
Session 2: Monday May 11

ns-3 Annual meeting

May 2015

1

ns-3 Training

Simulator core

Simulator core

• Simulation time

• Events

• Simulator and Scheduler

• Command line arguments

• Random variables

ns-3 Annual Meeting

May 2015

Simulator example

4

Simulator example (in Python)

5

Simulation program flow

Handle program inputs

Configure topology

Run simulation

Process outputs

Command-line arguments

• Add CommandLine to your program if you want

command-line argument parsing

• Passing --PrintHelp to programs will display command

line options, if CommandLine is enabled

./waf --run "sample-simulator --PrintHelp"

7

Time in ns-3

• Time is stored as a large integer in ns-3

– Minimize floating point discrepancies across platforms

• Special Time classes are provided to manipulate

time (such as standard operators)

• Default time resolution is nanoseconds, but can

be set to other resolutions

• Time objects can be set by floating-point values

and can export floating-point values

double timeDouble = t.GetSeconds();

8

Events in ns-3

• Events are just function calls that execute

at a simulated time

– i.e. callbacks

– another difference compared to other

simulators, which often use special "event

handlers" in each model

• Events have IDs to allow them to be

cancelled or to test their status

9

Simulator and Schedulers

• The Simulator class holds a scheduler,

and provides the API to schedule events,

start, stop, and cleanup memory

• Several scheduler data structures

(calendar, heap, list, map) are possible

• "RealTime" simulation implementation

aligns the simulation time to wall-clock

time

– two policies (hard and soft limit) available

when the simulation and real time diverge
10

Random Variables

• Currently implemented distributions
– Uniform: values uniformly distributed in an interval
– Constant: value is always the same (not really random)
– Sequential: return a sequential list of predefined values
– Exponential: exponential distribution (poisson process)
– Normal (gaussian), Log-Normal, Pareto, Weibull, triangular

11

from src/core/examples/sample-rng-plot.py

Random variables and independent

replications

• Many simulation uses involve running a

number of independent replications of the

same scenario

• In ns-3, this is typically performed by

incrementing the simulation run number

– not by changing seeds

12

ns-3 random number generator

• Uses the MRG32k3a generator from Pierre
L'Ecuyer

– http://www.iro.umontreal.ca/~lecuyer/myftp/papers/str
eams00.pdf

– Period of PRNG is 3.1x10^57

• Partitions a pseudo-random number generator
into uncorrelated streams and substreams

– Each RandomVariableStream gets its own stream

– This stream partitioned into substreams

13

Run number vs. seed

• If you increment the seed of the PRNG, the

streams of random variable objects across

different runs are not guaranteed to be

uncorrelated

• If you fix the seed, but increment the run

number, you will get an uncorrelated substream

14

Putting it together

• Example of scheduled event

15

Demo real-time, command-line, random variables...

Nodes and Devices

16
ns-3

Example walkthrough

• This section progressively builds up a

simple ns-3 example, explaining concepts

along the way

• Files for these programs are available on

the ns-3 wiki

ns-3 Annual Meeting

May 2015

Example program

• wns3-version1.cc

– Link found on wiki page

– Place program in scratch/ folder

18

Application
Application

Protocol

stack

Node

NetDevice
NetDevice

Application
Application

Protocol
stack

Node

NetDevice
NetDevice

Sockets-like

API

Channel

Channel

Packet(s)

Fundamentals

Key objects in the simulator are Nodes,

Packets, and Channels

Nodes contain Applications, “stacks”, and

NetDevices

19
ns-3

Node basics

A Node is a shell of a computer to which

applications, stacks, and NICs are added

20
ns-3

Application
Application

Application

“DTN”

NetDevices and Channels

NetDevices are strongly bound to Channels of a

matching type

• ns-3 Spectrum models relax this assumption

Nodes are architected for multiple interfaces
21

ns-3

WifiNetDevice

WifiChannel

Internet Stack

• Internet Stack

– Provides IPv4 and some IPv6 models

currently

• No non-IP stacks ns-3 until 802.15.4 was

introduced in ns-3.20

– but no dependency on IP in the devices,

Node, Packet, etc. (partly due to the object

aggregation system)

