
An end-to-end tour of a simulation

Tom Henderson Mathieu Lacage

WNS3, March 2nd 2009

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 1 / 43

Outline

1 How a simulation is built

2 Diving in: topology construction

3 Diving In: an End To End Tour of a Packet

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 2 / 43

Outline

1 How a simulation is built

2 Diving in: topology construction

3 Diving In: an End To End Tour of a Packet

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 3 / 43

The ns-3 API

There are two ways to interact with the ns-3 API:

Construct a simulation with the Container API:

Apply the same operations on sets of objects
Easy to build topologies with repeating patterns

Construct a simulation with the low-level API:

Instanciate every object separately, set its attributes, connect it to
other objects.
Very flexible but potentially complex to use

The best way to understand how they work and relate to each other is to
use both on the same example

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 4 / 43

The Testcase

Node0 Node1

csma
10.1.1.1

Node4

Node2 Node3
Udp recv

Udp send

csma
10.1.1.2

adhoc
10.1.2.1

adhoc
10.1.2.4

adhoc
10.1.2.3

adhoc
10.1.2.2

One csma link

One wifi infrastructure network

Two ip subnetworks

One udp traffic generator

One udp traffic receiver

Global god ip routing

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 5 / 43

The Container Version

Fire up an editor and look at the code

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 6 / 43

The Low-Level Version

Fire up an editor and look at the code

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 7 / 43

Outline

1 How a simulation is built

2 Diving in: topology construction

3 Diving In: an End To End Tour of a Packet

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 8 / 43

Why are objects so complicated to create ?

We do:

Ptr<Node> node0 = CreateObject<Node> ();

Why not:

Node *node0 = new Node ();

Or:

Node node0 = Node ();

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 9 / 43

Templates: the Nasty Brackets

Contain a list of type arguments

Parameterize a class or function from input type

In ns-3, used for:

Standard Template Library
Syntactical sugar for low-level facilities

Saves a lot of typing

No portability/compiler support problem

Sometimes painful to decipher error messages.

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 10 / 43

Memory Management

It is hard in C++:

No garbage collector

Easy to forget to delete an object

Pointer cycles

Ensure coherency and uniformity

So, we use:

Reference counting: track number of pointers to an object
(Ref+Unref)

Smart pointers: Ptr<>, Create<> and, CreateObject<>

Sometimes, explicit Dispose to break cycles

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 11 / 43

Why don’t we have a MobileNode ?

Ptr<Node> node = CreateObject<Node> ();
Ptr<MobilityModel> mobility = CreateObject<...> ();
node->AggregateObject (mobility);

Some nodes need an IPv4 stack, a position, an energy model.

Some nodes need just two out of three.

Others need other unknown features.

The obvious solution: add everything to the Node base class, but:

The class will grow uncontrollably over time
Everyone will need to patch the class
Slowly, every piece of code will depend on every other piece of code
A maintenance nightmare...

A better solution:

Separate functionality belongs to separate classes
Objects can be aggregated at runtime to obtain extra functionality

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 12 / 43

Object aggregation

Node Mobil i tyModel

Ipv4

Node Mobil i tyModel

Ipv4

Node Mobil i tyModel

A circular singly linked-list

AggregateObject is a constant-time
operation

GetObject is a O(n) operation

Aggregate contains only one object of
each type

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 13 / 43

The ns-3 type system

The aggregation mechanism needs information about the type of
objects are runtime

The attribute mechanism needs information about the attributes
supported by a specific object

The tracing mechanism needs information about the trace sources
supported by a specific object

All this information is stored in ns3::TypeId:

The parent type

The name of the type

The list of attributes (their name, their type, etc.)

The list of trace sources (their name, their type, etc.)

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 14 / 43

The ns-3 type system

It is not very complicated to use:

Derive from the ns3::Object base class

Define a GetTypeId static method:

class Foo : public Object {
public:
static TypeId GetTypeId (void);

};

Define the features of your object:

static TypeId tid = TypeId ("ns3::Foo")
.SetParent<Object> ()
.AddAttribute ("Name", "Help", ...)
.AddTraceSource ("Name", "Help", ...);

return tid;

call NS OBJECT ENSURE REGISTERED
Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 15 / 43

XXX: maybe add more details.

