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Introduction

This ns-3design document is intended to present a pre-alpha snapktiat goals, software architecture, implementation
choices, and interfaces of the-3discrete-event network simulator. It accompanies theasg®f a snapshot of our code.
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Chapter 1

Introduction

This document accompanies the Maqmie—alphacode review release of thes-3 software. This snapshot is intended to
provide interested readers and potential future usersaviténse of the design emerging f@-3 the open issues, and the
near-term development plans.

The purpose of this particular release was to implement plsisimulation script (a variant als-2'ssi npl e. t cl script),

to allow for exploration of different design proposals irtareas of node architecture, memory management, andgracin
Although a simple program is provided that yields a rudirmenpacket trace, this release is by no means complete, and is
not intended for use in any research. The current softwarsists mostly of low-level objects, is not internally catent nor
completely correct in design or interface, and does noize#he full vision the developers have fus-3

Many things in the current design are subject to change adetsign team further evaluates the trade-offs between theusa
approaches to designing extensible, efficient, and easystonetwork models. The tension between strong functtgnal
ease of use, ease of code understanding, efficiency, exilépsand simplicity are continually being discussed dratle-offs
evaluated. Feedback from the user community, and evatuafithis and successive releases, will go a long way towards
helping the developers further refine the design and desleprkingns-3

1.1 ns-3 Overview

ns-3is a discrete-event network simulator oriented towarda/oek research and education, with a special focus on Interne
like systems. Thas-3project is designing a follow-on successor to the popogasimulator.

In ns-2 simulation scripts are written in OTcl. ls-3 simulation scripts are written in C++, with support forexsions that
allow simulation scripts to be written in Python. These Bythindings have yet to be written.

ns-3is intended to provide better support thamsi2for the following items:

Modularity of components

Scalability of wireless simulations

Integration/reuse of outside code

Emulation

Tracing and statistics



o Validation

ns-3is a rewrite of the core of the simulatars-2does not presently run ims-3 although it is for further study whether we
can create a hybrid such thag-2can run as part afis-3 as well as which models will be ported frams-2to work natively
in ns-3

Later chapters of this document provide more details albeusdftware architecture, the design of nodes, packetanets
and topologies, the supporting simulation infrastrucinuding random number generators, tracing, statistiog, walk-
throughs of running a simple prototyps-3program.

1.2 ns-3feature status

This section provides a rough overview of the stability ataim parts oihs-3 and the open issues in other areas.

Relatively stable:

e thesimulatormodule: simulator, scheduler, event, and time APIs andemghtation
e most of thecoremodule: callbacks, asserts, debug macros, random nunsipeaist pointer implementation
e these items in theommommodule: packets, buffers, and tags; data rate object

e high-level APl and memory management goals

Unstable or undergoing more development:

e low-level memory management

e run-time configuration that overrides default values

e Object creation (virtual constructors)

e object genericity (currently implemented via polymorphj)s
e aspects of the IP node architecture and interfaces

e tracing implementation

e command-line argument parsing

e reusable topologies, frameworks, and higher-level cantgr

1.3 Near-term roadmap

The development team hesitates to call this release a Iphexarelease because some architectural and interfa@zi@sp
may be revisited in the near term. We plan to make anotheaselm one month’s time. This release is expected to be simila
in functionality but with a cleaner implementation and aettural roadmap.



end-of-April:

command-line arguments and default values
finalize the architecture for reusable components
finalize the memory management architecture
finalize the tracing APIs and implementation

stabilize key base classes and interfaces

Beyond this next release, we intend to start adding additioasic functionality:

end-of-May candidates:

1.4

TCP/FTP

Global IPv4 routing (static god process)
Ethernet (simple-ethernet.cc)

802.11 (simple-802.11.cc) and mobility

statistics

Longer-term vision

The Pls and developers on the project envisiontisaBcan become more than a basic iteration of previous simlaktere
is an incomplete list of the features that are of interestid a

Core refactoring: While striving to maintain as much model reuse as possibieding a backward compatibility
capability), we plan to rearchitect the simulator for beti@se of use, scalability (principally by class redesigtively
supporting multi-processor and distributed simulati@ms] support for 64-bit machines), and support for integretif
other software. The simulator should easily, with realistodels at different levels of abstraction, allow for siatidns
of IPv4 and IPv6 networks, as well as novel, research-ctnetwork architectures.

Software and testbed integration:We see a tremendous opportunity, with an open-source sionuta leverage the
software developed under other open-source projects. Wetheee specific goals in mind:

1. Extension of the simulation capability via integratioithnopen-source tools and protocol implementations, in-
cluding ports of popular operating system implementations

2. Abstraction layers, interfaces, and new techniquesippsrting implementation code into the-3environment;
and

3. Techniques to allow users to easily migrate between sitioml and network emulation environments.

Wireless models. The ns-2 simulator needs updating to account for the growth in wagleetworking, including

the many variants of IEEE 802.11 networking, emerging |IEEBdards such as WiMax (802.16), and cellular data
services (GPRS, CDMA). Additional new models beyond weelare also needed, such as peer-to-peer and delay-
tolerant networks.

Education. ns-3is first and foremost a simulator for the academic researafmuoanity. However, our project will
emphasize makings-3more useful to educators with a specific goal of its integrainto undergraduate networking
courses.



Chapter 2

Sample program walkthrough

To illustrate several of the concepts in the-3design, we start with a detailed explanation of a very sinmgk8simulation
program. This will highlight several important featuresioé design. It is important to note that not all of the functibty
described here is implemented presently, but is includstaer the planned approach to topology generation, datagjsoe,
and simulation execution.

2.1 simple-serial.cc

An example, but very simpl&s-3main program is shown in figure 2.1-1. As mentioned in theothtiction, ams-3simula-

tion is essentially £++ main program that instantiates the various objects thatairtbe network being simulated and then
runs the simulation to model the flow of data packets in thaigted network. The details of how to compile and execute an
ns-3simulation are given elsewhere in this document. The perpbshis simple example is to highlight some of the impor-
tant features of thas-3design. The example creates a simple topology of two nodewgeas clients, two nodes acting as
servers, and two routers connecting the client and senggd he interconnects are simple serial point—to—paiks|iwith

a fixed data rate and propagation delay. The clients havdesitiapa generating applications and the servers have afiplis
that receive the generated data. A step by step discusstmwofo create this simulation is given in the paragraphsvaelo

2.1.1 Thens-3include files

The definitions of the variouS++ objects needed for this simulation are included usingdte i ncl ude feature starting
atline 6. The needed include files will of course vary depegdin whichns-3objects are needed in the simulation.

2.1.2 Specifying thens-3 namespace

All of the definitions in thens-3i ncl ude files are qualified with th@amespace ns-3This avoids any possible name
collisions with other software and libraries that might ls2d. Because of this, alls-3simulations must either specify a
default namespace as shown in line 16, or qualify all callpns-3object or method with the qualifiers 3: : .



2.1.3 TheC++ mai n program

Next, at line 18 is of course the definition of tlkr+ main program. Not illustrated in this example arg 3 objects to
simplify the processing of command line arguments to cdmaing aspect of the simulation.

2.1.4 Assigning a defaulQueue object

The ns-3design relies heavily on the notion Biefaultvalues for many of the objects that might be needed. An exampl
of this is shown at line 25. Here, the call @eue: : Def aul t indicates that whenever a queue object is needed by the
topology creation methods, a queue of typeopTai | should be used. Further, the next line says that these gshoakl
have a limit of 30 packets in the queue. Of course, it is pdssiblater change any given queue to a different limit, omesre
different queue type. Further, there igdefaultdefault, that will be used if th@ueue: : Def aul t method is not called.

2.1.5 Creating the simulated nodes

The creating of network node objectsnis-3is controlled by theC++ classNode. The design of thé&lode objects is dis-
cussed in more detail later in this document. In this exapwenvant nodes that atent er net Nodes, with a pre—configured
protocol stack consisting dPv4, TCP, andUDP. We could of course mix and match, and create nodes of othestyThe
specification of the type of node desired is controlled byaticstethod in théNode calledPushNodePr ot ot ype shown

at line 37. In this example, ahnt er net Node is pushed, which specifies that future callsNmde: : Cr eat e will re-
turn anl nt er net Node. Of course, there is a correspondifgpNodePr ot ot ype which will return to the prior type

of node in the prototype stack. The creation of the six nodeat for this simulation are shown starting at line 39. The
Node: : Cr eat e method has responsibility for allocatingNade object of the correct type, and freeing the memory for this
node when the simulation is complete.

Nodes can optionally have a correspondiocation This can be used, for example, in wireless simulations terdéne
whether a node can receive a transmission from another mode,wired simulations to place the node on an animation
display'. In this example, the nodes are assigned locations staatilige 49.

2.1.6 Connecting the nodes together

Once the nodes are created, they need to be connected toigetbene way. In this example, we use simple point—to—point
serial links using helper methods in cl&&sr i al Topol ogy. First observe thatatesandtimesin ns-3are not represented
by floating point values, but rather by objects of cl&ss e andTi ne respectively. These have constructors usig

st ri ng objects that specify the values in familiar notations. Tdaia be seen at line 58.

For simple serial links, the nodes are connected using #itie selper methodddDupl exLi nk methodin clasSer i al Topol ogy.
This can be seen starting at line 64. This method expectsdge pointers, two IP addresses, a transmission rate, areskd sp

of light delay. The helper actually creates two networkiifsiee devices (one for each node) with associated queues an
serial channel object. It then configures the approprigterld protocol (Pv4 in this example) with the address specified. It
should be noted that the IP addresses specified can be arlgsibtthe base clas$?Addr , which allows for configuring

(for example) anPv6 address, or any experimental type address as long as it ickasa offl PAddr .

INot Implemented Yet.

10



2.1.7 Customizing the topology

As previously mentioned, several of the-3classes have the notion ofefault which indicates what kind of object is to
be used when one is created without explicit knowledge ottwiype is desired. An example is the creation of the queue
object associated with the network interface devices inAth@Dupl exLi nk described above. In line 25, this simulation
specified that &r opTai | queue with a limit of 30 packet is to be used. However, thisrgda wants a smaller queue at
the bottleneck link between the routers. The code startiigea82 asks for a pointer to the queue between roufeandr2,

and sets the limit to a smaller value. Although not shown hbeeprogram could have specified a completely differentigue
object to be used, such aR&ED queue. Additionally, the data rates and propagation dedhyes between any pair of nodes
can similarly be changed as needed.

2.1.8 Random Variables

An important aspect of any network simulation environmere good set of random variables, to allow the simulationdb te
the performance of a network under varying conditions. A¢ 192, a random variable with a uniform distribution between
0 and 100 is specified, which is later used to specify a stattime for the client applications described below. Althbug
not illustrated herens-3has a wide variety of random variables with different disitions, including uniform, exponential,
pareto, weibull, sequential, empirical, and constant.

2.1.9 Adding a data demand

Once atopology has been created, the simulation must gsetife type of data demand on the network, to cause the aneatio
and forwarding of packets through the network. There arers¢ways to do this witms-3 but the simplest one is to use
one of the manyAppl i cat i on classes. For readers familiar witis-2or GTNetS thens-3applications are conceptually
similar. They are associated with a single node, and make tcelhe various protocols to generate data in some known or
random way.

In ns-3 the preferred way to add an application to a node object isstotheAdd method in theAppl i cati onLi st
object?. Any subclass of the base cla&gpl i cat i on can be passed to thfeld method. A new instance of the specified
application is created and added to the list of applicatems®ciated with the node. Most applications will not adyustiart
processing and generating data until the time specified &gpttlar t method is reached. This insures that the simulation
won't create a large amount of data all at exactly the same.tidere, the starting times for the applications are detethi
by sampling thest ar t RNGrandom variable described above. In our example, the agipits are added starting at line 98.
In this example, the applications used are a sending apiplicasing the TCP protocolCPSend), a TCP server application
(TCPSer ver), an On/Off application using theDP protocol (UDPOnCf f ), and aUDP sink application that receives the
packets generated BYPPONCF f (UDPSI nk).

2.1.10 Running the Simulation

Once the topology has been created and the data demandatipplécare added, the program can start simulating the move-
ment of packets in the simulated network. This is shownisgét line 129. First we specify the time at which we want the
simulation to stop (10 seconds in this example). Then weifypiat we want a simple message printedsirdout at one
second intervals, so we can observe that the time is actuiatyressing. Finally, at line 134 we enter the main every foo

ns-3 TheSi nul at or : : Run method does not exit until the specified stop time has beaheer or the event list becomes
empty.

21t is likely that a helper function will be included to makestisyntactically simpler.

11



2.1.11 Cleaning up the memory

Both theNode class and th&i mul at or class have allocated dynamic memory from @vet heap during topology con-
struction and during the simulation execution. The call€itear Al | starting at line 142 cause that memory to be released.
Obviously, these calls are not necessary in this exampieesill memory allocated by @++ program is automatically
returned to the operating system when the program completasever, if doing a memory leak analysis, it is important to
return the memory, so that leaked memory can more easilydagdd.

2.1.12 Summary of simple.cc

Although quite simple, the example discussed here illtstraeveral important points about how to construatasimu-
lation.

1. Using thens-3i ncl ude files.

2. The use oDefaultobjects. This example specified that all queues be of BrpepTai | with a limit of 30 packets.
Should a different queue type be desired for all queues,Igioffanging the default type results in all queues changing
on the next simulation run.

3. Creating nodes witNode: : Cr eat e. Using the node prototype stack and the stilobde: : Cr eat e method is the
preferred way to create node objectria-3 However, users can allocate their own nodes either withl leariables
or by allocating them from th€++ heap. Of course, when doing this, the user retains resgbtysior freeing the
associated memory at a later time.

4. Setting the node location can be used for wired simulatiormake the animation display show the node in a control-
lable way.

5. Simple topologies can be constructed easily usingta al Topol ogy helper methods. These helpers hide all of
the complexity and details of connecting nodes together.

6. Applications generate data demand for the simulatioth gae created using tigpl i cat i onLi st : : Add method.
Users are free to use other methods to create data demaciddjmg directly creating socket objects and/or protocols
and making the appropriate calls to the provided protocdsAHRowever, for the basic and advanced users, use of the
provided applications is the simplest method.

7. In this example, memory management is controlled coralyidty ns-3 Notice that there are no calls teew or
del et e. In general there should never be a need fonsu8simulation program to call either of these. Even though
the call toNode: : Cr eat e returns a node pointer, the user is not responsible foridgl¢he object. Similarly the
calls toGet Queue andAppl i cati onLi st : : Add return pointers, and again the-3framework retains ownership
and responsibility for the memory. In general, arst3method intended to be called by user program that returns a
pointer retains ownership of that pointer. In shog;3programs should nevereedto allocate dynamic memory, but
of course are free to if so desired.

12
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Denonstrate creating a sinple simulation with NS3.
George F. Riley, Georgia Tech, Spring 2007

I ncl ude the various ns3 header files needed for this simulation

ncl ude "ns3/ queue. h"

ncl ude "ns3/ node. h"

ncl ude "ns3/ node-internet.h"

ncl ude "ns3/process-onoff.h"

ncl ude "ns3/process-tcpsend. h"
ncl ude "ns3/process-tcpserver. h"
ncl ude "ns3/ process-udpsi nk. h"
ncl ude "ns3/serial -topol ogy. h"
ncl ude "ns3/simul ator. h"

usi ng namespace ns3;

int main(int argc, charx* argv)

{

/1l Optionally, specify sone default val ues for Queue objects.

/1 For this exanple, we specify that we want each queue to

/1 be a DropTail queue, with a limt of 30 packets.

/1l Specify DropTail for default queue type (note. this is actually
/1 the default, but included here as an exanple).

Queue: : Defaul t (DropTail ());

/1 Specify linmt of 30 in units of packets.

Queue: : Defaul t (). SetLi m t Packet s(30);

/1l The node creation in ns3 is designed to allow user specification
/1 of the "type" of node desired for each node creation. This

/1 is done by creating a node object (the inNode bel ow), configuring

/1 the object with the desired capabilities, and pushing the node
/'l object on the prototype stack. 1In this sinple exanple, the

/1l default behavior of an InternetNode is adequate, so we don’t
/] do any configuration here.

I nt er net Node i nNode;

Node: : PushNodePr ot ot ype(i nNode) ;

/1 Next create the physical node topol ogy using the node factory
Node* cl = Node::Create(); // Cient 1

Node* c2 = Node::Create(); // dient
Node* r1 = Node::Create(); // Router
Node* r2 = Node::Create(); // Router
Node* s1 = Node::Create(); // Server
Node* s2 = Node::Create(); // Server

NP NPFEPDN

/] Optionally, set locations for the nodes for "pretty" ani mations

Program 2.1-1 simple.cc

13
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/1l This one puts clients on left, servers on right,
/1 and routers in between.

cl->CetLocation()->Set(1, 1); // Location in x/y plane

c2->Cet Location()->Set (1, 3);
rl->GetlLocation()->Set(2, 2);
r2->Cet Location()->Set (3, 2);
sl->Cet Location()->Set (4, 1);
s2->Cet Location()->Set (4, 3);

/1 Define data rate and speed-of-1ight delays for the connecting |inks

Rate rate("10M"); /1 10Megabi t s/ sec
Ti me del ay("10ns"); /1 10 nmilliseconds

/] Create the point-to-point |inks

/1 Connect clients to router rl

Seri al Topol ogy: : AddDupl exLi nk(cl, |pv4Address("192.
rl, |pv4Address("192.
rate, delay);

Seri al Topol ogy: : AddDupl exLi nk(c2, | pv4Address("192.
rl, |pv4Address("192.
rate, del ay);

/] Connect routers, use |less bandwidth to create a

Seri al Topol ogy: : AddDupl exLi nk(r1, | pv4Address("192.
r2, |pv4Address("192.
rate/ 10, del ay);

/1 Connect r2 to servers

Seri al Topol ogy: : AddDupl exLi nk(r2, | pv4Address("192.
sl, |pv4Address("192.
rate, del ay);

Seri al Topol ogy: : AddDupl exLi nk(r2, |pv4Address("192.
s2, | pv4Address("192.
rate, delay);

/1 As an exanple, we reduce the queue lint on the
/1 link to 10 packets.

