
Session 2: Thursday

MNM Workshop

March 2015

1

ns-3 Training

ns-3 build systems

MNM Workshop

March 2015

Software introduction

• Download the latest release
– wget http://www.nsnam.org/releases/ns-allinone-

3.19.tar.bz2

– tar xjf ns-allinone-3.19.tar.bz2

• Clone the latest development code
– hg clone http://code.nsnam.org/ns-3-allinone

MNM Workshop

March 2015

3

Q. What is "hg clone"?

A. Mercurial (http://www.selenic.com) is our source

code control tool.

Software building

• Two levels of ns-3 build

MNM Workshop

March 2015

4

ns-3click routing
Network

Simulation

Cradle

pybindgen

module

module module

module

module

module

1) bake (a Python-based build system to control an ordered build of

ns-3 and its libraries)

2) waf, a build system written in Python

3) build.py (a custom Python build script to control an ordered build of

ns-3 and its libraries) <--- may eventually be deprecated

ns-3 uses the 'waf' build system

• Waf is a Python-based framework for

configuring, compiling and installing

applications.

– It is a replacement for other tools such as

Autotools, Scons, CMake or Ant

– http://code.google.com/p/waf/

• For those familiar with autotools:
• configure ./waf configure

• make ./waf build

MNM Workshop

March 2015

5

waf configuration

• Key waf configuration examples

./waf configure

--enable-examples

--enable-tests

--disable-python

--enable-modules

• Whenever build scripts change, need to

reconfigure

MNM Workshop

March 2015

6

Demo: ./waf --help
./waf configure --enable-examples --

enable-tests --enable-modules='core'

Look at: build/c4che/_cache.py

wscript example

-*- Mode: python; py-indent-offset: 4; indent-tabs-mode: nil; coding: utf-8; -*-

def build(bld):

obj = bld.create_ns3_module('csma', ['network', 'applications'])

obj.source = [

'model/backoff.cc',

'model/csma-net-device.cc',

'model/csma-channel.cc',

'helper/csma-helper.cc',

]

headers = bld.new_task_gen(features=['ns3header'])

headers.module = 'csma'

headers.source = [

'model/backoff.h',

'model/csma-net-device.h',

'model/csma-channel.h',

'helper/csma-helper.h',

]

if bld.env['ENABLE_EXAMPLES']:

bld.add_subdirs('examples')

bld.ns3_python_bindings()

MNM Workshop

March 2015

7

waf build

• Once project is configured, can build via
./waf build or ./waf

• waf will build in parallel on multiple cores

• waf displays modules built at end of build

MNM Workshop

March 2015

Demo: ./waf build

Look at: build/ libraries and executables

Running programs

• ./waf shell provides a special shell for

running programs

– Sets key environment variables

./waf --run sample-simulator

./waf --pyrun src/core/examples/sample-

simulator.py

MNM Workshop

March 2015

Build variations

• Configure a build type is done at waf

configuration time

• debug build (default): all asserts and

debugging code enabled
./waf -d debug configure

• optimized
./waf -d optimized configure

• static libraries
./waf --enable-static configure

MNM Workshop

March 2015

10

Controlling the modular build

• One way to disable modules:

– ./waf configure --enable-modules='a','b','c'

• The .ns3rc file (found in utils/ directory) can be used to

control the modules built

• Precedence in controlling build

1) command line arguments

2) .ns3rc in ns-3 top level directory

3) .ns3rc in user's home directory

MNM Workshop

March 2015

11

Demo how .ns3rc works

Building without wscript

• The scratch/ directory can be used to build

programs without wscripts

MNM Workshop

March 2015

12

Demo how programs can be built without wscripts

bake overview

• Open source project maintains a (more stable) core

• Models migrate to a more federated development

process

"bake" tool (Lacage

and Camara)

Components:

• build client

• "module store"

server

• module metadata

Figure source: Daniel Camara

MNM Workshop

March 2015

13

bake basics

• bake can be used to build the Python

bindings toolchain, Direct Code Execution,

Network Simulation Cradle, etc.

