
Experimentation with ns-3
Mathieu Lacage

mathieu.lacage@sophia.inria.fr

INRIA

Trilogy Summer School, 27th august 2009

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 1 / 95

Goals of this tutorial

• Understand the goals of the ns-3 project
• Learn what has been done to achieve these goals
• Identify future work directions

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 2 / 95

Tutorial schedule

1 14h00-15h00: Introduction
2 15h00-16h00: The ns-3 architecture
3 16h00-17h00: The ns-3 object model

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 3 / 95

Part I

Introduction

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 4 / 95

Outline

Simulation considered harmful

Why not reuse an existing simulator ?

What is so special about ns-3 ?

What we learned along the way

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 5 / 95

Outline

Simulation considered harmful

Why not reuse an existing simulator ?

What is so special about ns-3 ?

What we learned along the way

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 6 / 95

Recent history (1995-2005)

• ns-2 became the main choice for research usage. Search of
ACM Digital Library papers citing simulation, 2001-04:

ns-2 OPNET QualNet/Glomosim
≥ layer 4 123 (75%) 30 (18%) 11 (7%)
= layer 3 186 (70%) 48 (18%) 31 (12%)
≤ layer 2 114 (43%) 96 (36%) 55 (21%)

• Funding for ns-2 development dropped in the early 2000’s

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 7 / 95

What is wrong about ns-2 ?

• Split object model (OTcl and C++) and use of Tcl:
• Doesn’t scale well
• Makes it difficult for students

• Large amount of abstraction at the network layer and below
leads to big discontinuities when transitioning from simulation to
experiment

• Accretion of unmaintained and incompatible models
• Lack of support for creating methodologically sound simulations
• Lack of, and outdated, documentation
• In ns-2, validation really means regression: no documented

validation of the models, outside of TCP

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 8 / 95

Overheard on e2e-interest
mailing list

September 2005 archives of the e2e-interest mailing list:
• “...Tragedy of the Commons...”
• “...around 50% of the papers appeared to be... bogus...”
• “Who has ever validated NS2 code?”
• “To be honest, I’m still not sure whether I will use a simulation in

a paper.”
• “...I will have a hard time accepting or advocating the use of

NS-2 or any other simulation tool”

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 9 / 95

A recurring misconception

• Using ns-2 is actively harmful

• Simulation is ns-2

Thus, simulation is actively harmful

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 10 / 95

A recurring misconception

• Using ns-2 is actively harmful

• Simulation is ns-2

Thus, simulation is actively harmful

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 10 / 95

A recurring misconception

• Using ns-2 is actively harmful

• Simulation is ns-2

Thus, simulation is actively harmful

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 10 / 95

Back in 2000’s, the rise of
testbeds

• Hardware costs going down
• OS virtualization going up
• Development of control and management software

Result:
• Emulab: http://www.emulab.net
• ORBIT: http://www.orbit-lab.org
• Planetlab: http://planet-lab.org
• ModelNet: https://modelnet.sysnet.ucsd.edu
• ...

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 11 / 95

Back in 2000’s, the rise of
testbeds

• Hardware costs going down
• OS virtualization going up
• Development of control and management software

Result:
• Emulab: http://www.emulab.net
• ORBIT: http://www.orbit-lab.org
• Planetlab: http://planet-lab.org
• ModelNet: https://modelnet.sysnet.ucsd.edu
• ...

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 11 / 95

Why do we need simulation at
all ?

• Simulation models are not validated
• Simulation model implementations not verified
• No need for validation and verification in testbeds

However, there are lots of good things about simulation:
• Reproducibility
• Easier to setup, deploy, instrument
• Investigate non-existent systems
• Scalability

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 12 / 95

Why do we need simulation at
all ?

• Simulation models are not validated
• Simulation model implementations not verified
• No need for validation and verification in testbeds

However, there are lots of good things about simulation:
• Reproducibility
• Easier to setup, deploy, instrument
• Investigate non-existent systems
• Scalability

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 12 / 95

http://www.emulab.net
http://www.orbit-lab.org
http://planet-lab.org
https://modelnet.sysnet.ucsd.edu
http://www.emulab.net
http://www.orbit-lab.org
http://planet-lab.org
https://modelnet.sysnet.ucsd.edu

But, really, we need both !