Queuex g = Serial Topol ogy: : Get Queue(rl, r2);

g- >Set Li m t Packet s( 10);

/1 Once the topology is created, we add the processes to sinulate

// data demand.

/] Create a randomvariable to start the processes
/] times, rather than all at time 0. In this exanpl

168.1.1"),
168.2.1"),

168.1.2"),
168.2.2"),

bott| eneck

168.3.1"),
168.3.2"),

168.4.1"),
168.4.2"),
168.4.1"),
168.4.2"),

bott | eneck

at random
e, we use

/1l a uniformdistribution between 0 and 100 m | | i seconds.

Uni formstart RNG(0, 100); // Randomstart tinme in nilliseconds

Program 2.1-1 simple.cc (continued)
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93 /1 Put the TCP Sendi ng process on cl.
94 /1 The argunments to ApplicationTCPSend constructor are the |PAddress

95 /1 of the server, port nunber for the server, and a random vari abl e
96 /'l specifying the amount of data to send.

97 Application* tcpSend = cl->CGet ApplicationList()->

98 Add( TCPSend( s1- >Get | PAddr4(), 80, Uniform( 500000, 1000000)));

99 tcpSend->Start (M 1 1iseconds(startRNG Val ue()));

100

101 /1 Put the TCP server on sl and bind to port 80

102 /1 The argument for the constructor for the TCP server app is

103 /1 the port nunber to bind to. Also, servers generally start

104 /] at time zero, since starting a server does not generate network

105 /] traffic.
106 Application* tcpServer = sl1->CetApplicationList()->

107 Add( TCPSer ver (80));
108 tcpServer->Start(0);
109

110 /1 Add a UDP ON/ OFF process at client c2

111 /1l The arguments for the OV OFF process are the | PAddr of the

112 /1 destination, port nunber of destination, and two random vari abl es
113 /1 indicating the on tinme and off time.

114 Application* udpOnOFf = cl1->Cet ApplicationList()->

115 Add( UDPONCr f (s2- >Get | PAddr4(), 100,

116 Exponenti al (Ti me("100ns")),

117 Exponential (Ti ne("100n8"))));

118 udpOnOf f->Start (M | 1iseconds(start RNG Val ue()));

119

120 /1 Optionally add a UDP Sink at node s2. This not conpletely necessary
121 /1 as the packets arriving at s2 addressed to a non-bound port wll

122 /1 sinply be dropped, but the UDPSIi nk process collects sone statistics
123 /1 that mght be useful. The argunent for UDPSi nk constructor is

124 /] the port number to bind to.

125 Application* udpSi nk = s2->Cet ApplicationList()->

126 Add( UDPSi nk(100)) ;

127 udpSi nk->Start (0);

128

129 /] Now we are ready to start up the sinulation

130 /] Specify the stop time at 10 seconds
131 Si mul at or: : St opAt (Ti me("10S"));

132 /1l Specify we want "Progress" nessages at 1 second intervals

133 Simul ator:: Progress(Time("1S"));

134 Simulator::Run(); // Run the simulation

135 cout << "Simulation conplete" << endl;

136 /1l At this point, we could query the udpSink object for statistics
137 /1 such as loss rate, jitter etc. (Not shown here).

138 /'l Finally, clear the nenory for |eak checking

Program 2.1-1 simple.cc (continued)

15



139
140
141
142
143
144

/1 This is only needed if we are checking for nmenory | eaks,

/1 since (obviously) all nenory allocated is returned on process
/1l exit.

Node:: ClearAl |l ();

Simulator::CearAl();

Program 2.1-1 simple.cc (continued)

Although quite simple, the example discussed here illtetraeveral important points about how to construatsa3simu-
lation.

. Using thens-3i ncl ude files.

. The use oDefaultobjects. This example specified that all queues be of BrpmpTai | with a limit of 30 packets.

Should a different queue type be desired for all queues,Igioffanging the default type results in all queues changing
on the next simulation run.

. Creating nodes witNode: : Cr eat e. Using the node prototype stack and the stilide: : Cr eat e method is the

preferred way to create node objectria-3 However, users can allocate their own nodes either withl leariables
or by allocating them from th€++ heap. Of course, when doing this, the user retains resgbtysibr freeing the
associated memory at a later time.

. Setting the node location can be used for wired simulatiormake the animation display show the node in a control-

lable way.

. Simple topologies can be constructed easily usingstra al Topol ogy helper methods. These helpers hide all of

the complexity and details of connecting nodes together.

. Applications generate data demand for the simulatioth aae created using tgpl i cat i onLi st : : Add method.

Users are free to use other methods to create data demariddjiig directly creating socket objects and/or protocols
and making the appropriate calls to the provided protocdsAHowever, for the basic and advanced users, use of the
provided applications is the simplest method.

. In this example, memory management is controlled corelyléty ns-3 Notice that there are no calls teew or

del et e. In general there should never be a need fonst3simulation program to call either of these. Even though
the call toNode: : Cr eat e returns a node pointer, the user is not responsible foridgl¢he object. Similarly the
calls toGet Queue andAppl i cati onLi st : : Add return pointers, and again the-3framework retains ownership
and responsibility for the memory. In general, arst3method intended to be called by user program that returns a
pointer retains ownership of that pointer. In shog;3programs should nevereedto allocate dynamic memory, but

of course are free to if so desired.
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Chapter 3

Functional Overview

This chapter describes thes-3 simulator from a functional or user’s perspective; i.eth@ut as much regard to internal
implementation.

3.1 Goals

This section describes the broad goalsrfe+3

e ns-3is a discrete-event networking simulator, written in C+#hvan emphasis on layers 2-4 of the OSI stack, including
IPv4, IPv6, and future next-generation (non-IP) networks.

e ns-3is oriented towards supporting networking research andaéhn via simulation.

e ns-3is free software developed using a community-orientednameirce development process, under GNU GPLv2
compatible licensing.

We want to build a system that:

1. is easy to use,
2. has replaceable components, and

3. has a base that can be used to assemble unforeseen casssratch

Itis hard to anticipate exactly how users will use a reseaitiulator. Therefore, we have to balance the above thrde gma
meet the expectations and needs of different types of users.
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3.2 User experience

3.2.1 Installation

ns-3should be buildable from source or binary formats on popdéssktop and server platforms, includix§6, x86- 64,
andppc, and the Linux, OS X (Darwin), Windows (32-bit, build envimment TBD), Solaris, and BSD (FreeBSD and others)
operating systems.

3.2.2 User interface

e The primaryns-3interface is a command-line executable; it should be ptesticreate GUI-based configurators, but
such configurators are outside the scope ofith@project.

e Simulation scripts are written as C++ main() files or as pgtheripts. The capability of the python script environment
may be a subset of the capability of the C++ environment.

e ns-3should have a flexible output tracing capability that allewging trace output to stdout, files, and other streams.
Some standard tracing outputs (statistics, packet tragé$)e built-in.

— trace and log files should be convertible to the existiagor out.tr format, via some internal or external scripting
technique, for backward compatibility witis-2

e ns-3will output execution-related statistics to stdout; usaesy compile in other optional output to stdout.

e Open issue: shouldhs-3 be directly integrated with an animator or should the animator just run on output files
(post-process)?

3.3 Scenario definition

Users use the simulator by firdéfininga simulation scenariompilingthe scenario if necessamlgxecutinghe simulation
scenario, angrocessinghe simulation output, either visually through an animaborthrough other handling of the output
files generated. Some users will be able to run simulatiorjasiychanging command line arguments of previously defined
programs. Others may require extension or recompilatighefnain programs. Still others may need to edit and rebléd t
core modules themselves.

ns-3scenarios can be written in C++ (as a main() function), wétlested configuration options exposed as command-
line arguments

ns-3should provide a scripting environment or interface

— full backward compatibility wittns-2scripts is a non-goal
— Openissue: Although we have selected Python, the bindingaplementation (SWIG or other) is still open.

scenario execution is visible on a console standard outpwiritten to a log file.

support for some stock topology constructs should be pealid
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3.4 Tracing, logging, statistics

ns-3plans to improve the data collection and output processapglilities over that afis-2 In ns-2the basic capabilities are
for traces (out.tr, out.nam) and monitors. The tracing cabe controlled at a fine granularity (e.g. trace only thedoound
traffic). Monitors are primarily associated with queues.

Tracing and logging refer to simulation output that showghva timestamp) that a particular event occurred. Tracing
generally refers to packet events, while logging refersdo, rocess log events, although the two are somewhatdelat

3.4.1 Use cases

Tracing and logging are fundamental operations of the sitoul It is difficult to completely anticipate the varieddoe needs
of the users, but here are some examples.

In the below, when we say tracing we mean both tracing andhogas defined above.

1. A typical user scenario is to build a topology and gathea Bingle trace file a set of ip-level queue events for every
node in the topology.

2. users often want to generate multiple types of trace filesary of ascii because trace generation is very IO intensiv
so they want to minimize its cost

3. users often want to enable the tracing only during cegaits of the simulation to save on trace generation which is
very 1O intensive and to make post-processing analysis easy

4. users often want to enable the tracing only in certainspaifrtthe simulation stack or only in certain nodes of the
simulation topology to minimize trace generation (whichdgain, very 10O intensive) and to make post-processing
easier.

5. users often want to perform trace analysis during the Isition: they want to calculate means or variances on certain
variables and store these aggregated values rather thdmllttrace. Again, this is because they want to save on 10
or make post-processing easier or eliminate post-pratgsaftiogether or use these statistics to change the belwvior
certain simulation algorithms.

These use cases seem to lead to the following requirements:

1. decouple trace event generation from trace event s&iin. (to make it possible to generate multiple trace fiteats
based on a single trace event data)

2. It should be possible to connect an arbitrary number aktsinks to any trace source (for example, a routing daemon
might be monitoring a bunch of trace sources while the ussrsktup some trace sinks on the same trace sources to
generate a trace file)

3. It should be possible to disconnect a trace sink from atsacirce and reconnect the same or another trace sink to the
trace source later (to allow temporal-based configuratfdheotracing)

4. it should be possible to connect a number of trace souccassingle shared trace sink when the trace sources are
‘compatible’. That is, they generate similar data comirapfrdifferent parts of the system. The interpretation of the
data can be slightly different depending on where it comemfso, the sink also might need to be able to identify
where the data is coming from.
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What can be traced?

e Changes of value of numerical built-in POD types (ints, #pat

e Tracing (logging) of events. If we assume that events aggadlto function calls in the implementation, any function
call should be wrappable such that input and output corditio the function can be traced, and users should also be
able to define trace points within a function call.

A goal is to minimize the need for recompilation if tracingniguration is changed. We anticipate that some but not all
tracing configuration changes will require re-compilati¢tor instance, the tracing of a particular TCP state vesiaihy
require a TCP source code change, to change the variablesftarift-in type to a Traced type.

Output trace files

Users should be able to define output file names, and to as&grutput of various traces to these files. At one extremé, eac
trace may be written to a separate file. At the other extrefhgaaes may be written to a single fildlgte: this implies that

we need to be able to identify the source of the trace elerhahtrote each line of the file... more on this later.).

Users should be able to declare a maximum trace file size &br ace file, and have the simulator segment the output file,
so that files do not get too large. For example, if the file natrece.out” were to be defined by the user, the simulator could

automatically segment it into “trace.out.0”, “trace.duf.“trace.out.2”, etc, according to some naming conventibthe file
size exceeded the threshold.

Output trace format

Trace format should be selectable by the user. For instaocee users will want ASCII prints of packet trace events(lik
ns-2out.tr), others will want libpcap outputs.

The following formats have been identified.

1. text - suitable for parsing using awk, perl, etc.
2. binary - suitable for parsing using streams like in C, jata. and for programs like tcpdump.

3. XML - object format; slower but easier to read, convert andlyse using many tools, e.g. warehouse and statistical
applications

Of course, any output trace could be further post-procesgadripts outside of the simulator.

We need to consider whether trace output files are self-tésgror require metadata. For instance, one way to make them
self-describing is to embed the metadata directly in theetfde:

-time 0.0500 -node 23 -ip_src 192.168.168.1 (etc.)

This has the advantage of being easy to parse but generataises the size of the trace file substantially. An altemmat
might be to generate two files: "trace" and "trace.spec” Wtitice" being a space-delimited set of data only

<SPEC_KEY_1> 0. 0500 23 192.168.168.1 (etc.)
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and a separate file "trace.spec” that has the metadata foSEHC_KEY:

<SPEC KEY_1> tine node ip_src (etc.)
<SPEC KEY_2> tine interface power mac_address (etc.)

Regarding trace file uniformity, it is desirable to define fad# uniform format for text and XML trace outputs, and ttoal

the user to modify this (perhaps through recompilation)niyitmols that people develop to process traces depend oraterm
being laid out in a certain way; the desire for uniformity ofrhat must be balanced somehow by the desire to allow users to
create unconventional formats if they need to (users mag teeextend or compress the standard formats).

Instrumenting a simulation for tracing

Some tracing may be built-in to the simulator and it is onlyatter of the user connecting an output to capture the trage (e
TCP snd_cwnd may be a Tracedint type but only when the useremt® a tracing collector to this object will there be any
output generated.

Special commands may be defined for ease-of-use, such as-dlainterfaces.” to get a packet trace of all interfaires
the simulator (like a tcpdump). These are assumed to beatrledh general by non-member helper functions; some will be
provided byns-3and users may also create their own.

Objects are generally configured for tracing when they actaded and assembled (constructed). This leads to twosssue

1. objects may be built by helper functions that do not prevav-level handles to particular components, hindering a
user from configuring traces that are “non-standard” oriatlp

2. related to this, objects such as nodes may be built byrastoFactories must be designed with support for tracing in
mind, particularly to allow the factory to be reconfiguredgeenerate a node with a different trace configuration than
the previous.

Statistics

users often want to perform trace analysis during the sitiamathey want to calculate means or variances on certaialvias

and store these aggregated values rather than the full tisgain, this is because they want to save on 10 or make post-
processing easier or eliminate post-processing altogethgse these statistics to change the behavior of certainlation
algorithms.

Special tracing requirements and open issues

e Ability to generate pcap formatted tracefiles, for use inlrexs such as Ethereal or the many utilities designed to
interpret libpcap output files.

o Ability to take (parse) pcap files as input to traffic geners{onder discussion on ns mailing list).

e Some facility to uniquely identify all trace sources in thace outputs, if needed. For libpcap output, this type of
output is not needed, but for “out.tr’-style formats whereltiple trace sources write into the same file, some means
of uniquely identifying the name of the object that genetatdine of trace is needed.

e A useful feature for me has been the ability to define stagl/gibints in time to enable/disable all tracing (e.g., start
tracing at time X, stop at time Y). It would be nice if there wersingle-line command to enable this globally.
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e For non-pcap packet traces, the use of a unique packet ssgjoember has historically been very useful. Uniqueness
across a simulation environment is a challenge if the sitimulas distributed, or if there is emulation involved, sasth
goal may only be met by single sequential simulations natliriag emulation.

3.5 Miscellaneous capabilities

e ns-3shall provide an emulation capability— ability to sourg@{seal packets and execute in real-time

e ns-3shall be designed to scale for parallel processor suppddistributed simulations, in a manner mostly transparent
to users.

¢ ns-3shall provide interfaces that facilitate the porting of iempentation code (user space and kernel TCP/IP stacks)

3.6 Documentation
e Source code APIs shall be documented using Doxygen andhbieibn the web as HTML and Latex-generated PDF.

e the various project documents use Latex.

The documentation should be checked out nightly, built PBo- and HTML, and posted on the web. Documentation should
be stored in the source code repository in source form, wgtirdis stored in eps or image format. Vector graphics shaaild b
drawn in a commonly available vector graphics program ssdia tgif, or xfig, and the sources stored with the eps.
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Chapter 4

Use cases

This chapter identifies the types of use cases that we envisis-3 This includes both a definition of the classes of users
that we anticipate, and the types of things they will intemdd with the simulator.

