
Distributed Simulation with NS-3

Ken Renard

US Army Research Lab

Outline

• Introduction and Motivation for Distributed NS-3
• Parallel Discrete Event Simulation
• MPI Concepts
• Distributed NS-3 Scheduler
• Limitations
• Example Code Walk-through
• Error Conditions
• Performance Considerations
• Advanced Topics

Introduction to Distributed NS-3

• Distributed NS-3 is a scheduler that allows discrete events to be
executed concurrently among multiple CPU cores
– Load and memory distribution

• Initially released in version 3.8
• Implemented by George Riley and Josh Pelkey (Georgia Tech)
• Roots from:

– Parallel/Distributed ns (pdns)
– Georgia Tech Network Simulator (GTNetS)

• Performance Studies
– “Performance of Distributed ns-3 Network Simulator”, S. Nikolaev, P.

Barnes, Jr., J. Brase, T. Canales, D. Jefferson, S. Smith, R. Soltz, P.
Scheibel, SimuTools '13

– “A Performance and Scalability Evaluation of the NS-3 Distributed
Scheduler”, K. Renard, C. Peri, J. Clarke , SimuTools '12
• 360 Million Nodes

Motivation for High Performance,
Scalable Network Simulation

• Reduce simulation run-time for large, complex network
simulations
– Complex models require more CPU cycles and memory

• MANETs, robust radio devices
• More realistic application-layer models and traffic loading
• Load balancing among CPUs

– Potential to enable real-time performance for NS-3 emulation

• Enable larger simulated networks
– Distribute memory footprint to reduce swap usage
– Potential to reduce impact of N2 problems such as global routing

• Allows network researchers to run multiple simulations and
collect significant data

Discrete Event Simulation

• Execution of a series of time-ordered events
– Events can change the state of the model
– Create zero or more future events

• Simulation time advances based on when the next event occurs
– Instantaneously skip over time periods with no activity
– Time effectively stops during the processing of an event

• Events are executed in time order
– New events can be scheduled “now” or in the future
– New events cannot be scheduled “in the past”
– Events that are scheduled at the exact same time may be executed in any

order

• To model a process that takes time to complete, schedule a series of
events that happen at relative time offsets
– Start sending packet: set medium busy, schedule stop event
– Stop sending packet: set medium available, schedule receive events

• Exit when there are no more events are in the queue

Discrete Events and Timing for a
Packet Transmission

Parallel Discrete Event Simulation
(Conservative)

• By partitioning the model (network) into multiple pieces and map these pieces to Logical Processes,
(LPs), each LP has its own set of events to process
– LPs are synchronized copies of NS3 running at the same time

• Try to distribute event load (processing load) equally among LPs
– Exploit parallelism in simulation

• At some point, we will need to schedule an event that will be executed on another LP
– Messages are passed between LPs to communicate event details and scheduling information
– Some form of time synchronization is required between LPs
– Must maintain causality – cannot schedule an event “in the past”
– We need to communicate our event to a remote LP before that LP’s simulation time passes our event time

• Events across LPs can execute independently and in parallel

Clock Synchronization in
Conservative PDES

• We grant each LP a future time value such
that no incoming events will occur before
that time
– In the simple case, all LPs are granted the

same time
– All LPs advance time in synchronized

“chunks”

• The LP can now execute all events up to
that time while preserving causality
– Incoming event requests are queued

• Incoming events will occur after the granted
time

• The LP waits until it is granted additional
time
– Even distribution of workload limits wasted

time

• We want to maximize grant time such that
a larger set of events can be computed in
parallel

Lookahead & Grant Time Computation

• Lookahead value is the minimum amount of time that
must elapse before an event at an LP can effect
anything in another LP

– In network simulation we can use the propagation delay
over a link/channel as the basis for lookahead

– Among a set of LPs, the maximum lookahead is the time
of the next event, plus the minimum propagation delay
among links that span LPs

• Compute Lower Bound Time Step (LBTS)
– Smallest timestamp of an event that can be delivered to

another LP
– Select lowest LBTS over all LPs as global grant time

• All LPs advance to the same grant time before repeating

• Getting all LPs to communicate and determine lowest
LBTS can be expensive
– O(n) to O(n2) messages, interconnect type, interconnect

speed

Message Passing Interface (MPI)

