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Simulator core

• Simulation time
• Events
• Simulator and Scheduler
• Command line arguments
• Random variables

Execute a function
(may generate additional events)

Advance the virtual time
to the next event (function)

Virtual time
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Simulator example
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Simulator example (in Python)
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Simulation program flow

Handle program inputs

Configure topology

Run simulation

Process outputs

ns-3 training, June 2017 5



Command-line arguments

• Add CommandLine to your program if you want 
command-line argument parsing

• Passing --PrintHelp to programs will display command 
line options, if CommandLine is enabled

./waf --run "sample-simulator --PrintHelp"
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Time in ns-3

• Time is stored as a large integer in ns-3
– Minimize floating point discrepancies across platforms

• Special Time classes are provided to manipulate time 
(such as standard operators)

• Default time resolution is nanoseconds, but can be set to 
other resolutions

– Note:  Changing resolution is not well used/tested

• Time objects can be set by floating-point values and can 
export floating-point values
double timeDouble = t.GetSeconds();

– Best practice is to avoid floating point conversions where 
possible
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Events in ns-3

• Events are just function calls that execute 
at a simulated time
– i.e. callbacks
– this is another difference compared to other 

simulators, which often use special "event 
handlers" in each model

• Events have IDs to allow them to be 
cancelled or to test their status
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Simulator and Schedulers

• The Simulator class holds a scheduler, 
and provides the API to schedule events, 
start, stop, and cleanup memory

• Several scheduler data structures 
(calendar, heap, list, map) are possible

• "RealTime" simulation implementation 
aligns the simulation time to wall-clock 
time
– two policies (hard and soft limit) available 

when the simulation and real time diverge
9
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Random Variables

• Currently implemented distributions
– Uniform: values uniformly distributed in an interval
– Constant: value is always the same (not really random)
– Sequential: return a sequential list of predefined values
– Exponential: exponential distribution (poisson process)
– Normal (gaussian), Log-Normal, Pareto, Weibull, triangular
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from src/core/examples/sample-rng-plot.py
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Random variables and independent 
replications

• Many simulation uses involve running a 
number of independent replications of the 
same scenario

• In ns-3, this is typically performed by 
incrementing the simulation run number
– not by changing seeds
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ns-3 random number generator

• Uses the MRG32k3a generator from Pierre 
L'Ecuyer 
– http://www.iro.umontreal.ca/~lecuyer/myftp/papers/str

eams00.pdf
– Period of PRNG is 3.1x10^57

• Partitions a pseudo-random number generator 
into uncorrelated streams and substreams
– Each RandomVariableStream gets its own stream
– This stream partitioned into substreams
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Key Terminology

• Seed:  A set of values that generates an entirely 
new PRNG sequence

• Stream:  The PRNG sequence is divided into 
non-overlapping intervals called streams

• Run Number (substream):  Each stream is 
further divided to substreams, indexed by a 
variable called the run number.
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Streams and Substreams

ns-3 training, June 2017

Incrementing the 
Run Number will move
all streams to a new
substream

Each ns-3
RandomVariableStream
object is assigned to a
stream (by default, 
randomly)

Figure source:  Pierre L’Ecuyer, Richard Simard, E. Jack Chen, and  W. David Kelton. 
An object-oriented random number package with  many long streams and substreams. Operations Research, 2001. 
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Run number vs. seed

• If you increment the seed of the PRNG, the 
streams of random variable objects across 
different runs are not guaranteed to be 
uncorrelated

• If you fix the seed, but increment the run 
number, you will get uncorrelated streams
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Setting the stream number

• The ns-3 implementation provides access to 2^64 
streams

• 2^63 are placed in a pool for automatic assignment, and 
2^63 are reserved for fixed assignment

• Users may optionally assign a stream number index to a 
random variable using the SetStream () method.