Thens-3software package is a set@#+ class definitions and implementations that allows userststeuct simulations of
computer networks. It includes models for communicatiokdi network interface devices, network nodes, protoda®a
packets, user applications, and much more. Oncash&code has been compiled and the libraries built, creatingr&ing
simulation can be as simple as creatinga+ main program, instantiating one of the many built-in toggylebjects, adding
one or more user applications to the network nodes, and mgrthie simulation. A more advanced user can create a new
protocol at any layer, insert that new protocol into the pcot stack at one or more nodes, and observe the behavioe of th
new protocol. Alternately, he can easily study the effe€taadifications to existing protocols by using tBe+ sub—classing
feature and implementing new versions of one or more of thtealifunctions. For example, the base cl&a&P has virtual
functions for managing duplica®®CK packets, timeouts, and new data acknowledgenefitais a new congestion control
algorithm can be designed and evaluated, without any matlifics at all to the basiECP model. The most advanced users
can extend or enhance the network models found im#i8code base, or design and contribute new models to suit their
needs.

We have identified three basic classes of users fongh@&simulator.

1. TheBasicuser will primarily use the existings-3models as implemented by the development team, and cotstruc
simulations using those models connected together in singpmoderately complex ways. This class of user will
primarily focus on using the pre—defined network nodes (fangple anl nt er net Node configured with ariPv4,

TCP, andUDP protocol stack), and using the built—in applications (feample a web browser and web server model)
to generate data demand for the network. This user willjikeimpile the basins-3libraries only once, and simply
compile theirC++ programs to link against thes-3libraries. TheBasicuser does not need to beCa+ expert, but
does need a basic understanding of the syntaX+ef programs. He does not need to understand class hierarchies o
sub—classing.

2. TheAdvancediser will extendhs-3by adding new protocols (often by subclassing existingqarols, but not neces-
sarily), or modifying the behavior of existing protocolssome way. The flexible design n8-3allows this to often be
accomplished without modification to tims-3models, using virtual functions from existing protocolshg inserting
new protocols into a protocol stack. Again, it may be that thass of user rarely re—compiles thge 3libraries, but in
some cases might need to. TAdvancediser needs a strong understandin@ef programming concepts, including
subclassing, virtual functions, static functions, andyparphism.

3. TheExpertuser will develop new models fois-3 These might be new routing protocols, new wireless MACqurols,

INot Implemented Yet.

23



new transport protocols such as SCTP, or overlay networtopods. This user will likely (but not necessarily) need

to modify or extenchs-3modules, re—compile thes-3code base, and create main programs that instantiate the new
models. TheExpertuser needs all of the skills of the advanced user, plus fantiliwith C++ templates, memory
management, and complex code—build systems.

In the sections that follow, they will often be annotatednattie class of user that will likely be concerned with the mate
in those sections. A basic user can safely skip the materiséctions marked bjdvancedor Expert Sections with no
annotations should be read by all users.

4.1 Use of Example Programs

To Be Completed

4.2 Modification of Example Program

To Be Completed

4.3 Topology Creation

To Be Completed

4.4 Distributed Simulation

To Be Completed

4.5 Network Emulation

In this use case, we show how-3can be used to send real packets over real networks instesgio§imulated links.

To Be Completed

4.6 Research Use

The primary goal of thes-3project is to produce a high quality research simulatorehiez illustrate how an internet protocol
suite can be imported, modified and analyzed using the fesafins-3 This use-case illustrates how outside software can
be imported intms-3and analyzed using the statistics and tracing mechanisnpsavéde.
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4.6.1 Background

It is expected that there will be several relatively broaabsks of research applications.

4.6.2 Simulation

For the first class, the maximum number of nodes is typicd@ly. For the second class, very large-scale p2p applications
should support simulations in the 5,000 node range wherewrusimulators become limited by memory usage.

For users in the 200-node arena, we have determined thatofitiigse users don't really care about access to layer auerf
objects. They just want to set up nodes and connect them lisksg Most users of this kind of simulation don’t care if IP
addresses are assigned to interfaces or nodes. They diynda® if nodes are identified by IP address at all. They want
be able to do something like the following pseudocode:

Node *a new Node ();

Node *b new Node ();

W r el essMedi um =medi um = new Wrel essMedi um () ;
medi um >Connect (a);

medi um >Connect (b);

Source *source = new Source (a);

source->Set Destination (uid);

The “uid” is a value which represents the abstract addreasofde. Nodes get get implicitely-assigned addresses loased
an increasing global counter.

Another class of user wants to more faithfully use the IPepst They have a need for some kind of IP-level automatic
routing. These users want to usee real IP but want to avoithpay manually configure IP addresses and forwarding tables

An even smaller class of users need to change the routingstabhis argues for a routing subsystem (module) with a gmpl
API available such as:

Staticl pRout er: : Confi gureForwardi ngTabl es (voi d).

More elaborate systems which would avoid the cost of maiirtgiin-memory forwarding tables with O(n) entries are nice
but not strictly necessary for the roughly 200 node topasgvhich are typical of their use-cases.

NIx-Vector routing would also be nice but is independent othtstatic configuration and forwarding table size optirticzzs.

At the highest level, enabling NIx-Vector routing should@abe as simple as calling an Ipv4::Enable () method prior to
running the simulation. This perhaps calls for a derivedir@mnent for componentization of routing and address tewwi
functionality.

4.6.3 Emulation

There is a class of users who work on emulation and use tools & PlanetLab. For them, the use-case is very different:
They want to write real applications which run on real tesisoand they want to run those same real applications in a
simulator before deploying their applications to hundredgerhaps thousands of sites. They want to debug the apptisa
and evaluate their behavior in an easy way prior to comngitiirreal hardware.
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For this class of users, the fact that IP addresses are addigimterfaces rather than nodes does matter becauss Wiimt

the test-bed and evnetually the real world will be doing. Sehesers also typically want a blocking socket APl very much
like the posix socket API. For them, the task of topology ¢argion and configuration is really decoupled from the attu
network application code. The key to satisfying this clasasers is to allow them to create and configure an IP topology
with wired and wireless links and then to allow them to insitete their application and make it run on top of this topglog
They want to see something that allows them to run an apjicas if it were a new process beginning user-leel execution
at main ().

package myApplication
int my_main_function (int argc, char xargv[]) {
/1l behave like an application in an address space
/'l create tcp socket, call connect to establish connection
/1l send and receive data.
/1 do application-Ilike things
/1 and finally exit

return O;
}
11
/]l Create a process / thread that begins executing the ‘‘applciation.’’
11
Process *process = new Process (&my_nmin_function);
4.6.4 Tracing

In the research use-case, tracing is very important butdiggrse in requirements and implementation.

In a broad sense, some researchers do all their analysis whign simulation itself and output aggregated results. e@th
generate gigabyte-size traces and run complex post-fmiogesteps. Some others generate large traces and use dhese t
display nice-looking animations (for a wireless mobilewrtk, for example, you can display the moving nodes by a dat at
pixel position and the corresponding queue occupancy wsthall vertical stick).

Most people using tracing actually modify the core code tootiuce trace sources where they need them; typically by
introducing a trace hook by adding a call to a global functjwstentially with some context-specific arguments.

4.7 Code reuse

We would like to see an architecture that strongly suppartieceuse at both the kernel and application level.

1. experience shows that it is really long and tedious to laxeimplement already implemented protocols for a sinoujat
or reimplement them when moving from simulation to impleta¢on

2. people want to be able to conduct simulations that reaitifully mirror the implementation code

3. we need to reuses-2and other code

For kernel-level reuse, we would really like to see a LinuxPT® node that ports the Linux IPv4/IPv6/TCP/UDP, etc. lstac
The network simulation cradle (http://research.wandnzésoftware/nsc.php) is probably the best example here.aldb
think that APIs that mimic the Linux or BSD networking APIss@r-to-kernel APIs such as sockets, pfkey, netlink, etc.)
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and also configuration (proc filesystem) should be the initi@plate for how to design our interfaces; not because diney
perfect, but because they are familiar.

For application level code, we would like to see an environtheilt-in to ns-3to allow application writers to write code that
can run as ans-3object but also as a user-space process. There have bees pedic and private libraries built to do this
sort of thing for OPNET, ns-2, QualNet, etc. One that is ofipatar interest is the protolib toolkit at NRL, which hasdme
heavily used: http://cs.itd.nrl.navy.mil/work/protolindex.php

Regardinghs-2code reuse, it would be nice if we could pog-2transport agents, and other modulesn$e3 Moving the
TCP code over should be a high priority item.

Another way to reuse code is to be able to reuse tools thaepsawetwork traces or provide network trace data. Pcap is one
of the best examples here, but other examples (snort filete iews, etc.) are also relevant.

4.8 Emulation

Emulation is somewhat related to the topic above, becawss usnt to reuse simulation code also to run in testbedsand f
experiments over the network.

The trend in networking research is to allow testbeds andatons to play a more significantrole in research. Some $taps
been taken with Emulab and Planetlab but more could be doaevéid like an architecture that facilitates integratiathw
testbeds (ORBIT, Emulab, and PlanetLab in particular)spnobably means working more closely with these commumnitie
in the initial stages of our development, rather than gngftin later.

4.9 Heterogeneity

Although our current focus is on basic IPv4 network scripte, should keep in mind that we want users to use our tool
for simulating IPv6, IPv8, and stranger network types likeraption tolerant networks (DTNSs), underwater acousét n
works, sensor networks, and some of the redesigned stackggffoDARPA wireless programs and probably eventually NSF
GENI/FIND programs.

What this means for our simulator architecture is that wé mékd to think of what are some of the more general APIs vs.
some of the more IPv4-specific APIs and try to ensure that weolgouple too much Ipv4 into APIs when not needed. For
example, a Topology object providing a random-waypoint ititglimodel should not have any IPv4 required dependency,
although perhaps it is overloaded to have some IPv4 rekttipn

4.10 Scalable tracing

Tracing needs can be quite varied, even for an individual &@Emetimes, users need to parse the ns-2 "out.tr" trasefith
post-processing scripts. Other times, simulations hayeired very intensive modifications of the code of particat@dules

to dump out detailed event logging (in a routing daemon, f@neple). Large simulations may not have per-packet tracing
enabled, and only selected statistics being outputtecearid.

While pcap tracing is important fors-3 to allow tcpdump-related utilities to work, many userslwitt be able to use those
"built-in" traces and will need flexible statistics gathmeriand event logging capabilities.
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4.11 Educational Use

One of the goals of thas-3project is to produce a simulator that can be used for edutatpurposes. Here we show that
ns-3can be used in undergraduate networking courses.

A possible priority here is to provide a set of easily clomedohd modifiable scripts that can be used in an educationtxton
For example, simulation scripts that do all of the exercisespopular text. This is important because students oamlby
cloning and tweaking past working code rather than staftimig scratch.

A good first goal here may be to port all of the samples in Calwed Donahoo’s book tos-3
http://books.elsevier.com/mk/default.asp?ISBN=1&5826-5
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Chapter 5

Architecture

This chapter provides an introductory software architedtoverview ofns—3including source code organization, memory
management, and (others TBD).

5.1 Basics

ns-3is a user-space program that runs on Unix- and Linux-bassdmsg and on Windows (build process, via Cygwin or via
native win32 APIs, is to be determined). It contains supfmrthe following:

e construction of virtual networks (nodes, channels, apfibms) and support for items such as event schedulerdpmpo
generators, timers, and the like to support discrete-avetwtork simulation focused on Internet-based and possibly
other packet network systems.

e support for network emulation; the ability for simulatopbpesses to emit and consume real network packets
e distributed simulation support; the ability for simulatsto be distributed across multiple processors or machines
e support for animation of network simulations

e support for tracing, logging, and computing statisticsoagimulation output

ns-3is written in C++, with a planned Python scripting interfégdor users.

ns-3has a modular implementation containing a core library sujppy generic aspects of the simulator (scheduler, eyents
packets, random number generators, tracing, logging, ttidtecs, etc.) and a few abstract base classes, just tthget
architecture and interfaces defined consistently.

5.2 Source code organization

Figure 5.1 provides an overview of tins-3source code organization. Section A.2 below details thil lrivironment and
options. The ns-3 library is split across multiple modules:
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ns- 3/
T

- SConstruct buil d-dir/ doc/ sanpl es/ src/ utils/
- build. py ’ ¢ : g
- build. pyc i
» y v 4
where binaries where Doxygen sample scripts benchmarking
are built docs are built programs, etc.
v v v v v
comon/ core/ si nul ator/ node/ devi ces/
» \ v v v
common simulation- event scheduling base class node network devices
simulation objects  independent facilities and channel
(e.g., Packet) facilities (e.g., objects, base class
callbacks) protocol objects

Figure 5.1: Current code organization fs-3project.

e core: located in src/core and contains a number of faglitibich do not depend on any other module. Some of these
facilities are OS-dependent.

e simulator: located in src/simulator and contains evengdaling facilities.

e common: located in src/common and contains facilities i§ipe¢o network simulations but shared by pretty much every
model of a network component.

A number of files exist in the top-level directory (SConstrumiild.py, and build.pyc) to coordinate the build proceEke
details of the build process are found in Appendix A.

5.3 Memory Management

Memory management in @++ program is a complex process, and is often done incorredflgmory can is allocated
globally, using variables at global scope or static membeiables in classes, locally on the stack using local viegtwith
limited lifetime, or dynamically using memory allocatiorethods such asewor nal | oc. In the third case, any memory
allocated dynamically must always be returhed

Our design philosophy is based in part on the assertion thaeashould never have to allocate dynamic memory. When
making calls to thens-3API that require memory allocation, tloalled function will allocate the memory as needed, and
retain responsibility for deallocating it. An example isevhcreating node object, such as:

Node* nl = Node::Create();

The memory for the node object is allocated by @reeat e method, and a pointer to the new object is returned. The
responsibility for deleting the memory is retained by thede class. This is referred to as retainiogvnershipof the
memory.

A slightly more complicated example is in the creation of regplication objects. There are many different types ofiappl
cations, and it would not make sense to have separate ABltoalteate each one. Since all applictions must derive fham t
base clas#ppl i cat i on, we have a single API to create any application that deriras this base class:

1This is not precisely true. Memory allocated with a lifetiragual to the lifetime of the owning process is automaticatallocated when the pro-
cess completes, and thus technically does not need to bieitxpleallocated. Fons-3 we are specifically deallocating memory even in this case, f
completeness and for ease of memory leak tracking.
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M/NewApp* myApp = appManager - >Add( MyNewApp() ) ;

The memory for the new application is allocated by fad method by copying (using the requir€bpy method) the
application passed as an argument. Here, the argument isoagraous, temporary object of clalggNewApp. Again, the
ownership of the memory is retained by the application manamnd the user in is not responsible for deallocation.

The basic design principle used bg-3is “You create, you delete”. HereYou refers to the class allocating memory.
“Creat€ refers to allocating dynamic memory either witkwor by calling theCopy method on an existing objectDelete
refers to freeing the associated memory, either when théngnabject is destroyed, or when explicitly asked to by thgob
itself.

A variation on this principle which is also acceptable withg-3is “You create, you insure deletion”. Herénsure deletioh
refers to assigning ownership of the memory to some othemnbhjsing a well-defined and well-documented interface.

Users using a low-level APl who wish to explicitly allocatbjects on the heap, using operator new, are responsible for
deleting such objects.

Note: The description above of memory management is not aip implemented in the ns-3.0.1 release.
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Core
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Chapter 6

ns-3 core

This chapter discusses the design and implementation efatements ims-3 These items are built in two modulesaf e
andsi nul at or ) with no other dependencies on the simulation code. Figurél@strates the portion of the code described
in this chapter.

ns- 3/ —*
- SConstruct bui I d-dir/ doc/ sanpl es/ src/ utils/
- build. py ’ : K
- build. pyc :
5 ' \ 4
where binaries where Doxygen sample scripts benchmarking
are built docs are built programs, etc.
v R y-- K v v
conmon/ 1 core/ sinmul ator/ y node/ devi ces/
I :
s 1 \ \/ :
common 1 simulation- event scheduling
simulation objects 1 independent facilities 1
(e.g., Packet) 1 facilities (e.g., 1 Documentation
l\callbacks) ': of simulator core

Figure 6.1: Source code (within dashed oval) describedigctapter.

The items described in this chapter include:

classes Simulator, Scheduler, and Event (and relateceslass

representation of simulation time

facility for defining callbacks

reference list implementation

system-dependent handling of file I/O and system time
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6.1 Simulator, Scheduler, and Events
This section is concerned with the general structure ofithalator for coordinating the execution of simulation etgen

e a base Simulator class

an Event class and some facility for handling events

a base Scheduler class designed to hold Events

some facility for callbacks

support for timers

6.1.1 Simulator

At its most basic, a Simulator object provides a public ifatee that allows objects to insert Events into a Schedutet, a
keeps track of simulation time elapsed.

The Simulator class provides a single static Simulatoraibjehe most common operations are to salhedul e() to add
events to the scheduler. The below program snippet givesane:

int main (int argc, char xargv[])

{ MyModel nodel ;
Si mul ator::schedule (Tine::absS (10.0), & andom function, &model);
Sinulator::run ();
Simul ator::destroy ();

}

6.1.2 Scheduler

The Scheduler is an object that dynamically stores Evergsrime type of ordered data structure. There are varioudstesc
possible (linked list, heap, map, etc.) to hold the evergpetiding on the type and number of Event manipulations regjui
in a simulation, one type of underlying scheduler may penfbetter than another.

The simulator supports runtime replacement of the undeglgivent scheduler through the base cBsisedul er .

