_difference	 MPI_Group_excl	 MPI_Group_free	 MPI_Group_incl	 MPI_Group_intersection	
MPI_Group_range_excl	 MPI_Group_range_incl	 MPI_Group_rank	 MPI_Group_size	 MPI_Group_translate_ran	 MPI_Group_union	

Communicators 
MPI_Comm_compare	 MPI_Comm_create	 MPI_Comm_dup	 MPI_Comm_free	 MPI_Comm_group	 MPI_Comm_rank	
MPI_Comm_remote_group	 MPI_Comm_remote_size	 MPI_Comm_size	 MPI_Comm_split	 MPI_Comm_test_inter	 MPI_Intercomm_create	
MPI_Intercomm_merge	

Derived Types 
MPI_Type_commit	 MPI_Type_contiguous	 MPI_Type_extent	 MPI_Type_free	 MPI_Type_hindexed	 MPI_Type_hvector	
MPI_Type_indexed	 MPI_Type_lb	 MPI_Type_size	 MPI_Type_struct	 MPI_Type_ub	 MPI_Type_vector	

Virtual Topology 
MPI_Cart_coords	 MPI_Cart_create	 MPI_Cart_get	 MPI_Cart_map	 MPI_Cart_rank	 MPI_Cart_shift	
MPI_Cart_sub	 MPI_Cartdim_get	 MPI_Dims_create	 MPI_Graph_create	 MPI_Graph_get	 MPI_Graph_map	
MPI_Graph_neighbors	 MPI_Graph_neighbors_cou

nt	
MPI_Graphdims_get	 MPI_Topo_test	

Miscellaneous 
MPI_Address	 MPI_Attr_delete	 MPI_Attr_get	 MPI_Attr_put	 MPI_Keyval_create	 MPI_Keyval_free	
MPI_Pack	 MPI_Pack_size	 MPI_Pcontrol	 MPI_Unpack	
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§  Check your package manager 
§  Only the API defined 

•  Tool names and configuration vary 
•  OpenMPI commands used here for illustration 

§  Building your code 
•  Typically a compiler wrapper script, to ensure correct includes and 

libraries:  $ mpicc …	
•  Often hidden inside your build system (Makefile, wscript) 

§  Multiple executables 
•  Possible to run different executables on different ranks 
•  But job launch commands depend on package, so not portable 
•  Typically build everything into one executable, select functions 

based on rank id at runtime 

Getting and Using MPI 

MPI 
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Getting and Using MPI 
 
§  Where to run ranks? 

•  Single computer: typically 
defaults to all hardware threads 

•  Ad hoc cluster:  --hostfile 
node names and max number 
of ranks 

•  HPC cluster: typically via a 
batch job system, which selects 
physical nodes and launches 
jobs as a shell script 

•  “Overcommitment”: running 
more ranks than cores or 
hardware threads 

§  Launching  
$ mpirun –n <nranks> <executable>	
•  Need to launch on each host 

MPI 

Example OpenMPI Hosts File 
# This is an example hostfile.  Comments begin with #	
#	
# The following node is a single processor machine:	
foo.example.com	
	
# The following node is a dual-processor machine:	
bar.example.com slots=2	
	
# The following node is a quad-processor machine, 	
# over-subscribing disallowed	
yow.example.com slots=4 max-slots=4	

Example OpenMPI Build and Run 
$ mpicxx -o hello hello.cc	
$ mpirun -np 4 ./hello	
Hello World from rank 3 of 4 (35986)	
Hello World from rank 0 of 4 (35983)	
Hello World from rank 1 of 4 (35984)	
Hello World from rank 2 of 4 (35985)	
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Parallel Hello World 
 
§  Typical Structure 

1.  Include header 
2.  Initialize MPI with 

command-line args 
3.  Get world size, my 

rank index 
4.  Parallel code 

•  Send messages, 
synchronize… 

5.  Clean shutdown 

6.  Build and Launch 

MPI 

Example OpenMPI Build and Run 
$ mpicxx -o hello hello.cc	
$ mpirun -n 4 ./hello	
Hello World from rank 3 of 4 (35986)	
Hello World from rank 0 of 4 (35983)	
Hello World from rank 1 of 4 (35984)	
Hello World from rank 2 of 4 (35985)	

hello.cc	
#include <mpi.h>	
	
int	
main (int argc, char **argv)	
{	
  int size, rank, rc;	
	
  rc = MPI_Init (&argc, &argv);	
  if (rc != MPI_SUCCESS)	
    MPI_Abort(MPI_COMM_WORLD, rc);	
	
