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Software introduction

• Download the latest release
– wget http://www.nsnam.org/releases/ns-allinone-

3.19.tar.bz2

– tar xjf ns-allinone-3.19.tar.bz2

• Clone the latest development code
– hg clone http://code.nsnam.org/ns-3-allinone
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Q.  What is "hg clone"?  

A.  Mercurial (http://www.selenic.com) is our source 

code control tool. 



Software building

• Two levels of ns-3 build

MNM Workshop

March 2015

4

ns-3click routing
Network

Simulation

Cradle

pybindgen

module

module module

module

module

module

1) bake (a Python-based build system to control an ordered build of 

ns-3 and its libraries)

2) waf, a build system written in Python

3) build.py (a custom Python build script to control an ordered build of 

ns-3 and its libraries)  <--- may eventually be deprecated



ns-3 uses the 'waf' build system

• Waf is a Python-based framework for 

configuring, compiling and installing 

applications. 

– It is a replacement for other tools such as 

Autotools, Scons, CMake or Ant 

– http://code.google.com/p/waf/

• For those familiar with autotools:
• configure ./waf configure

• make ./waf build
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waf configuration

• Key waf configuration examples

./waf configure

--enable-examples

--enable-tests

--disable-python

--enable-modules

• Whenever build scripts change, need to 

reconfigure
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Demo:  ./waf --help
./waf configure --enable-examples --

enable-tests --enable-modules='core'

Look at:  build/c4che/_cache.py 



wscript example

## -*- Mode: python; py-indent-offset: 4; indent-tabs-mode: nil; coding: utf-8; -*-

def build(bld):

obj = bld.create_ns3_module('csma', ['network', 'applications'])

obj.source = [

'model/backoff.cc',

'model/csma-net-device.cc',

'model/csma-channel.cc',

'helper/csma-helper.cc',

]

headers = bld.new_task_gen(features=['ns3header'])

headers.module = 'csma'

headers.source = [

'model/backoff.h',

'model/csma-net-device.h',

'model/csma-channel.h',

'helper/csma-helper.h',

]

if bld.env['ENABLE_EXAMPLES']:

bld.add_subdirs('examples')

bld.ns3_python_bindings()
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waf build

• Once project is configured, can build via 
./waf build or ./waf

• waf will build in parallel on multiple cores

• waf displays modules built at end of build
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Demo:  ./waf build

Look at:  build/  libraries and executables



Running programs

• ./waf shell provides a special shell for 

running programs

– Sets key environment variables

./waf --run sample-simulator

./waf --pyrun src/core/examples/sample-

simulator.py
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Build variations

• Configure a build type is done at waf 

configuration time

• debug build (default):  all asserts and 

debugging code enabled
./waf -d debug configure

• optimized
./waf -d optimized configure

• static libraries
./waf --enable-static configure
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Controlling the modular build

• One way to disable modules:

– ./waf configure --enable-modules='a','b','c'

• The .ns3rc file (found in utils/ directory) can be used to 

control the modules built

• Precedence in controlling build

1) command line arguments

2) .ns3rc in ns-3 top level directory

3) .ns3rc in user's home directory
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Demo how .ns3rc works



Building without wscript

• The scratch/ directory can be used to build 

programs without wscripts
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Demo how programs can be built without wscripts



bake overview

• Open source project maintains a (more stable) core

• Models migrate to a more federated development 

process

"bake" tool (Lacage

and Camara)

Components:

• build client

• "module store" 

server

• module metadata

Figure source: Daniel Camara
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bake basics

• bake can be used to build the Python 

bindings toolchain, Direct Code Execution, 

Network Simulation Cradle, etc.