22
ns-3

Other basic models in ns-3

• Devices

– WiFi, WiMAX, CSMA, Point-to-point, Bridge

• Error models and queues

• Applications

– echo servers, traffic generator

• Mobility models

• Packet routing

– OLSR, AODV, DSR, DSDV, Static, Nix-
Vector, Global (link state)

23
ns-3

Structure of an ns-3 program

int main (int argc, char *argv[])

{

// Set default attribute values

// Parse command-line arguments

// Configure the topology; nodes, channels, devices, mobility

// Add (Internet) stack to nodes

// Configure IP addressing and routing

// Add and configure applications

// Configure tracing

// Run simulation

}

24
ns-3

Helper API

• The ns-3 “helper API” provides a set of classes

and methods that make common operations

easier than using the low-level API

• Consists of:

– container objects

– helper classes

• The helper API is implemented using the low-

level API

• Users are encouraged to contribute or propose

improvements to the ns-3 helper API

25
ns-3

Containers

• Containers are part of the ns-3 “helper

API”

• Containers group similar objects, for

convenience

– They are often implemented using C++ std

containers

• Container objects also are intended to

provide more basic (typical) API

26
ns-3

The Helper API (vs. low-level API)

• Is not generic

• Does not try to allow code reuse

• Provides simple 'syntactical sugar' to make

simulation scripts look nicer and easier to

read for network researchers

• Each function applies a single operation on

a ''set of same objects”

• A typical operation is "Install()"

27
ns-3

Helper Objects

• NodeContainer: vector of Ptr<Node>

• NetDeviceContainer: vector of Ptr<NetDevice>

• InternetStackHelper

• WifiHelper

• MobilityHelper

• OlsrHelper

• ... Each model provides a helper class

28
ns-3

Installation onto containers

• Installing models into containers, and

handling containers, is a key API theme

NodeContainer c;

c.Create (numNodes);

...

mobility.Install (c);

...

internet.Install (c);

...

29

Internet stack

30
ns-3

• The public interface of

the Internet stack is

defined (abstract base

classes) in

src/network/model

directory

• The intent is to support

multiple implementations

• The default ns-3 Internet

stack is implemented in

src/internet-stack

Example program iterations

• Walk through four additional revisions of

the example program
– wns3-version2.cc

– wns3-version3.cc

– wns3-version4.cc

ns-3 Annual Meeting

May 2015

Visualization

32

PyViz overview

• Developed by Gustavo Carneiro

• Live simulation visualizer (no trace files)

• Useful for debugging

– mobility model behavior

– where are packets being dropped?

• Built-in interactive Python console to

debug the state of running objects

• Works with Python and C++ programs

Pyviz screenshot (Graphviz layout)

Pyviz and FlowMonitor

• src/flow-monitor/examples/wifi-olsr-flowmon.py

Enabling PyViz in your simulations

• Make sure PyViz is enabled in the build

• If program supports CommandLine

parsing, pass the option
--SimulatorImplementationType=

ns3::VisualSimulatorImpl

• Alternatively, pass the "--vis" option

FlowMonitor

• Network monitoring framework found in
src/flow-monitor/

• Goals:

– detect all flows passing through network

– stores metrics for analysis such as bitrates,

duration, delays, packet sizes, packet loss

ratios

G. Carneiro, P. Fortuna, M. Ricardo, "FlowMonitor-- a network monitoring framework

for the Network Simulator ns-3," Proceedings of NSTools 2009.

FlowMonitor architecture

• Basic classes

– FlowMonitor

– FlowProbe

– FlowClassifier

– FlowMonitorHelper

• IPv6 coming in

ns-3.20 release

Figure credit: G. Carneiro, P. Fortuna, M. Ricardo, "FlowMonitor-- a network monitoring

framework for the Network Simulator ns-3," Proceedings of NSTools 2009.

FlowMonitor statistics

• Statistics gathered

FlowMonitor configuration

• example/wireless/wifi-hidden-terminal.cc

FlowMonitor output

• This program exports statistics to stdout

• Other examples integrate with PyViz

NetAnim

• "NetAnim" by George Riley and John Abraham

pyviz

42

NetAnim key features

• Animate packets over wired-links and wireless-

links

– limited support for LTE traces

• Packet timeline with regex filter on packet meta-

data.

