ns-3 Training

Program Structure and Simulation
Campaigns

ns-3
NETWORK SIMULATOR

Example walkthrough

* This section progressively builds up a
simple ns-3 example, explaining concepts
along the way

* Files for these programs are available on
the ns-3 wiki

NETWOQS%L-A% ns-3 training, June 2017

Example program

* wns3-versionl.cc

— Link found on wiki page
— Place program in scratch/ folder

i (
L n
[Apphcatlonﬁ [Applicationw
— Sockets-like 4
e T ------ API -
: ProLocoI
sthek Packet(s)

[NetDe jce [T | T (Channﬂ
4 N\

Channel

\ J

ns-3 ns-3 training, June 2017

NETWORK SIMULATOR

Fundamentals

Key objects in the simulator are Nodes,
Packets, and Channels

Nodes contain Applications, “stacks”, and
NetDevices

- Oﬂﬁ;ﬁ ns-3 training, June 2017

Node basics

A Node is a shell of a computer to which
applications, stacks, and NICs are added

- Appr" :
allz Application

7
H 5! i ‘DTN

NETWO!K18§JL-AT03R ns-3 training, June 2017

NetDevices and Channels

(Originally) NetDevices were strongly bound to
Channels of a matching type

YansWifiChannel

YansWifiNetDevice

* ns-3 Spectrum models relax this assumption
Nodes are architected for multiple interfaces

ns-3 ns-3 training, June 2017

NETWORK SIMULATOR

Internet Stack

* Internet Stack

—Provides IPv4 and some IPv6 models
currently

* No non-IP stacks ns-3 existed until
802.15.4 was introduced in ns-3.20

—but no dependencyon IP in the devices, Node
object, Packet object, etc. (partly due to the
object aggregation system)

NETWO!;%;% ns-3 training, June 2017

Other basic models in ns-3

* Devices
—WiFi, WIiIMAX, CSMA, Point-to-point, ...
* Error models and queues
* Applications
—echo servers, traffic generator
* Mobility models

» Packet routing

—OLSR, AODV, DSR, DSDV, Static, Nix-
Vector, Global (link state)

NETWOQS%L-A% ns-3 training, June 2017

Structure of an ns-3 program

int main (int argc, char *argv([])

{

// Set default attribute values

// Parse command-line arguments

// Configure the topology; nodes, channels, devices, mobility
// Add (Internet) stack to nodes

// Configure IP addressing and routing

// Add and configure applications

// Configure tracing

// Run simulation

// Handle any post-simulation data processing

}

ns-3 ns-3 training, June 2017

NETWORK SIMULATOR

Helper API

* The ns-3 “helper API” provides a set of classes
and methods that make common operations
easlier than using the low-level API

* Consists of:

— container objects
— helper classes

* The helper APl is implemented using the low-
level API

* Users are encouraged to contribute or propose
iImprovements to the ns-3 helper API

NETWO!lﬁL:mBR ns-3 training, June 2017

Containers

* Containers are part of the ns-3 “helper
API”

» Containers group similar objects, for
convenience

— They are often implemented using C++ std
containers

» Container objects also are intended to
provide more basic (typical) API

NETWO!;%;% ns-3 training, June 2017

The Helper API (vs. low-level API)

* |Is not generic
* Does not try to allow code reuse

* Provides simple 'syntactical sugar' to make
simulation scripts look nicer and easier to
read for network researchers

» Each function applies a single operation on
a "set of same objects”

A typical operation is "Install()"

N !Jsﬁ;\maﬂ ns-3 training, June 2017

Helper Objects

 NodeContainer: vector of Ptr<Node>
NetDeviceContainer: vector of Ptr<NetDevice>
InternetStackHelper

