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Introduction to Distributed NS-3 

• Distributed NS-3 is a scheduler that allows discrete events to be 
executed concurrently among multiple CPU cores 
– Load and memory distribution 

• Initially released in version 3.8 
• Implemented by George Riley and Josh Pelkey (Georgia Tech) 
• Roots from: 

– Parallel/Distributed ns (pdns) 
– Georgia Tech Network Simulator (GTNetS) 

• Performance Studies 
– “Performance of Distributed ns-3 Network Simulator”, S. Nikolaev, P. 

Barnes, Jr., J. Brase, T. Canales, D. Jefferson, S. Smith, R. Soltz, P. 
Scheibel, SimuTools '13 

– “A Performance and Scalability Evaluation of the NS-3 Distributed 
Scheduler”, K. Renard, C. Peri, J. Clarke , SimuTools '12 
• 360 Million Nodes 



Motivation for High Performance, 
Scalable Network Simulation 

• Reduce simulation run-time for large, complex network 
simulations 
– Complex models require more CPU cycles and memory 

• MANETs, robust radio devices 
• More realistic application-layer models and traffic loading 
• Load balancing among CPUs 

– Potential to enable real-time performance for NS-3 emulation 

• Enable larger simulated networks 
– Distribute memory footprint to reduce swap usage 
– Potential to reduce impact of N2 problems such as global routing 

• Allows network researchers to run multiple simulations and 
collect significant data 

 



Discrete Event Simulation 

• Execution of a series of time-ordered events 
– Events can change the state of the model 
– Create zero or more future events 

• Simulation time advances based on when the next event occurs 
– Instantaneously skip over time periods with no activity 
– Time effectively stops during the processing of an event 

• Events are executed in time order 
– New events can be scheduled “now” or in the future 
– New events cannot be scheduled “in the past” 
– Events that are scheduled at the exact same time may be executed in any 

order 

• To model a process that takes time to complete, schedule a series of 
events that happen at relative time offsets 
– Start sending packet: set medium busy, schedule stop event 
– Stop sending packet:  set medium available, schedule receive events 

• Exit when there are no more events are in the queue 
 



Discrete Events and Timing for a 
Packet Transmission 



Parallel Discrete Event Simulation 
(Conservative) 

• By partitioning the model (network) into multiple pieces and map these pieces to Logical Processes, 
(LPs), each LP has its own set of events to process 
– LPs are synchronized copies of NS3 running at the same time 

 
 
 
 
 
 
 

• Try to distribute event load (processing load) equally among LPs 
– Exploit parallelism in simulation 

• At some point, we will need to schedule an event that will be executed on another LP 
– Messages are passed between LPs to communicate event details and scheduling information 
– Some form of time synchronization is required between LPs 
– Must maintain causality – cannot schedule an event “in the past” 
– We need to communicate our event to a remote LP before that LP’s simulation time passes our event time 

• Events across LPs can execute independently and in parallel 



Clock Synchronization in 
Conservative PDES 

• We grant each LP a future time value such 
that no incoming events will occur before 
that time 
– In the simple case, all LPs are granted the 

same time 
– All LPs advance time in synchronized 

“chunks” 

• The LP can now execute all events up to 
that time while preserving causality 
– Incoming event requests are queued 

• Incoming events will occur after the granted 
time 

• The LP waits until it is granted additional 
time 
– Even distribution of workload limits wasted 

time 

• We want to maximize grant time such that 
a larger set of events can be computed in 
parallel 



Lookahead & Grant Time Computation 

• Lookahead value is the minimum amount of time that 
must elapse before an event at an LP can effect 
anything in another LP 

– In network simulation we can use the propagation delay 
over a link/channel as the basis for lookahead 

– Among a set of LPs, the maximum lookahead is the time 
of the next event, plus the minimum propagation delay 
among links that span LPs 

• Compute Lower Bound Time Step (LBTS) 
– Smallest timestamp of an event that can be delivered to 

another LP 
– Select lowest LBTS over all LPs as global grant time 

• All LPs advance to the same grant time before repeating 

• Getting all LPs to communicate and determine lowest 
LBTS can be expensive 
– O(n) to O(n2) messages, interconnect type, interconnect 

speed 



Message Passing Interface (MPI) 

