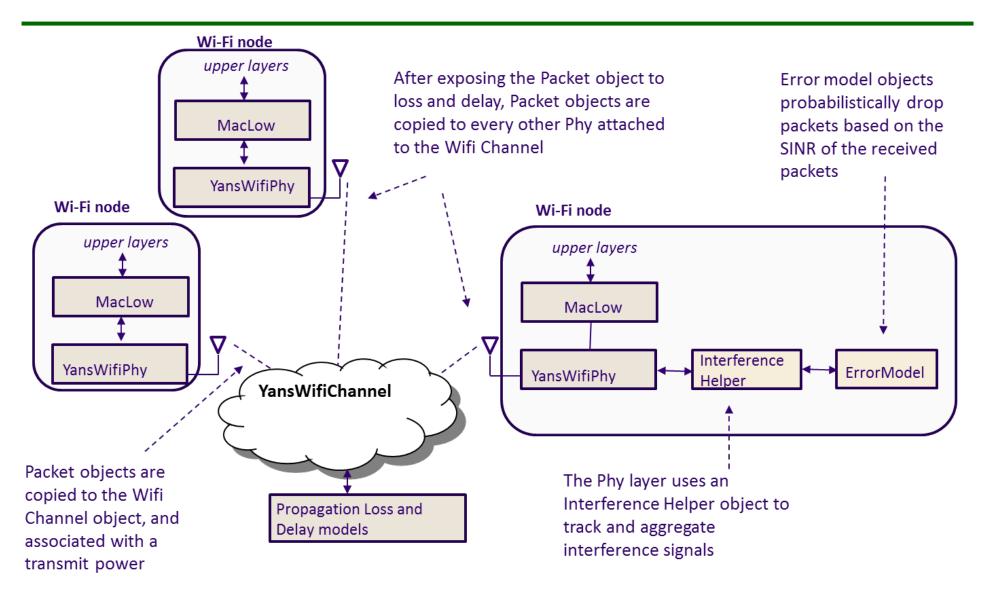
ns-3 Training

ns-3 training, June 2017

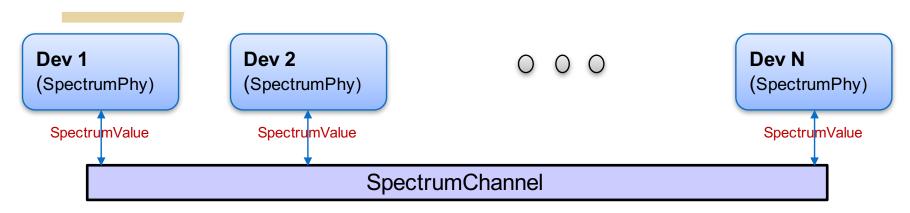
Outline

- Wi-Fi in detail
 - Support of standard features
 - Architecture
 - Configuration via helpers
- Advanced use case: LAA-Wifi-Coexistence
 - SpectrumWifiPhy
 - Adding a LBT Access Manager
 - Scenario support
 - Output data processing



Wi-Fi Overview

- WiFi module features
 - DCF implementation (Basic + RTS/CTS)
 - 802.11 a/b/g/n/ac (2.4 & 5 GHz) PHY
 - MSDU/MPDU aggregation
 - QoS support (EDCA)
 - Infrastructure and ad-hoc modes
 - Many rate adaptation algorithms
 - AWGN-based error models
- Unsupported features
 - MIMO
 - 11ac advanced features (Tx beamforming, Mu-MIMO)
- Related modules
 - Mesh (802.11s) and WAVE (802.11p/vehicular)



Current Wi-Fi PHY abstraction

Spectrum Module

- > Three key pieces
 - SpectrumValue, SpectrumChannel, SpectrumPhy
- > SpectrumValue is the signal abstraction being passed through to the channel (and to the users)
 - A vector of sub-bands representing center frequency, bandwidth, and sub-band power specral density
- > SpectrumChannel delays/attenuates/modifies the transmitted signal as specified before providing copies to all receivers
 - Automatically converts signals with different resolutions
- > Inheriting from **SpectrumPhy** allows different types of devices to interact through the wireless channel

