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Workshop on ns-3 schedule

09h00-10h30:  Tutorial
10h30-11h00:  Coffee break
11h00-12h30:  Tutorial
12h30-14h00:  Lunch
14h00-16h00:  Focus on Wifi
16h00-16h30:  Coffee break
16h30-18h00:  Short talks
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Focus on ns-3 Wifi

• Authors: Ruben Merz, Cigdem Sengul, and Mustafa Al-Bado
• Title: Accurate Physical Layer Modeling for Realistic Wireless Network

Simulation 

• Authors: Timo Bingmann and Jens Mittag
• Title: An overview of PHY-layer models in ns-3

• Author: Mirko Banchi
• Title: Realization of 802.11n and 802.11e models

• Author: Kirill V. Andreev
• Title: Realization of the draft standard for Mesh Networking (IEEE802.11s)

• Author: Guangyu Pei and Tom Henderson
• Title: 802.11b PHY model and validation
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Short talks (miscellaneous)

• Authors:  Ramon Bauza, Miguel Sepulcre, and Javier Gozalvez
• Title: ns-3 scalability constraints in heterogeneous wireless 

simulations: iTETRIS a case study

• Authors: Francisco Carmona, Juan Carlos Moreno, Ana Cabello, 
Francisco Lobo, and David Mora

• Title: ns-3 Script Generator

• Authors: Providence Salumu Munga and Hakima Chaouchi
• Title: An ns-3-based IEEE 802.21 MIH Module

• Author:  Mohamed Amine Ismail
• Title: A Mobile WiMAX Module for ns-3
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Goals of this tutorial

• Learn about the ns-3 project and its goals 
• Understand the software architecture, 

conventions, and basic usage of ns-3
• Read and modify an example ns-3 script
• Learn how you might extend ns-3 to conduct 

your own research
• Provide feedback to the ns-3 development team
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Assumptions

Some familiarity with:
• C++ and Python programming language
• TCP/IP
• Unix Network Programming (e.g., sockets)
• Discrete-event network simulation
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Outline

1. Overview of ns-3 features
2. End-to-end perspective of the system
3. Extending ns-3
4. Advanced topics (time permitting)
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Overview of ns-3 features

Topology
Definition

Start with a research question

Models Configuration Execution

Visualization

Output Analysis

Modify scenario, or perform independent replication

Helper APIs and containers

Models:
- WiFi intro
- TCP

Attributes
Names
Command line args
Default values
Env. variables

Real-time scheduler
Emulation modes
Debugging

Examples

Tracing
Wireshark
Statistics framework

Random variables
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Introductory Software Overview
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Basics

• ns-3 is written in C++
• Bindings in Python
• ns-3 uses the waf build system

– i.e., instead of ./configure;make, type ./waf
• simulation programs are C++ executables 

or python scripts
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Simulation basics

• Simulation time moves discretely from 
event to event

• C++ functions schedule events to occur at 
specific simulation times

• A simulation scheduler orders the event 
execution

• Simulation::Run() gets it all started
• Simulation stops at specific time or when 

events end
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Scheduling events

from samples/
main-simulation.cc



ns-3 Workshop on ns-3, March 2009

Introductory demo
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Random Variables

• Currently implemented distributions
– Uniform: values uniformly distributed in an interval
– Constant: value is always the same (not really random)
– Sequential: return a sequential list of predefined values
– Exponential: exponential distribution (poisson process)
– Normal (gaussian)
– Log-normal
– pareto, weibull, triangular,
– …
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APIs

• Most of the ns-3 API is documented with 
Doxygen
– http://www.stack.nl/~dimitri/doxygen/
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the waf build system

• Waf is a Python-based framework for 
configuring, compiling and installing 
applications. 
– It is a replacement for other tools such as 

Autotools, Scons, CMake or Ant 
– http://code.google.com/p/waf/
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waf key concepts

• For those familiar with autotools:
• configure ->  ./waf -d [optimized|debug] configure
• make -> ./waf
• make test -> ./waf check  (run unit tests)

• Can run programs through a special waf 
shell; e.g.
– ./waf --run simple-point-to-point

– (this gets the library paths right for you)
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A software organization view

helper

Routing Internet stack Devices 

mobilitynode

simulatorcommon

core

High-level wrappers
for everything else

No smart pointers

Aimed at scripting

Events
Scheduler
Time arithmetic

Mobility models
(static, random
walk, etc)