We want to get the best from both worlds:
• Simulators: reproducibility, debuggability, ease of setup
• Testbeds: realism

We want an integrated experimentation environment:
• Use each tool separately:

• Parameter space exploration with simulations
• More realism with testbeds

• Use both tools together:
• Simulator for elements of the topology to scale
• Testbed for other elements to get realism

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 13 / 95

Summary

We need simulations:
• Easier to use, debug, reproduce than testbeds
• Not constrained by existing hardware/software

We need a special simulator:
• Improves model validation
• Improves model implementation verification
• Allow users to move back and forth between simulation and

testbeds

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 14 / 95

Outline

Simulation considered harmful

Why not reuse an existing simulator ?

What is so special about ns-3 ?

What we learned along the way

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 15 / 95

Starting from ns-2

The biggest reason to start from ns-2 is:
• A large existing userbase
• A large set of existing models

But, we need to address many issues:
• Most existing models lack validation, verification, maintenance
• Bi-language system (C++/tcl) makes debugging complex:

removing it would mean dropping backward compatibility
• Core packet data-structure:

• Inappropriate for emulation
• Fragmentation unsupported

Re-engineering ns-2 to fix all these issues would make it a new
different simulator: we would lose our existing userbase.

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 16 / 95

Proprietary simulators

There are many of them (google for network simulator):
• Opnet
• QualNet
• Shunra
• etc.

But:
• Terms of use
• Very costly for industrial partners or publicly-funded research

which cannot get education licenses.

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 17 / 95

Omnetpp

• It was not clear in 2005 it would still be alive in 2009
• Major worries over the bi-language architecture: learning curve,

debugging, etc.
• Software structure did not seem to lend itself to the realism we

sought.

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 18 / 95

Not Invented Here

Yes, we did fall prey to that syndrome too:
we thought we could do it better than the others

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 19 / 95

Outline

Simulation considered harmful

Why not reuse an existing simulator ?

What is so special about ns-3 ?

What we learned along the way

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 20 / 95

Good debuggability

C++-only simulations: no need to debug two languages at the same
time

• ns-3 is a library written in C++
• Simulation programs are C++ executables
• Bindings in Python for python simulations

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 21 / 95

Long term project lifetime

A open source community:
• An open license (GPLv2)
• All design and implementation discussions in the open on

mailing-lists (even flame wars)
• Everyone can (should) become a maintainer

This is critical to allow:
• The project to scale to many models
• The project to last beyond initial seed funding
• Model/implementations reviews in the open:

Given enough eyeballs, all bugs are shallow

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 22 / 95

Low cost of model validation

Make models close to the real world:
• Models are less abstract: easier to validate
• Makes it easy to perform direct execution of real code
• Emulation is native and robust against changes in models

How ?
• Real IP addresses
• Multiple interfaces per node
• Bsd-like sockets
• Packets contain real network bytes

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 23 / 95

A usecase: NSC

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 5

Architecture

Network
Stack

Cradle (shared lib)

NSC TCP
model

Network
simulator
(ns-2)

NSC TCP
model

NSC TCP
model Network

Stack

Cradle (shared lib)

Network Stack

Cradle (shared lib)

TCP

IP

Socket API

S
im

u
la

tio
n

 A
P

I

connect,
send,
packet received,
timer, read

send packet

Virtualised
Resources
Virtualised
Resources
Virtualised
Resources

liblinux2.6.14.so
libfreebsd5.3.so

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 24 / 95

NSC implementation

• Globalizer: per-process kernel source code and add indirection
to all global variable declarations and accesses

• Glue: per-kernel (and per-kernel-version) glue to provide kernel
APIs for kernel code:

• kmalloc: memory allocation
• NetDevice integration
• Socket integration

• Provides glue for:
• linux 2.6.18, 2.6.26, 2.6.28
• FreeBSD 5
• lwip 1.3
• OpenBSD 3

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 25 / 95

NSC accuracy

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 6

Accuracy

●Have shown NSC to be very accurate – able to produce
packet traces that are almost identical to traces measured
from a test network

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 26 / 95

Summary

ns-3 has a strong focus on realism:
• Makes models closer to the real world: easier to validate
• Allows direct code execution: no model validation
• Allows robust emulation for large-scale and mixed experiments

ns-3 also cares about good software engineering:
• Single-language architecture is more robust in the long term
• Open source community ensures long lifetime to the project

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 27 / 95

Outline

Simulation considered harmful

Why not reuse an existing simulator ?

