Destination-Sequenced Distance Vector (DSDV) Routing Protocol Implementation in ns-3

> Hemanth Narra, Yufei Cheng, Egemen K. Çetinkaya, Justin P. Rohrer, and James P.G. Sterbenz

Department of Electrical Engineering & Computer Science Information Technology & Telecommunications Research Center The University of Kansas

rohrej@ittc.ku.edu

http://www.ittc.ku.edu/~rohrej http://wiki.ittc.ku.edu/resilinets

25 March 2011

Implementation of DSDV in ns-3 Abstract

Routing protocols are a critical aspect to performance in mobile wireless networks. The development of new protocols requires testing against well-known protocols in various simulation environments. In this paper we present an overview of several well-known MANET routing protocols and the implementation details of the DSDV routing protocol in the ns-3 network simulator. We analyse DSDV routing performance under various scenarios and compare its performance with the other protocols implemented in ns-3, AODV and OLSR. Our results verify the implementation of DSDV and show performance comparable to that of OLSR.

Implementation of DSDV in ns-3 Outline

- Introduction and motivation
- MANET routing protocols
- DSDV module for ns-3
- DSDV module evaluation
- Conclusions

Implementation of DSDV in ns-3 Introduction and Motivation

- Introduction and motivation
- MANET routing protocols
- DSDV module for ns-3
- DSDV module evaluation
- Conclusions

Implementation of DSDV in ns-3 Introduction and Motivation

- Mobile Ad-Hoc Networks
 - self-organization
 - dynamic topologies
 - act as both end systems and as intermediate systems
- Most prominent protocols
 - DSDV, AODV, OLSR, and DSR
- Simulation backbone of MANET research
 - ns-2: open-source, widely used, number of deficiencies
 - ns-3: open-source, relatively new, very few routing protocols

Implementation of DSDV in ns-3 MANET routing protocols

- Introduction and motivation
- MANET routing protocols
- DSDV module for ns-3
- DSDV module evaluation
- Conclusions

MANET Routing Protocols DSDV - Destination-Sequenced Distance Vector

- Table-driven, proactive distance-vector protocol
- One of the earliest MANET routing protocols
- Metric: hop count
- Goal: find path with least hop count to destination
- No RFC for DSDV

MANET Routing Protocols AODV - Ad-Hoc On Demand Distance Vector

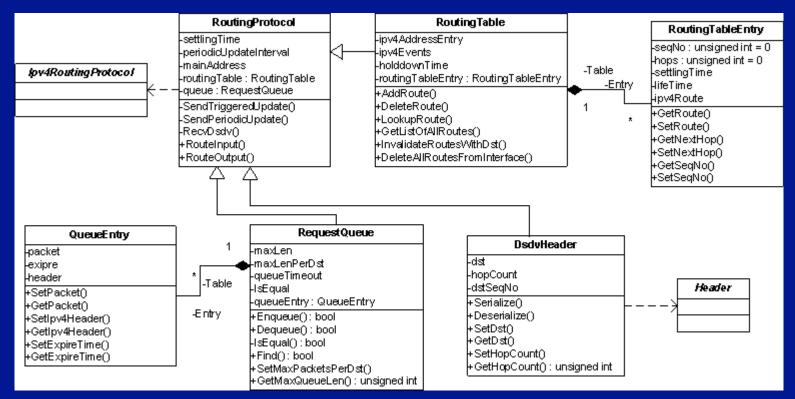
- Table-driven, reactive distance-vector protocol
- Based on the design of DSDV
- Periodically broadcasts *hello* messages
- Metric: hop count
- Goal: find path with least hop count to destination
- Standardized in RFC 3561

MANET Routing Protocols OLSR - Optimized Link State

- Proactive link state protocol
- Exchanges topology information with neighbors
- Periodically broadcasts *hello* messages
 - to discover nodes and links
- Multipoint relaying to reduce duplicate transmissions
 - all nodes maintain MPR selectors
 - only nodes selected as MPR, will generate link state messages
- Standardized in RFC 3626

Implementation of DSDV in ns-3 DSDV Module for ns-3

- Introduction and motivation
- MANET routing protocols
- DSDV module for ns-3
- DSDV module evaluation
- Conclusions



DSDV Module for ns-3 Classes

- DSDVHeader : Header
 - DSDV header formats for sending control messages
- RoutingProtocol : Ipv4RoutingProtocol
 - entire protocol functionality
- RoutingTable
 - stores all updates received and is used for identifying routes
- RequestQueue
 - packet queue to store packets that do not have a route

