Virtual Machines and ns-3

Tom Henderson and Craig Dowell
University of Washington
Jeff Ahrenholz, Tom Goff, and Gary Pel
The Boeing Company

Supporting organization: Brian Adamson
Naval Research Laboratory

Workshop on ns-3
March 2010

WNS3 2010

Outline

e Goals and related work

« Common Open Research Emulator
(CORE)

e |ssues with CORE and ns-3
e Pure Linux containers
 Python-based “netns3”
 Next steps

WNS3 2010

Test and Evaluation Options

Test and evaluation options

Pure Simulation Virtual/Physical Field Live
simulation cradles testbeds experiments networks

Increasing realism

Increasing complexity

Can we develop tools to span this space? I

WNS3 2010

Goals

 Lightweight virtualization of kernel and
application processes, interconnected by
simulated networks

e Benefits:

— Implementation realism in controlled topologies or
wireless environments

— Model availability
e Limitations:
— Not as scalable as pure simulation

— Runs in real-time
— Integration of the two environments

WNS3 2010

ns-3 related work

Test and evaluation options

Pure Simulation Virtual/Physical Field Live
simulation cradles testbeds experiments networks
NSC (Jansen) CORE
Protolib (NRL) NEPI
ns-3-simu (Lacage) Testbeds:
* ORBIT

» CMU wireless emulator

WNS3 2010

Other recent related work

CORE is the Common Open Research Emulator that
controls lightweight virtual machines and a network
emulation subsystem (more on this later)

NEPI/NEF: Using Independent Simulators, Emulators, and
Testbeds for Easy Experimentation

— Lacage, Ferrari, Hansen, Turletti (Roads 2009 workshop)

EMANE is an Extendable Mobile Ad-hoc Network Emulator
that allows heterogeneous network emulation using a
pluggable MAC and PHY layer architecture.

— http://labs.cengen.com/emane
— being integrated with CORE

WNS3 2010

Related work (cont.)

Synchronized Network Emulation: Matching prototypes with complex
simulations

— Weingartner, Schmidt, Heer, and Wehrle (Hotmetrics 2008)
— Hendrik von Lehn, “A WiFi Emulation Framework for ns-3” (this afternoon)

Protocol platform abstraction libraries

« VIPE (Virtual Platform for Network Experimentation)
— Landsiedel, Kunz, Gotz, Wehrle (VISA 2009 workshop)

* Protolib prototyping toolkit (from NRL)

ns-2 emulation (Mahrenholz/lvanov)

Trellis, a Platform for for Building Fast, Flexible Virtual Networks (ROADS
2008)

RapidMesh (Drexel) has run ns-3 on the Emulab testbed

Alvarez et al, “Limitations of network emulation with single machine and
distributed ns-3” (SIMUTools 2010)

WNS3 2010

Basic CORE demonstration

CORE (on uS4-desktop) — [

Hle Edit Canvas View Tools Widgets Experiment Help

X

®
£
L

(\!vl
.4J
-
1.2
.
wilans
Jrun
. 10.0.0.5/32
P A0E 28

s
10.0,0.3/89°
a3 2a

-

CORE screenshot

ET2N canvasn £ ko

WNS3 2010

What is CORE (cont.)?

« CORE consists of a (1) GUI, (2) services
layer, and an (3) API tying components

together.
GUI
CORE
user space services
kemelspace Ty T g & |

Figure courtesy of
Jeff Ahrenholz WNS3 2010

Platforms

 Modular architecture allows for interchangeable

parts
GUI GUI GUI
CORE CORE CORE
services services services
e T s s T B
iFreeBSD ;i FreeBSD | i Linux ;i Linux | i Linux ii Linux !
| vimage i: netgraph 1 | OpenVZ i: bridging | !namespaces!! bridging |
CORE
services

scripts

| |
Figure courtesy of i Nodes .14 Networks |
Jeff Ahrenholz | ﬁ"\'s}éi i |

What's new?

* Linux Network Namespaces Architecture
CORE API

vcmd

cored.py

‘vnoded (inity | | vnoded (inity | | vnoded (init)

| zebra . | zebra . 1| zebra

ospfed ospf6d ospf6d
| etc... i | ete... 1 | etc... §
Figure courtesy of nnn-n(h H H

Jeff Ahrenholz WNS3 2010 Ethernet bridge

Why Integrate netns extensions?

Performance
— more lightweight than OpenVZ containers

Shared filesystem
— like FreeBSD, vs. core-root with OpenVZ

Python
— virtualized elements easily customized with inheritance

— allows complex scripting of CORE scenarios
— ns-3 Python bindings for more natural CORE + ns-3

Mainline kernel vs OpenVZ patch

— Fedora 12/Ubuntu 9.10 stock kernel support — just install CORE RPM and
run

— stable OpenVZ 2.6.18 kernel is getting old

WNS3 2010

How Many Nodes?