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 16 / 43

Outline

1 How a simulation is built

2 Diving in: topology construction

3 Diving In: an End To End Tour of a Packet

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 17 / 43

Application Transmission I

User writes:

Ptr<Application> app = ...;
app->Start (Seconds (1.0));

Application::Start:

m_startEvent = Simulator::Schedule (startTime,
&Application::StartApplication, this);

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 18 / 43

Application Transmission II

User calls Simulator::Run:

m_socket = Socket::CreateSocket (GetNode(), m_tid);
m_socket->Bind ();
m_socket->Connect (m_peer);
...
m_startStopEvent = Simulator::Schedule(offInterval,

&OnOffApplication::StartSending, this);

Socket::CreateSocket:

Ptr<SocketFactory> socketFactory;
socketFactory = node->GetObject<SocketFactory> (tid);
s = socketFactory->CreateSocket ();

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 19 / 43

Application Transmission III

OnOffApplication::StartSending:

m_sendEvent = Simulator::Schedule(nextTime,
&OnOffApplication::SendPacket, this);

OnOffApplication::SendPacket:

Ptr<Packet> packet = Create<Packet> (m_pktSize);
m_txTrace (packet);
m_socket->Send (packet);
...
m_sendEvent = Simulator::Schedule(nextTime,

&OnOffApplication::SendPacket, this);

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 20 / 43

Summary: how applications access network stacks

How to use a new protocol Foo:

Ptr<SocketFactory> factory =
node->GetObject<FooSocketFactory> ();

Ptr<Socket> socket = factory->CreateSocket ();
socket->...

How to implement a new protocol Foo:

Create FooSocketFactory, a subclass of SocketFactory

Aggregate FooSocketFactory to a Node during topology
construction (for UDP, done by InternetStackHelper::Install)

From FooSocketFactory::CreateSocket, create instances of type
FooSocket, a subclass of Socket

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 21 / 43

Note: Magic COW Packets I

ns-3 packets contain a lot of information:

Buffer: a byte buffer which contains payload, headers, trailers, all in
real network format

Metadata: information about the type of headers and trailers located
in the byte buffer

Tags: extra user-provided information, very useful for end-to-end
simulation-only stuff: timestamps for rtt calculations, etc.

ns-3 packets are magic:

They are reference-counted

They have Copy On Write semantics: Packet::Copy does not create
a new packet buffer: it creates a new reference to the same packet
buffer

Payload is zero-filled and never allocated by default: only headers and
trailers use memory

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 22 / 43

Note: Magic COW Packets II

Count Size Initial StartDirty Start Unused AreaDirty Size Dirty Area

Virtual Zero Area

Unused Area

Data Zero Area Size Used start Used Size

Data Zero Area Size Used start Used Size

Used

Used

Virtual Zero Area

Buffer

BufferData

Buffer
Magic COW

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 23 / 43

UDP Transmission I

UdpSocketImpl::Send eventually calls UdpSocketImpl::DoSendTo
which calls UdpL4Protocol::Send:

UdpHeader udpHeader;
...
udpHeader.SetDestinationPort (dport);
udpHeader.SetSourcePort (sport);
packet->AddHeader (udpHeader);
Ptr<Ipv4L3Protocol> ipv4 =

m_node->GetObject<Ipv4L3Protocol> ();
ipv4->Send (packet, saddr, daddr, PROT_NUMBER);

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 24 / 43

IPv4 Transmission I

Ipv4L3Protocol::Send:

Ipv4Header ipHeader;
...
ipHeader.SetSource (source);
ipHeader.SetDestination (destination);
ipHeader.SetProtocol (protocol);
ipHeader.SetPayloadSize (packet->GetSize ());
...
ipHeader.SetTtl (...);
...
Lookup (ipHeader, packet,

MakeCallback (&Ipv4L3Protocol::SendRealOut, this));