The three provided schedulers are:

e Linked List (insert: O(n), remove: O(1)
e Binary Heap (insert: O(log(n)), remove: O(log(n)))
e Std Map (insert: O(log(n)), remove: O(log(n)))
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plus the simulator allows a user to insert his or her own sgleed

The scheduling order of events scheduled to expire at the sam is specified to be that of the insertion time. i.e.: thengs
inserted first are scheduled first. This order holds whatéeescheduling algorithm chosen: it is implemented by usimg
event sequence number, incremented for each insert.

6.1.3 Events

An Event is an object that tells the simulator to do sometlaing specific time. There are a few related concepts to discuss
here: events, timers, and callbacks. We start by descridiatipieu Lacage’s yans simulator; the basis for tise3 event
design..

The yans event design: A yans event is a wrapper around a C++ method or function. AYarent is a wrapper around

a C++ method or function that also holds the value of the agntmpassed to the method/function. The method consuming
the event can be any method in scope (possibly with argumefitee Event subclass is simple, providing a pure virtual
noti fy() that consumes the event (you need to invoke delete on an Explititly after calling notify).

The yans Event is similar to thes-2Handle; the departure froms-2way of doing things is that a set of templates are used
to automatically generate the code for the subclasses dvbat/Handler class. These automatically-generatededaare
'forwarder’ classes which 'forward’ the event notificatitm arbitrary functions or class methods with an arbitrarynber

of arguments. These templates implement a version of then@ord design pattern. In terms of Boost, a yans Event is a
fully-bound functor.

These templates export a single overloaded function to fee: make_event (et hod, argunents) which is a

constructs the right type of Event from a method or functiomfer and the arguments. The Event object is then passed dow
to the simulator’s schedule methods.

The ns-3 event design: ns-3has adopted the technique used in yans with a small changeatte_event method has
been integrated in the in the ma&hnul at or : : schedul e method which saves users quite a bit of typing-3thus does:

Si mul ator::schedule (tine, &rethod, argunents);

while yans does:

Si mul ator::schedule (tine, make_event (&nmrethod, argunents));

The ns-3version also makes the memory management of events simpleallows us to avoid using smart pointer and
refcounting to manage the memory associated to events.

Cancelling an event There are two basic options to cancel an event:
e set the cancel bit on an event: when the event expires, iaitsa bit is set, we do not run the event’s notify method.

This operation usually has O(1) algorithmic complexity

e remove the event from the event list. This operation ususlyat least O(log(n)) complexity.
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Although both methods have the same semantics, they hdeeetit complexity behaviors. Currentlys-3supports both
through the following methods:

e Sinul ator::cancel (eventl d: setthe cancel bit

e Sinmul ator::renove (eventl d):remove from event list

For convenience, the Eventld class also exports a canchbahet

6.2 Timers

In ns-2, timers (class TimerHandler) are derived from Handlertsa Aigh-level, they wrap Events that are inserted into the
scheduler, providing methods like cancel(), sched() asded().

In ns-3 timers are simply Events; the method to call upon expirytasesl in the Event as a function pointer, and the Event
may be cancelled by either explicit removal of the Event ftbmscheduler queue, or by setting a cancel bit.

6.3 Time

Simulation time may either be represented as a floating pointeger number internally. Historically, the handlirfgegents
in ns-2on different platforms led to different event ordering daédating point arithmetic differences (rounding) on diéfat
platforms. Inns-3 time is maintained internally as nanosecond integersggtmternally in aui nt _64).

ns-3 provides a Time class for safer usage of simulation time. dlass provides a number of static member functions
allowing users to create a Time object representing timeralatg to different units; examples include:

e Time: : absS(doubl e s) Return Time object corresponding to an absolute time of sreginto the simulation.

e Tine::rel S(doubl e s) Return Time object corresponding to a relative time of s sdsdbeyond the current
simulation time.

e Ti me: : now( voi d) Return Time object corresponding to the current simuldatioe.

ns-3also provides a TimeUnit template class for keeping tracknifs. This template class is used to keep track of the value
of a specific time unit: the type TimeUnit<1> is used to keegkrof seconds, the type TimeUnit<2> is used to keep track of
seconds squared, the type TimeUnit<-1> is used to keep tfablseconds, etc.

This base class defines all the functionality shared by ali¢ltime unit objects: it defines all the classic arithmegpierators

+, -, *, /, and all the classic comparison operators: ==, |=><<=, >=. Itis thus easy to add, substract, or multiply mplet
TimeUnit objects. The return type of any such arithmeticregpion is always a TimeUnit object.

The ns3::Scalar, ns3::Time, ns3::TimeSquare, and ns3elfivert classes are aliases for the TimeUnit<0>, Timeddrmit
TimeUnit<2> and TimeUnit<-1> types respectively.

For example:
Time<l> t1 = Seconds (10.0);
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Ti me<1> t2 = Seconds (10.0);
Time<2> t3 = t1 = t2;
Time<0> t4 =t1/ t2;
Time<3> t5 =t3 = t1;
Tinme<-2>t6 t1/ tb5;

Ti meSquare t7 = t3;
Scalar s = t4;

If you try to assign the result of an expression which doesmeatch the type of the variable it is assigned to, you will get a
compiler error. For example, the following will not compile

Ti me<1> = Seconds (10.0) * Seconds (1.5);
Building on this, the class Time is an instance of ns3:: Timigtl>:
class Tinme : public TinmeUnit<1l>

This Time class is used by the return value of the ns3::Sitautdlow method and is needed for the Simulator::Schedule
methods

Time instances can be created through any of the followiagsas:

e ns3::Seconds

e ns3:MilliSeconds
e ns3::MicroSeconds
e ns3::NanoSeconds

e ns3::Now

Time instances can be added, substracted, multipled aidkdiusing the standard C++ operators (if you make sure tg obe
the rules of the ns3::TimeUnit class template) To scale a&Timtance, you can multiply it with an instance of the ng3al&
class. Time instances can also be manipulated through lfbe/fiog non-member functions:

e ns3-Time-Abs ns3::Abs
e ns3-Time-Max ns3::Max

e ns3-Time-Min ns3::Min

6.4 Callbacks

The callback APl ims-3is designed to minimize the overall coupling between varipieces of of the simulator by making
each module depend on the callback API itself rather tharemgmmn other modules. It acts as a sort of third-party to
which work is delegated and which forwards this work to thepar target module. This callback API, being based on C++
templates, is type-safe; that is, it performs static typec&b to enforce proper signature compatibility betweelersabnd
callees. The APl is minimal, providing only two services:

37



e callback type declaration: a way to declare a type of caklwith a given signature, and,

e callback instantiation: a way to instantiate a templateegated forwarding callback which can forward any calls to
another C++ class member method or C++ function.

The implementation is based on use of templates to impletherfunctor Design Pattern. It is used to declare the type of a
Callback:

the first non-optional template argument represents therrégpe of the callback.

the second optional template argument represents the fype first argument to the callback.

the third optional template argument represents the typlesofecond argument to the callback.

the fourth optional template argument represents the tygeedhird argument to the callback.

the fifth optional template argument represents the typhefdurth argument to the callback.

the sixth optional template argument represents the typieedifth argument to the callback.

Callback instances are built with the makeCallback tenediatctions. Callback instances have plain old data (PODpse
tics: the memory they allocate is managed automaticalauit user intervention which allows one to pass around@ek
instances by value.

Walk-through the below example

[* -%- Mode: C++; c-basic-offset:4; tab-width:4; indent-tabs-node:f -*- =/
#i ncl ude "ns3/cal |l back. h"

#i ncl ude <cassert>

#i ncl ude <i ostreanp

usi ng namespace ns3;

static double
cbOne (doubl e a, double b)

{
std::cout << "invoke cbOne a=" << a << ", b=" << b << std::endl;
return a;
}
class MyCb {
public:
int cbTwo (double a) {
std::cout << "invoke cbTwo a=" << a << std::endl;
return -5;
}
H

int min (int argc, char =argv[])
{

/[l return type: double

[l first arg type: double

/'l second arg type: double
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Cal | back<doubl e, doubl e, doubl e> one;

/1 build callback instance which points to cbOne function
one = makeCal | back (&cbOne);

/1 this is not a null callback

assert (lone.isNull ());

/1l invoke cbOne function through call back instance

doubl e ret One;

retOne = one (10.0, 20.0);

/] return type: int

[l first arg type: double

Cal | back<i nt, doubl e> two;

MyCb cb;

/1 build callback instance which points to MyCh::cbTwo
two = nakeCal | back (&WCh:: cbTwo, &cb);

/[l this is not a null callback

assert (!'two.isNull ());

/1 invoke MyCh::cbTwo through call back instance
int retTwo;

retTwo = two (10.0);

two = nmakeNul | Cal | back<i nt, double> ();
/1 invoking a null callback is just |ike
/1 invoking a null function pointer:

[1 it will crash.

[lint retTwoNull = two (20.0);

assert (two.isNull ());

return O;

6.5 File I/O, system time, and reference list implementatio

The “core” moduleis3/ sr c/ cor e) contains additional cross-platform utilities:

e cl ass Systenti |l e: an OS-independent interface to get write-only access te a fi
e cl ass Systenml | C ockMs: an OS-independent interface to get access to the elapdkedack time

e cl ass Referenceli st:atemplatized implementation of a reference list, basatiedescription of the technique
found in “Modern C++ Design” by Alexandrescu (Chapter 7).
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Chapter 7

Running ns-3 simulations

The previous chapter detailed some core implementationanidus aspects of the simulator. This chapter builds on the
previous by describing the elements of writing rudimenfanggrams to use the core. Subsequent chapters detail tigmdes
and implementation of other features (packets, channetes) etc.) necessary to run useful network simulations.

This chapter walks through a simple example script, fourttiénocationsanpl es/ mai n- si nul at or. cc.

7.1 Executing simulations

In ns-2, simulation scripts are written in OTcl. -3 simulation scripts are written in C++, with support for @xsions
that allow simulation scripts to be written in Python sadnigtlanguage. These Python bindings have yet to be written. A
more detailed walkthrough of a more usable program can bedfouSection 2.

7.1.1 main() program

Simulations are executed as C++ programs that link compibgelct code and libraries, instantiate and create bindiegs
tween objects, and create a simulator object that contielsunning of the objects in simulation time.

A basic skeleton of what this will look like is below:

[* -*- Mode: C++; c-basic-offset:4; tab-width:4; indent-tabs-nmode:f -%- =/
#i ncl ude "ns3/simul ator. h"

#i ncl ude "ns3/tine. h"

#i ncl ude <i ostreanp

usi ng namespace ns3;

The first few lines include an emacs mode line, include filad, @using directive to pull in thes3 namespace. This line is
important because all corss-3code is found in th&@s3 namespace. Users can define and include other namespaogls as w

Next, let’s create a simple dummy class. This class has twabmefunctions; &t art () function that schedules an event
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at ten seconds after it is invoked, and a function to deal thighevent, using the event scheduling technique descnibibgbi
previous chapter.

cl ass MyModel {

publi c:
void start (void);
private:
voi d deal WthEvent (doubl e event Val ue);
};
voi d
MyModel : :start (void)
{
Simul ator::schedule (Tine::rel S (10.0),
&WNMbdel : : deal Wt hEvent,
this, Simulator::now ().s ());
}
voi d
MyModel : : deal Wt hEvent (doubl e val ue)
{
std::cout << "Menber nethod received event at " << Simulator::now ().s () <<
"s started at " << value << "s" << std::endl
}

Now, for good measure, let’'s show how one schedules a randoatién to execute at some time in the future. This function,
upon being called, will start the MyModel object.

static void
random function (MyModel =*nodel)

{
std::cout << "random function received event at " <<
Simulator::now ().s () << "s" << std::endl;
nodel ->start ();
}

Finally, thermai n() program is pretty simple.

int main (int argc, char xargv[])

{ MyModel nodel ;
Si mul ator::schedule (Tine::absS (10.0), & andom function, &model);
Sinulator::run ();
Simul ator::destroy ();

}

and it produces the following output:
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random function recei ved event at 10s
Menber nethod recei ved event at 20s started at 10s

In the next chapters, we document how more useful networklsiiion objects are designed and implemented, before later
walking through a more sophisticated simulation prograangxe.

7.1.2 Scripting interface

Open issue:How to support scripting.

It seems generally accepted timat3should have a scripting interface, not based on OTcl, butiops differ on what is the
right alternative. There have been a few options suggested:

SWIG (http://lwww.swig.org)

boost.python

Ruby

reuse/generalize the GIMP PDB (http://www.advogatoartgle/550.html).

It may be likely that we get some novel contributions from ¢bhenmunity on how to do scripting in multiple ways.

Recent discussions with the M5 simulation project sugdest Python is a good choice, with possibly support for SWIG
bindings. Mathieu Lacage plans to add some hooks for Pyttigptisg.
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Part Il

Nodes, Packets, Channels
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Chapter 8

Node Architecture

8.1 Overall node architecture

Nodes are simulation objects that represent physical dsvoa networks. These can be end systems (desktops of [gptops
routers, hubs, wireless handheld devices, or any devide evie or more network interface devices for connecting to a
network. In our design, a Node object can be thought of asadoert objects for individual elements (interfaces, protec
applications) that are bound together to form a networkeprding device.

There are several design decisions that must be made reg#ngéi Node object, specifically:

1. How are nodes to be created?
2. What class hierarchy (if any) is to be used.

3. What is the API to access the various objects within a node.

8.1.1 Node construction and deletion
The design of the node construction and deletion framewadkdviven by the following requirements:

1. Every node should have a globally unique numeric identdigsigned automatically by the ns-3 node creation frame-
work.

2. There must be an easily accessible list of every node itogilegy, to allow users to obtain a pointer to every node in
turn, and configure or otherwise manipulate the node conterd/or behavior.

3. The memory allocated for node objects should be deleidbreautomatically or by a user API call.

4. Users should be able to specify any particular node olgjedtnode configuration to be used for subsequent node
creation requests. This is useful when creatgck Topology Objectsuch as a dumb-bell or start topology. The
stock topology object will simply ask for a node object antl@eaode base class pointer. The actual type of node will
be as previously specified by the user.

5. Users should be able to create node ojects on the stadk losial variables, or on the heap usingw. In the latter
case, the user retains responsibility for deleting the mgrathe end of the simulation.
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To achieve these goals, we have designed a node creatioeviausing static methods in the node class. The framework
is based on the notion of @ode prototype stackThe API has methods to add a node object (any subclass ofaarati
configured as desired by the user) to the top of the stack, farmbiose popping the stack. Users then call the statieat e
method in the node object to obtain a pointer to a node obfedefined by the top of the stack. A secdbrdeat e method

is defined to allow creation of a specific node subclass, witipasafe return, as defined below.

1. The preferred method for creating a node object is usiegodithe statidNode: : Cr eat e methods as follows:

(@) Node* nynode = Node: : Creat e(). This returns a pointer to a node object of the same subctaitea
top of the stack, and configured identically as the top of taeks

(b) MyNodeSubcl ass* nmynode = Node: : Creat e( MyNodeSubcl ass()) This creates a new node ob-
ject of classwwNodeSubcl ass and returns a pointer to the node object in a typesafe manner.

In both of the above cases, the ownership and responsifalitgeletion are retained by the Node class. Users do not
delete the node objects individually; rather they are @eldty a call toNode: : Cl ear Al | () when the simulation
has completed. Further, in both cases, a globally uniqustifie is assigned to the nodes, and the node pointer is
retained in a global list of all nodes in the simulation.

2. A secondary, but less desirable, way to create nodes isdayiteg local variables or allocating nodes from the heap.
In either of these two cases, the user must explicitly adchtite object to the global list of known nodes, which also
assigns a unique identifier. For example:

(a) MyNodeSubcl ass* nynode = new MyNodeSubcl ass(); Node: : Add( mynode) ;
(b) MyNodeSubcl ass nynode; Node: : Add( &rynode) ;

In both of the above cases, the node is assigned a uniqudieleemid added to the global list of nodes in the simulation.
The ownership of the pointer MOT transfered, and the responsibility for deleting tteew d pointer is retained by
the user.

8.1.2 Node Capabilities

Designing an extensible class hierarchy for the node objes considered and rejected by the design team. The team
believes there is no way to anticipate all possible commnatof node features and options such that a class hierandhy

be useful. Rather, the node class hierarchy is designeddaslmpletree hierarchy, with a single base classde, and then
individual node objects deriving directly frohode.

The flexibility to allow any node subclass access to any défirehavior is achieved by the designNdde CapabilitiesThe
design approach is to create a node object by including ongodle "node capabilities”, selecting the capabilities base
the desired features and behavior of a node. For exampldnterietNode" has capabilities for a list of network desice

a layer 3 protocol list, a layer 4 protocol list, and a list pp#cations. A "SensorNode" has a list of network devices, a
list of "Sensors", and an energy model. The base class defores of the capabilities; rather subclasses define which of
the capabilities are appropriate for the the subclass. Mexyéhe base class does define a vir@at method for every
known capability. Thus an owner of a base class node poiatemget a pointer to any capability (or a null pointer if the
specific cabability is not appropriate for the specific sabs). The capabilities can themselves be subclasses. &npé

the base clasBner gyModel is a capability, but we expect many different types of enempgdels to be creatd and used.
Each of these simply derives from the base class EnergyM&eduld the new energy model (eg. MyNewEnergy Model)
need API calls not defined in the base class, the node suludagsthat model can define it's own type sped@&t method
MyNewEner gyModel * Get MyNewEner gy()) to return the model in a typesafe manner.