* It depends.

e Single server
— typical 3.0 GHz quad Xeon 2.0GB RAM
— Can instantiate up to 3,600 nodes (with no interfaces)
— Can run ~100 Quagga routers running OSPFv3-MANET

— Your mileage may vary: if pushing around lots of data or
consuming many cycles, maybe 2-3 nodes?

e Multiple servers
— Farm of emulation servers using RJ45 node, Span tunnels, etc
— Consider networking between servers (latency, bandwidth)

WNS3 2010

How Many Packets?

500000

‘s

e
3

40000

Performance
bounded by

M Number of packets
per second (as
number of hops
increases, end-to-end

»

£ [i
(=] (=] (=]
[=} [=]} [=]}
]]]
u

“

/

Total System Throughput (pps)

250000 throughput drops)
200000
e F
100000 i
50000 :
D T T T T T
5 10 15 20 35 0 35 40 45

Number of Hops

e 5 T TS =1 500 e B 5T T 6=1000 - BED Mss=500 B5D mes=30 i DO EMZ ME 5= 500 s Dpeny' 2 mes = 1000
| O 2. MEE=S 00 CpemVZmEs=S0 wesnelrs MEE=1500 wsssneins MEs=1000 s=Cesnetns mes=500 nEtnE MEs=50

» 430kpps (BSD Netgraph) vs. 170kpps (Linux Netns / OpenVZ bridging)

« Performance relatively insensitive to packet size
WNS3 2010 14

More details on experiments

CORE versions
— FreeBSD 8.0, Linux OpenVZ 2.6.18, Netns 2.6.31

Hardware

— IBM x3550 type 7978, quad-core Xeon E5335 2.0GHz, 2.0GB
RAM

Iperf used for end-to-end TCP throughput

— Iperf client run on a separate machine, hooked to CORE via the
Gigabit Ethernet on the host

multi-hop experiments use a daisy chain of routers

— Total system throughput is defined as the observed iperf
throughput * number of hops in the topology (packets per sec)

— Gives a rough estimate of the number of packets being handled
by CORE, per second

WNS3 2010

CORE Is an open source project

 Web site and code repository hosted by NRL
ITD

Networks

and Communication » Open source licensed

Systems Branch

:I:II::\I:TI:‘ Commen Open Research Emulator {CORE) _mOd Ified BS D Iice nse

Trs Commaon Open Ressanch Emutabo CFE_I
Projects that aliows you to emulate srtine netw
PPl FreeB50 maching. o nadt the nr“t-l:md

niatanrks o bve '-r.w:-'L = ior o adeitional amulsked o
Bublicatinng networks, CORE ronssts of & GUI for

fy drawn -3': W = that drres s lighbweight wriusiced

organizstion notaork stacks i o patched FreeBsh &

‘ oy — | —https://pf.itd.nrl.navy.mil/sf/sfmain/do/
ey =- Wiki/Bug tracker:
“‘~ g E_i :;“ —http://code.google.com/p/coreemul/
e « Mailing lists at NRL:

—COore-users

Key Features

runs real code - nok 8 sisulation, but s real nebwork stack phus process spaces ko nanreal

protacals snd anplications wikhout modfyng them

onnects with real nebworks - this is not 5 standakore =ystem but ore that vou an _CO re_d eV
intsgrabs with your meeting fardhwane ko virually sxpand the see of your network

efficient and scalable - uniks tradtonsl virtwal machnes, only the nebwork stack i3

wirtualiznd, and packets can be narzed by reference within the kernel

epasy touse

WNS3 2010

Integrating ns-3 and GUIs

 Example CORE and ns-3

— CORE could glue virtual machines to ns-3 networks

ns3: :NedalistPriv

~ Nocelst
v 0
= Devicelist
File Edit Canvas Wiew Tools Widgets Experiment Help eskE
<0
[% : Al Address D0:00:00:00:00:01
wired network a -
'\()“ / R %frcapsula'.lnm\nje i JE o
. I@ SendEnabls itrue
/ - ReceiveEnable true
L] 100.83/32 DataRate : S000000bps
- 4 b
g Sl P TxQueue
I = b1
wireless network b Applicationtist |
L 4 0.0 B3 ns3::PacketSocketFactory
. b ns3::Ipv4L4Demux
b ns3:Tep
100 Msps ™
i ns3::Udp
10.0.7.1724

e
! % ns3:ilpvd
ns3:: ArpL32rotocol
Q52 I
& 100.0.7/32 b ns3::IpvaL3Protocol

Heighbor 1D Pri DeadTime Sbate/IfState Duration I/F[Statel =
10,0,2.2 1 90100136 ExStart/EDR 90100304 ebho[DR] = -
10,0.4.2 00300335 ExStart/DR 00300204 SERLIBIR | .o € -
nl i . 7
El wlan10 mobility script E3
25388

wian1o F|
2N Canvaso f] I Ot S O St
[zoom 100% | | |exec mote
I] f El 0:00

WNS3 2010

Initial steps: OpenVz and ns-3 integration

Linux (CentOS) machine

/ ns-3 \
Openvz ghost node ghost node Openvz
virtual virtual
machine TapBridge machine
WiFi
- T~
.-~ ethO IS ethO
/ ’ h \ > .
I veth1000.0 tapO,
\ I /
T~ bridge _-