• Manual available at
https://www.nsnam.org/docs/bake/tutorial/html/index.html

./bake.py configure -e <module>

./bake.py show

./bake.py download

./bake.py build
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https://www.nsnam.org/docs/bake/tutorial/html/index.html


Placeholder slide for demoing bake
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Demo:  ./waf build

Look at:  build/  libraries and executables



Simulator core
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Simulator example
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Simulator example (in Python)
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Simulation program flow
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Handle program inputs

Configure topology

Run simulation

Process outputs



Command-line arguments

• Add CommandLine to your program if you want 

command-line argument parsing

• Passing --PrintHelp to programs will display command 

line options, if CommandLine is enabled

./waf --run "sample-simulator --PrintHelp"
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Time in ns-3

• Time is stored as a large integer in ns-3

– Minimize floating point discrepancies across platforms

• Special Time classes are provided to manipulate 

time (such as standard operators)

• Default time resolution is nanoseconds, but can 

be set to other resolutions

• Time objects can be set by floating-point values 

and can export floating-point values

double timeDouble = t.GetSeconds();
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Events in ns-3

• Events are just function calls that execute 

at a simulated time

– i.e. callbacks

– another difference compared to other 

simulators, which often use special "event 

handlers" in each model

• Events have IDs to allow them to be 

cancelled or to test their status

MNM Workshop

March 2015

22



Simulator and Schedulers

• The Simulator class holds a scheduler, 

and provides the API to schedule events, 

start, stop, and cleanup memory

• Several scheduler data structures 

(calendar, heap, list, map) are possible

• "RealTime" simulation implementation 

aligns the simulation time to wall-clock 

time

– two policies (hard and soft limit) available 

when the simulation and real time diverge
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Random Variables

• Currently implemented distributions
– Uniform: values uniformly distributed in an interval
– Constant: value is always the same (not really random)
– Sequential: return a sequential list of predefined values
– Exponential: exponential distribution (poisson process)
– Normal (gaussian), Log-Normal, Pareto, Weibull, triangular
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from src/core/examples/sample-rng-plot.py



Random variables and independent 

replications

• Many simulation uses involve running a 

number of independent replications of the 

same scenario

• In ns-3, this is typically performed by 

incrementing the simulation run number

– not by changing seeds
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ns-3 random number generator

• Uses the MRG32k3a generator from Pierre 
L'Ecuyer 

– http://www.iro.umontreal.ca/~lecuyer/myftp/papers/str
eams00.pdf

– Period of PRNG is 3.1x10^57

• Partitions a pseudo-random number generator 
into uncorrelated streams and substreams

– Each RandomVariableStream gets its own stream

– This stream partitioned into substreams
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Run number vs. seed

• If you increment the seed of the PRNG, the 

streams of random variable objects across 

different runs are not guaranteed to be 

uncorrelated

• If you fix the seed, but increment the run 

number, you will get an uncorrelated substream
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Putting it together

• Example of scheduled event
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Demo real-time, command-line, random variables...



ns-3 Objects
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Object metadata system

• ns-3 is, at heart, a C++ object system

• ns-3 objects that inherit from base class 

ns3::Object get several additional features

– smart-pointer memory management (Class 

Ptr)

– dynamic run-time object aggregation

– an attribute system

30
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Smart pointers

• Smart pointers in ns-3 use reference counting to 

improve memory management

• The class ns3::Ptr is semantically similar to a 

traditional pointer, but the object pointed to will 

be deleted when all references to the pointer are 

gone

• ns-3 heap-allocated objects should use the 

templated Create<>() or CreateObject<> () 

methods
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Examples

Ptr<WifiNetDevice> dev = 

CreateObject<WifiNetDevice> ();

Ptr<Packet> pkt = Create<Packet> ();

(instead of Packet* = new Packet;)

why Create<> vs CreateObject<>?