To create a new node class, perform the following steps.

1. Create your node subclass as a direct descendent of theelidad class.
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2. Add members to your node subclass that are pointers toaddbk node capabilities you need. We use pointers here
rather than direct objects, since you might want a SensceNath a specific energy model that derives from the base
EnergyModel capability.

3. Override each of the "Get*" virtual member functions cf thode base class to return the appropriate pointer to each
capability.

4. Implement a copy constructor that calls the "Copy" metboaach capability in your class. Do NOT just copy the
pointers, as this will result in "double delete".

5. Implement a destructor that deletes each of your cafiabili
6. Implement a Copy() method that returns a copy of your nathés is usually just one line of code, calling "new" and
specifying the copy constructor.

To implement a new Capability, perform the following steps:

1. Create your new capability class as a direct descende¢iné dodeCapability base class.

2. If needed, implement a copy constructor. This is typycalhly needed if your capability does dynamic memory
management (ie. new and delete).

3. If needed, implement a destructor. Again, this is typyocahly needed if you use dynamic memory.

4. Implement a Copy() method that returns a copy of your ciiipab
To implement a variation on an existing capability, perfdha following steps:

1. Create your new capability as a subclass of an existinghibty.
2. Override the capability members as needed to implemerdekired behavior.

3. Override the Copy() method to create a copy of your cajpabilbclass.

The design team fans-3expects that the number of different node capabilities rgithain relatively small over time. Con-
tributors and those modifying ns3 for their own uses are eraged to subclass an existing capability where possible.

8.1.3 Layered architecture

explain how protocol layers are interconnected and go thfostandard objects to pass packets up and down the stack.
Provide a diagram.

8.2 Applications/Sockets Interface

The interface between the Applications and “what lies b&lievincomplete in this release. It is generally agreed tioahs
variant of a sockets-like API will allow applications to

Presently, the design is as follows. Each Node provides @té@&dunction to an ApplicationList that stores a pointeratl
applications on a node.
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virtual ApplicationList* GetApplicationList() const;

This ApplicationList will delete the applications upon etbn of the nodes, or when the application completes arisl ited
Done method in the ApplicationList.

There is a base class Application. The comments on this dask

/[l Cass Application is the base class for all ns3 applications.

/1l Applications are associated with individual nodes, and are created

/1 using the AddApplication nethod in the Applicati onManager capability.

11

/'l Conceptually, an application has zero or nore Socket

/'l objects associated with it, that are created using the Socket

/1l creation APl of the Kernel capability. The Socket object

/1 APl is nodeled after the

/1 well-known BSD sockets interface, although it is somewhat

/1 sinplified for use with ns3. Further, any socket call that

/1 would normally "block" in normal sockets will return imediately

/1 in ns3. A set of "upcalls" are defined that will be called when

/1 the previous blocking call would normally exit. TH s is docunented

/1 in nore detail Socket class in socket.h.

11

/'l There is a second application class in ns3, called "ThreadedApplication"
/1 that inplements a true sockets interface, which should be used

/1 when porting existing sockets code to ns3. The true

/'l sockets approach is significantly

/'l less menory--efficient using private stacks for each defined application
/'l so that approach should be used with care. The design and inplenentation
/1 of the ThreadedApplication are still being discussed.

class Application is an abstract base class. There is phgsere usable application in the code: class OnOffAppiaat
This has the following constructor:

OnOF f Appl i cati on(const Node& n,
const | pv4Address, [/ Peer |P address

uint16_t, /1 Peer port
const RandonVari abl e&, // Random variable for On tine
const RandonVari abl e&, // Random variable for Of tine

DataRate = g defaultRate, // Data rate when on
uint32_ t = g defaultSize); // Size of packets

these parameters define the behavior of an application ¢imalissdata at a certain rate and packet size for a period of time
("On") after a period of "Off" time. The destination is spiéi by IP address and port.

Finally, there is an instance of a DatagramSocket objediemented, which provides an object-oriented design of a \UkKd>
socket. We plan to support also a ServerStream and ClieatBtsocket that map more to TCP-like applications.

In the present code, the OnOffApplication creates a Dataf§cket and the socket later binds to a UDP endpoint. The
OnOffApplication sends fake data to the sockets API, whanlses packets with null payloads to be generated, or diitezlya

a true Send() call with application data could be sent. Foketcalls that typically block in real applications, caltiiks can

be registered for events on the socket.
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There are some open issues:

e There is no DNS-like capability to identify nodes and seegiby, other than IP address and port. Note thask3 we
are more fully supporting multiple interfaces per node,tde somewhat ambiguous to just refer to a node_id like in
ns-2

e We would like to define a common Sockets base class if theredsilpility to define applications that can take either
TCP or UDP sockets and therefore could work with a commonetudfghe sockets API; this would make up the base
class Sockets API. This is not yet implemented.

e The level of abstraction between an application and theofdstie node is to be defined. There has been a proposal to
create a generic Kernel or Stack object and have that olgjeatrion across all nodes that use Applications) create the
Socket and provide a pointer of socket object. There has &eether proposal for an Application to explicitly provide
a L4Protocol to the node, to allow fine-granularity of L4Ril behavior (per-socket granularity).

e The Ipv4 address should be generalized (to IPv6 or others).

8.2.1 Adding Applications

The preferred method for adding a data demand to a netwohtasigh the use of\pplications The concept of an appli-
cation inns-3is conceptually identical to applications in real systeinghat applications can create and send data to other
applications, receive data from other applications, redgo timers, and start or stop at any point in time. Additibnghe
ns-3applications are very loosely modeled after the similarcehinns-2

Applications are completely managed by fgpl i cat i onManager capability. They are allocated with dynamic memory,
and responsiblity for managing that memory is completely ibsponsibility of theAppl i cat i onManager. An ns-3
application can have multiple sockets active at any timd,fave simulataneous connections to many other application

Applications must implement &t ar t App andSt opApp method, to start and stop their processing. These are dafled
the simulation at the time specified in tBeart andSt op methods, which are implemented in the application base.clas
Applications must also implement@py method to create a replica of itself. This is generally one bf code, as can be
seen in theonCOf f Appl i cati on. cc.

Users do not allocate dynamic memory for applications;aathey ask théppl i cat i onManager to do it as follows:

MyApp* myApp = node->Get Appl i cati onManager () - >Add( MyApp() ) ;
myApp->Start (Ti me("100nms"));

The Add method for theAppl i cat i onManager creates a copy of the specified application, adds it a lishofdn appli-
cations for the node, and returns the pointer to the apmitcat a typesafe manner. The argument must be a subclass of th
Appl i cati on base class. An important aspect of this design is that theisis®t responsible for the memory allocated
for the application. Rather the application manager wiletisthe memory either when the node is deleted, or the agjalit
notifies theAppl i cat i onManager that it is done, using thBone method. Another important aspect of this design is
that the applications should not do anything in the consrubat interacts with other parts of the simulator. In jgaittar it
should not allocate sockets, bind to ports, or anythinghirats the appliction to other partsi$-3 These should all be done

in theSt ar t App method. See the code®nOf f Appl i cati on. cc for an example.

8.3 Stack/NetDevice Interface

This interface is the boundary between what is traditigrialyer-3 (IP) and the network devices.
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8.3.1 Design goals

e Device sublayer shouldn’t have to know about IP addresses
e Use Linux as a template for how to design this interface
8.3.2 Design overview

The basic idea is to mimic the Linux architecture at the baupdetween device-independent sublayer of the networkceev
layer and the IP layer (figure 8.1).

| class | pv4Protocol : public L3Protocol | class | pv6Protocol : public L3Protocol
| Packet to send/forward | | |
I I
I l I
| |<D| (Forwar di ng deci si on) | | | pv6: : Recei ve(Packet p, NetDevice *this) |
FI B
> l Packet resolved to | ‘ |
| (next hop, | pvé4lnterface) | | { |
| 'Y | eoe
pure virtual I pv4l nterface:: Send | H pure virtual |
cl ass acket p, |pv ress dest / cl ass
Y Pack | pudnddr ess dg I |
| I pvdl nterface { /lresolve dest to MacA dre&is ::} | Pv6l nterface |

stores: |
| - | Paddr/ maskﬂl | H
- Net Devi ce* Net Devi ce: : Send i/

,_(Packet p, MacAddress dest_)—"'—|

pure virtual dequeui ng operation
cl ass Net Devi ce
stores: ~. Protocol * L3Denux:: Lookup(int Protocol)
- node pointer out put I nput .
- MacAddr ess queue PPN queue “.. | pvé4Protocol * |pv6Protocol*
- MU (if present) > A «
- flags ‘
- up/down state l ~______7
- i nput/output cl ass L3Denux
queues —_to Channel_| Net Devi ce: : Recei v (menber of class |nternetNode;
(Packet p) Net Devi ce: : m node- >Get Denux()

f rom Channel

Figure 8.1: Overview of boundary between Network Device lagdr-3.

Figure 8.1 illustrates some of the main objects and actiovving sending a packet up and down the stack. First, densi
the sending or forwarding of a packet. We assume that thegp&ckn IPv4 packet being handled by an IPv4Protocol object
that derives from a base class L3Protocol (which may deriva iCapability class). The forwarding information baseB(F!
contains the information necessary to resolve the deitmatidress to an interface and next-hop IP address.

The interface itself is split into two components, mirrgrithe split of devices in Linux between a NetDeviger uct

net _devi ce and an IPv4 portiondt ruct i n_devi ce). The class Ipvdinterface is a pure virtual class that has a
function SendTo() that must be defined in a subclass. Impiéatiens of SendTo() take the packet and resolves the raxt-h
address to a MAC address, append the LLC/SNAP header,tatcpure virtual because depending on the link technology,
different actions may be taken here (such as ARP). Ipv4bteralso contains a list of all of the IPv4 addresses on this
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interface, and a pointer to an underlying NetDevice objddtere is one Ipv4interface for each NetDevice interfacaqpl
possibly an IPv4 loopback interface), and also an Ipv6faterfor each NetDevice; that is, for each NetDevice, theanie
corresponding “Protocol” device for each L3Protocol in tioale.

Leavingl pv4dl nterface: : SendTo(), the packet next is received by an object of tyydeass Net Devi ce. This
boundary between layers is analogous to the point in theX kaunel wheredev_queue_xm t () is called; here, the
packet has a valid L2 header with destination MAC addresss dlass is also a pure virtual base class, and depending on
the link technology (802.11, 802.3, etc.) different imptartations will be needed. Typically, the packet will be gegtu

in an output queue where a queueing discipline is applied,then the packet is passed to the lower sublayers (or other
functions in the NetDevice) where actions correspondirigueer protocol layers (e.g., Linudr i ver s/ net/ operations)

are applied. Eventually, the packet is sent on some type ah@él object. The NetDevice contains a node pointer, adéftn

and string name (such as "eth0"), a MacAddress, a MTU, “fldga’describe the capabilities of the interface, up/doatest
and input/output queues. In Linux, this queue may be subje@bS and traffic control disciplines, and we intend to padevi
similar configuration/capability here (e.g., the intedfdior configuring the queues may align somewhat with LinukttolO.

Next, we discuss packets traversing the stack in the recligetion. At some point, they are processed by the Net@evic
again, and possibly subjected to input queueing. At the érideolayer-2 processing, the packet must be delivered to the
correct higher layer protocol. Here, there is an explicind#iplexer (member o€l ass | nt er net Node) used. Each
Protocol above is registered with this Demux object, and\tievice looks up the right Protocol object with a lookup of
the protocol number. With this Protocol object, pointee MetDevice calls a virtual Receive() function on the Protoc
Some initial code is found in the following repository hifpode.nsnam.org/tomh/ns-3:

e src/ node/ directory contains the source files

e sanpl es/ mai n- net - devi ce-i f. ccis the start of a sample program to demonstrate the code

This code compiles and has some doxygen comments but ia stdrk in progress and may not line up 100% with the above
explanation.

Items still left to deal with:

e NetDevice needs an accessor to add MAC multicast addresses
e NetDevice needs a set of getters to test for the broadcdstast/unicast bools.

e NetDevice needs a way for the subclasses to set the broAduo#igtast/unicast bools

In closing, there is a desire to define commonality betweeiowa subclasses of both Channels and NetDevices. Howaver,
the moment, it seems like only the “top” interface (with L8Rrcol) is general enough to be common across a wide class of
NetDevices. The interface between NetDevice and Chantfiktlg to be technology specific, and the configuration ifstee

for NetDevice will likely have a lot of interface aspects defil in the subclasses only.

8.3.3 Configuration of Ipv4interface

TODO.

8.3.4 Configuration of NetDevice, including Queues
TODO.

50



8.4 NetDevice/Channel Interface

Channels are objects that interconnect NetDevice objddte.NetDevice objects are owned, from a memory management
perspective, by each node. The Channel is a reference ebaoipjiect, and each NetDevice on the Channel has a reference to
the Channel.

Base class Channel is pure virtual. It was only recently tthete was agreement that a base class Channel is neede@in
Today, there is still uncertainty over how much functiotyaliill be in a base class vs. being specialized. It has beaunght
that the minimal functionality across all channels was ahwoeétto find all of the NetDevice objects attached to it. This is
implemented by the following two Channel member functions:

virtual uint32_t GetNDevices (void) const = O;
virtual NetDevice *GetDevice (uint32_t i) const = 0O;

It is thought that, in general, there will be less modulagitgomponents at this interface; e.g., an Ethernet Net[2ewitt be
connected to an Ethernet channel only, although it may ketlteae will be modularity between NetDevices of very simila
technology or designed for different levels of abstraction

In this releasesrc/devices/p2p/ contains an implementation of a generiictPoPointNetDevice and PointToPointChannel.
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Chapter 9

Packets

Packets (messages) are fundamental objects in the simataddheir design is important from a performance and resour
management perspective. There are various ways to desgsirttulation packet, and tradeoffs among the different ap-
proaches. In particular, there is a tension between easseyfperformance, and safe interface design.

There are a few requirements on this object design:

e Creation, management, and deletion of this object shouldshsimple as possible, while avoiding the chance for
memory leaks and/or heap corruption;

e Packets should support serialization and deserializatiadhat network emulation is supported;

e Packets should support fragmentation and concatenatioltijle packets in a data link frame), especially for wisse
support;

¢ It should be natural for packets to carry actual applicatiata, or if there is only an emulated application and there is
no need to carry dummy bytes, smaller packets could be ugbdust the headers and a record of the payload size, but
not actual application bytes, conveyed in the simulatedgtac

e Packets should facilitate BSD-like operations on mbufisstpport of ported operating system stacks.

o Additional side-information should be supported, such tgydor cross-layer information.

9.1 Packet design overview

Unlike ns-2, in which Packet objects contain a buffer of C++ structu@sesponding to protocol headers, each network
packet inns-3contains a byte Buffer and a list of Tags:

e The byte buffer stores the serialized content of the chudkled to a packet. The serialized representation of these
chunks is expected to match that of real network packetsobibit (although nothing forces you to do this) which
means that the content of a packet buffer is expected to bhettzareal packet. Packets can also be created with an
arbitrary zero-filled payload for which no real memory ioahted.

e The list of tags stores an arbitrarily large set of arbitrasgr-provided data structures in the packet. Each Tag is
uniquely identified by its type; only one instance of eachetgp data structure is allowed in a list of tags. These tags
typically contain per-packet cross-layer information owflidentifiers (i.e., things that you wouldn’t find in the bits
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the wire). Each tag stored in the tag list can be at most 16sbyfieying to attach bigger data structures will trigger
crashes at runtime. The 16 byte limit is a modifiable comipifatonstant.

class Packet

public functions:
- constructors
- add/remove/peek at Headers
- add/remove/peek at Tags class Buffer
- fragmentation
///” public functions:

] - - Iterators to move byte buffer
private data: _-1 - pointers forward or backward
- unique id - - functions to read and write data
- Buffer objeck’\ of various sized chunks
- Tags object ~

\ >~ >~

\ S~. oS
\\ =~ ~ =~ ~ private data:
\ C|ass Tag S\\\ >~ - - struct BufferData, a dynamically
s ~- N < varying byte buffer to which
public functions: ~ | data can be prepended or appendg¢d

- constructors
- templates to add, remove,
or peek at Tags of various

types

private data:

- singly linked-list of TagData
structures, with a reference
count

Figure 9.1: Implementation overview of Packet class.

Figure 9.1 is a high-level overview of the Packet implemgaia more detail on the byte Buffer implementation is poed
later in Figure 9.2. Ims-3 the Packet byte buffer is analogous to a Linux skbuff or BSiifit is a serialized representation
of the actual data in the packet. The tag list is a containeeftra items useful for simulation convenience; if a Padket
converted to an emulated packet and put over an actual rietthertags are stripped off and the byte buffer is copiedctlye
into a real packet.

The Packet class has value semantics: it can be freely capaod, allocated on the stack, and passed to functions as
arguments. Whenever an instance is copied, the full unidgrtjata is not copied; it has “copy-on-write” (COW) semasiti
Packet instances can be passed by value to function argsimighbut any performance hit.