• Manual available at
https://www.nsnam.org/docs/bake/tutorial/html/index.html

./bake.py configure -e <module>

./bake.py show

./bake.py download

./bake.py build

MNM Workshop

March 2015

https://www.nsnam.org/docs/bake/tutorial/html/index.html

Placeholder slide for demoing bake

MNM Workshop

March 2015

Demo: ./waf build

Look at: build/ libraries and executables

Simulator core

MNM Workshop

March 2015

Simulator example

MNM Workshop

March 2015

17

Simulator example (in Python)

MNM Workshop

March 2015

18

Simulation program flow

MNM Workshop

March 2015

Handle program inputs

Configure topology

Run simulation

Process outputs

Command-line arguments

• Add CommandLine to your program if you want

command-line argument parsing

• Passing --PrintHelp to programs will display command

line options, if CommandLine is enabled

./waf --run "sample-simulator --PrintHelp"

MNM Workshop

March 2015

20

Time in ns-3

• Time is stored as a large integer in ns-3

– Minimize floating point discrepancies across platforms

• Special Time classes are provided to manipulate

time (such as standard operators)

• Default time resolution is nanoseconds, but can

be set to other resolutions

• Time objects can be set by floating-point values

and can export floating-point values

double timeDouble = t.GetSeconds();

MNM Workshop

March 2015

21

Events in ns-3

• Events are just function calls that execute

at a simulated time

– i.e. callbacks

– another difference compared to other

simulators, which often use special "event

handlers" in each model

• Events have IDs to allow them to be

cancelled or to test their status

MNM Workshop

March 2015

22

Simulator and Schedulers

• The Simulator class holds a scheduler,

and provides the API to schedule events,

start, stop, and cleanup memory

• Several scheduler data structures

(calendar, heap, list, map) are possible

• "RealTime" simulation implementation

aligns the simulation time to wall-clock

time

– two policies (hard and soft limit) available

when the simulation and real time diverge
MNM Workshop

March 2015

23

Random Variables

• Currently implemented distributions
– Uniform: values uniformly distributed in an interval
– Constant: value is always the same (not really random)
– Sequential: return a sequential list of predefined values
– Exponential: exponential distribution (poisson process)
– Normal (gaussian), Log-Normal, Pareto, Weibull, triangular

MNM Workshop

March 2015

24

from src/core/examples/sample-rng-plot.py

Random variables and independent

replications

• Many simulation uses involve running a

number of independent replications of the

same scenario

• In ns-3, this is typically performed by

incrementing the simulation run number

– not by changing seeds

MNM Workshop

March 2015

25

ns-3 random number generator

• Uses the MRG32k3a generator from Pierre
L'Ecuyer

– http://www.iro.umontreal.ca/~lecuyer/myftp/papers/str
eams00.pdf

– Period of PRNG is 3.1x10^57

• Partitions a pseudo-random number generator
into uncorrelated streams and substreams

– Each RandomVariableStream gets its own stream

– This stream partitioned into substreams

MNM Workshop

March 2015

26

Run number vs. seed

• If you increment the seed of the PRNG, the

streams of random variable objects across

different runs are not guaranteed to be

uncorrelated

• If you fix the seed, but increment the run

number, you will get an uncorrelated substream

MNM Workshop

March 2015

27

Putting it together

• Example of scheduled event

MNM Workshop

March 2015

28

Demo real-time, command-line, random variables...

ns-3 Objects

29
ns-3

Object metadata system

• ns-3 is, at heart, a C++ object system

• ns-3 objects that inherit from base class

ns3::Object get several additional features

– smart-pointer memory management (Class

Ptr)

– dynamic run-time object aggregation

– an attribute system

30
ns-3

Smart pointers

• Smart pointers in ns-3 use reference counting to

improve memory management

• The class ns3::Ptr is semantically similar to a

traditional pointer, but the object pointed to will

be deleted when all references to the pointer are

gone

• ns-3 heap-allocated objects should use the

templated Create<>() or CreateObject<> ()

methods

MNM Workshop

March 2015

Examples

Ptr<WifiNetDevice> dev =

CreateObject<WifiNetDevice> ();

Ptr<Packet> pkt = Create<Packet> ();

(instead of Packet* = new Packet;)

why Create<> vs CreateObject<>?

