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Outline

e Goals and related work

« Common Open Research Emulator
(CORE)

e |ssues with CORE and ns-3
e Pure Linux containers
 Python-based “netns3”
 Next steps
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Test and Evaluation Options

Test and evaluation options

Pure Simulation Virtual/Physical Field Live
simulation cradles testbeds experiments networks

Increasing realism

Increasing complexity

Can we develop tools to span this space? I
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Goals

 Lightweight virtualization of kernel and
application processes, interconnected by
simulated networks

e Benefits:

— Implementation realism in controlled topologies or
wireless environments

— Model availability
e Limitations:
— Not as scalable as pure simulation

— Runs in real-time
— Integration of the two environments
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ns-3 related work

Test and evaluation options

Pure Simulation Virtual/Physical Field Live
simulation cradles testbeds experiments networks
NSC (Jansen) CORE
Protolib (NRL) NEPI
ns-3-simu (Lacage) Testbeds:
* ORBIT

» CMU wireless emulator
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Other recent related work

CORE is the Common Open Research Emulator that
controls lightweight virtual machines and a network
emulation subsystem (more on this later)

NEPI/NEF: Using Independent Simulators, Emulators, and
Testbeds for Easy Experimentation

— Lacage, Ferrari, Hansen, Turletti (Roads 2009 workshop)

EMANE is an Extendable Mobile Ad-hoc Network Emulator
that allows heterogeneous network emulation using a
pluggable MAC and PHY layer architecture.

— http://labs.cengen.com/emane
— being integrated with CORE
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Related work (cont.)

Synchronized Network Emulation: Matching prototypes with complex
simulations

— Weingartner, Schmidt, Heer, and Wehrle (Hotmetrics 2008)
— Hendrik von Lehn, “A WiFi Emulation Framework for ns-3” (this afternoon)

Protocol platform abstraction libraries

« VIPE (Virtual Platform for Network Experimentation)
— Landsiedel, Kunz, Gotz, Wehrle (VISA 2009 workshop)

* Protolib prototyping toolkit (from NRL)

ns-2 emulation (Mahrenholz/lvanov)

Trellis, a Platform for for Building Fast, Flexible Virtual Networks (ROADS
2008)

RapidMesh (Drexel) has run ns-3 on the Emulab testbed

Alvarez et al, “Limitations of network emulation with single machine and
distributed ns-3” (SIMUTools 2010)
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Basic CORE demonstration

CORE (on uS4-desktop) — [
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What is CORE (cont.)?

« CORE consists of a (1) GUI, (2) services
layer, and an (3) API tying components

together.
GUI
CORE
user space services
kemelspace Ty T g & |

______________________________

Figure courtesy of
Jeff Ahrenholz WNS3 2010



Platforms

 Modular architecture allows for interchangeable

parts
GUI GUI GUI
CORE CORE CORE
services services services
e T s s T B
iFreeBSD ;i FreeBSD | i Linux ;i Linux | i Linux ii Linux !
| vimage i: netgraph 1 | OpenVZ i: bridging | !namespaces!! bridging |
CORE
services

scripts

| |
Figure courtesy of i Nodes .14 Networks |
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What's new?

* Linux Network Namespaces Architecture
CORE API

vcmd

cored.py

‘vnoded (inity | | vnoded (inity | | vnoded (init)

| zebra . | zebra . 1| zebra

ospfed ospf6d ospf6d
| etc... i | ete... 1 | etc... §
Figure courtesy of nnn-n(h H H

Jeff Ahrenholz WNS3 2010 Ethernet bridge




Why Integrate netns extensions?

Performance
— more lightweight than OpenVZ containers

Shared filesystem
— like FreeBSD, vs. core-root with OpenVZ

Python
— virtualized elements easily customized with inheritance

— allows complex scripting of CORE scenarios
— ns-3 Python bindings for more natural CORE + ns-3

Mainline kernel vs OpenVZ patch

— Fedora 12/Ubuntu 9.10 stock kernel support — just install CORE RPM and
run

— stable OpenVZ 2.6.18 kernel is getting old
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How Many Nodes?