Nodes, Mobility, and Position

- ALL nodes have to be created before simulation starts
- Position Allocators setup initial position of nodes
 - List, Grid, Random position...
- Mobility models specify how nodes will move
 - Constant position, constant velocity/acceleration, waypoint...
 - Trace-file based from mobility tools such as SUMO, BonnMotion (using NS2 format)
 - Routes Mobility using Google API (*)

Position Allocation Examples

```
List
MobilityHelper mobility;
// place two nodes at specific positions (100,0) and (0,100)
Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator> ();
positionAlloc->Add (Vector (100, 0, 0));
positionAlloc->Add (Vector (0, 100, 0));
mobility.SetPositionAllocator(positionAlloc);
Grid Position
 MobilityHelper mobility;
 // setup the grid itself: nodes are laid out started from (-100,-100) with 20 per row, the x
 // interval between each object is 5 meters and the y interval between each object is 20 meters
 mobility.SetPositionAllocator ("ns3::GridPositionAllocator",
                                     "MinX", DoubleValue (-100.0),
                                     "MinY", DoubleValue (-100.0),
                                     "DeltaX", DoubleValue (5.0),
                                     "DeltaY", DoubleValue (20.0),
                                     "GridWidth", UintegerValue (20),
                                     "LayoutType", StringValue ("RowFirst"));
Random Rectangle Position
 // place nodes uniformly on a straight line from (0, 1000)
 MobilityHelper mobility;
 Ptr<RandomRectanglePositionAllocator> positionAloc = CreateObject<RandomRectanglePositionAllocator>();
 positionAloc->SetAttribute("X", StringValue("ns3::UniformRandomVariable[Min=0.0|Max=100.0]"));
 positionAloc->SetAttribute("Y", StringValue("ns3::ConstantRandomVariable[Constant=50.0]"));
 mobility.SetPositionAllocator(positionAloc);
```


Mobility Model Example

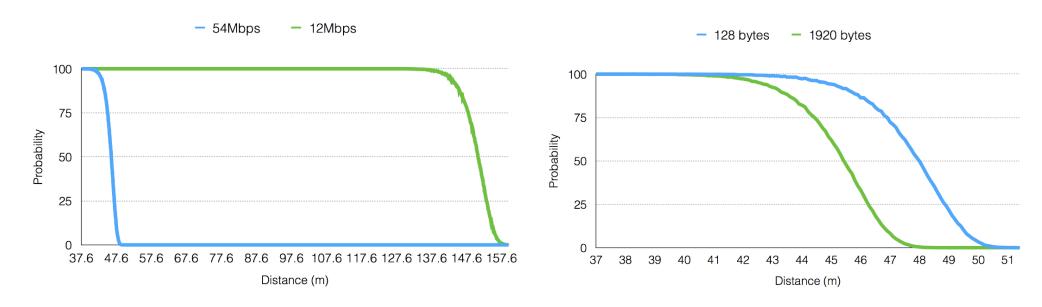
Constant Position MobilityHelper mobility; mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel"); mobility.Install (nodes); **Constant Speed** MobilityHelper mobility; mobility.SetMobilityModel ("ns3::ConstantVelocityMobilityModel"); mobility.Install (nodes); Ptr<UniformRandomVariable> rvar = CreateObject<UniformRandomVariable>(); for (NodeContainer::Iterator i = nodes.Begin (); i != nodes.End (); ++i){ Ptr<Node> node = (*i); double speed = rvar->GetValue(15, 25); node->GetObject<ConstantVelocityMobilityModel>()->SetVelocity(Vector(speed,0,0)); Trace-file based std::string traceFile = "mobility trace.txt"; // Create Ns2MobilityHelper with the specified trace log file as parameter Ns2MobilityHelper ns2 = Ns2MobilityHelper (traceFile); ns2.Install (); // configure movements for each node, while reading trace file