DSDV Module for ns-3 Class Interactions

• Interaction of DSDV classes with ns-3

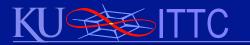
DSDV Module for ns-3 Header

- DSDV header is 12 bytes long and 32 bit wide
 - to support simulations for large networks
 - for word alignment
- Contents
 - IP address
 - hop count
 - sequence number

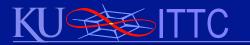
Destination Address

Hop Count

Sequence Number


DSDV Module for ns-3 Routing Table

- Creates an entry for every node based on IP address
- Attributes stored are:
 - IP address, interface address, sequence number, hop count, time for last received update, settling time
- Maintains two routing tables
 - permanent routing table
 - used for stable routes
 - advertising routing table
 - used for unstable routes
 - SettlingTime determines the stability of routes


DSDV Module for ns-3 Routing Advertisements

- Sends two type of update messages:
 - periodic updates
 - broadcasts entire routing table
 - sent for every periodic update interval
 - modified using attribute PeriodicUpdateInterval
 - triggered updates
 - broadcasts the changes since last PeriodicUpdateInterval
- Route aggregation
 - if enabled, aggregates updates and sends in a single packet
 - modified using the attribute RouteAggregationTime

DSDV Module for ns-3 Processing DSDV Updates₁

- A packet may contain multiple DSDV update msgs
- New updates may be re-broadcasted immediately
- If received sequence number is lower, discard update
- If received sequence number is greater:
 - received hop count not equal to local hop count
 - waits for SettlingTime, if enabled
 - received hop count equal to local hop count
 - broadcast the updates immediately

DSDV Module for ns-3 Processing DSDV Updates₂

- If received sequence number is equal:
 - received hop count < local hop count
 - wait for SettlingTime, if enabled and broadcast the update
 - received hop count greater than or equal to local hop count
 - discard the update
- Stale entries are removed
 - by receiving an update with odd sequence number
 - if there is no update received for,
 - Holdtimes × PeriodicUpdateInterval interval
 - Holdtimes is an integer value

DSDV Module for ns-3 Packet Buffering

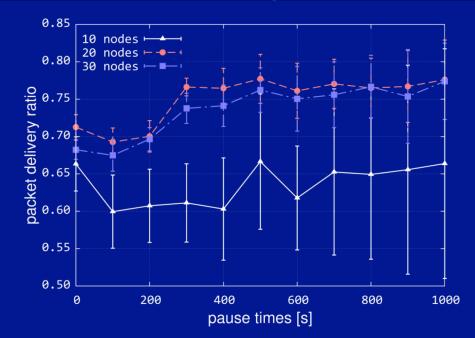
- DSDV does not initiate route discovery mechanism
 packets will be dropped if there is no route
- Buffering is implemented for fairer comparisons:
 - disruption-tolerant networks
 - domain-specific MANET routing protocols
- Buffering can be enabled using attribute
 - EnableBuffering
- Buffering can be controlled using attributes
 - MaxQueuedPacketsPerDst
 - MaxQueueTime

Implementation of DSDV in ns-3 DSDV Module Evaluation

- Introduction and motivation
- MANET routing protocols
- DSDV module for ns-3
- DSDV module evaluation
- Conclusions

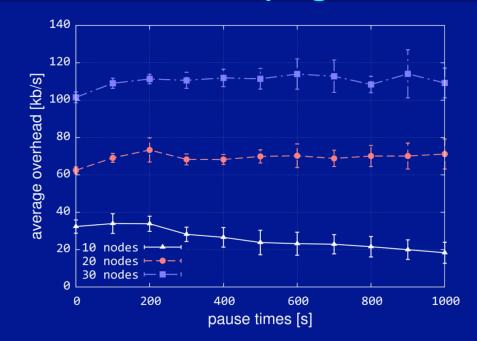
DSDV Module Evaluation Performance Metrics

- Packet delivery ratio
 - number of packets received to those sent by application
- Routing overhead
 - fraction of bytes used by DSDV for control messages
- Delay
 - time taken to reach destination MAC from source MAC

