
ns-3 Workshop on ns-3, March 2009 1

ns-3 tutorial

Tom Henderson
University of Washington

and
Mathieu Lacage
INRIA, Planete

Workshop on ns-3
March 2009

ns-3 Workshop on ns-3, March 2009 2

Workshop on ns-3 schedule

09h00-10h30: Tutorial
10h30-11h00: Coffee break
11h00-12h30: Tutorial
12h30-14h00: Lunch
14h00-16h00: Focus on Wifi
16h00-16h30: Coffee break
16h30-18h00: Short talks

ns-3 Workshop on ns-3, March 2009

Focus on ns-3 Wifi

• Authors: Ruben Merz, Cigdem Sengul, and Mustafa Al-Bado
• Title: Accurate Physical Layer Modeling for Realistic Wireless Network

Simulation

• Authors: Timo Bingmann and Jens Mittag
• Title: An overview of PHY-layer models in ns-3

• Author: Mirko Banchi
• Title: Realization of 802.11n and 802.11e models

• Author: Kirill V. Andreev
• Title: Realization of the draft standard for Mesh Networking (IEEE802.11s)

• Author: Guangyu Pei and Tom Henderson
• Title: 802.11b PHY model and validation

ns-3 Workshop on ns-3, March 2009

Short talks (miscellaneous)

• Authors: Ramon Bauza, Miguel Sepulcre, and Javier Gozalvez
• Title: ns-3 scalability constraints in heterogeneous wireless

simulations: iTETRIS a case study

• Authors: Francisco Carmona, Juan Carlos Moreno, Ana Cabello,
Francisco Lobo, and David Mora

• Title: ns-3 Script Generator

• Authors: Providence Salumu Munga and Hakima Chaouchi
• Title: An ns-3-based IEEE 802.21 MIH Module

• Author: Mohamed Amine Ismail
• Title: A Mobile WiMAX Module for ns-3

ns-3 Workshop on ns-3, March 2009 5

Goals of this tutorial

• Learn about the ns-3 project and its goals
• Understand the software architecture,

conventions, and basic usage of ns-3
• Read and modify an example ns-3 script
• Learn how you might extend ns-3 to conduct

your own research
• Provide feedback to the ns-3 development team

ns-3 Workshop on ns-3, March 2009 6

Assumptions

Some familiarity with:
• C++ and Python programming language
• TCP/IP
• Unix Network Programming (e.g., sockets)
• Discrete-event network simulation

ns-3 Workshop on ns-3, March 2009

Outline

1. Overview of ns-3 features
2. End-to-end perspective of the system
3. Extending ns-3
4. Advanced topics (time permitting)

ns-3 Workshop on ns-3, March 2009

Overview of ns-3 features

Topology
Definition

Start with a research question

Models Configuration Execution

Visualization

Output Analysis

Modify scenario, or perform independent replication

Helper APIs and containers

Models:
- WiFi intro
- TCP

Attributes
Names
Command line args
Default values
Env. variables

Real-time scheduler
Emulation modes
Debugging

Examples

Tracing
Wireshark
Statistics framework

Random variables

ns-3 Workshop on ns-3, March 2009

Introductory Software Overview

ns-3 Workshop on ns-3, March 2009 10

Basics

• ns-3 is written in C++
• Bindings in Python
• ns-3 uses the waf build system

– i.e., instead of ./configure;make, type ./waf
• simulation programs are C++ executables

or python scripts

ns-3 Workshop on ns-3, March 2009 11

Simulation basics

• Simulation time moves discretely from
event to event

• C++ functions schedule events to occur at
specific simulation times

• A simulation scheduler orders the event
execution

• Simulation::Run() gets it all started
• Simulation stops at specific time or when

events end

ns-3 Workshop on ns-3, March 2009

Scheduling events

from samples/
main-simulation.cc

ns-3 Workshop on ns-3, March 2009

Introductory demo

ns-3 Workshop on ns-3, March 2009

Random Variables

• Currently implemented distributions
– Uniform: values uniformly distributed in an interval
– Constant: value is always the same (not really random)
– Sequential: return a sequential list of predefined values
– Exponential: exponential distribution (poisson process)
– Normal (gaussian)
– Log-normal
– pareto, weibull, triangular,
– …

ns-3 Workshop on ns-3, March 2009 15

APIs

• Most of the ns-3 API is documented with
Doxygen
– http://www.stack.nl/~dimitri/doxygen/

ns-3 Workshop on ns-3, March 2009 16

the waf build system

• Waf is a Python-based framework for
configuring, compiling and installing
applications.
– It is a replacement for other tools such as

Autotools, Scons, CMake or Ant
– http://code.google.com/p/waf/

ns-3 Workshop on ns-3, March 2009 17

waf key concepts

• For those familiar with autotools:
• configure -> ./waf -d [optimized|debug] configure
• make -> ./waf
• make test -> ./waf check (run unit tests)

• Can run programs through a special waf
shell; e.g.
– ./waf --run simple-point-to-point

