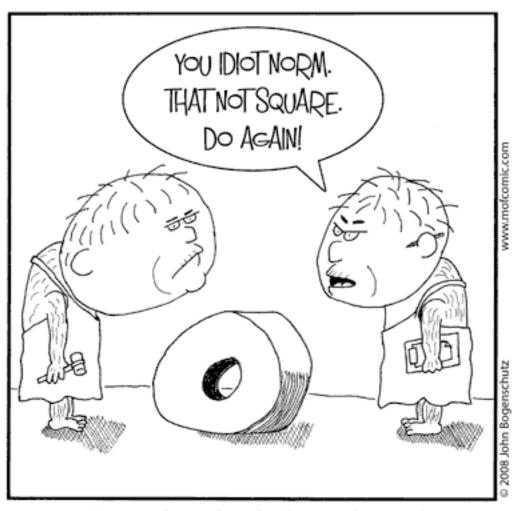
Running Code Simulation with Zebra Routing Software

Hajime Tazaki

tazaki at sfc.wide.ad.jp


Keio University, JAPAN

15th March, 2010, WNS3 2010, Malaga, Spain

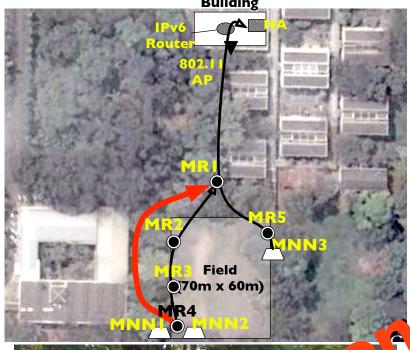
Reinventing of the wheel again?

Goal of this talks

- Reinventing is happening in ns-3!
- Code should be re-used, not from scratch
- Running code on simulator (ns-3)
 - Zebra (actual running code) as a routing daemon
 - BGP/OLSR/TD in IPv6 are already available

Who am I?

- Research area: MANET can be a part of Internet
- I Like
 - Internet
 - Code than Document :-)
 - Inter-Operability
 - Inter-Connection
 - Still believe the magic of Internet
- Has developed
 - Zebra/Quagga
 - kbfd (Bi-directional Fwd Detection)
 - SHISA (NEMO stacks for NetBSD)
- Research on the right hand, Operation on the left hand
 - Simulation was considered as harmful in our lab ...



MANET Experiment

Building Battery DC
DC 12V Conv

MicroClient (MR)

Problems of Mobile Networking Experiment

- Difficulty of in-field experiment
 - Maintenance, preparation is hard, and temporary
 - Mobility with a large number of nodes (1000 nodes?)
- Experiment in virtual environment
 - Heaviness in the large numbers's emulation (60 vnodes/1 Phy)
 - Controllable experiment with a bunch of script

On the other hand....

- Simulation is often used
 - Easy to use
 - Reproducibility of the result
- Is the result reliable?
 - Who validate the simulator itself?
 - Who validate the routing daemon on simulator?
- Inter-Operability
 - Of the Application/Protocol
 - Is the value of Inter Networking
- "Rough consensus and Running Code"

Motivation

- Bugs what I saw (from Feb. 2009 to Feb. 2010)
 - Common: packet-> GetSize() returns invalid size
 - IPv6L3: Hoplimit of IPv6 Echo Reply is always 64
 - Icmpv6L4: Ignore NA packet (IPv6) without LL option
 - TCP: getsockname () only works for connected socket
 - socket by accept() lacks endPoint
 - and more and more
- Writing code from scratch is :
 - Re-inventing the wheel
 - Build inter-operability from the beginning
- How many times are we implement the protocol stack?

Virtualization in Simulator

• Private branch of ns-3 [1/]

Each zebra (application) instance on the virtual node

 Simulator provides separated program resource (e.g. global sym, mem, sched, file, etc)

 Can be use real world program AS-IS!

- Minimum overhead of virtualization
 - No need to virtualize hardware
 - Required resources is only virtualized

Instance per (simulated) node **Application** (e.g. zebra w/ PIE file) malloc(), sendmsg() (usual) libc Load elf file by hand **Emulation** malloc(), sendmsg(nl Simulator **Operating System Physical Machine**

Hajime Tazaki, WNS3 March 2010, "Running Code Simulation with Zebra Routing Software"