Packets
Packet Tags
Packet Headers
Pcap/ascii file writing

Smart pointers
Dynamic type system
Attributes

Callbacks, Tracing
Logging
Random Variables

Node class
NetDevice ABC
Address types
(Ipv4, MAC, etc.)
Queues
Socket ABC
Ipv4 ABCs
Packet sockets
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Getting started:  Linux

• Working from development version
sudo apt-get install build-essential g++ python 
mercurial (for Ubuntu)

hg clone http://code.nsnam.org/ns-3-allinone

cd ns-3-allinone

./download.py

./build.py

cd ns-3-dev
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Building from within ns-3-dev

cd ns-3-dev

./waf distclean (similar to make distclean)

./waf configure

or ./waf -d optimized configure

./waf

• Helpful options:  
– -j#  where # is number of cores
– ./waf --help shows you other options
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Running programs

• Programs are built as 
build/<variant>/path/program-name

– programs link shared library libns3.so
• Using ./waf --shell

./waf --shell

./build/debug/samples/main-simulator

• Using ./waf --run
./waf --run examples/csma-bridge.cc

./waf --pyrun examples/csma-bridge.py
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Getting started:  Windows

• Install build tools
– Cygwin (g++, wget)
– Python (http://www.python.org)

• Download
– wget http://www.nsnam.org/releases/ns-3.3.tar.bz2

• Build
– ./waf configure
– ./waf check (runs unit tests)

• (rest of instructions similar to Linux)
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ns-3 features
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Overview of ns-3 features

Topology
Definition

Start with a research question

Models Configuration Execution

Visualization

Output Analysis

Modify scenario, or perform independent replication

Helper APIs and containers

Models:
- WiFi intro
- TCP

Attributes
Names
Command line args
Default values
Env. variables

Real-time scheduler
Emulation modes
Debugging

Examples

Tracing
Wireshark
Statistics framework

Random variables
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Sample program

• Four Wifi ad hoc nodes
• One additional node connected via CSMA

CSMA

WiFi

data transfer

Available today at:
http://www.nsnam.org/temp/wns3-helper.cc
http://www.nsnam.org/temp/wns3-lowlevel.cc
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Review of sample program

#include <iostream>
#include <fstream>
#include "ns3/simulator-module.h"
#include "ns3/node-module.h"
#include "ns3/core-module.h"
#include "ns3/helper-module.h"
#include "ns3/global-route-manager.h"
#include "ns3/contrib-module.h"

using namespace ns3;

int main (int argc, char *argv[])
{

CommandLine cmd;
cmd.Parse (argc, argv);
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Review of sample program (cont.)

int main (int argc, char *argv[])
{

CommandLine cmd;
cmd.Parse (argc, argv);

NodeContainer csmaNodes;
csmaNodes.Create (2);
NodeContainer wifiNodes;
wifiNodes.Add (csmaNodes.Get (1));
wifiNodes.Create (3);

NetDeviceContainer csmaDevices;
CsmaHelper csma;
csma.SetChannelAttribute ("DataRate", StringValue ("5Mbps"));
csma.SetChannelAttribute ("Delay", StringValue ("2ms"));
csmaDevices = csma.Install (csmaNodes);

Topology
Configuration



ns-3 Workshop on ns-3, March 2009 28

Application

The basic model

Application

Protocol
stack

Node

NetDeviceNetDevice

ApplicationApplication

Protocol
stack

Node

NetDeviceNetDevice

Sockets-like
API

Channel

Channel

Packet(s) 
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Fundamentals

Key objects in the simulator are Nodes, 
Packets, and Channels

Nodes contain Applications, “stacks”, and 
NetDevices
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Node basics

A Node is a husk of a computer to which 
applications, stacks, and NICs are added

Application
Application

Application

“DTN”
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NetDevices and Channels

NetDevices are strongly bound to Channels 
of a matching type

Nodes are architected for multiple interfaces

WifiNetDevice

WifiChannel
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Internet Stack

• Internet Stack
– Provides IPv4 models currently
– IPv6 models are scheduled for ns-3.5/ns-3.6 

timeframe
• Uses an interface design pattern to 

support multiple implementations
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Other basic models in ns-3

• Devices
– wifi, csma, point-to-point, bridge

• Error models and queues
• Applications

– echo servers, traffic generator
• Mobility models
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Containers

• Containers are part of the ns-3 “helper 
API”

• Containers group similar objects, for 
convenience
– They are often implemented using C++ std 

containers
• Container objects also are intended to 

provide more basic (typical) API
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The Helper API (vs. low-level API)