WifiHelper

MobilityHelper

OlsrHelper

... Each model provides a helper class

NETWOQS%L-A% ns-3 training, June 2017

Installation onto containers

ns-3
NETWORK SIMULATOR

* Installing models into containers, and
handling containers, is a key APl theme

NodeContailiner c;

c.Create (numNodes);
mobility.Install (c);

internet.Install (c);

ns-3 training, June 2017

Native IP models

» |Pv4 stack with ARP, ICMP, UDP, and
TCP

* |[Pv6 with ND, ICMPV6, IPv6 extension
headers, TCP, UDP

* |IPv4 routing: RIPVv2, static, global,
NixVector, OLSR, AODV, DSR, DSDV

* |IPv6 routing: RIPng, static

NETWO!;%;% ns-3 training, June 2017

IP address configuration

* An Ipv4 (or lpv6) address helper can
assign addresses to devices in a
NetDevice container

Tpv4AddressHelper ipv4;
ipv4 .SetBase ("10.1.1.0", "255.255.255.0M);
csmalnterfaces = ipv4.Assign (csmaDevices);

ipv4d .NewNetwork (); // bumps network to 10.1.2.0
otherCsmalnterfaces = ipv4.Assign (otherCsmaDevices) ;

ns-3 ns-3 training, June 2017
NETWORK SIMULATOR

Internet stack

UdpSocketimpl

:Send ()

UdpL4Protocol

:Send ()

Ipv4L3Protocol

:Send ()

Arplpvdinterface

:Send ()

‘IIHHHHHHHHII"

ns-3

NETWORK SIMULATOR

Corresponding
public interface

UdpSocket

UdpSocketFactor}

Ipvéd

ns-3 training, June 2017

* The public interface of
the Internet stack is
defined (abstract base
classes) in
src/network/model
directory

* The intent is to support
multiple implementations
* The default ns-3 Internet
stack is implemented in
src/internet-stack

Review of sample program (cont.)

ApplicationContainer apps;
OnOf fHelper onoff ("ns3::UdpSocketFactory",

InetSocketAddress ("10.1.2.2", 1025));
onoff.SetAttribute ("OnTime", StringValue ("Constant:1.0"));
onoff.SetAttribute ("OffTime", StringValue ("Constant:0.0"));
apps = onoff.Install (csmaNodes.Get (0));
apps.Start (Seconds (1.0)); Traffic generator
apps.Stop (Seconds (4.0));

PacketSinkHelper sink ("ns3::UdpSocketFactory",
InetSocketAddress ("10.1.2.2", 1025));

apps = sink.Install (wifiNodes.Get (1))

apps.Start (Seconds (0.0));

apps.Stop (Seconds (4.0));

Traffic receiver

ns-3 ns-3 training, June 2017

NETWORK SIMULATOR

Applications and sockets

* In general, applications in ns-3 derive from
the ns3::Application base class

— A list of applications is stored in the ns3::Node
— Applications are like processes

* Applications make use of a sockets-like
API

— Application::Start () may call
ns3::Socket::SendMsg() at a lower layer

ns-3 ns-3 training, June 2017
NETWORK SIMULATOR

Sockets API

Plain C sockets ns-3 sockets
int sk; Ptr<Socket> sk =
sk = socket (PF INET, SOCK DGRAM, O0); udpFactory->CreateSocket ();

struct sockaddr in src;

inet pton (AF INET,”0.0.0.07,&src.sin ad sk->Bind (InetSocketAddress (80)) ;
dr) ;
src.sin port = htons(80);

bind(sk, (struct sockaddr *) &src,

struct sockaddr in dest; sk->SendTo (InetSocketAddress (Ipv4Address
inet pton (AF INET,”10.0.0.1"”, &dest.sin (”"10.0.0.1"), 80), Create<Packet>
addr) ; ("hello”, 6));

dest.sin port = htons (80) ;
sendto (sk, "hello”, 6, 0, (struct
sockaddr *) &dest, sizeof (dest));

char buf[6]; sk->SetReceiveCallback (MakeCallback
recv(sk, buf, 6, 0); (MySocketReceive)) ;
} . [..] (Simulator::Run ())

void MySocketReceive (Ptr<Socket> sk,
Ptr<Packet> packet)

ns-3

}
NETWORK SIMULATOR ns-3 training, June 2017

NetDevice trace hooks

 Example: CsmaNetDevice jcipevice::

