
ns-3 training, June 2017

1

ns-3 Training

Simulator core

• Simulation time
• Events
• Simulator and Scheduler
• Command line arguments
• Random variables

Execute a function
(may generate additional events)

Advance the virtual time
to the next event (function)

Virtual time

ns-3 training, June 2017 2

Simulator example

3
ns-3 training, June 2017

Simulator example (in Python)

4
ns-3 training, June 2017

Simulation program flow

Handle program inputs

Configure topology

Run simulation

Process outputs

ns-3 training, June 2017 5

Command-line arguments

• Add CommandLine to your program if you want
command-line argument parsing

• Passing --PrintHelp to programs will display command
line options, if CommandLine is enabled

./waf --run "sample-simulator --PrintHelp"

6
ns-3 training, June 2017

Time in ns-3

• Time is stored as a large integer in ns-3
– Minimize floating point discrepancies across platforms

• Special Time classes are provided to manipulate time
(such as standard operators)

• Default time resolution is nanoseconds, but can be set to
other resolutions

– Note: Changing resolution is not well used/tested

• Time objects can be set by floating-point values and can
export floating-point values
double timeDouble = t.GetSeconds();

– Best practice is to avoid floating point conversions where
possible

7
ns-3 training, June 2017

Events in ns-3

• Events are just function calls that execute
at a simulated time
– i.e. callbacks
– this is another difference compared to other

simulators, which often use special "event
handlers" in each model

• Events have IDs to allow them to be
cancelled or to test their status

8
ns-3 training, June 2017

Simulator and Schedulers

• The Simulator class holds a scheduler,
and provides the API to schedule events,
start, stop, and cleanup memory

• Several scheduler data structures
(calendar, heap, list, map) are possible

• "RealTime" simulation implementation
aligns the simulation time to wall-clock
time
– two policies (hard and soft limit) available

when the simulation and real time diverge
9

ns-3 training, June 2017

Random Variables

• Currently implemented distributions
– Uniform: values uniformly distributed in an interval
– Constant: value is always the same (not really random)
– Sequential: return a sequential list of predefined values
– Exponential: exponential distribution (poisson process)
– Normal (gaussian), Log-Normal, Pareto, Weibull, triangular

10

from src/core/examples/sample-rng-plot.py

ns-3 training, June 2017

Random variables and independent
replications

• Many simulation uses involve running a
number of independent replications of the
same scenario

• In ns-3, this is typically performed by
incrementing the simulation run number
– not by changing seeds

11
ns-3 training, June 2017

ns-3 random number generator

• Uses the MRG32k3a generator from Pierre
L'Ecuyer
– http://www.iro.umontreal.ca/~lecuyer/myftp/papers/str

eams00.pdf
– Period of PRNG is 3.1x10^57

• Partitions a pseudo-random number generator
into uncorrelated streams and substreams
– Each RandomVariableStream gets its own stream
– This stream partitioned into substreams

12
ns-3 training, June 2017

Key Terminology

• Seed: A set of values that generates an entirely
new PRNG sequence

• Stream: The PRNG sequence is divided into
non-overlapping intervals called streams

• Run Number (substream): Each stream is
further divided to substreams, indexed by a
variable called the run number.

ns-3 training, June 2017 13

Streams and Substreams

ns-3 training, June 2017

Incrementing the
Run Number will move
all streams to a new
substream

Each ns-3
RandomVariableStream
object is assigned to a
stream (by default,
randomly)

Figure source: Pierre L’Ecuyer, Richard Simard, E. Jack Chen, and W. David Kelton.
An object-oriented random number package with many long streams and substreams. Operations Research, 2001.

14

Run number vs. seed

• If you increment the seed of the PRNG, the
streams of random variable objects across
different runs are not guaranteed to be
uncorrelated

• If you fix the seed, but increment the run
number, you will get uncorrelated streams

15
ns-3 training, June 2017

Setting the stream number

• The ns-3 implementation provides access to 2^64
streams

• 2^63 are placed in a pool for automatic assignment, and
2^63 are reserved for fixed assignment

• Users may optionally assign a stream number index to a
random variable using the SetStream () method.