• Distributed NS-3 uses MPI for communication and synchronization
• Message Passing Specification (not the library itself)

– Point-to-Point as well as collective communications
– Designed for high performance and scalability
– De-facto standard for distributed computing

• Allows communication between sets of processes (ranks)
– mpirun –np 10 ./main

• Language Independent (C, C++, FORTRAN, Java, Python, etc)
• Targeted distributed memory systems, but works nicely on shared memory as well

• Libraries are built to take advantage of underlying hardware
– Such as drivers for high-speed interconnects
– Low latency, high throughput

• Implementations: OpenMPI, MPICH, mpi4py, mpiJava, etc

Images: https://computing.llnl.gov/tutorials/mpi/

MPI Concepts

• Communicators
– A “channel” among a group of processes (unsigned int)
– Each process in the group is assigned an ID or rank

• Rank numbers are contiguous unsigned integers starting with 0
• Used for directing messages or to assign functionality to specific processes

– if (rank == 0) print “Hello World”

– Default [“everybody”] communicator is MPI_COMM_WORLD

• Point-To-Point Communications
– A message targeting a single specific process
– MPI_Send(data, data_length, data_type,

 destination, tag, communicator)

• Data/Data Length – Message contents
• Data Type – MPI-defined data types
• Destination – Rank Number
• Tag – Arbitrary message tag for applications to use
• Communicator – Specific group where destination exists

– MPI_Send() / MPI_Isend() – blocking and non-blocking sends
• MPI_Recv() / MPI_Irevc() – blocking and non-blocking receive

MPI Concepts

• Collective Communications
– Synchronization – Block until all members of communicator have reached that point

– Data messaging – Broadcast, scatter/gather, all-to-all

– Collective Computation – One rank collects data from all ranks and performs an operation (sum, avg,
min, max)

• Data Types – select examples
– MPI_CHAR, MPI_UNSIGNED_CHAR

– MPI_SHORT, MPI_LONG, MPI_INT

– MPI_FLOAT, MPI_DOUBLE, MPI_COMPLEX

– Derived types – built from primitives

• Specifying where processes are run
– Use config file to specify hosts and #CPUs to run on

• --hostfile file for OpenMPI

– Cluster systems usually have queuing system or

 scheduler interfaces where host/CPU mapping

 is done

This is an example hostfile. Comments begin with #

The following node is a single processor machine:

foo.example.com

The following node is a dual-processor machine:

bar.example.com slots=2

The following node is a quad-processor machine, and we

absolutely want to disallow over-subscribing it:

yow.example.com slots=4 max-slots=4

#!/bin/csh

#PBS -l walltime=01:00:00

#PBS -l select=128:ncpus=8:mpiprocs=8

#PBS -l place=scatter:excl

#PBS -N myjob

#PBS -q standard

mpirun_shim ${PATH}/big_simulation

MPI Programming
OpenMPI Example

• MPI Program Structure
– Include headers
– Initialize MPI with command-line args
– Parallel code

• Send messages, synchronize

– Finalize

• Use front-end for compiler
– mpicc, mpicxx, mpif77

– Automatically includes appropriate
libraries and include directories

• Use mpirun to execute
– Use config file to specify hosts and #CPUs

to run on
• --hostfile file for OpenMPI

– Cluster systems usually have queuing
system/scheduler interfaces where
host/CPU mapping is done

#include <mpi.h>

#include <unistd.h> // For getpid()

int

main (int argc, char **argv)

{

 int size, rank, rc;

 rc = MPI_Init (&argc, &argv);

 if (rc != MPI_SUCCESS)

 MPI_Abort(MPI_COMM_WORLD, rc);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 printf ("Hello World from rank %d of %d

 (%d)\n", rank, size, getpid ());

 MPI_Finalize();

}

$ mpicxx -o hello hello.cc

$ mpirun -np 4 ./hello

Hello World from rank 3 of 4 (35986)

Hello World from rank 0 of 4 (35983)

Hello World from rank 1 of 4 (35984)

Hello World from rank 2 of 4 (35985)