CsmaNetDevice::Send () RecelveCallback

V'

l MacTx MacRx
MacDrop

queue Sniffer
PromiscSniffer

MacTxBackoff

P\

PhyTxBegin l PhyRxEnd

PhyTxEnd | 1Y TxDrop PhyRxDrop
CsmaNetDevice:: CsmaNetDevice::
TransmitStart () Receive ()

(CsmaChannel 0

ns-3 ns-3 training, June 2017

NETWORK SIMULATOR

LTE/Wi-Fi Coexistence

case study

NETWO!JS%;T?R ns-3 training, June 2017

Use case: LAA Wi-Fi Coexistence

* ns-3 has been extended to support scenarios for
LTE LAA/Wi-Fi Coexistence

* Methodology defined in 3GPP Technical Report
TR36.889

* Enhancements needed:

— Wireless models (LBT access manager,
SpectrumWifiPhy, propagation/fading models)

— Scenario support (traffic models)
— Output data processing

NETWOQS%L-A% ns-3 training, June 2017

Indoor 3GPP scenario

120 m
< <

A .
5 UEs/STAs per cell 4 co-channel cells Downlink on
per operator (40 total) per operator (eNB shared channel;
randomly dropped D or Wi-Fi AP) LAA has separate

D D \ licensed uplink
D D D .D/AA (o)) (€D
50m

Step 1: Both operators A and B are Wi-Fi
co-channel on separate SSID

Non-mobile indoor .
. Idealized
V| Step2 (depicted) Replace operator A network with LTE LAA >cenario backhaul to
traffic sources

NETWORK SIMULATOR

ns-3 training, June 2017

Indoor scenario details

ll'llnS-B

NETWORK SIMULATOR

System bandwidth
Carrier frequenc
Number of carriers

Total Base Station (BS) transmission
power

Distance dependent path loss,
shadowing and fading

UE Dropping

Traffic Model

UE noise fi
Cell selection

Network synchronization

R 36.88

Indoor scenario

20 MHz

5 GHz
1, 4 (to be shared between two
operators)

1 for evaluations with DL+UL Wi-Fi
coexisting with DL-only LAA

18/24 dBm

Total User equipment (UE) 18 dBm for unlicensed spectrum
transmission power

ITU InH

2D Omni-directional
6m

1.5m

5 dBi

0 dBi

10 UEs per unlicensed band carrier per
operator for DL-only

10 UEs per unlicensed band carrier per
operator for DL-only for four unlicensed
carriers.

20 UEs per unlicensed band carrier per
operator for DL+UL for single
unlicensed carrier.

20 UEs per unlicensed band carrier per
operator for DL+UL Wi-Fi coexisting
with DL-only LAA

All UEs should be randomly dropped
and be within coverage of the small cell
in the unlicensed band.

FTP Model 1 and 3 based on TR
36.814 FTP model file size: 0.5 Mbytes.
Optional: VolP model based on
TR36.889

9dB
For LAA UEs, cell selectionis based on
RSRP (Reference Signal Received
Power.

For WiFi stations (STAs), cell
selection is based on RSS (Received
signal power strength) of WiFi Access
Points (APs). RSS threshold is -82 dBm.
For the same operator, the network can
be synchronized. Small cells of different
operators are not synchronized.

1 HPDISINENLALION]
Indoor scenario
20 MHz
5 GHz (channel 36, tunable)
1 for evaluations with DL+UL Wi-Fi
coexisting with DL-only LAA

18/24 dBm
Simulations herein consider 18 dBm
dBm

802.11ax indoor model

2D Omni-directional
6 m (LAA, not modelled for Wi-Fi)
1.5 m (LAA, not modelled for Wi-Fi)
5dBi
0dBi
Supports all the configurations in TR
36.889. Simulations herein consider the
case of 20 UEs per unlicensed band
carrier per operator for DL LAA
coexistence evaluations for single
unlicensed carrier.

