
ns-3 Manual
Release ns-3.18

ns-3 project

August 30, 2013

CONTENTS

1 Organization 3

2 Random Variables 5
2.1 Quick Overview . 5
2.2 Background . 5
2.3 Seeding and independent replications . 6
2.4 Class RandomVariableStream . 7
2.5 Base class public API . 7
2.6 Types of RandomVariables . 7
2.7 Semantics of RandomVariableStream objects . 8
2.8 Using other PRNG . 8
2.9 Setting the stream number . 9
2.10 Publishing your results . 9
2.11 Summary . 9

3 Hash Functions 11
3.1 Basic Usage . 11
3.2 Incremental Hashing . 11
3.3 Using an Alternative Hash Function . 12
3.4 Adding New Hash Function Implementations . 12
3.5 Sources for Hash Functions . 12

4 Events and Simulator 13
4.1 Event . 13
4.2 Simulator . 13
4.3 Time . 15
4.4 Scheduler . 15

5 Callbacks 17
5.1 Callbacks Motivation . 17
5.2 Callbacks Background . 18
5.3 Using the Callback API . 21
5.4 Bound Callbacks . 24
5.5 Traced Callbacks . 25
5.6 Callback locations in ns-3 . 25
5.7 Implementation details . 25

6 Object model 27
6.1 Object-oriented behavior . 27
6.2 Object base classes . 27

i

6.3 Memory management and class Ptr . 28
6.4 CreateObject and Create . 29
6.5 Aggregation . 29
6.6 Exmaples . 29
6.7 Object factories . 30
6.8 Downcasting . 31

7 Attributes 33
7.1 Object Overview . 33
7.2 Smart pointers . 33
7.3 Attribute Overview . 35
7.4 Extending attributes . 40
7.5 Adding new class type to the attribute system . 42
7.6 ConfigStore . 43

8 Object names 49

9 Logging 51
9.1 Logging overview . 51
9.2 How to add logging to your code . 52

10 Tracing 55
10.1 Tracing Motivation . 55
10.2 Overview . 56
10.3 Using the Tracing API . 59
10.4 Using Trace Helpers . 59
10.5 Tracing implementation details . 70

11 Data Collection 71
11.1 Design . 71
11.2 Data Collection Helpers . 73
11.3 Probes . 83
11.4 Collectors . 89
11.5 Aggregators . 89
11.6 Adaptors . 95
11.7 Scope/Limitations . 96

12 Statistical Framework 97
12.1 Goals . 97
12.2 Overview . 97
12.3 To-Do . 98
12.4 Approach . 98
12.5 Example . 99

13 RealTime 107
13.1 Behavior . 107
13.2 Usage . 107
13.3 Implementation . 108

14 Helpers 109

15 Making Plots using the Gnuplot Class 111
15.1 Creating Plots Using the Gnuplot Class . 111
15.2 An Example Program that Uses the Gnuplot Class . 111
15.3 An Example 2-Dimensional Plot . 112

ii

15.4 An Example 2-Dimensional Plot with Error Bars . 114
15.5 An Example 3-Dimensional Plot . 115

16 Using Python to Run ns-3 119
16.1 Introduction . 119
16.2 An Example Python Script that Runs ns-3 . 119
16.3 Running Python Scripts . 120
16.4 Caveats . 120
16.5 Working with Python Bindings . 122
16.6 Instructions for Handling New Files or Changed API’s . 123
16.7 Monolithic Python Bindings . 123
16.8 Modular Python Bindings . 123
16.9 More Information for Developers . 125

17 Tests 127
17.1 Overview . 127
17.2 Background . 127
17.3 Testing framework . 130
17.4 How to write tests . 141

18 Support 143
18.1 Creating a new ns-3 model . 143
18.2 Adding a New Module to ns-3 . 151
18.3 Enabling Subsets of ns-3 Modules . 156
18.4 Enabling/disabling ns-3 Tests and Examples . 158
18.5 Troubleshooting . 161

Bibliography 163

iii

iv

ns-3 Manual, Release ns-3.18

This is the ns-3 Manual. Primary documentation for the ns-3 project is available in five forms:

• ns-3 Doxygen: Documentation of the public APIs of the simulator

• Tutorial, Manual (this document), and Model Library for the latest release and development tree

• ns-3 wiki

This document is written in reStructuredText for Sphinx and is maintained in the doc/manual directory of ns-3’s
source code.

CONTENTS 1

http://www.nsnam.org/doxygen/index.html
http://www.nsnam.org/documentation/latest/
http://www.nsnam.org/ns-3-dev/documentation/
http://www.nsnam.org/wiki/index.php/Main_Page
http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org/

ns-3 Manual, Release ns-3.18

2 CONTENTS

CHAPTER

ONE

ORGANIZATION

This chapter describes the overall ns-3 software organization and the corresponding organization of this manual.

ns-3 is a discrete-event network simulator in which the simulation core and models are implemented in C++. ns-3 is
built as a library which may be statically or dynamically linked to a C++ main program that defines the simulation
topology and starts the simulator. ns-3 also exports nearly all of its API to Python, allowing Python programs to import
an “ns3” module in much the same way as the ns-3 library is linked by executables in C++.

Figure 1.1: Software organization of ns-3

The source code for ns-3 is mostly organized in the src directory and can be described by the diagram in Software
organization of ns-3. We will work our way from the bottom up; in general, modules only have dependencies on
modules beneath them in the figure.

We first describe the core of the simulator; those components that are common across all protocol, hardware, and
environmental models. The simulation core is implemented in src/core. Packets are fundamental objects in a
network simulator and are implemented in src/network. These two simulation modules by themselves are intended
to comprise a generic simulation core that can be used by different kinds of networks, not just Internet-based networks.
The above modules of ns-3 are independent of specific network and device models, which are covered in subsequent
parts of this manual.

In addition to the above ns-3 core, we introduce, also in the initial portion of the manual, two other modules that
supplement the core C++-based API. ns-3 programs may access all of the API directly or may make use of a so-called
helper API that provides convenient wrappers or encapsulation of low-level API calls. The fact that ns-3 programs
can be written to two APIs (or a combination thereof) is a fundamental aspect of the simulator. We also describe how
Python is supported in ns-3 before moving onto specific models of relevance to network simulation.

3

ns-3 Manual, Release ns-3.18

The remainder of the manual is focused on documenting the models and supporting capabilities. The next part focuses
on two fundamental objects in ns-3: the Node and NetDevice. Two special NetDevice types are designed to
support network emulation use cases, and emulation is described next. The following chapter is devoted to Internet-
related models, including the sockets API used by Internet applications. The next chapter covers applications, and the
following chapter describes additional support for simulation, such as animators and statistics.

The project maintains a separate manual devoted to testing and validation of ns-3 code (see the ns-3 Testing and
Validation manual).

4 Chapter 1. Organization

http://www.nsnam.org/tutorials.html
http://www.nsnam.org/tutorials.html

CHAPTER

TWO

RANDOM VARIABLES

ns-3 contains a built-in pseudo-random number generator (PRNG). It is important for serious users of the simulator to
understand the functionality, configuration, and usage of this PRNG, and to decide whether it is sufficient for his or
her research use.

2.1 Quick Overview

ns-3 random numbers are provided via instances of ns3::RandomVariableStream.

• by default, ns-3 simulations use a fixed seed; if there is any randomness in the simulation, each run of the
program will yield identical results unless the seed and/or run number is changed.

• in ns-3.3 and earlier, ns-3 simulations used a random seed by default; this marks a change in policy starting with
ns-3.4.

• in ns-3.14 and earlier, ns-3 simulations used a different wrapper class called ns3::RandomVariable. As of
ns-3.15, this class has been replaced by ns3::RandomVariableStream; the underlying pseudo-random
number generator has not changed.

• to obtain randomness across multiple simulation runs, you must either set the seed differently or set the run
number differently. To set a seed, call ns3::RngSeedManager::SetSeed() at the beginning of the pro-
gram; to set a run number with the same seed, call ns3::RngSeedManager::SetRun() at the beginning
of the program; see Seeding and independent replications.

• each RandomVariableStream used in ns-3 has a virtual random number generator associated with it; all random
variables use either a fixed or random seed based on the use of the global seed (previous bullet);

• if you intend to perform multiple runs of the same scenario, with different random numbers, please be sure to
read the section on how to perform independent replications: Seeding and independent replications.

Read further for more explanation about the random number facility for ns-3.

2.2 Background

Simulations use a lot of random numbers; one study found that most network simulations spend as much as 50% of
the CPU generating random numbers. Simulation users need to be concerned with the quality of the (pseudo) random
numbers and the independence between different streams of random numbers.

Users need to be concerned with a few issues, such as:

• the seeding of the random number generator and whether a simulation outcome is deterministic or not,

• how to acquire different streams of random numbers that are independent from one another, and

5

ns-3 Manual, Release ns-3.18

• how long it takes for streams to cycle

We will introduce a few terms here: a RNG provides a long sequence of (pseudo) random numbers. The length
of this sequence is called the cycle length or period, after which the RNG will repeat itself. This sequence can be
partitioned into disjoint streams. A stream of a RNG is a contiguous subset or block of the RNG sequence. For
instance, if the RNG period is of length N, and two streams are provided from this RNG, then the first stream might
use the first N/2 values and the second stream might produce the second N/2 values. An important property here is that
the two streams are uncorrelated. Likewise, each stream can be partitioned disjointedly to a number of uncorrelated
substreams. The underlying RNG hopefully produces a pseudo-random sequence of numbers with a very long cycle
length, and partitions this into streams and substreams in an efficient manner.

ns-3 uses the same underlying random number generator as does ns-2: the MRG32k3a generator from Pierre
L’Ecuyer. A detailed description can be found in http://www.iro.umontreal.ca/~lecuyer/myftp/papers/streams00.pdf.
The MRG32k3a generator provides 1.8x1019 independent streams of random numbers, each of which consists of
2.3x1015 substreams. Each substream has a period (i.e., the number of random numbers before overlap) of 7.6x1022.
The period of the entire generator is 3.1x1057.

Class ns3::RandomVariableStream is the public interface to this underlying random number
generator. When users create new random variables (such as ns3::UniformRandomVariable,
ns3::ExponentialRandomVariable, etc.), they create an object that uses one of the distinct, indepen-
dent streams of the random number generator. Therefore, each object of type ns3::RandomVariableStream
has, conceptually, its own “virtual” RNG. Furthermore, each ns3::RandomVariableStream can be configured
to use one of the set of substreams drawn from the main stream.

An alternate implementation would be to allow each RandomVariable to have its own (differently seeded) RNG.
However, we cannot guarantee as strongly that the different sequences would be uncorrelated in such a case; hence,
we prefer to use a single RNG and streams and substreams from it.

2.3 Seeding and independent replications

ns-3 simulations can be configured to produce deterministic or random results. If the ns-3 simulation is configured to
use a fixed, deterministic seed with the same run number, it should give the same output each time it is run.

By default, ns-3 simulations use a fixed seed and run number. These values are stored in two ns3::GlobalValue
instances: g_rngSeed and g_rngRun.

A typical use case is to run a simulation as a sequence of independent trials, so as to compute statistics on a large
number of independent runs. The user can either change the global seed and rerun the simulation, or can advance the
substream state of the RNG, which is referred to as incrementing the run number.

A class ns3::RngSeedManager provides an API to control the seeding and run number behavior. This seeding
and substream state setting must be called before any random variables are created; e.g:

RngSeedManager::SetSeed (3); // Changes seed from default of 1 to 3
RngSeedManager::SetRun (7); // Changes run number from default of 1 to 7
// Now, create random variables
Ptr<UniformRandomVariable> x = CreateObject<UniformRandomVariable> ();
Ptr<ExponentialRandomVariable> y = CreateObject<ExponentialRandomVarlable> ();
...

Which is better, setting a new seed or advancing the substream state? There is no guarantee that the streams pro-
duced by two random seeds will not overlap. The only way to guarantee that two streams do not overlap is to use
the substream capability provided by the RNG implementation. Therefore, use the substream capability to produce
multiple independent runs of the same simulation. In other words, the more statistically rigorous way to configure
multiple independent replications is to use a fixed seed and to advance the run number. This implementation allows
for a maximum of 2.3x1015 independent replications using the substreams.

6 Chapter 2. Random Variables

http://www.iro.umontreal.ca/~lecuyer/myftp/papers/streams00.pdf

ns-3 Manual, Release ns-3.18

For ease of use, it is not necessary to control the seed and run number from within the program; the user can set the
NS_GLOBAL_VALUE environment variable as follows:

$ NS_GLOBAL_VALUE="RngRun=3" ./waf --run program-name

Another way to control this is by passing a command-line argument; since this is an ns-3 GlobalValue instance, it is
equivalently done such as follows:

$./waf --command-template="%s --RngRun=3" --run program-name

or, if you are running programs directly outside of waf:

$./build/optimized/scratch/program-name --RngRun=3

The above command-line variants make it easy to run lots of different runs from a shell script by just passing a different
RngRun index.

2.4 Class RandomVariableStream

All random variables should derive from class RandomVariable. This base class provides a few methods for
globally configuring the behavior of the random number generator. Derived classes provide API for drawing random
variates from the particular distribution being supported.

Each RandomVariableStream created in the simulation is given a generator that is a new RNGStream from the under-
lying PRNG. Used in this manner, the L’Ecuyer implementation allows for a maximum of 1.8x1019 random variables.
Each random variable in a single replication can produce up to 7.6x1022 random numbers before overlapping.

2.5 Base class public API

Below are excerpted a few public methods of class RandomVariableStream that access the next value in the
substream.

/**
* \brief Returns a random double from the underlying distribution

* \return A floating point random value

*/
double GetValue (void) const;

/**
* \brief Returns a random integer from the underlying distribution

* \return Integer cast of ::GetValue()

*/
uint32_t GetInteger (void) const;

We have already described the seeding configuration above. Different RandomVariable subclasses may have additional
API.

2.6 Types of RandomVariables

The following types of random variables are provided, and are documented in the ns-3 Doxygen or by reading
src/core/model/random-variable-stream.h. Users can also create their own custom random variables
by deriving from class RandomVariableStream.

2.4. Class RandomVariableStream 7

ns-3 Manual, Release ns-3.18

• class UniformRandomVariable

• class ConstantRandomVariable

• class SequentialRandomVariable

• class ExponentialRandomVariable

• class ParetoRandomVariable

• class WeibullRandomVariable

• class NormalRandomVariable

• class LogNormalRandomVariable

• class GammaRandomVariable

• class ErlangRandomVariable

• class TriangularRandomVariable

• class ZipfRandomVariable

• class ZetaRandomVariable

• class DeterministicRandomVariable

• class EmpiricalRandomVariable

2.7 Semantics of RandomVariableStream objects

RandomVariableStream objects derive from ns3::Object and are handled by smart pointers.

RandomVariableStream instances can also be used in ns-3 attributes, which means that values can be set for them
through the ns-3 attribute system. An example is in the propagation models for WifiNetDevice:

TypeId
RandomPropagationDelayModel::GetTypeId (void)
{

static TypeId tid = TypeId ("ns3::RandomPropagationDelayModel")
.SetParent<PropagationDelayModel> ()
.AddConstructor<RandomPropagationDelayModel> ()
.AddAttribute ("Variable",

"The random variable which generates random delays (s).",
StringValue ("ns3::UniformRandomVariable"),
MakePointerAccessor (&RandomPropagationDelayModel::m_variable),
MakePointerChecker<RandomVariableStream> ())

;
return tid;

}

Here, the ns-3 user can change the default random variable for this delay model (which is a UniformRandomVariable
ranging from 0 to 1) through the attribute system.

2.8 Using other PRNG

There is presently no support for substituting a different underlying random number generator (e.g., the GNU Scientific
Library or the Akaroa package). Patches are welcome.

8 Chapter 2. Random Variables

ns-3 Manual, Release ns-3.18

2.9 Setting the stream number

The underlying MRG32k3a generator provides 2^64 independent streams. In ns-3, these are assigned sequentially
starting from the first stream as new RandomVariableStream instances make their first call to GetValue().

As a result of how these RandomVariableStream objects are assigned to underlying streams, the assignment is sensitive
to perturbations of the simulation configuration. The consequence is that if any aspect of the simulation configuration
is changed, the mapping of RandomVariables to streams may (or may not) change.

As a concrete example, a user running a comparative study between routing protocols may find that the act of changing
one routing protocol for another will notice that the underlying mobility pattern also changed.

Starting with ns-3.15, some control has been provided to users to allow users to optionally fix the assignment of
selected RandomVariableStream objects to underlying streams. This is the Stream attribute, part of the base class
RandomVariableStream.

By partitioning the existing sequence of streams from before:

<-->
stream 0 stream (2^64 - 1)

into two equal-sized sets:

<-->
^ ^^ ^
| || |
stream 0 stream (2^63 - 1) stream 2^63 stream (2^64 - 1)
<- automatically assigned -----------><- assigned by user ----------------->

The first 2^63 streams continue to be automatically assigned, while the last 2^63 are given stream indices starting with
zero up to 2^63-1.

The assignment of streams to a fixed stream number is optional; instances of RandomVariableStream that do not have
a stream value assigned will be assigned the next one from the pool of automatic streams.

To fix a RandomVariableStream to a particular underlying stream, assign its Stream attribute to a non-negative
integer (the default value of -1 means that a value will be automatically allocated).

2.10 Publishing your results

When you publish simulation results, a key piece of configuration information that you should always state is how you
used the the random number generator.

• what seeds you used,

• what RNG you used if not the default,

• how were independent runs performed,

• for large simulations, how did you check that you did not cycle.

It is incumbent on the researcher publishing results to include enough information to allow others to reproduce his or
her results. It is also incumbent on the researcher to convince oneself that the random numbers used were statistically
valid, and to state in the paper why such confidence is assumed.

2.11 Summary

Let’s review what things you should do when creating a simulation.

2.9. Setting the stream number 9

ns-3 Manual, Release ns-3.18

• Decide whether you are running with a fixed seed or random seed; a fixed seed is the default,

• Decide how you are going to manage independent replications, if applicable,

• Convince yourself that you are not drawing more random values than the cycle length, if you are running a very
long simulation, and

• When you publish, follow the guidelines above about documenting your use of the random number generator.

10 Chapter 2. Random Variables

CHAPTER

THREE

HASH FUNCTIONS

ns-3 provides a generic interface to general purpose hash functions. In the simplest usage, the hash function returns
the 32-bit or 64-bit hash of a data buffer or string. The default underlying hash function is murmur3, chosen because
it has good hash function properties and offers a 64-bit version. The venerable FNV1a hash is also available.

There is a straight-forward mechanism to add (or provide at run time) alternative hash function implementations.

3.1 Basic Usage

The simplest way to get a hash value of a data buffer or string is just:

#include "ns3/hash.h"

using namespace ns3;

char * buffer = ...
size_t buffer_size = ...

uint32_t buffer_hash = Hash32 (buffer, buffer_size);

std::string s;
uint32_t string_hash = Hash32 (s);

Equivalent functions are defined for 64-bit hash values.

3.2 Incremental Hashing

In some situations it’s useful to compute the hash of multiple buffers, as if they had been joined together. (For example,
you might want the hash of a packet stream, but not want to assemble a single buffer with the combined contents of
all the packets.)

This is almost as straight-forward as the first example:

#include "ns3/hash.h"

using namespace ns3;

char * buffer;
size_t buffer_size;

Hasher hasher; // Use default hash function

11

http://code.google.com/p/smhasher/wiki/MurmurHash3
http://isthe.com/chongo/tech/comp/fnv/

ns-3 Manual, Release ns-3.18

for (<every buffer>)
{

buffer = get_next_buffer ();
hasher (buffer, buffer_size);

}
uint32_t combined_hash = hasher.GetHash32 ();

By default Hasher preserves internal state to enable incremental hashing. If you want to reuse a Hasher object (for
example because it’s configured with a non-default hash function), but don’t want to add to the previously computed
hash, you need to clear() first:

hasher.clear ().GetHash32 (buffer, buffer_size);

This reinitializes the internal state before hashing the buffer.

3.3 Using an Alternative Hash Function

The default hash function is murmur3. FNV1a is also available. To specify the hash function explicitly, use this
contructor:

Hasher hasher = Hasher (Create<Hash::Function::Fnv1a> ());

3.4 Adding New Hash Function Implementations

To add the hash function foo, follow the hash-murmur3.h/.cc pattern:

• Create a class declaration (.h) and definition (.cc) inheriting from Hash::Implementation.

• include the declaration in hash.h (at the point where hash-murmur3.h is included.

• In your own code, instantiate a Hasher object via the constructor Hasher
(Ptr<Hash::Function::Foo> ())

If your hash function is a single function, e.g. hashf, you don’t even need to create a new class derived from
HashImplementation:

Hasher hasher =
Hasher (Create<Hash::Function::Hash32> (&hashf));

For this to compile, your hashf has to match one of the function pointer signatures:

typedef uint32_t (*Hash32Function_ptr) (const char *, const size_t);
typedef uint64_t (*Hash64Function_ptr) (const char *, const size_t);

3.5 Sources for Hash Functions

Sources for other hash function implementations include:

• Peter Kankowski: http://www.strchr.com

• Arash Partow: http://www.partow.net/programming/hashfunctions/index.html

• SMHasher: http://code.google.com/p/smhasher/

• Sanmayce: http://www.sanmayce.com/Fastest_Hash/index.html

12 Chapter 3. Hash Functions

http://code.google.com/p/smhasher/wiki/MurmurHash3
http://isthe.com/chongo/tech/comp/fnv/
http://www.strchr.com
http://www.partow.net/programming/hashfunctions/index.html
http://code.google.com/p/smhasher/
http://www.sanmayce.com/Fastest_Hash/index.html

CHAPTER

FOUR

EVENTS AND SIMULATOR

ns-3 is a discrete-event network simulator. Conceptually, the simulator keeps track of a number of events that are
scheduled to execute at a specified simulation time. The job of the simulator is to execute the events in sequential time
order. Once the completion of an event occurs, the simulator will move to the next event (or will exit if there are no
more events in the event queue). If, for example, an event scheduled for simulation time “100 seconds” is executed,
and the next event is not scheduled until “200 seconds”, the simulator will immediately jump from 100 seconds to 200
seconds (of simulation time) to execute the next event. This is what is meant by “discrete-event” simulator.

To make this all happen, the simulator needs a few things:

1. a simulator object that can access an event queue where events are stored and that can manage the execution of
events

2. a scheduler responsible for inserting and removing events from the queue

3. a way to represent simulation time

4. the events themselves

This chapter of the manual describes these fundamental objects (simulator, scheduler, time, event) and how they are
used.

4.1 Event

To be completed

4.2 Simulator

The Simulator class is the public entry point to access event scheduling facilities. Once a couple of events have
been scheduled to start the simulation, the user can start to execute them by entering the simulator main loop (call
Simulator::Run). Once the main loop starts running, it will sequentially execute all scheduled events in order
from oldest to most recent until there are either no more events left in the event queue or Simulator::Stop has been
called.

To schedule events for execution by the simulator main loop, the Simulator class provides the Simulator::Schedule*
family of functions.

1. Handling event handlers with different signatures

These functions are declared and implemented as C++ templates to handle automatically the wide variety of C++ event
handler signatures used in the wild. For example, to schedule an event to execute 10 seconds in the future, and invoke
a C++ method or function with specific arguments, you might write this:

13

ns-3 Manual, Release ns-3.18

void handler (int arg0, int arg1)
{

std::cout << "handler called with argument arg0=" << arg0 << " and
arg1=" << arg1 << std::endl;

}

Simulator::Schedule(Seconds(10), &handler, 10, 5);

Which will output:

handler called with argument arg0=10 and arg1=5

Of course, these C++ templates can also handle transparently member methods on C++ objects:

To be completed: member method example

Notes:

• the ns-3 Schedule methods recognize automatically functions and methods only if they take less than 5 argu-
ments. If you need them to support more arguments, please, file a bug report.

• Readers familiar with the term ‘fully-bound functors’ will recognize the Simulator::Schedule methods as a way
to automatically construct such objects.

2. Common scheduling operations

The Simulator API was designed to make it really simple to schedule most events. It provides three variants to do so
(ordered from most commonly used to least commonly used):

• Schedule methods which allow you to schedule an event in the future by providing the delay between the current
simulation time and the expiration date of the target event.

• ScheduleNow methods which allow you to schedule an event for the current simulation time: they will execute
after the current event is finished executing but _before_ the simulation time is changed for the next event.

• ScheduleDestroy methods which allow you to hook in the shutdown process of the Simulator to cleanup simu-
lation resources: every ‘destroy’ event is executed when the user calls the Simulator::Destroy method.

3. Maintaining the simulation context

There are two basic ways to schedule events, with and without context. What does this mean?

Simulator::Schedule (Time const &time, MEM mem_ptr, OBJ obj);

vs.

Simulator::ScheduleWithContext (uint32_t context, Time const &time, MEM mem_ptr, OBJ obj);

Readers who invest time and effort in developing or using a non-trivial simulation model will know the value of the
ns-3 logging framework to debug simple and complex simulations alike. One of the important features that is provided
by this logging framework is the automatic display of the network node id associated with the ‘currently’ running
event.

The node id of the currently executing network node is in fact tracked by the Simulator class. It can be accessed with
the Simulator::GetContext method which returns the ‘context’ (a 32-bit integer) associated and stored in the currently-
executing event. In some rare cases, when an event is not associated with a specific network node, its ‘context’ is set
to 0xffffffff.

To associate a context to each event, the Schedule, and ScheduleNow methods automatically reuse the context of the
currently-executing event as the context of the event scheduled for execution later.

In some cases, most notably when simulating the transmission of a packet from a node to another, this behavior is
undesirable since the expected context of the reception event is that of the receiving node, not the sending node. To

14 Chapter 4. Events and Simulator

ns-3 Manual, Release ns-3.18

avoid this problem, the Simulator class provides a specific schedule method: ScheduleWithContext which allows one
to provide explicitly the node id of the receiving node associated with the receive event.

XXX: code example

In some very rare cases, developers might need to modify or understand how the context (node id) of the first event
is set to that of its associated node. This is accomplished by the NodeList class: whenever a new node is created,
the NodeList class uses ScheduleWithContext to schedule a ‘initialize’ event for this node. The ‘initialize’ event thus
executes with a context set to that of the node id and can use the normal variety of Schedule methods. It invokes
the Node::Initialize method which propagates the ‘initialize’ event by calling the DoInitialize method for each object
associated with the node. The DoInitialize method overridden in some of these objects (most notably in the Application
base class) will schedule some events (most notably Application::StartApplication) which will in turn scheduling
traffic generation events which will in turn schedule network-level events.