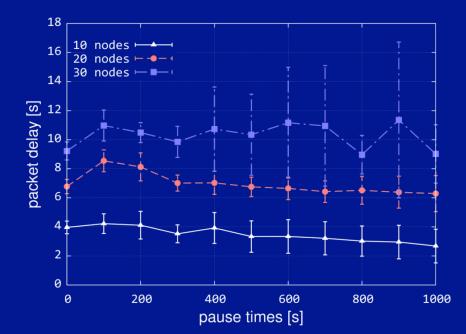


DSDV Module Evaluation Simulation Setup

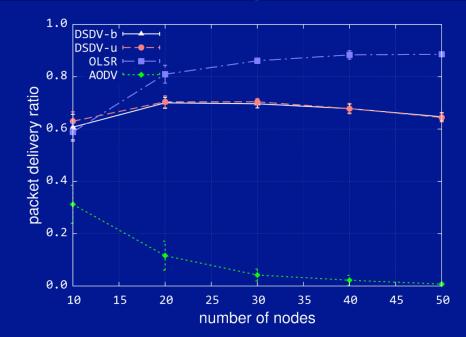
- Simulation area: $1500 \times 300 \text{ m}^2$
- Simulation time: 1000 s, warmup time: 100 s
- Packet size: 64 bytes
- Traffic type: CBR, Packet rate: 4 packets/s
- Link layer: 802.11b
- Transmission range: 250 m
- Mobility model: random waypoint
- Pause time: 0 800 s
- Velocities: 0 20 m/s


DSDV Module Evaluation PDR with Varying Pause Time

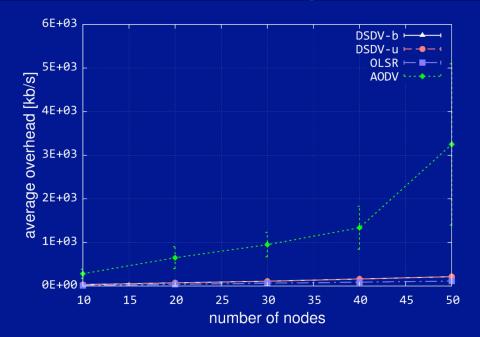
- PDR increases with increase in number of nodes
- PDR for 20 nodes > 30; path churn & collisions


DSDV Module Evaluation Overhead with Varying Pause Time

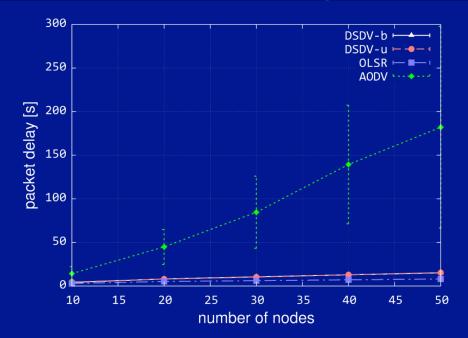
- Average overhead increases with number of nodes
 - sends more control messages as node density increases


DSDV Module Evaluation Packet Delay with Varying Pause Time

- As pause time increases nodes are immobile
 - for long durations affecting link connectivity


DSDV Module Evaluation PDR with Varying Node Density

- OLSR outperforms AODV, DSDV-u, and DSDV-b
 - OLSR exchanges TC messages every 5 s
 - DSDV exchanges periodic update messages every 15 s


DSDV Module Evaluation Overhead with Varying Node Density

- AODV incurs significantly more overhead
 - working with the ns-3 developer team

DSDV Module Evaluation Packet Delay with Varying Node Density



- Packet delay slightly better for OLSR
- Both DSDV-u and DSDV-b have similar delay
 - as network is connected most of the time

Implementation of DSDV in ns-3 Conclusions

- Introduction and motivation
- MANET routing protocols
- DSDV module for ns-3
- DSDV module evaluation
- Conclusions

Conclusions

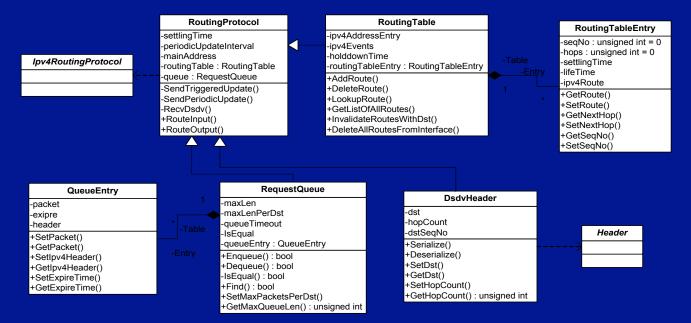
- Presented the implementation of DSDV in ns-3
- DSDV overhead is affected by the node count
 PDR is inversely affected as the overhead increases
- DSDV included in ns-3.10
- ns-3 models coming soon!
 - DSR
 - HTTP
 - Simple TDMA MAC


Narra, et al.

Questions?

Acknowledgements

- Abdul Jabbar
- ResiliNets group at KU
- Tom Henderson
- ns-3 developers



References

- C. E. Perkins and P. Bhagwat, "Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers", ACM SIGCOMM, pp. 234-244, 1994.
- OLSR RFC 3626
- AODV RFC 3561
- ns-3 network simulator, http://www.nsnam.org

DSDV Module for ns-3 Class Interactions

Interaction of DSDV classes with ns-3