• Is not generic
• Does not try to allow code reuse
• Provides simple 'syntactical sugar' to make 

simulation scripts look nicer and easier to 
read for network researchers

• Each function applies a single operation on 
a ''set of same objects”
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Helper Objects

• NodeContainer: vector of Ptr<Node>
• NetDeviceContainer: vector of Ptr<NetDevice>
• InternetStackHelper
• WifiHelper
• MobilityHelper
• OlsrHelper
• ... Each model provides a helper class
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Sample program (revisit)

• Four Wifi ad hoc nodes
• One additional node connected via CSMA

CSMA

WiFi

data transfer



ns-3 Workshop on ns-3, March 2009

Review of sample program (cont.)

int main (int argc, char *argv[])
{

CommandLine cmd;
cmd.Parse (argc, argv);

NodeContainer csmaNodes;
csmaNodes.Create (2);
NodeContainer wifiNodes;
wifiNodes.Add (csmaNodes.Get (1));
wifiNodes.Create (3);

NetDeviceContainer csmaDevices;
CsmaHelper csma;
csma.SetChannelAttribute ("DataRate", StringValue ("5Mbps"));
csma.SetChannelAttribute ("Delay", StringValue ("2ms"));
csmaDevices = csma.Install (csmaNodes);

Create empty node container
Create two nodes

Create empty node container

Add existing node to it
and then create some more nodes
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Review of sample program (cont.)

NetDeviceContainer wifiDevices;
YansWifiChannelHelper wifiChannel = YansWifiChannelHelper::Default ();
YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
wifiPhy.SetChannel (wifiChannel.Create ());
WifiHelper wifi = WifiHelper::Default ();
wifiDevices = wifi.Install (wifiPhy, wifiNodes);

MobilityHelper mobility;
mobility.SetPositionAllocator ("ns3::RandomDiscPositionAllocator",

"X", StringValue ("100.0"),
"Y", StringValue ("100.0"),
"Rho", StringValue ("Uniform:0:30"));

mobility.SetMobilityModel ("ns3::StaticMobilityModel");
mobility.Install (wifiNodes);

Wifi

Mobility
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ns-3 Wifi model

• new model, written from 802.11 
specification

• accurate model of the MAC
• DCF, beacon generation, probing, 

association
• a set of rate control algorithms
• not-so-slow models of the 802.11a PHY
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ns-3 Wifi development

Several research groups are maturing the original INRIA model:
• Karlsruhe Institute of Technology:  802.11 PHY, 802.11e

– Equalizing PHY models including capture effects, user-definable coding 
rates (e.g. 5.9 GHz from 802.11p), EDCA QoS extensions of 802.11e, 
Nakagami/Rayleigh propagation loss model 

• University of Florence:  802.11n features 
– Frame Aggregation, Block ACK, HCF (EDCA and support for 

HCCA),TXOP, HT terminal (also with protection modes), MIMO 

• Russian Academy of Sciences:  802.11s
– a complete model of IEEE802.11s D2.0 Draft Standard 

• Deutsche Telekom Laboratories in Berlin:  802.11 PHY
• Boeing:  802.11b channel models, validation
• (and others...)
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ns-3 Wifi model (cont.)
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Mobility models

• The MobilityModel interface:
– void SetPosition (Vector pos)
– Vector GetPosition ()

• StaticMobilityModel
– Node is at a fixed location; does not move on its own

• RandomWaypointMobilityModel
– (works inside a rectangular bounded area)
– Node pauses for a certain random time
– Node selects a random waypoint and speed
– Node starts walking towards the waypoint
– When waypoint is reached, goto first state

• RandomDirectionMobilityModel
– works inside a rectangular bounded area)
– Node selects a random direction and speed
– Node walks in that direction until the edge
– Node pauses for random time
– Repeat 3D Cartesian coordinate system

z y

x
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Review of sample program (cont.)

Ipv4InterfaceContainer csmaInterfaces;
Ipv4InterfaceContainer wifiInterfaces;
InternetStackHelper internet;
internet.Install (NodeContainer::GetGlobal ());
Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
csmaInterfaces = ipv4.Assign (csmaDevices);
ipv4.SetBase ("10.1.2.0", "255.255.255.0");
wifiInterfaces = ipv4.Assign (wifiDevices);

GlobalRouteManager::PopulateRoutingTables ();

Ipv4 configuration

Routing
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Internet stack
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ns-3 TCP

• Three options exist:
– native ns-3 TCP
– TCP simulation cradle (NSC)
– Use of virtual machines (more on this later)

• To enable NSC:

internetStack.SetNscStack ("liblinux2.6.26.so"); 
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ns-3 simulation cradle