Notes:

• Users need to be careful to propagate DoInitialize methods across objects by calling Initialize explicitely on
their member objects

• The context id associated with each ScheduleWithContext method has other uses beyond logging: it is used by
an experimental branch of ns-3 to perform parallel simulation on multicore systems using multithreading.

The Simulator::* functions do not know what the context is: they merely make sure that whatever context you specify
with ScheduleWithContext is available when the corresponding event executes with ::GetContext.

It is up to the models implemented on top of Simulator::* to interpret the context value. In ns-3, the network models
interpret the context as the node id of the node which generated an event. This is why it is important to call Sched-
uleWithContext in ns3::Channel subclasses because we are generating an event from node i to node j and we want to
make sure that the event which will run on node j has the right context.

4.3 Time

To be completed

4.4 Scheduler

To be completed

4.3. Time 15

ns-3 Manual, Release ns-3.18

16 Chapter 4. Events and Simulator

CHAPTER

FIVE

CALLBACKS

Some new users to ns-3 are unfamiliar with an extensively used programming idiom used throughout the code: the
ns-3 callback. This chapter provides some motivation on the callback, guidance on how to use it, and details on its
implementation.

5.1 Callbacks Motivation

Consider that you have two simulation models A and B, and you wish to have them pass information between them
during the simulation. One way that you can do that is that you can make A and B each explicitly knowledgeable
about the other, so that they can invoke methods on each other:

class A {
public:

void ReceiveInput (// parameters);
...

}

(in another source file:)

class B {
public:

void DoSomething (void);
...

private:
A* a_instance; // pointer to an A

}

void
B::DoSomething()
{

// Tell a_instance that something happened
a_instance->ReceiveInput (// parameters);
...

}

This certainly works, but it has the drawback that it introduces a dependency on A and B to know about the other at
compile time (this makes it harder to have independent compilation units in the simulator) and is not generalized; if
in a later usage scenario, B needs to talk to a completely different C object, the source code for B needs to be changed
to add a c_instance and so forth. It is easy to see that this is a brute force mechanism of communication that can
lead to programming cruft in the models.

17

ns-3 Manual, Release ns-3.18

This is not to say that objects should not know about one another if there is a hard dependency between them, but that
often the model can be made more flexible if its interactions are less constrained at compile time.

This is not an abstract problem for network simulation research, but rather it has been a source of problems in previous
simulators, when researchers want to extend or modify the system to do different things (as they are apt to do in
research). Consider, for example, a user who wants to add an IPsec security protocol sublayer between TCP and IP:

------------ -----------
| TCP | | TCP |
------------ -----------

| becomes -> |
----------- -----------
| IP | | IPsec |
----------- -----------

|

IP

If the simulator has made assumptions, and hard coded into the code, that IP always talks to a transport protocol above,
the user may be forced to hack the system to get the desired interconnections. This is clearly not an optimal way to
design a generic simulator.

5.2 Callbacks Background

Note: Readers familiar with programming callbacks may skip this tutorial section.

The basic mechanism that allows one to address the problem above is known as a callback. The ultimate goal is to
allow one piece of code to call a function (or method in C++) without any specific inter-module dependency.

This ultimately means you need some kind of indirection – you treat the address of the called function as a variable.
This variable is called a pointer-to-function variable. The relationship between function and pointer-to-function pointer
is really no different that that of object and pointer-to-object.

In C the canonical example of a pointer-to-function is a pointer-to-function-returning-integer (PFI). For a PFI taking
one int parameter, this could be declared like,:

int (*pfi)(int arg) = 0;

What you get from this is a variable named simply pfi that is initialized to the value 0. If you want to initialize this
pointer to something meaningful, you have to have a function with a matching signature. In this case:

int MyFunction (int arg) {}

If you have this target, you can initialize the variable to point to your function like:

pfi = MyFunction;

You can then call MyFunction indirectly using the more suggestive form of the call:

int result = (*pfi) (1234);

This is suggestive since it looks like you are dereferencing the function pointer just like you would dereference any
pointer. Typically, however, people take advantage of the fact that the compiler knows what is going on and will just
use a shorter form:

18 Chapter 5. Callbacks

ns-3 Manual, Release ns-3.18

int result = pfi (1234);

Notice that the function pointer obeys value semantics, so you can pass it around like any other value. Typically, when
you use an asynchronous interface you will pass some entity like this to a function which will perform an action and
call back to let you know it completed. It calls back by following the indirection and executing the provided function.

In C++ you have the added complexity of objects. The analogy with the PFI above means you have a pointer to a
member function returning an int (PMI) instead of the pointer to function returning an int (PFI).

The declaration of the variable providing the indirection looks only slightly different:

int (MyClass::*pmi) (int arg) = 0;

This declares a variable named pmi just as the previous example declared a variable named pfi. Since the will be to
call a method of an instance of a particular class, one must declare that method in a class:

class MyClass {
public:

int MyMethod (int arg);
};

Given this class declaration, one would then initialize that variable like this:

pmi = &MyClass::MyMethod;

This assigns the address of the code implementing the method to the variable, completing the indirection. In order to
call a method, the code needs a this pointer. This, in turn, means there must be an object of MyClass to refer to. A
simplistic example of this is just calling a method indirectly (think virtual function):

int (MyClass::*pmi) (int arg) = 0; // Declare a PMI
pmi = &MyClass::MyMethod; // Point at the implementation code

MyClass myClass; // Need an instance of the class
(myClass.*pmi) (1234); // Call the method with an object ptr

Just like in the C example, you can use this in an asynchronous call to another module which will call back using a
method and an object pointer. The straightforward extension one might consider is to pass a pointer to the object and
the PMI variable. The module would just do:

(*objectPtr.*pmi) (1234);

to execute the callback on the desired object.

One might ask at this time, what’s the point? The called module will have to understand the concrete type of the calling
object in order to properly make the callback. Why not just accept this, pass the correctly typed object pointer and
do object->Method(1234) in the code instead of the callback? This is precisely the problem described above.
What is needed is a way to decouple the calling function from the called class completely. This requirement led to the
development of the Functor.

A functor is the outgrowth of something invented in the 1960s called a closure. It is basically just a packaged-up
function call, possibly with some state.

A functor has two parts, a specific part and a generic part, related through inheritance. The calling code (the code that
executes the callback) will execute a generic overloaded operator () of a generic functor to cause the callback to
be called. The called code (the code that wants to be called back) will have to provide a specialized implementation
of the operator () that performs the class-specific work that caused the close-coupling problem above.

With the specific functor and its overloaded operator () created, the called code then gives the specialized code
to the module that will execute the callback (the calling code).

5.2. Callbacks Background 19

ns-3 Manual, Release ns-3.18

The calling code will take a generic functor as a parameter, so an implicit cast is done in the function call to convert the
specific functor to a generic functor. This means that the calling module just needs to understand the generic functor
type. It is decoupled from the calling code completely.

The information one needs to make a specific functor is the object pointer and the pointer-to-method address.

The essence of what needs to happen is that the system declares a generic part of the functor:

template <typename T>
class Functor
{
public:

virtual int operator() (T arg) = 0;
};

The caller defines a specific part of the functor that really is just there to implement the specific operator()method:

template <typename T, typename ARG>
class SpecificFunctor : public Functor<ARG>
{
public:

SpecificFunctor(T* p, int (T::*_pmi)(ARG arg))
{
m_p = p;
m_pmi = _pmi;

}

virtual int operator() (ARG arg)
{
(*m_p.*m_pmi)(arg);

}
private:

int (T::*m_pmi)(ARG arg);
T* m_p;

};

Here is an example of the usage:

class A
{
public:
A (int a0) : a (a0) {}
int Hello (int b0)
{

std::cout << "Hello from A, a = " << a << " b0 = " << b0 << std::endl;
}
int a;
};

int main()
{

A a(10);
SpecificFunctor<A, int> sf(&a, &A::Hello);
sf(5);

}

Note: The previous code is not real ns-3 code. It is simplistic example code used only to illustrate the concepts
involved and to help you understand the system more. Do not expect to find this code anywhere in the ns-3 tree.

20 Chapter 5. Callbacks

ns-3 Manual, Release ns-3.18

Notice that there are two variables defined in the class above. The m_p variable is the object pointer and m_pmi is the
variable containing the address of the function to execute.

Notice that when operator() is called, it in turn calls the method provided with the object pointer using the C++
PMI syntax.

To use this, one could then declare some model code that takes a generic functor as a parameter:

void LibraryFunction (Functor functor);

The code that will talk to the model would build a specific functor and pass it to LibraryFunction:

MyClass myClass;
SpecificFunctor<MyClass, int> functor (&myclass, MyClass::MyMethod);

When LibraryFunction is done, it executes the callback using the operator() on the generic functor it was
passed, and in this particular case, provides the integer argument:

void
LibraryFunction (Functor functor)
{

// Execute the library function
functor(1234);

}

Notice that LibraryFunction is completely decoupled from the specific type of the client. The connection is
made through the Functor polymorphism.

The Callback API in ns-3 implements object-oriented callbacks using the functor mechanism. This callback API, being
based on C++ templates, is type-safe; that is, it performs static type checks to enforce proper signature compatibility
between callers and callees. It is therefore more type-safe to use than traditional function pointers, but the syntax may
look imposing at first. This section is designed to walk you through the Callback system so that you can be comfortable
using it in ns-3.

5.3 Using the Callback API

The Callback API is fairly minimal, providing only two services:

1. callback type declaration: a way to declare a type of callback with a given signature, and,

2. callback instantiation: a way to instantiate a template-generated forwarding callback which can forward any calls
to another C++ class member method or C++ function.

This is best observed via walking through an example, based on samples/main-callback.cc.

5.3.1 Using the Callback API with static functions

Consider a function:

static double
CbOne (double a, double b)
{

std::cout << "invoke cbOne a=" << a << ", b=" << b << std::endl;
return a;

}

Consider also the following main program snippet:

5.3. Using the Callback API 21

ns-3 Manual, Release ns-3.18

int main (int argc, char *argv[])
{

// return type: double
// first arg type: double
// second arg type: double
Callback<double, double, double> one;

}

This is an example of a C-style callback – one which does not include or need a this pointer. The function template
Callback is essentially the declaration of the variable containing the pointer-to-function. In the example above,
we explicitly showed a pointer to a function that returned an integer and took a single integer as a parameter, The
Callback template function is a generic version of that – it is used to declare the type of a callback.

Note: Readers unfamiliar with C++ templates may consult http://www.cplusplus.com/doc/tutorial/templates/.

The Callback template requires one mandatory argument (the return type of the function to be assigned to this
callback) and up to five optional arguments, which each specify the type of the arguments (if your particular callback
function has more than five arguments, then this can be handled by extending the callback implementation).

So in the above example, we have a declared a callback named “one” that will eventually hold a function pointer. The
signature of the function that it will hold must return double and must support two double arguments. If one tries to
pass a function whose signature does not match the declared callback, a compilation error will occur. Also, if one
tries to assign to a callback an incompatible one, compilation will succeed but a run-time NS_FATAL_ERROR will
be raised. The sample program src/core/examples/main-callback.cc demonstrates both of these error
cases at the end of the main() program.

Now, we need to tie together this callback instance and the actual target function (CbOne). Notice above that CbOne
has the same function signature types as the callback– this is important. We can pass in any such properly-typed
function to this callback. Let’s look at this more closely:

static double CbOne (double a, double b) {}
^ ^ ^
| | |
| | |

Callback<double, double, double> one;

You can only bind a function to a callback if they have the matching signature. The first template argument is the
return type, and the additional template arguments are the types of the arguments of the function signature.

Now, let’s bind our callback “one” to the function that matches its signature:

// build callback instance which points to cbOne function
one = MakeCallback (&CbOne);

This call to MakeCallback is, in essence, creating one of the specialized functors mentioned above. The variable
declared using the Callback template function is going to be playing the part of the generic functor. The assign-
ment one = MakeCallback (&CbOne) is the cast that converts the specialized functor known to the callee to a
generic functor known to the caller.

Then, later in the program, if the callback is needed, it can be used as follows:

NS_ASSERT (!one.IsNull ());

// invoke cbOne function through callback instance
double retOne;
retOne = one (10.0, 20.0);

22 Chapter 5. Callbacks

http://www.cplusplus.com/doc/tutorial/templates/

ns-3 Manual, Release ns-3.18

The check for IsNull() ensures that the callback is not null – that there is a function to call behind this call-
back. Then, one() executes the generic operator() which is really overloaded with a specific implementation of
operator() and returns the same result as if CbOne() had been called directly.

5.3.2 Using the Callback API with member functions

Generally, you will not be calling static functions but instead public member functions of an object. In this case, an
extra argument is needed to the MakeCallback function, to tell the system on which object the function should be
invoked. Consider this example, also from main-callback.cc:

class MyCb {
public:

int CbTwo (double a) {
std::cout << "invoke cbTwo a=" << a << std::endl;
return -5;

}
};

int main ()
{

...
// return type: int
// first arg type: double
Callback<int, double> two;
MyCb cb;
// build callback instance which points to MyCb::cbTwo
two = MakeCallback (&MyCb::CbTwo, &cb);
...

}

Here, we pass an additional object pointer to the MakeCallback<> function. Recall from the background section
above that Operator() will use the pointer to member syntax when it executes on an object:

virtual int operator() (ARG arg)
{

(*m_p.*m_pmi)(arg);
}

And so we needed to provide the two variables (m_p and m_pmi) when we made the specific functor. The line:

two = MakeCallback (&MyCb::CbTwo, &cb);

does precisely that. In this case, when two () is invoked:

int result = two (1.0);

will result in a call tothe CbTwo member function (method) on the object pointed to by &cb.

5.3.3 Building Null Callbacks

It is possible for callbacks to be null; hence it may be wise to check before using them. There is a special construct
for a null callback, which is preferable to simply passing “0” as an argument; it is the MakeNullCallback<>
construct:

two = MakeNullCallback<int, double> ();
NS_ASSERT (two.IsNull ());

Invoking a null callback is just like invoking a null function pointer: it will crash at runtime.

5.3. Using the Callback API 23

ns-3 Manual, Release ns-3.18

5.4 Bound Callbacks

A very useful extension to the functor concept is that of a Bound Callback. Previously it was mentioned that closures
were originally function calls packaged up for later execution. Notice that in all of the Callback descriptions above,
there is no way to package up any parameters for use later – when the Callback is called via operator(). All of
the parameters are provided by the calling function.

What if it is desired to allow the client function (the one that provides the callback) to provide some of the parameters?
Alexandrescu calls the process of allowing a client to specify one of the parameters “binding”. One of the parameters
of operator() has been bound (fixed) by the client.

Some of our pcap tracing code provides a nice example of this. There is a function that needs to be called whenever
a packet is received. This function calls an object that actually writes the packet to disk in the pcap file format. The
signature of one of these functions will be:

static void DefaultSink (Ptr<PcapFileWrapper> file, Ptr<const Packet> p);

The static keyword means this is a static function which does not need a this pointer, so it will be using C-style
callbacks. We don’t want the calling code to have to know about anything but the Packet. What we want in the calling
code is just a call that looks like:

m_promiscSnifferTrace (m_currentPkt);

What we want to do is to bind the Ptr<PcapFileWriter> file to the specific callback implementation when
it is created and arrange for the operator() of the Callback to provide that parameter for free.

We provide the MakeBoundCallback template function for that purpose. It takes the same parameters as the
MakeCallback template function but also takes the parameters to be bound. In the case of the example above:

MakeBoundCallback (&DefaultSink, file);

will create a specific callback implementation that knows to add in the extra bound arguments. Conceptually, it extends
the specific functor described above with one or more bound arguments:

template <typename T, typename ARG, typename BOUND_ARG>
class SpecificFunctor : public Functor
{
public:

SpecificFunctor(T* p, int (T::*_pmi)(ARG arg), BOUND_ARG boundArg)
{

m_p = p;
m_pmi = pmi;
m_boundArg = boundArg;

}

virtual int operator() (ARG arg)
{

(*m_p.*m_pmi)(m_boundArg, arg);
}

private:
void (T::*m_pmi)(ARG arg);
T* m_p;
BOUND_ARG m_boundArg;

};

You can see that when the specific functor is created, the bound argument is saved in the functor / callback object
itself. When the operator() is invoked with the single parameter, as in:

24 Chapter 5. Callbacks

http://erdani.com/book/main.html

ns-3 Manual, Release ns-3.18

m_promiscSnifferTrace (m_currentPkt);

the implementation of operator() adds the bound parameter into the actual function call:

(*m_p.*m_pmi)(m_boundArg, arg);

It’s possible to bind two or three arguments as well. Say we have a function with signature:

static void NotifyEvent (Ptr<A> a, Ptr b, MyEventType e);

One can create bound callback binding first two arguments like:

MakeBoundCallback (&NotifyEvent, a1, b1);

assuming a1 and b1 are objects of type A and B respectively. Similarly for three arguments one would have function
with a signature:

static void NotifyEvent (Ptr<A> a, Ptr b, MyEventType e);

Binding three arguments in done with:

MakeBoundCallback (&NotifyEvent, a1, b1, c1);

again assuming a1, b1 and c1 are objects of type A, B and C respectively.

This kind of binding can be used for exchanging information between objects in simulation; specifically, bound call-
backs can be used as traced callbacks, which will be described in the next section.

5.5 Traced Callbacks

Placeholder subsection

5.6 Callback locations in ns-3

Where are callbacks frequently used in ns-3? Here are some of the more visible ones to typical users:

• Socket API

• Layer-2/Layer-3 API

• Tracing subsystem

• API between IP and routing subsystems

5.7 Implementation details

The code snippets above are simplistic and only designed to illustrate the mechanism itself. The actual Callback code
is quite complicated and very template-intense and a deep understanding of the code is not required. If interested,
expert users may find the following useful.

The code was originally written based on the techniques described in
http://www.codeproject.com/cpp/TTLFunction.asp. It was subsequently rewritten to follow the architecture
outlined in Modern C++ Design, Generic Programming and Design Patterns Applied, Alexandrescu, chapter 5,
Generalized Functors.

This code uses:

5.5. Traced Callbacks 25

http://www.codeproject.com/cpp/TTLFunction.asp
http://www.moderncppdesign.com/book/main.html
http://www.moderncppdesign.com/book/main.html

ns-3 Manual, Release ns-3.18

• default template parameters to saves users from having to specify empty parameters when the number of param-
eters is smaller than the maximum supported number

• the pimpl idiom: the Callback class is passed around by value and delegates the crux of the work to its pimpl
pointer.

• two pimpl implementations which derive from CallbackImpl FunctorCallbackImpl can be used with any functor-
type while MemPtrCallbackImpl can be used with pointers to member functions.

• a reference list implementation to implement the Callback’s value semantics.

This code most notably departs from the Alexandrescu implementation in that it does not use type lists to specify and
pass around the types of the callback arguments. Of course, it also does not use copy-destruction semantics and relies
on a reference list rather than autoPtr to hold the pointer.

26 Chapter 5. Callbacks

CHAPTER

SIX

OBJECT MODEL

ns-3 is fundamentally a C++ object system. Objects can be declared and instantiated as usual, per C++ rules. ns-3 also
adds some features to traditional C++ objects, as described below, to provide greater functionality and features. This
manual chapter is intended to introduce the reader to the ns-3 object model.

This section describes the C++ class design for ns-3 objects. In brief, several design patterns in use include classic
object-oriented design (polymorphic interfaces and implementations), separation of interface and implementation,
the non-virtual public interface design pattern, an object aggregation facility, and reference counting for memory
management. Those familiar with component models such as COM or Bonobo will recognize elements of the design
in the ns-3 object aggregation model, although the ns-3 design is not strictly in accordance with either.

6.1 Object-oriented behavior

C++ objects, in general, provide common object-oriented capabilities (abstraction, encapsulation, inheritance, and
polymorphism) that are part of classic object-oriented design. ns-3 objects make use of these properties; for instance::

class Address
{
public:

Address ();
Address (uint8_t type, const uint8_t *buffer, uint8_t len);
Address (const Address & address);
Address &operator = (const Address &address);
...

private:
uint8_t m_type;
uint8_t m_len;
...

};

6.2 Object base classes

There are three special base classes used in ns-3. Classes that inherit from these base classes can instantiate objects
with special properties. These base classes are:

• class Object

• class ObjectBase

• class SimpleRefCount

27

ns-3 Manual, Release ns-3.18

It is not required that ns-3 objects inherit from these class, but those that do get special properties. Classes deriving
from class Object get the following properties.

• the ns-3 type and attribute system (see Attributes)

• an object aggregation system

• a smart-pointer reference counting system (class Ptr)

Classes that derive from class ObjectBase get the first two properties above, but do not get smart pointers. Classes
that derive from class SimpleRefCount: get only the smart-pointer reference counting system.

In practice, class Object is the variant of the three above that the ns-3 developer will most commonly encounter.

6.3 Memory management and class Ptr

Memory management in a C++ program is a complex process, and is often done incorrectly or inconsistently. We have
settled on a reference counting design described as follows.

All objects using reference counting maintain an internal reference count to determine when an object can safely
delete itself. Each time that a pointer is obtained to an interface, the object’s reference count is incremented by calling
Ref(). It is the obligation of the user of the pointer to explicitly Unref() the pointer when done. When the
reference count falls to zero, the object is deleted.

• When the client code obtains a pointer from the object itself through object creation, or via GetObject, it does
not have to increment the reference count.

• When client code obtains a pointer from another source (e.g., copying a pointer) it must call Ref() to increment
the reference count.

• All users of the object pointer must call Unref() to release the reference.

The burden for calling Unref() is somewhat relieved by the use of the reference counting smart pointer class de-
scribed below.

Users using a low-level API who wish to explicitly allocate non-reference-counted objects on the heap, using operator
new, are responsible for deleting such objects.

6.3.1 Reference counting smart pointer (Ptr)

Calling Ref() and Unref() all the time would be cumbersome, so ns-3 provides a smart pointer class Ptr similar
to Boost::intrusive_ptr. This smart-pointer class assumes that the underlying type provides a pair of Ref
and Unref methods that are expected to increment and decrement the internal refcount of the object instance.

This implementation allows you to manipulate the smart pointer as if it was a normal pointer: you can compare it with
zero, compare it against other pointers, assign zero to it, etc.

It is possible to extract the raw pointer from this smart pointer with the GetPointer() and PeekPointer()
methods.

If you want to store a newed object into a smart pointer, we recommend you to use the CreateObject template functions
to create the object and store it in a smart pointer to avoid memory leaks. These functions are really small convenience
functions and their goal is just to save you a small bit of typing.

28 Chapter 6. Object model

ns-3 Manual, Release ns-3.18

6.4 CreateObject and Create

Objects in C++ may be statically, dynamically, or automatically created. This holds true for ns-3 also, but some objects
in the system have some additional frameworks available. Specifically, reference counted objects are usually allocated
using a templated Create or CreateObject method, as follows.

For objects deriving from class Object::

Ptr<WifiNetDevice> device = CreateObject<WifiNetDevice> ();

Please do not create such objects using operator new; create them using CreateObject() instead.

For objects deriving from class SimpleRefCount, or other objects that support usage of the smart pointer class, a
templated helper function is available and recommended to be used::

Ptr b = Create ();

This is simply a wrapper around operator new that correctly handles the reference counting system.

In summary, use Create if B is not an object but just uses reference counting (e.g. Packet), and use
CreateObject if B derives from ns3::Object.

6.5 Aggregation

The ns-3 object aggregation system is motivated in strong part by a recognition that a common use case for ns-2 has
been the use of inheritance and polymorphism to extend protocol models. For instance, specialized versions of TCP
such as RenoTcpAgent derive from (and override functions from) class TcpAgent.

However, two problems that have arisen in the ns-2 model are downcasts and “weak base class.” Downcasting refers
to the procedure of using a base class pointer to an object and querying it at run time to find out type information, used
to explicitly cast the pointer to a subclass pointer so that the subclass API can be used. Weak base class refers to the
problems that arise when a class cannot be effectively reused (derived from) because it lacks necessary functionality,
leading the developer to have to modify the base class and causing proliferation of base class API calls, some of which
may not be semantically correct for all subclasses.

ns-3 is using a version of the query interface design pattern to avoid these problems. This design is based on ele-
ments of the Component Object Model and GNOME Bonobo although full binary-level compatibility of replaceable
components is not supported and we have tried to simplify the syntax and impact on model developers.

6.6 Exmaples

6.6.1 Aggregation example

Node is a good example of the use of aggregation in ns-3. Note that there are not derived classes of Nodes in ns-3
such as class InternetNode. Instead, components (protocols) are aggregated to a node. Let’s look at how some
Ipv4 protocols are added to a node.:

static void
AddIpv4Stack(Ptr<Node> node)
{

Ptr<Ipv4L3Protocol> ipv4 = CreateObject<Ipv4L3Protocol> ();
ipv4->SetNode (node);
node->AggregateObject (ipv4);
Ptr<Ipv4Impl> ipv4Impl = CreateObject<Ipv4Impl> ();

6.4. CreateObject and Create 29

http://en.wikipedia.org/wiki/Component_Object_Model
http://en.wikipedia.org/wiki/Bonobo_(component_model)

ns-3 Manual, Release ns-3.18

ipv4Impl->SetIpv4 (ipv4);
node->AggregateObject (ipv4Impl);

}

Note that the Ipv4 protocols are created using CreateObject(). Then, they are aggregated to the node. In this
manner, the Node base class does not need to be edited to allow users with a base class Node pointer to access the Ipv4
interface; users may ask the node for a pointer to its Ipv4 interface at runtime. How the user asks the node is described
in the next subsection.

Note that it is a programming error to aggregate more than one object of the same type to an ns3::Object. So, for
instance, aggregation is not an option for storing all of the active sockets of a node.

6.6.2 GetObject example

GetObject is a type-safe way to achieve a safe downcasting and to allow interfaces to be found on an object.

Consider a node pointer m_node that points to a Node object that has an implementation of IPv4 previously aggregated
to it. The client code wishes to configure a default route. To do so, it must access an object within the node that has an
interface to the IP forwarding configuration. It performs the following::

Ptr<Ipv4> ipv4 = m_node->GetObject<Ipv4> ();

If the node in fact does not have an Ipv4 object aggregated to it, then the method will return null. Therefore, it is good
practice to check the return value from such a function call. If successful, the user can now use the Ptr to the Ipv4
object that was previously aggregated to the node.

Another example of how one might use aggregation is to add optional models to objects. For instance, an existing
Node object may have an “Energy Model” object aggregated to it at run time (without modifying and recompiling the
node class). An existing model (such as a wireless net device) can then later “GetObject” for the energy model and
act appropriately if the interface has been either built in to the underlying Node object or aggregated to it at run time.
However, other nodes need not know anything about energy models.

We hope that this mode of programming will require much less need for developers to modify the base classes.