The fundamental classes for adding to and removing from e buffer arecl ass Header andcl ass Trail er.
Headers are more common but the below discussion also yaagelies to protocols using trailers. Every protocol heade
that needs to be inserted and removed from a Packet instangklslerive from the abstract Header base class and impkeme
the private pure virtual methods listed below:

e Ns3:: Header:: SerializeTo()

e Ns3:: Header: : DeserializeFrom)

e Ns3:: Header:: Get Seri alizedSi ze()
e Ns3:: Header:: PrintTo()
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Basically, the first three functions are used to serializeé deserialize protocol control information to/from a Buffé-or
example, one may defird ass TCPHeader : public Header. The TCPHeader object will typically consist of
some private data (like a sequence number) and public aericcess functions (such as checking the bounds of an.input
But the underlying representation of the TCPHeader in a &aBkffer is 20 serialized bytes (plus TCP options). The
TCPHeader::SerializeTo() function would therefore beglesd to write these 20 bytes properly into the packet, invost
byte order. The last function is used to define how the Heajecoprints itself onto an output stream.

Similarly, user-defined Tags can be appended to the packdikd Headers, Tags are not serialized into a contiguougbuf
but are stored in an array. By default, Tags are limited to yit8sin size. Tags can be flexibly defined to be any type, but
there can only be one instance of any particular object typld Tags buffer at any time. The implementation makes use of
templates to generate the proper set of Add(), Remove()Par#() functions for each Tag type.

9.2 Packet interface

The public member functions of a Packet object are as follows

9.2.1 Constructors

[ **
* Create an enpty packet with a new uid (as returned
* by getUid).
*/

Packet ();

| **

* Create a packet with a zero-filled payl oad.

* The nenory necessary for the payload is not allocated:
* it will be allocated at any later point if you attenpt
to fragment this packet or to access the zero-filled
bytes. The packet is allocated with a new uid (as
returned by getUid).

L

* \param si ze the size of the zero-filled payl oad
*/
Packet (uint32_t size);

9.2.2 Adding and removing Buffer data
The below code is reproduced for Header class only; similactions exist for Trailers.

[ *x*

* Add header to this packet. This nethod i nvokes the

* ns3:: Header::serializeTo nethod to request the header to serialize
* itself in the packet buffer.

* \ param header a reference to the header to add to this packet.

*/

voi d Add (Header const &header);
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*

Deserialize header fromthis packet. This nethod i nvokes the

ns3:: Header: :deserializeFrommethod to request the header to deserialize
itself fromthe packet buffer. This method does not renpve

the data fromthe buffer. It nerely reads it.

* 0% F kX %

*

\ param header a reference to the header to deserialize fromthe buffer
*/
voi d Peek (Header &header);
[ x*

* Renpbve a deserialized header fromthe internal buffer

* This method renoves the bytes read by Packet::peek from

* the packet buffer

*

* \ param header a reference to the header to renmove fromthe internal buffer
*/

voi d Renmove (Header const &header);

| **

* Add trailer to this packet. This nmethod invokes the

* ns3::Trailer::serializeTo nethod to request the trailer to serialize
* itself in the packet buffer

*

* \paramtrailer a reference to the trailer to add to this packet.

*/

9.2.3 Adding and removing Tags

| **

* Attach a tag to this packet. The tag is fully copied

* in a packet-specific internal buffer. This operation

* | s expected to be really fast.

* \paramtag a pointer to the tag to attach to this packet.
*/

tenpl ate <typenane T>

void AddTag (T const &tag);

[ x*

*

Renmove a tag fromthis packet. The data stored internally
for this tag is copied in the input tag if an instance

of this tag type is present in the internal buffer. If this
tag type is not present, the input tag is not nodified.

Thi s operation can be potentially slow and m ght trigger
unexpectedly large nenory allocations. It is thus

usually a better idea to create a copy of this packet,

and i nvoke renoveAl | Tags on the copy to renove all

tags rather than renove the tags one by one froma packet.

\paramtag a pointer to the tag to renove fromthis packet
\returns true if an instance of this tag type is stored
in this packet, false otherwi se.

L I S S T T N T N N

~
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tenpl ate <typenane T>

bool RenoveTag (T &t ag);

[ x*

* Copy a tag stored internally to the input tag. If no instance

of this tag is present internally, the input tag is not nodified.

*

*

* \paramtag a pointer to the tag to read fromthis packet
* \returns true if an instance of this tag type is stored
* in this packet, fal se otherw se.

*/

tenpl ate <typenane T>
bool PeekTag (T & ag) const;
| **
* Renpve all the tags stored in this packet. This operation is
* much nmuch faster than invoking renoveTag n times.
*/
voi d RenmoveAl | Tags (void);

9.2.4 Fragmentation

[ x*

* Create a new packet which contains a fragnment of the origina

* packet. The returned packet shares the same uid as this packet.

*

* \param start offset fromstart of packet to start of fragnent to create
* \'param |l ength length of fragment to create

* \returns a fragnent of the original packet

*/

Packet CreateFragnent (uint32_t start, uint32_t |ength) const;

| *x
* Concatenate the input packet at the end of the current
* packet. This does not alter the uid of either packet.
*
* \ param packet packet to concatenate
* |
voi d addAt End (Packet packet);

/oncatenate the input packet at the end of the current
* packet. This does not alter the uid of either packet.
* \ param packet packet to concatenate
*/
voi d AddAt End ( Packet packet);
| **
* Concatenate the fragment of the input packet identified
* by the offset and size paranmeters at the end of the current
packet. This does not alter the uid of either packet.

\ param packet to concatenate
\ param of fset offset of fragnent to copy fromthe start of the input packet
\ param si ze size of fragment of input packet to copy.

* * kX *
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*/

voi d AddAt End ( Packet packet, uint32_t offset, uint32_t size);
[ x*

* Renove size bytes fromthe end of the current packet

* |t is safe to renpve nore bytes that what is present in
* the packet.

*

* \ param si ze nunber of bytes fromrenove

*/

voi d RenmpoveAt End (ui nt32_t size);

| **

* Renove size bytes fromthe start of the current packet.
* |t is safe to renpbve nore bytes that what is present in
* the packet.

*

* \ param si ze nunber of bytes fromrenove

*/

voi d RenmoveAt Start (uint32_t size);

9.2.5 Miscellaneous

| **

* \returns the size in bytes of the packet (including the zero-filled
* initial payl oad)

*/

uint32_t GetSize (void) const;

[ x*

* | f you try to change the content of the buffer

* returned by this nethod, you will die.

* \returns a pointer to the internal buffer of the packet.
*/

uint8_t const *PeekData (void) const;

| **

* A packet is allocated a new uid when it is created

* enpty or with zero-filled payl oad.

* \returns an integer identifier which uniquely

* identifies this packet.

*/

uint32_t GetUd (void) const;

9.3 Using Headers

walk through an example of adding a UDP header
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9.4 Using Tags

walk through an example of adding a flow ID

9.5 Using Fragmentation

walk through an example of link-layer fragmentation/resmbly

9.6 Sample program

The below sample program (froms 3/ sanpl es/ mai n- packet . cc illustrates some use of the Packet, Header, and Tag
classes.

[* -%- Mode: C++; c-basic-offset:4; tab-width:4; indent-tabs-node:nil -*- «/
#i ncl ude "ns3/ packet. h"

#i ncl ude "ns3/ header. h"

#i ncl ude <i ostreanp

usi ng namespace ns3;

/= A sanpl e Header inplenmentation
*/
cl ass MyHeader : public Header {
public:
MyHeader ();
virtual ~MyHeader ();

void SetData (uintl6_t data);
uintl16_t GetData (void) const;

private:
virtual void PrintTo (std::ostream &s) const;
virtual void SerializeTo (Buffer::lterator start) const;
virtual void DeserializeFrom (Buffer::Iterator start);
virtual uint32_t GetSerializedSize (void) const;

uintl16_t mdata;

s

MyHeader : : MyHeader ()

{}
MyHeader : : ~MyHeader ()

{}
voi d
MyHeader :: PrintTo (std::ostream &s) const

{
}

0S << "MyHeader data=" << mdata << std::endl;
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ui nt32_t
MyHeader : : Get Seri al i zedSi ze (voi d) const

{
}

voi d
MyHeader : : SerializeTo (Buffer::lterator start) const

{

return 2;

/] serialize in head of buffer
start. WiteH onUl6 (m data);
}
voi d
MyHeader : : Deseri al i zeFrom (Buffer::Iterator start)
{
/] deserialize fromhead of buffer
m data = start.ReadNt ohU16 ();

}
voi d
MyHeader :: SetData (ui nt16_t data)
{
m data = data;
}
uint16_t
MyHeader : : Get Data (voi d) const
{
return mdata;
}

[+ A sanple Tag inplementation
*/
struct MyTag {
uint16_t mstreamd;

H

static TagRegi stration<struct MyTag> g MyTagRegi stration ("ns3:: MWTag",

static void
Recei ve (Packet p)
{

MyHeader ny;

p. Peek (ny);
p. Renmove (ny);

std::cout << "received data=" << ny.CetData () << std::endl;

struct MyTag nyTag;
p. PeekTag (myTag);

int main (int argc, char xargv[])

Packet p;
MyHeader ny;
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my. SetData (2);

std::cout << "send data=2" << std::endl;
p. Add (ny);

struct MyTag nyTag;

nyTag. m stream d = 5;

p. AddTag (nyTag);

Recei ve (p);

return O;

9.7 Implementation details

9.7.1 Private member variables
A Packet object’s interface provides access to some prilatte

Buf fer m buffer;

Tags m t ags;

uint32_t m.uid,

static uint32_t mgl obal _uid;

Each Packet has a Buffer and a Tags object, and a 32-bit utidque_uid). A static member variable keeps track of the UIDs
allocated. Note that real network packets do not have a BW®WID is therefore an instance of data that normally would be
stored as a Tag in the packet. However, it was felt that a UBDsigecial case that is so often used in simulations that itdvou
be more convenient to store it in a member variable.

9.7.2 Buffer implementation

Class Buffer represents a buffer of bytes. Its size is autically adjusted to hold any data prepended or appendedéy th
user. Its implementation is optimized to ensure that thelrerof buffer resizes is minimized, by creating new Buffdrthe
maximum size ever used. The correct maximum size is leatrreshtime during use by recording the maximum size of each
packet.

Authors of new Header or Trailer classes need to know theipill of the Buffer class. (add summary here)

The byte buffer is implemented as follows:

struct BufferData {
uint32_t mcount;
uint32_t msize;
uint32_t minitial Start;
uint32_t mdirtyStart;
uint32_t mdirtySi ze;
uint8_t mdatal1];

b
struct BufferData *m dat a;
uint32_t mzeroAreaSi ze;
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uint32_t mstart;
uint32_t msize;

e Buf f er Dat a: : m_count : reference count for BufferData structure

e Buf f er Dat a: : m_si ze: size of data buffer stored in BufferData structure

e BufferData:: m.initial Start: offset from start of data buffer where data was first ingkrte

e BufferData:: mdirtyStart: offset
BufferData instance have written data so

from start of buffer where every Buffer which holdsederence to this

far

e BufferData:: mdirtySi ze: size of area where data has been written so far

e Buf f er Dat a: : m dat a: pointer to data

buffer

e Buffer:: mzeroAreaSi ze: size of zero area which extends befarg ni ti al St art

e Buffer:: mstart: offset from start of buffer to area used by this buffer

e Buf fer:: msize: size of area used by

this Buffer in its BufferData structure

Buffer /

T

Data |Zero Area Sizqd Used start | Used Size

Virtual Zero Area

Count Dirty Star|Dirty Size| Unus

ed Area

)

BufferData

Data |Zero Area Sizqd Used start | Used Size

Virtual Zero Area

Buffer

Figure 9.2: Implementation overview of a packet’s byte Buff
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This data structure is summarized in Figure 9.2. Each Bifééds a pointer to an instance of a BufferData. Most Buffers
should be able to share the same underlying BufferData arglsimply increase the BufferData’s reference count. Iy the
have to change the content of a BufferData inside the Dirgadand if the reference count is not one, they first creatgyw co
of the BufferData and then complete their state-changiregatjpn.

9.7.3 Tags implementation

Tags are implemented by a single pointer which points to thet of a linked list ofTagData data structures. Each TagDat
structure points to the next TagData in the list (its nexinpari contains zero to indicate the end of the linked list)ctEa
TagData contains an integer unique id which identifies tpe tyf the tag stored in the TagData.

struct TagData {
struct TagData *m next;
uint32_t mid;
uint32_t mcount;
uint8 t mdatal Tags:: Sl ZF] ;
b
cl ass Tags {
struct TagData *m next;

b

Adding a tag is a matter of inserting a new TagData at the hé#ukdinked list. Looking at a tag requires you to find the
relevant TagData in the linked list and copy its data intouber data structure. Removing a tag and updating the cooftant
tag requires a deep copy of the linked list before perforntiimgoperation. On the other hand, copying a Packet andgss ta
is a matter of copying the TagData head pointer and increingits reference count.

Tags are found by the unique mapping betweent the Tag typésandderlying id. This is why at most one instance of any
Tag can be stored in a packet. The mapping between Tag typenaiedlying id is performed by a registration as follows:

[+ A sanple Tag i npl enmentation
*/
struct MyTag {
uintl16_ t mstreamd;

b

add description of TagRegistration for printing

9.7.4 Memory management

Describe free list.

Describe dataless vs. data-full packets.

9.7.5 Copy-on-write semantics

The current implementation of the byte buffers and tag sistdsed on COW (Copy On Write). An introduction to COW can
be found in Scott Meyer’s "More Effective C++", items 17 ar).2This design feature and aspects of the public interface
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borrows from the packet design of the Georgia Tech Netwomkugitor. This implementation of COW uses a customized
reference counting smart pointer class.

What COW means is that copying packets without modifyingrthe very cheap (in terms of CPU and memory usage) and
modifying them can be also very cheap. What is key for prog@W\Omplementations is being able to detect when a given
modification of the state of a packet triggers a full copy @& thata prior to the modification: COW systems need to detect
when an operation is “dirty” and must therefore invoke a tapy.

Dirty operations:

e Packet::RemoveTag()
o Packet::Add()
e both versions of ns3::Packet::AddAtEnd()

Non-dirty operations:

e Packet::AddTag()

e Packet::RemoveAllTags()
e Packet::PeekTag()

e Packet::Peek()

e Packet::Remove()

e Packet::CreateFragment()
e Packet::RemoveAtStart()

e Packet::RemoveAtEnd()

Dirty operations will always be slower than non-dirty opgeras, sometimes by several orders of magnitude. Howeven e
the dirty operations have been optimized for common usescaich means that most of the time, these operations will no
trigger data copies and will thus be still very fast.
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Chapter 10

Channel

Disclaimer: This section and underlying implementationgsy incomplete. ‘

A channel is used to interconnect nodes#3 Specifically, a channel interconnects NetDevicessi3nodes.

It is not yet clear which functions should properly residaif€hannel base class, vs. within a subclass. Presentlynthe o
functions in the base class are those used to count the nhiietDevices attached to the channel, and an accessordnnct
to get a NetDevice pointer to the indexed NetDevice.

A printout of the base class Channel interface (ns-3/sdgfahannel.h) is shown below; a subclass of this channéit{Rn
PointChannel) can be found in the source code in the dirngat3/src/devices/p2p/.

#i f ndef CHANNEL_H
#defi ne CHANNEL_H

#i ncl ude <string>
#i ncl ude <stdint. h>

nanespace ns3 {

cl ass Net Devi ce;

[ x*
* \brief Abstract Channel Base C ass.
*
* A channel is a |logical path over which information flows. The path can
* be as sinple as a short piece of wire, or as conplicated as space-tine.
*/
cl ass Channel
{
public:
Channel ();
Channel (std::string nane);
virtual ~Channel ();

voi d Set Nane(std::string);
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std::string Get Nane(void);

virtual uint32_t GetNDevices (void) const = 0;
virtual NetDevice *CetDevice (uint32_t i) const = 0;

prot ected:
std::string mnane;

private:

b
}; I/ nanespace ns3

#endi f /+ CHANNEL_H */
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Part IV

Topologies and higher level constructs

66



Chapter 11

Topologies

Disclaimer: This section and underlying implementationdsy incomplete.

One of the design goals fois-3is to allow for reusable components and topologies. Foaints, there may be some number
of stock topology objects, such as a wireless grid, a dunhbtred point-to-point link. Users may want to interchange th
node or channel types without recreating the topologies.

For example, consider the sample topology object shownguargill.0-1. This can be defined as a static function anddeuse
by different user programs or scripts. The function allowers to specify the nodes, IP addresses, data rate, andyptigoa
delay of a point to point link, and the function performs dltloe low level functions to connect the two nodes. Similarly
ns-3plans to add various wired and wireless topology objectsfaré releases.

A challenge in using topology objects of this sort is thatttend to operate on base class pointers. Therefore, thejreeq
virtual constructorsif the topology object needs to create objects of the righickss of the base class pointer, and they
require that the subclass be configurable via a base clastice. This presents a challenge if a user tries to use plodotgy
object with incompatible components; a hard or soft erroy megult (we define a soft error here as an error in which the
program does not fail at either compile or run time, but tinewdation output is incorrect).