MPI Messaging Example
#include <mpi.h>

int main (int argc, char **argv)

{

 int rank, rc;

 char *msg = (char *)"Hello";

 int msg_len = strlen(msg);

 char in_msg[msg_len + 1];

 MPI_Init (&argc, &argv);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 if (size < 2) {

 printf ("Need more than one rank to communicate\n");

 MPI_Abort(MPI_COMM_WORLD, 0);

 }

 if (rank == 0) {

 int dest = 1;

 rc = MPI_Send (msg, msg_len, MPI_CHAR, dest,

 0, MPI_COMM_WORLD);

 }

 if (rank == 1) {

 int count = 0;

 MPI_Status stat;

 rc = MPI_Recv (&in_msg, msg_len, MPI_CHAR,

 MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &stat);

 in_msg[msg_len] = (char) 0;

 MPI_Get_count (&stat, MPI_CHAR, &count);

 printf("Rank %d receive message \"%s\" (%d) from rank

 %d tag %d\n", rank, in_msg, count,

 stat.MPI_SOURCE, stat.MPI_TAG);

 }

 MPI_Finalize();

}

$ mpicxx -o send1 send1.cc

$ mpirun -np 4 ./send1

Rank 1 receive message "Hello" (5) from rank 0 tag 0

$

MPI Collective Example -- Barrier
#include <mpi.h>

#include <unistd.h>

#include <stdlib.h>

int

main (int argc, char **argv)

{

 int size, rank, rc;

 rc = MPI_Init (&argc, &argv);

 if (rc != MPI_SUCCESS)

 MPI_Abort(MPI_COMM_WORLD, rc);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Barrier (MPI_COMM_WORLD);

 srand (getpid ());

 int count = rand() % 1000000000;

 int sum = 0;

 for (int i=0; i < count; i++) {

 sum += rand () % 1000000;

 }

 printf("Rank %d: done with spin (%d)\n",

 rank, count);

 MPI_Barrier (MPI_COMM_WORLD);

 printf("Rank %d: Final Barrier\n", rank);

 MPI_Finalize();

}

$ time mpirun -np 4 ./coll

Rank 0: done with spin (11587458)

Rank 3: done with spin (171572520)

Rank 2: done with spin (402449947)

Rank 2: Final Barrier

Rank 1: done with spin (777659848)

Rank 1: Final Barrier

Rank 3: Final Barrier

Rank 0: Final Barrier

real 0m10.151s

user 0m36.471s

sys 0m0.050s

$ time mpirun -np 4 ./coll

Rank 1: done with spin (30229414)

Rank 0: done with spin (258675938)

Rank 3: done with spin (496367588)

Rank 1: Final Barrier

Rank 2: done with spin (731537290)

Rank 2: Final Barrier

Rank 0: Final Barrier

Rank 3: Final Barrier

real 0m9.621s

user 0m34.365s

sys 0m0.043s

MPI Collective Example -- AllGather
#include <mpi.h>

#include <unistd.h>

#include <stdlib.h>

int

main (int argc, char **argv)

{

 int size, rank, rc;

 rc = MPI_Init (&argc, &argv);

 if (rc != MPI_SUCCESS)

 MPI_Abort(MPI_COMM_WORLD, rc);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 srand (getpid ());

 int allValues[size];

 int myValue = rand() % 1000000000;

 MPI_Allgather (&myValue, 1, MPI_INT,

 allValues, 1, MPI_INT,

 MPI_COMM_WORLD);

 printf ("Rank %d: [", rank);

 for (int i = 0; i < size; i++) {

 printf("%d, ", allValues[i]);

 }

 printf ("]\n");

 MPI_Finalize();

}

$ mpirun -np 4 ./gather

Rank 3: [29003797, 719191937, 424799615, 114846810,]

Rank 0: [29003797, 719191937, 424799615, 114846810,]

Rank 1: [29003797, 719191937, 424799615, 114846810,]

Rank 2: [29003797, 719191937, 424799615, 114846810,]