– This allows better control over selected random variables
– Many helpers have AssignStreams () methods to do this across

many such random variables

ns-3 training, June 2017 16

Putting it together

• Example of scheduled event

17
Demo real-time, command-line, random variables...

ns-3 training, June 2017

Program Structure and Simulation
Campaigns

ns-3 Training

Example walkthrough

• This section progressively builds up a
simple ns-3 example, explaining concepts
along the way

• Files for these programs are available on
the ns-3 wiki

ns-3 training, June 2017

Example program

• wns3-version1.cc

– Link found on wiki page
– Place program in scratch/ folder

ApplicationApplication

Protocol
stack

Node

NetDeviceNetDevice

ApplicationApplication

Protocol
stack

Node

NetDeviceNetDevice

Sockets-like
API

Channel

Channel

Packet(s)

ns-3 training, June 2017

Fundamentals

Key objects in the simulator are Nodes,
Packets, and Channels

Nodes contain Applications, “stacks”, and
NetDevices

ns-3 training, June 2017

Node basics

A Node is a shell of a computer to which
applications, stacks, and NICs are added

ApplicationApplicationApplication

“DTN”

ns-3 training, June 2017

NetDevices and Channels

(Originally) NetDevices were strongly bound to
Channels of a matching type

• ns-3 Spectrum models relax this assumption

Nodes are architected for multiple interfaces

YansWifiNetDevice

YansWifiChannel

ns-3 training, June 2017

Internet Stack

• Internet Stack
– Provides IPv4 and some IPv6 models

currently
• No non-IP stacks ns-3 existed until

802.15.4 was introduced in ns-3.20
– but no dependency on IP in the devices, Node

object, Packet object, etc. (partly due to the
object aggregation system)

ns-3 training, June 2017

Other basic models in ns-3

• Devices
– WiFi, WiMAX, CSMA, Point-to-point, ...

• Error models and queues
• Applications

– echo servers, traffic generator
• Mobility models
• Packet routing

– OLSR, AODV, DSR, DSDV, Static, Nix-
Vector, Global (link state)

ns-3 training, June 2017

Structure of an ns-3 program
int main (int argc, char *argv[])
{

// Set default attribute values

// Parse command-line arguments

// Configure the topology; nodes, channels, devices, mobility

// Add (Internet) stack to nodes

// Configure IP addressing and routing

// Add and configure applications

// Configure tracing

// Run simulation

// Handle any post-simulation data processing
}

ns-3 training, June 2017

Helper API

• The ns-3 “helper API” provides a set of classes
and methods that make common operations
easier than using the low-level API

• Consists of:
– container objects
– helper classes

• The helper API is implemented using the low-
level API

• Users are encouraged to contribute or propose
improvements to the ns-3 helper API

ns-3 training, June 2017

Containers

• Containers are part of the ns-3 “helper
API”

• Containers group similar objects, for
convenience
– They are often implemented using C++ std

containers
• Container objects also are intended to

provide more basic (typical) API

ns-3 training, June 2017

The Helper API (vs. low-level API)

• Is not generic
• Does not try to allow code reuse
• Provides simple 'syntactical sugar' to make

simulation scripts look nicer and easier to
read for network researchers

• Each function applies a single operation on
a ''set of same objects”

• A typical operation is "Install()"

ns-3 training, June 2017

Helper Objects

• NodeContainer: vector of Ptr<Node>
• NetDeviceContainer: vector of Ptr<NetDevice>
• InternetStackHelper
• WifiHelper
• MobilityHelper
• OlsrHelper
• ... Each model provides a helper class

ns-3 training, June 2017

Installation onto containers

• Installing models into containers, and
handling containers, is a key API theme

NodeContainer c;

c.Create (numNodes);

...

mobility.Install (c);

...

internet.Install (c);

...

ns-3 training, June 2017

Native IP models

• IPv4 stack with ARP, ICMP, UDP, and
TCP

• IPv6 with ND, ICMPv6, IPv6 extension
headers, TCP, UDP

• IPv4 routing: RIPv2, static, global,
NixVector, OLSR, AODV, DSR, DSDV

• IPv6 routing: RIPng, static

ns-3 training, June 2017

ns-3 training, June 2017

IP address configuration

• An Ipv4 (or Ipv6) address helper can
assign addresses to devices in a
NetDevice container

Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
csmaInterfaces = ipv4.Assign (csmaDevices);

...

ipv4.NewNetwork (); // bumps network to 10.1.2.0
otherCsmaInterfaces = ipv4.Assign (otherCsmaDevices);

Internet stack

• The public interface of
the Internet stack is
defined (abstract base
classes) in
src/network/model
directory
• The intent is to support
multiple implementations
• The default ns-3 Internet
stack is implemented in
src/internet-stack

ns-3 training, June 2017

ns-3 training, June 2017

Review of sample program (cont.)
ApplicationContainer apps;
OnOffHelper onoff ("ns3::UdpSocketFactory",