Interesting ns-3 extensions

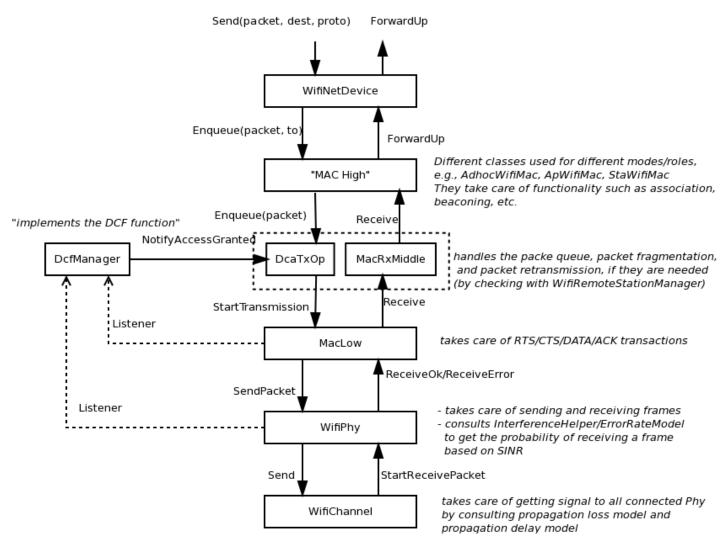
- ns-3-highway-mobility (<u>https://code.google.com/p/ns-3-highway-mobility/</u>)
 - Implement IDM and MOBIL change lane, highway class, traffic-lights.
 - Based on ns-3.8
 - No longer maintained
- Virtual Traffic Lights (PROMELA) (https://dsn.tm.kit.edu/misc_3434.php)
 - Manhattan IDM mobility model
 - NLOS propagation loss models
 - (Virtual) Traffic Light applications

Propagation Models

- Propagation Loss
 - ITUR1411, LogDistance, ThreeLogDistance, Range, TwoRayGround, Friis
 - Nakagami, Jakes
 - Obstacle model (*)


(*) Presented in WNS3 2015

- Propagation Delay
 - Constant Speed
 - Random
- Be careful when using YansWifiChannelHelper::Default() the LogDistance propagation model is added. Calling AddPropagationLoss() again will add a second propagation loss model.


Communication Range

- Depends on many factors
 - Propagation loss model and PHY configuration
 - Frame size (big vs small)
 - Transmission mode (6Mbps vs 54 Mbps)

Wi-Fi Architecture

MAC High

- Presently, three MAC high models
 - –AdhocWifiMac: simplest one
 - ApWifiMac: beacon, associations by STAs
 - -StaWifiMac: association based on beacons
- All inherit from RegularWifiMac, which handles QoS and non-QoS support

Rate controls

The following rate control algorithms can be used by the MAC low layer:

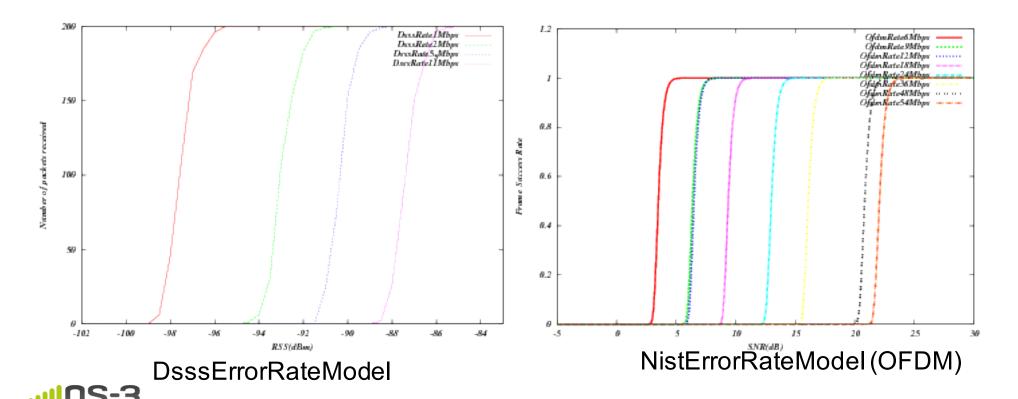
- Algorithms found in real devices:
 - ArfWifiManager (default for WifiHelper), OnoeWifiManager, ConstantRateWifiManager, MinstrelWifiManager, MinstrelHtWifiManager
- Algorithms in literature:
 - IdealWifiManager, AarfWifiManager, AmrrWifiManager,
 CaraWifiManager, RraaWifiManager, AarfcdWifiManager,
 ParfWifiManager, AparfWifiManager
- Example use of constant rate