Distributed NS-3

1. Configuring and Building Distributed NS-3

2. Basic approach to Distributed NS-3
simulation

3. Memory Optimizations

4. Discussion of works-in-progress to simplify
and optimize distributed simulations

Building Distributed NS-3

• Add “--enable-mpi” to ‘waf configure’ line
– Tries to run ‘mpic++’

• Recognizes OpenMPI and MPICH libraries

– Defines “NS3_MPI” and either “NS3_OPENMPI” or “NS3_MPICH”

---- Summary of optional NS-3 features:

Python Bindings : not enabled (PyBindGen missing)

BRITE Integration : not enabled (BRITE not enabled (see option --with-brite))

NS-3 Click Integration : not enabled (nsclick not enabled (see option --with-nsclick))

GtkConfigStore : enabled

XmlIo : enabled

Threading Primitives : enabled

Real Time Simulator : enabled

Emulated Net Device : enabled

File descriptor NetDevice : enabled

Tap FdNetDevice : enabled

Emulation FdNetDevice : enabled

PlanetLab FdNetDevice : not enabled (PlanetLab operating system not detected…

Network Simulation Cradle : not enabled (NSC not found (see option --with-nsc))

MPI Support : enabled

NS-3 OpenFlow Integration : not enabled (OpenFlow not enabled (see option --with-openflow))

SQlite stats data output : enabled

Building a Distributed NS-3 Simulation

• Choose partitioning strategy
– Find obvious sections of the network that will operate most independently

• Minimize communication between partitions

– Find large latencies in network
• Large latencies are large (good) lookahead values

• Build topology as normal, assigning “SystemId” values on all Nodes
– CreateObject<Node> (rankId)

• Distributed NS-3 can only be partitioned over Point-to-Point (P2P) links
– A special type of P2P will be created by the PTPHelper if Nodes do not have

the same systemId [PointToPointRemoteChannel]
– P2P links can be “inserted” where latency is available
– Latency can sometimes be “moved” around

Rank 1 Rank 2 Rank 3

Rank 0

Distributed NS-3 Partitioning Example

• Set of ground
MANETs

• Aerial layer MANET
• Cannot partition at

wireless link between
ground and air
networks
– Place node from air

network in each
ground network

– Insert Point-to-Point
link

• Possibly “move”
latency from air-to-
ground into PtP link

Ground
Network

Ground
Network

Ground
Network

Air
Network

Rank 0

Rank 1 Rank 2 Rank 3

Router
Node

Aerial MANET

Ground MANET

Ground
Node

Air
Node

Aerial MANET

Ground MANET

Inserted PtP

Ground
Network

Ground
Network

Ground
Network

Air
Network

Distributed NS-3
Load Distribution

• All ranks create all nodes and links
– Setup time and memory requirements are similar to sequential simulation
– Event execution happens in parallel
– Memory is used for nodes/stacks/devices that “belong” to other ranks

• Non-local nodes do not have to be fully configured
– Application models should not be installed on non-local nodes
– Stacks and addresses probably should be installed on non-local nodes

• So that global routing model can ‘see’ the entire network

• When packets are transmitted over P2P-Remote links, the receive event is
communicated to the receiving rank
– Send event immediately, do not wait for grant time
– Receive event is added to remote rank’s queue instead of local

• At end of grant time
– Read and schedule all incoming events
– Compute and negotiate next grant time

Sending a Packet to Remote Rank

• Consider 2 CSMA networks connected by a single P2P link
– One router on each network that spans P2P and CSMA networks
– A packet is sent from H1 to H6 via R1 and R2
– At R1, packet is forwarded on to P2P link R1<->R2

• When Packet is sent to P2P-Remote Channel
– Instead of scheduling a receive on the destination PTPDevice, we call

MpiInterface::SendPacket()

• MpiInterface::SendPacket()

– Arguments
• Packet data
• Receive time – Packet time plus link delay
• Remote SystemId (rank)
• Remote nodeId
• Remote InterfaceId

– Serializes packet and destination data
– MPI_Isend() byte stream to remote rank

Receiving a Packet from Remote Rank

• At granted time, read all MPI message from wire
• For each message

– Deserialize target Receive Time, Node and InterfaceId
– Deserialize packet
– Find Node by ID
– Find NetDevice on node with correct interfaceId
– Get MpiReceiver object which is aggregated to the

NetDevice
• MpiReceiver is a small shim that passes receive events to the proper

NetDevice callback

– Schedule Receive event @RxTime
• MpiReceiver::Receive()

– This calls its callback which set is to PointToPointNetDevice::Receive() by the
PointToPoint helper.