– (this gets the library paths right for you)

ns-3 Workshop on ns-3, March 2009

A software organization view

helper

Routing Internet stack Devices

mobilitynode

simulatorcommon

core

High-level wrappers
for everything else

No smart pointers

Aimed at scripting

Events
Scheduler
Time arithmetic

Mobility models
(static, random
walk, etc)

Packets
Packet Tags
Packet Headers
Pcap/ascii file writing

Smart pointers
Dynamic type system
Attributes

Callbacks, Tracing
Logging
Random Variables

Node class
NetDevice ABC
Address types
(Ipv4, MAC, etc.)
Queues
Socket ABC
Ipv4 ABCs
Packet sockets

ns-3 Workshop on ns-3, March 2009

Getting started: Linux

• Working from development version
sudo apt-get install build-essential g++ python
mercurial (for Ubuntu)

hg clone http://code.nsnam.org/ns-3-allinone

cd ns-3-allinone

./download.py

./build.py

cd ns-3-dev

ns-3 Workshop on ns-3, March 2009

Building from within ns-3-dev

cd ns-3-dev

./waf distclean (similar to make distclean)

./waf configure

or ./waf -d optimized configure

./waf

• Helpful options:
– -j# where # is number of cores
– ./waf --help shows you other options

ns-3 Workshop on ns-3, March 2009

Running programs

• Programs are built as
build/<variant>/path/program-name

– programs link shared library libns3.so
• Using ./waf --shell

./waf --shell

./build/debug/samples/main-simulator

• Using ./waf --run
./waf --run examples/csma-bridge.cc

./waf --pyrun examples/csma-bridge.py

ns-3 Workshop on ns-3, March 2009

Getting started: Windows

• Install build tools
– Cygwin (g++, wget)
– Python (http://www.python.org)

• Download
– wget http://www.nsnam.org/releases/ns-3.3.tar.bz2

• Build
– ./waf configure
– ./waf check (runs unit tests)

• (rest of instructions similar to Linux)

ns-3 Workshop on ns-3, March 2009

ns-3 features

ns-3 Workshop on ns-3, March 2009

Overview of ns-3 features

Topology
Definition

Start with a research question

Models Configuration Execution

Visualization

Output Analysis

Modify scenario, or perform independent replication

Helper APIs and containers

Models:
- WiFi intro
- TCP

Attributes
Names
Command line args
Default values
Env. variables

Real-time scheduler
Emulation modes
Debugging

Examples

Tracing
Wireshark
Statistics framework

Random variables

ns-3 Workshop on ns-3, March 2009

Sample program

• Four Wifi ad hoc nodes
• One additional node connected via CSMA

CSMA

WiFi

data transfer

Available today at:
http://www.nsnam.org/temp/wns3-helper.cc
http://www.nsnam.org/temp/wns3-lowlevel.cc

ns-3 Workshop on ns-3, March 2009

Review of sample program

#include <iostream>
#include <fstream>
#include "ns3/simulator-module.h"
#include "ns3/node-module.h"
#include "ns3/core-module.h"
#include "ns3/helper-module.h"
#include "ns3/global-route-manager.h"
#include "ns3/contrib-module.h"

using namespace ns3;

int main (int argc, char *argv[])
{

CommandLine cmd;
cmd.Parse (argc, argv);

ns-3 Workshop on ns-3, March 2009

Review of sample program (cont.)

int main (int argc, char *argv[])
{

CommandLine cmd;
cmd.Parse (argc, argv);

NodeContainer csmaNodes;
csmaNodes.Create (2);
NodeContainer wifiNodes;
wifiNodes.Add (csmaNodes.Get (1));
wifiNodes.Create (3);

NetDeviceContainer csmaDevices;
CsmaHelper csma;
csma.SetChannelAttribute ("DataRate", StringValue ("5Mbps"));
csma.SetChannelAttribute ("Delay", StringValue ("2ms"));
csmaDevices = csma.Install (csmaNodes);

Topology
Configuration

ns-3 Workshop on ns-3, March 2009 28

Application

The basic model

Application

Protocol
stack

Node

NetDeviceNetDevice

ApplicationApplication

Protocol
stack

Node

NetDeviceNetDevice

Sockets-like
API

Channel

Channel

Packet(s)

ns-3 Workshop on ns-3, March 2009 29

Fundamentals

Key objects in the simulator are Nodes,
Packets, and Channels

Nodes contain Applications, “stacks”, and
NetDevices

ns-3 Workshop on ns-3, March 2009 30

Node basics

A Node is a husk of a computer to which
applications, stacks, and NICs are added

Application
Application

Application

“DTN”

ns-3 Workshop on ns-3, March 2009 31

NetDevices and Channels

NetDevices are strongly bound to Channels
of a matching type

Nodes are architected for multiple interfaces

WifiNetDevice

WifiChannel

ns-3 Workshop on ns-3, March 2009

Internet Stack

• Internet Stack
– Provides IPv4 models currently
– IPv6 models are scheduled for ns-3.5/ns-3.6

timeframe
• Uses an interface design pattern to

support multiple implementations

ns-3 Workshop on ns-3, March 2009

Other basic models in ns-3

• Devices
– wifi, csma, point-to-point, bridge

• Error models and queues
• Applications

– echo servers, traffic generator
• Mobility models

ns-3 Workshop on ns-3, March 2009

Containers

• Containers are part of the ns-3 “helper
API”