MAC Middle/Low

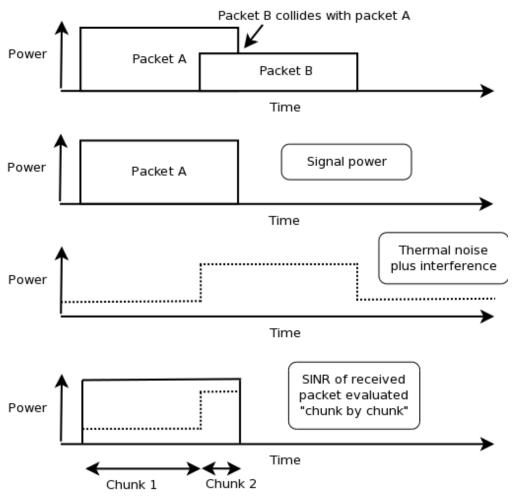
Three components:

- MacLow
 - RTS/CTS/DATA/ACK transactions
 - Aggregation, Block acks
- DcfManager
 - implements the DCF
- DcaTxop and EdcaTxopN:
 - One for NQoS, the other for QoS
 - Packet queue
 - Fragmentation/Retransmissions

Physical layer


- No AGC model
- Sync on first RX with energy > detection threshold
- Collision: the error model will likely cause a drop of the packet
- No capture effect: won't re-sync on a stronger packet

Error models


NETWORK SIMULATOR

- Based on analytical models with error bounds
- Three implementations with different bounds: YansErrorRateModel, NistErrorRateModel, DssErrorRateModel

Interference helper

SINR evaluated on chunk-by-chunk basis

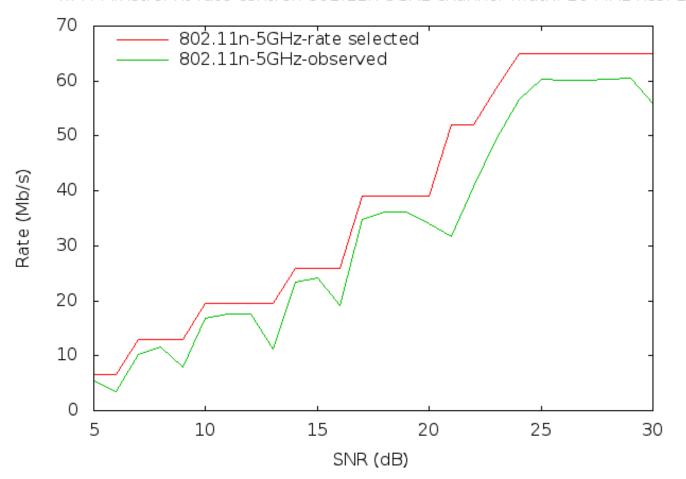
Configuring 802.11n/ac

- Example programs include
 - examples/wireless/ht-wifi-network.cc
 - examples/wireless/vht-wifi-network.cc
 - examples/wireless/wifi-aggregation.cc
- Setting the WifiPhyStandard will set most defaults reasonably

```
WifiHelper wifi;
wifi.SetStandard (WIFI_PHY_STANDARD_80211ac);
WifiMacHelper mac;
```

