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ABSTRACT
Time is a critical parameter in many protocols: depending
on the synchronicity between nodes, protocols may disable
themselves or underperform. Nodes in the discrete network
simulator ns3 retrieve time from the same simulator clock.
As such, they can be considered as perfectly synchronized
with regards to the simulator precision. while ns3 provides
a maximum precision of a femtosecond with a perfect fre-
quency, i.e. timesteps are comparable, real world clocks
tend to drift away from a reference clock due to various
reasons (heat, deficient oscillator...), resulting in an offset of
a few milliseconds or seconds per day. For synchronization-
dependant protocols, this offset can be large enough to take
into consideration during the simulation. Hence we present
an architecture that implements per-node clock and allows
to model node desynchronization.
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1. INTRODUCTION
Different types of synchronization exist such as frequency

synchronization, and time synchronization. Frequency syn-
chronization is called syntonization, i.e. the duration of a
second is the same on both clocks. Syntonization is required
for wireless transmissions such as GSM or LTE [reference
needed]. Time synchronization means that clocks share an
absolute time reference called the epoch, and is needed to
measure the quality of service in networks.

Real world clocks tend to exhibit a drift of a few millisec-
onds/seconds per day with respect to the TAI (International
Atomic Time), which if not corrected, accumulate overtime.
In a first part, we present an implementation [1] that can
simulate imperfect frequency and/or time synchronization.
In the second part, we introduce a possible usage of this
feature to simulate time distribution protocols.
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Ns3 is a discrete time event-based simulator, i.e., first the
simulator selects the next available event, then it updates
its internal counter (i.e., clock) to the scheduled time of the
selected event. Compared with realtime simulators which
increase their counter with a constant step, this approach al-
lows to skip periods of time where nothing happens to reduce
the simulation duration. It also provides - per construction
- frequency and time synchronization. Our objectives are
thus:

1. to allow clocks to run with different rates and/or off-
sets...

2. with the possibility to alter the previous parameters
dynamically during the simulation, to simulate clock
drift

Currently, events are searched in a single datastructure, in
which they are added via the use of Simulator::Now(), re-
gardless of the originating node.

From a logical standpoint, it makes sense to schedule
events in a member of the node so that the scheduling can
adapt to traits of its node, such as the clock frequency
or offset. Thus we introduce a Node::Schedule() member
which should replace most calls to Simulator::Schedule().
The node thus tracks its own list of events and is in charge
of pushing its events to the global list of events when re-
quired. The node maintains at all times its next upcoming
event in the global scheduler, i.e., as soon as this event is
cancelled or triggered, the node pushes the succeeding event
in the global simulator as can be seen on figures 1 and 3.

The last feature consists in the ability to change the pa-
rameters of the clock, e.g., its frequency and its offset rela-
tive to the simulator settings. Changing a parameter means
that the previous projected simulator firing time becomes
incorrect: as explained previously, every node maintains a
list of events and schedules only the next one in the sim-
ulator. Thus the node has to convert the local expected
time to trigger the event into the predicted simulator time.
The node does so using its current parameters, e.g., if its
clock frequency is set to twice the simulator’s, 2 local sec-
onds translate to 1 simulator second. Any clock parameter
change invalidates the previous prediction. In such case,
the node cancels the event registered in the simulator, and
reschedules it with an updated prediction of the simulator
time.

3. USE CASE: RUNNING A TIME DISTRI-
BUTION PROTOCOL IN NS3



Figure 1: Process of adding an event

Figure 2: Upon an event firing

Figure 3: Update of a clock parameter

Several use cases come to mind such as modeling sensor
networks that cycle through on/off patterns depending on
their clocks. Time distribution protocols also look like an
interesting subject of study. Indeed NTP simulations should
be able to run tests faster than wallclock, since the typical
NTP poll interval is superior to one minute. We present in
this section an architecture aimed at running the Network
Time Protocol (NTP) reference implementation in ns3 along
with linux kernels.

The dissemination of clock synchronization information in
packet-switching networks can be achieved through different
protocols, with different precision levels. The Network Time
Protocol (NTP) [3] is a widely adopted solution where mil-
lisecond accuracy is enough; NTP relies on a hierarchy of
clocks, the higher the stratum, the lower the precision.

The host retrieves regularly from the network a time ref-
erence and steers the local clock (through frequency cor-
rection) depending on the offset with this time reference.
Thus NTP consists in a userspace daemon to contact re-
mote NTP servers, and a kernel counterpart to correct the
clock speed. Considering the complexity of both the linux
and the userspace NTP implementations, a sensible course
of action seem to rather work on being able to load these
implementations rather then writing a specific ns3 model.

Direct-Code Execution (DCE) [5] sounds like the perfect
candidate to produce such an environment: DCE is an ns3
extension that allows to load unmodified (though compiled
with specific options) applications within the ns3 environ-
ment. It is even possible to load a modified linux kernel
[2]. We fixed DCE netlink module in order to load the ref-
erence NTP implementation [4]. Linux maintains a counter
called jiffies that is governed by two entities, a clocksource
realtime clock in charge of keeping the time reference, i.e.,
epoch and by a clockevent device which generate interrupts
that update the jiffies counter on a regular basis, typically
one jiffie every 10ms. Vanilla DCE bypasses those previous
mechanisms to keep the linux jiffies counter perfectly syn-
chronized with the ns3 clock, which prevents any skew to
propagate to the kernel. Our proposition is to let the linux



jiffies counter be updated by the conventional means so that
NTP adjustments can also affect the jiffie counter via calls
to the kernel xtime update function, function in charge of
applying the NTP correction.

4. CONCLUSIONS
In this document, we presented an implementation capa-

ble to run per-node clocks, and capable of changing the clock
parameters dynamically, which broadens the scope of sim-
ulations supported by ns3. We also present how this could
affect time distribution protocol testing in a realistic simu-
lation running close to unmodified programs.
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