* It depends.

e Single server
— typical 3.0 GHz quad Xeon 2.0GB RAM
— Can instantiate up to 3,600 nodes (with no interfaces)
— Can run ~100 Quagga routers running OSPFv3-MANET

— Your mileage may vary: if pushing around lots of data or
consuming many cycles, maybe 2-3 nodes?

e Multiple servers
— Farm of emulation servers using RJ45 node, Span tunnels, etc
— Consider networking between servers (latency, bandwidth)
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How Many Packets?
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« Performance relatively insensitive to packet size
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More details on experiments

CORE versions
— FreeBSD 8.0, Linux OpenVZ 2.6.18, Netns 2.6.31

Hardware

— IBM x3550 type 7978, quad-core Xeon E5335 2.0GHz, 2.0GB
RAM

Iperf used for end-to-end TCP throughput

— Iperf client run on a separate machine, hooked to CORE via the
Gigabit Ethernet on the host

multi-hop experiments use a daisy chain of routers

— Total system throughput is defined as the observed iperf
throughput * number of hops in the topology (packets per sec)

— Gives a rough estimate of the number of packets being handled
by CORE, per second
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CORE Is an open source project

 Web site and code repository hosted by NRL
ITD
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and Communication » Open source licensed

Systems Branch

:I:II::\I:TI:‘ Commen Open Research Emulator {CORE) _mOd Ified BS D Iice nse

Trs Commaon Open Ressanch Emutabo CFE_I
Projects that aliows you to emulate srtine netw
PPl FreeB50 maching. o nadt the nr“t-l:md

niatanrks o bve '-r.w:-'L = ior o adeitional amulsked o
Bublicatinng networks, CORE ronssts of & GUI for

fy drawn -3': W = that drres s lighbweight wriusiced

organizstion notaork stacks i o patched FreeBsh &

‘ oy — | —https://pf.itd.nrl.navy.mil/sf/sfmain/do/
ey =-  Wiki/Bug tracker:
“‘~ g E_i :;“ —http://code.google.com/p/coreemul/
e « Mailing lists at NRL:

—COore-users

Key Features

runs real code - nok 8 sisulation, but s real nebwork stack phus process spaces ko nanreal

protacals snd anplications wikhout modfyng them

onnects with real nebworks - this is not 5 standakore =ystem but ore that vou an _CO re_d eV
intsgrabs with your meeting fardhwane ko virually sxpand the see of your network

efficient and scalable - uniks tradtonsl virtwal machnes, only the nebwork stack i3

wirtualiznd, and packets can be narzed by reference within the kernel

epasy touse

WNS3 2010



Integrating ns-3 and GUIs

 Example CORE and ns-3

— CORE could glue virtual machines to ns-3 networks
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Initial steps: OpenVz and ns-3 integration

Linux (CentOS) machine

/ ns-3 \
Openvz ghost node ghost node Openvz
virtual virtual
machine TapBridge machine
WiFi
- T~
.-~  ethO IS ethO
/ ’ h \ > .
I veth1000.0 tapO,
\ I /
T~ bridge _-

[ CORE virtual he{ice bridged to Linux tap device, hooked to ns-3 ]

\ Issues:

1) Linux bridging performance
2) MAC address coordination 18




“Tap” mode: netns and ns-3 integration

Linux (FC 12 or Ubuntu 9.10) machine

Container

tapX

/ ns-3

" ghost node

TapBridge

WiFi

ghost node

Container

/[dev/tunX

/dev/tunY

tapyY

Tap device pushed into namespaces; no bridging needed

WNS3 2010
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Issues

 Ease of use
— Configuration management and coherence

— Information coordination (two sets of state)
» e.g. IP/MAC address coordination

— Output data exists in two domains
— Debugging
« Error-free operation (avoidance of misuse)

— Synchronization, information sharing, exception handling
» Checkpoints for execution bring-up
* |Inoperative commands within an execution domain
« Deal with run-time errors

— Soft performance degradation (CPU) and time discontinuities
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Integrating ns-3 and GUIs

 What Happens Under the Sheets
— Network is modeled (simulated);
— View of network model and state is displayed,;
— Ul actions are translated into model commands;
— Model actions are translated into Ul changes

e Variation on an old theme: Model-View-
Controller (MVC)

— Model: The internal state of the application;
— View: The presentation to the user,

— Controller: Maps user requests into actions and model state
changes into view changes.