 802.11ac uses 80 MHz channel by default; 802.11n uses 20 MHz

802.11n/ac rate controls


- Possible options are IdealWifiManager, MinstrelHtWifiManager, and ConstantRateWifiManager
- examples:
 - src/wifi/examples/ideal-wifi-managerexample.cc
 - src/wifi/examples/minstrel-ht-wifi-managerexample.cc

Example output for MinstrelHt

- \$./waf --run "minstrel-ht-wifi-manager-example --standard=802.11n-5GHz"
- \$ gnuplot minstrel-ht-802.11n-5GHz-20MHz-LGI-1SS.plt

Wi-Fi Minstrel ht rate control: 802.11n-5GHz channel width: 20 MHz nss: 1

Typical configuration

```
std::string phyMode ("DsssRate1Mbps");
NodeContainer ap;
ap.Create (1);
NodeContainer sta;
sta.Create (2);
WifiHelper wifi;
wifi.SetStandard (WIFI PHY STANDARD 80211b);
YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
// ns-3 supports RadioTap and Prism tracing extensions for 802.11
wifiPhy.SetPcapDataLinkType (YansWifiPhyHelper::DLT IEEE802 11 RADIO);
YansWifiChannelHelper wifiChannel;
// reference loss must be changed since 802.11b is operating at 2.4GHz
wifiChannel.SetPropagationDelay
("ns3::ConstantSpeedPropagationDelayModel");
wifiChannel.AddPropagationLoss ("ns3::LogDistancePropagationLossModel",
                                "Exponent", DoubleValue (3.0),
                                "ReferenceLoss", DoubleValue (40.0459));
wifiPhy.SetChannel (wifiChannel.Create ());
```


Typical configuration (cont.)

```
// Add a non-QoS upper mac, and disable rate control
WifiMacHelper wifiMac;
wifi.SetRemoteStationManager ("ns3::ConstantRateWifiManager",
                              "DataMode", StringValue (phyMode),
                              "ControlMode", StringValue (phyMode));
// Setup the rest of the upper mac
Ssid ssid = Ssid ("wifi-default");
// setup ap.
wifiMac.SetType ("ns3::ApWifiMac",
                 "Ssid", SsidValue (ssid));
NetDeviceContainer apDevice = wifi.Install (wifiPhy, wifiMac, ap);
NetDeviceContainer devices = apDevice;
// setup sta.
wifiMac.SetType ("ns3::StaWifiMac",
                 "Ssid", SsidValue (ssid),
                 "ActiveProbing", BooleanValue (false));
NetDeviceContainer staDevice = wifi.Install (wifiPhy, wifiMac, sta);
devices.Add (staDevice);
```


Typical configuration (cont.)

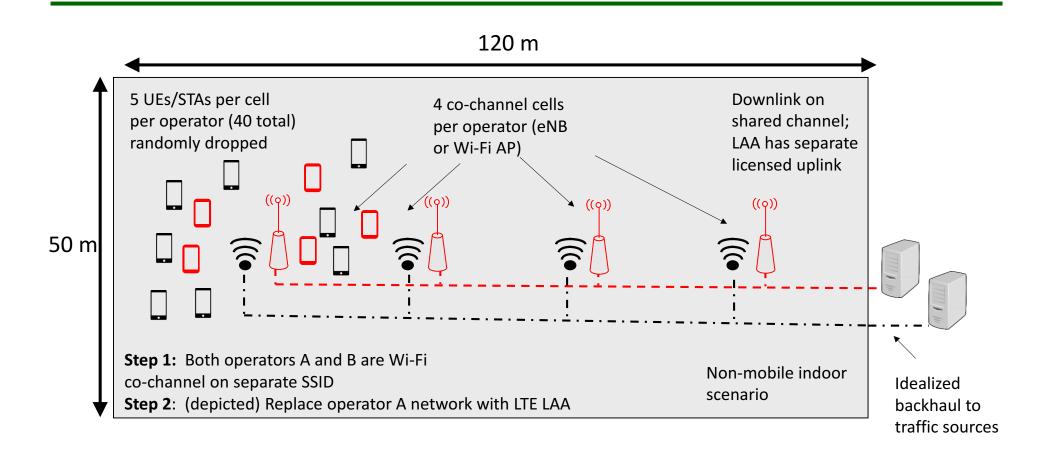
```
// Configure mobility
MobilityHelper mobility;
Ptr<ListPositionAllocator> positionAlloc =
CreateObject<ListPositionAllocator> ();
positionAlloc->Add (Vector (0.0, 0.0, 0.0));
positionAlloc->Add (Vector (5.0, 0.0, 0.0));
positionAlloc->Add (Vector (0.0, 5.0, 0.0));
mobility.SetPositionAllocator (positionAlloc);
mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
mobility.Install (ap);
mobility.Install (sta);
// other set up (e.g. InternetStack, Application)
```