6.7 Object factories

A common use case is to create lots of similarly configured objects. One can repeatedly call CreateObject() but
there is also a factory design pattern in use in the ns-3 system. It is heavily used in the “helper” API.

Class ObjectFactory can be used to instantiate objects and to configure the attributes on those objects:

void SetTypeId (TypeId tid);
void Set (std::string name, const AttributeValue &value);
Ptr<T> Create (void) const;

The first method allows one to use the ns-3 TypeId system to specify the type of objects created. The second allows
one to set attributes on the objects to be created, and the third allows one to create the objects themselves.

For example:

ObjectFactory factory;
// Make this factory create objects of type FriisPropagationLossModel
factory.SetTypeId ("ns3::FriisPropagationLossModel")
// Make this factory object change a default value of an attribute, for
// subsequently created objects
factory.Set ("SystemLoss", DoubleValue (2.0));
// Create one such object

30 Chapter 6. Object model

ns-3 Manual, Release ns-3.18

Ptr<Object> object = factory.Create ();
factory.Set ("SystemLoss", DoubleValue (3.0));
// Create another object with a different SystemLoss
Ptr<Object> object = factory.Create ();

6.8 Downcasting

A question that has arisen several times is, “If I have a base class pointer (Ptr) to an object and I want the derived class
pointer, should I downcast (via C++ dynamic cast) to get the derived pointer, or should I use the object aggregation
system to GetObject<> () to find a Ptr to the interface to the subclass API?”

The answer to this is that in many situations, both techniques will work. ns-3 provides a templated function for making
the syntax of Object dynamic casting much more user friendly::

template <typename T1, typename T2>
Ptr<T1>
DynamicCast (Ptr<T2> const&p)
{

return Ptr<T1> (dynamic_cast<T1 *> (PeekPointer (p)));
}

DynamicCast works when the programmer has a base type pointer and is testing against a subclass pointer. GetObject
works when looking for different objects aggregated, but also works with subclasses, in the same way as DynamicCast.
If unsure, the programmer should use GetObject, as it works in all cases. If the programmer knows the class hierarchy
of the object under consideration, it is more direct to just use DynamicCast.

6.8. Downcasting 31

ns-3 Manual, Release ns-3.18

32 Chapter 6. Object model

CHAPTER

SEVEN

ATTRIBUTES

In ns-3 simulations, there are two main aspects to configuration:

• the simulation topology and how objects are connected

• the values used by the models instantiated in the topology

This chapter focuses on the second item above: how the many values in use in ns-3 are organized, documented, and
modifiable by ns-3 users. The ns-3 attribute system is also the underpinning of how traces and statistics are gathered
in the simulator.

Before delving into details of the attribute value system, it will help to review some basic properties of class
ns3::Object.

7.1 Object Overview

ns-3 is fundamentally a C++ object-based system. By this we mean that new C++ classes (types) can be declared,
defined, and subclassed as usual.

Many ns-3 objects inherit from the ns3::Object base class. These objects have some additional properties that we
exploit for organizing the system and improving the memory management of our objects:

• a “metadata” system that links the class name to a lot of meta-information about the object, including the base
class of the subclass, the set of accessible constructors in the subclass, and the set of “attributes” of the subclass

• a reference counting smart pointer implementation, for memory management.

ns-3 objects that use the attribute system derive from either ns3::Object or ns3::ObjectBase. Most ns-3
objects we will discuss derive from ns3::Object, but a few that are outside the smart pointer memory management
framework derive from ns3::ObjectBase.

Let’s review a couple of properties of these objects.

7.2 Smart pointers

As introduced in the ns-3 tutorial, ns-3 objects are memory managed by a reference counting smart pointer implemen-
tation, class ns3::Ptr.

Smart pointers are used extensively in the ns-3 APIs, to avoid passing references to heap-allocated objects that may
cause memory leaks. For most basic usage (syntax), treat a smart pointer like a regular pointer::

33

http://en.wikipedia.org/wiki/Smart_pointer
http://en.wikipedia.org/wiki/Smart_pointer

ns-3 Manual, Release ns-3.18

Ptr<WifiNetDevice> nd = ...;
nd->CallSomeFunction ();
// etc.

7.2.1 CreateObject

As we discussed above in Memory management and class Ptr, at the lowest-level API, objects of type ns3::Object
are not instantiated using operator new as usual but instead by a templated function called CreateObject().

A typical way to create such an object is as follows::

Ptr<WifiNetDevice> nd = CreateObject<WifiNetDevice> ();

You can think of this as being functionally equivalent to::

WifiNetDevice* nd = new WifiNetDevice ();

Objects that derive from ns3::Object must be allocated on the heap using CreateObject(). Those deriving from
ns3::ObjectBase, such as ns-3 helper functions and packet headers and trailers, can be allocated on the stack.

In some scripts, you may not see a lot of CreateObject() calls in the code; this is because there are some helper objects
in effect that are doing the CreateObject()s for you.

7.2.2 TypeId

ns-3 classes that derive from class ns3::Object can include a metadata class called TypeId that records meta-
information about the class, for use in the object aggregation and component manager systems:

• a unique string identifying the class

• the base class of the subclass, within the metadata system

• the set of accessible constructors in the subclass

7.2.3 Object Summary

Putting all of these concepts together, let’s look at a specific example: class ns3::Node.

The public header file node.h has a declaration that includes a static GetTypeId function call::

class Node : public Object
{
public:

static TypeId GetTypeId (void);
...

This is defined in the node.cc file as follows::

TypeId
Node::GetTypeId (void)
{

static TypeId tid = TypeId ("ns3::Node")
.SetParent<Object> ()
.AddConstructor<Node> ()
.AddAttribute ("DeviceList", "The list of devices associated to this Node.",

ObjectVectorValue (),
MakeObjectVectorAccessor (&Node::m_devices),

34 Chapter 7. Attributes

ns-3 Manual, Release ns-3.18

MakeObjectVectorChecker<NetDevice> ())
.AddAttribute ("ApplicationList", "The list of applications associated to this Node.",

ObjectVectorValue (),
MakeObjectVectorAccessor (&Node::m_applications),
MakeObjectVectorChecker<Application> ())

.AddAttribute ("Id", "The id (unique integer) of this Node.",
TypeId::ATTR_GET, // allow only getting it.
UintegerValue (0),
MakeUintegerAccessor (&Node::m_id),
MakeUintegerChecker<uint32_t> ())

;
return tid;

}

Consider the TypeId of an ns-3 Object class as an extended form of run time type information (RTTI). The C++
language includes a simple kind of RTTI in order to support dynamic_cast and typeid operators.

The “.SetParent<Object> ()” call in the declaration above is used in conjunction with our object aggregation
mechanisms to allow safe up- and down-casting in inheritance trees during GetObject.

The “.AddConstructor<Node> ()” call is used in conjunction with our abstract object factory mechanisms to
allow us to construct C++ objects without forcing a user to know the concrete class of the object she is building.

The three calls to “.AddAttribute” associate a given string with a strongly typed value in the class. Notice
that you must provide a help string which may be displayed, for example, via command line processors. Each
Attribute is associated with mechanisms for accessing the underlying member variable in the object (for example,
MakeUintegerAccessor tells the generic Attribute code how to get to the node ID above). There are also
“Checker” methods which are used to validate values.

When users want to create Nodes, they will usually call some form of CreateObject,:

Ptr<Node> n = CreateObject<Node> ();

or more abstractly, using an object factory, you can create a Node object without even knowing the concrete C++ type:

ObjectFactory factory;
const std::string typeId = "ns3::Node’’;
factory.SetTypeId (typeId);
Ptr<Object> node = factory.Create <Object> ();

Both of these methods result in fully initialized attributes being available in the resulting Object instances.

We next discuss how attributes (values associated with member variables or functions of the class) are plumbed into
the above TypeId.

7.3 Attribute Overview

The goal of the attribute system is to organize the access of internal member objects of a simulation. This goal arises
because, typically in simulation, users will cut and paste/modify existing simulation scripts, or will use higher-level
simulation constructs, but often will be interested in studying or tracing particular internal variables. For instance, use
cases such as:

• “I want to trace the packets on the wireless interface only on the first access point”

• “I want to trace the value of the TCP congestion window (every time it changes) on a particular TCP socket”

• “I want a dump of all values that were used in my simulation.”

7.3. Attribute Overview 35

ns-3 Manual, Release ns-3.18

Similarly, users may want fine-grained access to internal variables in the simulation, or may want to broadly change the
initial value used for a particular parameter in all subsequently created objects. Finally, users may wish to know what
variables are settable and retrievable in a simulation configuration. This is not just for direct simulation interaction
on the command line; consider also a (future) graphical user interface that would like to be able to provide a feature
whereby a user might right-click on an node on the canvas and see a hierarchical, organized list of parameters that are
settable on the node and its constituent member objects, and help text and default values for each parameter.

7.3.1 Functional overview

We provide a way for users to access values deep in the system, without having to plumb accessors (pointers) through
the system and walk pointer chains to get to them. Consider a class DropTailQueue that has a member variable that is
an unsigned integer m_maxPackets; this member variable controls the depth of the queue.

If we look at the declaration of DropTailQueue, we see the following::

class DropTailQueue : public Queue {
public:

static TypeId GetTypeId (void);
...

private:
std::queue<Ptr<Packet> > m_packets;
uint32_t m_maxPackets;

};

Let’s consider things that a user may want to do with the value of m_maxPackets:

• Set a default value for the system, such that whenever a new DropTailQueue is created, this member is initialized
to that default.

• Set or get the value on an already instantiated queue.

The above things typically require providing Set() and Get() functions, and some type of global default value.

In the ns-3 attribute system, these value definitions and accessor functions are moved into the TypeId class; e.g.::

NS_OBJECT_ENSURE_REGISTERED (DropTailQueue);

TypeId DropTailQueue::GetTypeId (void)
{

static TypeId tid = TypeId ("ns3::DropTailQueue")
.SetParent<Queue> ()
.AddConstructor<DropTailQueue> ()
.AddAttribute ("MaxPackets",

"The maximum number of packets accepted by this DropTailQueue.",
UintegerValue (100),
MakeUintegerAccessor (&DropTailQueue::m_maxPackets),
MakeUintegerChecker<uint32_t> ())

;

return tid;
}

The AddAttribute() method is performing a number of things with this value:

• Binding the variable m_maxPackets to a string “MaxPackets”

• Providing a default value (100 packets)

• Providing some help text defining the value

36 Chapter 7. Attributes

ns-3 Manual, Release ns-3.18

• Providing a “checker” (not used in this example) that can be used to set bounds on the allowable range of values

The key point is that now the value of this variable and its default value are accessible in the attribute namespace,
which is based on strings such as “MaxPackets” and TypeId strings. In the next section, we will provide an example
script that shows how users may manipulate these values.

Note that initialization of the attribute relies on the macro NS_OBJECT_ENSURE_REGISTERED (DropTailQueue)
being called; if you leave this out of your new class implementation, your attributes will not be initialized correctly.

While we have described how to create attributes, we still haven’t described how to access and manage these values.
For instance, there is no globals.h header file where these are stored; attributes are stored with their classes.
Questions that naturally arise are how do users easily learn about all of the attributes of their models, and how does a
user access these attributes, or document their values as part of the record of their simulation?

7.3.2 Default values and command-line arguments

Let’s look at how a user script might access these values. This is based on the script found at
src/point-to-point/examples/main-attribute-value.cc, with some details stripped out.:

//
// This is a basic example of how to use the attribute system to
// set and get a value in the underlying system; namely, an unsigned
// integer of the maximum number of packets in a queue
//

int
main (int argc, char *argv[])
{

// By default, the MaxPackets attribute has a value of 100 packets
// (this default can be observed in the function DropTailQueue::GetTypeId)
//
// Here, we set it to 80 packets. We could use one of two value types:
// a string-based value or a Uinteger value
Config::SetDefault ("ns3::DropTailQueue::MaxPackets", StringValue ("80"));
// The below function call is redundant
Config::SetDefault ("ns3::DropTailQueue::MaxPackets", UintegerValue (80));

// Allow the user to override any of the defaults and the above
// SetDefaults() at run-time, via command-line arguments
CommandLine cmd;
cmd.Parse (argc, argv);

The main thing to notice in the above are the two calls to Config::SetDefault. This is how we set the default
value for all subsequently instantiated DropTailQueues. We illustrate that two types of Value classes, a StringValue and
a UintegerValue class, can be used to assign the value to the attribute named by “ns3::DropTailQueue::MaxPackets”.

Now, we will create a few objects using the low-level API; here, our newly created queues will not have a
m_maxPackets initialized to 100 packets but to 80 packets, because of what we did above with default values.:

Ptr<Node> n0 = CreateObject<Node> ();

Ptr<PointToPointNetDevice> net0 = CreateObject<PointToPointNetDevice> ();
n0->AddDevice (net0);

Ptr<Queue> q = CreateObject<DropTailQueue> ();
net0->AddQueue(q);

7.3. Attribute Overview 37

ns-3 Manual, Release ns-3.18

At this point, we have created a single node (Node 0) and a single PointToPointNetDevice (NetDevice 0) and added a
DropTailQueue to it.

Now, we can manipulate the MaxPackets value of the already instantiated DropTailQueue. Here are various ways to
do that.

7.3.3 Pointer-based access

We assume that a smart pointer (Ptr) to a relevant network device is in hand; in the current example, it is the net0
pointer.

One way to change the value is to access a pointer to the underlying queue and modify its attribute.

First, we observe that we can get a pointer to the (base class) queue via the PointToPointNetDevice attributes, where
it is called TxQueue:

PointerValue tmp;
net0->GetAttribute ("TxQueue", tmp);
Ptr<Object> txQueue = tmp.GetObject ();

Using the GetObject function, we can perform a safe downcast to a DropTailQueue, where MaxPackets is a member:

Ptr<DropTailQueue> dtq = txQueue->GetObject <DropTailQueue> ();
NS_ASSERT (dtq != 0);

Next, we can get the value of an attribute on this queue. We have introduced wrapper “Value” classes for the underlying
data types, similar to Java wrappers around these types, since the attribute system stores values and not disparate types.
Here, the attribute value is assigned to a UintegerValue, and the Get() method on this value produces the (unwrapped)
uint32_t.:

UintegerValue limit;
dtq->GetAttribute ("MaxPackets", limit);
NS_LOG_INFO ("1. dtq limit: " << limit.Get () << " packets");

Note that the above downcast is not really needed; we could have done the same using the Ptr<Queue> even though
the attribute is a member of the subclass:

txQueue->GetAttribute ("MaxPackets", limit);
NS_LOG_INFO ("2. txQueue limit: " << limit.Get () << " packets");

Now, let’s set it to another value (60 packets):

txQueue->SetAttribute("MaxPackets", UintegerValue (60));
txQueue->GetAttribute ("MaxPackets", limit);
NS_LOG_INFO ("3. txQueue limit changed: " << limit.Get () << " packets");

7.3.4 Namespace-based access

An alternative way to get at the attribute is to use the configuration namespace. Here, this attribute resides on a known
path in this namespace; this approach is useful if one doesn’t have access to the underlying pointers and would like to
configure a specific attribute with a single statement.:

Config::Set ("/NodeList/0/DeviceList/0/TxQueue/MaxPackets", UintegerValue (25));
txQueue->GetAttribute ("MaxPackets", limit);
NS_LOG_INFO ("4. txQueue limit changed through namespace: " <<

limit.Get () << " packets");

38 Chapter 7. Attributes

ns-3 Manual, Release ns-3.18

We could have also used wildcards to set this value for all nodes and all net devices (which in this simple example has
the same effect as the previous Set()):

Config::Set ("/NodeList/*/DeviceList/*/TxQueue/MaxPackets", UintegerValue (15));
txQueue->GetAttribute ("MaxPackets", limit);
NS_LOG_INFO ("5. txQueue limit changed through wildcarded namespace: " <<

limit.Get () << " packets");

7.3.5 Object Name Service-based access

Another way to get at the attribute is to use the object name service facility. Here, this attribute is found using a name
string. This approach is useful if one doesn’t have access to the underlying pointers and it is difficult to determine the
required concrete configuration namespaced path.

Names::Add ("server", serverNode);
Names::Add ("server/eth0", serverDevice);

...

Config::Set ("/Names/server/eth0/TxQueue/MaxPackets", UintegerValue (25));

See Object names for a fuller treatment of the ns-3 configuration namespace.

7.3.6 Setting through constructors helper classes

Arbitrary combinations of attributes can be set and fetched from the helper and low-level APIs; either from the con-
structors themselves::

Ptr<Object> p = CreateObject<MyNewObject> ("n1", v1, "n2", v2, ...);

or from the higher-level helper APIs, such as::

mobility.SetPositionAllocator ("ns3::GridPositionAllocator",
"MinX", DoubleValue (-100.0),
"MinY", DoubleValue (-100.0),
"DeltaX", DoubleValue (5.0),
"DeltaY", DoubleValue (20.0),
"GridWidth", UintegerValue (20),
"LayoutType", StringValue ("RowFirst"));

7.3.7 Implementation details

Value classes

Readers will note the new FooValue classes which are subclasses of the AttributeValue base class. These can be
thought of as an intermediate class that can be used to convert from raw types to the Values that are used by the
attribute system. Recall that this database is holding objects of many types with a single generic type. Conversions to
this type can either be done using an intermediate class (IntegerValue, DoubleValue for “floating point”) or via strings.
Direct implicit conversion of types to Value is not really practical. So in the above, users have a choice of using strings
or values::

p->Set ("cwnd", StringValue ("100")); // string-based setter
p->Set ("cwnd", IntegerValue (100)); // integer-based setter

7.3. Attribute Overview 39

ns-3 Manual, Release ns-3.18

The system provides some macros that help users declare and define new AttributeValue subclasses for new types that
they want to introduce into the attribute system:

• ATTRIBUTE_HELPER_HEADER

• ATTRIBUTE_HELPER_CPP

Initialization order

Attributes in the system must not depend on the state of any other Attribute in this system. This is because an ordering
of Attribute initialization is not specified, nor enforced, by the system. A specific example of this can be seen in
automated configuration programs such as ns3::ConfigStore. Although a given model may arrange it so that
Attributes are initialized in a particular order, another automatic configurator may decide independently to change
Attributes in, for example, alphabetic order.

Because of this non-specific ordering, no Attribute in the system may have any dependence on any other Attribute. As
a corollary, Attribute setters must never fail due to the state of another Attribute. No Attribute setter may change (set)
any other Attribute value as a result of changing its value.

This is a very strong restriction and there are cases where Attributes must set consistently to allow correct oper-
ation. To this end we do allow for consistency checking when the attribute is used (cf. NS_ASSERT_MSG or
NS_ABORT_MSG).

In general, the attribute code to assign values to the underlying class member variables is executed after an object is
constructed. But what if you need the values assigned before the constructor body executes, because you need them
in the logic of the constructor? There is a way to do this, used for example in the class ns3::ConfigStore: call
ObjectBase::ConstructSelf () as follows::

ConfigStore::ConfigStore ()
{

ObjectBase::ConstructSelf (AttributeConstructionList ());
// continue on with constructor.

}

Beware that the object and all its derived classes must also implement a virtual TypeId
GetInstanceTypeId (void) const; method. Otherwise the ObjectBase::ConstructSelf
() will not be able to read the attributes.

7.4 Extending attributes

The ns-3 system will place a number of internal values under the attribute system, but undoubtedly users will want to
extend this to pick up ones we have missed, or to add their own classes to this.

7.4.1 Adding an existing internal variable to the metadata system

Consider this variable in class TcpSocket::

uint32_t m_cWnd; // Congestion window

Suppose that someone working with TCP wanted to get or set the value of that variable using the metadata system. If
it were not already provided by ns-3, the user could declare the following addition in the runtime metadata system (to
the TypeId declaration for TcpSocket)::

40 Chapter 7. Attributes

ns-3 Manual, Release ns-3.18

.AddAttribute ("Congestion window",
"Tcp congestion window (bytes)",
UintegerValue (1),
MakeUintegerAccessor (&TcpSocket::m_cWnd),
MakeUintegerChecker<uint16_t> ())

Now, the user with a pointer to the TcpSocket can perform operations such as setting and getting the value, without
having to add these functions explicitly. Furthermore, access controls can be applied, such as allowing the parameter
to be read and not written, or bounds checking on the permissible values can be applied.

7.4.2 Adding a new TypeId

Here, we discuss the impact on a user who wants to add a new class to ns-3; what additional things must be done to
hook it into this system.

We’ve already introduced what a TypeId definition looks like::

TypeId
RandomWalk2dMobilityModel::GetTypeId (void)
{

static TypeId tid = TypeId ("ns3::RandomWalk2dMobilityModel")
.SetParent<MobilityModel> ()
.SetGroupName ("Mobility")
.AddConstructor<RandomWalk2dMobilityModel> ()
.AddAttribute ("Bounds",

"Bounds of the area to cruise.",
RectangleValue (Rectangle (0.0, 0.0, 100.0, 100.0)),
MakeRectangleAccessor (&RandomWalk2dMobilityModel::m_bounds),
MakeRectangleChecker ())

.AddAttribute ("Time",
"Change current direction and speed after moving for this delay.",
TimeValue (Seconds (1.0)),
MakeTimeAccessor (&RandomWalk2dMobilityModel::m_modeTime),
MakeTimeChecker ())

// etc (more parameters).
;

return tid;
}

The declaration for this in the class declaration is one-line public member method::

public:
static TypeId GetTypeId (void);

Typical mistakes here involve:

• Not calling the SetParent method or calling it with the wrong type

• Not calling the AddConstructor method of calling it with the wrong type

• Introducing a typographical error in the name of the TypeId in its constructor

• Not using the fully-qualified c++ typename of the enclosing c++ class as the name of the TypeId

None of these mistakes can be detected by the ns-3 codebase so, users are advised to check carefully multiple times
that they got these right.

7.4. Extending attributes 41

ns-3 Manual, Release ns-3.18

7.5 Adding new class type to the attribute system

From the perspective of the user who writes a new class in the system and wants to hook it in to the at-
tribute system, there is mainly the matter of writing the conversions to/from strings and attribute values. Most
of this can be copy/pasted with macro-ized code. For instance, consider class declaration for Rectangle in the
src/mobility/model directory:

7.5.1 Header file

/**
* \brief a 2d rectangle

*/
class Rectangle
{

...

double xMin;
double xMax;
double yMin;
double yMax;

};

One macro call and two operators, must be added below the class declaration in order to turn a Rectangle into a value
usable by the Attribute system::

std::ostream &operator << (std::ostream &os, const Rectangle &rectangle);
std::istream &operator >> (std::istream &is, Rectangle &rectangle);

ATTRIBUTE_HELPER_HEADER (Rectangle);

7.5.2 Implementation file

In the class definition (.cc file), the code looks like this::

ATTRIBUTE_HELPER_CPP (Rectangle);

std::ostream &
operator << (std::ostream &os, const Rectangle &rectangle)
{

os << rectangle.xMin << "|" << rectangle.xMax << "|" << rectangle.yMin << "|"
<< rectangle.yMax;

return os;
}
std::istream &
operator >> (std::istream &is, Rectangle &rectangle)
{
char c1, c2, c3;
is >> rectangle.xMin >> c1 >> rectangle.xMax >> c2 >> rectangle.yMin >> c3

>> rectangle.yMax;
if (c1 != ’|’ ||

c2 != ’|’ ||
c3 != ’|’)

{
is.setstate (std::ios_base::failbit);

}

42 Chapter 7. Attributes

ns-3 Manual, Release ns-3.18

return is;
}

These stream operators simply convert from a string representation of the Rectangle (“xMin|xMax|yMin|yMax”) to
the underlying Rectangle, and the modeler must specify these operators and the string syntactical representation of an
instance of the new class.

7.6 ConfigStore

The ConfigStore is a specialized database for attribute values and default values. Although it is a separately maintained
module in src/config-store/ directory, we document it here because of its sole dependency on ns-3 core module
and attributes.

Values for ns-3 attributes can be stored in an ASCII or XML text file and loaded into a future simula-
tion. This feature is known as the ns-3 ConfigStore. We can explore this system by using an example from
src/config-store/examples/config-store-save.cc.

First, all users must include the following statement::

#include "ns3/config-store-module.h"

Next, this program adds a sample object A to show how the system is extended::

class A : public Object
{
public:

static TypeId GetTypeId (void) {
static TypeId tid = TypeId ("ns3::A")
.SetParent<Object> ()
.AddAttribute ("TestInt16", "help text",

IntegerValue (-2),
MakeIntegerAccessor (&A::m_int16),
MakeIntegerChecker<int16_t> ())

;
return tid;

}
int16_t m_int16;

};

NS_OBJECT_ENSURE_REGISTERED (A);

Next, we use the Config subsystem to override the defaults in a couple of ways::

Config::SetDefault ("ns3::A::TestInt16", IntegerValue (-5));

Ptr<A> a_obj = CreateObject<A> ();
NS_ABORT_MSG_UNLESS (a_obj->m_int16 == -5, "Cannot set A’s integer attribute via Config::SetDefault");

Ptr<A> a2_obj = CreateObject<A> ();
a2_obj->SetAttribute ("TestInt16", IntegerValue (-3));
IntegerValue iv;
a2_obj->GetAttribute ("TestInt16", iv);
NS_ABORT_MSG_UNLESS (iv.Get () == -3, "Cannot set A’s integer attribute via SetAttribute");

The next statement is necessary to make sure that (one of) the objects created is rooted in the configuration namespace
as an object instance. This normally happens when you aggregate objects to ns3::Node or ns3::Channel but here, since
we are working at the core level, we need to create a new root namespace object::

7.6. ConfigStore 43

ns-3 Manual, Release ns-3.18

Config::RegisterRootNamespaceObject (a2_obj);

Next, we want to output the configuration store. The examples show how to do it in two formats, XML and raw text.
In practice, one should perform this step just before calling Simulator::Run (); it will allow the configuration
to be saved just before running the simulation.

There are three attributes that govern the behavior of the ConfigStore: “Mode”, “Filename”, and “FileFormat”.
The Mode (default “None”) configures whether ns-3 should load configuration from a previously saved file (spec-
ify “Mode=Load”) or save it to a file (specify “Mode=Save”). The Filename (default “”) is where the ConfigStore
should store its output data. The FileFormat (default “RawText”) governs whether the ConfigStore format is Xml or
RawText format.