  MPI_Comm_size (MPI_COMM_WORLD, &size);	
  MPI_Comm_rank (MPI_COMM_WORLD, &rank);	
	
  printf ("Hello World from rank %d of %d	
             (%d)\n", rank, size, getpid ());	
	
  MPI_Finalize();	
}	

1

2

3

4

5

6
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Simple Messaging Example 
 
Rank0 --“Hello”--> Rank1 	

§  Typical Structure 
1.  Check #ranks 
2.  Message data buffers 
3.  Each rank runs 

different code 
4.  Sends paired with Recv 
5.  Send and Recv data 

lengths, types match 

MPI 

Example OpenMPI Build and Run 
$ mpicxx -o hello hello.cc	
$ mpirun -np 4 ./hello	
Hello World from rank 3 of 4 (35986)	
Hello World from rank 0 of 4 (35983)	
Hello World from rank 1 of 4 (35984)	
Hello World from rank 2 of 4 (35985)	

Parallel Body of send1.cc	
if (size < 2) {	
    printf ("Need two ranks\n");	
    MPI_Abort(MPI_COMM_WORLD, 0);	
  }	
	
char *msg = (char *)"Hello";	
int msg_len = strlen(msg);	
char in_msg[msg_len + 1];  // leave space to add null	
	
if (rank == 0) {	
  int dest = 1;	
  rc = MPI_Send (msg, msg_len, MPI_CHAR, dest,	
                 0, MPI_COMM_WORLD);	
}	
	
if (rank == 1) {	
  int count = 0;	
  MPI_Status stat;	
	
  rc = MPI_Recv (&in_msg, msg_len, MPI_CHAR,	
                 MPI_ANY_SOURCE, 0, MPI_COMM_WORLD,	
                 &stat);	
  in_msg[msg_len] = (char) 0;	
  MPI_Get_count (&stat, MPI_CHAR, &count);	
  printf("Rank %d received message \"%s\" (%d) “	
         “from rank %d tag %d.\n",	
         rank, in_msg, count,	
         stat.MPI_SOURCE, stat.MPI_TAG);	
}	

1

2

3

4 5

Example OpenMPI Build and Run 
$ mpicxx -o send1 send1.cc 	
$ mpirun -np 4 ./send1	
Rank 1 received message "Hello" (5) from rank 0 tag 0.	
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Stencil Partitioning 

Partitioning with Ghosts 

§  Decomposition 
•  Need neighbors’ data: stencil 
•  Some neighbors are remote 

§  Solution: 
•  Ghosts replicate data 
•  Two-phase execution 
—  Exchange neighbor data 

Communication 
—  Compute local update 

Computation 

Maximize computation/communication. Overlap computation and communication. 
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Ghost Cell Design Pattern 

MPI 
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PDES Topics 
§  Discrete Event 

Simulation 
•  Mathematical paradigm 

and time control 
•  State and time 

evolution 
•  Event scheduling 
•  Time consuming 

processes 

§  Parallel DES 
•  Logical processors 
•  Causality 
•  Granted-time 

synchronization 
•  Lookahead 
•  Null-message 

synchronization 

PDES 
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Classification of Simulation 
Techniques 

Mathematical Paradigm 

Static vs. dynamic time control 

Parallelism? 

Synchronization Style 

Load Distribution 

Simulation

ContinuousDiscrete

Time-SteppedEvent-Driven

SequentialParallel

ConservativeOptimistic

StaticDynamic

PDES 
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Mathematical Paradigm 
Aspect 

Form of model Discrete systems 
Automata, agents, particle systems, 
stochastic processes, etc. 