– This allows better control over selected random variables
– Many helpers have AssignStreams () methods to do this across 

many such random variables
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Putting it together

• Example of scheduled event

17
Demo real-time, command-line, random variables...

ns-3 training, June 2017



Program Structure and Simulation 
Campaigns

ns-3 Training



Example walkthrough

• This section progressively builds up a 
simple ns-3 example, explaining concepts 
along the way

• Files for these programs are available on 
the ns-3 wiki
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Example program

• wns3-version1.cc

– Link found on wiki page
– Place program in scratch/ folder

ApplicationApplication

Protocol
stack

Node

NetDeviceNetDevice

ApplicationApplication

Protocol
stack

Node

NetDeviceNetDevice

Sockets-like
API

Channel

Channel

Packet(s) 
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Fundamentals

Key objects in the simulator are Nodes, 
Packets, and Channels

Nodes contain Applications, “stacks”, and 
NetDevices
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Node basics

A Node is a shell of a computer to which 
applications, stacks, and NICs are added

ApplicationApplicationApplication

“DTN”

ns-3 training, June 2017



NetDevices and Channels

(Originally) NetDevices were strongly bound to 
Channels of a matching type

• ns-3 Spectrum models relax this assumption

Nodes are architected for multiple interfaces

YansWifiNetDevice

YansWifiChannel
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Internet Stack

• Internet Stack
– Provides IPv4 and some IPv6 models 

currently
• No non-IP stacks ns-3 existed until 

802.15.4 was introduced in ns-3.20
– but no dependency on IP in the devices, Node 

object, Packet object, etc. (partly due to the 
object aggregation system)
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Other basic models in ns-3

• Devices
– WiFi, WiMAX, CSMA, Point-to-point, ...

• Error models and queues
• Applications

– echo servers, traffic generator
• Mobility models
• Packet routing

– OLSR, AODV, DSR, DSDV, Static, Nix-
Vector, Global (link state)
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Structure of an ns-3 program
int main (int argc, char *argv[])
{

// Set default attribute values

// Parse command-line arguments

// Configure the topology; nodes, channels, devices, mobility

// Add (Internet) stack to nodes

// Configure IP addressing and routing

// Add and configure applications

// Configure tracing

// Run simulation

// Handle any post-simulation data processing
} 
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Helper API

• The ns-3 “helper API” provides a set of classes 
and methods that make common operations 
easier than using the low-level API

• Consists of:
– container objects
– helper classes

• The helper API is implemented using the low-
level API

• Users are encouraged to contribute or propose 
improvements to the ns-3 helper API
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Containers

• Containers are part of the ns-3 “helper 
API”

• Containers group similar objects, for 
convenience
– They are often implemented using C++ std 

containers
• Container objects also are intended to 

provide more basic (typical) API
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The Helper API (vs. low-level API)

• Is not generic
• Does not try to allow code reuse
• Provides simple 'syntactical sugar' to make 

simulation scripts look nicer and easier to 
read for network researchers

• Each function applies a single operation on 
a ''set of same objects”

• A typical operation is "Install()"
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Helper Objects

• NodeContainer: vector of Ptr<Node>
• NetDeviceContainer: vector of Ptr<NetDevice>
• InternetStackHelper
• WifiHelper
• MobilityHelper
• OlsrHelper
• ... Each model provides a helper class
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Installation onto containers

• Installing models into containers, and 
handling containers, is a key API theme

NodeContainer c;

c.Create (numNodes);

...

mobility.Install (c);

...

internet.Install (c);

...
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Native IP models

• IPv4 stack with ARP, ICMP, UDP, and 
TCP

• IPv6 with ND, ICMPv6, IPv6 extension 
headers, TCP, UDP

• IPv4 routing:  RIPv2, static, global, 
NixVector, OLSR, AODV, DSR, DSDV

• IPv6 routing:  RIPng, static
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IP address configuration

• An Ipv4 (or Ipv6) address helper can 
assign addresses to devices in a 
NetDevice container 

Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
csmaInterfaces = ipv4.Assign (csmaDevices);

...

ipv4.NewNetwork ();  // bumps network to 10.1.2.0
otherCsmaInterfaces = ipv4.Assign (otherCsmaDevices);



Internet stack

• The public interface of
the Internet stack is
defined (abstract base
classes) in 
src/network/model
directory
• The intent is to support
multiple implementations
• The default ns-3 Internet
stack is implemented in
src/internet-stack
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Review of sample program (cont.)
ApplicationContainer apps;
OnOffHelper onoff ("ns3::UdpSocketFactory", 