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 25 / 43

IPv4 Transmission II

Ipv4L3Protocol::Lookup searches a protocol which has an outgoing
route for the packet and calls Ipv4L3Protocol::SendRealOut:

packet->AddHeader (ipHeader);
Ptr<Ipv4Interface> outInterface =

GetInterface (route.GetInterface ());
outInterface->Send (packet, ipHeader.GetDestination ())

Down, in ArpIpv4Interface:

Ptr<ArpL3Protocol> arp = m_node->GetObject<ArpL3Protocol> ();
Address hardwareDestination;
arp->Lookup (p, dest, GetDevice (), m_cache, &hardwareDestination);
GetDevice ()->Send (p, hardwareDestination,

Ipv4L3Protocol::PROT_NUMBER);

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 26 / 43

Note: How Do you Implement a new Header ? I

The class declaration:

class MyHeader : public Header
...
void SetData (uint16_t data);
uint16_t GetData (void) const;

...
static TypeId GetTypeId (void);
virtual TypeId GetInstanceTypeId (void) const;
virtual void Print (std::ostream &os) const;
virtual void Serialize (Buffer::Iterator start) const;
virtual uint32_t Deserialize (Buffer::Iterator start);
virtual uint32_t GetSerializedSize (void) const;

private:
uint16_t m_data;

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 27 / 43

Note: How Do you Implement a new Header ? II

The implementation:

void
MyHeader::Serialize (Buffer::Iterator start) const
{
start.WriteHtonU16 (m_data);

}
uint32_t
MyHeader::Deserialize (Buffer::Iterator start)
{
m_data = start.ReadNtohU16 ();
return 2;

}

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 28 / 43

Note: How Do you Implement a new Header ? III

What really matters:

Copy/Paste the code for GetTypeId and GetInstanceTypeId

Make sure GetSerializedSize returns enough for Serialize

Make sure Hton are balanced with Ntoh

Remember that what is written in Buffer::Iterator must be
faithful the the real network representation of the protocol header

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 29 / 43

Arp

ArpL3Protocol::Lookup:

Try to find a matching live entry

If needed, send an ARP request on NetDevice::Send

Wait for reply

ArpL3Protocol::Receive:

If request for us, send reply

If reply, check if request pending, update cache entry, flush packets
from cache entry

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 30 / 43

CsmaNetDevice Transmission

CsmaNetDevice::Send:

Add ethernet header and trailer

Queue packet in tx queue

Perform backoff if medium is busy

When medium is idle, start transmission (delay is
bytes*8/throughput)

When transmission completes, request packet forwarding on medium

CsmaChannel::TransmitEnd:

Apply propagation delay on transmission

Distribute packet to all devices on the medium for reception

CsmaNetDevice::Receive:

Remove ethernet header and trailer

Filter unwanted packets

Apply packet error model

Call device receive callback
Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 31 / 43

Summary: From layer 2 to layer 3

During topology setup:

Call Node::RegisterProtocolHandler to register a layer 3 protocol
handler by its protocol number

Node::AddDevice sets device receive callback to
Node::NonPromiscReceiveFromDevice

At runtime:

Device calls receive callback to send packet to layer 3

Node::NonPromiscReceiveFromDevice searches matching protocol
handlers by protocol number

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 32 / 43

IPv4 Reception

Ipv4L3Protocol::Receive:

Remove IPv4 header, verify checksum

Forward packet to matching raw IPv4 sockets

If needed, forward packet down to outgoing interfaces

If needed, forward packet up the stack to matching layer 4 protocol
with Ipv4L3Protocol::GetProtocol

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 33 / 43

Wifi Transmission

WifiNetDevice::Send is fairly simple:

LlcSnapHeader llc;
llc.SetType (protocolNumber);
packet->AddHeader (llc);
m_txLogger (packet, realTo);
m_mac->Enqueue (packet, realTo);

It’s an AP so, in NqapWifiMac::ForwardDown:

WifiMacHeader hdr;
hdr.SetAddr1 (to);
hdr.SetAddr2 (GetAddress ());
hdr.SetAddr3 (from);

...
m_dca->Queue (packet, hdr);