Sending a Packet to a Remote Rank

Sequential

Distributed

Distributed NS-3
Load and Memory Distribution

• Save memory by not creating nodes/stacks/links that “belong” in other
LPs
– Exception is “ghost” nodes that bridge LP borders

• Ghost node creation is only necessary as a convenience

• Requires manual intervention
– Global and NIX routing do not see entire topology

• Add static, default routes manually
• Hint: IPv6 allows for more “aggregatable” routes

– Node indexing is not symmetric
• If R1 or R2 have different node numbers in each LP, then
MpiInterface::SendPacket() will select the wrong destination

– Interface identifiers must align in same fashion

Node and Interface “Alignment”

F2

F3

F4 F5

F0

F1

Inter-Federate “Mesh”

F2

F3

F4 F5

F0

F1

Inter-Federate “Mesh”
Federate 1 perspective

Packets from F1 go to
1st interface on remote

Federates

Create (N-1) links
instead of N*(N-1)/2

• “Router-in-the-sky” scenario

• N2 mesh of interconnected
nodes at central hub

Limitations of Distributed NS3

• Partitioning is a manual process

• Partitioning is restricted to Point-To-Point links only
– Partitioning within a wireless network is not supported

• Lookahead is very small and dynamic

• Need full topology in all LPs
– Exception with careful node ordering, interface

numbering, and manual routing

Example Code
src/mpi/examples/third-distributed.cc

#ifdef NS3_MPI

#include <mpi.h>

#endif

// Default Network Topology (same as third.cc from tutorial)

// Distributed simulation, split along the p2p link

// Number of wifi or csma nodes can be increased up to 250

//

// Wifi 10.1.3.0

// AP

// * * * *

// | | | | 10.1.1.0

// n5 n6 n7 n0 -------------- n1 n2 n3 n4

// point-to-point | | | |

// ================

// | LAN 10.1.2.0

// |

// Rank 0 | Rank 1

// -------------------------|----------------------------

using namespace ns3;

NS_LOG_COMPONENT_DEFINE ("ThirdExampleDistributed");

Need to
include mpi.h

int

main (int argc, char *argv[])

{

#ifdef NS3_MPI

 // Distributed simulation setup

 MpiInterface::Enable (&argc, &argv);

 GlobalValue::Bind ("SimulatorImplementationType",

 StringValue ("ns3::DistributedSimulatorImpl"));

 uint32_t systemId = MpiInterface::GetSystemId ();

 uint32_t systemCount = MpiInterface::GetSize ();

 // Check for valid distributed parameters.

 // Must have 2 and only 2 Logical Processors (LPs)

 if (systemCount != 2)

 {

 std::cout << "This simulation requires 2 and only 2 logical

 processors.” << std::endl;

 return 1;

 }

[Command line parsing and LogEnable]

Example Code
src/mpi/examples/third-distributed.cc

Enable MPI
Set Scheduler

Rank Number
Size

Size Check

NodeContainer p2pNodes;

Ptr<Node> p2pNode1 = CreateObject<Node> (0); // Create node w/ rank 0

Ptr<Node> p2pNode2 = CreateObject<Node> (1); // Create node w/ rank 1

p2pNodes.Add (p2pNode1);

p2pNodes.Add (p2pNode2);

PointToPointHelper pointToPoint;

pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));

pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

NetDeviceContainer p2pDevices;

p2pDevices = pointToPoint.Install (p2pNodes);

NodeContainer csmaNodes;

csmaNodes.Add (p2pNodes.Get (1));

csmaNodes.Create (nCsma, 1); // Create csma nodes with rank 1

CsmaHelper csma;

csma.SetChannelAttribute ("DataRate", StringValue ("100Mbps"));

csma.SetChannelAttribute ("Delay", TimeValue (NanoSeconds (6560)));

NetDeviceContainer csmaDevices;

csmaDevices = csma.Install (csmaNodes);

