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Example walkthrough

• This section progressively builds up a 
simple ns-3 example, explaining concepts 
along the way

• Files for these programs are available on 
the ns-3 wiki
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Example program

• wns3-version1.cc
– Link found on wiki page
– Place program in scratch/ folder
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Fundamentals

Key objects in the simulator are Nodes, 
Packets, and Channels

Nodes contain Applications, “stacks”, and 
NetDevices
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Node basics

A Node is a shell of a computer to which 
applications, stacks, and NICs are added

ApplicationApplicationApplication

“DTN”
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NetDevices and Channels

(Originally) NetDevices were strongly bound to 
Channels of a matching type

• ns-3 Spectrum models relax this assumption

Nodes are architected for multiple interfaces

YansWifiNetDevice

YansWifiChannel
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Internet Stack

• Internet Stack
– Provides IPv4 and some IPv6 models 

currently
• No non-IP stacks ns-3 existed until 

802.15.4 was introduced in ns-3.20
– but no dependency on IP in the devices, Node 

object, Packet object, etc. (partly due to the 
object aggregation system)
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Other basic models in ns-3

• Devices
– WiFi, WiMAX, CSMA, Point-to-point, ...

• Error models and queues
• Applications

– echo servers, traffic generator
• Mobility models
• Packet routing

– OLSR, AODV, DSR, DSDV, Static, Nix-
Vector, Global (link state)
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Structure of an ns-3 program
int main (int argc, char *argv[])
{

// Set default attribute values

// Parse command-line arguments

// Configure the topology; nodes, channels, devices, mobility

// Add (Internet) stack to nodes

// Configure IP addressing and routing

// Add and configure applications

// Configure tracing

// Run simulation

// Handle any post-simulation data processing
} 
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Helper API

• The ns-3 “helper API” provides a set of classes 
and methods that make common operations 
easier than using the low-level API

• Consists of:
– container objects
– helper classes

• The helper API is implemented using the low-
level API

• Users are encouraged to contribute or propose 
improvements to the ns-3 helper API
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Containers

• Containers are part of the ns-3 “helper 
API”

• Containers group similar objects, for 
convenience
– They are often implemented using C++ std 

containers
• Container objects also are intended to 

provide more basic (typical) API
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The Helper API (vs. low-level API)

• Is not generic
• Does not try to allow code reuse
• Provides simple 'syntactical sugar' to make 

simulation scripts look nicer and easier to 
read for network researchers

• Each function applies a single operation on 
a ''set of same objects”

• A typical operation is "Install()"
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Helper Objects

• NodeContainer: vector of Ptr<Node>
• NetDeviceContainer: vector of Ptr<NetDevice>
• InternetStackHelper
• WifiHelper
• MobilityHelper
• OlsrHelper
• ... Each model provides a helper class
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Installation onto containers

• Installing models into containers, and 
handling containers, is a key API theme

NodeContainer c;

c.Create (numNodes);

...

mobility.Install (c);

...

internet.Install (c);

...
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Native IP models

• IPv4 stack with ARP, ICMP, UDP, and 
TCP

• IPv6 with ND, ICMPv6, IPv6 extension 
headers, TCP, UDP

• IPv4 routing:  RIPv2, static, global, 
NixVector, OLSR, AODV, DSR, DSDV

• IPv6 routing:  RIPng, static
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IP address configuration

• An Ipv4 (or Ipv6) address helper can 
assign addresses to devices in a 
NetDevice container 

Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
csmaInterfaces = ipv4.Assign (csmaDevices);

...

ipv4.NewNetwork ();  // bumps network to 10.1.2.0
otherCsmaInterfaces = ipv4.Assign (otherCsmaDevices);



Internet stack

• The public interface of
the Internet stack is
defined (abstract base
classes) in 
src/network/model
directory
• The intent is to support
multiple implementations
• The default ns-3 Internet
stack is implemented in
src/internet-stack
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Review of sample program (cont.)
ApplicationContainer apps;
OnOffHelper onoff ("ns3::UdpSocketFactory", 

InetSocketAddress ("10.1.2.2", 1025));
onoff.SetAttribute ("OnTime", StringValue ("Constant:1.0"));
onoff.SetAttribute ("OffTime", StringValue ("Constant:0.0"));
apps = onoff.Install (csmaNodes.Get (0));
apps.Start (Seconds (1.0));
apps.Stop (Seconds (4.0));

PacketSinkHelper sink ("ns3::UdpSocketFactory",
InetSocketAddress ("10.1.2.2", 1025));

apps = sink.Install (wifiNodes.Get (1));
apps.Start (Seconds (0.0));
apps.Stop (Seconds (4.0));

Traffic generator

Traffic receiver
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Applications and sockets