InetSocketAddress ("10.1.2.2", 1025));
onoff.SetAttribute ("OnTime", StringValue ("Constant:1.0"));
onoff.SetAttribute ("OffTime", StringValue ("Constant:0.0"));
apps = onoff.Install (csmaNodes.Get (0));
apps.Start (Seconds (1.0));
apps.Stop (Seconds (4.0));

PacketSinkHelper sink ("ns3::UdpSocketFactory",
InetSocketAddress ("10.1.2.2", 1025));

apps = sink.Install (wifiNodes.Get (1));
apps.Start (Seconds (0.0));
apps.Stop (Seconds (4.0));

Traffic generator

Traffic receiver

ns-3 training, June 2017

Applications and sockets

• In general, applications in ns-3 derive from
the ns3::Application base class
– A list of applications is stored in the ns3::Node
– Applications are like processes

• Applications make use of a sockets-like
API
– Application::Start () may call

ns3::Socket::SendMsg() at a lower layer

ns-3 training, June 2017

Sockets API
Plain C sockets
int sk;
sk = socket(PF_INET, SOCK_DGRAM, 0);

struct sockaddr_in src;
inet_pton(AF_INET,”0.0.0.0”,&src.sin_ad

dr);
src.sin_port = htons(80);
bind(sk, (struct sockaddr *) &src,

sizeof(src));

struct sockaddr_in dest;
inet_pton(AF_INET,”10.0.0.1”,&dest.sin_

addr);
dest.sin_port = htons(80);
sendto(sk, ”hello”, 6, 0, (struct

sockaddr *) &dest, sizeof(dest));

char buf[6];
recv(sk, buf, 6, 0);
}

ns-3 sockets
Ptr<Socket> sk =
udpFactory->CreateSocket ();

sk->Bind (InetSocketAddress (80));

sk->SendTo (InetSocketAddress (Ipv4Address
(”10.0.0.1”), 80), Create<Packet>
(”hello”, 6));

sk->SetReceiveCallback (MakeCallback
(MySocketReceive));

• […] (Simulator::Run ())

void MySocketReceive (Ptr<Socket> sk,
Ptr<Packet> packet)

{
...
}

NetDevice trace hooks

• Example: CsmaNetDevice
CsmaNetDevice::Send ()

CsmaNetDevice::
TransmitStart()

CsmaNetDevice::
Receive()

CsmaChannel

NetDevice::
ReceiveCallback

queue

MacRx
MacDrop

MacTx

MacTxBackoff

PhyTxBegin
PhyTxEnd PhyTxDrop

Sniffer
PromiscSniffer

PhyRxEnd
PhyRxDrop

ns-3 training, June 2017

LTE/Wi-Fi Coexistence

case study

ns-3 training, June 2017

Use case: LAA Wi-Fi Coexistence

• ns-3 has been extended to support scenarios for
LTE LAA/Wi-Fi Coexistence

• Methodology defined in 3GPP Technical Report
TR36.889

• Enhancements needed:
– Wireless models (LBT access manager,

SpectrumWifiPhy, propagation/fading models)
– Scenario support (traffic models)
– Output data processing

ns-3 training, June 2017

Indoor 3GPP scenario

120	m

50	m

4	co-channel	cells
per	operator	(eNB
or	Wi-Fi	AP)

5	UEs/STAs	per	cell
per	operator	(40	total)
randomly dropped

Non-mobile	indoor
scenario	

Downlink	on
shared	channel;
LAA	has	separate
licensed	uplink

Step	1:		Both	operators	A	and	B	are	Wi-Fi
co-channel	on	separate	SSID
Step	2:		(depicted)	Replace	operator	A	network	with	LTE	LAA

Idealized
backhaul	to
traffic	sources

ns-3 training, June 2017

Indoor scenario details

ns-3 training, June 2017

Outdoor 3GPP scenario
Outdoor layout: hexagonal macrocell layout. 7 macro sites and 3 cells per site. 1
Cluster per cell. 4 small cells per operator per cluster, uniformly dropped. ITU UMi
channel model.

Macro Node

Distance between cluster and
macro node

R
1

Cluster 1

Dmacro-cluster

R 2

R1: radius of small cell dropping within a cluster;
 R2: radius of UE dropping within a cluster

Figure source: 3GPP TR 36.889 V13.0.0 (2015-05)

ns-3 training, June 2017

References

• ns-3 Wiki page:
– https://www.nsnam.org/wiki/LAA-WiFi-

Coexistence
• module documentation
• references to various publications
• documentation on reproducing results

• Code:
– http://code.nsnam.org/laa/ns-3-lbt

ns-3 training, June 2017

Sample results

These	flows	(the	majority	in	the
scenario)	experience	no	contention
and	achieve	close	to	the	MCS	15	limit