• Node position statistics with node trajectory

plotting (path of a mobile node).

• Print brief packet-meta data on packets

Placeholder for netanim videos

ns-3 Objects

45
ns-3

Object metadata system

• ns-3 is, at heart, a C++ object system

• ns-3 objects that inherit from base class

ns3::Object get several additional features

– smart-pointer memory management (Class

Ptr)

– dynamic run-time object aggregation

– an attribute system

46
ns-3

Smart pointers

• Smart pointers in ns-3 use reference counting to

improve memory management

• The class ns3::Ptr is semantically similar to a

traditional pointer, but the object pointed to will

be deleted when all references to the pointer are

gone

• ns-3 heap-allocated objects should use the

templated Create<>() or CreateObject<> ()

methods

Examples

Ptr<WifiNetDevice> dev =

CreateObject<WifiNetDevice> ();

Ptr<Packet> pkt = Create<Packet> ();

(instead of Packet* = new Packet;)

why Create<> vs CreateObject<>?

• two different base classes; generally use

CreateObject<>(), but Create<> for Packet

Dynamic run-time object aggregation

• This feature is similar to "Component

Object Model (COM)"-- allows interfaces

(objects) to be aggregated at run-time

instead of at compile time

• Useful for binding dissimilar objects

together without adding pointers to each

other in the classes

Usage

• ns-3 Node protocol stacks are added via

aggregation

– The IP stack can be found from a Node

pointer without class Node knowing about it

• Energy models are typically aggregated to

nodes

• To find interfaces, use GetObject<>(); e.g.

Ptr<Ipv4> ipv4 = m_node->GetObject<Ipv4> ();

Attributes and default values

51

ns-3 attribute system

Problem: Researchers want to identify all of the values
affecting the results of their simulations

– and configure them easily

ns-3 solution: Each ns-3 object has a set of attributes:

– A name, help text

– A type

– An initial value

• Control all simulation parameters for static objects

• Dump and read them all in configuration files

• Visualize them in a GUI

• Makes it easy to verify the parameters of a simulation

52
ns-3

Short digression: Object metadata

system

• ns-3 is, at heart, a C++ object system

• ns-3 objects that inherit from base class

ns3::Object get several additional features

– dynamic run-time object aggregation

– an attribute system

– smart-pointer memory management (Class

Ptr)

53
ns-3

We focus here on the attribute system

Use cases for attributes

• An Attribute represents a value in our

system

• An Attribute can be connected to an

underlying variable or function

– e.g. TcpSocket::m_cwnd;

– or a trace source

54
ns-3

Use cases for attributes (cont.)

• What would users like to do?

– Know what are all the attributes that affect the

simulation at run time

– Set a default initial value for a variable

– Set or get the current value of a variable

– Initialize the value of a variable when a

constructor is called

• The attribute system is a unified way of

handling these functions
55

ns-3

How to handle attributes

• The traditional C++ way:

– export attributes as part of a class's public API

– walk pointer chains (and iterators, when

needed) to find what you need

– use static variables for defaults

• The attribute system provides a more

convenient API to the user to do these

things

56
ns-3

Navigating the attributes

• Attributes are exported into a string-based

namespace, with filesystem-like paths

– namespace supports regular expressions

• Attributes also can be used without the

paths

– e.g. “ns3::WifiPhy::TxGain”

• A Config class allows users to manipulate

the attributes

57
ns-3

Attribute namespace

• strings are used

to describe paths

through the

namespace

58
ns-3

Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipv4.tcp_sack", StringValue ("0"));

Navigating the attributes using paths

• Examples:

– Nodes with NodeIds 1, 3, 4, 5, 8, 9, 10, 11:

“/NodeList/[3-5]|[8-11]|1”

– UdpL4Protocol object instance aggregated to

matching nodes:

“/$ns3::UdpL4Protocol”

59
ns-3

What users will do

• e.g.: Set a default initial value for a

variable
Config::Set (“ns3::YansWifiPhy::TxGain”,

DoubleValue (1.0));