• Port by Florian Westphal of Sam Jansen’s Ph.D. work

Figure reference:  S. Jansen, Performance, validation and testing with the Network 
Simulation Cradle. MASCOTS 2006. 
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ns-3 simulation cradle

For ns-3:
• Linux 2.6.18
• Linux 2.6.26
• Linux 2.6.28

Others:
• FreeBSD 5
• lwip 1.3
• OpenBSD 3

Other simulators:
• ns-2
• OmNET++

Figure reference:  S. Jansen, Performance, validation and testing with the Network 
Simulation Cradle. MASCOTS 2006. 
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IPv4 rework

• The IP-related classes are undergoing 
rework (in repository ~tomh/ns-3-ip) for ns-
3.5 release
– Multiple IPv4 addresses per interface
– Delegate IP forwarding logic to an 

IPv4Routing class
– Align better with Linux interfaces and system 

architecture
– Align with IPv6 work
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current ns-3 routing model

classes Ipv4RoutingProtocol, Ipv4Route
• Each routing protocol maintains its own 

RIB --> no common FIB
• Routing protocols are registered with 

AddRoutingProtocol (Ptr<> protocol, 
int16_t priority)

• Routes are looked up by querying each 
protocol for a route
–Ipv4L3Protocol::Lookup()
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Routing options so far

• Global routing
– mainly for static topologies
– point-to-point and CSMA links

• OLSR
– dynamic routing
– can handle wired and wireless topologies
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Future plans:  quagga routing

Support for a synchronous Posix socket API
• each Posix type and function is redefined in the simulator
• processes get their own private stack

– somewhat like a lightweight virtual machine

• Example use case:
– compile quagga with -fPIC option
– load quagga binary with ns-3 Process API

• Benefits:
– makes porting real world application code much easier
– makes writing applications easier because the BSD socket API is 

faithfully followed

• see the “~mathieu/ns-3-simu” code repository
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IPv4 address configuration

• An Ipv4 address helper can assign 
addresses to devices in a NetDevice 
container 

Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
csmaInterfaces = ipv4.Assign (csmaDevices);

...

ipv4.NewNetwork ();  // bumps network to 10.1.2.0
otherCsmaInterfaces = ipv4.Assign (otherCsmaDevices);
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Review of sample program (cont.)

ApplicationContainer apps;
OnOffHelper onoff ("ns3::UdpSocketFactory", 

InetSocketAddress ("10.1.2.2", 1025));
onoff.SetAttribute ("OnTime", StringValue ("Constant:1.0"));
onoff.SetAttribute ("OffTime", StringValue ("Constant:0.0"));
apps = onoff.Install (csmaNodes.Get (0));
apps.Start (Seconds (1.0));
apps.Stop (Seconds (4.0));

PacketSinkHelper sink ("ns3::UdpSocketFactory",
InetSocketAddress ("10.1.2.2", 1025));

apps = sink.Install (wifiNodes.Get (1));
apps.Start (Seconds (0.0));
apps.Stop (Seconds (4.0));

Traffic generator

Traffic receiver
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Applications and sockets

• In general, applications in ns-3 derive from 
the ns3::Application base class
– A list of applications is stored in the ns3::Node
– Applications are like processes

• Applications make use of a sockets-like 
API
– Application::Start () may call 

ns3::Socket::SendMsg() at a lower layer
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Sockets API

Plain C sockets
int sk;
sk = socket(PF_INET, SOCK_DGRAM, 0);

struct sockaddr_in src;
inet_pton(AF_INET,”0.0.0.0”,&src.sin_ad

dr);
src.sin_port = htons(80);
bind(sk, (struct sockaddr *) &src, 

sizeof(src));

struct sockaddr_in dest;
inet_pton(AF_INET,”10.0.0.1”,&dest.sin_

addr);
dest.sin_port = htons(80);
sendto(sk, ”hello”, 6, 0, (struct 

sockaddr *) &dest, sizeof(dest));

char buf[6];
recv(sk, buf, 6, 0);
}

ns-3 sockets
Ptr<Socket> sk = 
udpFactory->CreateSocket ();

sk->Bind (InetSocketAddress (80));

sk->SendTo (InetSocketAddress (Ipv4Address 
(”10.0.0.1”), 80), Create<Packet> 
(”hello”, 6));

sk->SetReceiveCallback (MakeCallback 
(MySocketReceive));

• […] (Simulator::Run ())

void MySocketReceive (Ptr<Socket> sk, 
Ptr<Packet> packet)