Ordinary or partial 
differential equations 

Time, space, state Continuous or discrete All continuous 
State changes Discontinuous in time 

Constant between state changes 
Continuous in time 
Occasional discontinuities 
Piecewise differentiable 

Mathematical tools Probability and statistics Numerical analysis 

ContinuousDiscrete

§  Discrete simulation is natural when there are no 
underlying physical equations 

PDES 
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Time Control 
Aspect 

Event times Dynamically computed Statically chosen 
Time resolution (Ideally) Floating point time 

Zero lower limit on resolution: 
inherently multi-scale 

(Usually) Integer time 
Nonzero lower limit on resolution 

Event distribution 
in space and time 

Sparse and irregular Dense and regular 

Appropriate for Irregular, asynchronous 
and/or multi-scale models 

Spatially and temporally 
regular models 

Time-SteppedEvent-Driven

§  Event-driven execution imposes no timescale 
•  Supports simulation with wide dynamic range in 

natural time scales and/or long quiescent periods 

PDES 
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DES State and Time Evolution 
§  State values change 

discontinuously in simulation 
time 
•  Constant between state changes 
•  Time interval between state 

changes is not fixed 

§  Computation (real world time) 
required to compute new state 
value 
•  Computation occurs at a fixed 

value of simulation time 

§  Rate of model evolution not 
fixed 
•  Faster or slower than real time 
•  (Best effort) real time, to 

interoperate with external real 
systems 

S
ta

te
 V

al
ue

Computation Time11:15:04 11:20:19

Simulation Time00:00:00 18:45:07

PDES 
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DES Event Scheduling 
§  Objects communicate by 

sending messages = 
schedule events 
•  Event is a function call, to be 

executed Δt in the future–no 
backwards arrows 

•  Typically an event schedules 
one or more future events 

§  All event types allowed 
•  Event to self 
•  Event sends multiple 

messages 
•  Event sends no messages 
•  Events can tie 
•  Non-FIFO scheduling 

Si
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Simulation Time

Object A

Object B

PDES 
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Sequential DES Main Event Loop 
createInitialObjects();	
eventList.insert(initialEvents);          // Priority queue on event time	
	
while ( !(terminationCondition() || eventList.empty()) ) do 	
{	
  event e = eventList.removeMinSimTime(); // Choose next event	
	
  simTime = e.getEventTime();             // Set virtual time and unpack event	
  object = e.getEventObject();	
  method = e.getMethod();	
  args = e.getArgs();	
	
  object.method(args);                    // Invoke the event method	
                                          // May change state of object	
                                          // May schedule future events	
                                          // May create or destroy objects	
                                          // May cancel (delete) future events	
}	
	
finalize();	

PDES 

Clean separation between Simulator and Application Model. 
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Modeling Time-Consuming Process 
§  Model state values 

change at an instant 
in simulation time 
•  So how to model time-

consuming processes? 

§  Finite state machine 
•  Model state is the FSM 

state 
•  Events cause FSM 

transitions, schedule 
future transitions 

FS
M

 S
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Simulation Time

Busy

Waiting

GoBusy() {
  m_State = State::Busy;
  Schedule(tBusy, &GoWaiting);
}

tBusy

GoWaiting()Go
Bu

sy
()

PDES 
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http://www.enggprojects.in/2011/07/adaptive-de-clustering-of-data.html 

LP 1 

LP 2 

LP 3 

Parallel Discrete Event Simulation 
§  Decompose model 

into Logical 
Processes 
•  Separate objects and 

event queues 
•  Execute independently 
•  Events for other LPs 

become messages 
•  ~ MPI Ranks 

Parallel execution must produce exact same results as sequential! 

PDES 
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PDES Execution:  LPs Advance 
Independently 
§  Sometimes ahead in 

virtual time, 
sometimes behind 

§  More or less real time 
per event 

§  Never backwards! 
•  Hallmark of 

conservative execution 
(Ask me about 
optimistic execution J) 

PDES 
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Need for Synchronization of LPs: 
Prevent Causality Violations 
§  Sequential event 

sequence 
§  LP 2’s perspective: 

§  Arrival of LP1 event 

Lo
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ss

Simulation Time

LP 1

LP 2

Simulation Time

LP 2

Next Event

Simulation Time

LP 2

In the past!

Need to guarantee no messages arrive in the past (for conservative PDES). 