• Containers group similar objects, for
convenience
– They are often implemented using C++ std

containers
• Container objects also are intended to

provide more basic (typical) API

ns-3 Workshop on ns-3, March 2009 35

The Helper API (vs. low-level API)

• Is not generic
• Does not try to allow code reuse
• Provides simple 'syntactical sugar' to make

simulation scripts look nicer and easier to
read for network researchers

• Each function applies a single operation on
a ''set of same objects”

ns-3 Workshop on ns-3, March 2009 36

Helper Objects

• NodeContainer: vector of Ptr<Node>
• NetDeviceContainer: vector of Ptr<NetDevice>
• InternetStackHelper
• WifiHelper
• MobilityHelper
• OlsrHelper
• ... Each model provides a helper class

ns-3 Workshop on ns-3, March 2009

Sample program (revisit)

• Four Wifi ad hoc nodes
• One additional node connected via CSMA

CSMA

WiFi

data transfer

ns-3 Workshop on ns-3, March 2009

Review of sample program (cont.)

int main (int argc, char *argv[])
{

CommandLine cmd;
cmd.Parse (argc, argv);

NodeContainer csmaNodes;
csmaNodes.Create (2);
NodeContainer wifiNodes;
wifiNodes.Add (csmaNodes.Get (1));
wifiNodes.Create (3);

NetDeviceContainer csmaDevices;
CsmaHelper csma;
csma.SetChannelAttribute ("DataRate", StringValue ("5Mbps"));
csma.SetChannelAttribute ("Delay", StringValue ("2ms"));
csmaDevices = csma.Install (csmaNodes);

Create empty node container
Create two nodes

Create empty node container

Add existing node to it
and then create some more nodes

ns-3 Workshop on ns-3, March 2009

Review of sample program (cont.)

NetDeviceContainer wifiDevices;
YansWifiChannelHelper wifiChannel = YansWifiChannelHelper::Default ();
YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
wifiPhy.SetChannel (wifiChannel.Create ());
WifiHelper wifi = WifiHelper::Default ();
wifiDevices = wifi.Install (wifiPhy, wifiNodes);

MobilityHelper mobility;
mobility.SetPositionAllocator ("ns3::RandomDiscPositionAllocator",

"X", StringValue ("100.0"),
"Y", StringValue ("100.0"),
"Rho", StringValue ("Uniform:0:30"));

mobility.SetMobilityModel ("ns3::StaticMobilityModel");
mobility.Install (wifiNodes);

Wifi

Mobility

ns-3 Workshop on ns-3, March 2009

ns-3 Wifi model

• new model, written from 802.11
specification

• accurate model of the MAC
• DCF, beacon generation, probing,

association
• a set of rate control algorithms
• not-so-slow models of the 802.11a PHY

ns-3 Workshop on ns-3, March 2009

ns-3 Wifi development

Several research groups are maturing the original INRIA model:
• Karlsruhe Institute of Technology: 802.11 PHY, 802.11e

– Equalizing PHY models including capture effects, user-definable coding
rates (e.g. 5.9 GHz from 802.11p), EDCA QoS extensions of 802.11e,
Nakagami/Rayleigh propagation loss model

• University of Florence: 802.11n features
– Frame Aggregation, Block ACK, HCF (EDCA and support for

HCCA),TXOP, HT terminal (also with protection modes), MIMO

• Russian Academy of Sciences: 802.11s
– a complete model of IEEE802.11s D2.0 Draft Standard

• Deutsche Telekom Laboratories in Berlin: 802.11 PHY
• Boeing: 802.11b channel models, validation
• (and others...)

ns-3 Workshop on ns-3, March 2009

ns-3 Wifi model (cont.)

ns-3 Workshop on ns-3, March 2009

Mobility models

• The MobilityModel interface:
– void SetPosition (Vector pos)
– Vector GetPosition ()

• StaticMobilityModel
– Node is at a fixed location; does not move on its own

• RandomWaypointMobilityModel
– (works inside a rectangular bounded area)
– Node pauses for a certain random time
– Node selects a random waypoint and speed
– Node starts walking towards the waypoint
– When waypoint is reached, goto first state

• RandomDirectionMobilityModel
– works inside a rectangular bounded area)
– Node selects a random direction and speed
– Node walks in that direction until the edge
– Node pauses for random time
– Repeat 3D Cartesian coordinate system

z y

x

ns-3 Workshop on ns-3, March 2009

Review of sample program (cont.)