Example Code
src/mpi/examples/third-distributed.cc

Node Rank 0
Node Rank 1

Nothing
different

here

CSMA net
node on
Rank 1

NodeContainer wifiStaNodes;

wifiStaNodes.Create (nWifi, 0); // Create wifi nodes with rank 0

NodeContainer wifiApNode = p2pNodes.Get (0);

YansWifiChannelHelper channel = YansWifiChannelHelper::Default ();

YansWifiPhyHelper phy = YansWifiPhyHelper::Default ();

phy.SetChannel (channel.Create ());

WifiHelper wifi = WifiHelper::Default ();

wifi.SetRemoteStationManager ("ns3::AarfWifiManager");

NqosWifiMacHelper mac = NqosWifiMacHelper::Default ();

Ssid ssid = Ssid ("ns-3-ssid");

mac.SetType ("ns3::StaWifiMac“, "Ssid", SsidValue (ssid),

 "ActiveProbing", BooleanValue (false));

NetDeviceContainer staDevices;

staDevices = wifi.Install (phy, mac, wifiStaNodes);

mac.SetType ("ns3::ApWifiMac“, "Ssid", SsidValue (ssid));

NetDeviceContainer apDevices;

apDevices = wifi.Install (phy, mac, wifiApNode);

Example Code
src/mpi/examples/third-distributed.cc

Wifi net on
Rank 0

[Mobility]

InternetStackHelper stack;

stack.Install (csmaNodes);

stack.Install (wifiApNode);

stack.Install (wifiStaNodes);

Ipv4AddressHelper address;

address.SetBase ("10.1.1.0", "255.255.255.0");

Ipv4InterfaceContainer p2pInterfaces;

p2pInterfaces = address.Assign (p2pDevices);

address.SetBase ("10.1.2.0", "255.255.255.0");

Ipv4InterfaceContainer csmaInterfaces;

csmaInterfaces = address.Assign (csmaDevices);

address.SetBase ("10.1.3.0", "255.255.255.0");

address.Assign (staDevices);

address.Assign (apDevices);

Example Code
src/mpi/examples/third-distributed.cc

Installing
Internet Stacks
on everything

Assigning
Addresses to
everything

// If this simulator has system id 1, then

// it should contain the server application,

// since it is on one of the csma nodes

if (systemId == 1)

 {

 UdpEchoServerHelper echoServer (9);

 ApplicationContainer serverApps = echoServer.Install (csmaNodes.Get (nCsma));

 serverApps.Start (Seconds (1.0));

 serverApps.Stop (Seconds (10.0));

 }

// If the simulator has system id 0, then

// it should contain the client application,

// since it is on one of the wifi nodes

if (systemId == 0)

 {

 UdpEchoClientHelper echoClient (csmaInterfaces.GetAddress (nCsma), 9);

 echoClient.SetAttribute ("MaxPackets", UintegerValue (1));

 echoClient.SetAttribute ("Interval", TimeValue (Seconds (1.)));

 echoClient.SetAttribute ("PacketSize", UintegerValue (1024));

 ApplicationContainer clientApps =

 echoClient.Install (wifiStaNodes.Get (nWifi - 1));

 clientApps.Start (Seconds (2.0));

 clientApps.Stop (Seconds (10.0));

 }

Example Code
src/mpi/examples/third-distributed.cc

Apps for
Rank 1

Apps for
Rank 0

Ipv4GlobalRoutingHelper::PopulateRoutingTables ();

Simulator::Stop (Seconds (10.0));

[Tracing]

Simulator::Run ();

Simulator::Destroy ();

// Exit the MPI execution environment

MpiInterface::Disable ();

return 0;

Example Code
src/mpi/examples/third-distributed.cc

GlobalRouting
will work since

we have full
topology

Disable MPI

Error Conditions

• Can't use distributed simulator without
MPI compiled in
– Not finding or building with MPI libraries
– Reconfigure NS-3 and rebuild

• assert failed. cond="pNode && pMpiRec",
file=../src/mpi/model/mpi-interface.cc,
line=413