The example shows::

Config::SetDefault ("ns3::ConfigStore::Filename", StringValue ("output-attributes.xml"));
Config::SetDefault ("ns3::ConfigStore::FileFormat", StringValue ("Xml"));
Config::SetDefault ("ns3::ConfigStore::Mode", StringValue ("Save"));
ConfigStore outputConfig;
outputConfig.ConfigureDefaults ();
outputConfig.ConfigureAttributes ();

// Output config store to txt format
Config::SetDefault ("ns3::ConfigStore::Filename", StringValue ("output-attributes.txt"));
Config::SetDefault ("ns3::ConfigStore::FileFormat", StringValue ("RawText"));
Config::SetDefault ("ns3::ConfigStore::Mode", StringValue ("Save"));
ConfigStore outputConfig2;
outputConfig2.ConfigureDefaults ();
outputConfig2.ConfigureAttributes ();

Simulator::Run ();

Simulator::Destroy ();

After running, you can open the output-attributes.txt file and see:

default ns3::RealtimeSimulatorImpl::SynchronizationMode "BestEffort"
default ns3::RealtimeSimulatorImpl::HardLimit "+100000000.0ns"
default ns3::PcapFileWrapper::CaptureSize "65535"
default ns3::PacketSocket::RcvBufSize "131072"
default ns3::ErrorModel::IsEnabled "true"
default ns3::RateErrorModel::ErrorUnit "EU_BYTE"
default ns3::RateErrorModel::ErrorRate "0"
default ns3::RateErrorModel::RanVar "Uniform:0:1"
default ns3::DropTailQueue::Mode "Packets"
default ns3::DropTailQueue::MaxPackets "100"
default ns3::DropTailQueue::MaxBytes "6553500"
default ns3::Application::StartTime "+0.0ns"
default ns3::Application::StopTime "+0.0ns"
default ns3::ConfigStore::Mode "Save"
default ns3::ConfigStore::Filename "output-attributes.txt"
default ns3::ConfigStore::FileFormat "RawText"
default ns3::A::TestInt16 "-5"
global RngSeed "1"
global RngRun "1"
global SimulatorImplementationType "ns3::DefaultSimulatorImpl"
global SchedulerType "ns3::MapScheduler"
global ChecksumEnabled "false"
value /$ns3::A/TestInt16 "-3"

44 Chapter 7. Attributes

ns-3 Manual, Release ns-3.18

In the above, all of the default values for attributes for the core module are shown. Then, all the values for the ns-3
global values are recorded. Finally, the value of the instance of A that was rooted in the configuration namespace is
shown. In a real ns-3 program, many more models, attributes, and defaults would be shown.

An XML version also exists in output-attributes.xml:

<?xml version="1.0" encoding="UTF-8"?>
<ns3>
<default name="ns3::RealtimeSimulatorImpl::SynchronizationMode" value="BestEffort"/>
<default name="ns3::RealtimeSimulatorImpl::HardLimit" value="+100000000.0ns"/>
<default name="ns3::PcapFileWrapper::CaptureSize" value="65535"/>
<default name="ns3::PacketSocket::RcvBufSize" value="131072"/>
<default name="ns3::ErrorModel::IsEnabled" value="true"/>
<default name="ns3::RateErrorModel::ErrorUnit" value="EU_BYTE"/>
<default name="ns3::RateErrorModel::ErrorRate" value="0"/>
<default name="ns3::RateErrorModel::RanVar" value="Uniform:0:1"/>
<default name="ns3::DropTailQueue::Mode" value="Packets"/>
<default name="ns3::DropTailQueue::MaxPackets" value="100"/>
<default name="ns3::DropTailQueue::MaxBytes" value="6553500"/>
<default name="ns3::Application::StartTime" value="+0.0ns"/>
<default name="ns3::Application::StopTime" value="+0.0ns"/>
<default name="ns3::ConfigStore::Mode" value="Save"/>
<default name="ns3::ConfigStore::Filename" value="output-attributes.xml"/>
<default name="ns3::ConfigStore::FileFormat" value="Xml"/>
<default name="ns3::A::TestInt16" value="-5"/>
<global name="RngSeed" value="1"/>
<global name="RngRun" value="1"/>
<global name="SimulatorImplementationType" value="ns3::DefaultSimulatorImpl"/>
<global name="SchedulerType" value="ns3::MapScheduler"/>
<global name="ChecksumEnabled" value="false"/>
<value path="/$ns3::A/TestInt16" value="-3"/>

</ns3>

This file can be archived with your simulation script and output data.

While it is possible to generate a sample config file and lightly edit it to change a couple of values, there are cases
where this process will not work because the same value on the same object can appear multiple times in the same
automatically-generated configuration file under different configuration paths.

As such, the best way to use this class is to use it to generate an initial configuration file, extract from that configuration
file only the strictly necessary elements, and move these minimal elements to a new configuration file which can then
safely be edited and loaded in a subsequent simulation run.

When the ConfigStore object is instantiated, its attributes Filename, Mode, and FileFormat must be set, either via
command-line or via program statements.

As a more complicated example, let’s assume that we want to read in a configuration of defaults from an input file
named “input-defaults.xml”, and write out the resulting attributes to a separate file called “output-attributes.xml”.
(Note– to get this input xml file to begin with, it is sometimes helpful to run the program to generate an output xml
file first, then hand-edit that file and re-input it for the next simulation run).:

#include "ns3/config-store-module.h"
...
int main (...)
{

Config::SetDefault ("ns3::ConfigStore::Filename", StringValue ("input-defaults.xml"));
Config::SetDefault ("ns3::ConfigStore::Mode", StringValue ("Load"));
Config::SetDefault ("ns3::ConfigStore::FileFormat", StringValue ("Xml"));
ConfigStore inputConfig;

7.6. ConfigStore 45

ns-3 Manual, Release ns-3.18

inputConfig.ConfigureDefaults ();

//
// Allow the user to override any of the defaults and the above Bind() at
// run-time, via command-line arguments
//
CommandLine cmd;
cmd.Parse (argc, argv);

// setup topology
...

// Invoke just before entering Simulator::Run ()
Config::SetDefault ("ns3::ConfigStore::Filename", StringValue ("output-attributes.xml"));
Config::SetDefault ("ns3::ConfigStore::Mode", StringValue ("Save"));
ConfigStore outputConfig;
outputConfig.ConfigureAttributes ();
Simulator::Run ();

}

7.6.1 GTK-based ConfigStore

There is a GTK-based front end for the ConfigStore. This allows users to use a GUI to access and change variables.
Screenshots of this feature are available in the |ns3| Overview presentation.

To use this feature, one must install libgtk and libgtk-dev; an example Ubuntu installation command is:

$ sudo apt-get install libgtk2.0-0 libgtk2.0-dev

To check whether it is configured or not, check the output of the step:

$./waf configure --enable-examples --enable-tests

---- Summary of optional NS-3 features:
Python Bindings : enabled
Python API Scanning Support : enabled
NS-3 Click Integration : enabled
GtkConfigStore : not enabled (library ’gtk+-2.0 >= 2.12’ not found)

In the above example, it was not enabled, so it cannot be used until a suitable version is installed and:

$./waf configure --enable-examples --enable-tests
$./waf

is rerun.

Usage is almost the same as the non-GTK-based version, but there are no ConfigStore attributes involved::

// Invoke just before entering Simulator::Run ()
GtkConfigStore config;
config.ConfigureDefaults ();
config.ConfigureAttributes ();

Now, when you run the script, a GUI should pop up, allowing you to open menus of attributes on different
nodes/objects, and then launch the simulation execution when you are done.

46 Chapter 7. Attributes

http://www.nsnam.org/docs/ns-3-overview.pdf

ns-3 Manual, Release ns-3.18

7.6.2 Future work

There are a couple of possible improvements:

• save a unique version number with date and time at start of file

• save rng initial seed somewhere.

• make each RandomVariable serialize its own initial seed and re-read it later

7.6. ConfigStore 47

ns-3 Manual, Release ns-3.18

48 Chapter 7. Attributes

CHAPTER

EIGHT

OBJECT NAMES

Placeholder chapter

49

ns-3 Manual, Release ns-3.18

50 Chapter 8. Object names

CHAPTER

NINE

LOGGING

The ns-3 logging facility can be used to monitor or debug the progress of simulation programs. Logging output can
be enabled by program statements in your main() program or by the use of the NS_LOG environment variable.

Logging statements are not compiled into optimized builds of ns-3. To use logging, one must build the (default) debug
build of ns-3.

The project makes no guarantee about whether logging output will remain the same over time. Users are cautioned
against building simulation output frameworks on top of logging code, as the output and the way the output is enabled
may change over time.

9.1 Logging overview

ns-3 logging statements are typically used to log various program execution events, such as the occurrence of simula-
tion events or the use of a particular function.

For example, this code snippet is from Ipv4L3Protocol::IsDestinationAddress():

if (address == iaddr.GetBroadcast ())
{
NS_LOG_LOGIC ("For me (interface broadcast address)");
return true;

}

If logging has been enabled for the Ipv4L3Protocol component at a level of LOGIC or above (see below about
logging levels), the statement will be printed out; otherwise, it will be suppressed.

9.1.1 Logging levels

The following levels are defined; each level will enable the levels above it, with the ALL level being most verbose:

1. LOG_NONE: the default, no logging

2. LOG_ERROR: serious error messages only

3. LOG_WARN: warning messages

4. LOG_DEBUG: for use in debugging

5. LOG_FUNCTION: function tracing

6. LOG_LOGIC: control flow tracing within functions

7. LOG_ALL: print everything

51

ns-3 Manual, Release ns-3.18

A special logging level will cause logging output to unconditionally appear on std::clog, regardless of whether
the user has explicitly enabled logging. This macro, NS_LOG_UNCOND(), can be used like a kind of printf() in
your code. An example can be found in scratch/scratch-simulator.cc:

NS_LOG_UNCOND ("Scratch Simulator");

9.1.2 Logging prefixes

This section still needs documentation; bug 1496 is open on this:

$ NS_LOG="*=all|prefix_all" ./waf --run scratch-simulator
Scratch Simulator
ScratchSimulator:main(): [ERROR] error message
ScratchSimulator:main(): [WARN] warn message
ScratchSimulator:main(): [DEBUG] debug message
ScratchSimulator:main(): [INFO] info message
ScratchSimulator:main(function)
ScratchSimulator:main(): [LOGIC] logic message

9.1.3 Enabling logging output

There are two ways that users typically control logging output. The first is by setting an NS_LOG environment variable;
e.g.:

$ NS_LOG="*" ./waf --run first

will run the first tutorial program with all logging output. This can be made more granular by selecting individual
components:

$ NS_LOG="Ipv4L3Protocol" ./waf --run first

The second way to enable this is to use explicit statements in your program, such as in the first tutorial program:

int
main (int argc, char *argv[])
{

LogComponentEnable ("UdpEchoClientApplication", LOG_LEVEL_INFO);
LogComponentEnable ("UdpEchoServerApplication", LOG_LEVEL_INFO);
...

Some helpers have special methods to enable the logging of all components in a module (across different compilation
units, but logically grouped together such as the ns-3 wifi code:

WifiHelper wifiHelper;
wifiHelper.EnableLogComponents ();

9.2 How to add logging to your code

To add logging to your code, please follow the below steps:

1. Put NS_LOG_COMPONENT_DEFINE macro outside of namespace ns3

Create a unique string identifier (usually based on the name of the file and/or class defined within the file) and register
it with a macro call such as follows:

52 Chapter 9. Logging

ns-3 Manual, Release ns-3.18

NS_LOG_COMPONENT_DEFINE ("Ipv4L3Protocol");

namespace ns3 {
...

The macro was carefully written to permit inclusion either within or outside of namespace ns3, and usage will vary
across the codebase, but the original intent was to register this outside of namespace ns3.

2. Add logging statements to your functions and function bodies.

There are a couple of guidelines on this:

• Do not add function logging in operators or explicit copy constructors, since these will cause infinite recursion
and stack overflow.

• Use the NS_LOG_FUNCTION_NOARGS() variant for static methods only. When a non-static member function
has no arguments, it should be logged by NS_LOG_FUNCTION (this) macro.

• Make sure that you test that your logging changes do not break the code; running some example programs with
all log components turned on (e.g. NS_LOG="*") is one way to test this.

9.2. How to add logging to your code 53

ns-3 Manual, Release ns-3.18

54 Chapter 9. Logging

CHAPTER

TEN

TRACING

The tracing subsystem is one of the most important mechanisms to understand in ns-3. In most cases, ns-3 users
will have a brilliant idea for some new and improved networking feature. In order to verify that this idea works, the
researcher will make changes to an existing system and then run experiments to see how the new feature behaves by
gathering statistics that capture the behavior of the feature.

In other words, the whole point of running a simulation is to generate output for further study. In ns-3, the subsystem
that enables a researcher to do this is the tracing subsystem.

10.1 Tracing Motivation

There are many ways to get information out of a program. The most straightforward way is to just directly print the
information to the standard output, as in,

#include <iostream>
...
int main ()
{

...
std::cout << "The value of x is " << x << std::endl;
...

}

This is workable in small environments, but as your simulations get more and more complicated, you end up with
more and more prints and the task of parsing and performing computations on the output begins to get harder and
harder.

Another thing to consider is that every time a new tidbit is needed, the software core must be edited and another print
introduced. There is no standardized way to control all of this output, so the amount of output tends to grow without
bounds. Eventually, the bandwidth required for simply outputting this information begins to limit the running time of
the simulation. The output files grow to enormous sizes and parsing them becomes a problem.

ns-3 provides a simple mechanism for logging and providing some control over output via Log Components, but the
level of control is not very fine grained at all. The logging module is a relatively blunt instrument.

It is desirable to have a facility that allows one to reach into the core system and only get the information required
without having to change and recompile the core system. Even better would be a system that notified the user when
an item of interest changed or an interesting event happened.

The ns-3 tracing system is designed to work along those lines and is well-integrated with the Attribute and Config
substems allowing for relatively simple use scenarios.

55

ns-3 Manual, Release ns-3.18

10.2 Overview

The tracing subsystem relies heavily on the ns-3 Callback and Attribute mechanisms. You should read and understand
the corresponding sections of the manual before attempting to understand the tracing system.

The ns-3 tracing system is built on the concepts of independent tracing sources and tracing sinks; along with a uniform
mechanism for connecting sources to sinks.

Trace sources are entities that can signal events that happen in a simulation and provide access to interesting underlying
data. For example, a trace source could indicate when a packet is received by a net device and provide access to the
packet contents for interested trace sinks. A trace source might also indicate when an interesting state change happens
in a model. For example, the congestion window of a TCP model is a prime candidate for a trace source.

Trace sources are not useful by themselves; they must be connected to other pieces of code that actually do something
useful with the information provided by the source. The entities that consume trace information are called trace sinks.
Trace sources are generators of events and trace sinks are consumers.

This explicit division allows for large numbers of trace sources to be scattered around the system in places which model
authors believe might be useful. Unless a user connects a trace sink to one of these sources, nothing is output. This
arrangement allows relatively unsophisticated users to attach new types of sinks to existing tracing sources, without
requiring editing and recompiling the core or models of the simulator.

There can be zero or more consumers of trace events generated by a trace source. One can think of a trace source as a
kind of point-to-multipoint information link.

The “transport protocol” for this conceptual point-to-multipoint link is an ns-3 Callback.

Recall from the Callback Section that callback facility is a way to allow two modules in the system to communicate
via function calls while at the same time decoupling the calling function from the called class completely. This is the
same requirement as outlined above for the tracing system.

Basically, a trace source is a callback to which multiple functions may be registered. When a trace sink expresses
interest in receiving trace events, it adds a callback to a list of callbacks held by the trace source. When an interesting
event happens, the trace source invokes its operator() providing zero or more parameters. This tells the source to
go through its list of callbacks invoking each one in turn. In this way, the parameter(s) are communicated to the trace
sinks, which are just functions.

10.2.1 The Simplest Example

It will be useful to go walk a quick example just to reinforce what we’ve said.:

#include "ns3/object.h"
#include "ns3/uinteger.h"
#include "ns3/traced-value.h""
#include "ns3/trace-source-accessor.h"

#include <iostream>

using namespace ns3;

The first thing to do is include the required files. As mentioned above, the trace system makes heavy use of the Object
and Attribute systems. The first two includes bring in the declarations for those systems. The file, traced-value.h
brings in the required declarations for tracing data that obeys value semantics.

In general, value semantics just means that you can pass the object around, not an address. In order to use value
semantics at all you have to have an object with an associated copy constructor and assignment operator available.
We extend the requirements to talk about the set of operators that are pre-defined for plain-old-data (POD) types.
Operator=, operator++, operator–, operator+, operator==, etc.

56 Chapter 10. Tracing

ns-3 Manual, Release ns-3.18

What this all means is that you will be able to trace changes to an object made using those operators.:

class MyObject : public Object
{
public:

static TypeId GetTypeId (void)
{
static TypeId tid = TypeId ("MyObject")
.SetParent (Object::GetTypeId ())
.AddConstructor<MyObject> ()
.AddTraceSource ("MyInteger",

"An integer value to trace.",
MakeTraceSourceAccessor (&MyObject::m_myInt))

;
return tid;

}

MyObject () {}
TracedValue<uint32_t> m_myInt;

};

Since the tracing system is integrated with Attributes, and Attributes work with Objects, there must be an ns-3 Object
for the trace source to live in. The two important lines of code are the .AddTraceSource and the TracedValue
declaration.

The .AddTraceSource provides the “hooks” used for connecting the trace source to the outside world. The
TracedValue declaration provides the infrastructure that overloads the operators mentioned above and drives the
callback process.:

void
IntTrace (Int oldValue, Int newValue)
{

std::cout << "Traced " << oldValue << " to " << newValue << std::endl;
}

This is the definition of the trace sink. It corresponds directly to a callback function. This function will be called
whenever one of the operators of the TracedValue is executed.:

int
main (int argc, char *argv[])
{

Ptr<MyObject> myObject = CreateObject<MyObject> ();

myObject->TraceConnectWithoutContext ("MyInteger", MakeCallback(&IntTrace));

myObject->m_myInt = 1234;
}

In this snippet, the first thing that needs to be done is to create the object in which the trace source lives.

The next step, the TraceConnectWithoutContext, forms the connection between the trace source and the trace
sink. Notice the MakeCallback template function. Recall from the Callback section that this creates the specialized
functor responsible for providing the overloaded operator() used to “fire” the callback. The overloaded operators
(++, –, etc.) will use this operator() to actually invoke the callback. The TraceConnectWithoutContext,
takes a string parameter that provides the name of the Attribute assigned to the trace source. Let’s ignore the bit about
context for now since it is not important yet.

Finally, the line,:

10.2. Overview 57

ns-3 Manual, Release ns-3.18

myObject->m_myInt = 1234;

should be interpreted as an invocation of operator= on the member variable m_myIntwith the integer 1234 passed
as a parameter. It turns out that this operator is defined (by TracedValue) to execute a callback that returns void
and takes two integer values as parameters – an old value and a new value for the integer in question. That is exactly
the function signature for the callback function we provided – IntTrace.

To summarize, a trace source is, in essence, a variable that holds a list of callbacks. A trace sink is a function used
as the target of a callback. The Attribute and object type information systems are used to provide a way to connect
trace sources to trace sinks. The act of “hitting” a trace source is executing an operator on the trace source which fires
callbacks. This results in the trace sink callbacks registering interest in the source being called with the parameters
provided by the source.

10.2.2 Using the Config Subsystem to Connect to Trace Sources

The TraceConnectWithoutContext call shown above in the simple example is actually very rarely used in the
system. More typically, the Config subsystem is used to allow selecting a trace source in the system using what is
called a config path.

For example, one might find something that looks like the following in the system (taken from
examples/tcp-large-transfer.cc):

void CwndTracer (uint32_t oldval, uint32_t newval) {}

...

Config::ConnectWithoutContext (
"/NodeList/0/$ns3::TcpL4Protocol/SocketList/0/CongestionWindow",
MakeCallback (&CwndTracer));

This should look very familiar. It is the same thing as the previous example, except that a static member function of
class Config is being called instead of a method on Object; and instead of an Attribute name, a path is being
provided.

The first thing to do is to read the path backward. The last segment of the path must be an Attribute of an
Object. In fact, if you had a pointer to the Object that has the “CongestionWindow” Attribute handy (call it
theObject), you could write this just like the previous example::

void CwndTracer (uint32_t oldval, uint32_t newval) {}

...

theObject->TraceConnectWithoutContext ("CongestionWindow", MakeCallback (&CwndTracer));

It turns out that the code for Config::ConnectWithoutContext does exactly that. This function takes a path
that represents a chain of Object pointers and follows them until it gets to the end of the path and interprets the last
segment as an Attribute on the last object. Let’s walk through what happens.

The leading “/” character in the path refers to a so-called namespace. One of the predefined namespaces in the config
system is “NodeList” which is a list of all of the nodes in the simulation. Items in the list are referred to by indices into
the list, so “/NodeList/0” refers to the zeroth node in the list of nodes created by the simulation. This node is actually
a Ptr<Node> and so is a subclass of an ns3::Object.

As described in the Object model section, ns-3 supports an object aggregation model. The next path segment begins
with the “$” character which indicates a GetObject call should be made looking for the type that follows. When a
node is initialized by an InternetStackHelper a number of interfaces are aggregated to the node. One of these
is the TCP level four protocol. The runtime type of this protocol object is ns3::TcpL4Protocol”. When the
‘‘GetObject is executed, it returns a pointer to the object of this type.

58 Chapter 10. Tracing

ns-3 Manual, Release ns-3.18

The TcpL4Protocol class defines an Attribute called “SocketList” which is a list of sockets. Each socket is actually
an ns3::Object with its own Attributes. The items in the list of sockets are referred to by index just as in the
NodeList, so “SocketList/0” refers to the zeroth socket in the list of sockets on the zeroth node in the NodeList – the
first node constructed in the simulation.

This socket, the type of which turns out to be an ns3::TcpSocketImpl defines an attribute called “Congestion-
Window” which is a TracedValue<uint32_t>. The Config::ConnectWithoutContext now does a,:

object->TraceConnectWithoutContext ("CongestionWindow", MakeCallback (&CwndTracer));

using the object pointer from “SocketList/0” which makes the connection between the trace source defined in the
socket to the callback – CwndTracer.

Now, whenever a change is made to the TracedValue<uint32_t> representing the congestion window in the
TCP socket, the registered callback will be executed and the function CwndTracer will be called printing out the
old and new values of the TCP congestion window.

10.3 Using the Tracing API

There are three levels of interaction with the tracing system:

• Beginning user can easily control which objects are participating in tracing;

• Intermediate users can extend the tracing system to modify the output format generated or use existing trace
sources in different ways, without modifying the core of the simulator;

• Advanced users can modify the simulator core to add new tracing sources and sinks.

10.4 Using Trace Helpers

The ns-3 trace helpers provide a rich environment for configuring and selecting different trace events and writing
them to files. In previous sections, primarily “Building Topologies,” we have seen several varieties of the trace helper
methods designed for use inside other (device) helpers.

Perhaps you will recall seeing some of these variations::

pointToPoint.EnablePcapAll ("second");
pointToPoint.EnablePcap ("second", p2pNodes.Get (0)->GetId (), 0);
csma.EnablePcap ("third", csmaDevices.Get (0), true);
pointToPoint.EnableAsciiAll (ascii.CreateFileStream ("myfirst.tr"));

What may not be obvious, though, is that there is a consistent model for all of the trace-related methods found in the
system. We will now take a little time and take a look at the “big picture”.

There are currently two primary use cases of the tracing helpers in ns-3: Device helpers and protocol helpers. Device
helpers look at the problem of specifying which traces should be enabled through a node, device pair. For example,
you may want to specify that pcap tracing should be enabled on a particular device on a specific node. This follows
from the ns-3 device conceptual model, and also the conceptual models of the various device helpers. Following
naturally from this, the files created follow a <prefix>-<node>-<device> naming convention.

Protocol helpers look at the problem of specifying which traces should be enabled through a protocol and interface
pair. This follows from the ns-3 protocol stack conceptual model, and also the conceptual models of internet stack
helpers. Naturally, the trace files should follow a <prefix>-<protocol>-<interface> naming convention.

The trace helpers therefore fall naturally into a two-dimensional taxonomy. There are subtleties that prevent all four
classes from behaving identically, but we do strive to make them all work as similarly as possible; and whenever
possible there are analogs for all methods in all classes.

10.3. Using the Tracing API 59

ns-3 Manual, Release ns-3.18

pcap ascii
Device Helper X X
Protocol Helper X X

We use an approach called a mixin to add tracing functionality to our helper classes. A mixin is a class that provides
functionality to that is inherited by a subclass. Inheriting from a mixin is not considered a form of specialization but
is really a way to collect functionality.

Let’s take a quick look at all four of these cases and their respective mixins.

10.4.1 Pcap Tracing Device Helpers

The goal of these helpers is to make it easy to add a consistent pcap trace facility to an ns-3 device. We want all of the
various flavors of pcap tracing to work the same across all devices, so the methods of these helpers are inherited by
device helpers. Take a look at src/network/helper/trace-helper.h if you want to follow the discussion
while looking at real code.

The class PcapHelperForDevice is a mixin provides the high level functionality for using pcap tracing in an
ns-3 device. Every device must implement a single virtual method inherited from this class.:

virtual void EnablePcapInternal (std::string prefix, Ptr<NetDevice> nd, bool promiscuous) = 0;

The signature of this method reflects the device-centric view of the situation at this level. All of the public methods
inherited from class PcapUserHelperForDevice reduce to calling this single device-dependent implementation
method. For example, the lowest level pcap method,:

void EnablePcap (std::string prefix, Ptr<NetDevice> nd, bool promiscuous = false, bool explicitFilename = false);

will call the device implementation of EnablePcapInternal directly. All other public pcap tracing methods build
on this implementation to provide additional user-level functionality. What this means to the user is that all device
helpers in the system will have all of the pcap trace methods available; and these methods will all work in the same
way across devices if the device implements EnablePcapInternal correctly.

Pcap Tracing Device Helper Methods

void EnablePcap (std::string prefix, Ptr<NetDevice> nd,
bool promiscuous = false, bool explicitFilename = false);

void EnablePcap (std::string prefix, std::string ndName,
bool promiscuous = false, bool explicitFilename = false);

void EnablePcap (std::string prefix, NetDeviceContainer d,
bool promiscuous = false);

void EnablePcap (std::string prefix, NodeContainer n,
bool promiscuous = false);

void EnablePcap (std::string prefix, uint32_t nodeid, uint32_t deviceid,
bool promiscuous = false);

void EnablePcapAll (std::string prefix, bool promiscuous = false);

In each of the methods shown above, there is a default parameter called promiscuous that defaults to false. This
parameter indicates that the trace should not be gathered in promiscuous mode. If you do want your traces to include
all traffic seen by the device (and if the device supports a promiscuous mode) simply add a true parameter to any of
the calls above. For example,:

Ptr<NetDevice> nd;
...
helper.EnablePcap ("prefix", nd, true);

60 Chapter 10. Tracing

ns-3 Manual, Release ns-3.18

will enable promiscuous mode captures on the NetDevice specified by nd.