• Distributed NS-3 uses MPI for communication and synchronization 
• Message Passing Specification (not the library itself) 

– Point-to-Point as well as collective communications 
– Designed for high performance and scalability 
– De-facto standard for distributed computing 

• Allows communication between sets of processes (ranks) 
– mpirun –np 10 ./main 

• Language Independent (C, C++, FORTRAN, Java, Python, etc) 
• Targeted distributed memory systems, but works nicely on shared memory as well 

 
 
 
 
 

• Libraries are built to take advantage of underlying hardware 
– Such as drivers for high-speed interconnects 
– Low latency, high throughput 

• Implementations: OpenMPI, MPICH, mpi4py, mpiJava, etc 

Images: https://computing.llnl.gov/tutorials/mpi/ 



MPI Concepts 

• Communicators 
– A “channel” among a group of processes (unsigned int) 
– Each process in the group is assigned an ID or rank 

• Rank numbers are contiguous unsigned integers starting with 0 
• Used for directing messages or to assign functionality to specific processes 

– if (rank == 0) print “Hello World” 

– Default [“everybody”] communicator is MPI_COMM_WORLD 

• Point-To-Point Communications 
– A message targeting a single specific process 
– MPI_Send(data, data_length, data_type, 

         destination, tag, communicator) 

• Data/Data Length – Message contents 
• Data Type – MPI-defined data types 
• Destination – Rank Number 
• Tag – Arbitrary message tag for applications to use 
• Communicator – Specific group where destination exists 

– MPI_Send() / MPI_Isend() – blocking and non-blocking sends 
• MPI_Recv() / MPI_Irevc() – blocking and non-blocking receive 



MPI Concepts 

• Collective Communications 
– Synchronization – Block until all members of communicator have reached that point 

– Data messaging – Broadcast, scatter/gather, all-to-all 

– Collective Computation – One rank collects data from all ranks and performs an operation (sum, avg, 
min, max) 

• Data Types – select examples 
– MPI_CHAR, MPI_UNSIGNED_CHAR 

– MPI_SHORT, MPI_LONG, MPI_INT 

– MPI_FLOAT, MPI_DOUBLE, MPI_COMPLEX 

– Derived types – built from primitives 

• Specifying where processes are run 
– Use config file to specify hosts and #CPUs to run on 

• --hostfile file for OpenMPI 

– Cluster systems usually have queuing system or 

       scheduler interfaces where host/CPU mapping 

       is done 

# This is an example hostfile.  Comments begin with # 

# 

# The following node is a single processor machine: 

foo.example.com 

 

# The following node is a dual-processor machine: 

bar.example.com slots=2 

 

# The following node is a quad-processor machine, and we 

# absolutely want to disallow over-subscribing it: 

yow.example.com slots=4 max-slots=4 

#!/bin/csh 

#PBS -l walltime=01:00:00 

#PBS -l select=128:ncpus=8:mpiprocs=8 

#PBS -l place=scatter:excl 

#PBS -N myjob 

#PBS -q standard 

 

mpirun_shim ${PATH}/big_simulation 



MPI Programming 
OpenMPI Example 

• MPI Program Structure 
– Include headers 
– Initialize MPI with command-line args 
– Parallel code 

• Send messages, synchronize 

– Finalize 

• Use front-end for compiler 
– mpicc, mpicxx, mpif77 

– Automatically includes appropriate 
libraries and include directories 

• Use mpirun to execute 
– Use config file to specify hosts and #CPUs 

to run on 
• --hostfile file for OpenMPI 

– Cluster systems usually have queuing 
system/scheduler interfaces where 
host/CPU mapping is done 

#include <mpi.h> 

#include <unistd.h>      // For getpid() 

 

int 

main (int argc, char **argv) 

{ 

  int size, rank, rc; 

 

  rc = MPI_Init (&argc, &argv); 

  if (rc != MPI_SUCCESS) 

    MPI_Abort(MPI_COMM_WORLD, rc); 

 

  MPI_Comm_size (MPI_COMM_WORLD, &size); 

  MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

 

  printf ("Hello World from rank %d of %d 

             (%d)\n", rank, size, getpid ()); 

 

  MPI_Finalize(); 

} 

$ mpicxx -o hello hello.cc 

$ mpirun -np 4 ./hello 

Hello World from rank 3 of 4 (35986) 

Hello World from rank 0 of 4 (35983) 

Hello World from rank 1 of 4 (35984) 

Hello World from rank 2 of 4 (35985) 



MPI Messaging Example 
#include <mpi.h> 

int main (int argc, char **argv) 

{ 

  int rank, rc; 

  char *msg = (char *)"Hello"; 

  int msg_len = strlen(msg); 

  char in_msg[msg_len + 1]; 

 

  MPI_Init (&argc, &argv); 

  MPI_Comm_size (MPI_COMM_WORLD, &size); 

  MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

 

  if (size < 2) { 

    printf ("Need more than one rank to communicate\n"); 

    MPI_Abort(MPI_COMM_WORLD, 0); 

  } 

 

  if (rank == 0) { 

    int dest = 1; 

    rc = MPI_Send (msg, msg_len, MPI_CHAR, dest, 

                   0, MPI_COMM_WORLD); 

  } 

 

  if (rank == 1) { 

    int count = 0; 

    MPI_Status stat; 

 

    rc = MPI_Recv (&in_msg, msg_len, MPI_CHAR, 

                   MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &stat); 

    in_msg[msg_len] = (char) 0; 

    MPI_Get_count (&stat, MPI_CHAR, &count); 

    printf("Rank %d receive message \"%s\" (%d) from rank 

            %d tag %d\n",  rank, in_msg, count, 

            stat.MPI_SOURCE, stat.MPI_TAG); 

  } 

 

  MPI_Finalize(); 

} 

$ mpicxx -o send1 send1.cc  

$ mpirun -np 4 ./send1 

Rank 1 receive message "Hello" (5) from rank 0 tag 0 

$  

 



MPI Collective Example -- Barrier 
#include <mpi.h> 

#include <unistd.h> 

#include <stdlib.h> 

 

int 

main (int argc, char **argv) 

{ 

  int size, rank, rc; 

 

  rc = MPI_Init (&argc, &argv); 

  if (rc != MPI_SUCCESS) 

    MPI_Abort(MPI_COMM_WORLD, rc); 

 

  MPI_Comm_size (MPI_COMM_WORLD, &size); 

  MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

 

  MPI_Barrier (MPI_COMM_WORLD); 

 

  srand (getpid ()); 

  int count = rand() % 1000000000; 

 

  int sum = 0; 

  for (int i=0; i < count; i++) { 

    sum += rand () % 1000000; 

  } 

 

  printf("Rank %d: done with spin (%d)\n", 

          rank, count); 

  MPI_Barrier (MPI_COMM_WORLD); 

  printf("Rank %d: Final Barrier\n", rank); 

   

  MPI_Finalize(); 

} 

$ time mpirun -np 4 ./coll 

Rank 0: done with spin (11587458) 

Rank 3: done with spin (171572520) 

Rank 2: done with spin (402449947) 

Rank 2: Final Barrier 

Rank 1: done with spin (777659848) 

Rank 1: Final Barrier 

Rank 3: Final Barrier 

Rank 0: Final Barrier 

 

real 0m10.151s 

user 0m36.471s 

sys 0m0.050s 

 

 

$ time mpirun -np 4 ./coll 

Rank 1: done with spin (30229414) 

Rank 0: done with spin (258675938) 

Rank 3: done with spin (496367588) 

Rank 1: Final Barrier 

Rank 2: done with spin (731537290) 

Rank 2: Final Barrier 

Rank 0: Final Barrier 

Rank 3: Final Barrier 

 

real 0m9.621s 

user 0m34.365s 

sys 0m0.043s 

 



MPI Collective Example -- AllGather 
#include <mpi.h> 

#include <unistd.h> 

#include <stdlib.h> 

 

int 

main (int argc, char **argv) 

{ 

  int size, rank, rc; 

 

  rc = MPI_Init (&argc, &argv); 

  if (rc != MPI_SUCCESS) 

    MPI_Abort(MPI_COMM_WORLD, rc); 

