
Debugging

MNM Workshop

March 2015

1

ns-3 Training



Writing and debugging your own examples

MNM Workshop

March 2015

2



Writing and debugging new programs

• Choosing between Python and C++

• Reading existing code

• Understanding and controlling logging code

• Error conditions

• Running programs through a debugger

MNM Workshop

March 2015



Python bindings

• ns-3 uses the 'pybindgen' tool to generate 

Python bindings for the underlying C++ libraries

• Existing bindings are typically found in the 

bindings/ directory of a module

• Some methods are not provided in Python (e.g. 

hooking trace sources)

• Generating new bindings requires a toolchain 

documented on the ns-3 web site

MNM Workshop

March 2015



Debugging support

• Assertions: NS_ASSERT (expression);

– Aborts the program if expression evaluates to false

– Includes source file name and line number

• Unconditional Breakpoints: NS_BREAKPOINT ();

– Forces an unconditional breakpoint, compiled in

• Debug Logging (not to be confused with tracing!)

– Purpose

• Used to trace code execution logic

• For debugging, not to extract results!

– Properties

• NS_LOG* macros work with C++ IO streams

• E.g.: NS_LOG_UNCOND (”I have received ” << p->GetSize () << ” bytes”);

• NS_LOG macros evaluate to nothing in optimized builds

• When debugging is done, logging does not get in the way of execution 
performance

MNM Workshop

March 2015



Debugging support (cont.)

• Logging levels:

– NS_LOG_ERROR (...): serious error messages only

– NS_LOG_WARN (...): warning messages

– NS_LOG_DEBUG (...): rare ad-hoc debug messages

– NS_LOG_INFO (...): informational messages (eg. banners)

– NS_LOG_FUNCTION (...):function tracing

– NS_LOG_PARAM (...): parameters to functions

– NS_LOG_LOGIC (...): control flow tracing within functions

• Logging ”components”

– Logging messages organized by components

– Usually one component is one .cc source file

– NS_LOG_COMPONENT_DEFINE ("OlsrAgent");

• Displaying log messages. Two ways:

– Programatically:

• LogComponentEnable("OlsrAgent", LOG_LEVEL_ALL);

– From the environment:

• NS_LOG="OlsrAgent" ./my-program

MNM Workshop

March 2014



Running C++ programs through gdb

• The gdb debugger can be used directly on 

binaries in the build directory

• An easier way is to use a waf shortcut
./waf --command-template="gdb %s" --run <program-

name>

MNM Workshop

March 2015



Running C++ programs through valgrind

• valgrind memcheck can be used directly on 

binaries in the build directory

• An easier way is to use a waf shortcut
./waf --command-template="valgrind %s" --run 

<program-name>

• Note: disable GTK at configure time when 

running valgrind (to suppress spurious reports)
• ./waf configure --disable-gtk --enable-tests ...

MNM Workshop

March 2015



Testing

• Can you trust ns-3 simulations?

– Can you trust any simulation?

• Onus is on the simulation project to validate and document 

results

• Onus is also on the researcher to verify results

• ns-3 strategies:

– regression tests

• Aim for event-based rather than trace-based

– unit tests for verification

– validation of models on testbeds where possible

– reuse of code

MNM Workshop

March 2015



Test framework

• ns-3-dev is checked nightly on multiple platforms

– Linux gcc-4.x, i386 and x86_64, OS X, FreeBSD 

clang, and Cygwin (occasionally)

• ./test.py will run regression tests

MNM Workshop

March 2015

Walk through test code, test terminology (suite, case), 

and examples of how tests are run



Improving performance

• Debug vs optimized builds

– ./waf -d debug configure

– ./waf -d debug optimized

• Build ns-3 with static libraries

– ./waf --enable-static

• Use different compilers (icc)

– has been done in past, not regularly tested