WNS3 2010



Integrating ns-3 and GUIs

* ns-3 is the model, CORE Ul is the view
e \What Is the controller?

CORE UI TBD

View \l— Controfler
—N
—V

.

I

hodel

ns-3
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Integrating ns-3 and GUIs

 What is ultimately needed is a Controller

Framework.
— Controller is typically closely bound to the View;

— ldeally, need a relatively abstract framework that provides a
basis for building simulation GUIs as easily as possible;

— Framework allows for controller implementations based on
different models (ns-3, CORE native, etc.), and different view
Implementations (CORE Ul, PyViz?, NetAnim?);

— Inherit from generic framework and create a specific controller for
your GUI that knows how to talk to ns-3.

e Sounds good, but what is it really?

WNS3 2010 23



Integrating ns-3 and GUIs

Controller framework (to first approximation)

— Provides proxies for first class objects in model,

— Provides mechanism for backing objects with real system objects
(bridges, taps, virtual machines);

— Connects objects (nodes, devices and channels) into networks and adds
objects to nodes (applications, mobility models, etc.);

— Discovers attributes for first-class objects in model and provides
configuration mechanisms to GUI;

— Provides state / mode control (run, stop) and reporting (simulation
running, stopped, VM ready, bridge up);

— Mediates event reporting (allows tracing)

NEPI/NEF: Using Independent Simulators, Emulators, and
Testbeds for Easy Experimentation

—Lacage, Ferrari, Hansen, Turletti (Roads 2009 workshop)



Controllers under development

e NEPI:
— View: Network Experimentation Frontend (NEF) GUI
— Backends: ns-3, (virtual) machines, hybrids
e CORE
— View: CORE GUI (or Python script)
— Backends: netns, ns-3, EMANE
e netns3
— View: Python program
— Backend: netns + ns-3 (no abstraction)
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Integrating ns-3 and GUIs

e Clearly a large effort. Can it be factored into
something more manageable for the short term?

— Start small and only build what you need today;

— Start with a dedicated controller that glues CORE GUI
to ns-3;

— “CORE services” layer from before

— Ignore the temptation to build a generic framework for
now, just get a prototype done that we can evaluate.

— Then pick the next Ul and extend framework; repeat.

WNS3 2010 26



netns3

o Written by Tom Goff (Boeing)
— Documentation and prototype posted on wiki

« Basic Python-based framework using ns-3

Python bindings, RPyC distributed computing
lib e i 7 A — S

page discussion view S0urce history

HOWTO use Linux hamespaces with ns-3
ns-3

Main Page - Roadmap - Current Di

log - Developer FAQ - User FAQ
Installation - Troubleshooting - HOWTOs - Samples & - Contributed Code - Papers

navigation

= Main Page Combining Linux namespaces and ns-3 can provide a frameswork for network ermulation. Mative code can then run in real-time and produce andfor consume "live”

netwaork traffic. Linux network namespaces (netns) are used as virtual hosts and a virtual network topology is created from ns-3 models running the real-time

Community portal

®u Current events scheduler.
= Recent changes 2 _ i e ¥ s
S This page describes one way to use ns-3 for Linux-based network emulation on an Ubuntu 9.10 system. This is similar to the approach described in HOWTO
= Help Use Linux Containers to set up virtual networks, The main distinctions are
= Less isolation between virtual nodes
search

