
Session 1: Monday May 11

ns-3 Annual meeting

May 2015

1

ns-3 Training

Introduction and logistics

• CTTC facilities

• Meals and coffee

• Wi-Fi

• Wiki page:

– https://www.nsnam.org/wiki/AnnualTraining2015

• Meet your instructors

ns-3 Annual Meeting

May 2015

Monday agenda

• Monday

– ns-3 survey and overview tutorial, starting from first

principles and walking through the running of

simulations, configuration management, architecture

of the software core, network emulation, and

development practices using ns-3.

– Methodology and workflow for developing new

models in ns-3, using a case study.

– Several tools used to extract and visualize data from

ns-3 simulations, including the flow monitor,network

animator NetAnim, Python-based visualizer, and the

ns-3 tracing system.

ns-3 Annual Meeting

May 2015

Tuesday agenda

• Tuesday

– (09:00-10:30) Large-scale, distributed simulations with ns-3

(instructor: Peter Barnes)

– (11:00-12:30)An introduction to the Direct Code Execution (DCE)

environment, enabling users to use real application and Linux

networking code in ns-3 (instructor: Hajime Tazaki)

– Lunch break

– (14:00-16:00) A survey of the LTE models, including model

architecture, propagation models, LTE Radio Protocol Stack and

EPC model. (instructor: Nicola Baldo)

– 16:30-18:00) A tutorial on vehicular communication simulations,

including mobility, WiFi and WAVE models, and propagation.

(instructor: Konstantinos Katsaros)

ns-3 Annual Meeting

May 2015

Later in the week

• WNS3 Wednesday and Thursday morning

• ns-3 Consortium Annual Meeting (16h00

Thursday)

• Developer meetings Friday

ns-3 Annual Meeting

May 2015

ns-3 training goals

• Learn about the project scope, and where

to get additional help

• Understand the architecture and design

goals of the software

• Introduce how to write new code for the

simulator

• Learn about selected topics in more detail

• Answer your questions

Motivations for ns-3 project

Develop an extensible simulation environment for

networking research

1) a tool aligned with the experimentation needs of

modern networking research

2) a tool that elevates the technical rigor of network

simulation practice

3) an open-source project that encourages community

contribution, peer review, and long-term maintenance

and validation of the software

ns-3 core
Direct Code

Execution

Emulation

modes

Network performance evaluation options

• ns-3 enables researchers to more easily move

between simulations, test beds, and experiments

Increasing realism

Increasing complexity

Pure

simulation

Simulation

cradles

Virtual/Physical

test beds

Field

experiments

Live

networks

Test and evaluation options

ns history

1988: REAL (Keshav)

1997-2000: DARPA VINT

1990s: ns-1

1996: ns-2

2001-04: DARPA SAMAN, NSF CONSER

2006: NSF CISE CRI Awards

June 2008: ns-3.1

May 2015: ns-3.23

ns-3 core development (2006-08)
Inputs: yans,

GTNetS, ns-2

1990 2000 2010

regular

releases

9

Relationship to ns-2

ns-3 is a new simulator, without backward compatibility

Similarities to ns-2:

• C++ software core

• GNU GPLv2 licensing

• ported ns-2 models: random variables, error models,
OLSR, Calendar Queue scheduler

Differences:

• Python scripting (or C++ programs) replaces OTcl

• most of the core rewritten

• new animators, configuration tools, etc. are in work

• ns-2 is no longer actively maintained/supported

How the project operates

• Project provides three annual software releases

• Users interact on mailing lists and using Bugzilla bug

tracker

• Code may be proposed for merge

– Code reviews occur on a Google site

• Maintainers (one for each module) fix or delegate bugs,

participate in reviews

• Project has been conducting annual workshop and

developer meeting around SIMUTools through 2013

– Some additional meetings on ad hoc basis

• Google Summer of Code (March-August) six of the past

seven summers

11

Sustainment

• The NS-3 Consortium is a collection of
organizations cooperating to support and
develop the ns-3 software.

• It operates in support of the open source project

– by providing a point of contact between industrial
members and ns-3 developers,

– by sponsoring events in support of ns-3 such as
users' days and workshops,

– by guaranteeing maintenance support for ns-3's core,
and

– by supporting administrative activities necessary to
conduct a large open source project.

12

Publications using ns-3

A common question is "How many ns-3 papers are

there?