What is so special about ns-3 ?

What we learned along the way

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 28 / 95

Things You Should Never Do

It’s an old axiom of software engineering:
Don’t rewrite from scratch, ever.

We did not really start from scratch:
• Stole code and concepts from GTNetS (applications)
• Stole code and concepts from yans (wifi)
• Stole code and concepts from ns-2 (olsr, error models)

Even then, it took us 2 years to get to a useful state

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 29 / 95

Building an open source
community is hard

It’s a lot of work to attract contributors and keep them: they want to
have fun, they want to have impact on the project:

• Never flame people on mailing-lists:
• Always answer questions kindly, point out manuals and FAQ
• Don’t answer provocative statements
• English is not the native language of most users

• We need to do the boring work (release management, bug
tracking, server maintenance)

• No discussion behind closed doors: increases communication
cost

• It’s a meritocracy: those who contribute the most should have
power to decide for the project

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 30 / 95

Need for integrated statistical
tools

Initially, we thought we could:
• Allow users to easily instrument the system
• Delegate analysis to third-party tools such as R

It does not work that way though:
• Lack of methodology documentation
• Fancy statistical tools are too complex for most users

Future work: integrate tools to automatically measure and improve
confidence intervals on simulation output

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 31 / 95

Need for a high-level
experimentation environment

ns-3 provides low-level functionality:
• Tap devices
• Realtime simulation core

But we want to allow easy switching and mixing of simulation and
testbeds. We need higher-level abstractions for:

• Experiment description (topology, application traffic)
• Experiment configuration
• Tracing configuration
• Deployment automation

Work towards this is underway with NEPI (ROADS’09: NEPI: Using
Independent Simulators, Emulators, and Testbeds for Easy
Experimentation:
http://www-sop.inria.fr/members/Mathieu.Lacage/roads09-nepi.pdf)

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 32 / 95

http://www-sop.inria.fr/members/Mathieu.Lacage/roads09-nepi.pdf

Need for more direct code
execution I

Integrate normal POSIX network applications in the simulator:
• No source code modifications
• Easy to debug (great network application development platform

!)
Needs:

• Globalization: global variables must be virtualized for each
instance of the application running in the simulator

• Filesystem virtualization: each application needs a separate
filesystem (to get different configuration and log files for
example)

• Socket library: need a complete implementation of sockets in
the simulator, including all the crazy ioctls

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 33 / 95

Need for more direct code
execution II

Status:
• Running demonstrations with ping, traceroute
• Simple socket applications can run: a couple of threads, select,

tcp server/client
• Larger applications using fancy socket ioctls don’t work very well

yet

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 34 / 95

Part II

The ns-3 architecture

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 35 / 95

Outline

Introduction

Fundamental network model structure

Topology construction

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 36 / 95

Outline

Introduction

Fundamental network model structure

Topology construction

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 37 / 95

Environment setup

Install all needed tools:

Ubuntu
sudo apt-get install build-essential g++ python mercurial

Windows
• cygwin
• python
• mercurial

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 38 / 95

Getting ns-3

Availability (linux, osx, cygwin, mingw):
• Released tarballs: http://www.nsnam.org/releases
• Development version: http://code.nsnam.org/ns-3-dev

The development version is usually stable: a lot of people use it for
daily work:

hg clone http://code.nsnam.org/ns-3-dev

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 39 / 95

Running ns-3

Use waf to build it (similar to make):

./waf

./waf shell

./build/debug/examples/csma-broadcast

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 40 / 95

http://www.nsnam.org/releases
http://code.nsnam.org/ns-3-dev

Exploring the source code

Smart pointers
Dynamic type system
Attr ibutes

Callbacks
Tracing
Logging
Random Variables

Packets
Packet tags
Packet headers
Pcap fi le writing

Events
Scheduler
Time ari thmetic

Mobil i tyModels
(static, random walk,
etc.)