Ipv4InterfaceContainer csmaInterfaces;
Ipv4InterfaceContainer wifiInterfaces;
InternetStackHelper internet;
internet.Install (NodeContainer::GetGlobal ());
Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
csmaInterfaces = ipv4.Assign (csmaDevices);
ipv4.SetBase ("10.1.2.0", "255.255.255.0");
wifiInterfaces = ipv4.Assign (wifiDevices);

GlobalRouteManager::PopulateRoutingTables ();

Ipv4 configuration

Routing

ns-3 Workshop on ns-3, March 2009

Internet stack

ns-3 Workshop on ns-3, March 2009

ns-3 TCP

• Three options exist:
– native ns-3 TCP
– TCP simulation cradle (NSC)
– Use of virtual machines (more on this later)

• To enable NSC:

internetStack.SetNscStack ("liblinux2.6.26.so");

ns-3 Workshop on ns-3, March 2009

ns-3 simulation cradle

• Port by Florian Westphal of Sam Jansen’s Ph.D. work

Figure reference: S. Jansen, Performance, validation and testing with the Network
Simulation Cradle. MASCOTS 2006.

ns-3 Workshop on ns-3, March 2009

ns-3 simulation cradle

For ns-3:
• Linux 2.6.18
• Linux 2.6.26
• Linux 2.6.28

Others:
• FreeBSD 5
• lwip 1.3
• OpenBSD 3

Other simulators:
• ns-2
• OmNET++

Figure reference: S. Jansen, Performance, validation and testing with the Network
Simulation Cradle. MASCOTS 2006.

ns-3 Workshop on ns-3, March 2009

IPv4 rework

• The IP-related classes are undergoing
rework (in repository ~tomh/ns-3-ip) for ns-
3.5 release
– Multiple IPv4 addresses per interface
– Delegate IP forwarding logic to an

IPv4Routing class
– Align better with Linux interfaces and system

architecture
– Align with IPv6 work

ns-3 Workshop on ns-3, March 2009 50

current ns-3 routing model

classes Ipv4RoutingProtocol, Ipv4Route
• Each routing protocol maintains its own

RIB --> no common FIB
• Routing protocols are registered with

AddRoutingProtocol (Ptr<> protocol,
int16_t priority)

• Routes are looked up by querying each
protocol for a route
–Ipv4L3Protocol::Lookup()

ns-3 Workshop on ns-3, March 2009

Routing options so far

• Global routing
– mainly for static topologies
– point-to-point and CSMA links

• OLSR
– dynamic routing
– can handle wired and wireless topologies

ns-3 Workshop on ns-3, March 2009 52

Future plans: quagga routing

Support for a synchronous Posix socket API
• each Posix type and function is redefined in the simulator
• processes get their own private stack

– somewhat like a lightweight virtual machine

• Example use case:
– compile quagga with -fPIC option
– load quagga binary with ns-3 Process API

• Benefits:
– makes porting real world application code much easier
– makes writing applications easier because the BSD socket API is

faithfully followed

• see the “~mathieu/ns-3-simu” code repository

ns-3 Workshop on ns-3, March 2009

IPv4 address configuration

• An Ipv4 address helper can assign
addresses to devices in a NetDevice
container

Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
csmaInterfaces = ipv4.Assign (csmaDevices);

...

ipv4.NewNetwork (); // bumps network to 10.1.2.0
otherCsmaInterfaces = ipv4.Assign (otherCsmaDevices);

ns-3 Workshop on ns-3, March 2009

Review of sample program (cont.)

ApplicationContainer apps;
OnOffHelper onoff ("ns3::UdpSocketFactory",

InetSocketAddress ("10.1.2.2", 1025));
onoff.SetAttribute ("OnTime", StringValue ("Constant:1.0"));
onoff.SetAttribute ("OffTime", StringValue ("Constant:0.0"));
apps = onoff.Install (csmaNodes.Get (0));
apps.Start (Seconds (1.0));
apps.Stop (Seconds (4.0));

PacketSinkHelper sink ("ns3::UdpSocketFactory",
InetSocketAddress ("10.1.2.2", 1025));

apps = sink.Install (wifiNodes.Get (1));
apps.Start (Seconds (0.0));
apps.Stop (Seconds (4.0));

Traffic generator

Traffic receiver

ns-3 Workshop on ns-3, March 2009

Applications and sockets

• In general, applications in ns-3 derive from
the ns3::Application base class
– A list of applications is stored in the ns3::Node
– Applications are like processes

• Applications make use of a sockets-like
API
– Application::Start () may call

ns3::Socket::SendMsg() at a lower layer

ns-3 Workshop on ns-3, March 2009

Sockets API

Plain C sockets
int sk;
sk = socket(PF_INET, SOCK_DGRAM, 0);

struct sockaddr_in src;
inet_pton(AF_INET,”0.0.0.0”,&src.sin_ad

dr);
src.sin_port = htons(80);
bind(sk, (struct sockaddr *) &src,

sizeof(src));

struct sockaddr_in dest;
inet_pton(AF_INET,”10.0.0.1”,&dest.sin_

addr);
dest.sin_port = htons(80);
sendto(sk, ”hello”, 6, 0, (struct

sockaddr *) &dest, sizeof(dest));

char buf[6];
recv(sk, buf, 6, 0);
}

ns-3 sockets
Ptr<Socket> sk =
udpFactory->CreateSocket ();

sk->Bind (InetSocketAddress (80));

sk->SendTo (InetSocketAddress (Ipv4Address
(”10.0.0.1”), 80), Create<Packet>
(”hello”, 6));

sk->SetReceiveCallback (MakeCallback
(MySocketReceive));

• […] (Simulator::Run ())

void MySocketReceive (Ptr<Socket> sk,
Ptr<Packet> packet)

