
ns-3 RPL module:
IPv6 Routing Protocol for Low power and Lossy Networks

Lorenzo Bartolozzi
Tommaso Pecorella
Romano Fantacci

Università degli Studi di Firenze

Wns3 2012, March 23,
Desenzano, Italy.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Low power and Lossy Networks
What is a LLN ?
LLNs: open issues

RPL standard
RPL: Routing Protocol for LLNs

ns-3 implementation
Motivations

Test results
Basic scenario
Large Scale scenario

Conclusions

2 of 22

T. Pecorella ns-3 RPL module

LLN: terminology

LLN: Low power and Lossy networks (LLNs) are typically composed of many

embedded devices with limited power, memory, and processing resources

interconnected by a variety of links, such as IEEE 802.15.4 or Low Power

WiFi. There is a wide scope of application areas for LLNs, including

industrial monitoring, building automation (HVAC, lighting, access control,

fire), connected home, healthcare, environmental monitoring, urban sensor

networks, energy management, assets tracking and refrigeration.

Reference IETF Working Groups:

• Routing Over Low power and Lossy networks WG (ROLL)

• IPv6 over Low power WPAN (6lowpan)

3 of 22

T. Pecorella ns-3 RPL module

http://tools.ietf.org/wg/roll/
http://tools.ietf.org/wg/6lowpan/

LLNs: facts

LLNs have not to be confused with Wireless Sensor Networks.
A WSN is an LLN, but not the opposite !

LLNs are not necessarily wireless.
Industrial automation networks are wired.

LLNs will use IPv6. No discussions about this.
IPv4 is a dead horse.

LLN nodes can not be easily configured.
Typically they’re cheap, small and with very limited memory/CPU.

4 of 22

T. Pecorella ns-3 RPL module

LLNs: open issues

Transmission e�ciency (6lowpan)

Nodes run on battery. Saving energy is a premium. IPv6 Headers must
be compressed.

Node bootstrap (6lowpan-nd)

Configuration is a nightmare, and ‘normal’ IPv6 auto configuration is
too chatty, NS/NA as well, etc,.

Routing (ROLL)

Routing requirements are scenario-based. Mainly:

• one-to-one (configuration, data reading)

• many-to-one (data gathering)

• one-to-many (data dissemination)

5 of 22

T. Pecorella ns-3 RPL module

RPL: basics

RPL is not a standard... yet. There is a draft (19th release right now).

0

1

2

3

4

5 6

Routing based on graph construction

• DAG: Direct Acyclic Graph

• DODAG: Destination Oriented DAG

New ICMPv6 Messages;

• DIS: DODAG Information Solicitation

• DIO: DODAG Information Object

• DAO: Destination Advertisement Object

Many options for each kind of message, carried in sub-headers.

6 of 22

T. Pecorella ns-3 RPL module

RPL: basics

An extremely simplified scenario:

Node not joined to any DODAG:

• Send a multicast DIS to FF02::1A,

• Receives one (or more) DIS,

• Join the DODAG and announce itself with a DAO (*).

A node joined to a DODAG performs maintenance duties, like:

• Keeps sub-DODAG consistent,

• Performs Neighbor Unreachability Detection,

• Finds if there is any route optimization for itself.

7 of 22

T. Pecorella ns-3 RPL module

RPL: more complex than it seems

The source of complexity in RPL is its flexibility.

• Mobility: multiple ‘up’ routes are maintained. There can be even
multiple roots.

• Route optimization: Optimal upward routes are calculated
according to Metrics and Objective Functions.

Metrics

A metric defines how a node (or link) will a↵ect the path.

• Additive and min-max metrics.

• Node energy, hop count, node reliability, etc.

Objective Functions

OFs will decide if the route optimization have to be performed. E.g.,
a route might be not“better enough” to perform an optimization.
8 of 22

T. Pecorella ns-3 RPL module

RPL: Objective Functions

An Objective Function is able to compare two objects’ metrics and
decide:

• The Preferred Parent between two candidates A and B

• The node rank w.r.t. the Preferred Parent.

Objective Function 0 (Of0)

Extremely simple OF, the node will choose always the node with the
minimum rank.

Minimum Rank Hysteresis Objective Function (Mrhof)

The Preferred Parent is changed only if the rank di↵erence is greater
than a given value. Less aggressive optimization and more stable DAGs.

9 of 22

T. Pecorella ns-3 RPL module

RPL: Metrics (and Constraints)

A metric is used to compute the node’s rank and to decide about
preferred Parents.

Node Metric/Constraint

Node-related informations, such as:
Node State and Attributes, Node Energy, Hop-Count

Link Metric/Constraint

Link-related informations, such as:
Throughput, Latency, Link Reliability, Link Color

Each metric is carried in a DAG Metric Container, embedded in the
relevant RPL control messages.

10 of 22

T. Pecorella ns-3 RPL module

Why another RPL implementation ?

There are a number of implementation, but we did not like any.

1. Omnet++ (Castalia): incomplete.

2. Cooja (Contiki): it’s not a simulator, it’s a real implementation.

3. TOSSIM (TinyOS): same as for Cooja.

We wanted a tool to:

• Learn for real what’s RPL and all it’s implementation’s headaches.

• Have the maximum parameter flexibility.

• Experiment new OFs, Metrics, Constraints, etc.

• Be able to run experiments beyond what’s actually implemented.

11 of 22

T. Pecorella ns-3 RPL module

Classes

IPv6RoutingProtocol

RPL

RoutingTable

RoutingTableEntry

NeighborsSet

RplNeighbor

1 1

**

RplObjectiveFunctionOf0

RplObjectiveFunctionMrhof

RplObjectiveFunction
*

RplMetric

RplMetricNe

RplMetricHc

*

1

Header Icmpv6Header

Icmpv6OptionHeader
DisHeader

DioHeader

DaoHeader

DaoAckHeader

S[x]Header

CcHeader

TargetDescriptorOptionHeader

MetricContainerOptionHeader

Pad1OptionHeader

PadNOptionHeader

1

Noteworthy classes:

• NeighborSet: storing neighbors relationships.