• Small survey of 139 paper results from 2013-14

search of IEEE library (top relevant results)

• Some papers matched multiple categories

• Hot topics:

– LTE/cellular networks (15)

– Wireless routing protocols (14)

– Sensor networks (13)

– Wireless MAC and PHY protocols (11)

Paper counts by topic

Topic Count Topic Count

LTE/Cellular 15 Network coding 4

Wireless routing protocols 14 Datacenter networks 4

Wireless sensor networks 13 Distributed systems 4

Wireless MAC/PHY 11 Optical links 3

Wireless QoS 9 Misc. physical links 3

Vehicular networks 9 Multicast 3

TCP/congestion control 9 Misc. security 2

Wireless security 9 Wired routers 2

About ns-3 itself 8 Wireless QoS 2

Wifi/mesh networks 7 WiMAX 1

Voice/video apps 6 Mobility 1

Energy/resource consumption 6 Misc. routing 1

DTN and space networks 5 Miscellaneous 1

Misc. wireless 5

Acknowledgment of support

15

• Software overview

ns-3 Annual Meeting

May 2015

Options for working along

1) Download the required packages onto your

(Linux, OS X, or BSD) system

2) Download or copy the ISO image (Live DVD)

3) Browse the code online: https://code.nsnam.org

https://code.nsnam.org/

ns-3 main website

• Project home: https://www.nsnam.org

https://www.nsnam.org/

Software overview

• ns-3 is written in C++, with bindings available

for Python

– simulation programs are C++ executables or

Python programs

– ~350,000 lines of C++ (estimate based on cloc

source code analysis)

• ns-3 is a GNU GPLv2-licensed project

• ns-3 is mainly supported for Linux, OS X, and

FreeBSD

– Windows Visual Studio port available

• ns-3 is not backwards-compatible with ns-2
19

20

Discrete-event simulation basics

• Simulation time moves in discrete jumps from

event to event

• C++ functions schedule events to occur at

specific simulation times

• A simulation scheduler orders the event

execution

• Simulation::Run() executes a single-threaded

event list

• Simulation stops at specific time or when events

end

The basic ns-3 architecture

21
ns-3

Application
Application

Protocol

stack

Node

NetDevice
NetDevice

Application
Application

Protocol
stack

Node

NetDevice
NetDevice

Sockets-like

API

Channel

Channel

Packet(s)

Software orientation

Key differences from other network

simulators:

1) Command-line, Unix orientation

– vs. Integrated Development Environment

(IDE)

2) Simulations and models written directly in

C++ and Python

– vs. a domain-specific simulation language

Software organization

• Two levels of ns-3 software and libraries

23

ns-3Click routingNetanim pybindgen

module

module module

module

module

module

1) Several supporting libraries, not system-installed, can be in parallel to ns-3

2) ns-3 modules exist

within the ns-3 directory

bridge

csma

emu

point-to-

point

spectrum

tap-bridge

virtual-

net-device

wifi

lte

wimax

devices

uan

mesh

lr-wpan

Current models

core

network

applications

internet

(IPv4/v6)

propagation

mobility

mpi

energy

24

nix-vector-

routing

aodv

dsdv

olsr

click

protocols

openflow

flow-monitor

BRITE

topology-

read

utilities

stats

config-

store

netanim

visualizer

Smart pointers

Dynamic types

Attributes

Callbacks

Tracing

Logging

Random Variables Events

Scheduler

Time arithmetic

Packets

Packet Tags

Packet Headers

Pcap/ascii file writing

Node class

NetDevice ABC

Address types

(Ipv4, MAC, etc.)

Queues

Socket ABC

Ipv4 ABCs

Packet sockets

NS-3 Introduction

July 2014

Module organization

• models/

• examples/

• tests/

• bindings/

• doc/

• wscript

25

ns-3 programs

• ns-3 programs are C++ executables that

link the needed shared libraries

– or Python programs that import the needed

modules

• The ns-3 build tool, called 'waf', can be

used to run programs

• waf will place headers, object files,

libraries, and executables in a 'build'

directory

Python bindings

• ns-3 uses a program called PyBindGen to

generate Python bindings for all libraries

v

C++

header

v

Intermediate

Python

program

v

C++

bindings

code

v

Python

module

(py)gccxml PyBindGen C++ compiler

Integrating other tools and libraries

28

Other libraries

• more sophisticated scenarios and models

typically leverage other libraries

• ns-3 main distribution uses optional libraries

(libxml2, gsl, mysql) but care is taken to avoid

strict build dependencies

• the 'bake' tool (described later) helps to manage

library dependencies

• users are free to write their own Makefiles or

wscripts to do something special

Gnuplot

• src/tools/gnuplot.{cc,h}

• C++ wrapper around gnuplot

• classes:

–Gnuplot

–GnuplotDataset

• Gnuplot2dDataset, Gnuplot2dFunction

• Gnuplot3dDataset, Gnuplot3dFunction

Enabling gnuplot for your code

• examples/wireless/wifi-clear-channel-cmu.cc

one dataset per mode

Add data to dataset

Add dataset to plot

produce a plot file that

will generate an EPS figure

Matplotlib

• src/core/examples/sample-rng-plot.py

Click Modular Router

mininet emulator

Co-simulation frameworks have emerged

• PNNL's FNCS framework integrates ns-3 with

transmission and distribution simulators

Image source: PNNLgov YouTube video:

Introducing FNCS: Framework for Network Co-Simulation

FAQs

• Does ns-3 have a Windows version?

– Yes, for Visual Studio 2012

– http://www.nsnam.org/wiki/Ns-3_on_Visual_Studio_2012

• Does ns-3 support Eclipse or other IDEs?

– Instructions have been contributed by users

– http://www.nsnam.org/wiki/HOWTO_configure_Eclipse_with_ns-3

• Is ns-3 provided in Linux or OS X package

systems (e.g. Debian packages)?

– Ubuntu/Debian packages for ns-3.17 release

• Does ns-3 support NRL protolib applications?

– Not yet

http://www.nsnam.org/wiki/Ns-3_on_Visual_Studio_2012
http://www.nsnam.org/wiki/HOWTO_configure_Eclipse_with_ns-3

Summarizing

• ns-3 models are written in C++ and

compiled into libraries

–Python bindings are optionally created

• ns-3 programs are C++ executables or

Python programs that call the ns-3 public

API and can call other libraries

• ns-3 is oriented towards the command-line

• ns-3 uses no domain specific language

• ns-3 is not compatible with ns-2

Finding documentation and code

40

Resources

Web site:

http://www.nsnam.org

Mailing lists:

https://groups.google.com/forum/#!forum/ns-3-users

http://mailman.isi.edu/mailman/listinfo/ns-developers

Wiki:

http://www.nsnam.org/wiki/

Tutorial:

http://www.nsnam.org/docs/tutorial/tutorial.html

IRC: #ns-3 at freenode.net

41

Suggested steps

• Work through the ns-3 tutorial

• Browse the source code and other project

documentation

–manual, model library, Doxygen, wiki

–ns-3 Consortium tutorials (May 2014)

• https://www.nsnam.org/consortium/activities/trainin

g/

• Ask on ns-3-users mailing list if you still

have questions

–We try to answer most questions

https://www.nsnam.org/consortium/activities/training/

APIs

• Most of the ns-3 API is documented with

Doxygen

–https://www.nsnam.org/doxygen

43

https://www.nsnam.org/doxygen

Contributed code and

associated projects

44

Reading existing code

• Much insight can be gained from reading ns-3

examples and tests, and running them

yourselves

• Many core features of ns-3 are only

demonstrated in the core test suite

(src/core/test)

• Stepping through code with a debugger is

informative

– callbacks and templates make it more challenging

than usual

ns-3 build systems

Software introduction

• Download the latest release
– wget http://www.nsnam.org/releases/ns-allinone-

3.19.tar.bz2

– tar xjf ns-allinone-3.19.tar.bz2

• Clone the latest development code
– hg clone http://code.nsnam.org/ns-3-allinone

47

Q. What is "hg clone"?

A. Mercurial (http://www.selenic.com) is our source

code control tool.

Software building

• Two levels of ns-3 build

48

ns-3click routing
Network

Simulation

Cradle

pybindgen

module

module module

module

module

module

1) bake (a Python-based build system to control an ordered build of

ns-3 and its libraries)

2) waf, a build system written in Python

3) build.py (a custom Python build script to control an ordered build of

ns-3 and its libraries) <--- may eventually be deprecated

ns-3 uses the 'waf' build system

• Waf is a Python-based framework for

configuring, compiling and installing

applications.