 

  MPI_Comm_size (MPI_COMM_WORLD, &size); 

  MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

 

  srand (getpid ()); 

  int allValues[size]; 

  int myValue = rand() % 1000000000; 

 

  MPI_Allgather (&myValue, 1, MPI_INT, 

                 allValues, 1, MPI_INT,  

                 MPI_COMM_WORLD); 

  

 printf ("Rank %d: [", rank); 

  for (int i = 0; i < size; i++) { 

    printf("%d, ", allValues[i]); 

  } 

  printf ("]\n"); 

   

  MPI_Finalize(); 

} 

$ mpirun -np 4 ./gather 

Rank 3: [29003797, 719191937, 424799615, 114846810, ] 

Rank 0: [29003797, 719191937, 424799615, 114846810, ] 

Rank 1: [29003797, 719191937, 424799615, 114846810, ] 

Rank 2: [29003797, 719191937, 424799615, 114846810, ] 



Distributed NS-3 

1. Configuring and Building Distributed NS-3 

2. Basic approach to Distributed NS-3 
simulation 

3. Memory Optimizations 

4. Discussion of works-in-progress to simplify 
and optimize distributed simulations 



Building Distributed NS-3 

• Add “--enable-mpi” to ‘waf configure’ line 
– Tries to run ‘mpic++’ 

• Recognizes OpenMPI and MPICH libraries 

– Defines “NS3_MPI” and either “NS3_OPENMPI” or “NS3_MPICH” 

 
---- Summary of optional NS-3 features: 

Python Bindings               : not enabled (PyBindGen missing) 

BRITE Integration             : not enabled (BRITE not enabled (see option --with-brite)) 

NS-3 Click Integration        : not enabled (nsclick not enabled (see option --with-nsclick)) 

GtkConfigStore                : enabled 

XmlIo                         : enabled 

Threading Primitives          : enabled 

Real Time Simulator           : enabled 

Emulated Net Device           : enabled 

File descriptor NetDevice     : enabled 

Tap FdNetDevice               : enabled 

Emulation FdNetDevice         : enabled 

PlanetLab FdNetDevice         : not enabled (PlanetLab operating system not detected… 

Network Simulation Cradle     : not enabled (NSC not found (see option --with-nsc)) 

MPI Support                   : enabled 

NS-3 OpenFlow Integration     : not enabled (OpenFlow not enabled (see option --with-openflow)) 

SQlite stats data output      : enabled 

 



Building a Distributed NS-3 Simulation 

• Choose partitioning strategy 
– Find obvious sections of the network that will operate most independently 

• Minimize communication between partitions 

– Find large latencies in network 
• Large latencies are large (good) lookahead values 

• Build topology as normal, assigning “SystemId” values on all Nodes 
– CreateObject<Node> (rankId) 

• Distributed NS-3 can only be partitioned over Point-to-Point (P2P) links 
– A special type of P2P will be created by the PTPHelper if Nodes do not have 

the same systemId [PointToPointRemoteChannel] 
– P2P links can be “inserted” where latency  is available 
– Latency can sometimes be “moved” around 



Rank 1 Rank 2 Rank 3 

Rank 0 

Distributed NS-3 Partitioning Example 

• Set of ground 
MANETs 

• Aerial layer MANET 
• Cannot partition at 

wireless link between 
ground and air 
networks 
– Place node from air 

network in each 
ground network 

– Insert Point-to-Point 
link 

• Possibly “move” 
latency from air-to-
ground into PtP link 
 

Ground 
Network 

Ground 
Network 

Ground 
Network 

Air 
Network 

Rank 0 

Rank 1 Rank 2 Rank 3 

Router 
Node 

Aerial MANET 

Ground MANET 

Ground 
Node 

Air 
Node 

Aerial MANET 

Ground MANET 

Inserted PtP 

Ground 
Network 

Ground 
Network 

Ground 
Network 

Air 
Network 



Distributed NS-3 
Load Distribution 

• All ranks create all nodes and links 
– Setup time and memory requirements are similar to sequential simulation 
– Event execution happens in parallel 
– Memory is used for nodes/stacks/devices that “belong” to other ranks 