High-level wrappers
No smart pointers
Aimed at script ing

Node
NetDevice
Address types
Queues
Socket
Ipv4 helper

core

commonsimulator

node mobi l i ty

internet-stack devicesrout ing

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 41 / 95

A typical simulation

• Create a bunch of C++ objects
• Configure and interconnect them
• Each object creates events with Simulator::Schedule
• Call Simulator::Run to execute all events

A (fictional) simulation
Node *a = new Node ();
Node *b = new Node ();
Link *link = new Link (a,b);
Simulator::Schedule (Seconds (0.5), // in 0.5s from now

&Node::StartCbr, a, // call StartCbr on ’a’
"100bytes", "0.2ms", b); // pass these arguments

Simulator::Run ();

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 42 / 95

Outline

Introduction

Fundamental network model structure

Topology construction

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 43 / 95

The basic model

NetDevice

Application
Application

NetDevice

Protocol
Stack

Node

NetDevice

Application
Application

NetDevice

Protocol
Stack

Node

Channel
Channel

Socket-like
API

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 44 / 95

The fundamental objects

• Node: the motherboard of a computer with RAM, CPU, and, IO
interfaces

• Application: a packet generator and consumer which can run on
a Node and talk to a set of network stacks

• Socket: the interface between an application and a network
stack

• NetDevice: a network card which can be plugged in an IO
interface of a Node

• Channel: a physical connector between a set of NetDevice
objects

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 45 / 95

Important remark

NetDevices are strongly bound to Channels of a matching type:

WifiNetDevice

WifiNetDevice

WifiNetDevice WifiNetDevice

CsmaNetDevice

CsmaNetDevice

CsmaNetDevice

CsmaChannelWifiChannel

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 46 / 95

Existing models

• Network stacks: arp, ipv4, icmpv4, udp, tcp (ipv6 under review)
• Devices: wifi, csma, point-to-point, bridge
• Error models and queues
• Applications: udp echo, on/off, sink
• Mobility models: random walk, etc.
• Routing: olsr, static global

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 47 / 95

For example, the wifi models

• New model, written from 802.11 specification
• Accurate model of the MAC
• DCF, beacon generation, probing, association
• A set of rate control algorithms (ARF, ideal, AARF, Minstrel, etc.)
• Not-so-slow models of the 802.11a PHY

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 48 / 95

Development of wifi models

New contributions from many developers:
• University of Florence: 802.11n, EDCA, frame aggregation,

block ack
• Russian Academy of Sciences: 802.11s, HWMP routing protocol
• Boeing: 802.11b channel models, validation
• Deutsche Telekom Laboratories: PHY modelization, validation
• Karlsruhe Institute of Technology: PHY modelization (Rayleigh,

Nakagami)

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 49 / 95

Summary

• Core models are based on well-known abstractions: sockets,
devices, etc.

• An active community of contributors

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 50 / 95

Summary

• Core models are based on well-known abstractions: sockets,
devices, etc.

• An active community of contributors

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 50 / 95

Outline

Introduction

Fundamental network model structure

Topology construction

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 51 / 95

The Helper/Container API
We want to:

• Make it easy to build topologies with repeating patterns
• Make the topology description more high-level (and less

verbose) to make it easier to read and understand
The idea is simple:

• Sets of objects are stored in Containers
• One operation is encoded in a Helper object and applies on a

Container

Helper operations:
• Are not generic: different helpers provide different operations
• Do not try to allow code reuse: just try to minimize the amount of

code written
• Provide syntactical sugar: make the code easier to read

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 52 / 95

Typical containers and helpers

Example containers:
• NodeContainer
• NetDeviceContainer
• Ipv4AddressContainer

Example helper classes:
• InternetStackHelper
• WifiHelper
• MobilityHelper
• OlsrHelper
• etc. Each model provides a helper class