The first two methods also include a default parameter called explicitFilename that will be discussed below.

You are encouraged to peruse the Doxygen for class PcapHelperForDevice to find the details of these methods;
but to summarize ...

You can enable pcap tracing on a particular node/net-device pair by providing a Ptr<NetDevice> to an
EnablePcap method. The Ptr<Node> is implicit since the net device must belong to exactly one Node. For
example,:

Ptr<NetDevice> nd;
...
helper.EnablePcap ("prefix", nd);

You can enable pcap tracing on a particular node/net-device pair by providing a std::string representing an object
name service string to an EnablePcap method. The Ptr<NetDevice> is looked up from the name string. Again,
the <Node> is implicit since the named net device must belong to exactly one Node. For example,:

Names::Add ("server" ...);
Names::Add ("server/eth0" ...);
...
helper.EnablePcap ("prefix", "server/ath0");

You can enable pcap tracing on a collection of node/net-device pairs by providing a NetDeviceContainer. For
each NetDevice in the container the type is checked. For each device of the proper type (the same type as is managed
by the device helper), tracing is enabled. Again, the <Node> is implicit since the found net device must belong to
exactly one Node. For example,:

NetDeviceContainer d = ...;
...
helper.EnablePcap ("prefix", d);

You can enable pcap tracing on a collection of node/net-device pairs by providing a NodeContainer. For each
Node in the NodeContainer its attached NetDevices are iterated. For each NetDevice attached to each node
in the container, the type of that device is checked. For each device of the proper type (the same type as is managed
by the device helper), tracing is enabled.:

NodeContainer n;
...
helper.EnablePcap ("prefix", n);

You can enable pcap tracing on the basis of node ID and device ID as well as with explicit Ptr. Each Node in the
system has an integer node ID and each device connected to a node has an integer device ID.:

helper.EnablePcap ("prefix", 21, 1);

Finally, you can enable pcap tracing for all devices in the system, with the same type as that managed by the device
helper.:

helper.EnablePcapAll ("prefix");

Pcap Tracing Device Helper Filename Selection

Implicit in the method descriptions above is the construction of a complete filename by the implementation method.
By convention, pcap traces in the ns-3 system are of the form <prefix>-<node id>-<device id>.pcap

As previously mentioned, every node in the system will have a system-assigned node id; and every device will have
an interface index (also called a device id) relative to its node. By default, then, a pcap trace file created as a result of
enabling tracing on the first device of node 21 using the prefix “prefix” would be prefix-21-1.pcap.

10.4. Using Trace Helpers 61

ns-3 Manual, Release ns-3.18

You can always use the ns-3 object name service to make this more clear. For example, if you use the object
name service to assign the name “server” to node 21, the resulting pcap trace file name will automatically become,
prefix-server-1.pcap and if you also assign the name “eth0” to the device, your pcap file name will automat-
ically pick this up and be called prefix-server-eth0.pcap.

Finally, two of the methods shown above,:

void EnablePcap (std::string prefix, Ptr<NetDevice> nd, bool promiscuous = false, bool explicitFilename = false);
void EnablePcap (std::string prefix, std::string ndName, bool promiscuous = false, bool explicitFilename = false);

have a default parameter called explicitFilename. When set to true, this parameter disables the automatic
filename completion mechanism and allows you to create an explicit filename. This option is only available in the
methods which enable pcap tracing on a single device.

For example, in order to arrange for a device helper to create a single promiscuous pcap capture file of a specific name
(my-pcap-file.pcap) on a given device, one could::

Ptr<NetDevice> nd;
...
helper.EnablePcap ("my-pcap-file.pcap", nd, true, true);

The first true parameter enables promiscuous mode traces and the second tells the helper to interpret the prefix
parameter as a complete filename.

10.4.2 Ascii Tracing Device Helpers

The behavior of the ascii trace helper mixin is substantially similar to the pcap version. Take a look at
src/network/helper/trace-helper.h if you want to follow the discussion while looking at real code.

The class AsciiTraceHelperForDevice adds the high level functionality for using ascii tracing to a device
helper class. As in the pcap case, every device must implement a single virtual method inherited from the ascii trace
mixin.:

virtual void EnableAsciiInternal (Ptr<OutputStreamWrapper> stream, std::string prefix, Ptr<NetDevice> nd) = 0;

The signature of this method reflects the device-centric view of the situation at this level; and also the fact that the
helper may be writing to a shared output stream. All of the public ascii-trace-related methods inherited from class
AsciiTraceHelperForDevice reduce to calling this single device- dependent implementation method. For
example, the lowest level ascii trace methods,:

void EnableAscii (std::string prefix, Ptr<NetDevice> nd);
void EnableAscii (Ptr<OutputStreamWrapper> stream, Ptr<NetDevice> nd);

will call the device implementation of EnableAsciiInternal directly, providing either a valid prefix or stream.
All other public ascii tracing methods will build on these low-level functions to provide additional user-level func-
tionality. What this means to the user is that all device helpers in the system will have all of the ascii trace
methods available; and these methods will all work in the same way across devices if the devices implement
EnablAsciiInternal correctly.

Ascii Tracing Device Helper Methods

void EnableAscii (std::string prefix, Ptr<NetDevice> nd);
void EnableAscii (Ptr<OutputStreamWrapper> stream, Ptr<NetDevice> nd);

void EnableAscii (std::string prefix, std::string ndName);
void EnableAscii (Ptr<OutputStreamWrapper> stream, std::string ndName);

62 Chapter 10. Tracing

ns-3 Manual, Release ns-3.18

void EnableAscii (std::string prefix, NetDeviceContainer d);
void EnableAscii (Ptr<OutputStreamWrapper> stream, NetDeviceContainer d);

void EnableAscii (std::string prefix, NodeContainer n);
void EnableAscii (Ptr<OutputStreamWrapper> stream, NodeContainer n);

void EnableAscii (std::string prefix, uint32_t nodeid, uint32_t deviceid);
void EnableAscii (Ptr<OutputStreamWrapper> stream, uint32_t nodeid, uint32_t deviceid);

void EnableAsciiAll (std::string prefix);
void EnableAsciiAll (Ptr<OutputStreamWrapper> stream);

You are encouraged to peruse the Doxygen for class TraceHelperForDevice to find the details of these methods;
but to summarize ...

There are twice as many methods available for ascii tracing as there were for pcap tracing. This is because, in addition
to the pcap-style model where traces from each unique node/device pair are written to a unique file, we support
a model in which trace information for many node/device pairs is written to a common file. This means that the
<prefix>-<node>-<device> file name generation mechanism is replaced by a mechanism to refer to a common file;
and the number of API methods is doubled to allow all combinations.

Just as in pcap tracing, you can enable ascii tracing on a particular node/net-device pair by providing a
Ptr<NetDevice> to an EnableAscii method. The Ptr<Node> is implicit since the net device must belong to
exactly one Node. For example,:

Ptr<NetDevice> nd;
...
helper.EnableAscii ("prefix", nd);

In this case, no trace contexts are written to the ascii trace file since they would be redundant. The system will pick the
file name to be created using the same rules as described in the pcap section, except that the file will have the suffix
”.tr” instead of ”.pcap”.

If you want to enable ascii tracing on more than one net device and have all traces sent to a single file, you can do that
as well by using an object to refer to a single file::

Ptr<NetDevice> nd1;
Ptr<NetDevice> nd2;
...
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("trace-file-name.tr");
...
helper.EnableAscii (stream, nd1);
helper.EnableAscii (stream, nd2);

In this case, trace contexts are written to the ascii trace file since they are required to disambiguate traces from the
two devices. Note that since the user is completely specifying the file name, the string should include the ”.tr” for
consistency.

You can enable ascii tracing on a particular node/net-device pair by providing a std::string representing an object
name service string to an EnablePcap method. The Ptr<NetDevice> is looked up from the name string. Again,
the <Node> is implicit since the named net device must belong to exactly one Node. For example,:

Names::Add ("client" ...);
Names::Add ("client/eth0" ...);
Names::Add ("server" ...);
Names::Add ("server/eth0" ...);
...
helper.EnableAscii ("prefix", "client/eth0");
helper.EnableAscii ("prefix", "server/eth0");

10.4. Using Trace Helpers 63

ns-3 Manual, Release ns-3.18

This would result in two files named prefix-client-eth0.tr and prefix-server-eth0.tr with traces
for each device in the respective trace file. Since all of the EnableAscii functions are overloaded to take a stream
wrapper, you can use that form as well::

Names::Add ("client" ...);
Names::Add ("client/eth0" ...);
Names::Add ("server" ...);
Names::Add ("server/eth0" ...);
...
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("trace-file-name.tr");
...
helper.EnableAscii (stream, "client/eth0");
helper.EnableAscii (stream, "server/eth0");

This would result in a single trace file called trace-file-name.tr that contains all of the trace events for both
devices. The events would be disambiguated by trace context strings.

You can enable ascii tracing on a collection of node/net-device pairs by providing a NetDeviceContainer. For
each NetDevice in the container the type is checked. For each device of the proper type (the same type as is managed
by the device helper), tracing is enabled. Again, the <Node> is implicit since the found net device must belong to
exactly one Node. For example,:

NetDeviceContainer d = ...;
...
helper.EnableAscii ("prefix", d);

This would result in a number of ascii trace files being created, each of which follows the <prefix>-<node id>-<device
id>.tr convention. Combining all of the traces into a single file is accomplished similarly to the examples above::

NetDeviceContainer d = ...;
...
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("trace-file-name.tr");
...
helper.EnableAscii (stream, d);

You can enable ascii tracing on a collection of node/net-device pairs by providing a NodeContainer. For each
Node in the NodeContainer its attached NetDevices are iterated. For each NetDevice attached to each node
in the container, the type of that device is checked. For each device of the proper type (the same type as is managed
by the device helper), tracing is enabled.:

NodeContainer n;
...
helper.EnableAscii ("prefix", n);

This would result in a number of ascii trace files being created, each of which follows the <prefix>-<node id>-<device
id>.tr convention. Combining all of the traces into a single file is accomplished similarly to the examples above:

You can enable pcap tracing on the basis of node ID and device ID as well as with explicit Ptr. Each Node in the
system has an integer node ID and each device connected to a node has an integer device ID.:

helper.EnableAscii ("prefix", 21, 1);

Of course, the traces can be combined into a single file as shown above.

Finally, you can enable pcap tracing for all devices in the system, with the same type as that managed by the device
helper.:

helper.EnableAsciiAll ("prefix");

64 Chapter 10. Tracing

ns-3 Manual, Release ns-3.18

This would result in a number of ascii trace files being created, one for every device in the system of the type managed
by the helper. All of these files will follow the <prefix>-<node id>-<device id>.tr convention. Combining all of the
traces into a single file is accomplished similarly to the examples above.

Ascii Tracing Device Helper Filename Selection

Implicit in the prefix-style method descriptions above is the construction of the complete filenames by the implemen-
tation method. By convention, ascii traces in the ns-3 system are of the form <prefix>-<node id>-<device
id>.tr.

As previously mentioned, every node in the system will have a system-assigned node id; and every device will have
an interface index (also called a device id) relative to its node. By default, then, an ascii trace file created as a result of
enabling tracing on the first device of node 21, using the prefix “prefix”, would be prefix-21-1.tr.

You can always use the ns-3 object name service to make this more clear. For example, if you use the object
name service to assign the name “server” to node 21, the resulting ascii trace file name will automatically become,
prefix-server-1.tr and if you also assign the name “eth0” to the device, your ascii trace file name will auto-
matically pick this up and be called prefix-server-eth0.tr.

10.4.3 Pcap Tracing Protocol Helpers

The goal of these mixins is to make it easy to add a consistent pcap trace facility to protocols. We want all of the
various flavors of pcap tracing to work the same across all protocols, so the methods of these helpers are inherited by
stack helpers. Take a look at src/network/helper/trace-helper.h if you want to follow the discussion
while looking at real code.

In this section we will be illustrating the methods as applied to the protocol Ipv4. To specify traces in similar
protocols, just substitute the appropriate type. For example, use a Ptr<Ipv6> instead of a Ptr<Ipv4> and call
EnablePcapIpv6 instead of EnablePcapIpv4.

The class PcapHelperForIpv4 provides the high level functionality for using pcap tracing in the Ipv4 protocol.
Each protocol helper enabling these methods must implement a single virtual method inherited from this class. There
will be a separate implementation for Ipv6, for example, but the only difference will be in the method names and
signatures. Different method names are required to disambiguate class Ipv4 from Ipv6 which are both derived from
class Object, and methods that share the same signature.:

virtual void EnablePcapIpv4Internal (std::string prefix, Ptr<Ipv4> ipv4, uint32_t interface) = 0;

The signature of this method reflects the protocol and interface-centric view of the situation at this level. All of the
public methods inherited from class PcapHelperForIpv4 reduce to calling this single device-dependent imple-
mentation method. For example, the lowest level pcap method,:

void EnablePcapIpv4 (std::string prefix, Ptr<Ipv4> ipv4, uint32_t interface);

will call the device implementation of EnablePcapIpv4Internal directly. All other public pcap tracing methods
build on this implementation to provide additional user-level functionality. What this means to the user is that all
protocol helpers in the system will have all of the pcap trace methods available; and these methods will all work in the
same way across protocols if the helper implements EnablePcapIpv4Internal correctly.

Pcap Tracing Protocol Helper Methods

These methods are designed to be in one-to-one correspondence with the Node- and NetDevice- centric versions
of the device versions. Instead of Node and NetDevice pair constraints, we use protocol and interface constraints.

Note that just like in the device version, there are six methods::

10.4. Using Trace Helpers 65

ns-3 Manual, Release ns-3.18

void EnablePcapIpv4 (std::string prefix, Ptr<Ipv4> ipv4, uint32_t interface);
void EnablePcapIpv4 (std::string prefix, std::string ipv4Name, uint32_t interface);
void EnablePcapIpv4 (std::string prefix, Ipv4InterfaceContainer c);
void EnablePcapIpv4 (std::string prefix, NodeContainer n);
void EnablePcapIpv4 (std::string prefix, uint32_t nodeid, uint32_t interface);
void EnablePcapIpv4All (std::string prefix);

You are encouraged to peruse the Doxygen for class PcapHelperForIpv4 to find the details of these methods; but
to summarize ...

You can enable pcap tracing on a particular protocol/interface pair by providing a Ptr<Ipv4> and interface to
an EnablePcap method. For example,:

Ptr<Ipv4> ipv4 = node->GetObject<Ipv4> ();
...
helper.EnablePcapIpv4 ("prefix", ipv4, 0);

You can enable pcap tracing on a particular node/net-device pair by providing a std::string representing an object
name service string to an EnablePcap method. The Ptr<Ipv4> is looked up from the name string. For example,:

Names::Add ("serverIPv4" ...);
...
helper.EnablePcapIpv4 ("prefix", "serverIpv4", 1);

You can enable pcap tracing on a collection of protocol/interface pairs by providing an
Ipv4InterfaceContainer. For each Ipv4 / interface pair in the container the protocol type is checked.
For each protocol of the proper type (the same type as is managed by the device helper), tracing is enabled for the
corresponding interface. For example,:

NodeContainer nodes;
...
NetDeviceContainer devices = deviceHelper.Install (nodes);
...
Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
Ipv4InterfaceContainer interfaces = ipv4.Assign (devices);
...
helper.EnablePcapIpv4 ("prefix", interfaces);

You can enable pcap tracing on a collection of protocol/interface pairs by providing a NodeContainer. For each
Node in the NodeContainer the appropriate protocol is found. For each protocol, its interfaces are enumerated
and tracing is enabled on the resulting pairs. For example,:

NodeContainer n;
...
helper.EnablePcapIpv4 ("prefix", n);

You can enable pcap tracing on the basis of node ID and interface as well. In this case, the node-id is translated to a
Ptr<Node> and the appropriate protocol is looked up in the node. The resulting protocol and interface are used to
specify the resulting trace source.:

helper.EnablePcapIpv4 ("prefix", 21, 1);

Finally, you can enable pcap tracing for all interfaces in the system, with associated protocol being the same type as
that managed by the device helper.:

helper.EnablePcapIpv4All ("prefix");

66 Chapter 10. Tracing

ns-3 Manual, Release ns-3.18

Pcap Tracing Protocol Helper Filename Selection

Implicit in all of the method descriptions above is the construction of the complete filenames by the implementa-
tion method. By convention, pcap traces taken for devices in the ns-3 system are of the form <prefix>-<node
id>-<device id>.pcap. In the case of protocol traces, there is a one-to-one correspondence between protocols
and Nodes. This is because protocol Objects are aggregated to Node Objects. Since there is no global proto-
col id in the system, we use the corresponding node id in file naming. Therefore there is a possibility for file name
collisions in automatically chosen trace file names. For this reason, the file name convention is changed for protocol
traces.

As previously mentioned, every node in the system will have a system-assigned node id. Since there is a one-to-one
correspondence between protocol instances and node instances we use the node id. Each interface has an interface
id relative to its protocol. We use the convention “<prefix>-n<node id>-i<interface id>.pcap” for trace file naming in
protocol helpers.

Therefore, by default, a pcap trace file created as a result of enabling tracing on interface 1 of the Ipv4 protocol of
node 21 using the prefix “prefix” would be “prefix-n21-i1.pcap”.

You can always use the ns-3 object name service to make this more clear. For example, if you use the object name ser-
vice to assign the name “serverIpv4” to the Ptr<Ipv4> on node 21, the resulting pcap trace file name will automatically
become, “prefix-nserverIpv4-i1.pcap”.

10.4.4 Ascii Tracing Protocol Helpers

The behavior of the ascii trace helpers is substantially similar to the pcap case. Take a look at
src/network/helper/trace-helper.h if you want to follow the discussion while looking at real code.

In this section we will be illustrating the methods as applied to the protocol Ipv4. To specify traces in similar
protocols, just substitute the appropriate type. For example, use a Ptr<Ipv6> instead of a Ptr<Ipv4> and call
EnableAsciiIpv6 instead of EnableAsciiIpv4.

The class AsciiTraceHelperForIpv4 adds the high level functionality for using ascii tracing to a protocol
helper. Each protocol that enables these methods must implement a single virtual method inherited from this class.:

virtual void EnableAsciiIpv4Internal (Ptr<OutputStreamWrapper> stream, std::string prefix,
Ptr<Ipv4> ipv4, uint32_t interface) = 0;

The signature of this method reflects the protocol- and interface-centric view of the situation at this level; and also
the fact that the helper may be writing to a shared output stream. All of the public methods inherited from class
PcapAndAsciiTraceHelperForIpv4 reduce to calling this single device- dependent implementation method.
For example, the lowest level ascii trace methods,:

void EnableAsciiIpv4 (std::string prefix, Ptr<Ipv4> ipv4, uint32_t interface);
void EnableAsciiIpv4 (Ptr<OutputStreamWrapper> stream, Ptr<Ipv4> ipv4, uint32_t interface);

will call the device implementation of EnableAsciiIpv4Internal directly, providing either the prefix or the
stream. All other public ascii tracing methods will build on these low-level functions to provide additional user-level
functionality. What this means to the user is that all device helpers in the system will have all of the ascii trace
methods available; and these methods will all work in the same way across protocols if the protocols implement
EnablAsciiIpv4Internal correctly.

Ascii Tracing Device Helper Methods

void EnableAsciiIpv4 (std::string prefix, Ptr<Ipv4> ipv4, uint32_t interface);
void EnableAsciiIpv4 (Ptr<OutputStreamWrapper> stream, Ptr<Ipv4> ipv4, uint32_t interface);

10.4. Using Trace Helpers 67

ns-3 Manual, Release ns-3.18

void EnableAsciiIpv4 (std::string prefix, std::string ipv4Name, uint32_t interface);
void EnableAsciiIpv4 (Ptr<OutputStreamWrapper> stream, std::string ipv4Name, uint32_t interface);

void EnableAsciiIpv4 (std::string prefix, Ipv4InterfaceContainer c);
void EnableAsciiIpv4 (Ptr<OutputStreamWrapper> stream, Ipv4InterfaceContainer c);

void EnableAsciiIpv4 (std::string prefix, NodeContainer n);
void EnableAsciiIpv4 (Ptr<OutputStreamWrapper> stream, NodeContainer n);

void EnableAsciiIpv4 (std::string prefix, uint32_t nodeid, uint32_t deviceid);
void EnableAsciiIpv4 (Ptr<OutputStreamWrapper> stream, uint32_t nodeid, uint32_t interface);

void EnableAsciiIpv4All (std::string prefix);
void EnableAsciiIpv4All (Ptr<OutputStreamWrapper> stream);

You are encouraged to peruse the Doxygen for class PcapAndAsciiHelperForIpv4 to find the details of these
methods; but to summarize ...

There are twice as many methods available for ascii tracing as there were for pcap tracing. This is because, in addition
to the pcap-style model where traces from each unique protocol/interface pair are written to a unique file, we support
a model in which trace information for many protocol/interface pairs is written to a common file. This means that the
<prefix>-n<node id>-<interface> file name generation mechanism is replaced by a mechanism to refer to a common
file; and the number of API methods is doubled to allow all combinations.

Just as in pcap tracing, you can enable ascii tracing on a particular protocol/interface pair by providing a Ptr<Ipv4>
and an interface to an EnableAscii method. For example,:

Ptr<Ipv4> ipv4;
...
helper.EnableAsciiIpv4 ("prefix", ipv4, 1);

In this case, no trace contexts are written to the ascii trace file since they would be redundant. The system will pick the
file name to be created using the same rules as described in the pcap section, except that the file will have the suffix
”.tr” instead of ”.pcap”.

If you want to enable ascii tracing on more than one interface and have all traces sent to a single file, you can do that
as well by using an object to refer to a single file. We have already something similar to this in the “cwnd” example
above::

Ptr<Ipv4> protocol1 = node1->GetObject<Ipv4> ();
Ptr<Ipv4> protocol2 = node2->GetObject<Ipv4> ();
...
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("trace-file-name.tr");
...
helper.EnableAsciiIpv4 (stream, protocol1, 1);
helper.EnableAsciiIpv4 (stream, protocol2, 1);

In this case, trace contexts are written to the ascii trace file since they are required to disambiguate traces from the
two interfaces. Note that since the user is completely specifying the file name, the string should include the ”.tr” for
consistency.

You can enable ascii tracing on a particular protocol by providing a std::string representing an object name
service string to an EnablePcap method. The Ptr<Ipv4> is looked up from the name string. The <Node> in the
resulting filenames is implicit since there is a one-to-one correspondence between protocol instances and nodes, For
example,:

Names::Add ("node1Ipv4" ...);
Names::Add ("node2Ipv4" ...);
...

68 Chapter 10. Tracing

ns-3 Manual, Release ns-3.18

helper.EnableAsciiIpv4 ("prefix", "node1Ipv4", 1);
helper.EnableAsciiIpv4 ("prefix", "node2Ipv4", 1);

This would result in two files named “prefix-nnode1Ipv4-i1.tr” and “prefix-nnode2Ipv4-i1.tr” with traces for each
interface in the respective trace file. Since all of the EnableAscii functions are overloaded to take a stream wrapper,
you can use that form as well::

Names::Add ("node1Ipv4" ...);
Names::Add ("node2Ipv4" ...);
...
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("trace-file-name.tr");
...
helper.EnableAsciiIpv4 (stream, "node1Ipv4", 1);
helper.EnableAsciiIpv4 (stream, "node2Ipv4", 1);

This would result in a single trace file called “trace-file-name.tr” that contains all of the trace events for both interfaces.
The events would be disambiguated by trace context strings.

You can enable ascii tracing on a collection of protocol/interface pairs by providing an
Ipv4InterfaceContainer. For each protocol of the proper type (the same type as is managed by the
device helper), tracing is enabled for the corresponding interface. Again, the <Node> is implicit since there is a
one-to-one correspondence between each protocol and its node. For example,:

NodeContainer nodes;
...
NetDeviceContainer devices = deviceHelper.Install (nodes);
...
Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
Ipv4InterfaceContainer interfaces = ipv4.Assign (devices);
...
...
helper.EnableAsciiIpv4 ("prefix", interfaces);

This would result in a number of ascii trace files being created, each of which follows the <prefix>-n<node id>-
i<interface>.tr convention. Combining all of the traces into a single file is accomplished similarly to the examples
above::

NodeContainer nodes;
...
NetDeviceContainer devices = deviceHelper.Install (nodes);
...
Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
Ipv4InterfaceContainer interfaces = ipv4.Assign (devices);
...
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("trace-file-name.tr");
...
helper.EnableAsciiIpv4 (stream, interfaces);

You can enable ascii tracing on a collection of protocol/interface pairs by providing a NodeContainer. For each
Node in the NodeContainer the appropriate protocol is found. For each protocol, its interfaces are enumerated
and tracing is enabled on the resulting pairs. For example,:

NodeContainer n;
...
helper.EnableAsciiIpv4 ("prefix", n);

This would result in a number of ascii trace files being created, each of which follows the <prefix>-<node id>-<device

10.4. Using Trace Helpers 69

ns-3 Manual, Release ns-3.18

id>.tr convention. Combining all of the traces into a single file is accomplished similarly to the examples above:

You can enable pcap tracing on the basis of node ID and device ID as well. In this case, the node-id is translated to a
Ptr<Node> and the appropriate protocol is looked up in the node. The resulting protocol and interface are used to
specify the resulting trace source.:

helper.EnableAsciiIpv4 ("prefix", 21, 1);

Of course, the traces can be combined into a single file as shown above.

Finally, you can enable ascii tracing for all interfaces in the system, with associated protocol being the same type as
that managed by the device helper.:

helper.EnableAsciiIpv4All ("prefix");

This would result in a number of ascii trace files being created, one for every interface in the system related to a
protocol of the type managed by the helper. All of these files will follow the <prefix>-n<node id>-i<interface.tr
convention. Combining all of the traces into a single file is accomplished similarly to the examples above.

Ascii Tracing Device Helper Filename Selection

Implicit in the prefix-style method descriptions above is the construction of the complete filenames by the implemen-
tation method. By convention, ascii traces in the ns-3 system are of the form “<prefix>-<node id>-<device id>.tr.”

As previously mentioned, every node in the system will have a system-assigned node id. Since there is a one-to-one
correspondence between protocols and nodes we use to node-id to identify the protocol identity. Every interface on a
given protocol will have an interface index (also called simply an interface) relative to its protocol. By default, then,
an ascii trace file created as a result of enabling tracing on the first device of node 21, using the prefix “prefix”, would
be “prefix-n21-i1.tr”. Use the prefix to disambiguate multiple protocols per node.