PDES 
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Granted Time Window 
Synchronization 
§  If we could guarantee no remote 

events will arrive before 
GrantedTime 
•  All events before GrantedTime are 

safe 
•  At GrantedTime need to 

synchronize: 
—  Receive and schedule events from 

other LPs 
—  Compute new GrantedTime 

§  Performance 
•  Even workload distribution limits 

cpu idle time 
•  Maximize GrantedTime to execute 

more events in parallel between 
synchronization 

PDES 
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Lookahead and LBTS Provide the 
Granted Time Guarantee 
§  Model must provide Lookahead  

•  Minimum delay for remote events 
—  Example: network channel link latency  

+ transmission time for smallest packet 

§  Lower Bound Time Stamp (LBTS) 
•  Min next event time across all LPs 

§  GrantedTime = LBTS + Lookahead 

§  Synchronization across LPs is 
expensive 
•  Typically barrier (to wait for slowest LP) 
•  Plus (at least one) all gather or 

reduction 
•  Each of these is log(NLP) in time 

Finding large Lookahead is key to performance 

LP2 Event Queue
local event
local event

local event
earliest 

next event

local event
local event
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GrantedTime

GrantedTime

Lookahead

LBTS

NOW

PDES 
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http://www.enggprojects.in/2011/07/adaptive-de-clustering-of-data.html 

§  GrantedTime assumes 
all LPs can message all 
other LPs 

§  But my LP graph is 
sparse. Why synchronize 
with everyone? 
•  Every message sent could 

communicate my virtual 
time 

•  Guarantee at least one 
message every Lookahead 

•  Send Null-message when 
necessary 

Simulation Time

LP NULL

NOW

Simulation Time

LP NULL NULL

NOW

Null-Message Alternative for Static 
and Sparse LP Graphs 

PDES 
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§  Much of this material from a short course 
presented spring 2014 
•  David Jefferson, LLNL, co-inventor of Optimistic PDES 
•  15 sessions 

 

•  Slides and videos publicly available: 
http://pdes-course-2014.ucllnl.org 

To Learn More… 

•  Sequential DES 
•  Ties, LBTS, Lookahead 
•  Chandy, Misra, Bryant: YAWNS 
•  Deadlock 
•  Null Messages 
•  Dynamic Object Creation 
•  Critical Path 
•  Speedup 

•  Optimistic DES, TimeWarp 
•  Global Virtual Time 
•  Commitment 
•  Checkpointing 
•  Rollback and Reverse 

Computation 
•  Dynamic Load Balancing 
•  Mixed Discrete and Continuous 

PDES 
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Parallel ns-3 
§  History 

§  PDES in ns-3 

§  Mechanics 
•  Enabling 
•  Running 

§  PDES Simulators 
•  GrantedTime	
•  NullMessage	

§  Parallel Models 1 
•  The easy way 

§  Lookahead 

§  Under the covers:  
•  PointToPointRemoteChannel	
•  PointToPointNetDevice	

§  Parallel Models 2 
•  The hard way 
•  Limitations 

ns-3 
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§  Initial release in ns-3.8 
•  J. Pelkey and G. Riley, “Distributed Simulation with MPI in 

ns-3,” WNS3 2011, Barcelona, Spain. 
•  Roots from: 
—  Parallel/Distributed ns (pdns) 
—  Georgia Tech Network Simulator (GTNetS) 

§  Publications 
•  K. Renard, et al, “A Performance and Scalability Evaluation 

of the ns-3 Distributed Scheduler,” SimuTools 2012 
•  S. Nikolaev, et al, “Performance of Distributed ns-3 Network 

Simulator,” SimuTools 2013 
•  WNS3 2015 

Parallel ns-3 History 

ns-3 
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PDES in ns-3 
Sequential ns-3 

§  LP is implicit 
•  ns3::Simulator	

§  Event messages 
•  Explicit future function 

calls 
Schedule (delay, &fn,…)	

§  Virtual time discipline 
DefaultSimulatorImpl	
RealtimeSimulatorImpl	
VisualSimulatorImpl	

Parallel ns-3 
§  Each rank is an LP 
§  Event messages 

•  Local to LP: explicit 
future function calls 

•  Remote: implicit message 
send 

§  Virtual time discipline 
DistributedSimulatorImpl	
NullMessageSimulatorImpl	

§  Lookahead (later) 

ns-3 
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Enabling Parallel ns-3 
§  Configure with --enable-mpi	