In the current codebase, the solution to these problemerfled in Section 8) is the use of a virtual Copy() method as

the virtual constructor for Nodes, and the definition of wéit Capabilities() as interfaces for the Node. The desigmtes
exploring additional solutions to this problem.
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P2PChannel * Topol ogy: : AddDupl exLi nk( Node* nl1, const |PAddr& ipl,

Node* n2, const | PAddré& ip2,
const Rate& rate, const Tine& del ay)

/1l First get the NetDevicelList capability fromeach node

Net Devi ceLi st* ndl 1 = nl->CGet Net Devi ceLi st ();

Net Devi ceLi st* ndl 2 = n2->CGet Net Devi ceLi st ();

if (!Indl1 ]| !'ndl2) return nil; // Both ends nust have NetDevi celLi st

/1l Cet the net devices

P2PNet Devi ce*x ndl = ndl 1- >Add( P2PNet Devi ce(nl, rate, nil));

P2PNet Devi cex nd2 = ndl 2- >Add( P2PNet Devi ce(nl, rate, ndl->GetChannel ()));
/] Not inplenmented yet. Add appropriate |layer 2 protocol for

/] the net devices.

/1l Get the L3 proto for node 1 and configure it with this device
L3Demnmux* | 3demux1l = nl->Get L3Denux();

L3Protocol * | 3protol = nil;

/1 1f the node 1 I3 denux exists, find the coresponding |3 protocol

if (I3demuxl) |3protol = | 3denuxl->Lookup(ipl.L3Proto());

/1 1f the |3 protocol exists, configure this net device. Use a nask

/1 of all ones, since there is only one device on the renmote end

/1 of this link

if (13protol) | 3protol->AddNet Device(ndl, ipl, ipl.GetMask(ipl.Size()=*8));
/1 Same for node 2

L3Demnmux* | 3demux2 = n2->Get L3Denux();

L3Protocol * | 3proto2 = nil;

/1 1f the node 2 I3 denux exists, find the coresponding |3 protocol

i f (13denmux2) |3proto2 = | 3demux2->Lookup(ip2.L3Proto());

if (I3proto2) |3proto2->AddNetDevice(nd2, ip2, ip2.GetMask(ip2.Size()*8));
return dynam c_cast <P2PChannel *>(nd1l->Get Channel ()); // Al ways succeeds

Program 11.0-1 topology.cc
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Chapter 12

Tracing and Logging Implementation
Overview

12.1 Design Overview: Tracing and Callbacks

The Tracing Framework is built around two levels of API:

¢ alow-level API which is used to generate arbitrary tracenévand connect them to arbitrary trace handlers

e a high-level APl which provides a set of default trace harsiiehich generate trace files and hide all of the details of
trace setup behind a conveniant API.

12.1.1 The high-level API

The high-level API is not very well defined right now: we exp&do be updated to handle as many realistic use-cases as
possible. For now, the high-level API is built around the ifB@ace class which generates a text-based trace file from al
MAC-level queue and receive events in all nodes.

12.1.2 The low-level API

The purpose of the low-level APl is to be as flexible as poediblallow the user to build advanced tracing analysis mech-
anisms or to allow us to build any kind of high-level API. Thosvilevel API thus enforces no policy: it merely provides a
mechanism to generate various kinds of events and conress #vent sources to user-provided event handlers.

This APl is built around a few concepts:

e There can be any number of trace source objects. Each traceesobject can generate any number of trace events.
The current trace source objects are: ns3::CallbackTrage8Source, ns3::UVTraceSource, ns3::SVTraceSource,
and, ns3::FVTraceSource.

e Each trace source can be connected to any number of trace sinkace sink is a ns3::Callback (see section 6.4) with
a very special signature. Its first argument is always a fisgeContext.
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e Every trace source is uniquely identified by a ns3::Tracé€dn Every trace sink can query a ns3::TraceContext for
information. This allows a trace sink which is connected tdtiple trace sources to identify from which source each
event is coming from.

To define new trace sources, a model author needs to insameia trace source object for each kind of tracing event he
wants to export. The trace source objects currently defined a

e ns3::CallbackTraceSourceSource: this trace source caisdzbto convey any kind of trace event to the user. Itis a
functor, that is, it is a variable which behaves like a fumetwhich will forward every event to every connected trace
sink (i.e., ns3::Callback). This trace source takes up tw fsguments and forwards these 4 arguments together with
the ns3::TraceContext which identifies this trace sourdhéaonnected trace sinks.

e ns3::UVTraceSource: this trace source is used to convegtady variable changes to the user. It behaves like a normal
integer unsigned variable: you can apply every normal ieuétiic operator to it. It will forward every change in the
value of the variable back to every connected trace sink byiging a TraceContext, the old value and the new value.

e ns3::SVTraceSource: this is the signed integer equivalems3::UVTraceSource.

e ns3::FVTraceSource: this is the floating point equivaldémis3::UVTraceSource and ns3::SVTraceSource.

For example, to define a trace source which notifies you of apamket being transmitted, you would have to:

cl ass MyModel
{
voi d Tx (Packet const &p);
private:
Cal | backTraceSour ce<Packet const &> mtxTrace;

b

voi d
MyModel : : Tx (Packet const &p)
{
/1 trace packet tx event.
m txTrace (p);
/1 ... send the packet for real.

Once the model author has instantiated these objects andrealthem in his simulation code (that s, he calls them wher

he wants to trigger a trace event), he needs to make thesestvacces available to users to allow them to connect any eumb
of trace sources to any number of user trace sinks. Whileudvoe possible to make each model export directly each of his
trace source instances and request users to invoke a seG®iect (callback) method to perform the connection exply,

it was felt that this was a bit cumbersome to do.

As such, the “connection” between a set of sources and a sip&riormed through a third-party class, the TraceResolver
which can be used to automate the connection of multiple mrajdrace sources to a single sink. This TraceResolversvork

by defining a hierarchical tracing namespace: the root afritaimespace is accessed through the ns3::TraceRoot cless. T
namespace is represented as a string made of multiple eiereanh of which is separated from the other elements by'the ’

character. A namespace string always starts with a ’/".

By default, the current simulation models provide a '/nédexing root. This '/nodes’ hamespace is structured dsvid:
/ nodes/ n/ udp
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/ nodes/ n/ arp
/I nodes/ n/ipv4

/tx

[rx

/ drop

/interfaces/n/ netdevice

/ queue/

/ enque
/ deque
/ drop

The 'n’ element which follows the /nodes and /interfaces egpace elements identify a specific node and interfaceghrou
their index within the ns3::NodeList and ns3::Ipv4 objaetspectively.

To connect a trace sink to a trace source identified by a naanestring, a user can call the ns3::TraceRoot::Connetiodet
(the ns3::TraceRoot::Disconnect method does the symormgberation). This connection method can accept fullyitbsta

namespace strings but it can also perform pattern matchnigeouser-provided namespace strings to connect multgpte t

sources to a single trace sink in a single connection ofperati

The syntax of the pattern matching rules are loosely basedgnar expressions:

e the ™ character matches every element
e the (a|b) construct matches element’a’ or 'b’

o the [ss-ee] construct matches all numerical values whitdmigeto the interval which includes ss and ee

For example, the user could use the following to connectglesisink to the ipv4 tx, rx, and drop trace events:

void MyTraceSi nk (TraceCont ext const &context, Packet &packet);
TraceRoot : : Connect ('‘/nodes/ * /ipv4/ ="', MakeCall back (&WTraceSink));

Of course, this code would work only if the signature of thact sink is exactly equal to the signature of all the trace
sources which match the namespace string (if one of the ingtttace source does not match exactly, a fatal error will be
triggered at runtime during the connection process). TleTimceContext extra argument contains information oeneh
the trace source is located in the namespace tree. In thatpdaif there are multiple nodes in this scenario, eachtoall
the MyTraceSink function would receive a different Traca@at, each of which would contain a different NodeLisiddx
object.

It is important to understand exactly what an ns3::Trace€dns. It is a container for a number of type instances. Each
instance of a ns3::TraceContext contains one and only atarioe of a given type. ns3::TraceContext::Add can becédle
add a type instance into a TraceContext instance and naBeTontext::Get can be called to get a copy of a type instance
stored into the ns3::TraceContext. If Get cannot retribeerequested type, a fatal error is triggered at runtime. vehees
stored into an ns3::TraceContext attached to a trace samecautomatically determined during the namespace résolut
process. To retrieve a value from a ns3::TraceContext,dtle can be as simple as this:

void MyTraceSi nk (TraceCont ext const &context, Packet &packet)

{
NodelLi st:: | ndex i ndex;

context. Get (index);
std::cout << ‘‘node id="" << NodeList::CGetNode (index)->Cetld () << std::endl;

72



The hierarchical global namespace described here is nd¢imgnted in a single central location: it was felt that ddimg
would make it too hard to introduce user-specific models wisimuld hook automatically into the overal tracing systefn. |
the tracing namespace was implemented in a single centetlém, every model author would have had to modify this@nt
component to make his own model available to trace users.

Instead, the handling of the namespace is distributed sa@ewery relevant model: every model implements only the qfart
the namespace it is really responsible for. To do this, evarglel is expected to provide an instance of a TraceResolvesev
responsability is to recursively provide access to thestsmurces defined in its model. Each TraceResolver instéroegds

be a subclass of the TraceResolver base class which implemigmer the DoLookup or the DoConnect and DoDisconnect
methods. Because implementing these methods can be a ibisedur tracing framework provides a number of helper
template classes which should save the model author fromdpayimplement his own in most cases:

e ns3::CompositeTraceResolver: this subclass of ns3e€Rasolver can be used to aggregate together multiple trace
sources and multiple other ns3::TraceResolver instances.

e ns3::ArrayTraceResolver: this subclass of ns3::TraceRescan be used to match any number of elements within an
array where every element is identified by its index.

Once you can instantiate your own ns3::TraceResolver bbjstance, you have to hook it up into the global namespace.
There are two ways to do this:

e you can hook your ns3::TraceResolver creation method awatnage root by using the ns3::TraceRoot::Register
method

e you can hook your new ns3::TraceResolver creation methodlie container of your model. This step will obvsiouly
depend on which model contains your own model but, if you eeohew I3 protocol, all you would have to do to hook
into your container L3Demux class is to implement the purual method inherited from the L3Protocol class whose
name is ns3::L3protocol::CreateTraceResolver.

So, in most cases, exporting a model’s trace sources is @nudtimplementing a method CreateTraceResolver as shown
below:

cl ass MyModel
{
publi c:
enum TraceType {
X,
RX,

i
TraceResol ver *CreateTraceResol ver (TraceContext const &context);
void Tx (Packet const &p);
private:
Cal | backTraceSour ce<Packet const &> mtxTrace;

H

TraceResol ver *
MyModel : : Creat eTraceResol ver (TraceContext const &context)

{

Conposi t eTraceResol ver *resol ver = new ConpositeTraceResol ver (context);
resolver->Add (‘“tx’’, mtxTrace, MyMdel:: TX);
return resol ver;
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}
voi d
MyModel : : Tx (Packet const &p)

{
m txTrace (p);
}

If you really want to have fun and implement your own ns3:cBfaesolver subclass, you need to understand the basic Con-
nection and Disconnection algorithm. The code of that dligor is wholy contained in the ns3::TraceResolver::Cohnec
and ns3::TraceResolver::Disconnect methods. The iddéaiswe recursively parse the input namespace string by riexgov
the first namespace element. This element is 'resolved’limgahe ns3::TraceResolver::DoLookup method which mesu

a list of TraceResolver instances. Each of the returnedeRasolver instance is then given what is left of the names-
pace by calling ns3::TraceResolver::Connect until the tasnespace element is processed. At this point, we invake th
ns3::TraceResolver::DoConnect or ns3:: TraceResoeRisconnect methods to break the recursion. A good way dern
stand this algorithmis to trace its behavior. Let’s say ylwatwant to connect to '/nodes/*/ipv4/interfaces/*/netide/queue/*’.

It would generate the following call traces:

TraceRoot : : Connect (‘‘/nodes/=*/ipv4/interfaces/*/netdevicel/queue/+’ ', callback);
traceContext = TraceContext ();
root Resol ver = ConpositeTraceResol ver (traceContext);
r oot Resol ver->Connect ('‘/nodes/+/ipv4/interfaces/*/netdevicel/queue/+'’, call back);
resol ver = ConpositeTraceResol ver:: DoLookup (‘' nodes’’);
return NodelLi st:: CreateTraceResol ver (Get Context ());
return ArrayTraceResol ver (context);

resol ver->Connect (‘‘/=*/ipvé4linterfaces/*/netdevicel/queuel/+’ ', callback);
ArrayTraceResol ver: : DoLookup (‘‘=*'");
for (i = 0; i < n_nodes; i++)

resol ver = nodes[i]->CreateTraceResol ver (GetContext ());
return ConpositeTraceResol ver (context);
resol vers. add (resol ver);
return resol vers;
for resolver in (resolvers)

resol ver->Connect (‘‘/ipvéd/interfaces/*/netdevicel/queue/*'", call back);
Conposit eTraceResol ver: : DoLookup (' “ipvd ’);
resol ver = ipv4d->CreateTraceResol ver (GetContext ());

return ConpositeTraceResol ver (context);
return resol ver;
resol ver->Connect (‘‘/interfaces/*/netdevicel/queue/*’", callback);
Conposi t eTraceResol ver:: DoLookup (‘‘“interfaces’’);
resolver = ArrayTraceResol ver (GetContext ());

resol ver->Connect ('‘/+*/netdevice/queue/*’", callback);
ArrayTraceResol ver:: DoLookup (' “*"");
for (i =0; i < n_interfaces; i++)
resolver = interfaces[i]->CreateTraceResol ver (CGetContext ());

return ConpositeTraceResol ver ()
resol vers. add (resol ver);
return resol vers;
resol ver->Connect ('‘/netdevice/queue/=*"", callback);
Conposi teTraceResol ver: : DoLookup (‘' ‘netdevice'’);
resol ver = NetDevice::CreateTraceResol ver (CGetContext ());
return ConpositeTraceResol ver ();
return resol ver;
resol ver->Connect (‘‘/queue/=*'", call back);
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Conposi t eTraceResol ver: : DoLookup (‘" queue’’);
resol ver = Queue:: CreateTraceResol ver (CGetContext ());
return ConpositeTraceResol ver ();
return resol ver
resol ver->Connect (‘'‘=*’’, call back);
Conposi t eTraceResol ver: : DoLookup (*“*"");
for match in (matches)
resolver = Term nal TraceResol ver (‘‘match’’)
resol vers. add (resol ver)
return resol vers;
for resolver in (resolvers)
Term nal TraceResol ver - >DoConnect (cal | back);
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Chapter 13

Statistics
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Chapter 14

Random variables

14.1 Design Overview and Motivation

Meaningful simulations often require the modelling of $tastic processes, such as traffic patterns on a network aneha
noise and interference. As suais-3provides a rich set of random number generators (RNGSs) o Um#rs model such
stochastic processes. These are configured as pseudorrandber generators implementing the combined multiplerrec
sive generator MRG32k3a proposed by L'Ecuyerin 1999. OuGRNraw from the Uniform(0,1) distribution provided by the
MRG32k3a, and then perform an inverse cumulative distidlouransform to effectively sample from the target disitibn

in all cases except for the normal distribution, in whichectiee Box-Muller transform is used.

The class structure is a set of classes that derive fromgesahss calle®RandonVar i abl e. Randomvar i abl e defines
the API for all RNGs, with methods such @et Val ue() which returns a random number from the underlying statistic
distribution. RandonVar i abl e also has some static methods to allow for configuration ob@lceeding behavior of
RNGs.

14.2 Supported Distributions

At presentns-3supports the following statistical distributions:

e Exponential distribution
e Normal distribution

Pareto distribution

Uniform distribution

Weibull distribution

Arbitrary distributions with user specified CDF

In addition, there are other generators that can be treatiakisimulator like RNGs, but which in fact give very predide
values:
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e Constant variable- Returns the same value each time a \wataquested.
e Deterministic variable - Returns values from a user-deflistd

e Sequential variable - Returns values from a user-definedtoaitally increasing sequence.

14.2.1 Example

Exponenti al Vari abl e ti neDel ay(1. 2);
Uni f ornvari abl e u01(0, 1);
/letc...

The API docs generated by Doxygen have more specific infoomat

14.3 Seeding

There are two broad ways to seed RNGs. The first is to seed théehiave randomly, while the other is to seed them to
behave deterministically.

14.3.1 Random Seeding

The default behavior of random variablesrie-3is to automatically be seeded in such a way that the resuléssgifen
simulation vary from run to run. This behavior is good for @lutesting of validity of code, but suffers from the lack of
repeatability. The two methods for random seeding arermdlbelow.

Time of Day Seeding

The default behavior of RNG seedingrie-3is to generate a seed from the current time of day, a commonawvagndomly”
seed RNGs.

/dev/random Seeding

Suppose the user is unhappy with the amount of true randa@mpresent in the time of day method. He or she then has
the option to specify a different method of random seediaghvée system dependent /dev/random hardware device found on
POSIX complaint and Unix-like operating systems. This rodtliterally reads the seed values directly from /dev/rando
and assures that the seed is from a true random source. Ad&ahdonVar i abl e: : UseDevRandon{) preceding the

first declaration of an RNG suffices to set up the generatoetabe in this way.