= control groups are not used

! @ @ ! = the host filesystern is shared by default

= Metwork devices are directly assigned to virtual nodes without using an intermediate bridge

toolkos Python is used to create and configure Linux namespaces and ne-3 objects. Python glue also serves as the interface between netns and ns-3 by managing
= Wyhat links here information used by both (e.g., IP addresses)
= Related changes . F : i .
; The sections below give a guick overview of how to setup and run some basic network ermulation scenarios
® Special pages

= Printable version

Contents [hide]
= Permanent link

1 Setup
1.1 Feich and install RPyC
1.2 Fetch and install the netns3 code
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netns3 demo

File Edit View Terminal
E Miscellaneous helpers

Help

import ns3

import netns

import subprocess

import optparse

from threading import Thread

ns3.GlobalValue.Bind{ "SimulatorImplementationType”,
ns3.5tringValue("ns3: :RealtimeSimulatorImpl"”))

ns3.GlobalValue.Bind({ "ChecksumEnabled”, ns3.BooleanValue("true"))
class Ns3Netns({netns.Netns):

def addnetif({self, ifname, ipaddrs = [].
rename = “"eth8", up = True, now = False):

-
Add a network interface to the netns and do basic
configuration. By default, the given network interface is
renamed eth®, given IP address(es), and brought up at when the
simulation starts. Waiting until the simulatien runs ensures
tap devices created by ns-3 exist.
def doaddnetif():

self.acquire netif({ifname, rename)

f rename:

name = rename

name = ifname
T up:
self.ifup{name)
for ipaddr in ipaddrs:
self.add ipaddr(name, ipaddr)
1T now:
doaddnetif()

# schedule when simulation starts
ns3.Simulator.Schedule{ns3.Time("8"), doaddnetif)

ass NetnsNode({ns3.Nede, Ns3Netns):
1,1

Top

File

tomh@u94-desktop: ~/wns3/ns3netns/examples

Edit View Terminal Help

7 createnet({self, devhelper, nodecontainer,

addrhelper, mask, ifnames = []):

tapbridge = ns3.TapBridgeHelper()

devices = devhelper.Install{nodecontainer)

for i in xrange({nodecontainer.GetN()):
n = nodecontainer.Get(i)
dev = devices.Get(i)
tap = tapbridge.Install{n, dev)
tap.5etMode (ns3. TapBridge. CONFIGURE LOCAL)
tapname = "ns3tapS%d” % i
tap.SetAttribute( "DeviceName", ns3.StringValue(tapname))
addr = addrhelper.NewAddress()
tap.SetAttribute("IpAddress"”, ns3.IpvdAddressValue(addr))
tap.SetAttribute("Netmask", ns3.IpvdMaskValue(mask))

T ifnames:
ifname = ifnames[i]

ifname = "ethd"
n.addnetif(tapname,
ipaddrs = ["%s/%s" % {(addr, mask.GetPrefixlLength()}].
rename = ifname)
n.ipaddr = striaddr)

7 createnodes({self, numnodes, devhelper, prefix = "18.08.0.8/8",

nodenum = 8):
addrhelper, mask = parseprefix(prefix)
nc = ns3.NodeContainer()
for i in xrange({numnodes):
name = "n%s" % nodenum
n = NetnsMode(name, logfile = "/tmp/%s.leg" % name)
self.nodes.append(n)
nc.Addin)
nodenum += 1
self.createnet(devhelper, nc, addrhelper, mask)

T run({self):

self.setup()
print "running simulator for %s sec" % self.options.simtime
t = self.simthread{self.options.simtime)
t.join()
81.8-1

43%
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Next steps

 NRL iIs funding UW to prototype CORE + ns-3
— Initial prototype for a concrete (adhoc wifi) scenario
— ldentify integration issues, deal with some of them
— Learn about scaling limits and pitfalls to avoid

— Coordinate with Jeff Ahrenholz, Tom Goff (Boeing)
and INRIA (others?)

* Possible areas of future work
— Time warping (e.g. Xen-based prototype)
— Distributed across physical hosts

— Kernel packet treatments or hardware (high speed
forwarding)
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