{
...
}
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Review of sample program (cont.)

onoff.SetAttribute ("OnTime", StringValue ("Constant:1.0"));
onoff.SetAttribute ("OffTime", StringValue ("Constant:0.0"));
apps = onoff.Install (csmaNodes.Get (0));
apps.Start (Seconds (1.0));
apps.Stop (Seconds (4.0));

PacketSinkHelper sink ("ns3::UdpSocketFactory",
InetSocketAddress ("10.1.2.2", 1025));

apps = sink.Install (wifiNodes.Get (1));
apps.Start (Seconds (0.0));
apps.Stop (Seconds (4.0));

std::ofstream ascii;
ascii.open ("wns3-helper.tr");
CsmaHelper::EnableAsciiAll (ascii);
CsmaHelper::EnablePcapAll ("wns3-helper");
YansWifiPhyHelper::EnablePcapAll ("wsn3-helper");

GtkConfigStore config;
config.Configure ();

Attributes

Tracing

Config store
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ns-3 attribute system

Problem: Researchers want to know all of the values in 
effect in their simulations

– and configure them easily
ns-3 solution: Each ns-3 object has a set of attributes:

– A name, help text
– A type
– An initial value

• Control all simulation parameters for static objects
• Dump and read them all in configuration files
• Visualize them in a GUI
• Makes it easy to verify the parameters of a simulation
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Short digression: Object metadata system

• ns-3 is, at heart, a C++ object system
• ns-3 objects that inherit from base class 

ns3::Object get several additional features
– dynamic run-time object aggregation
– an attribute system
– smart-pointer memory management

We’ll talk about the other two features later
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Use cases for attributes

• An Attribute represents a value in our 
system

• An Attribute can be connected to an 
underlying variable or function 
– e.g. TcpSocket::m_cwnd;
– or a trace source
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Use cases for attributes (cont.) 

• What would users like to do?
– Know what are all the attributes that affect the 

simulation at run time
– Set a default initial value for a variable
– Set or get the current value of a variable
– Initialize the value of a variable when a 

constructor is called
• The attribute system is a unified way of 

handling these functions
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How to handle attributes

• The traditional C++ way:
– export attributes as part of a class's public API
– walk pointer chains (and iterators, when 

needed) to find what you need
– use static variables for defaults

• The attribute system provides a more 
convenient API to the user to do these 
things
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Navigating the attributes

• Attributes are exported into a string-based 
namespace, with filesystem-like paths
– namespace supports regular expressions

• Attributes also can be used without the 
paths
– e.g. “ns3::WifiPhy::TxGain”

• A Config class allows users to manipulate 
the attributes
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Attribute namespace

• strings are used 
to describe paths 
through the 
namespace

Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipv4.tcp_sack", StringValue ("0"));
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Navigating the attributes using paths

• Examples:
– Nodes with NodeIds 1, 3, 4, 5, 8, 9, 10, 11:

“/NodeList/[3-5]|[8-11]|1”

– UdpL4Protocol object instance aggregated to 
matching nodes:
“/$ns3::UdpL4Protocol”
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What users will do

• e.g.: Set a default initial value for a 
variable
Config::Set (“ns3::WifiPhy::TxGain”, 
DoubleValue (1.0));

• Syntax also supports string values:
Config::Set (“WifiPhy::TxGain”, StringValue 
(“1.0”));

Attribute Value



ns-3 Workshop on ns-3, March 2009 67

Fine-grained attribute handling

• Set or get the current value of a variable
– Here, one needs the path in the namespace to 

the right instance of the object
Config::SetAttribute(“/NodeList/5/DeviceList/3/Ph
y/TxGain”, DoubleValue(1.0));

DoubleValue d; nodePtr->GetAttribute ( 
“/NodeList/5/NetDevice/3/Phy/TxGain”, v);

• Users can get Ptrs to instances also, and 
Ptrs to trace sources, in the same way



ns-3 Workshop on ns-3, March 2009 68

ns-3 attribute system

• Object attributes 
are organized and 
documented in the 
Doxygen

• Enables the 
construction of 
graphical 
configuration tools:
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Attribute documentation
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Options to manipulate attributes

• Individual object attributes often derive from default values
– Setting the default value will affect all subsequently created objects
– Ability to configure attributes on a per-object basis

• Set the default value of an attribute from the command-line:
CommandLine cmd;
cmd.Parse (argc, argv);

• Set the default value of an attribute with NS ATTRIBUTE DEFAULT
• Set the default value of an attribute in C++:

Config::SetDefault 
("ns3::Ipv4L3Protocol::CalcChecksum",

BooleanValue (true));

• Set an attribute directly on a specic object:
Ptr<CsmaChannel> csmaChannel = ...;
csmaChannel->SetAttribute ("DataRate",
StringValue ("5Mbps"));
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Object names

• It can be helpful to refer to objects by a 
string name
– “access point”
– “eth0”

• Objects can now be associated with a 
name, and the name used in the attribute 
system
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Names example

NodeContainer n; 
n.Create (4); 
Names::Add ("client", n.Get (0)); 
Names::Add ("server", n.Get (1)); 
...