• Syntax also supports string values:
Config::Set (“YansWifiPhy::TxGain”,

StringValue (“1.0”));

60
ns-3

Attribute

Value

Fine-grained attribute handling

• Set or get the current value of a variable

– Here, one needs the path in the namespace to

the right instance of the object
Config::SetAttribute(“/NodeList/5/DeviceList/3/$n

s3::WifiNetDevice/Phy/$ns3::YansWifiPhy/TxGain”,

DoubleValue(1.0));

DoubleValue d; nodePtr->GetAttribute (

“/NodeList/5/NetDevice/3/$ns3::WifiNetDevice/Phy

/$ns3::YansWifiPhy/TxGain”, d);

• Users can get Ptrs to instances also, and

Ptrs to trace sources, in the same way
61

ns-3

Attribute documentation

62
ns-3

Options to manipulate attributes

• Individual object attributes often derive from default values

– Setting the default value will affect all subsequently created objects

– Ability to configure attributes on a per-object basis

• Set the default value of an attribute from the command-line:

CommandLine cmd;

cmd.Parse (argc, argv);

• Set the default value of an attribute with NS_ATTRIBUTE_DEFAULT

• Set the default value of an attribute in C++:

Config::SetDefault ("ns3::Ipv4L3Protocol::CalcChecksum",

BooleanValue (true));

• Set an attribute directly on a specic object:

Ptr<CsmaChannel> csmaChannel = ...;

csmaChannel->SetAttribute ("DataRate",

StringValue ("5Mbps"));

63
ns-3

Summary on ns-3 objects

• ns-3 objects that inherit from base class

ns3::Object get several additional features

1. smart-pointer memory management (Class

Ptr)

2. dynamic run-time object aggregation

3. an attribute system

• These types of objects are allocated on the

heap, not on the stack
64

ns-3

Packets

65
ns-3

ns-3 Packet

• Packet is an advanced data structure with

the following capabilities

– Supports fragmentation and reassembly

– Supports real or virtual application data

– Extensible

– Serializable (for emulation)

– Supports pretty-printing

– Efficient (copy-on-write semantics)

66
ns-3

ns-3 Packet structure

• Analogous to an mbuf/skbuff

67
ns-3

Copy-on-write

• Copy data bytes only as needed

68
ns-3

Figure source: Mathieu Lacage's Ph.D. thesis

Headers and trailers

• Most operations on packet involve adding

and removing an ns3::Header

• class ns3::Header must implement four

methods:
Serialize()

Deserialize()

GetSerializedSize()

Print()

Headers and trailers (cont.)

• Headers are serialized into the packet byte

buffer with Packet::AddHeader() and

removed with Packet::RemoveHeader()

• Headers can also be 'Peeked' without

removal
Ptr<Packet> pkt = Create<Packet> ();

UdpHeader hdr; // Note: not heap allocated

pkt->AddHeader (hdr);

Ipv4Header iphdr;

pkt->AddHeader (iphdr);

Packet tags

• Packet tag objects allow packets to carry

around simulator-specific metadata

– Such as a "unique ID" for packets or

• Tags may associate with byte ranges of

data, or with the whole packet

– Distinction is important when packets are

fragmented and reassembled

Tracing and statistics

• Tracing is a structured form of simulation

output

• Example (from ns-2):
+ 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

- 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

r 1.84471 2 1 cbr 210 ------- 1 3.0 1.0 195 600

r 1.84566 2 0 ack 40 ------- 2 3.2 0.1 82 602

+ 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611

Problem: Tracing needs vary widely

– would like to change tracing output without

editing the core

– would like to support multiple outputs
72

ns-3

Tracing overview

• Simulator provides a set of pre-configured

trace sources

– Users may edit the core to add their own

• Users provide trace sinks and attach to the

trace source

– Simulator core provides a few examples for

common cases

• Multiple trace sources can connect to a

trace sink
73

ns-3

Tracing in ns-3

• ns-3 configures multiple 'TraceSource' objects

(TracedValue, TracedCallback)