Randomly dropped and within small cell
coverage.

FTP Model 1 as in TR36.814.
FTP modelfile size: 0.5 Mbytes
Voice model: DL only

9dB
RSRP for LAA UEs and RSS for Wi-Fi
STAs

Small cells are synchronized, different
operators are not synchronized.

ns-3 training, June 2017

Outdoor 3GPP scenario

Outdoor layout: hexagonal macrocell layout. 7 macro sites and 3 cells per site. 1
Cluster per cell. 4 small cells per operator per cluster, uniformly dropped. ITU UMi

channel model.

1000 ~

800

600 K)

400

200

-200

-200 0

ns-3

NETWORK SIMULATOR

1000

1200

Figure source: 3GPPTR36.889 V13.0.0(2015-05)

ns-3 training, June 2017

References

* ns-3 Wikl page:
— https://www.nsnam.org/wiki/LAA-WiFi-
Coexistence
 module documentation

* references to various publications
» documentation on reproducing results

 Code:

— http://code.nsnam.org/laa/ns-3-Ibt

NETWO!JS%;T?R ns-3 training, June 2017

Sample results

1 ! ! ! ! !

Thefse flows Gthe majoirity in thé .
scenario) experience no contention S

08 | _— 1 1

Small anfwount of fthroughpfut
06 . degradation for the non-replaced § §

CDF
CDF

oal o g

Some flows experience contention and
slowdown ! i ’

o | sowdown 7k - S

0 20 40 60 80 100 120 140 h 20 40 60 80 100 120 140
Throughput [Mbps] Throughput [Mbps]

a) Step 1 (Wi-Fi) b) Step 2 (LAA)

ns-3 ns-3 training, June 2017

NETWORK SIMULATOR

Gnuplot

* src/tools/gnuplot.{cc,h}
« C++ wrapper around gnuplot

e classes:
—Gnuplot

—GnuplotDataset
* Gnuplot2dDataset, GnuplotZdFunction
* Gnuplot3dDataset, Gnuplot3dFunction

NETWO!:E%;TOBR ns-3 Training, June 2016

Enabling gnuplot for your code

examples/wireless/wifi-clear-channel-cmu.cc

for

{

CommandLine cmd;
cmd.

Gnuplot gnuplot

Parse (argc, argv);

Gnuplot ("clear-channel.eps"); = ------}---- produce a plot file that
will generate an EPS figure

(uint32_t 1 = 0; 1 < modes.size (); i++)

std::cout << modes[i] << std::endl;

Gnuplot2dDataset dataset (modes[i])---------------—--}---- one dataset per mode

}

gnuplot.AddDataset (dataset);

uint32_t pktsRecvd = experiment.Run (wifi, wifiPhy, wifiMac, wificChannel);
dataset.Add (rss, pktsRecvd);

Add data to dataset

-
-
-~
=

- -
-
-~
-
-
-
-~
-
-~
-
-
-
-

Add dataset to plot

ns-3 ns-3 Training, June 2016

NETWORK SIMULATOR

Matplotlib

* src/core/examples/sample-rng-plot.py

3500

3000

Demonstrate use of ns-3 as a random number generator integrated

2500
plotting tools; adapted from Gustavo Carneiro's ns-3 tutorial

2000
import numpy as np
import matplotlib.pyplot as plt
import ns.core 1000

1500

mu, var = 100, 225 >0
rng = ns.core.Normalvariable(100.0, 225.0)
x = [rng.GetValue() for t in range(10000)]

00 5] 20

‘ﬁ 0 0 "‘" = @] x=14.6, y=3.45e+03
the histogram of the data

n, bins, patches = plt.hist(x, 50, normed=1, facecolor='qg', alpha=0.75)

plt.title('ns-3 histogram')

plt.text(60, .025, r'S$\mu=100,\ \sigma=15$")
plt.axis([40, 160, 0, 0.03])

plt.grid(True)

plt.show()

ns-3

NETWORK SIMULATOR ns-3 Training, June 2016