• two different base classes; generally use

CreateObject<>(), but Create<> for Packet

MNM Workshop

March 2015

Dynamic run-time object aggregation

• This feature is similar to "Component

Object Model (COM)"-- allows interfaces

(objects) to be aggregated at run-time

instead of at compile time

• Useful for binding dissimilar objects

together without adding pointers to each

other in the classes

MNM Workshop

March 2015

Usage

• ns-3 Node protocol stacks are added via

aggregation

– The IP stack can be found from a Node

pointer without class Node knowing about it

• Energy models are typically aggregated to

nodes

• To find interfaces, use GetObject<>(); e.g.

Ptr<Ipv4> ipv4 = m_node->GetObject<Ipv4> ();

MNM Workshop

March 2015

Attributes and default values

MNM Workshop

March 2015

35

ns-3 attribute system

Problem: Researchers want to identify all of the values
affecting the results of their simulations

– and configure them easily

ns-3 solution: Each ns-3 object has a set of attributes:

– A name, help text

– A type

– An initial value

• Control all simulation parameters for static objects

• Dump and read them all in configuration files

• Visualize them in a GUI

• Makes it easy to verify the parameters of a simulation

36
ns-3

Short digression: Object metadata

system

• ns-3 is, at heart, a C++ object system

• ns-3 objects that inherit from base class

ns3::Object get several additional features

– dynamic run-time object aggregation

– an attribute system

– smart-pointer memory management (Class

Ptr)

37
ns-3

We focus here on the attribute system

Use cases for attributes

• An Attribute represents a value in our

system

• An Attribute can be connected to an

underlying variable or function

– e.g. TcpSocket::m_cwnd;

– or a trace source

38
ns-3

Use cases for attributes (cont.)

• What would users like to do?

– Know what are all the attributes that affect the

simulation at run time

– Set a default initial value for a variable

– Set or get the current value of a variable

– Initialize the value of a variable when a

constructor is called

• The attribute system is a unified way of

handling these functions
39

ns-3

How to handle attributes

• The traditional C++ way:

– export attributes as part of a class's public API

– walk pointer chains (and iterators, when

needed) to find what you need

– use static variables for defaults

• The attribute system provides a more

convenient API to the user to do these

things

40
ns-3

Navigating the attributes

• Attributes are exported into a string-based

namespace, with filesystem-like paths

– namespace supports regular expressions

• Attributes also can be used without the

paths

– e.g. “ns3::WifiPhy::TxGain”

• A Config class allows users to manipulate

the attributes

41
ns-3

Attribute namespace

• strings are used

to describe paths

through the

namespace

42
ns-3

Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipv4.tcp_sack", StringValue ("0"));

Navigating the attributes using paths

• Examples:

– Nodes with NodeIds 1, 3, 4, 5, 8, 9, 10, 11:

“/NodeList/[3-5]|[8-11]|1”

– UdpL4Protocol object instance aggregated to

matching nodes:

“/$ns3::UdpL4Protocol”

43
ns-3

What users will do

• e.g.: Set a default initial value for a

variable
Config::Set (“ns3::YansWifiPhy::TxGain”,

DoubleValue (1.0));

• Syntax also supports string values:
Config::Set (“YansWifiPhy::TxGain”,

StringValue (“1.0”));

44
ns-3

Attribute

Value

Fine-grained attribute handling

• Set or get the current value of a variable

– Here, one needs the path in the namespace to

the right instance of the object
Config::SetAttribute(“/NodeList/5/DeviceList/3/$n

s3::WifiNetDevice/Phy/$ns3::YansWifiPhy/TxGain”,

DoubleValue(1.0));

DoubleValue d; nodePtr->GetAttribute (

“/NodeList/5/NetDevice/3/$ns3::WifiNetDevice/Phy

/$ns3::YansWifiPhy/TxGain”, d);

• Users can get Ptrs to instances also, and

Ptrs to trace sources, in the same way
45

ns-3

Attribute documentation

46
ns-3

Options to manipulate attributes

• Individual object attributes often derive from default values

– Setting the default value will affect all subsequently created objects

– Ability to configure attributes on a per-object basis

• Set the default value of an attribute from the command-line:

CommandLine cmd;

cmd.Parse (argc, argv);

• Set the default value of an attribute with NS_ATTRIBUTE_DEFAULT

• Set the default value of an attribute in C++:

Config::SetDefault ("ns3::Ipv4L3Protocol::CalcChecksum",

BooleanValue (true));

• Set an attribute directly on a specic object:

Ptr<CsmaChannel> csmaChannel = ...;

csmaChannel->SetAttribute ("DataRate",

StringValue ("5Mbps"));

47
ns-3

Summary on ns-3 objects

• ns-3 objects that inherit from base class

ns3::Object get several additional features

1. smart-pointer memory management (Class

Ptr)

2. dynamic run-time object aggregation

3. an attribute system

• These types of objects are allocated on the

heap, not on the stack
48

ns-3

Packets

49
ns-3

ns-3 Packet

• Packet is an advanced data structure with

the following capabilities

– Supports fragmentation and reassembly

– Supports real or virtual application data

– Extensible

– Serializable (for emulation)

– Supports pretty-printing

– Efficient (copy-on-write semantics)

50
ns-3

ns-3 Packet structure

• Analogous to an mbuf/skbuff

51
ns-3

Copy-on-write

• Copy data bytes only as needed

52
ns-3

Figure source: Mathieu Lacage's Ph.D. thesis

Headers and trailers

• Most operations on packet involve adding

and removing an ns3::Header

• class ns3::Header must implement four

methods:
Serialize()

Deserialize()

GetSerializedSize()

Print()

MNM Workshop

March 2015

Headers and trailers (cont.)

• Headers are serialized into the packet byte

buffer with Packet::AddHeader() and

removed with Packet::RemoveHeader()

• Headers can also be 'Peeked' without

removal
Ptr<Packet> pkt = Create<Packet> ();

UdpHeader hdr; // Note: not heap allocated

pkt->AddHeader (hdr);

Ipv4Header iphdr;

pkt->AddHeader (iphdr);

MNM Workshop

March 2015

Packet tags

• Packet tag objects allow packets to carry

around simulator-specific metadata

– Such as a "unique ID" for packets or

• Tags may associate with byte ranges of

data, or with the whole packet

– Distinction is important when packets are

fragmented and reassembled

MNM Workshop

March 2015

Walkthrough of M/M/1 queue

56
ns-3

Nodes and Devices

57
ns-3

The basic model

58
ns-3

Application
Application

Protocol

stack

Node

NetDevice
NetDevice

Application
Application

Protocol
stack

Node

NetDevice
NetDevice

Sockets-like

API

Channel

Channel

Packet(s)

Example program

• examples/wireless/wifi-simple-adhoc-

grid.cc

• examine wscript for necessary modules
– 'internet', 'mobility', 'wifi', 'config-store',

'tools'

– we'll add 'visualizer'

• ./waf configure --enable-examples --

enable-modules=...

MNM Workshop

March 2015

59

Example program

• (5x5) grid of WiFi ad hoc nodes

• OLSR packet routing

• Try to send packet from one node to another

MNM Workshop

March 2015

60

WiFi
• Goal is to read and

understand the high-level

ns-3 API

Source (node 24) by default

Sink (node 0) by default

Fundamentals

Key objects in the simulator are Nodes,

Packets, and Channels

Nodes contain Applications, “stacks”, and

NetDevices

61
ns-3

Node basics

A Node is a shell of a computer to which

applications, stacks, and NICs are added

62
ns-3

Application
Application

Application

“DTN”

NetDevices and Channels

NetDevices are strongly bound to Channels

of a matching type

Nodes are architected for multiple interfaces

63
ns-3

WifiNetDevice

WifiChannel

Internet Stack

• Internet Stack

– Provides IPv4 and some IPv6 models

currently

• No non-IP stacks ns-3 until 802.15.4 was

introduced in ns-3.20

– but no dependency on IP in the devices,

Node, Packet, etc. (partly due to the object

aggregation system)