• Non-local nodes do not have to be fully configured 
– Application models should not be installed on non-local nodes 
– Stacks and addresses probably should be installed on non-local nodes 

• So that global routing model can ‘see’ the entire network 

• When packets are transmitted over P2P-Remote links, the receive event is 
communicated to the receiving rank 
– Send event immediately, do not wait for grant time 
– Receive event is added to remote rank’s queue instead of local 

• At end of grant time 
– Read and schedule all incoming events 
– Compute and negotiate next grant time 



Sending a Packet to Remote Rank 

• Consider 2 CSMA networks connected by a single P2P link 
– One router on each network that spans P2P and CSMA networks 
– A packet is sent from H1 to H6 via R1 and R2 
– At R1, packet is forwarded on to P2P link R1<->R2 

• When Packet is sent to P2P-Remote Channel 
– Instead of scheduling a receive on the destination PTPDevice, we call 

MpiInterface::SendPacket() 

• MpiInterface::SendPacket() 

– Arguments 
• Packet data 
• Receive time – Packet time plus link delay 
• Remote SystemId (rank) 
• Remote nodeId 
• Remote InterfaceId 

– Serializes packet and destination data 
– MPI_Isend() byte stream to remote rank 



Receiving a Packet from Remote Rank 

• At granted time, read all MPI message from wire 
• For each message 

– Deserialize target Receive Time, Node and InterfaceId 
– Deserialize packet 
– Find Node by ID 
– Find NetDevice on node with correct interfaceId 
– Get MpiReceiver object which is aggregated to the 

NetDevice 
• MpiReceiver is a small shim that passes receive events to the proper 

NetDevice callback 

– Schedule Receive event @RxTime 
• MpiReceiver::Receive() 

– This calls its callback which set is to PointToPointNetDevice::Receive() by the 
PointToPoint helper. 



Sending a Packet to a Remote Rank 

Sequential 

Distributed 



Distributed NS-3 
Load and Memory Distribution 

• Save memory by not creating nodes/stacks/links that “belong” in other 
LPs 
– Exception is “ghost” nodes that bridge LP borders 

• Ghost node creation is only necessary as a convenience 

•  Requires manual intervention 
– Global and NIX routing do not see entire topology 

• Add static, default routes manually 
• Hint: IPv6 allows for more “aggregatable” routes 

– Node indexing is not symmetric 
• If R1 or R2 have different node numbers in each LP, then 
MpiInterface::SendPacket() will select the wrong destination 

– Interface identifiers must align in same fashion 
 



Node and Interface “Alignment” 

F2 

F3 

F4 F5 

F0 

F1 

Inter-Federate “Mesh” 

F2 

F3 

F4 F5 

F0 

F1 

Inter-Federate “Mesh” 
Federate 1 perspective 

Packets from F1 go to 
1st interface on remote 

Federates 

Create (N-1) links 
instead of N*(N-1)/2 

• “Router-in-the-sky” scenario 

• N2 mesh of interconnected 
nodes at central hub 



Limitations of Distributed NS3 

• Partitioning is a manual process 

• Partitioning is restricted to Point-To-Point links only 
– Partitioning within a wireless network is not supported 

• Lookahead is very small and dynamic 

• Need full topology in all LPs 
– Exception with careful node ordering, interface 

numbering, and manual routing 

 



Example Code 
src/mpi/examples/third-distributed.cc 

#ifdef NS3_MPI 

#include <mpi.h> 

#endif 

 

// Default Network Topology (same as third.cc from tutorial) 

// Distributed simulation, split along the p2p link 

// Number of wifi or csma nodes can be increased up to 250 

// 

//   Wifi 10.1.3.0 

//                 AP 

//  *    *    *    * 

//  |    |    |    |    10.1.1.0 

// n5   n6   n7   n0 -------------- n1   n2   n3   n4 

//                   point-to-point  |    |    |    | 

//                                   ================ 

//                          |          LAN 10.1.2.0 

//                          | 

//                 Rank 0   |   Rank 1 

// -------------------------|---------------------------- 

 

using namespace ns3; 

 

NS_LOG_COMPONENT_DEFINE ("ThirdExampleDistributed"); 

Need to 
include mpi.h 



int  

main (int argc, char *argv[]) 

{ 

#ifdef NS3_MPI 

  // Distributed simulation setup 

  MpiInterface::Enable (&argc, &argv); 

  GlobalValue::Bind ("SimulatorImplementationType", 

                     StringValue ("ns3::DistributedSimulatorImpl")); 

 

  uint32_t systemId = MpiInterface::GetSystemId (); 

  uint32_t systemCount = MpiInterface::GetSize (); 

 

  // Check for valid distributed parameters. 