•  Tries to run mpic++ 
—  Recognizes OpenMPI and 

MPICH libraries 

•  Defines NS3_MPI and  
either NS3_OPENMPI or 
NS3_MPICH 

§  Followed by usual build 

Configuring ns-3 With MPI 
$ ./waf configure --enable-mpi 
Setting top to                           : ... 
... 
---- Summary of optional NS-3 features: 
Build profile                 : debug 
... 
MPI Support                   : enabled 
... 
'configure' finished successfully (1.295s) 
 
$ ./waf build 
... 

ns-3 
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§  Waf can’t distinguish sequential and parallel  
•  Need to specify mpirun and number of ranks explicitly 

Running Parallel ns-3 Scripts 

Running Parallel Scripts with waf and mpirun	
$ ./waf --run simple-distributed 
Waf: Entering directory `build/debug' 
Waf: Leaving directory `build/debug' 
'build' finished successfully (2.118s) 
This simulation requires 2 and only 2 logical processors. 
Command [‘build/debug/src/mpi/examples/ns3-dev-simple-distributed-debug'] exited with code 1 
 
#  Multiple ranks on a single computer: 
$ ./waf --run simple-distributed --command-template="mpirun -np 2 %s" 
Waf: Entering directory `build/debug' 
Waf: Leaving directory `build/debug' 
'build' finished successfully (2.104s) 
At time 1.02264s packet sink received 512 bytes from 10.1.1.1 port 49153 total Rx 512 bytes 
At time 1.0235s packet sink received 512 bytes from 10.1.2.1 port 49153 total Rx 512 bytes 
At time 1.02437s packet sink received 512 bytes from 10.1.3.1 port 49153 total Rx 512 bytes 
At time 1.02524s packet sink received 512 bytes from 10.1.4.1 port 49153 total Rx 512 bytes 
 
# Multiple computers: 
$ mpirun –np 2 ./waf –run simple-distributed  

ns-3 
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§  Use environment variable 
$ NS_GLOBAL_VALUE=\  
  “SimulatorImplementationType=ns3::NullMessageSimulatorImpl” 
\	
  ./waf --run ...	

§  Use command line: 

Switching Between GrantedTime and 
NullMessage Simulators 

Selecting the Parallel Simulator from the Command Line 
bool nullmsg = false;	
CommandLine cmd;	
cmd.AddValue ("nullmsg", "Enable the use of null-message synchronization", nullmsg);	
cmd.Parse (argc,argv);	
...	
if(nullmsg) {	
  GlobalValue::Bind ("SimulatorImplementationType",	
                     StringValue ("ns3::NullMessageSimulatorImpl"));	
} else {	
  GlobalValue::Bind ("SimulatorImplementationType",	
                      StringValue ("ns3::DistributedSimulatorImpl"));	
}	
MpiInterface::Enable (&argc, &argv);	

ns-3 
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§  All ranks construct the full topology 
•  All Nodes, NetDevices and Channels 
—  Label Nodes with rank:  Node::Node (uint32_t systemId)	

•  All Internet stacks and addresses 
•  Good 
—  Single code for model construction, runs sequential and parallel 
—  Event execution happens in parallel 
—  Enables GOD and NIx-vector routing to work 

•  Bad 
—  Memory is used for nodes/stacks/devices that “belong” to other ranks 

(But come to my talk tomorrow J) 

§  Install local applications only 
•  Non-local nodes (not on my rank) should not have applications 

Constructing Distributed Models 
The Easy Way 

ns-3 
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Where to Get Lookahead? 
§  Primarily from link latency 

§  What about shared 
channels like CSMA or 
wireless? 
•  Latency can be zero 
•  Multiple NetDevices 
Ø Can’t span ranks! 