Athstats helper

Hooks Wi-Fi traces to provide debugging similar to Madwifi drivers Example athstats output from example ./waf --run wifi-ap

m_txCount	m_rxCount	unused	short	long (exceeded	rxErro	or			
0	0	0	0	0	0	0	0	0	0	OM
0	60	0	0	0	0	0	0	0	0	OM
0	123	0	0	0	0	0	0	0	0	MO
0	122	0	0	0	0	0	0	0	0	OM
0	122	0	0	0	0	0	0	0	0	OM
0	122	0	0	0	0	0	0	0	0	OM
0	122	0	0	0	0	2	0	0	0	OM
0	122	0	0	0	0	23	0	0	0	OM
0	122	0	0	0	0	14	0	0	0	OM
0	122	0	0	0	0	14	0	0	0	OM
0	122	0	0	0	0	26	0	0	0	OM
0	122	0	0	0	0	12	0	0	0	OM

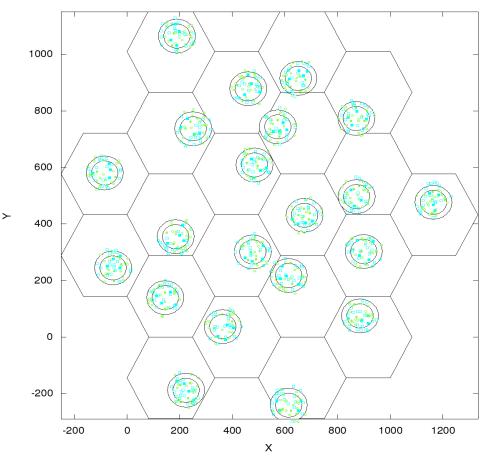
LTE/Wi-Fi Coexistence



Use case: LAA Wi-Fi Coexistence

- ns-3 has been extended to support scenarios for LTE LAA/Wi-Fi Coexistence
- Methodology defined in 3GPP Technical Report TR36.889
- Enhancements needed:
 - Wireless models (LBT access manager,
 SpectrumWifiPhy, propagation/fading models)
 - Scenario support (traffic models)
 - Output data processing