  // Must have 2 and only 2 Logical Processors (LPs) 

  if (systemCount != 2) 

    { 

      std::cout << "This simulation requires 2 and only 2 logical 

                    processors.” << std::endl; 

      return 1; 

    } 

[Command line parsing and LogEnable] 

Example Code 
src/mpi/examples/third-distributed.cc 

Enable MPI 
Set Scheduler 

Rank Number 
Size 

Size Check 



NodeContainer p2pNodes; 

Ptr<Node> p2pNode1 = CreateObject<Node> (0); // Create node w/ rank 0 

Ptr<Node> p2pNode2 = CreateObject<Node> (1); // Create node w/ rank 1 

p2pNodes.Add (p2pNode1); 

p2pNodes.Add (p2pNode2); 

 

PointToPointHelper pointToPoint; 

pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps")); 

pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms")); 

 

NetDeviceContainer p2pDevices; 

p2pDevices = pointToPoint.Install (p2pNodes); 

 

NodeContainer csmaNodes; 

csmaNodes.Add (p2pNodes.Get (1)); 

csmaNodes.Create (nCsma, 1);  // Create csma nodes with rank 1 

 

CsmaHelper csma; 

csma.SetChannelAttribute ("DataRate", StringValue ("100Mbps")); 

csma.SetChannelAttribute ("Delay", TimeValue (NanoSeconds (6560))); 

 

NetDeviceContainer csmaDevices; 

csmaDevices = csma.Install (csmaNodes); 

Example Code 
src/mpi/examples/third-distributed.cc 

Node Rank 0 
Node Rank 1 

Nothing 
different 

here 

CSMA net 
node on 
Rank 1 



NodeContainer wifiStaNodes; 

wifiStaNodes.Create (nWifi, 0); // Create wifi nodes with rank 0 

NodeContainer wifiApNode = p2pNodes.Get (0); 

 

YansWifiChannelHelper channel = YansWifiChannelHelper::Default (); 

YansWifiPhyHelper phy = YansWifiPhyHelper::Default (); 

phy.SetChannel (channel.Create ()); 

 

WifiHelper wifi = WifiHelper::Default (); 

wifi.SetRemoteStationManager ("ns3::AarfWifiManager"); 

 

NqosWifiMacHelper mac = NqosWifiMacHelper::Default (); 

 

Ssid ssid = Ssid ("ns-3-ssid"); 

mac.SetType ("ns3::StaWifiMac“, "Ssid", SsidValue (ssid), 

             "ActiveProbing", BooleanValue (false)); 

 

NetDeviceContainer staDevices; 

staDevices = wifi.Install (phy, mac, wifiStaNodes); 

 

mac.SetType ("ns3::ApWifiMac“, "Ssid", SsidValue (ssid)); 

 

NetDeviceContainer apDevices; 

apDevices = wifi.Install (phy, mac, wifiApNode); 

Example Code 
src/mpi/examples/third-distributed.cc 

Wifi net on 
Rank 0 



[Mobility] 
 

InternetStackHelper stack; 

stack.Install (csmaNodes); 

stack.Install (wifiApNode); 

stack.Install (wifiStaNodes); 

 

Ipv4AddressHelper address; 

 

address.SetBase ("10.1.1.0", "255.255.255.0"); 

Ipv4InterfaceContainer p2pInterfaces; 

p2pInterfaces = address.Assign (p2pDevices); 

 

address.SetBase ("10.1.2.0", "255.255.255.0"); 

Ipv4InterfaceContainer csmaInterfaces; 

csmaInterfaces = address.Assign (csmaDevices); 