{
...
}

ns-3 Workshop on ns-3, March 2009

Review of sample program (cont.)

onoff.SetAttribute ("OnTime", StringValue ("Constant:1.0"));
onoff.SetAttribute ("OffTime", StringValue ("Constant:0.0"));
apps = onoff.Install (csmaNodes.Get (0));
apps.Start (Seconds (1.0));
apps.Stop (Seconds (4.0));

PacketSinkHelper sink ("ns3::UdpSocketFactory",
InetSocketAddress ("10.1.2.2", 1025));

apps = sink.Install (wifiNodes.Get (1));
apps.Start (Seconds (0.0));
apps.Stop (Seconds (4.0));

std::ofstream ascii;
ascii.open ("wns3-helper.tr");
CsmaHelper::EnableAsciiAll (ascii);
CsmaHelper::EnablePcapAll ("wns3-helper");
YansWifiPhyHelper::EnablePcapAll ("wsn3-helper");

GtkConfigStore config;
config.Configure ();

Attributes

Tracing

Config store

ns-3 Workshop on ns-3, March 2009 58

ns-3 attribute system

Problem: Researchers want to know all of the values in
effect in their simulations

– and configure them easily
ns-3 solution: Each ns-3 object has a set of attributes:

– A name, help text
– A type
– An initial value

• Control all simulation parameters for static objects
• Dump and read them all in configuration files
• Visualize them in a GUI
• Makes it easy to verify the parameters of a simulation

ns-3 Workshop on ns-3, March 2009 59

Short digression: Object metadata system

• ns-3 is, at heart, a C++ object system
• ns-3 objects that inherit from base class

ns3::Object get several additional features
– dynamic run-time object aggregation
– an attribute system
– smart-pointer memory management

We’ll talk about the other two features later

ns-3 Workshop on ns-3, March 2009 60

Use cases for attributes

• An Attribute represents a value in our
system

• An Attribute can be connected to an
underlying variable or function
– e.g. TcpSocket::m_cwnd;
– or a trace source

ns-3 Workshop on ns-3, March 2009 61

Use cases for attributes (cont.)

• What would users like to do?
– Know what are all the attributes that affect the

simulation at run time
– Set a default initial value for a variable
– Set or get the current value of a variable
– Initialize the value of a variable when a

constructor is called
• The attribute system is a unified way of

handling these functions

ns-3 Workshop on ns-3, March 2009 62

How to handle attributes

• The traditional C++ way:
– export attributes as part of a class's public API
– walk pointer chains (and iterators, when

needed) to find what you need
– use static variables for defaults

• The attribute system provides a more
convenient API to the user to do these
things

ns-3 Workshop on ns-3, March 2009 63

Navigating the attributes

• Attributes are exported into a string-based
namespace, with filesystem-like paths
– namespace supports regular expressions

• Attributes also can be used without the
paths
– e.g. “ns3::WifiPhy::TxGain”

• A Config class allows users to manipulate
the attributes

ns-3 Workshop on ns-3, March 2009

Attribute namespace

• strings are used
to describe paths
through the
namespace

Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipv4.tcp_sack", StringValue ("0"));

ns-3 Workshop on ns-3, March 2009 65

Navigating the attributes using paths

• Examples:
– Nodes with NodeIds 1, 3, 4, 5, 8, 9, 10, 11:

“/NodeList/[3-5]|[8-11]|1”

– UdpL4Protocol object instance aggregated to
matching nodes:
“/$ns3::UdpL4Protocol”

ns-3 Workshop on ns-3, March 2009 66

What users will do

• e.g.: Set a default initial value for a
variable
Config::Set (“ns3::WifiPhy::TxGain”,
DoubleValue (1.0));

• Syntax also supports string values:
Config::Set (“WifiPhy::TxGain”, StringValue
(“1.0”));

Attribute Value

ns-3 Workshop on ns-3, March 2009 67

Fine-grained attribute handling

• Set or get the current value of a variable
– Here, one needs the path in the namespace to

the right instance of the object
Config::SetAttribute(“/NodeList/5/DeviceList/3/Ph
y/TxGain”, DoubleValue(1.0));

DoubleValue d; nodePtr->GetAttribute (
“/NodeList/5/NetDevice/3/Phy/TxGain”, v);

• Users can get Ptrs to instances also, and
Ptrs to trace sources, in the same way

ns-3 Workshop on ns-3, March 2009 68

ns-3 attribute system

• Object attributes
are organized and
documented in the
Doxygen

• Enables the
construction of
graphical
configuration tools:

ns-3 Workshop on ns-3, March 2009

Attribute documentation

ns-3 Workshop on ns-3, March 2009

Options to manipulate attributes

• Individual object attributes often derive from default values
– Setting the default value will affect all subsequently created objects
– Ability to configure attributes on a per-object basis

• Set the default value of an attribute from the command-line:
CommandLine cmd;
cmd.Parse (argc, argv);

• Set the default value of an attribute with NS ATTRIBUTE DEFAULT
• Set the default value of an attribute in C++:

Config::SetDefault
("ns3::Ipv4L3Protocol::CalcChecksum",

BooleanValue (true));

• Set an attribute directly on a specic object:
Ptr<CsmaChannel> csmaChannel = ...;
csmaChannel->SetAttribute ("DataRate",
StringValue ("5Mbps"));

ns-3 Workshop on ns-3, March 2009

Object names

• It can be helpful to refer to objects by a
string name
– “access point”
– “eth0”

• Objects can now be associated with a
name, and the name used in the attribute
system

ns-3 Workshop on ns-3, March 2009

Names example

NodeContainer n;
n.Create (4);
Names::Add ("client", n.Get (0));
Names::Add ("server", n.Get (1));
...