64
ns-3

Other basic models in ns-3

• Devices

– WiFi, WiMAX, CSMA, Point-to-point, Bridge

• Error models and queues

• Applications

– echo servers, traffic generator

• Mobility models

• Packet routing

– OLSR, AODV, DSR, DSDV, Static, Nix-
Vector, Global (link state)

65
ns-3

Structure of an ns-3 program

int main (int argc, char *argv[])

{

// Set default attribute values

// Parse command-line arguments

// Configure the topology; nodes, channels, devices, mobility

// Add (Internet) stack to nodes

// Configure IP addressing and routing

// Add and configure applications

// Configure tracing

// Run simulation

}

66
ns-3

Review of example program

67
ns-3

Helper API

• The ns-3 “helper API” provides a set of classes

and methods that make common operations

easier than using the low-level API

• Consists of:

– container objects

– helper classes

• The helper API is implemented using the low-

level API

• Users are encouraged to contribute or propose

improvements to the ns-3 helper API

68
ns-3

Containers

• Containers are part of the ns-3 “helper

API”

• Containers group similar objects, for

convenience

– They are often implemented using C++ std

containers

• Container objects also are intended to

provide more basic (typical) API

69
ns-3

The Helper API (vs. low-level API)

• Is not generic

• Does not try to allow code reuse

• Provides simple 'syntactical sugar' to make

simulation scripts look nicer and easier to

read for network researchers

• Each function applies a single operation on

a ''set of same objects”

• A typical operation is "Install()"

70
ns-3

Helper Objects

• NodeContainer: vector of Ptr<Node>

• NetDeviceContainer: vector of Ptr<NetDevice>

• InternetStackHelper

• WifiHelper

• MobilityHelper

• OlsrHelper

• ... Each model provides a helper class

71
ns-3

Example program

• (5x5) grid of WiFi ad hoc nodes

• OLSR packet routing

• Try to send packet from one node to another

MNM Workshop

March 2015

72

WiFi

Source (node 24) by default

Sink (node 0) by default

• Let’s look closely at how

these objects are created

Installation onto containers

• Installing models into containers, and

handling containers, is a key API theme

NodeContainer c;

c.Create (numNodes);

...

mobility.Install (c);

...

internet.Install (c);

...

MNM Workshop

March 2015

73

Internet stack

74
ns-3

• The public interface of

the Internet stack is

defined (abstract base

classes) in

src/network/model

directory

• The intent is to support

multiple implementations

• The default ns-3 Internet

stack is implemented in

src/internet-stack

ns-3 TCP

• Several options exist:

– native ns-3 TCP

– Tahoe, Reno, NewReno (others in development)

– TCP simulation cradle (NSC)

– Use of virtual machines or DCE (more on this

later)

• To enable NSC:
internetStack.SetNscStack ("liblinux2.6.26.so");

75
ns-3

ns-3 simulation cradle

• Port by Florian Westphal of Sam Jansen’s Ph.D. work

76
ns-3

Figure reference: S. Jansen, Performance, validation and testing with the Network

Simulation Cradle. MASCOTS 2006.

ns-3 simulation cradle

77
ns-3

For ns-3:

• Linux 2.6.18

• Linux 2.6.26

• Linux 2.6.28

Others:

• FreeBSD 5

• lwip 1.3

• OpenBSD 3

Other simulators:

• ns-2

• OmNET++

Figure reference: S. Jansen, Performance, validation and testing with the Network

Simulation Cradle. MASCOTS 2006.

IPv4 address configuration

• An Ipv4 address helper can assign

addresses to devices in a NetDevice

container

78
ns-3

Ipv4AddressHelper ipv4;

ipv4.SetBase ("10.1.1.0", "255.255.255.0");

csmaInterfaces = ipv4.Assign (csmaDevices);

...

ipv4.NewNetwork (); // bumps network to 10.1.2.0

otherCsmaInterfaces = ipv4.Assign (otherCsmaDevices);

