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Outline

• Goals and related work
• Common Open Research Emulator 

(CORE)
• Issues with CORE and ns-3
• Pure Linux containers
• Python-based “netns3”
• Next steps
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Test and Evaluation Options
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Goals

• Lightweight virtualization of kernel and 
application processes, interconnected by 
simulated networks

• Benefits:
– Implementation realism in controlled topologies or 

wireless environments
– Model availability

• Limitations:
– Not as scalable as pure simulation
– Runs in real-time
– Integration of the two environments
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ns-3 related work
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• CMU wireless emulator
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Other recent related work

CORE is the Common Open Research Emulator that 
controls lightweight virtual machines and a network 
emulation subsystem (more on this later)

NEPI/NEF: Using Independent Simulators, Emulators, and 
Testbeds for Easy Experimentation
– Lacage, Ferrari, Hansen, Turletti (Roads 2009 workshop)

EMANE is an Extendable Mobile Ad-hoc Network Emulator 
that allows heterogeneous network emulation using a 
pluggable MAC and PHY layer architecture. 
– http://labs.cengen.com/emane
– being integrated with CORE
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Related work (cont.)

Synchronized Network Emulation: Matching prototypes with complex 
simulations

– Weingartner, Schmidt, Heer, and Wehrle (Hotmetrics 2008)
– Hendrik von Lehn, “A WiFi Emulation Framework for ns-3” (this afternoon)

Protocol platform abstraction libraries
• VIPE (Virtual Platform for Network Experimentation)

– Landsiedel, Kunz, Gotz, Wehrle (VISA 2009 workshop)
• Protolib prototyping toolkit (from NRL)

ns-2 emulation (Mahrenholz/Ivanov)
Trellis, a Platform for for Building Fast, Flexible Virtual Networks (ROADS 

2008)
RapidMesh (Drexel) has run ns-3 on the Emulab testbed
Alvarez et al, “Limitations of network emulation with single machine and 

distributed ns-3” (SIMUTools 2010)



WNS3 2010

Basic CORE demonstration

CORE screenshot
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What is CORE (cont.)?

• CORE consists of a (1) GUI, (2) services 
layer, and an (3) API tying components 
together.
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Platforms

• Modular architecture allows for interchangeable 
parts
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What’s new?

• Linux Network Namespaces Architecture
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Why integrate netns extensions?

• Performance
– more lightweight than OpenVZ containers

• Shared filesystem
– like FreeBSD, vs. core-root with OpenVZ

• Python
– virtualized elements easily customized with inheritance
– allows complex scripting of CORE scenarios
– ns-3 Python bindings for more natural CORE + ns-3

• Mainline kernel vs OpenVZ patch
– Fedora 12/Ubuntu 9.10 stock kernel support – just install CORE RPM and 

run
– stable OpenVZ 2.6.18 kernel is getting old
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How Many Nodes?

• It depends.
• Single server

– typical 3.0 GHz quad Xeon 2.0GB RAM
– Can instantiate up to 3,600 nodes (with no interfaces)
– Can run ~100 Quagga routers running OSPFv3-MANET
– Your mileage may vary: if pushing around lots of data or 

consuming many cycles, maybe 2-3 nodes?

• Multiple servers
– Farm of emulation servers using RJ45 node, Span tunnels, etc
– Consider networking between servers (latency, bandwidth)
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• 430kpps (BSD Netgraph) vs. 170kpps (Linux Netns / OpenVZ bridging)
• Performance relatively insensitive to packet size

How Many Packets?

Performance
bounded by
number of packets
per second (as
number of hops 
increases, end-to-end
throughput drops)
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More details on experiments

• CORE versions
– FreeBSD 8.0, Linux OpenVZ 2.6.18, Netns 2.6.31

• Hardware
– IBM x3550 type 7978, quad-core Xeon E5335 2.0GHz, 2.0GB 

RAM
• iperf used for end-to-end TCP throughput

– iperf client run on a separate machine, hooked to CORE via the 
Gigabit Ethernet on the host

• multi-hop experiments use a daisy chain of routers
– Total system throughput is defined as the observed iperf 

throughput * number of hops in the topology (packets per sec)
– Gives a rough estimate of the number of packets being handled 

by CORE, per second
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CORE is an open source project