Names::Add ("client/eth0", d.Get (0));
...

Config::Set ("/Names/client/eth0/Mtu", UintegerValue
(1234));

Equivalent to:

Config::Set (“/NodeList/0/DeviceList/0/Mtu”, UintegerValue
(1234));

ns-3 Workshop on ns-3, March 2009 73

Tracing and statistics

• Tracing is a structured form of simulation
output

• Example (from ns-2):
+ 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610
- 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610
r 1.84471 2 1 cbr 210 ------- 1 3.0 1.0 195 600
r 1.84566 2 0 ack 40 ------- 2 3.2 0.1 82 602
+ 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611

Problem: Tracing needs vary widely
– would like to change tracing output without

editing the core
– would like to support multiple outputs

ns-3 Workshop on ns-3, March 2009 74

Tracing overview

• Simulator provides a set of pre-configured
trace sources
– Users may edit the core to add their own

• Users provide trace sinks and attach to the
trace source
– Simulator core provides a few examples for

common cases
• Multiple trace sources can connect to a

trace sink

ns-3 Workshop on ns-3, March 2009 75

ns-3 has a new tracing model

ns-3 solution: decouple trace sources from
trace sinks

Benefit: Customizable trace sinks

Trace source

Trace source

Trace source

Trace sink

unchanging
configurable by
user

ns-3 Workshop on ns-3, March 2009 76

ns-3 tracing

• various trace sources (e.g., packet receptions, state
machine transitions) are plumbed through the system

• Organized with the rest of the attribute system

ns-3 Workshop on ns-3, March 2009

Basic tracing

• Helper classes hide the tracing details
from the user, for simple trace types
– ascii or pcap traces of devices

std::ofstream ascii;
ascii.open ("wns3-helper.tr");
CsmaHelper::EnableAsciiAll (ascii);
CsmaHelper::EnablePcapAll ("wns3-helper");
YansWifiPhyHelper::EnablePcapAll ("wsn3-helper");

ns-3 Workshop on ns-3, March 2009 78

Multiple levels of tracing

• Highest-level: Use built-in trace sources
and sinks and hook a trace file to them

• Mid-level: Customize trace source/sink
behavior using the tracing namespace

• Low-level: Add trace sources to the
tracing namespace
– Or expose trace source explicitly

ns-3 Workshop on ns-3, March 2009 79

Highest-level of tracing

• Highest-level: Use built-in trace sources
and sinks and hook a trace file to them
// Also configure some tcpdump traces; each interface will be traced

// The output files will be named

// simple-point-to-point.pcap-<nodeId>-<interfaceId>

// and can be read by the "tcpdump -r" command (use "-tt" option to

// display timestamps correctly)

PcapTrace pcaptrace ("simple-point-to-point.pcap");

pcaptrace.TraceAllIp ();

ns-3 Workshop on ns-3, March 2009 80

Mid-level of tracing

• Mid-level: Customize trace source/sink
behavior using the tracing namespace

void

PcapTrace::TraceAllIp (void)

{

NodeList::Connect ("/nodes/*/ipv4/(tx|rx)",

MakeCallback (&PcapTrace::LogIp, this));

}

Regular expression editing

Hook in a different trace sink

ns-3 Workshop on ns-3, March 2009 81

Asciitrace: under the hood

void

AsciiTrace::TraceAllQueues (void)

{

Packet::EnableMetadata ();

NodeList::Connect ("/nodes/*/devices/*/queue/enqueue",

MakeCallback (&AsciiTrace::LogDevQueueEnqueue, this));

NodeList::Connect ("/nodes/*/devices/*/queue/dequeue",

MakeCallback (&AsciiTrace::LogDevQueueDequeue, this));

NodeList::Connect ("/nodes/*/devices/*/queue/drop",

MakeCallback (&AsciiTrace::LogDevQueueDrop, this));

}

ns-3 Workshop on ns-3, March 2009 82

Lowest-level of tracing

• Low-level: Add trace sources to the
tracing namespace

Config::Connect ("/NodeList/.../Source",

MakeCallback (&ConfigTest::ChangeNotification, this));

ns-3 Workshop on ns-3, March 2009

Callback Objects

• ns-3 Callback class implements function objects
– Type safe callbacks, manipulated by value
– Used for example in sockets and tracing

• Example
double MyFunc (int x, float y) {

return double (x + y) / 2;

}

[...]

Callback<double, int, float> cb1;

cbl1 = MakeCallback (MyFunc);

double result = cb1 (2,3); // result receives 2.5

ns-3 Workshop on ns-3, March 2009

Callback Objects

Class MyClass {

public:

double MyMethod (int x, float y) {

return double (x + y) / 2;

};

[...]