Names::Add ("client/eth0", d.Get (0)); 
...

Config::Set ("/Names/client/eth0/Mtu", UintegerValue 
(1234)); 

Equivalent to:

Config::Set (“/NodeList/0/DeviceList/0/Mtu”, UintegerValue 
(1234));
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Tracing and statistics

• Tracing is a structured form of simulation 
output

• Example (from ns-2):
+ 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610
- 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610
r 1.84471 2 1 cbr 210 ------- 1 3.0 1.0 195 600
r 1.84566 2 0 ack 40 ------- 2 3.2 0.1 82 602
+ 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611

Problem: Tracing needs vary widely
– would like to change tracing output without 

editing the core
– would like to support multiple outputs
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Tracing overview

• Simulator provides a set of pre-configured 
trace sources
– Users may edit the core to add their own

• Users provide trace sinks and attach to the 
trace source
– Simulator core provides a few examples for 

common cases
• Multiple trace sources can connect to a 

trace sink
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ns-3 has a new tracing model

ns-3 solution: decouple trace sources from 
trace sinks

Benefit:  Customizable trace sinks

Trace source

Trace source

Trace source

Trace sink

unchanging
configurable by
user
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ns-3 tracing

• various trace sources (e.g., packet receptions, state 
machine transitions) are plumbed through the system

• Organized with the rest of the attribute system
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Basic tracing

• Helper classes hide the tracing details 
from the user, for simple trace types
– ascii or pcap traces of devices

std::ofstream ascii;
ascii.open ("wns3-helper.tr");
CsmaHelper::EnableAsciiAll (ascii);
CsmaHelper::EnablePcapAll ("wns3-helper");
YansWifiPhyHelper::EnablePcapAll ("wsn3-helper");
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Multiple levels of tracing

• Highest-level:  Use built-in trace sources 
and sinks and hook a trace file to them

• Mid-level:  Customize trace source/sink 
behavior using the tracing namespace

• Low-level:  Add trace sources to the 
tracing namespace
– Or expose trace source explicitly
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Highest-level of tracing

• Highest-level:  Use built-in trace sources 
and sinks and hook a trace file to them
// Also configure some tcpdump traces; each interface will be traced

// The output files will be named

// simple-point-to-point.pcap-<nodeId>-<interfaceId>

// and can be read by the "tcpdump -r" command (use "-tt" option to

// display timestamps correctly)

PcapTrace pcaptrace ("simple-point-to-point.pcap");

pcaptrace.TraceAllIp ();
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Mid-level of tracing

• Mid-level:  Customize trace source/sink 
behavior using the tracing namespace

void

PcapTrace::TraceAllIp (void)

{

NodeList::Connect ("/nodes/*/ipv4/(tx|rx)",

MakeCallback (&PcapTrace::LogIp, this));

}

Regular expression editing

Hook in a different trace sink
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Asciitrace:  under the hood

void

AsciiTrace::TraceAllQueues (void)

{

Packet::EnableMetadata ();

NodeList::Connect ("/nodes/*/devices/*/queue/enqueue",

MakeCallback (&AsciiTrace::LogDevQueueEnqueue, this));

NodeList::Connect ("/nodes/*/devices/*/queue/dequeue",

MakeCallback (&AsciiTrace::LogDevQueueDequeue, this));

NodeList::Connect ("/nodes/*/devices/*/queue/drop",

MakeCallback (&AsciiTrace::LogDevQueueDrop, this));

}
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Lowest-level of tracing

• Low-level:  Add trace sources to the 
tracing namespace

Config::Connect ("/NodeList/.../Source",

MakeCallback (&ConfigTest::ChangeNotification, this));
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Callback Objects

• ns-3 Callback class implements function objects
– Type safe callbacks, manipulated by value
– Used for example in sockets and tracing

• Example
double MyFunc (int x, float y) {

return double (x + y) / 2;

}

[...]