– It is a replacement for other tools such as

Autotools, Scons, CMake or Ant

–http://code.google.com/p/waf/

• For those familiar with autotools:
• configure ./waf configure

• make ./waf build

49

waf configuration

• Key waf configuration examples

./waf configure

--enable-examples

--enable-tests

--disable-python

--enable-modules

• Whenever build scripts change, need to

reconfigure

50

Demo: ./waf --help
./waf configure --enable-examples --

enable-tests --enable-modules='core'

Look at: build/c4che/_cache.py

wscript example

-*- Mode: python; py-indent-offset: 4; indent-tabs-mode: nil; coding: utf-8; -*-

def build(bld):

obj = bld.create_ns3_module('csma', ['network', 'applications'])

obj.source = [

'model/backoff.cc',

'model/csma-net-device.cc',

'model/csma-channel.cc',

'helper/csma-helper.cc',

]

headers = bld.new_task_gen(features=['ns3header'])

headers.module = 'csma'

headers.source = [

'model/backoff.h',

'model/csma-net-device.h',

'model/csma-channel.h',

'helper/csma-helper.h',

]

if bld.env['ENABLE_EXAMPLES']:

bld.add_subdirs('examples')

bld.ns3_python_bindings()

51

waf build

• Once project is configured, can build via
./waf build or ./waf

• waf will build in parallel on multiple cores

• waf displays modules built at end of build

Demo: ./waf build

Look at: build/ libraries and executables

Running programs

• ./waf shell provides a special shell for

running programs

–Sets key environment variables

./waf --run sample-simulator

./waf --pyrun src/core/examples/sample-

simulator.py

Build variations

• Configuring a build type is done at waf

configuration time

• debug build (default): all asserts and

debugging code enabled
./waf -d debug configure

• optimized
./waf -d optimized configure

• static libraries
./waf --enable-static configure

54

Controlling the modular build

• One way to disable modules:

– ./waf configure --enable-modules='a','b','c'

• The .ns3rc file (found in utils/ directory) can be used to

control the modules built

• Precedence in controlling build

1) command line arguments

2) .ns3rc in ns-3 top level directory

3) .ns3rc in user's home directory

55

Demo how .ns3rc works

Building without wscript

• The scratch/ directory can be used to build

programs without wscripts

56

Demo how programs can be built without wscripts

bake overview

• Open source project maintains a (more stable) core

• Models migrate to a more federated development

process

"bake" tool (Lacage

and Camara)

Components:

• build client

• "module store"

server

• module metadata

Figure source: Daniel Camara

57

bake basics

• bake can be used to build the Python

bindings toolchain, Direct Code Execution,

Network Simulation Cradle, etc.

• Manual available at
https://www.nsnam.org/docs/bake/tutorial/html/index.html

./bake.py configure -e <module>

./bake.py show

./bake.py download

./bake.py build

https://www.nsnam.org/docs/bake/tutorial/html/index.html

Placeholder slide for demoing bake

Demo: ./waf build

Look at: build/ libraries and executables

Visualization

60

PyViz overview

• Developed by Gustavo Carneiro

• Live simulation visualizer (no trace files)

• Useful for debugging

–mobility model behavior

–where are packets being dropped?

• Built-in interactive Python console to

debug the state of running objects

• Works with Python and C++ programs

Pyviz screenshot (Graphviz layout)

Pyviz and FlowMonitor

• src/flow-monitor/examples/wifi-olsr-flowmon.py

Enabling PyViz in your simulations

• Make sure PyViz is enabled in the build

• If program supports CommandLine

parsing, pass the option
--SimulatorImplementationType=

ns3::VisualSimulatorImpl

• Alternatively, pass the "--vis" option

FlowMonitor

• Network monitoring framework found in
src/flow-monitor/

• Goals:

–detect all flows passing through network

– stores metrics for analysis such as bitrates,

duration, delays, packet sizes, packet loss

ratios

G. Carneiro, P. Fortuna, M. Ricardo, "FlowMonitor-- a network monitoring framework

for the Network Simulator ns-3," Proceedings of NSTools 2009.

FlowMonitor architecture

• Basic classes

– FlowMonitor

– FlowProbe

– FlowClassifier

– FlowMonitorHelper

• IPv6 coming in

ns-3.20 release

Figure credit: G. Carneiro, P. Fortuna, M. Ricardo, "FlowMonitor-- a network monitoring

framework for the Network Simulator ns-3," Proceedings of NSTools 2009.

FlowMonitor statistics

• Statistics gathered

FlowMonitor configuration

• example/wireless/wifi-hidden-terminal.cc

FlowMonitor output

• This program exports statistics to stdout

• Other examples integrate with PyViz

NetAnim

• "NetAnim" by George Riley and John Abraham

pyviz

70

NetAnim key features

• Animate packets over wired-links and wireless-

links

– limited support for LTE traces

• Packet timeline with regex filter on packet meta-

data.

• Node position statistics with node trajectory

plotting (path of a mobile node).

• Print brief packet-meta data on packets

Placeholder for netanim videos