Some	flows	experience	contention	and
slow	down

a)	Step	1	(Wi-Fi) b)	Step	2	(LAA)

Small	amount	of	throughput	
degradation	for	the	non-replaced	
Wi-Fi	network

ns-3 training, June 2017

Gnuplot

• src/tools/gnuplot.{cc,h}

• C++ wrapper around gnuplot
• classes:

–Gnuplot
–GnuplotDataset

• Gnuplot2dDataset, Gnuplot2dFunction
• Gnuplot3dDataset, Gnuplot3dFunction

ns-3 Training, June 2016

Enabling gnuplot for your code
• examples/wireless/wifi-clear-channel-cmu.cc

one dataset per mode

Add data to dataset

Add dataset to plot

produce a plot file that
will generate an EPS figure

ns-3 Training, June 2016

Matplotlib

• src/core/examples/sample-rng-plot.py

ns-3 Training, June 2016

ns-3 Annual meeting June 2017

49

ns-3 Training: Packets

ns-3 Packet

• Packet is an advanced data structure with
the following capabilities
– Supports fragmentation and reassembly
– Supports real or virtual application data
– Extensible
– Serializable (for emulation)
– Supports pretty-printing
– Efficient (copy-on-write semantics)

50
ns-3 Annual meeting June 2017

ns-3 Packet structure

• Analogous to an mbuf/skbuff

51
ns-3 Annual meeting June 2017

Copy-on-write

• Copy data bytes only as needed

52Figure source: Mathieu Lacage'sPh.D. thesis
ns-3 Annual meeting June 2017

Headers and trailers

• Most operations on packet involve adding
and removing an ns3::Header

• class ns3::Header must implement four
methods:

Serialize()

Deserialize()

GetSerializedSize()

Print()

ns-3 Annual meeting June 2017 53

Headers and trailers (cont.)

• Headers are serialized into the packet byte
buffer with Packet::AddHeader() and
removed with Packet::RemoveHeader()

• Headers can also be 'Peeked' without
removal

Ptr<Packet> pkt = Create<Packet> ();

UdpHeader hdr; // Note: not heap allocated

pkt->AddHeader (hdr);

Ipv4Header iphdr;

pkt->AddHeader (iphdr);

ns-3 Annual meeting June 2017 54

Packet tags

• Packet tag objects allow packets to carry around
simulator-specific metadata
– Such as a "unique ID" for packets or

• Tags may associate with byte ranges of data, or
with the whole packet
– Distinction is important when packets are fragmented

and reassembled
• Tags presently are not preserved across

serialization boundaries (e.g. MPI)

ns-3 Annual meeting June 2017 55

PacketTag vs. ByteTag

• Two tag types are available: PacketTag and
ByteTag
– ByteTags run with bytes
– PacketTags run with packets

• When Packet is fragmented, both copies of
Packet get copies of PacketTags

• When two Packets are merged, only the
PacketTags of the first are preserved

• PacketTags may be removed individually;
ByteTags may be removed all at once

ns-3 Annual meeting June 2017 56

Tag example

• Here is a simple example illustrating the use of tags from the code in
src/internet/model/udp-socket-impl.cc:
Ptr<Packet> p; // pointer to a pre-existing packet
SocketIpTtlTag tag
tag.SetTtl (m_ipMulticastTtl); // Convey the TTL from
UDP layer to IP layer
p->AddPacketTag (tag);

• This tag is read at the IP layer, then stripped
(src/internet/model/ipv4-l3-protocol.cc):
uint8_t ttl = m_defaultTtl;
SocketIpTtlTag tag;
bool found = packet->RemovePacketTag (tag);
if (found)
{

ttl = tag.GetTtl ();
}

ns-3 Annual meeting June 2017 57

Packet metadata

• Packets may optionally carry metadata
– record every operation on a packet's buffer
– implementation of Packet::Print for pretty-printing of

the packet
– sanity check that when a Header is removed, the

Header was actually present to begin with

• Not enabled by default, for performance reasons
• To enable, insert one or both statements:

Packet::EnablePrinting ();
Packet::EnableChecking ();

ns-3 Annual meeting June 2017 58

Ptr<Packet>

• Packets are reference counted objects that
support the smart pointer class Ptr

• Use a templated "Create" method instead of
CreateObject for ns3::Objects

• Typical creation:
– Ptr<Packet> pkt = Create<Packet> ();

• In model code, Packet pointers may be const or
non-const; often Packet::Copy() is used to obtain
non-const from const

– Ptr<const Packet> cpkt = ...;

– Ptr<Packet> p = cpkt->Copy ();

ns-3 Annual meeting June 2017 59