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 53 / 95

Create a couple of nodes

NodeContainer csmaNodes;
csmaNodes.Create (2);
NodeContainer wifiNodes;
wifiNodes.Add (csmaNodes.Get (1));
wifiNodes.Create (3);

Create empty node container
Create two nodes
Create empty node container
Add existing node to it
And then create some more nodes

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 54 / 95

Then, the csma network

NetDeviceContainer csmaDevices;
CsmaHelper csma;
csma.SetChannelAttribute ("DataRate",

StringValue ("5Mbps"));
csma.SetChannelAttribute ("Delay",

StringValue ("2ms"));
csmaDevices = csma.Install (csmaNodes);

Create empty device container
Create csma helper
Set data rate

Set delay

Create csma devices and
channel

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 55 / 95

And a couple of wifi interfaces

Finally, setup the wifi channel:

YansWifiChannelHelper wifiChannel = YansWifiChannelHelper::Default ();
YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
wifiPhy.SetChannel (wifiChannel.Create ());

And create adhoc devices on this channel:

NetDeviceContainer wifiDevices;
WifiHelper wifi = WifiHelper::Default ();
wifiDevices = wifi.Install (wifiPhy, wifiNodes);

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 56 / 95

Comparison with low-level
version

Fire up editor for tutorial-helper.cc and tutorial-lowlevel.cc

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 57 / 95

Summary

• It’s always possible to create objects by hand, interconnect and
configure them

• But it can be easier to reuse the for loops encapsulated in
Helper classes

• Helper classes make scripts less cluttered and easier to read
and modify

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 58 / 95

Summary

• It’s always possible to create objects by hand, interconnect and
configure them

• But it can be easier to reuse the for loops encapsulated in
Helper classes

• Helper classes make scripts less cluttered and easier to read
and modify

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 58 / 95

Summary

• It’s always possible to create objects by hand, interconnect and
configure them

• But it can be easier to reuse the for loops encapsulated in
Helper classes

• Helper classes make scripts less cluttered and easier to read
and modify

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 58 / 95

Part III

The ns-3 object model

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 59 / 95

Outline

A coherent memory management scheme

Maximizing model reuse

Getting the right object

A uniform configuration system

Controlling trace output format

The underlying type metadata database

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 60 / 95

It’s easy to build a network
simulator

It’s just a matter of:
• Provide an event scheduler
• Implement a couple of models to create and consume events

But it’s much harder to build a network simulator which:
• Allows models to be reusable independently
• Ensures API coherence between models
• Automates common tasks (tracing, configuration)

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 61 / 95

Outline

A coherent memory management scheme

Maximizing model reuse

Getting the right object

A uniform configuration system

Controlling trace output format

The underlying type metadata database

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 62 / 95

Why are objects so
complicated to create ?

We do:

Ptr<Node> node0 = CreateObject<Node> ();

Why not:

Node *node0 = new Node ();

Or:

Node node0 = Node ();

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 63 / 95

Templates: the Nasty Brackets

• Contain a list of type arguments
• Parameterize a class or function from input type
• In ns-3, used for:

• Standard Template Library
• Syntactical sugar for low-level facilities

• Saves a lot of typing
• No portability/compiler support problem
• Sometimes painful to decipher error messages.

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 64 / 95

Memory Management

It is hard in C++:
• No garbage collector
• Easy to forget to delete an object
• Pointer cycles
• Ensure coherency and uniformity

So, we use:
• Reference counting: track number of pointers to an object

(Ref+Unref)
• Smart pointers: Ptr<>, Create<> and, CreateObject<>
• Sometimes, explicit Dispose to break cycles

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 65 / 95

Outline

A coherent memory management scheme

Maximizing model reuse

Getting the right object

A uniform configuration system

Controlling trace output format

The underlying type metadata database

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 66 / 95

Where is my MobileNode ?
Ptr<Node> node = CreateObject<Node> ();
Ptr<MobilityModel> mobility = CreateObject<...> ();
node->AggregateObject (mobility);

• Some nodes need an IPv4 stack, a position, an energy model.
• Some nodes need just two out of three.
• Others need other unknown features.
• The obvious solution: add everything to the Node base class:

• The class will grow uncontrollably over time
• Everyone will need to patch the class
• Slowly, every piece of code will depend on every other piece of

code (cannot reuse anything without dragging in everything)
• A maintenance nightmare...