[CORE virtual he{ice bridged to Linux tap device, hooked to ns-3]

\ Issues:

1) Linux bridging performance
2) MAC address coordination 18

“Tap” mode: netns and ns-3 integration

Linux (FC 12 or Ubuntu 9.10) machine

Container

tapX

/ ns-3

" ghost node

TapBridge

WiFi

ghost node

Container

/[dev/tunX

/dev/tunY

tapyY

Tap device pushed into namespaces; no bridging needed

WNS3 2010

19

Issues

 Ease of use
— Configuration management and coherence

— Information coordination (two sets of state)
» e.g. IP/MAC address coordination

— Output data exists in two domains
— Debugging
« Error-free operation (avoidance of misuse)

— Synchronization, information sharing, exception handling
» Checkpoints for execution bring-up
* |Inoperative commands within an execution domain
« Deal with run-time errors

— Soft performance degradation (CPU) and time discontinuities

WNS3 2010

Integrating ns-3 and GUIs

 What Happens Under the Sheets
— Network is modeled (simulated);
— View of network model and state is displayed,;
— Ul actions are translated into model commands;
— Model actions are translated into Ul changes

e Variation on an old theme: Model-View-
Controller (MVC)

— Model: The internal state of the application;
— View: The presentation to the user,

— Controller: Maps user requests into actions and model state
changes into view changes.

WNS3 2010

Integrating ns-3 and GUIs

* ns-3 is the model, CORE Ul is the view
e \What Is the controller?

CORE UI TBD

View \l— Controfler
—N
—V

.

I

hodel

ns-3

WNS3 2010

Integrating ns-3 and GUIs

 What is ultimately needed is a Controller

Framework.
— Controller is typically closely bound to the View;

— ldeally, need a relatively abstract framework that provides a
basis for building simulation GUIs as easily as possible;

— Framework allows for controller implementations based on
different models (ns-3, CORE native, etc.), and different view
Implementations (CORE Ul, PyViz?, NetAnim?);

— Inherit from generic framework and create a specific controller for
your GUI that knows how to talk to ns-3.

e Sounds good, but what is it really?

WNS3 2010 23

Integrating ns-3 and GUIs

Controller framework (to first approximation)

— Provides proxies for first class objects in model,

— Provides mechanism for backing objects with real system objects
(bridges, taps, virtual machines);

— Connects objects (nodes, devices and channels) into networks and adds
objects to nodes (applications, mobility models, etc.);

— Discovers attributes for first-class objects in model and provides
configuration mechanisms to GUI;

— Provides state / mode control (run, stop) and reporting (simulation
running, stopped, VM ready, bridge up);

— Mediates event reporting (allows tracing)

NEPI/NEF: Using Independent Simulators, Emulators, and
Testbeds for Easy Experimentation

—Lacage, Ferrari, Hansen, Turletti (Roads 2009 workshop)

Controllers under development

e NEPI:
— View: Network Experimentation Frontend (NEF) GUI
— Backends: ns-3, (virtual) machines, hybrids
e CORE
— View: CORE GUI (or Python script)
— Backends: netns, ns-3, EMANE
e netns3
— View: Python program
— Backend: netns + ns-3 (no abstraction)

WNS3 2010

Integrating ns-3 and GUIs

e Clearly a large effort. Can it be factored into
something more manageable for the short term?

— Start small and only build what you need today;

— Start with a dedicated controller that glues CORE GUI
to ns-3;

— “CORE services” layer from before

— Ignore the temptation to build a generic framework for
now, just get a prototype done that we can evaluate.

— Then pick the next Ul and extend framework; repeat.