Indoor 3GPP scenario


Indoor scenario details

Unlicensed channel model	3GPP TR 36.889	ns-3 implementation		
Network Layout	Indoor scenario	Indoor scenario		
System bandwidth	20 MHz	20 MHz		
Carrier frequency	5 GHz	5 GHz (channel 36, tunable)		
Number of carriers	1, 4 (to be shared between two	1 for evaluations with DL+UL Wi-Fi		
	operators)	coexisting with DL-only LAA		
	1 for evaluations with DL+UL Wi-Fi	coombaning man 22 only 200		
	coexisting with DL-only LAA			
Total Base Station (BS) transmission	18/24 dBm	18/24 dBm		
power		Simulations herein consider 18 dBm		
Total User equipment (UE)	18 dBm for unlicensed spectrum	18 dBm		
transmission power	·			
Distance dependent path loss,	ITU InH	802.11ax indoor model		
shadowing and fading				
Antenna pattern	2D Omni-directional	2D Omni-directional		
Antenna height	6 m	6 m (LAA, not modelled for Wi-Fi)		
UE antenna height	1.5 m	1.5 m (LAA, not modelled for Wi-Fi)		
Antenna gain	5 dBi	5 dBi		
UE antenna gain	0 dBi	0 dBi		
Number of UEs	10 UEs per unlicensed band carrier per	Supports all the configurations in TR		
	operator for DL-only	36.889. Simulations herein consider the		
	10 UEs per unlicensed band carrier per	case of 20 UEs per unlicensed band		
	operator for DL-only for four unlicensed	carrier per operator for DL LAA		
	carriers.	coexistence evaluations for single		
	20 UEs per unlicensed band carrier per	unlicensed carrier.		
	operator for DL+UL for single			
	unlicensed carrier.			
	20 UEs per unlicensed band carrier per			
	operator for DL+UL Wi-Fi coexisting			
	with DL-only LAA			
UE Dropping	All UEs should be randomly dropped	Randomly dropped and within small cell		
	and be within coverage of the small cell	coverage.		
	in the unlicensed band.			
Traffic Model	FTP Model 1 and 3 based on TR	FTP Model 1 as in TR36.814.		
	36.814 FTP model file size: 0.5 Mbytes.	FTP model file size: 0.5 Mbytes		
	Optional: VoIP model based on	Voice model: DL only		
UE i f	TR36.889	0.40		
UE noise figure	9 dB	9 dB		
Cell selection	For LAA UEs, cell selection is based on	RSRP for LAA UEs and RSS for Wi-Fi		
	RSRP (Reference Signal Received	STAs		
	Power.			
	For Wi-Fi stations (STAs), cell selection is based on RSS (Received			
	signal power strength) of WiFi Access			
	Points (APs). RSS threshold is -82 dBm.			
Network synchronization	For the same operator, the network can	Small cells are synchronized, different		
Hetwork synchronization	be synchronized. Small cells of different	operators are not synchronized.		
	operators are not synchronized.	operators are not synchronized.		
	operators are not synchronized.			

Outdoor 3GPP scenario

Outdoor layout: hexagonal macrocell layout. 7 macro sites and 3 cells per site. 1 Cluster per cell. 4 small cells per operator per cluster, uniformly dropped. ITU UMi channel model.

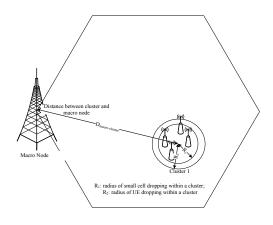
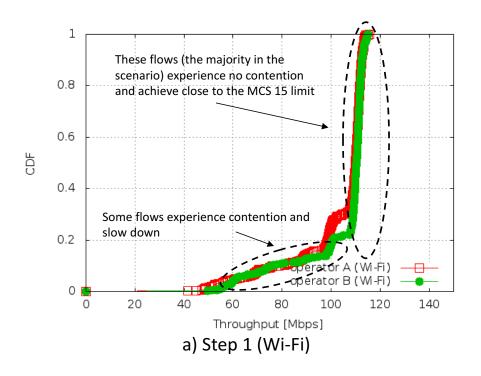
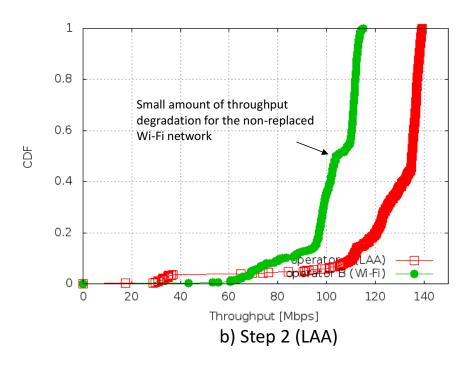
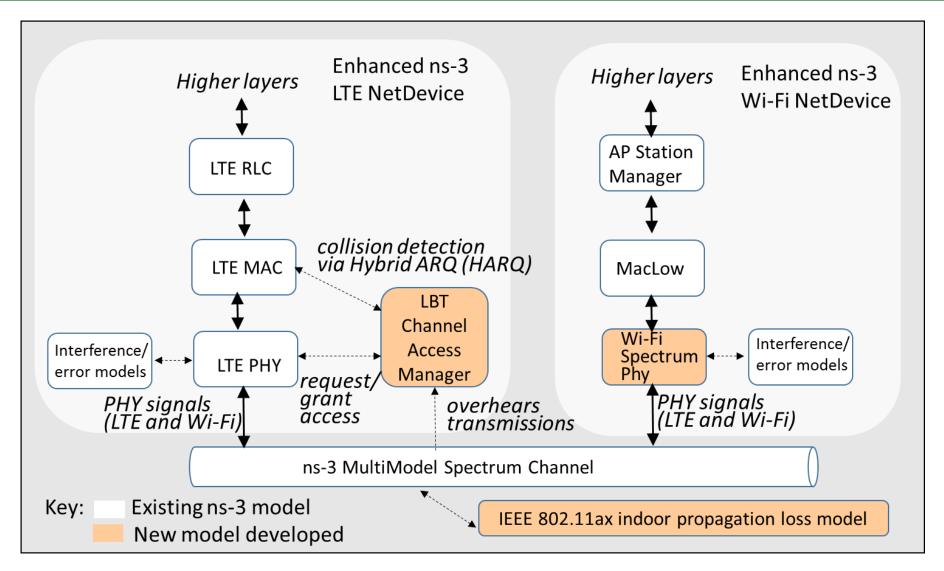