14.3.2 Deterministic Seeding

The above random seeding cases function very well for germuick tests of code coherency, but unfortunatly lack re-
peatability. Thus, the other way in which to ues-3 RNGs is in a deterministic fashion. This is done by setting a
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global seed which doesn’t change between runs. This efedgtilocks-in” the RNGs to have the same behavior run to
run, making the results predictable and useful for debuggimrposes. This takes the form of a call of something like:
RandonVari abl e: : Used obal Seed( Const ant Seed(1, 2, 3,4,5,6)).

Incrementing the Run Number

A percieved downside of deterministic seeding is that ireotd get results that ever change(for example, to collatissital
data about a simulation), one has to change the global séwddreruns. In order to prevent this, the RNG packages suppor
a specified run number that effectively steps all the RNGs diffarent set of deterministic seeds. In this way, the same
simulation can be run multiple times, each time with an ineeated run number, and each time will give different results
but with consistency within a given run number. For exampléng: RandonVar i abl e: : Set RunNunber (27) would
increment the run to 27, giving generators that would bepedeent from say run number 26. Note that this code must be
called before any declaration of an RNG.
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Chapter 15

Command-line arguments

Simulations frequently need to have parameters that dfigatt at compile time, but are rather tuned or modified jusbpri

to execution. To aid in this facilitps-3will have a full featured set of tools to aid in command lingument passing and
processing. The package of argument tools should be able tfoirtys such as take user defined argument names to expect
on the command line, and then populate specified variales ihese command line values.

15.1 Usage

In particular, it will support integers, doubles, stringad boolean command line arguments with equals signs, Aasvig
type boolean values without equals signs. Assuming thehaseconfigured the application correctly, the followingeygd
simulation call will be supported:/ si nmul ati on run=20 | i nkspeed=56. 6Kbps - enabl e- debug- out put

15.2 Automatically Generated Help

The argument processing capabilities will be able to autmaléy generate help information for calls to the simwaticalled
wth arguments like —help or -help. This comes about from #er being able to specify help strings for each argument as he
or she adds it to the processor. Suppose we have the following

int main(int argc, char*x argv)

{
ui nt 32_t nRuns;
std::string |inkSpeed;
ArgProcessor:: Add("runs”, nRuns, 3, "nunber of iterations to perforni);
Ar gProcessor:: Add("speed”, | i nkSpeed, "10Md/ s", "default l|ink speed");
Ar gProcessor:: Process(argc, argv);

}
[+ [/output fromthe above
./foo --help
--runs=[ui nt32_t: 3] . nunber of sinulation iterations to perform
--speed=[string: 10M/ s] . default |ink speed
--hel p : print this help
*/

80



Chapter 16

Data Rates

When speaking of networking, data transmission speed isnportant factor in specifying networks. These speeds are of
course most commonly calculated as bit rates, that is nuofli@ts per secondhs-3contains a clasBat aRat e that can be
used to represent data rates in simulations. The primatifumof this class is to allow simple construction of datesan
terms of everyday units used, such as "Mbps" or "GB/s".

TheDat aRat e class has a constructor that accepts a string which corttenmequired rate. There are three parts to any of
these strings: the Sl prefix, the units, and the time unitg féHowing are the Sl prefixes supported:

o 10° prefix - none
e 10° prefix - k
o 10° prefix- M
e 10’ prefix- G

The units can be specified as bits (b) or bytes (B). Note thésmisight bit byte. Finally, the time units can be specified as
either "ps" or "/s" to represent "per second". Example:

Dat aRat e usb_| ow(" 1. 5Mops™);

Dat aRate usb_full ("1.5MB/s");
Dat aRat e usb_hi (" 0. 48CGhps") ;

Dat aRat e | egacy_networ k(" 1b/s");

The class also supports getting the bitrate as an integebauof bits per second with a call et Bi t Rat e(), and
calculating the transmission time for a specified numbertést For example:

Dat aRat e | i nkSpeed(" 3Mops");
uint32_t packetSize = ... ; //some nunber of bytes; the size of a packet
doubl e Iatency = |inkSpeed. Cal cul at eTxTi me( packet Si ze) ;
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Chapter 17

Debugging

17.1 Execution Tracing

From the perspective of a user of a complex system, it can ie fjustrating to write code that disappears into the sy&te
black box only to return as an error. In some cases the uridgrpyroblem is caused by an unexpected interaction with
another component deep within the system. Finding suchlgmubis often realistically not possible for a user without a
deeper understanding of what is happening inside the sysfidm ability to trace execution of certain components of a
system are immensely useful in these circumstances; aowl mibre sophisticated users to understand nuances of ttegrsys
and find workarounds, or to more fully specify reproductpiGonditions for bug reporting.

From the perspective of a developer of such a complex systéften very useful to be able to get a quick idea of what is
happening in the system, during development, testing aridtereance.

ns-3addresses these issues by providing support for debuggraaictions that can be used in its constituent objects.

The requirements for the debug trace support were identied

e Code for a debug trace facility should be optimized out ofjpiiion code. There should be no performance impact on
working, production code;

e The debug trace facility should certainly be present in detnde (dbg-static or dbg-shared), possibly in otherwise
optimized code enabled by compilation flag;

e The operation of the facility should be easily configuredat ik one should not have to recompile to turn logging on
and off for a particular problem;

e Tracing should be enabled certainly on a per-class basasirig on an object-by-object basis may be desirable but will
be harder to implement and configure;

e The facility should have selectable levels of verbosity] dafault to a quiet mode in which nothing is output;

e Debug trace calls should be compatible with Gastt r eam
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17.2 Debug design overview

The debug trace functionality is split into two main secsiprconfiguration and tracing. Configuration is concernedh wit
mechanisms for controlling the amount of information tisgiiiesented during the execution of the code; and tracirgtint
content of the information.

17.2.1 Configuration

The simplest form of configuration is through a static globmiiable. Eacms-3class for which tracing is enabled has a
global variable indicating the selected verbosity leveltfee class. Typically the variable is set in a debugger onwighod
invocation.

The general idea is that as the selected verbosity levadases, the amount of information output increases. Noaievel
definitions currently exist.

17.2.2 Tracing

The basic tracing functionality is provided through two muec

e NS3_TRACEALL: Always prints a message if tracing is globally enabled;

e NS3_TRACE: Prints a message based on debug level configuration.
These macros are quite simple

#i f ndef NDEBUG
#def i ne NS3_DEBUG ENABLE
#endi f

#i f def NS3_DEBUG ENABLE
#defi ne NS3_DEBUE x) x
#el se

#defi ne NS3_DEBUJ x)
#endi f

#def i ne NS3_TRACEALL(traceout) \
NS3_DEBUG(std::cerr << traceout << std::endl;)

#defi ne NS3_TRACE(bool Level, traceout) \
NS3_DEBUG \
i f (bool Level) { \
std::cerr << traceout << std::endl; \
P\
)
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17.3 Using NS3_TRACEALL

The NS3_TRACEALL macro is used to print information irrespective of configiora This can be extremely important
debugging information that should always be seen by a usenpoe mundanely things like banners or progress and status
information in test programs.

int main (int argc, char xargv[])
{
NS3_TRACEALL(" Speci al Device Test")
MacAddr ess addra("00: 00: 00: 00: 00: 01") ;
Seri al Net Devi ce neta(a, addra);
NS3_TRACEALL("neta.GetMu() <= " << neta.GetMu())

Note thatNS3_TRACEALL is a preprocessor macro and so a semicolon at the end is nitagglt doesn’t hurt either.

Another macroNS3_DEBUG, is available if one needs to add code to support the traceexample, in the code snipped
below, we declared Bac Addr ess to receive an address that will only be traced.

NS3_DEBUG ( MacAddress addr = neta. Get Address();)
NS3_TRACEALL("net a. Get Address() <= " << addr)

Any code declared inside tHdS3 _DEBUG macro will be optimized out along with the actual trace codeioduction
releases.

17.4 Using NS3_TRACE

TheNS3_TRACE macro is used to print information under the control of of tteee configuration. This is how the various
debug levels are implemented. In the code below, the firs¢ tisaoutput if the boolean expressigbBebug evaluates to true.
This is the case whenever the configured debug level is nan-Zée second trace is only output if the boolean expression
gDebug > 1 evaluates to true.

bool
Queue: : Enque (const Packet & p)

{
NS3_TRACE( qDebug,

"Queue: : Enque (" << &p << ")")

NS3_TRACE( qDebug > 1,
"Queue: : Enque (): mtraceEnque (" << & << ")")

m t raceEnque (p);

return Real Enque (p);
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It is easy to see now that as the value of the trace configuraticablegDebug is increased, more debugging information
will be printed.

Just likeNS3_TRACEALL, NS3_TRACE is a preprocessor macro and so a semicolon at the end is aption
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Appendix A

Build system

This chapter provides an overview of the software buildeyst

A.1 Source code organization

Figure A.1 provides an overview of thies-3source code organization. Section A.2 below details thig launvironment and
options. The ns-3 library is split across multiple modules:

e core: located in src/core and contains a number of faglitibich do not depend on any other module. Some of these
facilities are OS-dependent.

e simulator: located in src/simulator and contains evengdaling facilities.

e common: located in src/common and contains facilities i§ipego network simulations but shared by pretty much every
model of a network component.

A number of files exist in the top-level directory (SConstriwild.py, and build.pyc) to coordinate the build process

A.2 Build environment

We are trying the SCons build environment, and will fall baekhe GNU build environment (autoconf, automake, libtool,
gcce) if SCons doesn’t work out. The default Windows build ieswment is still under consideration; probably Cygwin or
mingw. Microsoft Visual C++ may be considered, but we arekigg through dll export/import issues.

Other compilers and build environments are outside the esafghe project, but we welcome anyone who wants to try
alternatives to document how to use them.

See also the “BUILD” file in the top-levels-3directory. Mathieu Lacage organized the-3build process and wrote the
configuration files. The below is an expansion of the BUILD.file
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ns- 3/
T

- SConstruct buil d-dir/ doc/ sanpl es/ src/ utils/
- build. py ’ ¢ : g
- build. pyc i
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where binaries where Doxygen sample scripts benchmarking
are built docs are built programs, etc.
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comon/ core/ si nul ator/ node/ devi ces/
» \ v v v
common simulation- event scheduling base class node network devices
simulation objects  independent facilities and channel
(e.g., Packet) facilities (e.g., objects, base class
callbacks) protocol objects

Figure A.1: Code organization fors-3project.
A.2.1 SCons overview

From the SCons documentatién:

“SCons is a software construction tool (build tool, or makel} implemented in Python, which uses Python scripts as
"configuration files" for software builds. Distinctive feaés of SCons include: a modular design that lends itseletogo
embedded in other applications; a global view of all depenis in the source tree; an improved model for parallel (-j)
builds; automatic scanning of files for dependencies; usd5 signatures for deciding whether a file is up-to-date; afse
traditional file timestamps instead of MD5 signatures aldé as an option; use of Python functions or objects to hailget
files; easy user extensibility.”

If you want to buildns-3 you need to install SCons (see http://www.scons.org). i8Qakes care of building the whole
source tree using your system compiler. SCons 0.91.1 arid9® %ave been tested and are known to work on Linux FC5,
Mac OS X and MinGW. OS X users may need to install from the DaRarts site.

SCons is configured by a “SConstruct” file in the top-level3directory, as well as a “build.py” file.

To start a build, you can just type 'scons’ which will generat debug shared build by default, located in the directory
"build-dir/dbg-shared/bin’ and 'build-dir/dbg-sharé&hy.

All builds are built with debugging symbols. Debugging logilenable asserts while optimized builds disable them. On
platforms which support it, rpath is used which means thaettecutable binaries generated link explicitely agahestight
libraries. This saves you the pain of having to setup enwremt variables to point to the right libraries.

A.2.2 Options

e verbose if you have installed SCons 0.91.96 or higher, the defauilthoutput is terse. To get a more verbose output,
you need to set the 'verbose’ variable to 'y’.
Example:scons ver bose=y

o cflags flags for the C compiler.
Example:scons cflags="-O3 -ffast-mth"

o cxxflags flags for the C++ compiler.

1(http://www.scons.org, Copyright 2001, 2002 by Stevendkhi
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Example:scons cxxflags="-03 -ffast-math”

o |dflags: flags for the linker:
Example:scons ldflags="-L/foo -L/bar"

Compilation flags can also be set in thei | d. py file. By default, the following are used:

if cc == ’gcc’ and cxx == ' g++’
common_flags = ['-g3", '-Vall’', ’-Wrror’]
debug flags =[]
opti _flags = ["-O3"]

A.2.3 Build targets

e doc: build the doxygen documentation.
Example:scons doc

e dbg-shared a debug build using shared libraries. The files are buittun| d- di r/ dbg- shar ed/ .
Example:scons dbg- shared

e dbg-static: a debug build using static libraries The files are builbbini | d- di r/ dbg-static/.
Example: scons dbg-static

e opt-shared an optimized build using shared libraries. The files aré bubui | d- di r/ opt - shared/ .
Example:scons opt - shared

e opt-static: an optimized build using static libraries. The files ardtboibui | d- di r/ opt - stati c/.
Example:scons opt-static

e dbg: an alias for dbg-shared
Example:scons dbg

e opt: an alias for opt-shared
Example:scons opt

o all: alias for dbg-shared, dbg-static, opt-shared and ofitsta
Example:scons al |

e gcov. code coverage analysis. Build a debugging version of tHe éar code coverage analysidini | d- di r/ gcov.
Once the code has been built, you can run various applicatmaxercise the code paths. To generate an html report
from the gcov data, use the Icov-report target
Example:scons gcov

e |cov-report: generate html report of gcov data. The output is stordalinl d-di r/ | cov-report/.
Example:scons | cov-report

o dist: generate a release tarball and zipfile from the source Tteetarball and zipfile name are generated according to
the version number stored in the SConstruct file.
Example in SConstruct:

ns3 = Ns3 ()
ns3. nane = 'foo’
ns3.version = '0.0.10

Example commandscons di st
Example output files:
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foo-0.0.10.tar. gz
foo-0.0.10.zip

o distcheck generate a release tarball and zipfile and attempt to rulalihtarget for the release tarball.
Example:scons di st check

A.2.4 How the build system works

The current build system defines what are called “ns3 motiuidash module is a set of source files, normal header files and
installable header files. Each module also depends on a s#tefmodules. We build modules automatically in the cdrrec
order. Thatis, we always start from the module which doeslapend on any other module (core) and proceed with the other
modules and make sure that when a module is built, all the feediudepends upon have already been built.

To build a module, we:

1. generate the .o files
2. link the .o files together

3. install the installable headers in the common directarg_bui | d_di r/i ncl ude/ ns3.

This means that if you want to use a header from your own moguole should just include it#i ncl ude "foo. h" but

if you want to include a header from another module, you neéddude it with#i ncl ude "ns3/ bar. h". This allows
you to make sure that our "public" ns3 headers do not conflitt@xisting system-level headers. For instance, if youeter
define a header calleglieue. h, you would includens3/ queue. h rather tharqueue. h when including from a separate
module.

A.2.5 How to add files to an existing module

In the main SConstruct file, you can add source code tatie sour ces method. For example, to add a foo.cc file to
the core module, we coud do thisor e. add_sour ces (' fo0o. cc’) . Of course, if this file implements public API, its
header should be installableor e. add_i nst _headers (' foo.h’).

A.2.6 How to create a new module
First, create a new module in the top-level SConstruct file.
my_nodul e = Ns3Mbdule ("ny’, ’src/nmy_dir’)

where the first argument is the name of the new module, anchdezgument is the directory in which all source files for this
module reside. Next, add it to the build system:

ns3. add (ny_nodul e)
Next, specify module dependencies; for example, if it dejseam the ipv4 and core modules, add:
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my_nodul e. add_deps ([’ core’, "ipvd'])
Next, add source code to this module:

my_nodul e. add_sources (]
"ny_a.cc’,
"my_b.cc’,

"my_c.cc’

1)

my_nodul e. add_sources (]
"nmy_d. cc’

1)

To add headers which are not public, do

my_nodul e. add_headers (]
"nmy_a. h’,
"my_c. h’

1)

To add headers which are public:

# add headers which are public
my_nodul e. add_i nst _headers ([

"my_b. h’
1)

my_nodul e. add_i nst _headers (]
"nmy_d. h’
1)

If you need to link against an external library, you must agldernal’ dependencies. Here as an example, the pthread/ib
my_nodul e. add_external _dep (' pthread’)

Finally, note that by default, a module is conceptually adiy. If you want to generate an executable from a module you
need to:

my_nodul e. set _executable ()

A.2.7 Build output

Targets end up in thieui | d- di r/ directory. Different build targets end up in different diteries (e.g.dbg- shar ed/).
ns-3build process builds a library for each module insiiee/ directory, such aki bcormon, | i bcor e,and i bsi nul at or.

These are found in thei b/ directory in the build directory. Executables are foundhietii n/ directory; these executables
are linked against the module libraries during the buildcpss.
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A.2.8 Code coverage

On x86 systems when using gcc, one can use gcov and Icov téepthtaficode coverage of a set of tests.

scons gcov
(execute sone of the executables in the gcov/bin directory)
scons | cov-report

The resulting html will end up in thbui | d-di r/ 1 cov-report/index. htm .
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