
WNS3 2010 1

Virtual Machines and ns-3
Tom Henderson and Craig Dowell

University of Washington
Jeff Ahrenholz, Tom Goff, and Gary Pei

The Boeing Company

Workshop on ns-3
March 2010

Supporting organization: Brian Adamson
Naval Research Laboratory

WNS3 2010

Outline

• Goals and related work
• Common Open Research Emulator

(CORE)
• Issues with CORE and ns-3
• Pure Linux containers
• Python-based “netns3”
• Next steps

WNS3 2010

Test and Evaluation Options

Increasing realism

Increasing complexity

Pure
simulation

Simulation
cradles

Virtual/Physical
testbeds

Field
experiments

Live
networks

Test and evaluation options

Can we develop tools to span this space?

WNS3 2010

Goals

• Lightweight virtualization of kernel and
application processes, interconnected by
simulated networks

• Benefits:
– Implementation realism in controlled topologies or

wireless environments
– Model availability

• Limitations:
– Not as scalable as pure simulation
– Runs in real-time
– Integration of the two environments

WNS3 2010

ns-3 related work

Pure
simulation

Simulation
cradles

Virtual/Physical
testbeds

Field
experiments

Live
networks

Test and evaluation options

NSC (Jansen)
Protolib (NRL)
ns-3-simu (Lacage)

CORE
NEPI
Testbeds:
• ORBIT
• CMU wireless emulator

WNS3 2010

Other recent related work

CORE is the Common Open Research Emulator that
controls lightweight virtual machines and a network
emulation subsystem (more on this later)

NEPI/NEF: Using Independent Simulators, Emulators, and
Testbeds for Easy Experimentation
– Lacage, Ferrari, Hansen, Turletti (Roads 2009 workshop)

EMANE is an Extendable Mobile Ad-hoc Network Emulator
that allows heterogeneous network emulation using a
pluggable MAC and PHY layer architecture.
– http://labs.cengen.com/emane
– being integrated with CORE

WNS3 2010

Related work (cont.)

Synchronized Network Emulation: Matching prototypes with complex
simulations

– Weingartner, Schmidt, Heer, and Wehrle (Hotmetrics 2008)
– Hendrik von Lehn, “A WiFi Emulation Framework for ns-3” (this afternoon)

Protocol platform abstraction libraries
• VIPE (Virtual Platform for Network Experimentation)

– Landsiedel, Kunz, Gotz, Wehrle (VISA 2009 workshop)
• Protolib prototyping toolkit (from NRL)

ns-2 emulation (Mahrenholz/Ivanov)
Trellis, a Platform for for Building Fast, Flexible Virtual Networks (ROADS

2008)
RapidMesh (Drexel) has run ns-3 on the Emulab testbed
Alvarez et al, “Limitations of network emulation with single machine and

distributed ns-3” (SIMUTools 2010)

WNS3 2010

Basic CORE demonstration

CORE screenshot

WNS3 2010

What is CORE (cont.)?

• CORE consists of a (1) GUI, (2) services
layer, and an (3) API tying components
together.

GUI

CORE
services

kernel
virtualization

bridging &
packet manip

Nodes Networks

user space

kernel space

Figure courtesy of
Jeff Ahrenholz

WNS3 2010

Platforms

• Modular architecture allows for interchangeable
parts

GUI

CORE
services

FreeBSD
vimage

FreeBSD
netgraph

GUI

CORE
services

Linux
OpenVZ

Linux
bridging

GUI

CORE
services

Linux
namespaces

Linux
bridging

CORE
services

Nodes Networks

Python
scripts

Figure courtesy of
Jeff Ahrenholz

WNS3 2010

What’s new?

• Linux Network Namespaces Architecture

cored.py
vcmd

CORE API

zebra

vnoded (init)

ospf6d

eth0

unix socket

nnn.n0.eth0

Ethernet bridge

zebra

vnoded (init)

ospf6d

zebra

vnoded (init)

ospf6d

etc... etc... etc...

Figure courtesy of
Jeff Ahrenholz

WNS3 2010

Why integrate netns extensions?

• Performance
– more lightweight than OpenVZ containers

• Shared filesystem
– like FreeBSD, vs. core-root with OpenVZ

• Python
– virtualized elements easily customized with inheritance
– allows complex scripting of CORE scenarios
– ns-3 Python bindings for more natural CORE + ns-3

• Mainline kernel vs OpenVZ patch
– Fedora 12/Ubuntu 9.10 stock kernel support – just install CORE RPM and

run
– stable OpenVZ 2.6.18 kernel is getting old

WNS3 2010

How Many Nodes?

• It depends.
• Single server

– typical 3.0 GHz quad Xeon 2.0GB RAM
– Can instantiate up to 3,600 nodes (with no interfaces)
– Can run ~100 Quagga routers running OSPFv3-MANET
– Your mileage may vary: if pushing around lots of data or

consuming many cycles, maybe 2-3 nodes?

• Multiple servers
– Farm of emulation servers using RJ45 node, Span tunnels, etc
– Consider networking between servers (latency, bandwidth)

WNS3 2010 14

• 430kpps (BSD Netgraph) vs. 170kpps (Linux Netns / OpenVZ bridging)
• Performance relatively insensitive to packet size

How Many Packets?