• A better solution:
• Separate functionality belongs to separate classes
• Objects can be aggregated at runtime to obtain extra functionality

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 67 / 95

Object aggregation

Node Mobil i tyModel

Ipv4

Node Mobil i tyModel

Ipv4

Node Mobil i tyModel

• A circular singly linked-list
• AggregateObject is a constant-time

operation
• GetObject is a O(n) operation
• Aggregate contains only one object

of each type

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 68 / 95

Outline

A coherent memory management scheme

Maximizing model reuse

Getting the right object

A uniform configuration system

Controlling trace output format

The underlying type metadata database

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 69 / 95

The traditional approach

In C++, if you want to call methods on an object, you need a pointer
to this object. To get a pointer, you need to:

• keep local copies of pointers to every object you create
• walk pointer chains to get access to objects created within other

objects
For example, in ns-3, you could do this:

Ptr<NetDevice> dev = NodeList::Get (5)->GetDevice (0);
Ptr<WifiNetDevice> wifi = dev->GetObject<WifiNetDevice> ();
Ptr<WifiPhy> phy = dev->GetPhy ();
phy->SetAttribute ("TxGain", ...);
phy->ConnectTraceSource (...);

It’s not fun to do...

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 70 / 95

Use a namespace string !

Set an attribute:

Config::SetAttribute ("/NodeList/5/DeviceList/0/Phy/TxGain",
StringValue ("10"));

Connect a trace sink to a trace source:

Config::Connect ("/NodeList/5/DeviceList/0/Phy/TxGain",
MakeCallback (&LocalSink));

Just get a pointer:

Config::MatchContainer match;
match = Config::LookupMatches ("/NodeList/5/DeviceList/0/Phy/");
Ptr<WifiPhy> phy = match.Get (0)->GetObject<WifiPhy> ();

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 71 / 95

The object namespace I

Object namespace strings represent a path through a set of object
pointers:

/NodeList/[0-n] /DeviceList/[0-n]

/SendEnable /FrameSize/DataRate /InterframeGap

NodeListPriv Node

CsmaNetDevicePointToPointNetDevice

For example, /NodeList/x/DeviceList/y/InterframeGap represents the
InterframeGap attribute of the device number y in node number x.

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 72 / 95

The object namespace II

Navigating the attributes using paths:
• /NodeList/[3-5]|8|[0-1]: matches nodes index 0, 1, 3, 4, 5, 8
• /NodeList/*: matches all nodes
• /NodeList/3/$ns3::Ipv4: matches object of type ns3::Ipv4

aggregated to node number 3
• /NodeList/3/DeviceList/*/$ns3::CsmaNetDevice: matches all

devices of type ns3::CsmaNetDevice within node number 3
• /NodeList/3/DeviceList/0/RemoteStationManager: matches the

object pointed to by attribute RemoteStationManager in device 0
in node 3.

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 73 / 95

Outline

A coherent memory management scheme

Maximizing model reuse

Getting the right object

A uniform configuration system

Controlling trace output format

The underlying type metadata database

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 74 / 95

Traditionally, in C++

• Export attributes as part of a class’s public API
• Use static variables for defaults

For example:

class MyModel {
public:
MyModel () : m_foo (m_defaultFoo) {}
void SetFoo (int foo) {m_foo = foo;}
int GetFoo (void) {return m_foo}
static void SetDefaultFoo (int foo) {m_defaultFoo = foo;}
static int GetDefaultFoo (void) {return m_defaultFoo;}

private:
int m_foo;
static int m_defaultFoo = 10;

};

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 75 / 95

In ns-3, done automatically I

• Set a default value:

Config::SetDefaultValue ("ns3::WifiPhy::TxGain", StringValue ("10"));

• Set a value on a specific object:

phy->SetAttribute ("TxGain", StringValue ("10"));

