
Program Structure and Simulation
Campaigns

ns-3 Training

Example walkthrough

• This section progressively builds up a
simple ns-3 example, explaining concepts
along the way

• Files for these programs are available on
the ns-3 wiki

ns-3 training, June 2017

Example program

• wns3-version1.cc
– Link found on wiki page
– Place program in scratch/ folder

ApplicationApplication

Protocol
stack

Node

NetDeviceNetDevice

ApplicationApplication

Protocol
stack

Node

NetDeviceNetDevice

Sockets-like
API

Channel

Channel

Packet(s)

ns-3 training, June 2017

Fundamentals

Key objects in the simulator are Nodes,
Packets, and Channels

Nodes contain Applications, “stacks”, and
NetDevices

ns-3 training, June 2017

Node basics

A Node is a shell of a computer to which
applications, stacks, and NICs are added

ApplicationApplicationApplication

“DTN”

ns-3 training, June 2017

NetDevices and Channels

(Originally) NetDevices were strongly bound to
Channels of a matching type

• ns-3 Spectrum models relax this assumption

Nodes are architected for multiple interfaces

YansWifiNetDevice

YansWifiChannel

ns-3 training, June 2017

Internet Stack

• Internet Stack
– Provides IPv4 and some IPv6 models

currently
• No non-IP stacks ns-3 existed until

802.15.4 was introduced in ns-3.20
– but no dependency on IP in the devices, Node

object, Packet object, etc. (partly due to the
object aggregation system)

ns-3 training, June 2017

Other basic models in ns-3

• Devices
– WiFi, WiMAX, CSMA, Point-to-point, ...

• Error models and queues
• Applications

– echo servers, traffic generator
• Mobility models
• Packet routing

– OLSR, AODV, DSR, DSDV, Static, Nix-
Vector, Global (link state)

ns-3 training, June 2017

Structure of an ns-3 program
int main (int argc, char *argv[])
{

// Set default attribute values

// Parse command-line arguments

// Configure the topology; nodes, channels, devices, mobility

// Add (Internet) stack to nodes

// Configure IP addressing and routing

// Add and configure applications

// Configure tracing

// Run simulation

// Handle any post-simulation data processing
}

ns-3 training, June 2017

Helper API

• The ns-3 “helper API” provides a set of classes
and methods that make common operations
easier than using the low-level API

• Consists of:
– container objects
– helper classes

• The helper API is implemented using the low-
level API

• Users are encouraged to contribute or propose
improvements to the ns-3 helper API

ns-3 training, June 2017

Containers

• Containers are part of the ns-3 “helper
API”

• Containers group similar objects, for
convenience
– They are often implemented using C++ std

containers
• Container objects also are intended to

provide more basic (typical) API

ns-3 training, June 2017

The Helper API (vs. low-level API)

• Is not generic
• Does not try to allow code reuse
• Provides simple 'syntactical sugar' to make

simulation scripts look nicer and easier to
read for network researchers

• Each function applies a single operation on
a ''set of same objects”

• A typical operation is "Install()"

ns-3 training, June 2017

Helper Objects

• NodeContainer: vector of Ptr<Node>
• NetDeviceContainer: vector of Ptr<NetDevice>
• InternetStackHelper
• WifiHelper
• MobilityHelper
• OlsrHelper
• ... Each model provides a helper class

ns-3 training, June 2017

Installation onto containers

• Installing models into containers, and
handling containers, is a key API theme

NodeContainer c;

c.Create (numNodes);

...

mobility.Install (c);

...

internet.Install (c);

...

ns-3 training, June 2017

Native IP models

• IPv4 stack with ARP, ICMP, UDP, and
TCP

• IPv6 with ND, ICMPv6, IPv6 extension
headers, TCP, UDP

• IPv4 routing: RIPv2, static, global,
NixVector, OLSR, AODV, DSR, DSDV

• IPv6 routing: RIPng, static

ns-3 training, June 2017

ns-3 training, June 2017

IP address configuration

• An Ipv4 (or Ipv6) address helper can
assign addresses to devices in a
NetDevice container

Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
csmaInterfaces = ipv4.Assign (csmaDevices);

...

ipv4.NewNetwork (); // bumps network to 10.1.2.0
otherCsmaInterfaces = ipv4.Assign (otherCsmaDevices);

Internet stack

• The public interface of
the Internet stack is
defined (abstract base
classes) in
src/network/model
directory
• The intent is to support
multiple implementations
• The default ns-3 Internet
stack is implemented in
src/internet-stack

ns-3 training, June 2017

ns-3 training, June 2017

Review of sample program (cont.)
ApplicationContainer apps;
OnOffHelper onoff ("ns3::UdpSocketFactory",

InetSocketAddress ("10.1.2.2", 1025));
onoff.SetAttribute ("OnTime", StringValue ("Constant:1.0"));
onoff.SetAttribute ("OffTime", StringValue ("Constant:0.0"));
apps = onoff.Install (csmaNodes.Get (0));
apps.Start (Seconds (1.0));
apps.Stop (Seconds (4.0));