WNS3 2010 26

netns3

o Written by Tom Goff (Boeing)
— Documentation and prototype posted on wiki

« Basic Python-based framework using ns-3

Python bindings, RPyC distributed computing
lib e i 7 A — S

page discussion view S0urce history

HOWTO use Linux hamespaces with ns-3
ns-3

Main Page - Roadmap - Current Di

log - Developer FAQ - User FAQ
Installation - Troubleshooting - HOWTOs - Samples & - Contributed Code - Papers

navigation

= Main Page Combining Linux namespaces and ns-3 can provide a frameswork for network ermulation. Mative code can then run in real-time and produce andfor consume "live”

netwaork traffic. Linux network namespaces (netns) are used as virtual hosts and a virtual network topology is created from ns-3 models running the real-time

Community portal

®u Current events scheduler.
= Recent changes 2 _ i e ¥ s
S This page describes one way to use ns-3 for Linux-based network emulation on an Ubuntu 9.10 system. This is similar to the approach described in HOWTO
= Help Use Linux Containers to set up virtual networks, The main distinctions are
= Less isolation between virtual nodes
search

= control groups are not used

! @ @ ! = the host filesystern is shared by default

= Metwork devices are directly assigned to virtual nodes without using an intermediate bridge

toolkos Python is used to create and configure Linux namespaces and ne-3 objects. Python glue also serves as the interface between netns and ns-3 by managing
= Wyhat links here information used by both (e.g., IP addresses)
= Related changes . F : i .
; The sections below give a guick overview of how to setup and run some basic network ermulation scenarios
® Special pages

= Printable version

Contents [hide]
= Permanent link

1 Setup
1.1 Feich and install RPyC
1.2 Fetch and install the netns3 code

WNS3 2010

netns3 demo

File Edit View Terminal
E Miscellaneous helpers

Help

import ns3

import netns

import subprocess

import optparse

from threading import Thread

ns3.GlobalValue.Bind{ "SimulatorImplementationType”,
ns3.5tringValue("ns3: :RealtimeSimulatorImpl"”))

ns3.GlobalValue.Bind({ "ChecksumEnabled”, ns3.BooleanValue("true"))
class Ns3Netns({netns.Netns):

def addnetif({self, ifname, ipaddrs = [].
rename = “"eth8", up = True, now = False):

-
Add a network interface to the netns and do basic
configuration. By default, the given network interface is
renamed eth®, given IP address(es), and brought up at when the
simulation starts. Waiting until the simulatien runs ensures
tap devices created by ns-3 exist.
def doaddnetif():

self.acquire netif({ifname, rename)

f rename:

name = rename

name = ifname
T up:
self.ifup{name)
for ipaddr in ipaddrs:
self.add ipaddr(name, ipaddr)
1T now:
doaddnetif()

schedule when simulation starts
ns3.Simulator.Schedule{ns3.Time("8"), doaddnetif)

ass NetnsNode({ns3.Nede, Ns3Netns):
1,1

Top

File

tomh@u94-desktop: ~/wns3/ns3netns/examples

Edit View Terminal Help

7 createnet({self, devhelper, nodecontainer,

addrhelper, mask, ifnames = []):

tapbridge = ns3.TapBridgeHelper()

devices = devhelper.Install{nodecontainer)

for i in xrange({nodecontainer.GetN()):
n = nodecontainer.Get(i)
dev = devices.Get(i)
tap = tapbridge.Install{n, dev)
tap.5etMode (ns3. TapBridge. CONFIGURE LOCAL)
tapname = "ns3tapS%d” % i
tap.SetAttribute("DeviceName", ns3.StringValue(tapname))
addr = addrhelper.NewAddress()
tap.SetAttribute("IpAddress"”, ns3.IpvdAddressValue(addr))
tap.SetAttribute("Netmask", ns3.IpvdMaskValue(mask))

T ifnames:
ifname = ifnames[i]

ifname = "ethd"
n.addnetif(tapname,
ipaddrs = ["%s/%s" % {(addr, mask.GetPrefixlLength()}].
rename = ifname)
n.ipaddr = striaddr)

7 createnodes({self, numnodes, devhelper, prefix = "18.08.0.8/8",

nodenum = 8):
addrhelper, mask = parseprefix(prefix)
nc = ns3.NodeContainer()
for i in xrange({numnodes):
name = "n%s" % nodenum
n = NetnsMode(name, logfile = "/tmp/%s.leg" % name)
self.nodes.append(n)
nc.Addin)
nodenum += 1
self.createnet(devhelper, nc, addrhelper, mask)

T run({self):

self.setup()
print "running simulator for %s sec" % self.options.simtime
t = self.simthread{self.options.simtime)
t.join()
81.8-1

43%

WNS3 2010

Next steps

 NRL iIs funding UW to prototype CORE + ns-3
— Initial prototype for a concrete (adhoc wifi) scenario
— ldentify integration issues, deal with some of them
— Learn about scaling limits and pitfalls to avoid

— Coordinate with Jeff Ahrenholz, Tom Goff (Boeing)
and INRIA (others?)

* Possible areas of future work
— Time warping (e.g. Xen-based prototype)
— Distributed across physical hosts

— Kernel packet treatments or hardware (high speed
forwarding)

WNS3 2010