• In general, applications in ns-3 derive from 
the ns3::Application base class
– A list of applications is stored in the ns3::Node
– Applications are like processes

• Applications make use of a sockets-like 
API
– Application::Start () may call 

ns3::Socket::SendMsg() at a lower layer
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Sockets API
Plain C sockets
int sk;
sk = socket(PF_INET, SOCK_DGRAM, 0);

struct sockaddr_in src;
inet_pton(AF_INET,”0.0.0.0”,&src.sin_ad

dr);
src.sin_port = htons(80);
bind(sk, (struct sockaddr *) &src, 

sizeof(src));

struct sockaddr_in dest;
inet_pton(AF_INET,”10.0.0.1”,&dest.sin_

addr);
dest.sin_port = htons(80);
sendto(sk, ”hello”, 6, 0, (struct 

sockaddr *) &dest, sizeof(dest));

char buf[6];
recv(sk, buf, 6, 0);
}

ns-3 sockets
Ptr<Socket> sk = 
udpFactory->CreateSocket ();

sk->Bind (InetSocketAddress (80));

sk->SendTo (InetSocketAddress (Ipv4Address 
(”10.0.0.1”), 80), Create<Packet> 
(”hello”, 6));

sk->SetReceiveCallback (MakeCallback
(MySocketReceive));

• […] (Simulator::Run ())

void MySocketReceive (Ptr<Socket> sk, 
Ptr<Packet> packet)

{
...
}



NetDevice trace hooks

• Example:  CsmaNetDevice
CsmaNetDevice::Send ()

CsmaNetDevice::
TransmitStart()

CsmaNetDevice::
Receive()

CsmaChannel

NetDevice::
ReceiveCallback

queue

MacRx
MacDrop

MacTx

MacTxBackoff

PhyTxBegin
PhyTxEnd PhyTxDrop

Sniffer
PromiscSniffer

PhyRxEnd
PhyRxDrop

ns-3 training, June 2017



LTE/Wi-Fi Coexistence

case study
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Use case: LAA Wi-Fi Coexistence

• ns-3 has been extended to support scenarios for 
LTE LAA/Wi-Fi Coexistence

• Methodology defined in 3GPP Technical Report 
TR36.889

• Enhancements needed:
– Wireless models (LBT access manager, 

SpectrumWifiPhy, propagation/fading models)
– Scenario support (traffic models)
– Output data processing
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Indoor 3GPP scenario

120	m

50	m

4	co-channel	cells
per	operator	(eNB
or	Wi-Fi	AP)

5	UEs/STAs	per	cell
per	operator	(40	total)
randomly dropped

Non-mobile	indoor
scenario	

Downlink	on
shared	channel;
LAA	has	separate
licensed	uplink

Step	1:		Both	operators	A	and	B	are	Wi-Fi
co-channel	on	separate	SSID
Step	2:		(depicted)	Replace	operator	A	network	with	LTE	LAA

Idealized
backhaul	to
traffic	sources
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Indoor scenario details
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Outdoor 3GPP scenario
Outdoor layout: hexagonal macrocell layout. 7 macro sites and 3 cells per site. 1 
Cluster per cell. 4 small cells per operator per cluster, uniformly dropped. ITU UMi
channel model.

Macro Node

Distance between cluster and 
macro node

R
1

Cluster 1

Dmacro-cluster

R 2

R1: radius of small cell dropping within a cluster;
 R2: radius of UE dropping within a cluster

Figure source:  3GPP TR 36.889 V13.0.0 (2015-05)
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References

• ns-3 Wiki page:  
– https://www.nsnam.org/wiki/LAA-WiFi-

Coexistence
• module documentation
• references to various publications
• documentation on reproducing results

• Code:
– http://code.nsnam.org/laa/ns-3-lbt
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Sample results

These	flows	(the	majority	in	the
scenario)	experience	no	contention
and	achieve	close	to	the	MCS	15	limit

Some	flows	experience	contention	and
slow	down

a)	Step	1	(Wi-Fi) b)	Step	2	(LAA)

Small	amount	of	throughput	
degradation	for	the	non-replaced	
Wi-Fi	network
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Gnuplot

• src/tools/gnuplot.{cc,h}

• C++ wrapper around gnuplot
• classes:

–Gnuplot
–GnuplotDataset

• Gnuplot2dDataset, Gnuplot2dFunction
• Gnuplot3dDataset, Gnuplot3dFunction
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Enabling gnuplot for your code
• examples/wireless/wifi-clear-channel-cmu.cc

one dataset per mode

Add data to dataset

Add dataset to plot

produce a plot file that
will generate an EPS figure
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Matplotlib

• src/core/examples/sample-rng-plot.py
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