You can always use the ns-3 object name service to make this more clear. For example, if you use the object name
service to assign the name “serverIpv4” to the protocol on node 21, and also specify interface one, the resulting ascii
trace file name will automatically become, “prefix-nserverIpv4-1.tr”.

10.5 Tracing implementation details

70 Chapter 10. Tracing

CHAPTER

ELEVEN

DATA COLLECTION

This chapter describes the ns-3 Data Collection Framework (DCF), which provides capabilities to obtain data gener-
ated by models in the simulator, to perform on-line reduction and data processing, and to marshal raw or transformed
data into various output formats.

The framework presently supports standalone ns-3 runs that don’t rely on any external program execution control. The
objects provided by the DCF may be hooked to ns-3 trace sources to enable data processing.

The source code for the classes lives in the directory src/stats.

This chapter is organized as follows. First, an overview of the architecture is presented. Next, the helpers for these
classes are presented; this initial treatment should allow basic use of the data collection framework for many use cases.
Users who wish to produce output outside of the scope of the current helpers, or who wish to create their own data
collection objects, should read the remainder of the chapter, which goes into detail about all of the basic DCF object
types and provides low-level coding examples.

11.1 Design

The DCF consists of three basic classes:

• Probe is a mechanism to instrument and control the output of simulation data that is used to monitor interesting
events. It produces output in the form of one or more ns-3 trace sources. Probe objects are hooked up to one or
more trace sinks (called Collectors), which process samples on-line and prepare them for output.

• Collector consumes the data generated by one or more Probe objects. It performs transformations on the data,
such as normalization, reduction, and the computation of basic statistics. Collector objects do not produce data
that is directly output by the ns-3 run; instead, they output data downstream to another type of object, called
Aggregator, which performs that function. Typically, Collectors output their data in the form of trace sources as
well, allowing collectors to be chained in series.

• Aggregator is the end point of the data collected by a network of Probes and Collectors. The main responsibility
of the Aggregator is to marshal data and their corresponding metadata, into different output formats such as
plain text files, spreadsheet files, or databases.

All three of these classes provide the capability to dynamically turn themselves on or off throughout a simulation.

Any standalone ns-3 simulation run that uses the DCF will typically create at least one instance of each of the three
classes above.

The overall flow of data processing is depicted in Data Collection Framework overview. On the left side, a running
ns-3 simulation is depicted. In the course of running the simulation, data is made available by models through trace
sources, or via other means. The diagram depicts that probes can be connected to these trace sources to receive data
asynchronously, or probes can poll for data. Data is then passed to a collector object that transforms the data. Finally,
an aggregator can be connected to the outputs of the collector, to generate plots, files, or databases.

71

ns-3 Manual, Release ns-3.18

Figure 11.1: Data Collection Framework overview

Figure 11.2: Data Collection Framework aggregation

72 Chapter 11. Data Collection

ns-3 Manual, Release ns-3.18

A variation on the above figure is provided in Data Collection Framework aggregation. This second figure illustrates
that the DCF objects may be chained together in a manner that downstream objects take inputs from multiple upstream
objects. The figure conceptually shows that multiple probes may generate output that is fed into a single collector; as
an example, a collector that outputs a ratio of two counters would typically acquire each counter data from separate
probes. Multiple collectors can also feed into a single aggregator, which (as its name implies) may collect a number
of data streams for inclusion into a single plot, file, or database.

11.2 Data Collection Helpers

The full flexibility of the data collection framework is provided by the interconnection of probes, collectors, and
aggregators. Performing all of these interconnections leads to many configuration statements in user programs. For
ease of use, some of the most common operations can be combined and encapsulated in helper functions. In addition,
some statements involving ns-3 trace sources do not have Python bindings, due to limitations in the bindings.

11.2.1 Data Collection Helpers Overview

In this section, we provide an overview of some helper classes that have been created to ease the configuration of the
data collection framework for some common use cases. The helpers allow users to form common operations with
only a few statements in their C++ or Python programs. But, this ease of use comes at the cost of significantly less
flexibility than low-level configuration can provide, and the need to explicitly code support for new Probe types into
the helpers (to work around an issue described below).

The emphasis on the current helpers is to marshal data out of ns-3 trace sources into gnuplot plots or text files, without
a high degree of output customization or statistical processing (initially). Also, the use is constrained to the available
probe types in ns-3. Later sections of this documentation will go into more detail about creating new Probe types, as
well as details about hooking together Probes, Collectors, and Aggregators in custom arrangements.

To date, two Data Collection helpers have been implemented:

• GnuplotHelper

• FileHelper

11.2.2 GnuplotHelper

The GnuplotHelper is a helper class for producing output files used to make gnuplots. The overall goal is to provide
the ability for users to quickly make plots from data exported in ns-3 trace sources. By default, a minimal amount of
data transformation is performed; the objective is to generate plots with as few (default) configuration statements as
possible.

GnuplotHelper Overview

The GnuplotHelper will create 3 different files at the end of the simulation:

• A space separated gnuplot data file

• A gnuplot control file

• A shell script to generate the gnuplot

There are two configuration statements that are needed to produce plots. The first statement configures the plot
(filename, title, legends, and output type, where the output type defaults to PNG if unspecified):

11.2. Data Collection Helpers 73

ns-3 Manual, Release ns-3.18

void ConfigurePlot (const std::string &outputFileNameWithoutExtension,
const std::string &title,
const std::string &xLegend,
const std::string &yLegend,
const std::string &terminalType = ".png");

The second statement hooks the Probe of interest:

void PlotProbe (const std::string &typeId,
const std::string &path,
const std::string &probeTraceSource,
const std::string &title);

The arguments are as follows:

• typeId: The ns-3 TypeId of the Probe

• path: The path in the ns-3 configuration namespace to one or more probes

• probeTraceSource: Which output of the probe should be connected to

• title: The title to associate with the dataset (in the gnuplot legend)

A variant on the PlotProbe above is to specify a fifth optional argument that controls where in the plot the key (legend)
is placed.

A fully worked example (from seventh.cc) is shown below:

// Create the gnuplot helper.
GnuplotHelper plotHelper;

// Configure the plot.
plotHelper.ConfigurePlot ("seventh-packet-byte-count",

"Packet Byte Count vs. Time",
"Time (Seconds)",
"Packet Byte Count",
"png");

// Plot the values generated by the probe.
plotHelper.PlotProbe ("ns3::Ipv4PacketProbe",

"/NodeList/*/$ns3::Ipv4L3Protocol/Tx",
"OutputBytes",
"Packet Byte Count",
GnuplotAggregator::KEY_BELOW);

Note that the path specified may contain wildcards. In this case, multiple datasets are plotted on one plot; one for each
matched path.

The main output produced will be three files:

seventh-packet-byte-count.dat
seventh-packet-byte-count.plt
seventh-packet-byte-count.sh

At this point, users can either hand edit the .plt file for further customizations, or just run it through gnuplot. Running
sh seventh-packet-byte-count.sh simply runs the plot through gnuplot, as shown below.

It can be seen that the key elements (legend, title, legend placement, xlabel, ylabel, and path for the data) are all placed
on the plot. Since there were two matches to the configuration path provided, the two data series are shown:

• Packet Byte Count-0 corresponds to /NodeList/0/$ns3::Ipv4L3Protocol/Tx

• Packet Byte Count-1 corresponds to /NodeList/1/$ns3::Ipv4L3Protocol/Tx

74 Chapter 11. Data Collection

ns-3 Manual, Release ns-3.18

Figure 11.3: 2-D Gnuplot Created by seventh.cc Example.

11.2. Data Collection Helpers 75

ns-3 Manual, Release ns-3.18

GnuplotHelper ConfigurePlot

The GnuplotHelper’s ConfigurePlot() function can be used to configure plots.

It has the following prototype:

void ConfigurePlot (const std::string &outputFileNameWithoutExtension,
const std::string &title,
const std::string &xLegend,
const std::string &yLegend,
const std::string &terminalType = ".png");

It has the following arguments:

Argument Description
outputFileNameWithoutExtension Name of gnuplot related files to write with no extension.
title Plot title string to use for this plot.
xLegend The legend for the x horizontal axis.
yLegend The legend for the y vertical axis.
terminalType Terminal type setting string for output. The default terminal type is “png”.

The GnuplotHelper’s ConfigurePlot() function configures plot related parameters for this gnuplot helper so that
it will create a space separated gnuplot data file named outputFileNameWithoutExtension + ”.dat”, a gnuplot control
file named outputFileNameWithoutExtension + ”.plt”, and a shell script to generate the gnuplot named outputFile-
NameWithoutExtension + ”.sh”.

An example of how to use this function can be seen in the seventh.cc code described above where it was used as
follows:

plotHelper.ConfigurePlot ("seventh-packet-byte-count",
"Packet Byte Count vs. Time",
"Time (Seconds)",
"Packet Byte Count",
"png");

GnuplotHelper PlotProbe

The GnuplotHelper’s PlotProbe() function can be used to plot values generated by probes.

It has the following prototype:

void PlotProbe (const std::string &typeId,
const std::string &path,
const std::string &probeTraceSource,
const std::string &title,
enum GnuplotAggregator::KeyLocation keyLocation = GnuplotAggregator::KEY_INSIDE);

It has the following arguments:

Argument Description
typeId The type ID for the probe used when it is created.
path Config path to access the probe.
probeTraceSource The probe trace source to access.
title The title to be associated to this dataset
keyLocation The location of the key in the plot. The default location is inside.

The GnuplotHelper’s PlotProbe() function plots a dataset generated by hooking the ns-3 trace source with a probe,
and then plotting the values from the probeTraceSource. The dataset will have the provided title, and will consist of
the ‘newValue’ at each timestamp.

76 Chapter 11. Data Collection

ns-3 Manual, Release ns-3.18

If the config path has more than one match in the system because there is a wildcard, then one dataset for each match
will be plotted. The dataset titles will be suffixed with the matched characters for each of the wildcards in the config
path, separated by spaces. For example, if the proposed dataset title is the string “bytes”, and there are two wildcards
in the path, then dataset titles like “bytes-0 0” or “bytes-12 9” will be possible as labels for the datasets that are plotted.

An example of how to use this function can be seen in the seventh.cc code described above where it was used as
follows:

plotHelper.PlotProbe ("ns3::Ipv4PacketProbe",
"/NodeList/*/$ns3::Ipv4L3Protocol/Tx",
"OutputBytes",
"Packet Byte Count",
GnuplotAggregator::KEY_BELOW);

Other Examples

Gnuplot Helper Example

A slightly simpler example than the seventh.cc example can be found in
src/stats/examples/gnuplot-helper-example.cc. It is more of a toy example than seventh.cc
because it has a made-up trace source created for demonstration purposes.

The following 2-D gnuplot was created using the example.

In this example, there is an Emitter object that increments its counter at various random times and then emits the
counter’s value as a trace source.

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names::Add ("/Names/Emitter", emitter);

The following code is probing the Counter exported by the emitter object. This DoubleProbe is using a path in the
configuration namespace to make the connection. Note that the emitter registered itself in the configuration namespace
after it was created; otherwise, the ConnectByPath would not work.

Ptr<DoubleProbe> probe = CreateObject<DoubleProbe> ();
probe->SetName ("PathProbe");
Names::Add ("/Names/Probe", probe);

// Note, no return value is checked here.
probe->ConnectByPath ("/Names/Emitter/Counter");

Note that because there are no wildcards in the path used below, only 1 datastream was drawn in the plot. This single
datastream in the plot is simply labeled “Emitter Count”, with no extra suffixes like you would see if there were
wildcards in the path.

// Create the gnuplot helper.
GnuplotHelper plotHelper;

// Configure the plot.
plotHelper.ConfigurePlot ("gnuplot-helper-example",

"Emitter Counts vs. Time",
"Time (Seconds)",
"Emitter Count",
"png");

// Plot the values generated by the probe. The path that we provide
// helps to disambiguate the source of the trace.
plotHelper.PlotProbe ("ns3::DoubleProbe",

11.2. Data Collection Helpers 77

ns-3 Manual, Release ns-3.18

Figure 11.4: 2-D Gnuplot Created by gnuplot-helper-example.cc Example.

78 Chapter 11. Data Collection

ns-3 Manual, Release ns-3.18

"/Names/Probe/Output",
"Output",
"Emitter Count",
GnuplotAggregator::KEY_INSIDE);

11.2.3 FileHelper

The FileHelper is a helper class used to put data values into a file. The overall goal is to provide the ability for
users to quickly make formatted text files from data exported in ns-3 trace sources. By default, a minimal amount of
data transformation is performed; the objective is to generate files with as few (default) configuration statements as
possible.

FileHelper Overview

The FileHelper will create 1 or more text files at the end of the simulation.

The FileHelper can create 4 different types of text files:

• Formatted

• Space separated (the default)

• Comma separated

• Tab separated

Formatted files use C-style format strings and the sprintf() function to print their values in the file being written.

The following text file with 2 columns of formatted values named seventh-packet-byte-count-0.txt was
created using more new code that was added to the original ns-3 Tutorial example’s code. Only the first 10 lines of
this file are shown here for brevity.

Time (Seconds) = 1.000e+00 Packet Byte Count = 40
Time (Seconds) = 1.004e+00 Packet Byte Count = 40
Time (Seconds) = 1.004e+00 Packet Byte Count = 576
Time (Seconds) = 1.009e+00 Packet Byte Count = 576
Time (Seconds) = 1.009e+00 Packet Byte Count = 576
Time (Seconds) = 1.015e+00 Packet Byte Count = 512
Time (Seconds) = 1.017e+00 Packet Byte Count = 576
Time (Seconds) = 1.017e+00 Packet Byte Count = 544
Time (Seconds) = 1.025e+00 Packet Byte Count = 576
Time (Seconds) = 1.025e+00 Packet Byte Count = 544

...

The following different text file with 2 columns of formatted values named
seventh-packet-byte-count-1.txt was also created using the same new code that was added to the
original ns-3 Tutorial example’s code. Only the first 10 lines of this file are shown here for brevity.

Time (Seconds) = 1.002e+00 Packet Byte Count = 40
Time (Seconds) = 1.007e+00 Packet Byte Count = 40
Time (Seconds) = 1.013e+00 Packet Byte Count = 40
Time (Seconds) = 1.020e+00 Packet Byte Count = 40
Time (Seconds) = 1.028e+00 Packet Byte Count = 40
Time (Seconds) = 1.036e+00 Packet Byte Count = 40
Time (Seconds) = 1.045e+00 Packet Byte Count = 40
Time (Seconds) = 1.053e+00 Packet Byte Count = 40
Time (Seconds) = 1.061e+00 Packet Byte Count = 40

11.2. Data Collection Helpers 79

ns-3 Manual, Release ns-3.18

Time (Seconds) = 1.069e+00 Packet Byte Count = 40

...

The new code that was added to produce the two text files is below. More details about this API will be covered in a
later section.

Note that because there were 2 matches for the wildcard in the path, 2 separate text files were created. The first text
file, which is named “seventh-packet-byte-count-0.txt”, corresponds to the wildcard match with the “*” replaced with
“0”. The second text file, which is named “seventh-packet-byte-count-1.txt”, corresponds to the wildcard match with
the “*” replaced with “1”. Also, note that the function call to WriteProbe() will give an error message if there are
no matches for a path that contains wildcards.

// Create the file helper.
FileHelper fileHelper;

// Configure the file to be written.
fileHelper.ConfigureFile ("seventh-packet-byte-count",

FileAggregator::FORMATTED);

// Set the labels for this formatted output file.
fileHelper.Set2dFormat ("Time (Seconds) = %.3e\tPacket Byte Count = %.0f");

// Write the values generated by the probe.
fileHelper.WriteProbe ("ns3::Ipv4PacketProbe",

"/NodeList/*/$ns3::Ipv4L3Protocol/Tx",
"OutputBytes");

FileHelper ConfigureFile

The FileHelper’s ConfigureFile() function can be used to configure text files.

It has the following prototype:

void ConfigureFile (const std::string &outputFileNameWithoutExtension,
enum FileAggregator::FileType fileType = FileAggregator::SPACE_SEPARATED);

It has the following arguments:

Argument Description
outputFileNameWithoutExtension Name of output file to write with no extension.
fileType Type of file to write. The default type of file is space separated.

The FileHelper’s ConfigureFile() function configures text file related parameters for the file helper so that it
will create a file named outputFileNameWithoutExtension plus possible extra information from wildcard matches plus
”.txt” with values printed as specified by fileType. The default file type is space-separated.

An example of how to use this function can be seen in the seventh.cc code described above where it was used as
follows:

fileHelper.ConfigureFile ("seventh-packet-byte-count",
FileAggregator::FORMATTED);

FileHelper WriteProbe

The FileHelper’s WriteProbe() function can be used to write values generated by probes to text files.

It has the following prototype:

80 Chapter 11. Data Collection

ns-3 Manual, Release ns-3.18

void WriteProbe (const std::string &typeId,
const std::string &path,
const std::string &probeTraceSource);

It has the following arguments:

Argument Description
typeId The type ID for the probe used when it is created.
path Config path to access the probe.
probeTraceSource The probe trace source to access.

The FileHelper’s WriteProbe() function creates output text files generated by hooking the ns-3 trace source with
a probe, and then writing the values from the probeTraceSource. The output file names will have the text stored
in the member variable m_outputFileNameWithoutExtension plus ”.txt”, and will consist of the ‘newValue’ at each
timestamp.

If the config path has more than one match in the system because there is a wildcard, then one output file for each
match will be created. The output file names will contain the text in m_outputFileNameWithoutExtension plus the
matched characters for each of the wildcards in the config path, separated by dashes, plus ”.txt”. For example, if
the value in m_outputFileNameWithoutExtension is the string “packet-byte-count”, and there are two wildcards in the
path, then output file names like “packet-byte-count-0-0.txt” or “packet-byte-count-12-9.txt” will be possible as names
for the files that will be created.

An example of how to use this function can be seen in the seventh.cc code described above where it was used as
follows:

fileHelper.WriteProbe ("ns3::Ipv4PacketProbe",
"/NodeList/*/$ns3::Ipv4L3Protocol/Tx",
"OutputBytes");

Other Examples

File Helper Example

A slightly simpler example than the seventh.cc example can be found in
src/stats/examples/file-helper-example.cc. This example only uses the FileHelper, not the
FileHelper. It is also more of a toy example than seventh.cc because it has a made-up trace source created for
demonstration purposes.

The following text file with 2 columns of formatted values named file-helper-example.txtwas created using
the example. Only the first 10 lines of this file are shown here for brevity.

Time (Seconds) = 4.995e-01 Count = 1
Time (Seconds) = 1.463e+00 Count = 2
Time (Seconds) = 1.678e+00 Count = 3
Time (Seconds) = 3.972e+00 Count = 4
Time (Seconds) = 4.150e+00 Count = 5
Time (Seconds) = 8.066e+00 Count = 6
Time (Seconds) = 8.731e+00 Count = 7
Time (Seconds) = 9.807e+00 Count = 8
Time (Seconds) = 1.078e+01 Count = 9
Time (Seconds) = 1.083e+01 Count = 10

...

In this example, there is an Emitter object that increments its counter at various random times and then emits the
counter’s value as a trace source.

11.2. Data Collection Helpers 81

ns-3 Manual, Release ns-3.18

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names::Add ("/Names/Emitter", emitter);

The following code is probing the Counter exported by the emitter object. This DoubleProbe is using a path in the
configuration namespace to make the connection. Note that the emitter registered itself in the configuration namespace
after it was created; otherwise, the ConnectByPath would not work.

Ptr<DoubleProbe> probe = CreateObject<DoubleProbe> ();
probe->SetName ("PathProbe");
Names::Add ("/Names/Probe", probe);

// Note, no return value is checked here.
probe->ConnectByPath ("/Names/Emitter/Counter");

Note that because there are no wildcards in the path used below, only 1 text file was created. This single text file is
simply named “file-helper-example.txt”, with no extra suffixes like you would see if there were wildcards in the path.

// Create the file helper.
FileHelper fileHelper;

// Configure the file to be written.
fileHelper.ConfigureFile ("file-helper-example",

FileAggregator::FORMATTED);

// Set the labels for this formatted output file.
fileHelper.Set2dFormat ("Time (Seconds) = %.3e\tCount = %.0f");

// Write the values generated by the probe. The path that we
// provide helps to disambiguate the source of the trace.
fileHelper.WriteProbe ("ns3::DoubleProbe",

"/Names/Probe/Output",
"Output");

11.2.4 Scope and Limitations

Currently, only these Probes have been implemented and connected to the GnuplotHelper and to the FileHelper:

• BooleanProbe

• DoubleProbe

• Uinteger8Probe

• Uinteger16Probe

• Uinteger32Probe

• PacketProbe

• ApplicationPacketProbe

• Ipv4PacketProbe

These Probes, therefore, are the only ones available to be used in PlotProbe() and WriteProbe().

In the next few sections, we cover each of the fundamental object types (Probe, Collector, and Aggregator) in more
detail, and show how they can be connected together using lower-level API.

82 Chapter 11. Data Collection

ns-3 Manual, Release ns-3.18

11.3 Probes

This section details the functionalities provided by the Probe class to an ns-3 simulation, and gives examples on how
to code them in a program. This section is meant for users interested in developing simulations with the ns-3 tools and
using the Data Collection Framework, of which the Probe class is a part, to generate data output with their simulation’s
results.

11.3.1 Probe Overview

A Probe object is supposed to be connected to a variable from the simulation whose values throughout the experiment
are relevant to the user. The Probe will record what were values assumed by the variable throughout the simulation and
pass such data to another member of the Data Collection Framework. While it is out of this section’s scope to discuss
what happens after the Probe produces its output, it is sufficient to say that, by the end of the simulation, the user will
have detailed information about what values were stored inside the variable being probed during the simulation.

Typically, a Probe is connected to an ns-3 trace source. In this manner, whenever the trace source exports a new value,
the Probe consumes the value (and exports it downstream to another object via its own trace source).

The Probe can be thought of as kind of a filter on trace sources. The main reasons for possibly hooking to a Probe
rather than directly to a trace source are as follows:

• Probes may be dynamically turned on and off during the simulation with calls to Enable() and Disable().
For example, the outputting of data may be turned off during the simulation warmup phase.

• Probes may perform operations on the data to extract values from more complicated structures; for instance,
outputting the packet size value from a received ns3::Packet.

• Probes register a name in the ns3::Config namespace (using Names::Add ()) so that other objects may refer
to them.

• Probes provide a static method that allows one to manipulate a Probe by name, such as what is done in
ns2measure [Cic06]

Stat::put ("my_metric", ID, sample);

The ns-3 equivalent of the above ns2measure code is, e.g.:

DoubleProbe::SetValueByPath (“/path/to/probe”, sample);

Creation

Note that a Probe base class object can not be created because it is an abstract base class, i.e. it has pure virtual
functions that have not been implemented. An object of type DoubleProbe, which is a subclass of the Probe class, will
be created here to show what needs to be done.

One declares a DoubleProbe in dynamic memory by using the smart pointer class (Ptr<T>). To create a DoubleProbe
in dynamic memory with smart pointers, one just needs to call the ns-3 method CreateObject():

Ptr<DoubleProbe> myprobe = CreateObject<DoubleProbe> ();

The declaration above creates DoubleProbes using the default values for its attributes. There are four attributes in the
DoubleProbe class; two in the base class object DataCollectionObject, and two in the Probe base class:

• “Name” (DataCollectionObject), a StringValue

• “Enabled” (DataCollectionObject), a BooleanValue

• “Start” (Probe), a TimeValue

11.3. Probes 83

ns-3 Manual, Release ns-3.18

• “Stop” (Probe), a TimeValue

One can set such attributes at object creation by using the following method:

Ptr<DoubleProbe> myprobe = CreateObjectWithAttributes<DoubleProbe> (
"Name", StringValue ("myprobe"),
"Enabled", BooleanValue (false),
"Start", TimeValue (Seconds (100.0)),
"Stop", TimeValue (Seconds (1000.0)));

Start and Stop are Time variables which determine the interval of action of the Probe. The Probe will only output data
if the current time of the Simulation is inside of that interval. The special time value of 0 seconds for Stop will disable
this attribute (i.e. keep the Probe on for the whole simulation). Enabled is a flag that turns the Probe on or off, and
must be set to true for the Probe to export data. The Name is the object’s name in the DCF framework.

Importing and exporting data

ns-3 trace sources are strongly typed, so the mechanisms for hooking Probes to a trace source and for exporting data
belong to its subclasses. For instance, the default distribution of ns-3 provides a class DoubleProbe that is designed to
hook to a trace source exporting a double value. We’ll next detail the operation of the DoubleProbe, and then discuss
how other Probe classes may be defined by the user.

11.3.2 DoubleProbe Overview

The DoubleProbe connects to a double-valued ns-3 trace source, and itself exports a different double-valued ns-3 trace
source.

The following code, drawn from src/stats/examples/double-probe-example.cc, shows the basic op-
erations of plumbing the DoubleProbe into a simulation, where it is probing a Counter exported by an emitter object
(class Emitter).

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names::Add ("/Names/Emitter", emitter);
...

Ptr<DoubleProbe> probe1 = CreateObject<DoubleProbe> ();

// Connect the probe to the emitter’s Counter
bool connected = probe1->ConnectByObject ("Counter", emitter);

The following code is probing the same Counter exported by the same emitter object. This DoubleProbe, however,
is using a path in the configuration namespace to make the connection. Note that the emitter registered itself in the
configuration namespace after it was created; otherwise, the ConnectByPath would not work.

Ptr<DoubleProbe> probe2 = CreateObject<DoubleProbe> ();

// Note, no return value is checked here
probe2->ConnectByPath ("/Names/Emitter/Counter");

The next DoubleProbe shown that is shown below will have its value set using its path in the configuration namespace.
Note that this time the DoubleProbe registered itself in the configuration namespace after it was created.

Ptr<DoubleProbe> probe3 = CreateObject<DoubleProbe> ();
probe3->SetName ("StaticallyAccessedProbe");

// We must add it to the config database
Names::Add ("/Names/Probes", probe3->GetName (), probe3);

84 Chapter 11. Data Collection

ns-3 Manual, Release ns-3.18

The emitter’s Count() function is now able to set the value for this DoubleProbe as follows:

void
Emitter::Count (void)
{

...
m_counter += 1.0;
DoubleProbe::SetValueByPath ("/Names/StaticallyAccessedProbe", m_counter);
...

}

The above example shows how the code calling the Probe does not have to have an explicit reference to the Probe,
but can direct the value setting through the Config namespace. This is similar in functionality to the Stat::Put method
introduced by ns2measure paper [Cic06], and allows users to temporarily insert Probe statements like printf statements
within existing ns-3 models. Note that in order to be able to use the DoubleProbe in this example like this, 2 things
were necessary:

1. the stats module header file was included in the example .cc file

2. the example was made dependent on the stats module in its wscript file.