§  Only PointToPoint links 
can cross ranks 
•  Global Lookahead is 

smallest cross-rank latency 

Sender Receiver

Send
Event Start Tx

End Tx

End Rx

Packet  Size
Channel BW

Link Latency

Receive
Event 

C
ha

nn
el

 B
us
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Link Latency Start Rx
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Under the Covers: 
PointToPointHelper::Install 

Sequential 

Distributed 

src/point-to-point/helper/point-to-point-helper.cc	

bool useNormalChannel = true;	
Ptr<PointToPointChannel> channel = 0;	
	
if (MpiInterface::IsEnabled ())  {	
  uint32_t currSystemId = MpiInterface::GetSystemId ();	
  if (a->GetSystemId () != currSystemId || 	
      b->GetSystemId () != currSystemId) {	
    useNormalChannel = false;	
  }	
}	
if (useNormalChannel) {	
  channel = 	
    m_channelFactory.Create<PointToPointChannel> ();	
} else {	
  channel = 	
    m_remoteChannelFactory.Create<PointToPointRemoteChannel> ();	
	
  Ptr<MpiReceiver> mpiRecA = CreateObject<MpiReceiver> ();	
  mpiRecA->SetReceiveCallback 	
    (MakeCallback (&PointToPointNetDevice::Receive, devA));	
  devA->AggregateObject (mpiRecA);	
	
  // Same for b	
}	

Distributed 

ns-3 
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§  MpiInterface::SendPacket()	
—  Packet data 
—  Receive time – Local Now() + Latency + Packet Tx duration 
—  Remote SystemId (rank) 
—  Remote NodeId 
—  Remote InterfaceId 

•  Serialize packet and destination data 
•  Send to remote rank with non-blocking MPI_Isend()	

Under the Covers: Sending a Packet 
from PointToPointNetDevice	

PointToPointNetDevice Call Chain 
PointToPointNetDevice::Send() {	
  TransmitStart() {	
    PointToPointRemoteChannel::TransmitStart() {	
      MpiInterface::SendPacket();	

ns-3 
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At end of GrantedTime, DistributedSimulatorImpl calls 
GrantedTimeWindowMpiInterface::ReceiveMessages()	

§  Reads all pending MPI messages 
•  Deserialize target Receive time, NodeId and InterfaceId 
•  Deserialize packet data 
•  Find Node by NodeId 

•  Find NetDevice on Node with correct InterfaceId 
•  Get MpiReceiver object aggregated to the NetDevice	
—  MpiReceiver merely holds the correct NetDevice Callback 

•  Schedule MpiReceiver::Receive event at Receive time 

Under the Covers: Getting a Remote 
Packet to the PointToPointNetDevice 

ns-3 
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§  Choose partitioning strategy 
•  Label contiguous regions which  

can’t be partitioned 
—  CSMA and wireless 

•  Select regions which will share a rank 
—  Find large point-to-point latencies for good Lookahead 
—  Minimize communication between ranks 

§  Build topology as normal, assigning Nodes to ranks  
CreateObject<Node> (rankId)	

§  Rewrite topology to improve  
partitioning 
•  CSMA with only 2 nodes 
•  Move latency 

Building a Distributed ns-3 
Simulation 

Models 
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§  Use the ghost cell design pattern to save memory 
•  Only create local Nodes, Applications, Internet stacks, NetDevices and 

Channels 
•  Plus “ghost” nodes: remote endpoint of PointToPointRemoteChannel 

§  Requires manual intervention 
•  Global and NIX routing do not see entire topology 

—  Add static, default routes manually.  Hint: IPv6 allows for more “aggregatable” routes 
•  Ghost nodes will likely have incorrect remote NodeId, InterfaceId 
•  Must align interface identifiers by hand in same fashion 

Constructing Distributed Models 
The Hard Way 

Models 
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§  Partitioning is a manual process 
§  Partitioning is restricted to Point-To-Point links 

only 
•  Partitioning within a wireless network is not supported 
—  Lookahead is very small and dynamic 

§  Need full topology in all LPs 
•  Exception with careful node ordering, interface 

numbering, and manual routing 

Limitations of Distributed NS3 

Models 
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1.  Include mpi-module.h 
2. Same topology, split across Point-to-point link 

1

2

Example 
examples/tutorial/third.cc  src/mpi/examples/third-distributed.cc 
(These have diverged slightly in ns-3-dev.  Differences minimized here.) 
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examples/tutorial/third.cc  src/mpi/examples/third-distributed.cc 

1. Different log component name 
2. Command line argument to select Null message 

1

2

Example 
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examples/tutorial/third.cc  src/mpi/examples/third-distributed.cc 