Callback<double, int, float> cb1;

cbl1 = MakeCallback (MyFunc);

double result = cb1 (2,3); // result receives 2.5
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Callback Objects

Class MyClass {

public:

double MyMethod (int x, float y) {

return double (x + y) / 2;

};

[...]

Callback<double, int, float> cb1;

MyClass myobj;

cb1 = MakeCallback(&MyClass::MyMethod, &myobj);

double result = cb1 (2,3); // result receives 2.5
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Emulation support

Support moving between simulation and testbeds or live 
systems

• A real-time scheduler, and support for two modes of 
emulation
GlobalValue::Bind (“SimulatorImplementationType”, 
StringValue (“ns3::RealTimeSimulatorImpl”));
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ns-3 emulation modes

virtual
machine ns-3

virtual
machine

1) ns-3 interconnects real or virtual 
machines

real
machine

ns-3

TestbedTestbed

real
machine

ns-3

2) testbeds interconnect ns-3 
stacks

real machine

Various hybrids of the above are possible
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Example:  ORBIT and ns-3

• Support for use of Rutgers WINLAB 
ORBIT radio grid
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example:  CORE and ns-3

Scalable Network Emulator
• Network lab “in a box”

– Efficient and scalable
– Easy-to-use GUI canvas

• Kernel-level networking efficiency
– Reference passing packet sending

• Runs real binary code
– No need to modify applications

• Connects with real networks
– Hardware-in-the-loop
– Distributed - runs on multiple servers
– Virtual nodes process real packets

• Fork of the IMUNES project
– University of Zagreb

• Open Source
– http://cs.itd.nrl.navy.mil/work/core
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Debugging support

• Assertions: NS_ASSERT (expression);
– Aborts the program if expression evaluates to false
– Includes source file name and line number

• Unconditional Breakpoints: NS_BREAKPOINT ();
– Forces an unconditional breakpoint, compiled in

• Debug Logging (not to be confused with tracing!)
– Purpose

• Used to trace code execution logic
• For debugging, not to extract results!

– Properties
• NS_LOG* macros work with C++ IO streams
• E.g.: NS_LOG_UNCOND (”I have received ” << p->GetSize () << ” bytes”);
• NS_LOG macros evaluate to nothing in optimized builds
• When debugging is done, logging does not get in the way of execution 

performance
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Debugging support (cont.)

• Logging levels:
– NS_LOG_ERROR (...): serious error messages only
– NS_LOG_WARN (...): warning messages
– NS_LOG_DEBUG (...): rare ad-hoc debug messages
– NS_LOG_INFO (...): informational messages (eg. banners)
– NS_LOG_FUNCTION (...):function tracing
– NS_LOG_PARAM (...): parameters to functions
– NS_LOG_LOGIC (...): control flow tracing within functions

• Logging ”components”
– Logging messages organized by components
– Usually one component is one .cc source file
– NS_LOG_COMPONENT_DEFINE ("OlsrAgent");

• Displaying log messages. Two ways:
– Programatically:

• LogComponentEnable("OlsrAgent", LOG_LEVEL_ALL);
– From the environment:

• NS_LOG="OlsrAgent" ./my-program
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Visualization

• Various projects in work to build animators and 
visualizers for ns-3
– May provide a simulation implementation that allows 

for GUI interaction with the scheduler (e.g., pause)

• Examples:
– Gustavo Carneiro pyviz (demoed earlier)
– George Riley’s NetAnim (demo to follow)
– Hagen Paul Pfeifer’s OpenGL animator
– Colorado School of Mines iNSpect tool
– Eugene Dedu, awk scripts for ns-3 and nam
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Statistics framework

• Tracing system supports a statistical and data 
management framework
– currently a contributed module
– src/contrib/stats; examples/stats

• Features:
– manage multiple independent runs of a scenario
– marshal data into several output formats

• including databases, with per-run metadata
– hook into ns-3 trace sources
– statistics objects can interact with simulator at run-

time
• e.g. stop simulation when counter reaches a value
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statistics framework (cont.)

