
ns-3 Waf build system

ns-3 Annual Meeting
June 2017

ns-3 Training, June 2017 1

Software introduction

• Download the latest release
– wget http://www.nsnam.org/releases/ns-allinone-
3.26.tar.bz2

– tar xjf ns-allinone-3.26.tar.bz2

• Clone the latest development code
– hg clone http://code.nsnam.org/ns-3-allinone

Q. What is "hg clone"?
A. Mercurial (http://www.selenic.com) is our source
code control tool.

ns-3 Training, June 2017 2

Software building

• Two levels of ns-3 build

ns-3click routing
Network
Simulation
Cradle

pybindgen

module

module module

module

module

module

1) bake (a Python-based build system to control an ordered build of
ns-3 and its libraries)

2) waf, a build system written in Python

3) build.py (a custom Python build script to control an ordered build of
ns-3 and its libraries) <--- may eventually be deprecated

ns-3 Training, June 2017 3

ns-3 uses the 'waf' build system

• Waf is a Python-based framework for
configuring, compiling and installing
applications.
– It is a replacement for other tools such as

Autotools, Scons, CMake or Ant
– http://code.google.com/p/waf/

• For those familiar with autotools:
• configure ./waf configure

• make ./waf build

ns-3 Training, June 2017 4

waf configuration

• Key waf configuration examples
./waf configure

--enable-examples

--enable-tests

--disable-python

--enable-modules

• Whenever build scripts change, need to
reconfigure

Demo: ./waf --help
./waf configure --enable-examples --

enable-tests --enable-modules='core'

Look at: build/c4che/_cache.py

ns-3 Training, June 2017 5

wscript example

-*- Mode: python; py-indent-offset: 4; indent-tabs-mode: nil; coding: utf-8; -*-

def build(bld):
obj = bld.create_ns3_module('csma', ['network', 'applications'])
obj.source = [

'model/backoff.cc',
'model/csma-net-device.cc',
'model/csma-channel.cc',
'helper/csma-helper.cc',
]

headers = bld.new_task_gen(features=['ns3header'])
headers.module = 'csma'
headers.source = [

'model/backoff.h',
'model/csma-net-device.h',
'model/csma-channel.h',
'helper/csma-helper.h',
]

if bld.env['ENABLE_EXAMPLES']:
bld.add_subdirs('examples')

bld.ns3_python_bindings()

ns-3 Training, June 2017 6

waf build

• Once project is configured, can build via
./waf build or ./waf

• waf will build in parallel on multiple cores
• waf displays modules built at end of build

Demo: ./waf build

Look at: build/ libraries and executables

ns-3 Training, June 2017 7

Running programs

• ./waf shell provides a special shell for
running programs
– Sets key environment variables

./waf --run sample-simulator

./waf --pyrun src/core/examples/sample-
simulator.py

ns-3 Training, June 2017 8

Build variations

• Configuring a build type is done at waf
configuration time

• debug build (default): all asserts and
debugging code enabled
./waf -d debug configure

• optimized
./waf -d optimized configure

• static libraries
./waf --enable-static configure

ns-3 Training, June 2017 9

Controlling the modular build

• One way to disable modules:
– ./waf configure --enable-modules='a','b','c'

• The .ns3rc file (found in utils/ directory) can be used to
control the modules built

• Precedence in controlling build
1) command line arguments
2) .ns3rc in ns-3 top level directory
3) .ns3rc in user's home directory

Demo how .ns3rc works

ns-3 Training, June 2017 10

Building without wscript

• The scratch/ directory can be used to build
programs without wscripts

Demo how programs can be built without wscripts

ns-3 Training, June 2017 11

ns-3 training, June 2017

12

ns-3 Training

Simulator core

• Simulation time
• Events
• Simulator and Scheduler
• Command line arguments
• Random variables

Execute a function
(may generate additional events)

Advance the virtual time
to the next event (function)

Virtual time

ns-3 training, June 2017 13

Simulator example

14
ns-3 training, June 2017

Simulator example (in Python)

15
ns-3 training, June 2017

Simulation program flow

Handle program inputs

Configure topology

Run simulation

Process outputs

ns-3 training, June 2017 16

Command-line arguments

• Add CommandLine to your program if you want
command-line argument parsing

• Passing --PrintHelp to programs will display command
line options, if CommandLine is enabled

./waf --run "sample-simulator --PrintHelp"

17
ns-3 training, June 2017

Time in ns-3

• Time is stored as a large integer in ns-3
– Minimize floating point discrepancies across platforms

• Special Time classes are provided to manipulate time
(such as standard operators)

• Default time resolution is nanoseconds, but can be set to
other resolutions

– Note: Changing resolution is not well used/tested

• Time objects can be set by floating-point values and can
export floating-point values
double timeDouble = t.GetSeconds();

– Best practice is to avoid floating point conversions where
possible

18
ns-3 training, June 2017

Events in ns-3

• Events are just function calls that execute
at a simulated time
– i.e. callbacks
– this is another difference compared to other

simulators, which often use special "event
handlers" in each model

• Events have IDs to allow them to be
cancelled or to test their status

19
ns-3 training, June 2017

Simulator and Schedulers

• The Simulator class holds a scheduler,
and provides the API to schedule events,
start, stop, and cleanup memory

• Several scheduler data structures
(calendar, heap, list, map) are possible

• "RealTime" simulation implementation
aligns the simulation time to wall-clock
time
– two policies (hard and soft limit) available

when the simulation and real time diverge
20

ns-3 training, June 2017

Random Variables

• Currently implemented distributions
– Uniform: values uniformly distributed in an interval
– Constant: value is always the same (not really random)
– Sequential: return a sequential list of predefined values
– Exponential: exponential distribution (poisson process)
– Normal (gaussian), Log-Normal, Pareto, Weibull, triangular

21

from src/core/examples/sample-rng-plot.py

ns-3 training, June 2017

Random variables and independent
replications

• Many simulation uses involve running a
number of independent replications of the
same scenario

• In ns-3, this is typically performed by
incrementing the simulation run number
– not by changing seeds

22
ns-3 training, June 2017