• two different base classes; generally use 

CreateObject<>(), but Create<> for Packet
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Dynamic run-time object aggregation

• This feature is similar to "Component 

Object Model (COM)"-- allows interfaces 

(objects) to be aggregated at run-time 

instead of at compile time

• Useful for binding dissimilar objects 

together without adding pointers to each 

other in the classes
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Usage

• ns-3 Node protocol stacks are added via 

aggregation

– The IP stack can be found from a Node 

pointer without class Node knowing about it

• Energy models are typically aggregated to 

nodes

• To find interfaces, use GetObject<>(); e.g.

Ptr<Ipv4> ipv4 = m_node->GetObject<Ipv4> ();
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Attributes and default values
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ns-3 attribute system

Problem: Researchers want to identify all of the values 
affecting the results of their simulations

– and configure them easily

ns-3 solution: Each ns-3 object has a set of attributes:

– A name, help text

– A type

– An initial value

• Control all simulation parameters for static objects

• Dump and read them all in configuration files

• Visualize them in a GUI

• Makes it easy to verify the parameters of a simulation
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Short digression: Object metadata 

system

• ns-3 is, at heart, a C++ object system

• ns-3 objects that inherit from base class 

ns3::Object get several additional features

– dynamic run-time object aggregation

– an attribute system

– smart-pointer memory management (Class 

Ptr)

37
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We focus here on the attribute system



Use cases for attributes

• An Attribute represents a value in our 

system

• An Attribute can be connected to an 

underlying variable or function 

– e.g. TcpSocket::m_cwnd;

– or a trace source
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Use cases for attributes (cont.)

• What would users like to do?

– Know what are all the attributes that affect the 

simulation at run time

– Set a default initial value for a variable

– Set or get the current value of a variable

– Initialize the value of a variable when a 

constructor is called

• The attribute system is a unified way of 

handling these functions
39
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How to handle attributes

• The traditional C++ way:

– export attributes as part of a class's public API

– walk pointer chains (and iterators, when 

needed) to find what you need

– use static variables for defaults

• The attribute system provides a more 

convenient API to the user to do these 

things
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Navigating the attributes

• Attributes are exported into a string-based 

namespace, with filesystem-like paths

– namespace supports regular expressions

• Attributes also can be used without the 

paths

– e.g. “ns3::WifiPhy::TxGain”

• A Config class allows users to manipulate 

the attributes
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Attribute namespace

• strings are used 

to describe paths 

through the 

namespace
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Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipv4.tcp_sack", StringValue ("0"));



Navigating the attributes using paths

• Examples:

– Nodes with NodeIds 1, 3, 4, 5, 8, 9, 10, 11:

“/NodeList/[3-5]|[8-11]|1”

– UdpL4Protocol object instance aggregated to 

matching nodes:

“/$ns3::UdpL4Protocol”
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What users will do

• e.g.: Set a default initial value for a 

variable
Config::Set (“ns3::YansWifiPhy::TxGain”, 

DoubleValue (1.0));

• Syntax also supports string values:
Config::Set (“YansWifiPhy::TxGain”, 

StringValue (“1.0”));

44
ns-3

Attribute

Value



Fine-grained attribute handling

• Set or get the current value of a variable

– Here, one needs the path in the namespace to 

the right instance of the object
Config::SetAttribute(“/NodeList/5/DeviceList/3/$n

s3::WifiNetDevice/Phy/$ns3::YansWifiPhy/TxGain”, 

DoubleValue(1.0));

DoubleValue d; nodePtr->GetAttribute ( 

“/NodeList/5/NetDevice/3/$ns3::WifiNetDevice/Phy

/$ns3::YansWifiPhy/TxGain”, d);

• Users can get Ptrs to instances also, and 

Ptrs to trace sources, in the same way
45
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Attribute documentation
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Options to manipulate attributes

• Individual object attributes often derive from default values

– Setting the default value will affect all subsequently created objects

– Ability to configure attributes on a per-object basis

• Set the default value of an attribute from the command-line:

CommandLine cmd;

cmd.Parse (argc, argv);

• Set the default value of an attribute with NS_ATTRIBUTE_DEFAULT

• Set the default value of an attribute in C++:

Config::SetDefault ("ns3::Ipv4L3Protocol::CalcChecksum",

BooleanValue (true));

• Set an attribute directly on a specic object:

Ptr<CsmaChannel> csmaChannel = ...;

csmaChannel->SetAttribute ("DataRate",

StringValue ("5Mbps"));

47
ns-3



Summary on ns-3 objects

• ns-3 objects that inherit from base class 

ns3::Object get several additional features

1. smart-pointer memory management (Class 

Ptr)

2. dynamic run-time object aggregation

3. an attribute system

• These types of objects are allocated on the 

heap, not on the stack
48

ns-3



Packets
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ns-3 Packet

• Packet is an advanced data structure with 

the following capabilities

– Supports fragmentation and reassembly

– Supports real or virtual application data

– Extensible

– Serializable (for emulation)

– Supports pretty-printing

– Efficient (copy-on-write semantics)
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ns-3 Packet structure

• Analogous to an mbuf/skbuff
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Copy-on-write

• Copy data bytes only as needed
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Figure source:  Mathieu Lacage's Ph.D. thesis



Headers and trailers

• Most operations on packet involve adding 

and removing an ns3::Header

• class ns3::Header must implement four 

methods:
Serialize()

Deserialize()

GetSerializedSize()

Print()
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Headers and trailers (cont.)

• Headers are serialized into the packet byte 

buffer with Packet::AddHeader() and 

removed with Packet::RemoveHeader()

• Headers can also be 'Peeked' without 

removal
Ptr<Packet> pkt = Create<Packet> ();

UdpHeader hdr; // Note:  not heap allocated

pkt->AddHeader (hdr);

Ipv4Header iphdr;

pkt->AddHeader (iphdr);
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Packet tags

• Packet tag objects allow packets to carry 

around simulator-specific metadata

– Such as a "unique ID" for packets or 

• Tags may associate with byte ranges of 

data, or with the whole packet

– Distinction is important when packets are 

fragmented and reassembled
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Walkthrough of M/M/1 queue
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Nodes and Devices
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The basic model
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Application
Application

Protocol

stack

Node

NetDevice
NetDevice

Application
Application

Protocol
stack

Node

NetDevice
NetDevice

Sockets-like

API

Channel

Channel

Packet(s)



Example program

• examples/wireless/wifi-simple-adhoc-

grid.cc

• examine wscript for necessary modules
– 'internet', 'mobility', 'wifi', 'config-store', 

'tools'

– we'll add 'visualizer'

• ./waf configure --enable-examples --

enable-modules=...
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Example program

• (5x5) grid of WiFi ad hoc nodes

• OLSR packet routing

• Try to send packet from one node to another
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WiFi
• Goal is to read and 

understand the high-level

ns-3 API

Source (node 24) by default

Sink (node 0) by default



Fundamentals

Key objects in the simulator are Nodes, 

Packets, and Channels

Nodes contain Applications, “stacks”, and 

NetDevices
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Node basics

A Node is a shell of a computer to which 

applications, stacks, and NICs are added
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Application
Application

Application

“DTN”



NetDevices and Channels

NetDevices are strongly bound to Channels 

of a matching type

Nodes are architected for multiple interfaces
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WifiNetDevice

WifiChannel



Internet Stack

• Internet Stack

– Provides IPv4 and some IPv6 models 

currently

• No non-IP stacks ns-3 until 802.15.4 was 

introduced in ns-3.20

– but no dependency on IP in the devices, 

Node, Packet, etc. (partly due to the object 

aggregation system)
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Other basic models in ns-3

• Devices

– WiFi, WiMAX, CSMA, Point-to-point, Bridge

• Error models and queues

• Applications

– echo servers, traffic generator

• Mobility models

• Packet routing

– OLSR, AODV, DSR, DSDV, Static, Nix-
Vector, Global (link state)
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Structure of an ns-3 program

int main (int argc, char *argv[])