Analogous things need to be done in order to add other Probes in other places in the ns-3 code base.

The values for the DoubleProbe can also be set using the function DoubleProbe::SetValue(), while the values for the
DoubleProbe can be gotten using the function DoubleProbe::GetValue().

The DoubleProbe exports double values in its “Output” trace source; a downstream object can hook a trace sink
(NotifyViaProbe) to this as follows:

connected = probe1->TraceConnect ("Output", probe1->GetName (), MakeCallback (&NotifyViaProbe));

11.3.3 Other probes

Besides the DoubleProbe, the following Probes are also available:

• Uinteger8Probe connects to an ns-3 trace source exporting an uint8_t.

• Uinteger16Probe connects to an ns-3 trace source exporting an uint16_t.

• Uinteger32Probe connects to an ns-3 trace source exporting an uint32_t.

• PacketProbe connects to an ns-3 trace source exporting a packet.

• ApplicationPacketProbe connects to an ns-3 trace source exporting a packet and a socket address.

• Ipv4PacketProbe connects to an ns-3 trace source exporting a packet, an IPv4 object, and an interface.

11.3.4 Creating new Probe types

To create a new Probe type, you need to perform the following steps:

• Be sure that your new Probe class is derived from the Probe base class.

• Be sure that the pure virtual functions that your new Probe class inherits from the Probe base class are imple-
mented.

• Find an existing Probe class that uses a trace source that is closest in type to the type of trace source your Probe
will be using.

• Copy that existing Probe class’s header file (.h) and implementation file (.cc) to two new files with names
matching your new Probe.

11.3. Probes 85

ns-3 Manual, Release ns-3.18

• Replace the types, arguments, and variables in the copied files with the appropriate type for your Probe.

• Make necessary modifications to make the code compile and to make it behave as you would like.

11.3.5 Examples

Two examples will be discussed in detail here:

• Double Probe Example

• IPv4 Packet Plot Example

Double Probe Example

The double probe example has been discussed previously. The example program can be found in
src/stats/examples/double-probe-example.cc. To summarize what occurs in this program, there is
an emitter that exports a counter that increments according to a Poisson process. In particular, two ways of emitting
data are shown:

1. through a traced variable hooked to one Probe:

TracedValue<double> m_counter; // normally this would be integer type

2. through a counter whose value is posted to a second Probe, referenced by its name in the Config system:

void
Emitter::Count (void)
{

NS_LOG_FUNCTION (this);
NS_LOG_DEBUG ("Counting at " << Simulator::Now ().GetSeconds ());
m_counter += 1.0;
DoubleProbe::SetValueByPath ("/Names/StaticallyAccessedProbe", m_counter);
Simulator::Schedule (Seconds (m_var->GetValue ()), &Emitter::Count, this);

}

Let’s look at the Probe more carefully. Probes can receive their values in a multiple ways:

1. by the Probe accessing the trace source directly and connecting a trace sink to it

2. by the Probe accessing the trace source through the config namespace and connecting a trace sink to it

3. by the calling code explicitly calling the Probe’s SetValue() method

4. by the calling code explicitly calling SetValueByPath (“/path/through/Config/namespace”, ...)

The first two techniques are expected to be the most common. Also in the example, the hooking of a normal callback
function is shown, as is typically done in ns-3. This callback function is not associated with a Probe object. We’ll call
this case 0) below.

// This is a function to test hooking a raw function to the trace source
void
NotifyViaTraceSource (std::string context, double oldVal, double newVal)
{

NS_LOG_DEBUG ("context: " << context << " old " << oldVal << " new " << newVal);
}

First, the emitter needs to be setup:

86 Chapter 11. Data Collection

ns-3 Manual, Release ns-3.18

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names::Add ("/Names/Emitter", emitter);

// The Emitter object is not associated with an ns-3 node, so
// it won’t get started automatically, so we need to do this ourselves
Simulator::Schedule (Seconds (0.0), &Emitter::Start, emitter);

The various DoubleProbes interact with the emitter in the example as shown below.

Case 0):

// The below shows typical functionality without a probe
// (connect a sink function to a trace source)
//
connected = emitter->TraceConnect ("Counter", "sample context", MakeCallback (&NotifyViaTraceSource));
NS_ASSERT_MSG (connected, "Trace source not connected");

case 1):

//
// Probe1 will be hooked directly to the Emitter trace source object
//

// probe1 will be hooked to the Emitter trace source
Ptr<DoubleProbe> probe1 = CreateObject<DoubleProbe> ();
// the probe’s name can serve as its context in the tracing
probe1->SetName ("ObjectProbe");

// Connect the probe to the emitter’s Counter
connected = probe1->ConnectByObject ("Counter", emitter);
NS_ASSERT_MSG (connected, "Trace source not connected to probe1");

case 2):

//
// Probe2 will be hooked to the Emitter trace source object by
// accessing it by path name in the Config database
//

// Create another similar probe; this will hook up via a Config path
Ptr<DoubleProbe> probe2 = CreateObject<DoubleProbe> ();
probe2->SetName ("PathProbe");

// Note, no return value is checked here
probe2->ConnectByPath ("/Names/Emitter/Counter");

case 4) (case 3 is not shown in this example):

//
// Probe3 will be called by the emitter directly through the
// static method SetValueByPath().
//
Ptr<DoubleProbe> probe3 = CreateObject<DoubleProbe> ();
probe3->SetName ("StaticallyAccessedProbe");
// We must add it to the config database
Names::Add ("/Names/Probes", probe3->GetName (), probe3);

And finally, the example shows how the probes can be hooked to generate output:

11.3. Probes 87

ns-3 Manual, Release ns-3.18

// The probe itself should generate output. The context that we provide
// to this probe (in this case, the probe name) will help to disambiguate
// the source of the trace
connected = probe3->TraceConnect ("Output", "/Names/Probes/StaticallyAccessedProbe/Output", MakeCallback (&NotifyViaProbe));
NS_ASSERT_MSG (connected, "Trace source not .. connected to probe3 Output");

The following callback is hooked to the Probe in this example for illustrative purposes; normally, the Probe would be
hooked to a Collector object.

// This is a function to test hooking it to the probe output
void
NotifyViaProbe (std::string context, double oldVal, double newVal)
{

NS_LOG_DEBUG ("context: " << context << " old " << oldVal << " new " << newVal);
}

IPv4 Packet Plot Example

The IPv4 packet plot example is based on the fifth.cc example from the ns-3 Tutorial. It can be found in
src/stats/examples/ipv4-packet-plot-example.cc.

// ===
//
// node 0 node 1
// +----------------+ +----------------+
// | ns-3 TCP | | ns-3 TCP |
// +----------------+ +----------------+
// | 10.1.1.1 | | 10.1.1.2 |
// +----------------+ +----------------+
// | point-to-point | | point-to-point |
// +----------------+ +----------------+
// | |
// +---------------------+

We’ll just look at the Probe, as it illustrates that Probes may also unpack values from structures (in this case, packets)
and report those values as trace source outputs, rather than just passing through the same type of data.

There are other aspects of this example that will be explained later in the documentation. The two types of data that
are exported are the packet itself (Output) and a count of the number of bytes in the packet (OutputBytes).

TypeId
Ipv4PacketProbe::GetTypeId ()
{

static TypeId tid = TypeId ("ns3::Ipv4PacketProbe")
.SetParent<Probe> ()
.AddConstructor<Ipv4PacketProbe> ()
.AddTraceSource ("Output",

"The packet plus its IPv4 object and interface that serve as the output for this probe",
MakeTraceSourceAccessor (&Ipv4PacketProbe::m_output))

.AddTraceSource ("OutputBytes",
"The number of bytes in the packet",
MakeTraceSourceAccessor (&Ipv4PacketProbe::m_outputBytes))

;
return tid;

}

When the Probe’s trace sink gets a packet, if the Probe is enabled, then it will output the packet on its Output trace
source, but it will also output the number of bytes on the OutputBytes trace source.

88 Chapter 11. Data Collection

ns-3 Manual, Release ns-3.18

void
Ipv4PacketProbe::TraceSink (Ptr<const Packet> packet, Ptr<Ipv4> ipv4, uint32_t interface)
{

NS_LOG_FUNCTION (this << packet << ipv4 << interface);
if (IsEnabled ())
{

m_packet = packet;
m_ipv4 = ipv4;
m_interface = interface;
m_output (packet, ipv4, interface);

uint32_t packetSizeNew = packet->GetSize ();
m_outputBytes (m_packetSizeOld, packetSizeNew);
m_packetSizeOld = packetSizeNew;

}
}

11.3.6 References

11.4 Collectors

This section is a placeholder to detail the functionalities provided by the Collector class to an ns-3 simulation, and
gives examples on how to code them in a program.

Note: As of ns-3.18, Collectors are still under development and not yet provided as part of the framework.

11.5 Aggregators

This section details the functionalities provided by the Aggregator class to an ns-3 simulation. This section is meant
for users interested in developing simulations with the ns-3 tools and using the Data Collection Framework, of which
the Aggregator class is a part, to generate data output with their simulation’s results.

11.5.1 Aggregator Overview

An Aggregator object is supposed to be hooked to one or more trace sources in order to receive input. Aggregators are
the end point of the data collected by the network of Probes and Collectors during the simulation. It is the Aggregator’s
job to take these values and transform them into their final output format such as plain text files, spreadsheet files, plots,
or databases.

Typically, an aggregator is connected to one or more Collectors. In this manner, whenever the Collectors’ trace sources
export new values, the Aggregator can process the value so that it can be used in the final output format where the data
values will reside after the simulation.

Note the following about Aggregators:

• Aggregators may be dynamically turned on and off during the simulation with calls to Enable() and
Disable(). For example, the aggregating of data may be turned off during the simulation warmup phase,
which means those values won’t be included in the final output medium.

• Aggregators receive data from Collectors via callbacks. When a Collector is associated to an aggregator, a call
to TraceConnect is made to establish the Aggregator’s trace sink method as a callback.

To date, two Aggregators have been implemented:

11.4. Collectors 89

ns-3 Manual, Release ns-3.18

• GnuplotAggregator

• FileAggregator

11.5.2 GnuplotAggregator

The GnuplotAggregator produces output files used to make gnuplots.

The GnuplotAggregator will create 3 different files at the end of the simulation:

• A space separated gnuplot data file

• A gnuplot control file

• A shell script to generate the gnuplot

Creation

An object of type GnuplotAggregator will be created here to show what needs to be done.

One declares a GnuplotAggregator in dynamic memory by using the smart pointer class (Ptr<T>). To create a Gnu-
plotAggregator in dynamic memory with smart pointers, one just needs to call the ns-3 method CreateObject().
The following code from src/stats/examples/gnuplot-aggregator-example.cc shows how to do
this:

string fileNameWithoutExtension = "gnuplot-aggregator";

// Create an aggregator.
Ptr<GnuplotAggregator> aggregator =

CreateObject<GnuplotAggregator> (fileNameWithoutExtension);

The first argument for the constructor, fileNameWithoutExtension, is the name of the gnuplot related files to write with
no extension. This GnuplotAggregator will create a space separated gnuplot data file named “gnuplot-aggregator.dat”,
a gnuplot control file named “gnuplot-aggregator.plt”, and a shell script to generate the gnuplot named + “gnuplot-
aggregator.sh”.

The gnuplot that is created can have its key in 4 different locations:

• No key

• Key inside the plot (the default)

• Key above the plot

• Key below the plot

The following gnuplot key location enum values are allowed to specify the key’s position:

enum KeyLocation {
NO_KEY,
KEY_INSIDE,
KEY_ABOVE,
KEY_BELOW

};

If it was desired to have the key below rather than the default position of inside, then you could do the following.

aggregator->SetKeyLocation(GnuplotAggregator::KEY_BELOW);

90 Chapter 11. Data Collection

ns-3 Manual, Release ns-3.18

Examples

One example will be discussed in detail here:

• Gnuplot Aggregator Example

Gnuplot Aggregator Example

An example that exercises the GnuplotAggregator can be found in src/stats/examples/gnuplot-aggregator-example.cc.

The following 2-D gnuplot was created using the example.

Figure 11.5: 2-D Gnuplot Created by gnuplot-aggregator-example.cc Example.

This code from the example shows how to construct the GnuplotAggregator as was discussed above.

void Create2dPlot ()
{

using namespace std;

string fileNameWithoutExtension = "gnuplot-aggregator";
string plotTitle = "Gnuplot Aggregator Plot";
string plotXAxisHeading = "Time (seconds)";
string plotYAxisHeading = "Double Values";

11.5. Aggregators 91

ns-3 Manual, Release ns-3.18

string plotDatasetLabel = "Data Values";
string datasetContext = "Dataset/Context/String";

// Create an aggregator.
Ptr<GnuplotAggregator> aggregator =
CreateObject<GnuplotAggregator> (fileNameWithoutExtension);

Various GnuplotAggregator attributes are set including the 2-D dataset that will be plotted.

// Set the aggregator’s properties.
aggregator->SetTerminal ("png");
aggregator->SetTitle (plotTitle);
aggregator->SetLegend (plotXAxisHeading, plotYAxisHeading);

// Add a data set to the aggregator.
aggregator->Add2dDataset (datasetContext, plotDatasetLabel);

// aggregator must be turned on
aggregator->Enable ();

Next, the 2-D values are calculated, and each one is individually written to the GnuplotAggregator using the
Write2d() function.

double time;
double value;

// Create the 2-D dataset.
for (time = -5.0; time <= +5.0; time += 1.0)
{

// Calculate the 2-D curve
//
// 2
// value = time .
//
value = time * time;

// Add this point to the plot.
aggregator->Write2d (datasetContext, time, value);

}

// Disable logging of data for the aggregator.
aggregator->Disable ();

}

11.5.3 FileAggregator

The FileAggregator sends the values it receives to a file.

The FileAggregator can create 4 different types of files:

• Formatted

• Space separated (the default)

• Comma separated

• Tab separated

Formatted files use C-style format strings and the sprintf() function to print their values in the file being written.

92 Chapter 11. Data Collection

ns-3 Manual, Release ns-3.18

Creation

An object of type FileAggregator will be created here to show what needs to be done.

One declares a FileAggregator in dynamic memory by using the smart pointer class (Ptr<T>). To create a FileAggre-
gator in dynamic memory with smart pointers, one just needs to call the ns-3 method CreateObject. The following
code from src/stats/examples/file-aggregator-example.cc shows how to do this:

string fileName = "file-aggregator-formatted-values.txt";

// Create an aggregator that will have formatted values.
Ptr<FileAggregator> aggregator =

CreateObject<FileAggregator> (fileName, FileAggregator::FORMATTED);

The first argument for the constructor, filename, is the name of the file to write; the second argument, fileType, is
type of file to write. This FileAggregator will create a file named “file-aggregator-formatted-values.txt” with its values
printed as specified by fileType, i.e., formatted in this case.

The following file type enum values are allowed:

enum FileType {
FORMATTED,
SPACE_SEPARATED,
COMMA_SEPARATED,
TAB_SEPARATED

};

Examples

One example will be discussed in detail here:

• File Aggregator Example

File Aggregator Example

An example that exercises the FileAggregator can be found in src/stats/examples/file-aggregator-example.cc.

The following text file with 2 columns of values separated by commas was created using the example.

-5,25
-4,16
-3,9
-2,4
-1,1
0,0
1,1
2,4
3,9
4,16
5,25

This code from the example shows how to construct the FileAggregator as was discussed above.

void CreateCommaSeparatedFile ()
{

using namespace std;

string fileName = "file-aggregator-comma-separated.txt";

11.5. Aggregators 93

ns-3 Manual, Release ns-3.18

string datasetContext = "Dataset/Context/String";

// Create an aggregator.
Ptr<FileAggregator> aggregator =
CreateObject<FileAggregator> (fileName, FileAggregator::COMMA_SEPARATED);

FileAggregator attributes are set.

// aggregator must be turned on
aggregator->Enable ();

Next, the 2-D values are calculated, and each one is individually written to the FileAggregator using the Write2d()
function.

double time;
double value;

// Create the 2-D dataset.
for (time = -5.0; time <= +5.0; time += 1.0)
{

// Calculate the 2-D curve
//
// 2
// value = time .
//
value = time * time;

// Add this point to the plot.
aggregator->Write2d (datasetContext, time, value);

}

// Disable logging of data for the aggregator.
aggregator->Disable ();

}

The following text file with 2 columns of formatted values was also created using the example.

Time = -5.000e+00 Value = 25
Time = -4.000e+00 Value = 16
Time = -3.000e+00 Value = 9
Time = -2.000e+00 Value = 4
Time = -1.000e+00 Value = 1
Time = 0.000e+00 Value = 0
Time = 1.000e+00 Value = 1
Time = 2.000e+00 Value = 4
Time = 3.000e+00 Value = 9
Time = 4.000e+00 Value = 16
Time = 5.000e+00 Value = 25

This code from the example shows how to construct the FileAggregator as was discussed above.

void CreateFormattedFile ()
{

using namespace std;

string fileName = "file-aggregator-formatted-values.txt";
string datasetContext = "Dataset/Context/String";

// Create an aggregator that will have formatted values.

94 Chapter 11. Data Collection

ns-3 Manual, Release ns-3.18

Ptr<FileAggregator> aggregator =
CreateObject<FileAggregator> (fileName, FileAggregator::FORMATTED);

FileAggregator attributes are set, including the C-style format string to use.

// Set the format for the values.
aggregator->Set2dFormat ("Time = %.3e\tValue = %.0f");

// aggregator must be turned on
aggregator->Enable ();

Next, the 2-D values are calculated, and each one is individually written to the FileAggregator using the Write2d()
function.

double time;
double value;

// Create the 2-D dataset.
for (time = -5.0; time <= +5.0; time += 1.0)
{

// Calculate the 2-D curve
//
// 2
// value = time .
//
value = time * time;

// Add this point to the plot.
aggregator->Write2d (datasetContext, time, value);

}

// Disable logging of data for the aggregator.
aggregator->Disable ();

}

11.6 Adaptors

This section details the functionalities provided by the Adaptor class to an ns-3 simulation. This section is meant for
users interested in developing simulations with the ns-3 tools and using the Data Collection Framework, of which the
Adaptor class is a part, to generate data output with their simulation’s results.

Note: the term ‘adaptor’ may also be spelled ‘adapter’; we chose the spelling aligned with the C++ standard.

11.6.1 Adaptor Overview

An Adaptor is used to make connections between different types of DCF objects.

To date, one Adaptor has been implemented:

• TimeSeriesAdaptor

11.6.2 Time Series Adaptor

The TimeSeriesAdaptor lets Probes connect directly to Aggregators without needing any Collector in between.

11.6. Adaptors 95

ns-3 Manual, Release ns-3.18

Both of the implemented DCF helpers utilize TimeSeriesAdaptors in order to take probed values of different types and
output the current time plus the value with both converted to doubles.

The role of the TimeSeriesAdaptor class is that of an adaptor, which takes raw-valued probe data of different types
and outputs a tuple of two double values. The first is a timestamp, which may be set to different resolutions (e.g.
Seconds, Milliseconds, etc.) in the future but which is presently hardcoded to Seconds. The second is the conversion
of a non-double value to a double value (possibly with loss of precision).

11.7 Scope/Limitations

This section discusses the scope and limitations of the Data Collection Framework.

Currently, only these Probes have been implemented in DCF:

• BooleanProbe

• DoubleProbe

• Uinteger8Probe

• Uinteger16Probe

• Uinteger32Probe

• PacketProbe

• ApplicationPacketProbe

• Ipv4PacketProbe

Currently, no Collectors are available in the DCF, although a BasicStatsCollector is under development.

Currently, only these Aggregators have been implemented in DCF:

• GnuplotAggregator

• FileAggregator

Currently, only this Adaptor has been implemented in DCF:

Time-Series Adaptor.

11.7.1 Future Work

This section discusses the future work to be done on the Data Collection Framework.

Here are some things that still need to be done:

• Hook up more trace sources in ns-3 code to get more values out of the simulator.

• Implement more types of Probes than there currently are.

• Implement more than just the single current 2-D Collector, BasicStatsCollector.

• Implement more Aggregators.

• Implement more than just Adaptors.

96 Chapter 11. Data Collection

CHAPTER

TWELVE

STATISTICAL FRAMEWORK

This chapter outlines work on simulation data collection and the statistical framework for ns-3.

The source code for the statistical framework lives in the directory src/stats.

12.1 Goals

Primary objectives for this effort are the following:

• Provide functionality to record, calculate, and present data and statistics for analysis of network simulations.

• Boost simulation performance by reducing the need to generate extensive trace logs in order to collect data.

• Enable simulation control via online statistics, e.g. terminating simulations or repeating trials.

Derived sub-goals and other target features include the following:

• Integration with the existing ns-3 tracing system as the basic instrumentation framework of the internal simula-
tion engine, e.g. network stacks, net devices, and channels.

• Enabling users to utilize the statistics framework without requiring use of the tracing system.

• Helping users create, aggregate, and analyze data over multiple trials.

• Support for user created instrumentation, e.g. of application specific events and measures.

• Low memory and CPU overhead when the package is not in use.

• Leveraging existing analysis and output tools as much as possible. The framework may provide some basic
statistics, but the focus is on collecting data and making it accessible for manipulation in established tools.

• Eventual support for distributing independent replications is important but not included in the first round of
features.

12.2 Overview

The statistics framework includes the following features:

• The core framework and two basic data collectors: A counter, and a min/max/avg/total observer.

• Extensions of those to easily work with times and packets.

• Plaintext output formatted for omnetpp.

• Database output using sqlite3, a standalone, lightweight, high performance SQL engine.

97

ns-3 Manual, Release ns-3.18

• Mandatory and open ended metadata for describing and working with runs.

• An example based on the notional experiment of examining the properties of NS-3’s default ad hoc WiFi per-
formance. It incorporates the following:

– Constructs of a two node ad hoc WiFi network, with the nodes a parameterized distance apart.

– UDP traffic source and sink applications with slightly different behavior and measurement hooks than the
stock classes.

– Data collection from the NS-3 core via existing trace signals, in particular data on frames transmitted and
received by the WiFi MAC objects.

– Instrumentation of custom applications by connecting new trace signals to the stat framework, as well as
via direct updates. Information is recorded about total packets sent and received, bytes transmitted, and
end-to-end delay.

– An example of using packet tags to track end-to-end delay.

– A simple control script which runs a number of trials of the experiment at varying distances and queries
the resulting database to produce a graph using GNUPlot.

12.3 To-Do

High priority items include:

• Inclusion of online statistics code, e.g. for memory efficient confidence intervals.

• Provisions in the data collectors for terminating runs, i.e. when a threshold or confidence is met.

• Data collectors for logging samples over time, and output to the various formats.

• Demonstrate writing simple cyclic event glue to regularly poll some value.

Each of those should prove straightforward to incorporate in the current framework.

12.4 Approach

The framework is based around the following core principles:

• One experiment trial is conducted by one instance of a simulation program, whether in parallel or serially.

• A control script executes instances of the simulation, varying parameters as necessary.

• Data is collected and stored for plotting and analysis using external scripts and existing tools.

• Measures within the ns-3 core are taken by connecting the stat framework to existing trace signals.

• Trace signals or direct manipulation of the framework may be used to instrument custom simulation code.

Those basic components of the framework and their interactions are depicted in the following figure.

98 Chapter 12. Statistical Framework

ns-3 Manual, Release ns-3.18

12.5 Example

This section goes through the process of constructing an experiment in the framework and producing data for analysis
(graphs) from it, demonstrating the structure and API along the way.

12.5.1 Question

‘’What is the (simulated) performance of ns-3’s WiFi NetDevices (using the default settings)? How far apart can
wireless nodes be in a simulation before they cannot communicate reliably?’‘

• Hypothesis: Based on knowledge of real life performance, the nodes should communicate reasonably well to at
least 100m apart. Communication beyond 200m shouldn’t be feasible.

Although not a very common question in simulation contexts, this is an important property of which simulation
developers should have a basic understanding. It is also a common study done on live hardware.

12.5.2 Simulation Program

The first thing to do in implementing this experiment is developing the simulation program. The code for this example
can be found in examples/stats/wifi-example-sim.cc. It does the following main steps.

• Declaring parameters and parsing the command line using ns3::CommandLine.

CommandLine cmd;
cmd.AddValue("distance", "Distance apart to place nodes (in meters).",

distance);
cmd.AddValue("format", "Format to use for data output.",

format);
cmd.AddValue("experiment", "Identifier for experiment.",

12.5. Example 99

ns-3 Manual, Release ns-3.18

experiment);
cmd.AddValue("strategy", "Identifier for strategy.",

strategy);
cmd.AddValue("run", "Identifier for run.",

runID);
cmd.Parse (argc, argv);

• Creating nodes and network stacks using ns3::NodeContainer, ns3::WiFiHelper, and
ns3::InternetStackHelper.

NodeContainer nodes;
nodes.Create(2);

WifiHelper wifi;
wifi.SetMac("ns3::AdhocWifiMac");
wifi.SetPhy("ns3::WifiPhy");
NetDeviceContainer nodeDevices = wifi.Install(nodes);

InternetStackHelper internet;
internet.Install(nodes);
Ipv4AddressHelper ipAddrs;
ipAddrs.SetBase("192.168.0.0", "255.255.255.0");
ipAddrs.Assign(nodeDevices);

• Positioning the nodes using ns3::MobilityHelper. By default the nodes have static mobility and won’t
move, but must be positioned the given distance apart. There are several ways to do this; it is done here using
ns3::ListPositionAllocator, which draws positions from a given list.

MobilityHelper mobility;
Ptr<ListPositionAllocator> positionAlloc =
CreateObject<ListPositionAllocator>();

positionAlloc->Add(Vector(0.0, 0.0, 0.0));
positionAlloc->Add(Vector(0.0, distance, 0.0));
mobility.SetPositionAllocator(positionAlloc);
mobility.Install(nodes);

• Installing a traffic generator and a traffic sink. The stock Applications could be used, but the example
includes custom objects in src/test/test02-apps.(cc|h). These have a simple behavior, generating
a given number of packets spaced at a given interval. As there is only one of each they are installed manually;
for a larger set the ns3::ApplicationHelper class could be used. The commented-out Config::Set
line changes the destination of the packets, set to broadcast by default in this example. Note that in general
WiFi may have different performance for broadcast and unicast frames due to different rate control and MAC
retransmission policies.