• RplObjectiveFunction and RplMetric: extensible set.

• RoutingTable: still trying to downgrade it to a“normal”one.

12 of 22

T. Pecorella ns-3 RPL module

DAO Operations



























Other sequence diagrams are in the paper.
13 of 22

T. Pecorella ns-3 RPL module

Basic scenario

The basic scenario is 15 nodes and point-to-point links.

A

B

1

2

3

4

5

6

7

10

13 14

12
9

8

11

15

Links A and B will break during the simulation.

14 of 22

T. Pecorella ns-3 RPL module

Basic scenario

The basic scenario is 15 nodes and point-to-point links.

A

B

1

2

3

4

5

6

7

10

13 14

15

12
9

8

11

Race conditions might change the topology.

14 of 22

T. Pecorella ns-3 RPL module

Basic scenario

The basic scenario is 15 nodes and point-to-point links.

A

B

1

2

3

4

5

6

7

10

13 14

15

12
9

8

11

Node 10 behavior is interesting.

14 of 22

T. Pecorella ns-3 RPL module

Basic scenario

The basic scenario is 15 nodes and point-to-point links.

A

B

1

2

3

4

5

6

7

10

13 14

15

12
9

8

11

All nodes are connected to a root, always.

14 of 22

T. Pecorella ns-3 RPL module

Large scale scenario

The large scale scenario is made of:

• 2000 nodes over a 1Km x 1Km area

• Random positions, Poisson distribution.

• Radio coverage of each node is 50 m.

• 14.967 equivalent point-to-point links.

Obtained in this way:

• Custom program (few lines) to randomize node position, calculate
the links and cut out disconnected nodes (if any).

• TopologyRead to read the resulting topology.

• Normal ns-3 simulation.

15 of 22

T. Pecorella ns-3 RPL module

Large scale scenario

16 of 22

T. Pecorella ns-3 RPL module

Large scale scenario results

• Some bugs exterminated after paper submission.
• Of0 is more ‘aggressive’ in route optimization
• Mrhof generates less overhead and less topology reconfiguration
(during the transitory setup).

17 of 22

T. Pecorella ns-3 RPL module

Large scale scenario results

• Some bugs exterminated after paper submission.
• Of0 is more ‘aggressive’ in route optimization
• Mrhof generates less overhead and less topology reconfiguration
(during the transitory setup).

17 of 22

T. Pecorella ns-3 RPL module

Large scale scenario results

• Some bugs exterminated after paper submission.

• Of0 is more ‘aggressive’ in route optimization

• Mrhof generates less overhead and less topology reconfiguration
(during the transitory setup).

17 of 22

T. Pecorella ns-3 RPL module

Lessons learned

• Started one year and half ago. And it’s not yet completed.

SLOC model helper examples
rpl 8793 158 113
olsr 3864 78 242
dsdv 2046 51 256

Some things in life can never be fully appreciated understood unless

experienced firsthand. Some things in networking can never be fully

understood by someone who neither builds commercial networking

equipment nor runs an operational network. [RFC 1925]

Corollary: Some things in protocols can never be fully understood by
someone who did not write the code.

18 of 22

T. Pecorella ns-3 RPL module

Next steps

The plan is to:

1. Complete the implementation and validate it. 1 year

2. Write a nice paper with the simulation results. 1 months

3. Submit rpl for public revision. 3 months

4. Integrate it with the main ns-3 codebase.

That’s bound to fail miserably.

19 of 22

T. Pecorella ns-3 RPL module

Next steps

The plan is to:

1. Complete the implementation and validate it. 1 year

2. Write a nice paper with the simulation results. 1 months

3. Submit rpl for public revision. 3 months

4. Integrate it with the main ns-3 codebase.

That’s bound to fail miserably.

19 of 22

T. Pecorella ns-3 RPL module

Next steps

The plan is to:

1. Complete the implementation and validate it. 1 year

2. Write a nice paper with the simulation results. 1 months

3. Submit rpl for public revision. 3 months

4. Integrate it with the main ns-3 codebase.

That’s bound to fail miserably.

19 of 22

T. Pecorella ns-3 RPL module

Next steps

The real plan is to:

1. Iron out some bugs and features - 1-2 months.

2. Write a nice paper with the simulation results - 1 month.

3. Check the implementation against Contiki/TinyOS traces.

4. Submit rpl for public revision.

5. Integrate it with the main ns-3 codebase.

The following points will be done through ‘normal’ long-term
maintenance:

• Implementation validation using mixed-mode emulation.

• Add more features toward a full standard support.

20 of 22

T. Pecorella ns-3 RPL module

Important features lacking

The main features remaining to be added are:

1. Full Lollipop counter support.

2. Architectural support for multi-DAG (not useful for simulations,
but used in real systems).

3. Smarter check against long RPL messages (they can easily exceed
the MTU).

The ‘nice to have’ features to be included are:

1. Upward route preference support (colored links).

2. Multi-root support (virtual roots).

3. External networks gateways (beside the root one).

21 of 22

T. Pecorella ns-3 RPL module

Thanks for the attention.

Questions ?

22 of 22

T. Pecorella ns-3 RPL module

	Low power and Lossy Networks
	What is a LLN ?
	LLNs: open issues

	RPL standard
	RPL: Routing Protocol for LLNs

	ns-3 implementation
	Motivations

	Test results
	Basic scenario
	Large Scale scenario

	Conclusions