• Set a value from the command-line –ns3::WifiPhy::TxGain=10:

CommandLine cmd;
cmd.Parse (argc, argv);

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 76 / 95

In ns-3, done automatically II

• Load, Change, and Save all values from and to a raw text or xml
file with or without a GUI:

GtkConfigStore config;
config.ConfigureDefaults ();
...
config.ConfigureAttributes ();

• Set a value with an environment variable
NS_ATTRIBUTE_DEFAULT=ns3::WifiPhy::TxGain=10

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 77 / 95

Graphical navigation

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 78 / 95

Doxygen documentation

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 79 / 95

Outline

A coherent memory management scheme

Maximizing model reuse

Getting the right object

A uniform configuration system

Controlling trace output format

The underlying type metadata database

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 80 / 95

Tracing requirements

• Tracing is a structured form of simulation output
• Example (from ns-2):

+ 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610
- 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610
r 1.84471 2 1 cbr 210 ------- 1 3.0 1.0 195 600
r 1.84566 2 0 ack 40 ------- 2 3.2 0.1 82 602
+ 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611

• Problem: tracing needs vary widely
• Would like to change tracing output format without editing the core
• Would like to support multiple output formats

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 81 / 95

Tracing overview

• Simulator provides a set of pre-configured trace sources
• Users may edit the core to add their own

• Users provide trace sinks and attach to the trace source
• Simulator core provides a few examples for common cases

• Multiple trace sources can connect to a trace sink

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 82 / 95

The ns-3 tracing model

Decouple trace sources from trace sinks:

Source

Source

Source Source

Source

Source

Sink Sink

UnchangingUnchanging Configurable by user

Benefit: Customizable trace sinks

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 83 / 95

Ns-3 trace sources
• Various trace sources (e.g., packet receptions, state machine

transitions) are plumbed through the system
• Organized with the rest of the attribute system

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 84 / 95

Multiple levels of tracing

• High-level: use a helper to hook a predefined trace sink to a
trace source and generate simple tracing output (ascii, pcap)

• Mid-level: hook a special trace sink to an existing trace source to
generate adhoc tracing

• Low-level: add a new trace source and connect it to a special
trace sink

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 85 / 95

High-level tracing

• Use predefined trace sinks in helpers
• All helpers provide ascii and pcap trace sinks

CsmaHelper::EnablePcap ("filename", nodeid, deviceid);
std::ofstream os;
os.open ("filename.tr");
CsmaHelper::EnableAscii (os, nodeid, deviceid);

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 86 / 95

Mid-level tracing

• Provide a new trace sink
• Use attribute/trace namespace to connect trace sink and source

void
DevTxTrace (std::string context,

Ptr<const Packet> p, Mac48Address address)
{
std::cout << " TX to=" << address << " p: " << *p << std::endl;

}
Config::Connect ("/NodeList/*/DeviceList/*/Mac/MacTx",

MakeCallback (&DevTxTrace));

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 87 / 95

Pcap output
The trace sink:

static void PcapSnifferEvent (Ptr<PcapWriter> writer,
Ptr<const Packet> packet)

{
writer->WritePacket (packet);

}

Prepare the pcap output:

oss << filename << "-" << nodeid << "-" << deviceid << ".pcap";
Ptr<PcapWriter> pcap = ::ns3::Create<PcapWriter> ();
pcap->Open (oss.str ());
pcap->WriteWifiHeader ();

Finally, connect the trace sink to the trace source:

oss << "/NodeList/" << nodeid << "/DeviceList/" << deviceid;
oss << "/$ns3::WifiNetDevice/Phy/PromiscSniffer";
Config::ConnectWithoutContext (oss.str (),

MakeBoundCallback (&PcapSnifferEvent, pcap));

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 88 / 95

Outline

A coherent memory management scheme

Maximizing model reuse

Getting the right object

A uniform configuration system

Controlling trace output format

The underlying type metadata database

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 89 / 95

The ns-3 type system

• The aggregation mechanism needs information about the type
of objects at runtime

• The attribute mechanism needs information about the attributes
supported by a specific object

• The tracing mechanism needs information about the trace
sources supported by a specific object

All this information is stored in ns3::TypeId:
• The parent type
• The name of the type
• The list of attributes (their name, their type, etc.)
• The list of trace sources (their name, their type, etc.)