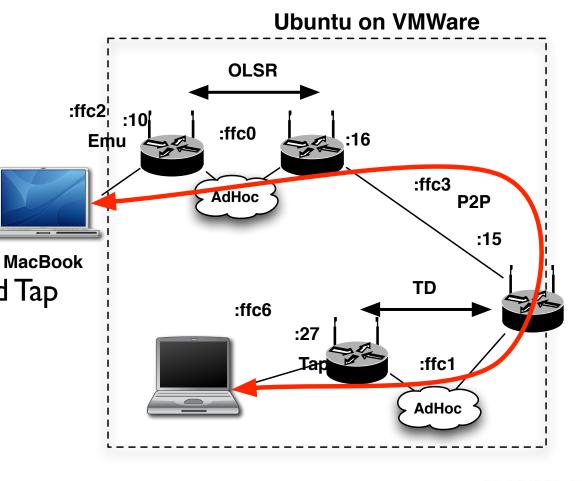
Zebra w/ ns-3-simu

- Netlink support in ns-3
 - http://code.nsnam.org/lj/quagga-porting/
- Also use IPv6 code in ns-3-dev
- Still outside of ns-3-simu code
 - http://www.sfc.wide.ad.jp/~tazaki/hg/ns-3simu_zebra_ipv6-2nd/
- Zebra includes

Keio University

- Several routing protocol (RIP, OSPF, BGP, IPv4/IPv6)
- Our extension for Zebra (Tree-Discovery [2], OLSR [3])
- [2] Nested Nemo Tree Discovery http://tools.ietf.org/html/draft-thubert-tree-discovery-08
- [3] Optimized Link State Routing Protocol (OLSR) http://tools.ietf.org/html/rfc3626
- [4] Zebra http://www.zebra.org Hajime lazaki, WNS3 March 2010, "Running Code Simulation with Zebra Routing Software"

Demonstration

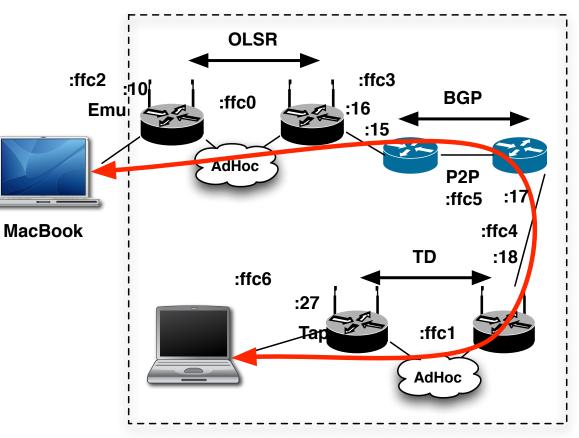


Topology

• 10 nodes (OLSR, RWP)

• 10 nodes (TD, RWP)

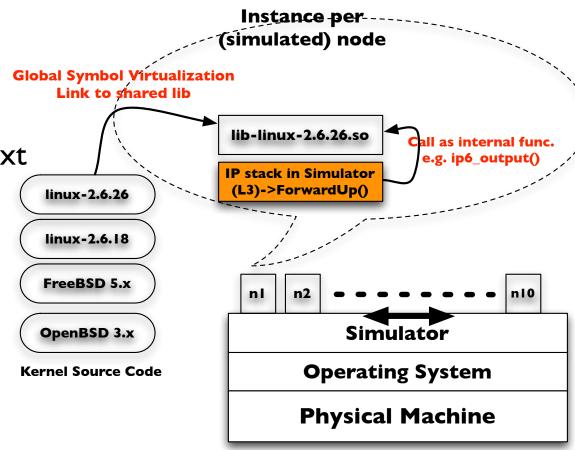
 Connectivity via Emu and Tap between MacBook and Ubuntu



Topology (given up...)

Ubuntu on VMWare

- 10 nodes (OLSR, RWP)
- 2 nodes (bgp)
- 10 nodes (TD, RWP)
- Ping for connectivity
- Reset BGP session



Next Steps

Obviously, kernel-land is next
 Battle Field

• IP stacks (e.g., NSC)

 Mobility protocol stack (e.g., MIP6, NEMO)

Conclusion

- Running Code Simulation with Zebra
- Currently, bgpd, zebra-mndpd/olsrd (out extension) is running
- Quagga can be supported
- Can be integrated with Real World network (Internet)

Reference

- Software
 - ns-3 zebra support
 - http://www.sfc.wide.ad.jp/~tazaki/ns3
 - zebra-mndpd
 - http://www.sfc.wide.ad.jp/~tazaki/zebra-mndpd/
 - ns-3-simu (by Mathieu Lacage, INRIA)
 - http://code.nsnam.org/mathieu/ns-3-simu/
- Paper
 - My paper at ACM PE-WASUN09'
 - http://doi.acm.org/10.1145/1641876.1641895
- Contact
 - Hajime Tazaki (<u>tazaki at sfc.wide.ad.jp</u>)

Backup

