

Distributed simulation with MPI in ns-3

Josh Pelkey Dr. George Riley

Overview

- Parallel and distributed discrete event simulation [1]
 - Allows single simulation program to run on multiple interconnected processors
 - Reduced execution time! Larger topologies!
- Terminology
 - Logical process (LP)
 - Rank or system id

Quick and Easy Example

Figure 1. Simple point-to-point topology

Quick and Easy Example

Figure 2. Simple point-to-point topology, distributed

Implementation Details

- LP communication
 - Message Passing Interface (MPI) standard
 - Send/Receive time-stamped messages
 - MpiInterface in ns-3
- Synchronization
 - Conservative algorithm using lookahead
 - DistributedSimulator in ns-3

Implementation Details (cont.)

- Assigning rank
 - Currently handled manually in simulation script
 - Next step, MpiHelper for easier node/rank mapping
- Remote point-to-point links
 - Created automatically between nodes with different ranks through point-to-point helper
 - Packet sent across using MpiInterface

Implementation Details (cont.)

- Distributing the topology
 - All nodes created on all LPs, regardless of rank
 - Applications are only installed on LPs with target node

Figure 3. Mixed topology, distributed

Performance Test

- DARPA NMS campus network simulation
 - Allows creation of very large topologies
 - Any number of campus networks are created and connected together
 - Different campus networks can be placed on different LPs
 - Tested with 2 CNs, 4 CNs, and 6 CNs

Campus Network Topology

Figure 4. Single campus network

2 Campus Networks

Figure 5. Execution time with 2 campus networks

Figure 6. Speedup with 2 LPs

Georgia Tech

4 Campus Networks

Figure 7. Execution time with 4 campus networks

Figure 8. Speedup with 4 LPs

6 Campus Networks

Figure 9. Execution time with 6 campus networks

Figure 10. Speedup with 6 LPs

Summary

- Distributed simulation in ns-3 allows a user to run a single simulation in parallel on multiple processors
- By assigning a different rank to nodes and connecting these nodes with point-to-point links, simulator boundaries are created
- Simulator boundaries divide LPs, and each LP can be executed by a different processor
- Distributed simulation in ns-3 offers solid performance gains in time of execution for large topologies

Distributed wireless simulation

- Popular feature request
 - Wireless technology is everywhere
 - Wireless simulation is complex
- Introduces new issues
 - Partitioning (We have mobility!)
 - Small propagation delay, small lookahead
 - Very large number of events

Sample Topology

Figure 11. Wireless network topology

Geographic Partitioning

Figure 12. Wireless network topology, partitioned

Georgia Tech

Node-based Partitioning

Figure 13. Wireless network topology, partitioned

Georgia Tech

Lookahead

- Typical wireless scenarios present small lookahead due to node distances and the speed of light
- Small lookahead is detrimental to distributed simulation performance
- Possible optimizations
 - Protocol lookahead [2]
 - Event lookahead [3]

Wireless Simulation Events

- Wireless simulations require a large number of events
- Increased inter-LP communication (bad)
- Event Reduction [4]
 - Decreases overhead
 - However, must ensure simulation fidelity

Event Reduction Techniques

- Set a propagation limit
 - Carrier Sensing Threshold (too inaccurate?)
 - Popular distance limit [5]
- Lazy Updates
 - Leverage protocol mechanics and simulator knowledge
 - Ex: Lazy MAC state update [6]
- Event Bundling
 - Send fewer events but deliver the same information
 - Ex: LP-Rx event [3]

Initial Development Plans

- Geographic and node-based partitioning
- Simple lookahead
 - Assume minimal lookahead
- Event Reduction
 - Use carrier sensing threshold for propagation limit
 - Use event bundling

Distributed Wireless Summary

- People want distributed wireless
- Implementing distributed wireless simulation should be easy
- Optimizing distributed wireless simulation is hard
- The good news is a great amount of research and previous implementations give us direction for optimization

References

- [1] R.M. Fujimoto. *Parallel and Distributed Simulation Systems*. Wiley Interscience, 2000.
- [2] J. Liu and D. M. Nicol. Lookahead revisited in wireless network simulations. In *Proceedings of the 16th Workshop on Parallel and Distributed Simulation*, 2002.
- [3] Peschlow, P., Voss, A., and Martini, P. 2009. Good news for parallel wireless network simulations. In *Proceedings of the 12th ACM international Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems*, 2009
- [4] Z. Ji, J. Zhou, M. Takai, and R. Bagrodia. Optimizing parallel execution of detailed wireless network simulation. In *Proceedings of the 18th Workshop on Parallel and Distributed Simulation*, 2004.
- [5] Z. Ji, J. Zhou, M. Takai, and R. Bagrodia. Scalable simulation of large-scale wireless networks with bounded inaccuracies. In *Proceedings of the 7th ACM International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems*, 2004.
- [6] Y. J. Lee and G. F. Riley. Efficient simulation of wireless networks using lazy MAC state update. In *Proceedings of Advanced and Distributed Simulation*, 2005.