1. Condition on NS3_MPI	
2. Null message selector 
3.  Initialize MPI 
4. Get rank #, number of ranks 
5. Check number of ranks 
6. Use symbolic names for each rank 
7. Create point-to-point nodes 

1

2

3

4

5

6

7

Example 
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examples/tutorial/third.cc  src/mpi/examples/third-distributed.cc 

1. Create CSMA nodes on one rank 
2. Create Wifi nodes on another rank 

1

2

Example 
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examples/tutorial/third.cc  src/mpi/examples/third-distributed.cc 

1.  Install devices, addresses and 
Internet stack everywhere 

2.  Install applications only on rank-
local nodes 

1

2

2

Example 
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examples/tutorial/third.cc  src/mpi/examples/third-distributed.cc 

1. Enable PCAP tracing on local 
nodes? 

2. Close MPI cleanly 

1

2

Example 
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Script Output–Identical 

$ ./waf --run third-distributed \  
--command-template="mpirun -n 2 %s --tracing"	
Waf: Entering directory `build/debug'	
Waf: Leaving directory `build/debug'	
'build' finished successfully (2.050s)	
At time 2s client sent 1024 bytes to 10.1.2.4 port 9	
At time 2.01796s server received 1024 bytes from 10.1.3.3 port 49153	
At time 2.01796s server sent 1024 bytes to 10.1.3.3 port 49153	
At time 2.03364s client received 1024 bytes from 10.1.2.4 port 9	
	

$ ./waf –run third	
Waf: Entering directory `build/debug'	
Waf: Leaving directory `build/debug'	
'build' finished successfully (2.152s)	
At time 2s client sent 1024 bytes to 10.1.2.4 port 9	
At time 2.01796s server received 1024 bytes from 10.1.3.3 port 49153	
At time 2.01796s server sent 1024 bytes to 10.1.3.3 port 49153	
At time 2.03364s client received 1024 bytes from 10.1.2.4 port 9	
	

Example 
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§  Can't use distributed simulator without MPI 
compiled in	
•  Not finding or building with MPI libraries 
Ø Reconfigure NS-3 and rebuild 

§  assert failed. cond="pNode && pMpiRec", file=../
src/mpi/model/mpi-interface.cc, line=413	
•  Mis-aligned node or interface IDs 

Cryptic Error Conditions 

Errors 
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Performance Optimizations 
§  Larger Lookahead 

§  Synchronization cost grows 
exponentially with LP count 
•  More work per LP is better 
•  Speed gains up to 102-3 ranks, 

depending on model 

§  Appropriate performance 
metric 
•  Events/sec can be misleading 

with varying event cost 
•  Packet transmissions (or 

receives) per wall-clock time 

Performance 
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§  Linear scaling out to 128 ranks 

Parallel Performance with Large 
Computation Load:  802.11+OLSR 

Performance 
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§  Performance drops at modest number of ranks 

Parallel Performance with Small 
Computation Load:  CSMA+Static 

Performance 
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§  Automatic memory scaling 
•  Automatic ghost nodes, globally unique node IDs 
•  (See my talk tomorrow J) 

§  Automatic partitioning, ghost alignment 
§  Distributed Real Time 

•  Versus simultaneous real-time emulations: 
—  LP-to-LP messaging gives greater Lookahead than independent 

ns-3 instances connected by emulated network devices 

§  Scalable default routing 
•  AS-like routing between LPs 
•  Scalable replacement for GOD or Nix-vector routing with 

ghost nodes 

Work in Progress 

Future 
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(Mostly) Parallel Partitioning Tools 
 

model/

$ sector -F model.filelist

$ partition -f

Many of:
*.xndl
*.xndl.gz
*.xndl.gzip

128 files
123 GB

model.filelist
8K

128 files
123 GB

model.sectors.xndl.gz
2.7 GB

model.sector.metis
14 GB

model.metis.part.<nparts>
1.4 GB

partition-model <first-rank> <last-rank>

XmlSimulator.cc

One per rank of:
*.xndl
*.xndl.gz
*.xndl.gzip

128 files
123 GB

Serial Code

Parallel Code

$ gpmetis model.sector.metis <nparts>

Future 