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 90 / 95

The ns-3 type system
It is not very complicated to use:

• Derive from the ns3::Object base class
• Define a GetTypeId static method:

class Foo : public Object {
public:
static TypeId GetTypeId (void);

};

• Define the features of your object:

static TypeId tid = TypeId ("ns3::Foo")
.SetParent<Object> ()
.AddAttribute ("Name", "Help", ...)
.AddTraceSource ("Name", "Help", ...);

return tid;

• call NS_OBJECT_ENSURE_REGISTERED
Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 91 / 95

Summary

• Memory management is uniform and simple

• Dynamic aggregation makes models easier to reuse
• Path strings allow access to every object in a simulation
• Attributes allow powerful and uniform configuration
• Trace sources allow arbitrary output file formats

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 92 / 95

Summary

• Memory management is uniform and simple
• Dynamic aggregation makes models easier to reuse

• Path strings allow access to every object in a simulation
• Attributes allow powerful and uniform configuration
• Trace sources allow arbitrary output file formats

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 92 / 95

Summary

• Memory management is uniform and simple
• Dynamic aggregation makes models easier to reuse
• Path strings allow access to every object in a simulation

• Attributes allow powerful and uniform configuration
• Trace sources allow arbitrary output file formats

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 92 / 95

Summary

• Memory management is uniform and simple
• Dynamic aggregation makes models easier to reuse
• Path strings allow access to every object in a simulation
• Attributes allow powerful and uniform configuration

• Trace sources allow arbitrary output file formats

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 92 / 95

Summary

• Memory management is uniform and simple
• Dynamic aggregation makes models easier to reuse
• Path strings allow access to every object in a simulation
• Attributes allow powerful and uniform configuration
• Trace sources allow arbitrary output file formats

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 92 / 95

Summary

• Memory management is uniform and simple
• Dynamic aggregation makes models easier to reuse
• Path strings allow access to every object in a simulation
• Attributes allow powerful and uniform configuration
• Trace sources allow arbitrary output file formats

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 92 / 95

Summary

• Simulation is a key component of network research
• Debuggability
• Reproducibility
• Parameter exploration
• No dependency on existing hardware/software

• ns-3 has a strong focus on realism:
• Makes models closer to the real world: easier to validate
• Allows direct code execution: no model validation
• Allows robust emulation for large-scale and mixed experiments

• ns-3 also cares about good software engineering:
• Single-language architecture is more robust in the long term
• Open source community ensures long lifetime to the project

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 93 / 95

Resources

• Web site: http://www.nsnam.org
• Developer mailing list:

http://mailman.isi.edu/mailman/listinfo/ns-developers
• User mailing list: http://groups.google.com/group/ns-3-users
• IRC: #ns-3 at irc.freenode.net
• Tutorial: http://www.nsnam.org/docs/tutorial/tutorial.html
• Code server: http://code.nsnam.org
• Wiki: http://www.nsnam.org/wiki/index.php/Main_Page

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 94 / 95

Acknowledgments

• Many slides stolen from other’s presentations and tutorials
• Many contributors to the ns-3 codebase (developers, testers)
• Google summer of code students (2008,2009)

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 95 / 95

http://www.nsnam.org
http://mailman.isi.edu/mailman/listinfo/ns-developers
http://groups.google.com/group/ns-3-users
http://www.nsnam.org/docs/tutorial/tutorial.html
http://code.nsnam.org
http://www.nsnam.org/wiki/index.php/Main_Page

	Introduction
	Simulation considered harmful
	Why not reuse an existing simulator ?
	What is so special about ns-3 ?
	What we learned along the way

	The ns-3 architecture
	Introduction
	Fundamental network model structure
	Topology construction

	The ns-3 object model
	A coherent memory management scheme
	Maximizing model reuse
	Getting the right object
	A uniform configuration system
	Controlling trace output format
	The underlying type metadata database

	Parting thoughts