InetSocketAddress ("10.1.2.2", 1025));
onoff.SetAttribute ("OnTime", StringValue ("Constant:1.0"));
onoff.SetAttribute ("OffTime", StringValue ("Constant:0.0"));
apps = onoff.Install (csmaNodes.Get (0));
apps.Start (Seconds (1.0));
apps.Stop (Seconds (4.0));

PacketSinkHelper sink ("ns3::UdpSocketFactory",
InetSocketAddress ("10.1.2.2", 1025));

apps = sink.Install (wifiNodes.Get (1));
apps.Start (Seconds (0.0));
apps.Stop (Seconds (4.0));

Traffic generator

Traffic receiver
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Applications and sockets

• In general, applications in ns-3 derive from 
the ns3::Application base class
– A list of applications is stored in the ns3::Node
– Applications are like processes

• Applications make use of a sockets-like 
API
– Application::Start () may call 

ns3::Socket::SendMsg() at a lower layer
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Sockets API
Plain C sockets
int sk;
sk = socket(PF_INET, SOCK_DGRAM, 0);

struct sockaddr_in src;
inet_pton(AF_INET,”0.0.0.0”,&src.sin_ad

dr);
src.sin_port = htons(80);
bind(sk, (struct sockaddr *) &src, 

sizeof(src));

struct sockaddr_in dest;
inet_pton(AF_INET,”10.0.0.1”,&dest.sin_

addr);
dest.sin_port = htons(80);
sendto(sk, ”hello”, 6, 0, (struct 

sockaddr *) &dest, sizeof(dest));

char buf[6];
recv(sk, buf, 6, 0);
}

ns-3 sockets
Ptr<Socket> sk = 
udpFactory->CreateSocket ();

sk->Bind (InetSocketAddress (80));

sk->SendTo (InetSocketAddress (Ipv4Address 
(”10.0.0.1”), 80), Create<Packet> 
(”hello”, 6));

sk->SetReceiveCallback (MakeCallback
(MySocketReceive));

• […] (Simulator::Run ())

void MySocketReceive (Ptr<Socket> sk, 
Ptr<Packet> packet)

{
...
}



NetDevice trace hooks

• Example:  CsmaNetDevice
CsmaNetDevice::Send ()

CsmaNetDevice::
TransmitStart()

CsmaNetDevice::
Receive()

CsmaChannel

NetDevice::
ReceiveCallback

queue

MacRx
MacDrop

MacTx

MacTxBackoff

PhyTxBegin
PhyTxEnd PhyTxDrop

Sniffer
PromiscSniffer

PhyRxEnd
PhyRxDrop
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LTE/Wi-Fi Coexistence

case study
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Use case: LAA Wi-Fi Coexistence

• ns-3 has been extended to support scenarios for 
LTE LAA/Wi-Fi Coexistence

• Methodology defined in 3GPP Technical Report 
TR36.889

• Enhancements needed:
– Wireless models (LBT access manager, 

SpectrumWifiPhy, propagation/fading models)
– Scenario support (traffic models)
– Output data processing
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Indoor 3GPP scenario

120	m

50	m

4	co-channel	cells
per	operator	(eNB
or	Wi-Fi	AP)

5	UEs/STAs	per	cell
per	operator	(40	total)
randomly dropped

Non-mobile	indoor
scenario	

Downlink	on
shared	channel;
LAA	has	separate
licensed	uplink

Step	1:		Both	operators	A	and	B	are	Wi-Fi
co-channel	on	separate	SSID
Step	2:		(depicted)	Replace	operator	A	network	with	LTE	LAA

Idealized
backhaul	to
traffic	sources
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Indoor scenario details
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Outdoor 3GPP scenario
Outdoor layout: hexagonal macrocell layout. 7 macro sites and 3 cells per site. 1 
Cluster per cell. 4 small cells per operator per cluster, uniformly dropped. ITU UMi
channel model.