Callback<double, int, float> cb1;

MyClass myobj;

cb1 = MakeCallback(&MyClass::MyMethod, &myobj);

double result = cb1 (2,3); // result receives 2.5

ns-3 Workshop on ns-3, March 2009 85

Emulation support

Support moving between simulation and testbeds or live
systems

• A real-time scheduler, and support for two modes of
emulation
GlobalValue::Bind (“SimulatorImplementationType”,
StringValue (“ns3::RealTimeSimulatorImpl”));

ns-3 Workshop on ns-3, March 2009 86

ns-3 emulation modes

virtual
machine ns-3

virtual
machine

1) ns-3 interconnects real or virtual
machines

real
machine

ns-3

TestbedTestbed

real
machine

ns-3

2) testbeds interconnect ns-3
stacks

real machine

Various hybrids of the above are possible

ns-3 Workshop on ns-3, March 2009 87

Example: ORBIT and ns-3

• Support for use of Rutgers WINLAB
ORBIT radio grid

ns-3 Workshop on ns-3, March 2009

example: CORE and ns-3

Scalable Network Emulator
• Network lab “in a box”

– Efficient and scalable
– Easy-to-use GUI canvas

• Kernel-level networking efficiency
– Reference passing packet sending

• Runs real binary code
– No need to modify applications

• Connects with real networks
– Hardware-in-the-loop
– Distributed - runs on multiple servers
– Virtual nodes process real packets

• Fork of the IMUNES project
– University of Zagreb

• Open Source
– http://cs.itd.nrl.navy.mil/work/core

ns-3 Workshop on ns-3, March 2009

Debugging support

• Assertions: NS_ASSERT (expression);
– Aborts the program if expression evaluates to false
– Includes source file name and line number

• Unconditional Breakpoints: NS_BREAKPOINT ();
– Forces an unconditional breakpoint, compiled in

• Debug Logging (not to be confused with tracing!)
– Purpose

• Used to trace code execution logic
• For debugging, not to extract results!

– Properties
• NS_LOG* macros work with C++ IO streams
• E.g.: NS_LOG_UNCOND (”I have received ” << p->GetSize () << ” bytes”);
• NS_LOG macros evaluate to nothing in optimized builds
• When debugging is done, logging does not get in the way of execution

performance

ns-3 Workshop on ns-3, March 2009

Debugging support (cont.)

• Logging levels:
– NS_LOG_ERROR (...): serious error messages only
– NS_LOG_WARN (...): warning messages
– NS_LOG_DEBUG (...): rare ad-hoc debug messages
– NS_LOG_INFO (...): informational messages (eg. banners)
– NS_LOG_FUNCTION (...):function tracing
– NS_LOG_PARAM (...): parameters to functions
– NS_LOG_LOGIC (...): control flow tracing within functions

• Logging ”components”
– Logging messages organized by components
– Usually one component is one .cc source file
– NS_LOG_COMPONENT_DEFINE ("OlsrAgent");

• Displaying log messages. Two ways:
– Programatically:

• LogComponentEnable("OlsrAgent", LOG_LEVEL_ALL);
– From the environment:

• NS_LOG="OlsrAgent" ./my-program

ns-3 Workshop on ns-3, March 2009

Visualization

• Various projects in work to build animators and
visualizers for ns-3
– May provide a simulation implementation that allows

for GUI interaction with the scheduler (e.g., pause)

• Examples:
– Gustavo Carneiro pyviz (demoed earlier)
– George Riley’s NetAnim (demo to follow)
– Hagen Paul Pfeifer’s OpenGL animator
– Colorado School of Mines iNSpect tool
– Eugene Dedu, awk scripts for ns-3 and nam

ns-3 Workshop on ns-3, March 2009 92

Statistics framework

• Tracing system supports a statistical and data
management framework
– currently a contributed module
– src/contrib/stats; examples/stats

• Features:
– manage multiple independent runs of a scenario
– marshal data into several output formats

• including databases, with per-run metadata
– hook into ns-3 trace sources
– statistics objects can interact with simulator at run-

time
• e.g. stop simulation when counter reaches a value

ns-3 Workshop on ns-3, March 2009 93

statistics framework (cont.)

• Details at:
– http://www.nsnam.org/wiki/index.php/Statistical_Framework_for_Network_Simulation

ns-3 Workshop on ns-3, March 2009

Data Collection objects

• DataCollector
– Provides framework for data collection

• DataCalculator
– Connected to ns-3 trace sources via different

techniques
• DataOutputInterface

– Defines the output interface for the processed
data

ns-3 Workshop on ns-3, March 2009

DataCollector

// Create a DataCollector object to hold information about this
run.
DataCollector data;
data.DescribeRun(experiment,

strategy,
input,
runID);