Performance
bounded by
number of packets
per second (as
number of hops
increases, end-to-end
throughput drops)

WNS3 2010

More details on experiments

• CORE versions
– FreeBSD 8.0, Linux OpenVZ 2.6.18, Netns 2.6.31

• Hardware
– IBM x3550 type 7978, quad-core Xeon E5335 2.0GHz, 2.0GB

RAM
• iperf used for end-to-end TCP throughput

– iperf client run on a separate machine, hooked to CORE via the
Gigabit Ethernet on the host

• multi-hop experiments use a daisy chain of routers
– Total system throughput is defined as the observed iperf

throughput * number of hops in the topology (packets per sec)
– Gives a rough estimate of the number of packets being handled

by CORE, per second

WNS3 2010

CORE is an open source project

• Web site and code repository hosted by NRL
ITD

• Open source licensed
–modified BSD license

• Source code at NRL SVN
–https://pf.itd.nrl.navy.mil/sf/sfmain/do/

• Wiki/Bug tracker:
–http://code.google.com/p/coreemu/

• Mailing lists at NRL:
–core-users
–core-dev

WNS3 2010 17

Integrating ns-3 and GUIs

• Example CORE and ns-3
– CORE could glue virtual machines to ns-3 networks

WNS3 2010 18

Initial steps: OpenVz and ns-3 integration

OpenVz
virtual

machine

ns-3

Linux (CentOS) machine

eth0
veth1000.0

bridge

TapBridge

WiFi

ghost node
WifiWifi ghost node OpenVz

virtual
machine

eth0

CORE virtual device bridged to Linux tap device, hooked to ns-3

tap0

Issues:
1) Linux bridging performance
2) MAC address coordination

WNS3 2010 19

“Tap” mode: netns and ns-3 integration

Container

ns-3

Linux (FC 12 or Ubuntu 9.10) machine

tapX

/dev/tunX

TapBridge

WiFi

ghost node
WifiWifi ghost node

tapY

Tap device pushed into namespaces; no bridging needed

/dev/tunY

Container

WNS3 2010

Issues

• Ease of use
– Configuration management and coherence
– Information coordination (two sets of state)

• e.g. IP/MAC address coordination

– Output data exists in two domains
– Debugging

• Error-free operation (avoidance of misuse)
– Synchronization, information sharing, exception handling

• Checkpoints for execution bring-up
• Inoperative commands within an execution domain
• Deal with run-time errors

– Soft performance degradation (CPU) and time discontinuities

WNS3 2010 21

Integrating ns-3 and GUIs

• What Happens Under the Sheets
– Network is modeled (simulated);
– View of network model and state is displayed;
– UI actions are translated into model commands;
– Model actions are translated into UI changes

• Variation on an old theme: Model-View-
Controller (MVC)
– Model: The internal state of the application;
– View: The presentation to the user;
– Controller: Maps user requests into actions and model state

changes into view changes.

WNS3 2010 22

Integrating ns-3 and GUIs

• ns-3 is the model, CORE UI is the view
• What is the controller?

WNS3 2010 23

Integrating ns-3 and GUIs

• What is ultimately needed is a Controller
Framework.
– Controller is typically closely bound to the View;
– Ideally, need a relatively abstract framework that provides a

basis for building simulation GUIs as easily as possible;
– Framework allows for controller implementations based on

different models (ns-3, CORE native, etc.), and different view
implementations (CORE UI, PyViz?, NetAnim?);

– Inherit from generic framework and create a specific controller for
your GUI that knows how to talk to ns-3.

• Sounds good, but what is it really?

WNS3 2010 24

Integrating ns-3 and GUIs

• Controller framework (to first approximation)
– Provides proxies for first class objects in model;
– Provides mechanism for backing objects with real system objects

(bridges, taps, virtual machines);
– Connects objects (nodes, devices and channels) into networks and adds

objects to nodes (applications, mobility models, etc.);
– Discovers attributes for first-class objects in model and provides

configuration mechanisms to GUI;
– Provides state / mode control (run, stop) and reporting (simulation

running, stopped, VM ready, bridge up);
– Mediates event reporting (allows tracing)

NEPI/NEF: Using Independent Simulators, Emulators, and
Testbeds for Easy Experimentation

–Lacage, Ferrari, Hansen, Turletti (Roads 2009 workshop)

WNS3 2010

Controllers under development

• NEPI:
– View: Network Experimentation Frontend (NEF) GUI
– Backends: ns-3, (virtual) machines, hybrids

• CORE
– View: CORE GUI (or Python script)
– Backends: netns, ns-3, EMANE

• netns3
– View: Python program
– Backend: netns + ns-3 (no abstraction)

WNS3 2010 26

Integrating ns-3 and GUIs

• Clearly a large effort. Can it be factored into
something more manageable for the short term?
– Start small and only build what you need today;
– Start with a dedicated controller that glues CORE GUI

to ns-3;
– “CORE services” layer from before
– Ignore the temptation to build a generic framework for

now, just get a prototype done that we can evaluate.
– Then pick the next UI and extend framework; repeat.

WNS3 2010

netns3

• Written by Tom Goff (Boeing)
– Documentation and prototype posted on wiki

• Basic Python-based framework using ns-3
Python bindings, RPyC distributed computing
library, and ns-3 tap bridge framework

WNS3 2010

netns3 demo

• Placeholder

WNS3 2010

Next steps

• NRL is funding UW to prototype CORE + ns-3
– Initial prototype for a concrete (adhoc wifi) scenario
– Identify integration issues, deal with some of them
– Learn about scaling limits and pitfalls to avoid
– Coordinate with Jeff Ahrenholz, Tom Goff (Boeing)

and INRIA (others?)
• Possible areas of future work

– Time warping (e.g. Xen-based prototype)
– Distributed across physical hosts
– Kernel packet treatments or hardware (high speed

forwarding)