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 34 / 43

Wifi Transmission: DcaTxop

DcaTxop::Queue:

Queue outgoing packet in WifiMacQueue

Use DCF (DcfManager and DcfState to obtain a tx opportunity

When the tx opportunity happens, DcaTxop::NotifyAccessGranted is
called:

Dequeue packet

Prepare the first fragment if needed

Enable RTS if needed

Call MacLow::StartTransmission

Wait for notifications about transmission success or failure from
MacLow

Eventually, start retransmissions, send more fragments

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 35 / 43

Wifi Transmission: MacLow I

MacLow::StartTransmission starts a CtsTimeout or an
AckTimeout timer and, then calls WifiPhy::SendPacket:

if (m_txParams.MustSendRts ())
SendRtsForPacket ();

else
SendDataPacket ();

MacLow::CtsTimeout and MacLow::NormalAckTimeout notify
upper layers

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 36 / 43

Wifi layer 1

From the perspective of layer 2, it is a black box whose content is the
topic of some presentations this afternoon !

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 37 / 43

Wifi Reception: MacLow

MacLow::ReceiveOk handles incoming packets:

WifiMacHeader hdr;
packet->RemoveHeader (hdr);
if (hdr.IsRts ())
...

else if (hdr.IsCts () &&
...

else if (hdr.IsAck () &&
...

else if (hdr.GetAddr1 () == m_self)
...

else if (hdr.GetAddr1 ().IsGroup ())
...

And notifies upper layers with its receive callback

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 38 / 43

Wifi Reception: Defragmentation, Duplicate Detection

MacRxMiddle::Receive:

if (IsDuplicate (hdr, originator))
return;

Ptr<Packet> agregate = HandleFragments (packet, hdr, originator);
if (agregate == 0)
return;

m_callback (agregate, hdr);

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 39 / 43

Wifi Reception: MacHigh

NqstaWifiMac::Receive:

else if (hdr->IsData ())
...

else if (hdr->IsProbeReq () ||
hdr->IsAssocReq ())

...
else if (hdr->IsBeacon ())
...

else if (hdr->IsProbeResp ())
...

else if (hdr->IsAssocResp ())
...

WifiNetDevice::ForwardUp: call the device receive callback

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 40 / 43

Summary: From Layer 3 to Layer 4

During topology setup, call Ipv4L3Protocol::Insert to register a
layer 4 protocol with its protocol number

At runtime:

Call Ipv4L3Protocol::GetProtocol
Call Ipv4L4Protocol::Receive

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 41 / 43

UDP Reception

UdpHeader udpHeader;
packet->RemoveHeader (udpHeader);
Ipv4EndPointDemux::EndPoints endPoints =
m_endPoints->Lookup (destination,

udpHeader.GetDestinationPort (),
source,
udpHeader.GetSourcePort (), ...);

for (endPoint = endPoints.begin ();
endPoint != endPoints.end (); endPoint++)

{
(*endPoint)->ForwardUp (...);

}

Ipv4EndPoint::ForwardUp calls into UdpSocketImpl::ForwardUp

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 42 / 43

Application Reception I

UdpSocketImpl::ForwardUp

if ((m_rxAvailable + packet->GetSize ()) <= m_rcvBufSize) {
m_deliveryQueue.push (packet);
m_rxAvailable += packet->GetSize ();
NotifyDataRecv ();

}

PacketSink::HandleRead:

packet = socket->RecvFrom (from)

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 43 / 43

Application Reception II

UdpSocketImpl::Recv

if (m_deliveryQueue.empty())
{
m_errno = ERROR_AGAIN;
return 0;

}
Ptr<Packet> p = m_deliveryQueue.front ();
if (p->GetSize () <= maxSize)
{
m_deliveryQueue.pop ();
m_rxAvailable -= p->GetSize ();

}
return p;

Tom Henderson, Mathieu Lacage () An end-to-end tour of a simulation WNS3, March 2nd 2009 44 / 43

	How a simulation is built
	Diving in: topology construction
	Diving In: an End To End Tour of a Packet