• Web site and code repository hosted by NRL 
ITD

• Open source licensed
–modified BSD license

• Source code at NRL SVN
–https://pf.itd.nrl.navy.mil/sf/sfmain/do/

• Wiki/Bug tracker:
–http://code.google.com/p/coreemu/

• Mailing lists at NRL:
–core-users
–core-dev
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Integrating ns-3 and GUIs

• Example CORE and ns-3
– CORE could glue virtual machines to ns-3 networks
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Initial steps: OpenVz and ns-3 integration
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CORE virtual device bridged to Linux tap device, hooked to ns-3

tap0

Issues:
1) Linux bridging performance
2) MAC address coordination
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“Tap” mode:  netns and ns-3 integration
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Issues

• Ease of use
– Configuration management and coherence
– Information coordination (two sets of state)

• e.g. IP/MAC address coordination

– Output data exists in two domains
– Debugging

• Error-free operation (avoidance of misuse)
– Synchronization, information sharing, exception handling

• Checkpoints for execution bring-up
• Inoperative commands within an execution domain
• Deal with run-time errors

– Soft performance degradation (CPU) and time discontinuities
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Integrating ns-3 and GUIs

• What Happens Under the Sheets
– Network is modeled (simulated);
– View of network model and state is displayed;
– UI actions are translated into model commands;
– Model actions are translated into UI changes

• Variation on an old theme: Model-View-
Controller (MVC)
– Model:  The internal state of the application;
– View: The presentation to the user;
– Controller: Maps user requests into actions and model state 

changes into view changes.
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Integrating ns-3 and GUIs

• ns-3 is the model, CORE UI is the view
• What is the controller?
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Integrating ns-3 and GUIs

• What is ultimately needed is a Controller 
Framework.
– Controller is typically closely bound to the View;
– Ideally, need a relatively abstract framework that provides a 

basis for building simulation GUIs as easily as possible;
– Framework allows for  controller implementations based on 

different models (ns-3, CORE native, etc.), and different view 
implementations (CORE UI, PyViz?, NetAnim?);

– Inherit from generic framework and create a specific controller for 
your GUI that knows how to talk to ns-3.

• Sounds good, but what is it really?
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Integrating ns-3 and GUIs

• Controller framework (to first approximation)
– Provides proxies for first class objects in model;
– Provides mechanism for backing objects with real system objects 

(bridges, taps, virtual machines);
– Connects objects (nodes, devices and channels) into networks and adds 

objects to nodes (applications, mobility models, etc.);
– Discovers attributes for first-class objects in model and provides 

configuration mechanisms to GUI;
– Provides state / mode control (run, stop) and reporting (simulation 

running, stopped, VM ready, bridge up);
– Mediates event reporting (allows tracing)

NEPI/NEF: Using Independent Simulators, Emulators, and 
Testbeds for Easy Experimentation

–Lacage, Ferrari, Hansen, Turletti (Roads 2009 workshop)
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Controllers under development

• NEPI:
– View: Network Experimentation Frontend (NEF) GUI
– Backends: ns-3, (virtual) machines, hybrids

• CORE
– View: CORE GUI (or Python script)
– Backends: netns, ns-3, EMANE

• netns3
– View: Python program
– Backend: netns + ns-3 (no abstraction)
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Integrating ns-3 and GUIs

• Clearly a large effort.  Can it be factored into 
something more manageable for the short term?
– Start small and only build what you need today;
– Start with a dedicated controller that glues CORE GUI 

to ns-3;
– “CORE services” layer from before
– Ignore the temptation to build a generic framework for 

now, just get a prototype done that we can evaluate.
– Then pick the next UI and extend framework; repeat.
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netns3

• Written by Tom Goff (Boeing)
– Documentation and prototype posted on wiki

• Basic Python-based framework using ns-3 
Python bindings, RPyC distributed computing 
library, and ns-3 tap bridge framework
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netns3 demo

• Placeholder
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Next steps

• NRL is funding UW to prototype CORE + ns-3
– Initial prototype for a concrete (adhoc wifi) scenario
– Identify integration issues, deal with some of them
– Learn about scaling limits and pitfalls to avoid
– Coordinate with Jeff Ahrenholz, Tom Goff (Boeing) 

and INRIA (others?)
• Possible areas of future work

– Time warping (e.g. Xen-based prototype)
– Distributed across physical hosts
– Kernel packet treatments or hardware (high speed 

forwarding)