• Details at:
– http://www.nsnam.org/wiki/index.php/Statistical_Framework_for_Network_Simulation
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Data Collection objects

• DataCollector
– Provides framework for data collection

• DataCalculator
– Connected to ns-3 trace sources via different 

techniques
• DataOutputInterface

– Defines the output interface for the processed 
data
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DataCollector

// Create a DataCollector object to hold information about this
run.
DataCollector data;
data.DescribeRun(experiment,

strategy,
input,
runID);

// Add any information we wish to record about this run.
data.AddMetadata("author", "tjkopena");



ns-3 Workshop on ns-3, March 2009

DataCalculator

// This ... creates a counter to track how many frames
// are received.  Instead of our own glue function, this uses a
// method of an adapter class to connect a counter directly to the
// trace signal generated by the WiFi MAC.
Ptr<PacketCounterCalculator> totalRx =
CreateObject<PacketCounterCalculator>();

totalRx->SetKey("wifi-rx-frames");
Config::Connect("/NodeList/1/DeviceList/*/$ns3::WifiNetDevice/Rx",

MakeCallback(&PacketCounterCalculator::FrameUpdate,
totalRx));

data.AddDataCalculator(totalRx); 

• Other DataCalculators
– PacketCounter
– MinMaxAvgTotal
– TimeMinMaxAvgTotal
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DataOutputInterface

Simulation::Run ();
Simulation::Destroy ();
//------------------------------------------------------------
//-- Generate statistics output.
//--------------------------------------------

// Pick an output writer based in the requested format.
Ptr<DataOutputInterface> output = 0;
if (format == "omnet") {
NS_LOG_INFO("Creating omnet formatted data output.");
output = CreateObject<OmnetDataOutput>();

} else if (format == "db") {
#ifdef STATS_HAS_SQLITE3
NS_LOG_INFO("Creating sqlite formatted data output.");
output = CreateObject<SqliteDataOutput>();

#endif
} else {
NS_LOG_ERROR("Unknown output format " << format);

}

// Finally, have that writer interrogate the DataCollector and save
// the results.
if (output != 0)
output->Output(data);
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Random variables and independent replications

• Many simulation uses involve running a 
number of independent replications of the 
same scenario

• In ns-3, this is typically performed by 
incrementing the simulation run number
– not by changing seeds
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ns-3 random number generator

• Uses the MRG32k3a generator from 
Pierre L'Ecuyer 
– http://www.iro.umontreal.ca/~lecuyer/myftp/pa

pers/streams00.pdf
– Period of PRNG is 3.1x10^57

• Partitions a pseudo-random number 
generator into uncorrelated streams and 
substreams
– Each RandomVariable gets its own stream
– This stream partitioned into substreams



ns-3 Workshop on ns-3, March 2009

Run number vs. seed

• If you increment the seed of the PRNG, 
the RandomVariable streams across 
different runs are not guaranteed to be 
uncorrelated

• If you fix the seed, but increment the run 
number, you will get an uncorrelated 
substream
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new in ns-3.4

• ns-3 simulations use a fixed seed and run 
number by default
– default was random seeding prior to 3.4

• a class SeedManager used to edit seeds 
and run numbers
SeedManager::SetSeed (3); // Changes seed from default of 1 to 3

SeedManager::SetRun (7); // Changes run number from default of 1 to 7 

// Now, create random variables 

UniformVariable x(0,10); 

ExponentialVariable y(2902); 

...
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Flexibility in changing these values

• Use NS_GLOBAL_VALUE environment 
variable
NS_GLOBAL_VALUE="RngRun=3" ./waf --run program-name

• Pass command-line argument
./waf --command-template="%s --RngRun=3" --run program-name

• Another way (outside of waf)
./build/optimized/scratch/program-name --RngRun=3 
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Validation

• Can you trust ns-3 simulations?
– Can you trust any simulation?

• Onus is on the simulation project to validate and document 
results

• Onus is also on the researcher to verify results

• ns-3 strategies:
– regression and unit tests

• Need to be event-based rather than trace-based

– validation of models on testbeds
– reuse of code
– documented scripts and repositories

• discussion topic for later today 
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Regressions

• ns-3-dev is checked nightly on multiple 
platforms
– Linux gcc-4.x, Linux gcc-3.4, i386 and 

x86_64, OS X ppc
• ./waf --regression will run regression tests

– a python script in regression/test directory will 
typically compare trace output with known 
good traces
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Improving performance

• Debug vs optimized builds
– ./waf -d debug configure
– ./waf -d debug optimized

• Build ns-3 with static libraries
– Patch is in works

• Use different compilers (icc)



UW EE Colloquium Feb. 2009 106

Resources

Web site:  
http://www.nsnam.org

Mailing list:  
http://mailman.isi.edu/mailman/listinfo/ns-developers

IRC:  #ns-3 at freenode.net
Tutorial:

http://www.nsnam.org/docs/tutorial/tutorial.html

Code server:
http://code.nsnam.org

Wiki:
http://www.nsnam.org/wiki/index.php/Main_Page
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