{

// Set default attribute values

// Parse command-line arguments

// Configure the topology; nodes, channels, devices, mobility

// Add (Internet) stack to nodes

// Configure IP addressing and routing

// Add and configure applications

// Configure tracing

// Run simulation

} 
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Review of example program
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Helper API

• The ns-3 “helper API” provides a set of classes 

and methods that make common operations 

easier than using the low-level API

• Consists of:

– container objects

– helper classes

• The helper API is implemented using the low-

level API

• Users are encouraged to contribute or propose 

improvements to the ns-3 helper API
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Containers

• Containers are part of the ns-3 “helper 

API”

• Containers group similar objects, for 

convenience

– They are often implemented using C++ std 

containers

• Container objects also are intended to 

provide more basic (typical) API
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The Helper API (vs. low-level API)

• Is not generic

• Does not try to allow code reuse

• Provides simple 'syntactical sugar' to make 

simulation scripts look nicer and easier to 

read for network researchers

• Each function applies a single operation on 

a ''set of same objects”

• A typical operation is "Install()"
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Helper Objects

• NodeContainer: vector of Ptr<Node>

• NetDeviceContainer: vector of Ptr<NetDevice>

• InternetStackHelper

• WifiHelper

• MobilityHelper

• OlsrHelper

• ... Each model provides a helper class
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Example program

• (5x5) grid of WiFi ad hoc nodes

• OLSR packet routing

• Try to send packet from one node to another
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WiFi

Source (node 24) by default

Sink (node 0) by default

• Let’s look closely at how

these objects are created



Installation onto containers

• Installing models into containers, and 

handling containers, is a key API theme

NodeContainer c;

c.Create (numNodes);

...

mobility.Install (c);

...

internet.Install (c);

...
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Internet stack

74
ns-3

• The public interface of

the Internet stack is

defined (abstract base

classes) in 

src/network/model

directory

• The intent is to support

multiple implementations

• The default ns-3 Internet

stack is implemented in

src/internet-stack



ns-3 TCP

• Several options exist:

– native ns-3 TCP

– Tahoe, Reno, NewReno (others in development)

– TCP simulation cradle (NSC)

– Use of virtual machines or DCE (more on this 

later)

• To enable NSC:
internetStack.SetNscStack ("liblinux2.6.26.so"); 
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ns-3 simulation cradle

• Port by Florian Westphal of Sam Jansen’s Ph.D. work
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Figure reference:  S. Jansen, Performance, validation and testing with the Network 

Simulation Cradle. MASCOTS 2006. 



ns-3 simulation cradle

77
ns-3

For ns-3:

• Linux 2.6.18

• Linux 2.6.26

• Linux 2.6.28

Others:

• FreeBSD 5

• lwip 1.3

• OpenBSD 3

Other simulators:

• ns-2

• OmNET++

Figure reference:  S. Jansen, Performance, validation and testing with the Network 

Simulation Cradle. MASCOTS 2006. 



IPv4 address configuration

• An Ipv4 address helper can assign 

addresses to devices in a NetDevice 

container 
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Ipv4AddressHelper ipv4;

ipv4.SetBase ("10.1.1.0", "255.255.255.0");

csmaInterfaces = ipv4.Assign (csmaDevices);

...

ipv4.NewNetwork ();  // bumps network to 10.1.2.0

otherCsmaInterfaces = ipv4.Assign (otherCsmaDevices);



Applications and sockets

• In general, applications in ns-3 derive from 

the ns3::Application base class

– A list of applications is stored in the ns3::Node

– Applications are like processes

• Applications make use of a sockets-like 

API

– Application::Start () may call 

ns3::Socket::SendMsg() at a lower layer
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Sockets API