Figure source: 3GPP TR 36.889 V13.0.0 (2015-05)




References

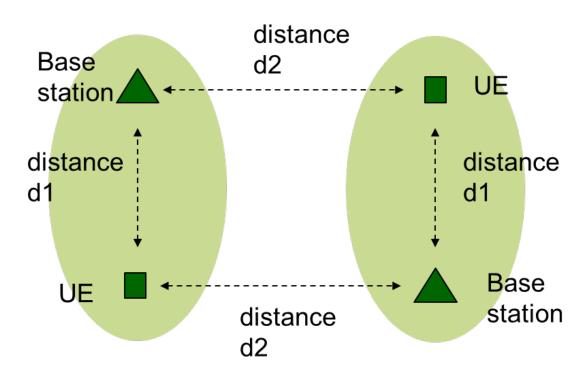
- ns-3 Wiki page:
 - https://www.nsnam.org/wiki/LAA-WiFi-Coexistence
 - module documentation
 - references to various publications
 - documentation on reproducing results
- Code:
 - http://code.nsnam.org/laa/ns-3-lbt


Sample results

Wi-Fi enhancements

Model enhancements: Wi-Fi

- Spectrum Wi-Fi Phy implementation
- Wi-Fi preamble detection based on AWGN and TGn Channel Model D
- Wi-Fi RSS-based AP selection and roaming
- Wi-Fi MIMO approximations to support 2x2 DL, 1x2 DL on AWGN and TGn Model D


Model enhancements: LTE

- LTE interference model relies on the simplifying assumption that all interfering signals are LTE and are synchronized at the subframe level.
- LTE inteference model has been enhanced to handle inteference by signals of any type.
- This relies on the ns-3 Spectrum framework.
- The reception of LTE signals is evaluated by chunks, where each chunk is identified by a constant power spectral density.

Scenario

- An initial test scenario, useful for testing basic model operation in a small scale setting, grew into TR36.889-like indoor and outdoor scenarios
- D1 and d2 can vary and operator A and B can be both LTE or Wi-Fi

Operator A

Operator B

Output experiment scripts

 Shell scripts and gnuplot helpers to manage configuration and data output

(demonstrate)

Status

- Portions are being migrated into ns-3-dev
 - -SpectrumWifiPhy in ns-3.26
 - –LTE components, propagation model likely in ns-3.27
 - -Scenario helper may be rewritten
- Trying to decompose into pieces easy to merge
- For more information:
 - https://www.nsnam.org/wiki/LAA-WiFi-Coexistence