Macro Node

Distance between cluster and 
macro node

R
1

Cluster 1

Dmacro-cluster

R 2

R1: radius of small cell dropping within a cluster;
 R2: radius of UE dropping within a cluster

Figure source:  3GPP TR 36.889 V13.0.0 (2015-05)
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References

• ns-3 Wiki page:  
– https://www.nsnam.org/wiki/LAA-WiFi-

Coexistence
• module documentation
• references to various publications
• documentation on reproducing results

• Code:
– http://code.nsnam.org/laa/ns-3-lbt
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Sample results

These	flows	(the	majority	in	the
scenario)	experience	no	contention
and	achieve	close	to	the	MCS	15	limit

Some	flows	experience	contention	and
slow	down

a)	Step	1	(Wi-Fi) b)	Step	2	(LAA)

Small	amount	of	throughput	
degradation	for	the	non-replaced	
Wi-Fi	network
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Gnuplot

• src/tools/gnuplot.{cc,h}

• C++ wrapper around gnuplot
• classes:

–Gnuplot
–GnuplotDataset

• Gnuplot2dDataset, Gnuplot2dFunction
• Gnuplot3dDataset, Gnuplot3dFunction
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Enabling gnuplot for your code
• examples/wireless/wifi-clear-channel-cmu.cc

one dataset per mode

Add data to dataset

Add dataset to plot

produce a plot file that
will generate an EPS figure
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Matplotlib

• src/core/examples/sample-rng-plot.py
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ns-3 Packet

• Packet is an advanced data structure with 
the following capabilities
– Supports fragmentation and reassembly
– Supports real or virtual application data
– Extensible
– Serializable (for emulation)
– Supports pretty-printing
– Efficient (copy-on-write semantics)
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ns-3 Packet structure

• Analogous to an mbuf/skbuff
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Copy-on-write

• Copy data bytes only as needed

52Figure source:  Mathieu Lacage'sPh.D. thesis
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Headers and trailers

• Most operations on packet involve adding 
and removing an ns3::Header

• class ns3::Header must implement four 
methods:

Serialize()

Deserialize()

GetSerializedSize()

Print()
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Headers and trailers (cont.)

• Headers are serialized into the packet byte 
buffer with Packet::AddHeader() and 
removed with Packet::RemoveHeader()

• Headers can also be 'Peeked' without 
removal

Ptr<Packet> pkt = Create<Packet> ();

UdpHeader hdr; // Note:  not heap allocated

pkt->AddHeader (hdr);

Ipv4Header iphdr;

pkt->AddHeader (iphdr);
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Packet tags

• Packet tag objects allow packets to carry around 
simulator-specific metadata
– Such as a "unique ID" for packets or 

• Tags may associate with byte ranges of data, or 
with the whole packet
– Distinction is important when packets are fragmented 

and reassembled
• Tags presently are not preserved across 

serialization boundaries (e.g. MPI)
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PacketTag vs. ByteTag

• Two tag types are available:  PacketTag and 
ByteTag
– ByteTags run with bytes
– PacketTags run with packets

• When Packet is fragmented, both copies of 
Packet get copies of PacketTags

• When two Packets are merged, only the 
PacketTags of the first are preserved

• PacketTags may be removed individually; 
ByteTags may be removed all at once
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Tag example

• Here is a simple example illustrating the use of tags from the code in 
src/internet/model/udp-socket-impl.cc:
Ptr<Packet> p;  // pointer to a pre-existing packet
SocketIpTtlTag tag
tag.SetTtl (m_ipMulticastTtl); // Convey the TTL from 
UDP layer to IP layer
p->AddPacketTag (tag);

• This tag is read at the IP layer, then stripped 
(src/internet/model/ipv4-l3-protocol.cc):
uint8_t ttl = m_defaultTtl;
SocketIpTtlTag tag;
bool found = packet->RemovePacketTag (tag);
if (found)
{

ttl = tag.GetTtl ();
}
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Packet metadata

• Packets may optionally carry metadata
– record every operation on a packet's buffer
– implementation of Packet::Print for pretty-printing of 

the packet
– sanity check that when a Header is removed, the 

Header was actually present to begin with

• Not enabled by default, for performance reasons
• To enable, insert one or both statements:

Packet::EnablePrinting ();
Packet::EnableChecking ();
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Ptr<Packet>

• Packets are reference counted objects that 
support the smart pointer class Ptr

• Use a templated "Create" method instead of 
CreateObject for ns3::Objects

• Typical creation:  
– Ptr<Packet> pkt = Create<Packet> ();

• In model code, Packet pointers may be const or 
non-const; often Packet::Copy() is used to obtain 
non-const from const

– Ptr<const Packet> cpkt = ...;

– Ptr<Packet> p = cpkt->Copy ();
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