 

address.SetBase ("10.1.3.0", "255.255.255.0"); 

address.Assign (staDevices); 

address.Assign (apDevices); 

Example Code 
src/mpi/examples/third-distributed.cc 

Installing 
Internet Stacks 
on everything 

Assigning 
Addresses to  
everything 



// If this simulator has system id 1, then 

// it should contain the server application, 

// since it is on one of the csma nodes 

if (systemId == 1) 

  { 

    UdpEchoServerHelper echoServer (9); 

    ApplicationContainer serverApps = echoServer.Install (csmaNodes.Get (nCsma)); 

    serverApps.Start (Seconds (1.0)); 

    serverApps.Stop (Seconds (10.0)); 

  } 

 

// If the simulator has system id 0, then 

// it should contain the client application, 

// since it is on one of the wifi nodes 

if (systemId == 0) 

  { 

    UdpEchoClientHelper echoClient (csmaInterfaces.GetAddress (nCsma), 9); 

    echoClient.SetAttribute ("MaxPackets", UintegerValue (1)); 

    echoClient.SetAttribute ("Interval", TimeValue (Seconds (1.))); 

    echoClient.SetAttribute ("PacketSize", UintegerValue (1024)); 

 

    ApplicationContainer clientApps = 

              echoClient.Install (wifiStaNodes.Get (nWifi - 1)); 

    clientApps.Start (Seconds (2.0)); 

    clientApps.Stop (Seconds (10.0)); 

  } 

Example Code 
src/mpi/examples/third-distributed.cc 

Apps for 
Rank 1 

Apps for 
Rank 0 



Ipv4GlobalRoutingHelper::PopulateRoutingTables (); 

 

Simulator::Stop (Seconds (10.0)); 

 

[Tracing] 
 

Simulator::Run (); 

Simulator::Destroy (); 

 

// Exit the MPI execution environment 

MpiInterface::Disable (); 

return 0; 

Example Code 
src/mpi/examples/third-distributed.cc 

GlobalRouting 
will work since 

we have full 
topology 

Disable MPI 



Error Conditions 

• Can't use distributed simulator without 
MPI compiled in 
– Not finding or building with MPI libraries 
– Reconfigure NS-3 and rebuild 

 

• assert failed. cond="pNode && pMpiRec", 
file=../src/mpi/model/mpi-interface.cc, 
line=413 

– Mis-aligned node or interface IDs 

 

 



Performance Optimizations 

• Memory Optimization 
• Larger lookahead (Link latency) 

helps parallelism 
• Cost of the AllGather grows 

exponentially with LP count 
– If workload per LP is high, fall-

off in performance moves to 
higher LP count 

– With lower workload, 
performance can fall off at 32-
128 LPs 

• More work and larger latencies 
mean better performance of 
distributed scheduler 

• Choose appropriate metric for 
measuring performance 
– Events/sec can be misleading 

with varying event cost 
– Packet transmissions (or 

receives) per wall-clock time 



Conservative PDES – NULL Message 

• An alternative to global synchronization of LBTS 
– Decreases “cost” of time synchronization 

• Each event message exchanged includes a new LBTS 
value from sending LP to receiving LP 
– LBTS is computed for each LP-to-LP message 
– An LP now cares only about its connected set of LPs for 

grant time calculation 

• When there are no event messages exchanged, a 
“NULL” event message is sent with latest LBTS value 

• Advantages to using NULL-message scheduler 
– Less expensive negotiation of time synchronization 
– Allows independent grant times 



Advanced Topics / Future Work 

• Distributed Real Time 
– Versus simultaneous real-time emulations: 

• LP-to-LP messaging can be done with greater lookahead to counter interconnect delay 

• Routing 
– AS-like routing between LPs 
– Goal is to enable Global or NIX routing without full topology in each LP 

• Alignment 
– Negotiate node and interface IDs at run time 

• Partitioning with automated tools 
– Graph partitioning tools 
– Descriptive language to describe results of partitioning to topology generation 

• Optimistic PDES 
– Break causality with ability to “roll-back” time 

• Partitioning across links other than P2P 
• Full, automatic memory scaling 

– Automatic ghost nodes, globally unique node IDs 
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