Applications and sockets

• In general, applications in ns-3 derive from

the ns3::Application base class

– A list of applications is stored in the ns3::Node

– Applications are like processes

• Applications make use of a sockets-like

API

– Application::Start () may call

ns3::Socket::SendMsg() at a lower layer

79
ns-3

Sockets API

Plain C sockets

int sk;

sk = socket(PF_INET, SOCK_DGRAM, 0);

struct sockaddr_in src;

inet_pton(AF_INET,”0.0.0.0”,&src.sin_ad

dr);

src.sin_port = htons(80);

bind(sk, (struct sockaddr *) &src,

sizeof(src));

struct sockaddr_in dest;

inet_pton(AF_INET,”10.0.0.1”,&dest.sin_

addr);

dest.sin_port = htons(80);

sendto(sk, ”hello”, 6, 0, (struct

sockaddr *) &dest, sizeof(dest));

char buf[6];

recv(sk, buf, 6, 0);

}

80
ns-3

ns-3 sockets

Ptr<Socket> sk =

udpFactory->CreateSocket ();

sk->Bind (InetSocketAddress (80));

sk->SendTo (InetSocketAddress (Ipv4Address

(”10.0.0.1”), 80), Create<Packet>

(”hello”, 6));

sk->SetReceiveCallback (MakeCallback

(MySocketReceive));

• […] (Simulator::Run ())

void MySocketReceive (Ptr<Socket> sk,

Ptr<Packet> packet)

{

...

}

Mobility models in ns-3

• The MobilityModel interface:

– void SetPosition (Vector pos)

– Vector GetPosition ()

• StaticMobilityModel

– Node is at a fixed location; does not move on its own

• RandomWaypointMobilityModel

– (works inside a rectangular bounded area)

– Node pauses for a certain random time

– Node selects a random waypoint and speed

– Node starts walking towards the waypoint

– When waypoint is reached, goto first state

• RandomDirectionMobilityModel

– works inside a rectangular bounded area)

– Node selects a random direction and speed

– Node walks in that direction until the edge

– Node pauses for random time

– Repeat

81
ns-3

3D Cartesian coordinate system

z
y

x

Object names

• It can be helpful to refer to objects by a

string name

– “access point”

– “eth0”

• Objects can now be associated with a

name, and the name used in the attribute

system

82
ns-3

Names example

NodeContainer n;

n.Create (4);

Names::Add ("client", n.Get (0));

Names::Add ("server", n.Get (1));

...

Names::Add ("client/eth0", d.Get (0));

...

Config::Set ("/Names/client/eth0/Mtu", UintegerValue

(1234));

Equivalent to:

Config::Set (“/NodeList/0/DeviceList/0/Mtu”, UintegerValue

(1234));

83
ns-3

Tracing and statistics

• Tracing is a structured form of simulation

output

• Example (from ns-2):
+ 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

- 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

r 1.84471 2 1 cbr 210 ------- 1 3.0 1.0 195 600

r 1.84566 2 0 ack 40 ------- 2 3.2 0.1 82 602

+ 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611

Problem: Tracing needs vary widely

– would like to change tracing output without

editing the core

– would like to support multiple outputs
84

ns-3

Tracing overview

• Simulator provides a set of pre-configured

trace sources

– Users may edit the core to add their own

• Users provide trace sinks and attach to the

trace source

– Simulator core provides a few examples for

common cases

• Multiple trace sources can connect to a

trace sink
85

ns-3

Tracing in ns-3

• ns-3 configures multiple 'TraceSource' objects

(TracedValue, TracedCallback)

• Multiple types of 'TraceSink' objects can be hooked to

these sources

• A special configuration namespace helps to manage

access to trace sources

MNM Workshop

March 2015

86

TraceSource

TracedValue

TraceSource

Config::Connect ("/path/to/traced/value", callback1);

Config::Connect ("/path/to/trace/source", callback2);

unattached

NetDevice trace hooks

• Example: CsmaNetDevice

MNM Workshop

March 2015

87

CsmaNetDevice::Send ()

CsmaNetDevice::

TransmitStart()

CsmaNetDevice::

Receive()

CsmaChannel

NetDevice::

ReceiveCallback

queue

MacRx

MacDrop
MacTx

MacTxBackoff

PhyTxBegin

PhyTxEnd
PhyTxDrop

Sniffer

PromiscSniffer

PhyRxEnd

PhyRxDrop

