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Parallel and distributed discrete event simulation [1]

Allows single simulation program to run on multiple
interconnected processors

Reduced execution time! Larger topologies!
Terminology

Logical process (LP)

Rank or system id
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Quick and Easy Example

Figure 1. Simple point-to-point topology
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Quick and Easy Example
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Figure 2. Simple point-to-point topology, distributed
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Implementation Details

LP communication
Message Passing Interface (MPI) standard
Send/Receive time-stamped messages
Mpilnterface in ns-3

Synchronization
Conservative algorithm using lookahead
DistributedSimulator in ns-3
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Implementation Details (cont.)

Assigning rank
Currently handled manually in simulation script
Next step, MpiHelper for easier node/rank mapping
Remote point-to-point links

Created automatically between nodes with different ranks
through point-to-point helper

Packet sent across using Mpilnterface
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Implementation Details (cont.)

Distributing the topology
All nodes created on all LPs, regardless of rank
Applications are only installed on LPs with target node

Wireless Nodes

69996

CSMA link

Rank 0 Rank 1

Figure 3. Mixed topology, distributed Georgin
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Performance Test

DARPA NMS campus network simulation
Allows creation of very large topologies

Any number of campus networks are created and
connected together

Different campus networks can be placed on different LPs
Tested with 2 CNs, 4 CNs, and 6 CNs
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Campus Network Topology
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Figure 4. Single campus network Georgia
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2 Campus Networks
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Figure 5. Execution time with 2 campus networks

Speedup
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Figure 6. Speedup with 2 LPs
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4 Campus Networks
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Figure 7. Execution time with 4 campus networks Figure 8. Speedup with 4 LPs
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6 Campus Networks
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Figure 9. Execution time with 6 campus networks Figure 10. Speedup with 6 LPs
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Summary

Distributed simulation in ns-3 allows a user to run a
single simulation in parallel on multiple processors

By assigning a different rank to nodes and connecting
these nodes with point-to-point links, simulator
boundaries are created

Simulator boundaries divide LPs, and each LP can be
executed by a different processor

Distributed simulation in ns-3 offers solid performance
gains in time of execution for large topologies

Georgia
Tech



Distributed wireless simulation

Popular feature request
Wireless technology is everywhere
Wireless simulation is complex
Introduces new issues
Partitioning (We have mobility!)
Small propagation delay, small lookahead
Very large number of events
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Sample Topology
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Figure 11. Wireless network topology
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Figure 12. Wireless network topology, partitioned

Geographic Partitioning
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Node-based Partitioning
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Figure 13. Wireless network topology, partitioned Georgia
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Lookahead

Typical wireless scenarios present small lookahead due
to node distances and the speed of light

Small lookahead is detrimental to distributed simulation
performance

Possible optimizations
Protocol lookahead [2]
Event lookahead [3]
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Wireless Simulation Events

Wireless simulations require a large number of events
Increased inter-LP communication (bad)

Event Reduction [4]
Decreases overhead

However, must ensure simulation fidelity
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Event Reduction Techniques

Set a propagation limit
Carrier Sensing Threshold (too inaccurate?)
Popular distance limit [5]

Lazy Updates
Leverage protocol mechanics and simulator knowledge
Ex: Lazy MAC state update [6]

Event Bundling
Send fewer events but deliver the same information
Ex: LP-Rx event [3]
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Initial Development Plans

Geographic and node-based partitioning
Simple lookahead

Assume minimal lookahead
Event Reduction

Use carrier sensing threshold for propagation limit
Use event bundling
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Distributed Wireless Summary

People want distributed wireless

Implementing distributed wireless simulation should be
easy

Optimizing distributed wireless simulation is hard

The good news is a great amount of research and
previous implementations give us direction for
optimization
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