– Mis-aligned node or interface IDs

Performance Optimizations

• Memory Optimization
• Larger lookahead (Link latency)

helps parallelism
• Cost of the AllGather grows

exponentially with LP count
– If workload per LP is high, fall-

off in performance moves to
higher LP count

– With lower workload,
performance can fall off at 32-
128 LPs

• More work and larger latencies
mean better performance of
distributed scheduler

• Choose appropriate metric for
measuring performance
– Events/sec can be misleading

with varying event cost
– Packet transmissions (or

receives) per wall-clock time

Conservative PDES – NULL Message

• An alternative to global synchronization of LBTS
– Decreases “cost” of time synchronization

• Each event message exchanged includes a new LBTS
value from sending LP to receiving LP
– LBTS is computed for each LP-to-LP message
– An LP now cares only about its connected set of LPs for

grant time calculation

• When there are no event messages exchanged, a
“NULL” event message is sent with latest LBTS value

• Advantages to using NULL-message scheduler
– Less expensive negotiation of time synchronization
– Allows independent grant times

Advanced Topics / Future Work

• Distributed Real Time
– Versus simultaneous real-time emulations:

• LP-to-LP messaging can be done with greater lookahead to counter interconnect delay

• Routing
– AS-like routing between LPs
– Goal is to enable Global or NIX routing without full topology in each LP

• Alignment
– Negotiate node and interface IDs at run time

• Partitioning with automated tools
– Graph partitioning tools
– Descriptive language to describe results of partitioning to topology generation

• Optimistic PDES
– Break causality with ability to “roll-back” time

• Partitioning across links other than P2P
• Full, automatic memory scaling

– Automatic ghost nodes, globally unique node IDs

References

• “Parallel and Distributed Simulation Systems”, R.
M. Fujimoto, Wiley Interscience, 2000.

• “Distributed Simulation with MPI in ns-3”, J.
Pelkey, G. Riley, Simutools ‘11.

• “Performance of Distributed ns-3 Network
Simulator”, S. Nikolaev, P. Barnes, Jr., J. Brase, T.
Canales, D. Jefferson, S. Smith, R. Soltz, P.
Scheibel, SimuTools '13.

• “A Performance and Scalability Evaluation of the
NS-3 Distributed Scheduler”, K. Renard, C. Peri, J.
Clarke , SimuTools '12.

SCRATCH SPACE

Event Queue

N Events

Sequential Distributed

Event Queue

O(N/p)
Events

Event Queue

O(N/p)
Events

Event Queue

O(N/p)
Events

Event Queue

O(N/p)
Events

Event Queue

O(N/p)
Events

Event Queue

O(N/p)
Events

Event Queue

O(N/p)
Events

Event Queue

O(N/p)
Events

…

…

LP1 Event Queue

local event

local event

local event

local event

local event

local event

Remote event

Si
m

u
la

ti
o

n
 t

im
e

LP2 Event Queue

local event

local event

Granted Time

Si
m

u
la

ti
o

n
 t

im
e

LP2 Event Queue

local event

local event

Minimum
propagation delay

among LP-to-LP links

local event

local event

LBTS

local event

local event

Current Granted Time

H1 H2 H3

H4 H5 H6

R1

R2

H4 H5 H6

R1

R2

H1 H2 H3 R1

R2

Rank 1 Rank 2

H1 H2 H3

H4 H5 H6

R1

R2

Sequential

RxTime NodeId DeviceId Packet Data
Serialization of packet transmit event over PTP-Remote Channel in Distributed NS-3

Node 1
SysId 1

PTP
Device

PTP Channel

Node 2
SysId 1

PTP
Device

App App

Rank 1 Rank 2

MPI
Interface

Node 1
SysId 1

PTP
Device

PTP Remote Channel

Node 2
SysId 2

PTP
Device

MPI_Isend()

App

MPI
Interface

Node 1
SysId 1

PTP
Device

PTP Remote Channel

Node 2
SysId 2

PTP
Device

App

4

C
h

an
n

el
 B

u
sy

Transmitter Receiver

Propagation
Delay

Packet Time
(length/rate)

Start Tx

Start Rx

End Tx

End Rx

Ti
m

e

Channel Tx Start Event

Channel Tx End Event

NetDevice Receive Event