Plain C sockets

int sk;

sk = socket(PF_INET, SOCK_DGRAM, 0);

struct sockaddr_in src;

inet_pton(AF_INET,”0.0.0.0”,&src.sin_ad

dr);

src.sin_port = htons(80);

bind(sk, (struct sockaddr *) &src, 

sizeof(src));

struct sockaddr_in dest;

inet_pton(AF_INET,”10.0.0.1”,&dest.sin_

addr);

dest.sin_port = htons(80);

sendto(sk, ”hello”, 6, 0, (struct 

sockaddr *) &dest, sizeof(dest));

char buf[6];

recv(sk, buf, 6, 0);

}

80
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ns-3 sockets

Ptr<Socket> sk = 

udpFactory->CreateSocket ();

sk->Bind (InetSocketAddress (80));

sk->SendTo (InetSocketAddress (Ipv4Address 

(”10.0.0.1”), 80), Create<Packet> 

(”hello”, 6));

sk->SetReceiveCallback (MakeCallback 

(MySocketReceive));

• […] (Simulator::Run ())

void MySocketReceive (Ptr<Socket> sk, 

Ptr<Packet> packet)

{

...

}



Mobility models in ns-3

• The MobilityModel interface:

– void SetPosition (Vector pos)

– Vector GetPosition ()

• StaticMobilityModel

– Node is at a fixed location; does not move on its own

• RandomWaypointMobilityModel

– (works inside a rectangular bounded area)

– Node pauses for a certain random time

– Node selects a random waypoint and speed

– Node starts walking towards the waypoint

– When waypoint is reached, goto first state

• RandomDirectionMobilityModel

– works inside a rectangular bounded area)

– Node selects a random direction and speed

– Node walks in that direction until the edge

– Node pauses for random time

– Repeat
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3D Cartesian coordinate system

z
y
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Object names

• It can be helpful to refer to objects by a 

string name

– “access point”

– “eth0”

• Objects can now be associated with a 

name, and the name used in the attribute 

system
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Names example

NodeContainer n; 

n.Create (4); 

Names::Add ("client", n.Get (0)); 

Names::Add ("server", n.Get (1)); 

...

Names::Add ("client/eth0", d.Get (0)); 

...

Config::Set ("/Names/client/eth0/Mtu", UintegerValue 

(1234)); 

Equivalent to:

Config::Set (“/NodeList/0/DeviceList/0/Mtu”, UintegerValue 

(1234));
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Tracing and statistics

• Tracing is a structured form of simulation 

output

• Example (from ns-2):
+ 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

- 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

r 1.84471 2 1 cbr 210 ------- 1 3.0 1.0 195 600

r 1.84566 2 0 ack 40 ------- 2 3.2 0.1 82 602

+ 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611

Problem: Tracing needs vary widely

– would like to change tracing output without 

editing the core

– would like to support multiple outputs
84
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Tracing overview

• Simulator provides a set of pre-configured 

trace sources

– Users may edit the core to add their own

• Users provide trace sinks and attach to the 

trace source

– Simulator core provides a few examples for 

common cases

• Multiple trace sources can connect to a 

trace sink
85
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Tracing in ns-3

• ns-3 configures multiple 'TraceSource' objects 

(TracedValue, TracedCallback)

• Multiple types of 'TraceSink' objects can be hooked to 

these sources

• A special configuration namespace helps to manage 

access to trace sources
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TraceSource

TracedValue

TraceSource

Config::Connect ("/path/to/traced/value", callback1);

Config::Connect ("/path/to/trace/source", callback2);

unattached



NetDevice trace hooks

• Example:  CsmaNetDevice
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CsmaNetDevice::Send ()

CsmaNetDevice::

TransmitStart()

CsmaNetDevice::

Receive()

CsmaChannel

NetDevice::

ReceiveCallback

queue

MacRx

MacDrop
MacTx

MacTxBackoff

PhyTxBegin

PhyTxEnd
PhyTxDrop

Sniffer

PromiscSniffer

PhyRxEnd

PhyRxDrop