• Multiple types of 'TraceSink' objects can be hooked to

these sources

• A special configuration namespace helps to manage

access to trace sources

74

TraceSource

TracedValue

TraceSource

Config::Connect ("/path/to/traced/value", callback1);

Config::Connect ("/path/to/trace/source", callback2);

unattached

NetDevice trace hooks

• Example: CsmaNetDevice

75

CsmaNetDevice::Send ()

CsmaNetDevice::

TransmitStart()

CsmaNetDevice::

Receive()

CsmaChannel

NetDevice::

ReceiveCallback

queue

MacRx

MacDrop
MacTx

MacTxBackoff

PhyTxBegin

PhyTxEnd
PhyTxDrop

Sniffer

PromiscSniffer

PhyRxEnd

PhyRxDrop

Writing and debugging your own examples

76

Writing and debugging new programs

• Choosing between Python and C++

• Reading existing code

• Understanding and controlling logging code

• Error conditions

• Running programs through a debugger

Python bindings

• ns-3 uses the 'pybindgen' tool to generate

Python bindings for the underlying C++ libraries

• Existing bindings are typically found in the

bindings/ directory of a module

• Some methods are not provided in Python (e.g.

hooking trace sources)

• Generating new bindings requires a toolchain

documented on the ns-3 web site

Debugging support

• Assertions: NS_ASSERT (expression);

– Aborts the program if expression evaluates to false

– Includes source file name and line number

• Unconditional Breakpoints: NS_BREAKPOINT ();

– Forces an unconditional breakpoint, compiled in

• Debug Logging (not to be confused with tracing!)

– Purpose

• Used to trace code execution logic

• For debugging, not to extract results!

– Properties

• NS_LOG* macros work with C++ IO streams

• E.g.: NS_LOG_UNCOND (”I have received ” << p->GetSize () << ” bytes”);

• NS_LOG macros evaluate to nothing in optimized builds

• When debugging is done, logging does not get in the way of execution
performance

Debugging support (cont.)

• Logging levels:

– NS_LOG_ERROR (...): serious error messages only

– NS_LOG_WARN (...): warning messages

– NS_LOG_DEBUG (...): rare ad-hoc debug messages

– NS_LOG_INFO (...): informational messages (eg. banners)

– NS_LOG_FUNCTION (...):function tracing

– NS_LOG_PARAM (...): parameters to functions

– NS_LOG_LOGIC (...): control flow tracing within functions

• Logging ”components”

– Logging messages organized by components

– Usually one component is one .cc source file

– NS_LOG_COMPONENT_DEFINE ("OlsrAgent");

• Displaying log messages. Two ways:

– Programatically:

• LogComponentEnable("OlsrAgent", LOG_LEVEL_ALL);

– From the environment:

• NS_LOG="OlsrAgent" ./my-program

Running C++ programs through gdb

• The gdb debugger can be used directly on

binaries in the build directory

• An easier way is to use a waf shortcut
./waf --command-template="gdb %s" --run <program-

name>

Running C++ programs through valgrind

• valgrind memcheck can be used directly on

binaries in the build directory

• An easier way is to use a waf shortcut
./waf --command-template="valgrind %s" --run

<program-name>

• Note: disable GTK at configure time when

running valgrind (to suppress spurious reports)
• ./waf configure --disable-gtk --enable-tests ...

Testing

• Can you trust ns-3 simulations?

– Can you trust any simulation?

• Onus is on the simulation project to validate and document

results

• Onus is also on the researcher to verify results

• ns-3 strategies:

– regression tests

• Aim for event-based rather than trace-based

– unit tests for verification

– validation of models on testbeds where possible

– reuse of code

Test framework

• ns-3-dev is checked nightly on multiple platforms

– Linux gcc-4.x, i386 and x86_64, OS X, FreeBSD

clang, and Cygwin (occasionally)

• ./test.py will run regression tests

Walk through test code, test terminology (suite, case),

and examples of how tests are run

Improving performance

• Debug vs optimized builds

– ./waf -d debug configure

– ./waf -d debug optimized

• Build ns-3 with static libraries

– ./waf --enable-static

• Use different compilers (icc)

– has been done in past, not regularly tested