PacketSinkHelper sink ("ns3::UdpSocketFactory",
InetSocketAddress ("10.1.2.2", 1025));

apps = sink.Install (wifiNodes.Get (1));
apps.Start (Seconds (0.0));
apps.Stop (Seconds (4.0));

Traffic generator

Traffic receiver

ns-3 training, June 2017

Applications and sockets

• In general, applications in ns-3 derive from
the ns3::Application base class
– A list of applications is stored in the ns3::Node
– Applications are like processes

• Applications make use of a sockets-like
API
– Application::Start () may call

ns3::Socket::SendMsg() at a lower layer

ns-3 training, June 2017

Sockets API
Plain C sockets
int sk;
sk = socket(PF_INET, SOCK_DGRAM, 0);

struct sockaddr_in src;
inet_pton(AF_INET,”0.0.0.0”,&src.sin_ad

dr);
src.sin_port = htons(80);
bind(sk, (struct sockaddr *) &src,

sizeof(src));

struct sockaddr_in dest;
inet_pton(AF_INET,”10.0.0.1”,&dest.sin_

addr);
dest.sin_port = htons(80);
sendto(sk, ”hello”, 6, 0, (struct

sockaddr *) &dest, sizeof(dest));

char buf[6];
recv(sk, buf, 6, 0);
}

ns-3 sockets
Ptr<Socket> sk =
udpFactory->CreateSocket ();

sk->Bind (InetSocketAddress (80));

sk->SendTo (InetSocketAddress (Ipv4Address
(”10.0.0.1”), 80), Create<Packet>
(”hello”, 6));

sk->SetReceiveCallback (MakeCallback
(MySocketReceive));

• […] (Simulator::Run ())

void MySocketReceive (Ptr<Socket> sk,
Ptr<Packet> packet)

{
...
}

NetDevice trace hooks

• Example: CsmaNetDevice
CsmaNetDevice::Send ()

CsmaNetDevice::
TransmitStart()

CsmaNetDevice::
Receive()

CsmaChannel

NetDevice::
ReceiveCallback

queue

MacRx
MacDrop

MacTx

MacTxBackoff

PhyTxBegin
PhyTxEnd PhyTxDrop

Sniffer
PromiscSniffer

PhyRxEnd
PhyRxDrop

ns-3 training, June 2017

LTE/Wi-Fi Coexistence

case study

ns-3 training, June 2017

Use case: LAA Wi-Fi Coexistence

• ns-3 has been extended to support scenarios for
LTE LAA/Wi-Fi Coexistence

• Methodology defined in 3GPP Technical Report
TR36.889

• Enhancements needed:
– Wireless models (LBT access manager,

SpectrumWifiPhy, propagation/fading models)
– Scenario support (traffic models)
– Output data processing

ns-3 training, June 2017

Indoor 3GPP scenario

120	m

50	m

4	co-channel	cells
per	operator	(eNB
or	Wi-Fi	AP)

5	UEs/STAs	per	cell
per	operator	(40	total)
randomly dropped

Non-mobile	indoor
scenario	

Downlink	on
shared	channel;
LAA	has	separate
licensed	uplink

Step	1:		Both	operators	A	and	B	are	Wi-Fi
co-channel	on	separate	SSID
Step	2:		(depicted)	Replace	operator	A	network	with	LTE	LAA

Idealized
backhaul	to
traffic	sources

ns-3 training, June 2017

Indoor scenario details

ns-3 training, June 2017

Outdoor 3GPP scenario
Outdoor layout: hexagonal macrocell layout. 7 macro sites and 3 cells per site. 1
Cluster per cell. 4 small cells per operator per cluster, uniformly dropped. ITU UMi
channel model.

Macro Node

Distance between cluster and
macro node

R
1

Cluster 1

Dmacro-cluster

R 2

R1: radius of small cell dropping within a cluster;
 R2: radius of UE dropping within a cluster

Figure source: 3GPP TR 36.889 V13.0.0 (2015-05)

ns-3 training, June 2017

References

• ns-3 Wiki page:
– https://www.nsnam.org/wiki/LAA-WiFi-

Coexistence
• module documentation
• references to various publications
• documentation on reproducing results

• Code:
– http://code.nsnam.org/laa/ns-3-lbt

ns-3 training, June 2017

Sample results

These	flows	(the	majority	in	the
scenario)	experience	no	contention
and	achieve	close	to	the	MCS	15	limit

Some	flows	experience	contention	and
slow	down

a)	Step	1	(Wi-Fi) b)	Step	2	(LAA)

Small	amount	of	throughput	
degradation	for	the	non-replaced	
Wi-Fi	network

ns-3 training, June 2017

Gnuplot

• src/tools/gnuplot.{cc,h}

• C++ wrapper around gnuplot
• classes:

–Gnuplot
–GnuplotDataset

• Gnuplot2dDataset, Gnuplot2dFunction
• Gnuplot3dDataset, Gnuplot3dFunction

ns-3 Training, June 2016

Enabling gnuplot for your code
• examples/wireless/wifi-clear-channel-cmu.cc

one dataset per mode

Add data to dataset

Add dataset to plot

produce a plot file that
will generate an EPS figure

ns-3 Training, June 2016

Matplotlib

• src/core/examples/sample-rng-plot.py

ns-3 Training, June 2016