// Add any information we wish to record about this run.
data.AddMetadata("author", "tjkopena");

ns-3 Workshop on ns-3, March 2009

DataCalculator

// This ... creates a counter to track how many frames
// are received. Instead of our own glue function, this uses a
// method of an adapter class to connect a counter directly to the
// trace signal generated by the WiFi MAC.
Ptr<PacketCounterCalculator> totalRx =
CreateObject<PacketCounterCalculator>();

totalRx->SetKey("wifi-rx-frames");
Config::Connect("/NodeList/1/DeviceList/*/$ns3::WifiNetDevice/Rx",

MakeCallback(&PacketCounterCalculator::FrameUpdate,
totalRx));

data.AddDataCalculator(totalRx);

• Other DataCalculators
– PacketCounter
– MinMaxAvgTotal
– TimeMinMaxAvgTotal

ns-3 Workshop on ns-3, March 2009

DataOutputInterface

Simulation::Run ();
Simulation::Destroy ();
//--
//-- Generate statistics output.
//--

// Pick an output writer based in the requested format.
Ptr<DataOutputInterface> output = 0;
if (format == "omnet") {
NS_LOG_INFO("Creating omnet formatted data output.");
output = CreateObject<OmnetDataOutput>();

} else if (format == "db") {
#ifdef STATS_HAS_SQLITE3
NS_LOG_INFO("Creating sqlite formatted data output.");
output = CreateObject<SqliteDataOutput>();

#endif
} else {
NS_LOG_ERROR("Unknown output format " << format);

}

// Finally, have that writer interrogate the DataCollector and save
// the results.
if (output != 0)
output->Output(data);

ns-3 Workshop on ns-3, March 2009

Random variables and independent replications

• Many simulation uses involve running a
number of independent replications of the
same scenario

• In ns-3, this is typically performed by
incrementing the simulation run number
– not by changing seeds

ns-3 Workshop on ns-3, March 2009

ns-3 random number generator

• Uses the MRG32k3a generator from
Pierre L'Ecuyer
– http://www.iro.umontreal.ca/~lecuyer/myftp/pa

pers/streams00.pdf
– Period of PRNG is 3.1x10^57

• Partitions a pseudo-random number
generator into uncorrelated streams and
substreams
– Each RandomVariable gets its own stream
– This stream partitioned into substreams

ns-3 Workshop on ns-3, March 2009

Run number vs. seed

• If you increment the seed of the PRNG,
the RandomVariable streams across
different runs are not guaranteed to be
uncorrelated

• If you fix the seed, but increment the run
number, you will get an uncorrelated
substream

ns-3 Workshop on ns-3, March 2009

new in ns-3.4

• ns-3 simulations use a fixed seed and run
number by default
– default was random seeding prior to 3.4

• a class SeedManager used to edit seeds
and run numbers
SeedManager::SetSeed (3); // Changes seed from default of 1 to 3

SeedManager::SetRun (7); // Changes run number from default of 1 to 7

// Now, create random variables

UniformVariable x(0,10);

ExponentialVariable y(2902);

...

ns-3 Workshop on ns-3, March 2009

Flexibility in changing these values

• Use NS_GLOBAL_VALUE environment
variable
NS_GLOBAL_VALUE="RngRun=3" ./waf --run program-name

• Pass command-line argument
./waf --command-template="%s --RngRun=3" --run program-name

• Another way (outside of waf)
./build/optimized/scratch/program-name --RngRun=3

ns-3 Workshop on ns-3, March 2009 103

Validation

• Can you trust ns-3 simulations?
– Can you trust any simulation?

• Onus is on the simulation project to validate and document
results

• Onus is also on the researcher to verify results

• ns-3 strategies:
– regression and unit tests

• Need to be event-based rather than trace-based

– validation of models on testbeds
– reuse of code
– documented scripts and repositories

• discussion topic for later today

ns-3 Workshop on ns-3, March 2009

Regressions

• ns-3-dev is checked nightly on multiple
platforms
– Linux gcc-4.x, Linux gcc-3.4, i386 and

x86_64, OS X ppc
• ./waf --regression will run regression tests

– a python script in regression/test directory will
typically compare trace output with known
good traces

ns-3 Workshop on ns-3, March 2009

Improving performance

• Debug vs optimized builds
– ./waf -d debug configure
– ./waf -d debug optimized

• Build ns-3 with static libraries
– Patch is in works

• Use different compilers (icc)

UW EE Colloquium Feb. 2009 106

Resources

Web site:
http://www.nsnam.org

Mailing list:
http://mailman.isi.edu/mailman/listinfo/ns-developers

IRC: #ns-3 at freenode.net
Tutorial:

http://www.nsnam.org/docs/tutorial/tutorial.html

Code server:
http://code.nsnam.org

Wiki:
http://www.nsnam.org/wiki/index.php/Main_Page

ns-3 Workshop on ns-3, March 2009 107

Acknowledgments

Thanks to:
• Gustavo Carneiro for tutorial content
• the core development team and research project leads

– Raj Bhattacharjea, Gustavo Carneiro, Walid Dabbous, Craig
Dowell, Joe Kopena, Mathieu Lacage (software lead), George
Riley, Sumit Roy

• 2008 Google Summer of Code mentors and students
• many code authors and testers
• the ns-2 PIs and developers for creating ns-2 and for

supporting ns-3 activities
• USC ISI for hosting project mailing lists