Ptr<Node> appSource = NodeList::GetNode(0);
Ptr<Sender> sender = CreateObject<Sender>();
appSource->AddApplication(sender);
sender->Start(Seconds(1));

Ptr<Node> appSink = NodeList::GetNode(1);
Ptr<Receiver> receiver = CreateObject<Receiver>();
appSink->AddApplication(receiver);
receiver->Start(Seconds(0));

// Config::Set("/NodeList/*/ApplicationList/*/$Sender/Destination",
// Ipv4AddressValue("192.168.0.2"));

• Configuring the data and statistics to be collected. The basic paradigm is that an ns3::DataCollector
object is created to hold information about this particular run, to which observers and calculators are attached to

100 Chapter 12. Statistical Framework

ns-3 Manual, Release ns-3.18

actually generate data. Importantly, run information includes labels for the ‘’experiment’‘, ‘’strategy’‘, ‘’input’‘,
and ‘’run’‘. These are used to later identify and easily group data from multiple trials.

– The experiment is the study of which this trial is a member. Here it is on WiFi performance and distance.

– The strategy is the code or parameters being examined in this trial. In this example it is fixed, but an
obvious extension would be to investigate different WiFi bit rates, each of which would be a different
strategy.

– The input is the particular problem given to this trial. Here it is simply the distance between the two nodes.

– The runID is a unique identifier for this trial with which it’s information is tagged for identification in later
analysis. If no run ID is given the example program makes a (weak) run ID using the current time.

Those four pieces of metadata are required, but more may be desired. They may be added to the record using
the ns3::DataCollector::AddMetadata() method.

DataCollector data;
data.DescribeRun(experiment,

strategy,
input,
runID);

data.AddMetadata("author", "tjkopena");

Actual observation and calculating is done by ns3::DataCalculator objects, of which several different
types exist. These are created by the simulation program, attached to reporting or sampling code, and then
registered with the ns3::DataCollector so they will be queried later for their output. One easy observation
mechanism is to use existing trace sources, for example to instrument objects in the ns-3 core without changing
their code. Here a counter is attached directly to a trace signal in the WiFi MAC layer on the target node.

Ptr<PacketCounterCalculator> totalRx =
CreateObject<PacketCounterCalculator>();

totalRx->SetKey("wifi-rx-frames");
Config::Connect("/NodeList/1/DeviceList/*/$ns3::WifiNetDevice/Rx",

MakeCallback(&PacketCounterCalculator::FrameUpdate,
totalRx));

data.AddDataCalculator(totalRx);

Calculators may also be manipulated directly. In this example, a counter is created and passed to the traffic sink
application to be updated when packets are received.

Ptr<CounterCalculator<> > appRx =
CreateObject<CounterCalculator<> >();

appRx->SetKey("receiver-rx-packets");
receiver->SetCounter(appRx);
data.AddDataCalculator(appRx);

To increment the count, the sink’s packet processing code then calls one of the calculator’s update methods.

m_calc->Update();

The program includes several other examples as well, using both the primitive calculators such
as ns3::CounterCalculator and those adapted for observing packets and times. In
src/test/test02-apps.(cc|h) it also creates a simple custom tag which it uses to track end-
to-end delay for generated packets, reporting results to a ns3::TimeMinMaxAvgTotalCalculator data
calculator.

• Running the simulation, which is very straightforward once constructed.

Simulator::Run();

12.5. Example 101

ns-3 Manual, Release ns-3.18

• Generating either omnetpp or sqlite output, depending on the command line arguments. To do this a
ns3::DataOutputInterface object is created and configured. The specific type of this will determine the
output format. This object is then given the ns3::DataCollector object which it interrogates to produce
the output.

Ptr<DataOutputInterface> output;
if (format == "omnet") {
NS_LOG_INFO("Creating omnet formatted data output.");
output = CreateObject<OmnetDataOutput>();

} else {
#ifdef STAT_USE_DB

NS_LOG_INFO("Creating sqlite formatted data output.");
output = CreateObject<SqliteDataOutput>();

#endif
}

output->Output(data);

• Freeing any memory used by the simulation. This should come at the end of the main function for the example.

Simulator::Destroy();

Logging

To see what the example program, applications, and stat framework are doing in detail, set the NS_LOG variable
appropriately. The following will provide copious output from all three.

export NS_LOG=StatFramework:WiFiDistanceExperiment:WiFiDistanceApps

Note that this slows down the simulation extraordinarily.

Sample Output

Compiling and simply running the test program will append omnet++ formatted output such as the following to
data.sca.

run run-1212239121

attr experiment "wifi-distance-test"
attr strategy "wifi-default"
attr input "50"
attr description ""

attr "author" "tjkopena"

scalar wifi-tx-frames count 30
scalar wifi-rx-frames count 30
scalar sender-tx-packets count 30
scalar receiver-rx-packets count 30
scalar tx-pkt-size count 30
scalar tx-pkt-size total 1920
scalar tx-pkt-size average 64
scalar tx-pkt-size max 64
scalar tx-pkt-size min 64
scalar delay count 30
scalar delay total 5884980ns
scalar delay average 196166ns

102 Chapter 12. Statistical Framework

ns-3 Manual, Release ns-3.18

scalar delay max 196166ns
scalar delay min 196166ns

12.5.3 Control Script

In order to automate data collection at a variety of inputs (distances), a simple Bash script is used to execute a series
of simulations. It can be found at examples/stats/wifi-example-db.sh. The script runs through a set of
distances, collecting the results into an sqlite3 database. At each distance five trials are conducted to give a better
picture of expected performance. The entire experiment takes only a few dozen seconds to run on a low end machine
as there is no output during the simulation and little traffic is generated.

#!/bin/sh

DISTANCES="25 50 75 100 125 145 147 150 152 155 157 160 162 165 167 170 172 175 177 180"
TRIALS="1 2 3 4 5"

echo WiFi Experiment Example

if [-e data.db]
then

echo Kill data.db?
read ANS
if ["$ANS" = "yes" -o "$ANS" = "y"]
then
echo Deleting database
rm data.db

fi
fi

for trial in $TRIALS
do

for distance in $DISTANCES
do
echo Trial $trial, distance $distance
./bin/test02 --format=db --distance=$distance --run=run-$distance-$trial

done
done

12.5.4 Analysis and Conclusion

Once all trials have been conducted, the script executes a simple SQL query over the database using the sqlite3
command line program. The query computes average packet loss in each set of trials associated with each distance.
It does not take into account different strategies, but the information is present in the database to make some simple
extensions and do so. The collected data is then passed to GNUPlot for graphing.

CMD="select exp.input,avg(100-((rx.value*100)/tx.value)) \
from Singletons rx, Singletons tx, Experiments exp \
where rx.run = tx.run AND \

rx.run = exp.run AND \
rx.name=’receiver-rx-packets’ AND \
tx.name=’sender-tx-packets’ \

group by exp.input \
order by abs(exp.input) ASC;"

sqlite3 -noheader data.db "$CMD" > wifi-default.data

12.5. Example 103

ns-3 Manual, Release ns-3.18

sed -i "s/|/ /" wifi-default.data
gnuplot wifi-example.gnuplot

The GNUPlot script found at examples/stats/wifi-example.gnuplot simply defines the output format
and some basic formatting for the graph.

set terminal postscript portrait enhanced lw 2 "Helvetica" 14

set size 1.0, 0.66

#---
set out "wifi-default.eps"
#set title "Packet Loss Over Distance"
set xlabel "Distance (m) --- average of 5 trials per point"
set xrange [0:200]
set ylabel "% Packet Loss"
set yrange [0:110]

plot "wifi-default.data" with lines title "WiFi Defaults"

End Result

The resulting graph provides no evidence that the default WiFi model’s performance is necessarily unreasonable and
lends some confidence to an at least token faithfulness to reality. More importantly, this simple investigation has been
carried all the way through using the statistical framework. Success!

104 Chapter 12. Statistical Framework

ns-3 Manual, Release ns-3.18

12.5. Example 105

ns-3 Manual, Release ns-3.18

106 Chapter 12. Statistical Framework

CHAPTER

THIRTEEN

REALTIME

ns-3 has been designed for integration into testbed and virtual machine environments. To integrate with real network
stacks and emit/consume packets, a real-time scheduler is needed to try to lock the simulation clock with the hardware
clock. We describe here a component of this: the RealTime scheduler.

The purpose of the realtime scheduler is to cause the progression of the simulation clock to occur synchronously with
respect to some external time base. Without the presence of an external time base (wall clock), simulation time jumps
instantly from one simulated time to the next.

13.1 Behavior

When using a non-realtime scheduler (the default in ns-3), the simulator advances the simulation time to the next
scheduled event. During event execution, simulation time is frozen. With the realtime scheduler, the behavior is
similar from the perspective of simulation models (i.e., simulation time is frozen during event execution), but between
events, the simulator will attempt to keep the simulation clock aligned with the machine clock.

When an event is finished executing, and the scheduler moves to the next event, the scheduler compares the next event
execution time with the machine clock. If the next event is scheduled for a future time, the simulator sleeps until that
realtime is reached and then executes the next event.

It may happen that, due to the processing inherent in the execution of simulation events, that the simulator cannot
keep up with realtime. In such a case, it is up to the user configuration what to do. There are two ns-3 attributes
that govern the behavior. The first is ns3::RealTimeSimulatorImpl::SynchronizationMode. The two
entries possible for this attribute are BestEffort (the default) or HardLimit. In “BestEffort” mode, the simulator
will just try to catch up to realtime by executing events until it reaches a point where the next event is in the (realtime)
future, or else the simulation ends. In BestEffort mode, then, it is possible for the simulation to consume more time
than the wall clock time. The other option “HardLimit” will cause the simulation to abort if the tolerance threshold is
exceeded. This attribute is ns3::RealTimeSimulatorImpl::HardLimit and the default is 0.1 seconds.

A different mode of operation is one in which simulated time is not frozen during an event execution. This mode
of realtime simulation was implemented but removed from the ns-3 tree because of questions of whether it would be
useful. If users are interested in a realtime simulator for which simulation time does not freeze during event execution
(i.e., every call to Simulator::Now() returns the current wall clock time, not the time at which the event started
executing), please contact the ns-developers mailing list.

13.2 Usage

The usage of the realtime simulator is straightforward, from a scripting perspective. Users just need to set the attribute
SimulatorImplementationType to the Realtime simulator, such as follows:

107

ns-3 Manual, Release ns-3.18

GlobalValue::Bind ("SimulatorImplementationType",
StringValue ("ns3::RealtimeSimulatorImpl"));

There is a script in examples/realtime/realtime-udp-echo.cc that has an example of how to configure
the realtime behavior. Try:

$./waf --run realtime-udp-echo

Whether the simulator will work in a best effort or hard limit policy fashion is governed by the attributes explained in
the previous section.

13.3 Implementation

The implementation is contained in the following files:

• src/core/model/realtime-simulator-impl.{cc,h}

• src/core/model/wall-clock-synchronizer.{cc,h}

In order to create a realtime scheduler, to a first approximation you just want to cause simulation time jumps to
consume real time. We propose doing this using a combination of sleep- and busy- waits. Sleep-waits cause the
calling process (thread) to yield the processor for some amount of time. Even though this specified amount of time
can be passed to nanosecond resolution, it is actually converted to an OS-specific granularity. In Linux, the granularity
is called a Jiffy. Typically this resolution is insufficient for our needs (on the order of a ten milliseconds), so we round
down and sleep for some smaller number of Jiffies. The process is then awakened after the specified number of Jiffies
has passed. At this time, we have some residual time to wait. This time is generally smaller than the minimum sleep
time, so we busy-wait for the remainder of the time. This means that the thread just sits in a for loop consuming cycles
until the desired time arrives. After the combination of sleep- and busy-waits, the elapsed realtime (wall) clock should
agree with the simulation time of the next event and the simulation proceeds.

108 Chapter 13. RealTime

CHAPTER

FOURTEEN

HELPERS

The above chapters introduced you to various ns-3 programming concepts such as smart pointers for reference-counted
memory management, attributes, namespaces, callbacks, etc. Users who work at this low-level API can interconnect
ns-3 objects with fine granulariy. However, a simulation program written entirely using the low-level API would be
quite long and tedious to code. For this reason, a separate so-called “helper API” has been overlaid on the core ns-
3 API. If you have read the ns-3 tutorial, you will already be familiar with the helper API, since it is the API that
new users are typically introduced to first. In this chapter, we introduce the design philosophy of the helper API and
contrast it to the low-level API. If you become a heavy user of ns-3, you will likely move back and forth between these
APIs even in the same program.

The helper API has a few goals:

1. the rest of src/ has no dependencies on the helper API; anything that can be done with the helper API can be
coded also at the low-level API

2. Containers: Often simulations will need to do a number of identical actions to groups of objects. The helper
API makes heavy use of containers of similar objects to which similar or identical operations can be performed.

3. The helper API is not generic; it does not strive to maximize code reuse. So, programming constructs such
as polymorphism and templates that achieve code reuse are not as prevalent. For instance, there are separate
CsmaNetDevice helpers and PointToPointNetDevice helpers but they do not derive from a common NetDevice
base class.

4. The helper API typically works with stack-allocated (vs. heap-allocated) objects. For some programs, ns-3 users
may not need to worry about any low level Object Create or Ptr handling; they can make do with containers of
objects and stack-allocated helpers that operate on them.

The helper API is really all about making ns-3 programs easier to write and read, without taking away the power of
the low-level interface. The rest of this chapter provides some examples of the programming conventions of the helper
API.

109

ns-3 Manual, Release ns-3.18

110 Chapter 14. Helpers

CHAPTER

FIFTEEN

MAKING PLOTS USING THE GNUPLOT
CLASS

There are 2 common methods to make a plot using ns-3 and gnuplot (http://www.gnuplot.info):

1. Create a gnuplot control file using ns-3‘s Gnuplot class.

2. Create a gnuplot data file using values generated by ns-3.

This section is about method 1, i.e. it is about how to make a plot using ns-3‘s Gnuplot class. If you are interested in
method 2, see the “A Real Example” subsection under the “Tracing” section in the ns-3 Tutorial.

15.1 Creating Plots Using the Gnuplot Class

The following steps must be taken in order to create a plot using ns-3‘s Gnuplot class:

1. Modify your code so that is uses the Gnuplot class and its functions.

2. Run your code so that it creates a gnuplot control file.

3. Call gnuplot with the name of the gnuplot control file.

4. View the graphics file that was produced in your favorite graphics viewer.

See the code from the example plots that are discussed below for details on step 1.

15.2 An Example Program that Uses the Gnuplot Class

An example program that uses ns-3‘s Gnuplot class can be found here:

src/stats/examples/gnuplot-example.cc

In order to run this example, do the following:

$./waf shell
$ cd build/debug/src/stats/examples
$./gnuplot-example

This should produce the following gnuplot control files in the directory where the example is located:

plot-2d.plt
plot-2d-with-error-bars.plt
plot-3d.plt

111

http://www.gnuplot.info
http://www.nsnam.org/tutorials.html

ns-3 Manual, Release ns-3.18

In order to process these gnuplot control files, do the following:

$ gnuplot plot-2d.plt
$ gnuplot plot-2d-with-error-bars.plt
$ gnuplot plot-3d.plt

This should produce the following graphics files in the directory where the example is located:

plot-2d.png
plot-2d-with-error-bars.png
plot-3d.png

You can view these graphics files in your favorite graphics viewer. If you have gimp installed on your machine, for
example, you can do this:

$ gimp plot-2d.png
$ gimp plot-2d-with-error-bars.png
$ gimp plot-3d.png

15.3 An Example 2-Dimensional Plot

The following 2-Dimensional plot

was created using the following code from gnuplot-example.cc:

112 Chapter 15. Making Plots using the Gnuplot Class

ns-3 Manual, Release ns-3.18

using namespace std;

string fileNameWithNoExtension = "plot-2d";
string graphicsFileName = fileNameWithNoExtension + ".png";
string plotFileName = fileNameWithNoExtension + ".plt";
string plotTitle = "2-D Plot";
string dataTitle = "2-D Data";

// Instantiate the plot and set its title.
Gnuplot plot (graphicsFileName);
plot.SetTitle (plotTitle);

// Make the graphics file, which the plot file will create when it
// is used with Gnuplot, be a PNG file.
plot.SetTerminal ("png");

// Set the labels for each axis.
plot.SetLegend ("X Values", "Y Values");

// Set the range for the x axis.
plot.AppendExtra ("set xrange [-6:+6]");

// Instantiate the dataset, set its title, and make the points be
// plotted along with connecting lines.
Gnuplot2dDataset dataset;
dataset.SetTitle (dataTitle);
dataset.SetStyle (Gnuplot2dDataset::LINES_POINTS);

double x;
double y;

// Create the 2-D dataset.
for (x = -5.0; x <= +5.0; x += 1.0)
{
// Calculate the 2-D curve
//
// 2
// y = x .
//
y = x * x;

// Add this point.
dataset.Add (x, y);

}

// Add the dataset to the plot.
plot.AddDataset (dataset);

// Open the plot file.
ofstream plotFile (plotFileName.c_str());

// Write the plot file.
plot.GenerateOutput (plotFile);

// Close the plot file.
plotFile.close ();

15.3. An Example 2-Dimensional Plot 113

ns-3 Manual, Release ns-3.18

15.4 An Example 2-Dimensional Plot with Error Bars

The following 2-Dimensional plot with error bars in the x and y directions

was created using the following code from gnuplot-example.cc:

using namespace std;

string fileNameWithNoExtension = "plot-2d-with-error-bars";
string graphicsFileName = fileNameWithNoExtension + ".png";
string plotFileName = fileNameWithNoExtension + ".plt";
string plotTitle = "2-D Plot With Error Bars";
string dataTitle = "2-D Data With Error Bars";

// Instantiate the plot and set its title.
Gnuplot plot (graphicsFileName);
plot.SetTitle (plotTitle);

// Make the graphics file, which the plot file will create when it
// is used with Gnuplot, be a PNG file.
plot.SetTerminal ("png");

// Set the labels for each axis.
plot.SetLegend ("X Values", "Y Values");

114 Chapter 15. Making Plots using the Gnuplot Class

ns-3 Manual, Release ns-3.18

// Set the range for the x axis.
plot.AppendExtra ("set xrange [-6:+6]");

// Instantiate the dataset, set its title, and make the points be
// plotted with no connecting lines.
Gnuplot2dDataset dataset;
dataset.SetTitle (dataTitle);
dataset.SetStyle (Gnuplot2dDataset::POINTS);

// Make the dataset have error bars in both the x and y directions.
dataset.SetErrorBars (Gnuplot2dDataset::XY);

double x;
double xErrorDelta;
double y;
double yErrorDelta;

// Create the 2-D dataset.
for (x = -5.0; x <= +5.0; x += 1.0)
{
// Calculate the 2-D curve
//
// 2
// y = x .
//
y = x * x;

// Make the uncertainty in the x direction be constant and make
// the uncertainty in the y direction be a constant fraction of
// y’s value.
xErrorDelta = 0.25;
yErrorDelta = 0.1 * y;

// Add this point with uncertainties in both the x and y
// direction.
dataset.Add (x, y, xErrorDelta, yErrorDelta);

}

// Add the dataset to the plot.
plot.AddDataset (dataset);

// Open the plot file.
ofstream plotFile (plotFileName.c_str());

// Write the plot file.
plot.GenerateOutput (plotFile);

// Close the plot file.
plotFile.close ();

15.5 An Example 3-Dimensional Plot

The following 3-Dimensional plot

was created using the following code from gnuplot-example.cc:

15.5. An Example 3-Dimensional Plot 115

ns-3 Manual, Release ns-3.18

116 Chapter 15. Making Plots using the Gnuplot Class

ns-3 Manual, Release ns-3.18

using namespace std;

string fileNameWithNoExtension = "plot-3d";
string graphicsFileName = fileNameWithNoExtension + ".png";
string plotFileName = fileNameWithNoExtension + ".plt";
string plotTitle = "3-D Plot";
string dataTitle = "3-D Data";

// Instantiate the plot and set its title.
Gnuplot plot (graphicsFileName);
plot.SetTitle (plotTitle);

// Make the graphics file, which the plot file will create when it
// is used with Gnuplot, be a PNG file.
plot.SetTerminal ("png");

// Rotate the plot 30 degrees around the x axis and then rotate the
// plot 120 degrees around the new z axis.
plot.AppendExtra ("set view 30, 120, 1.0, 1.0");

// Make the zero for the z-axis be in the x-axis and y-axis plane.
plot.AppendExtra ("set ticslevel 0");

// Set the labels for each axis.
plot.AppendExtra ("set xlabel ’X Values’");
plot.AppendExtra ("set ylabel ’Y Values’");
plot.AppendExtra ("set zlabel ’Z Values’");

// Set the ranges for the x and y axis.
plot.AppendExtra ("set xrange [-5:+5]");
plot.AppendExtra ("set yrange [-5:+5]");

// Instantiate the dataset, set its title, and make the points be
// connected by lines.
Gnuplot3dDataset dataset;
dataset.SetTitle (dataTitle);
dataset.SetStyle ("with lines");

double x;
double y;
double z;

// Create the 3-D dataset.
for (x = -5.0; x <= +5.0; x += 1.0)
{
for (y = -5.0; y <= +5.0; y += 1.0)

{
// Calculate the 3-D surface
//
// 2 2
// z = x * y .
//
z = x * x * y * y;

// Add this point.
dataset.Add (x, y, z);

}

15.5. An Example 3-Dimensional Plot 117

ns-3 Manual, Release ns-3.18

// The blank line is necessary at the end of each x value’s data
// points for the 3-D surface grid to work.
dataset.AddEmptyLine ();
}

// Add the dataset to the plot.
plot.AddDataset (dataset);

// Open the plot file.
ofstream plotFile (plotFileName.c_str());

// Write the plot file.
plot.GenerateOutput (plotFile);

// Close the plot file.
plotFile.close ();

118 Chapter 15. Making Plots using the Gnuplot Class

CHAPTER

SIXTEEN

USING PYTHON TO RUN NS-3

Python bindings allow the C++ code in ns-3 to be called from Python.

This chapter shows you how to create a Python script that can run ns-3 and also the process of creating Python bindings
for a C++ ns-3 module.

16.1 Introduction

The goal of Python bindings for ns-3 are two fold:

1. Allow the programmer to write complete simulation scripts in Python (http://www.python.org);

2. Prototype new models (e.g. routing protocols).

For the time being, the primary focus of the bindings is the first goal, but the second goal will eventu-
ally be supported as well. Python bindings for ns-3 are being developed using a new tool called PyBindGen
(http://code.google.com/p/pybindgen).

16.2 An Example Python Script that Runs ns-3

Here is some example code that is written in Python and that runs ns-3, which is written in C++. This Python example
can be found in examples/tutorial/first.py:

import ns.applications
import ns.core
import ns.internet
import ns.network
import ns.point_to_point

ns.core.LogComponentEnable("UdpEchoClientApplication", ns.core.LOG_LEVEL_INFO)
ns.core.LogComponentEnable("UdpEchoServerApplication", ns.core.LOG_LEVEL_INFO)

nodes = ns.network.NodeContainer()
nodes.Create(2)

pointToPoint = ns.point_to_point.PointToPointHelper()
pointToPoint.SetDeviceAttribute("DataRate", ns.core.StringValue("5Mbps"))
pointToPoint.SetChannelAttribute("Delay", ns.core.StringValue("2ms"))

devices = pointToPoint.Install(nodes)

119

http://www.python.org
http://code.google.com/p/pybindgen

ns-3 Manual, Release ns-3.18

stack = ns.internet.InternetStackHelper()
stack.Install(nodes)

address = ns.internet.Ipv4AddressHelper()
address.SetBase(ns.network.Ipv4Address("10.1.1.0"), ns.network.Ipv4Mask("255.255.255.0"))

interfaces = address.Assign (devices);

echoServer = ns.applications.UdpEchoServerHelper(9)

serverApps = echoServer.Install(nodes.Get(1))
serverApps.Start(ns.core.Seconds(1.0))
serverApps.Stop(ns.core.Seconds(10.0))

echoClient = ns.applications.UdpEchoClientHelper(interfaces.GetAddress(1), 9)
echoClient.SetAttribute("MaxPackets", ns.core.UintegerValue(1))
echoClient.SetAttribute("Interval", ns.core.TimeValue(ns.core.Seconds (1.0)))
echoClient.SetAttribute("PacketSize", ns.core.UintegerValue(1024))

clientApps = echoClient.Install(nodes.Get(0))
clientApps.Start(ns.core.Seconds(2.0))
clientApps.Stop(ns.core.Seconds(10.0))

ns.core.Simulator.Run()
ns.core.Simulator.Destroy()

16.3 Running Python Scripts

waf contains some options that automatically update the python path to find the ns3 module. To run example programs,
there are two ways to use waf to take care of this. One is to run a waf shell; e.g.:

$./waf --shell
$ python examples/wireless/mixed-wireless.py

and the other is to use the –pyrun option to waf:

$./waf --pyrun examples/wireless/mixed-wireless.py

To run a python script under the C debugger:

$./waf --shell
$ gdb --args python examples/wireless/mixed-wireless.py

To run your own Python script that calls ns-3 and that has this path,
/path/to/your/example/my-script.py, do the following:

$./waf --shell
$ python /path/to/your/example/my-script.py

16.4 Caveats

Python bindings for ns-3 are a work in progress, and some limitations are known by developers. Some of these
limitations (not all) are listed here.

120 Chapter 16. Using Python to Run ns-3

ns-3 Manual, Release ns-3.18

16.4.1 Incomplete Coverage

First of all, keep in mind that not 100% of the API is supported in Python. Some of the reasons are:

1. some of the APIs involve pointers, which require knowledge of what kind of memory passing semantics (who
owns what memory). Such knowledge is not part of the function signatures, and is either documented or some-
times not even documented. Annotations are needed to bind those functions;

2. Sometimes a unusual fundamental data type or C++ construct is used which is not yet supported by PyBindGen;

3. GCC-XML does not report template based classes unless they are instantiated.

Most of the missing APIs can be wrapped, given enough time, patience, and expertise, and will likely be wrapped if
bug reports are submitted. However, don’t file a bug report saying “bindings are incomplete”, because we do not have
manpower to complete 100% of the bindings.

16.4.2 Conversion Constructors

Conversion constructors are not fully supported yet by PyBindGen, and they always act as explicit constructors when
translating an API into Python. For example, in C++ you can do this:

Ipv4AddressHelper ipAddrs;
ipAddrs.SetBase ("192.168.0.0", "255.255.255.0");
ipAddrs.Assign (backboneDevices);

In Python, for the time being you have to do:

ipAddrs = ns3.Ipv4AddressHelper()
ipAddrs.SetBase(ns3.Ipv4Address("192.168.0.0"), ns3.Ipv4Mask("255.255.255.0"))
ipAddrs.Assign(backboneDevices)

16.4.3 CommandLine

CommandLine::AddValue() works differently in Python than it does in ns-3. In Python, the first parameter is a
string that represents the command-line option name. When the option is set, an attribute with the same name as the
option name is set on the CommandLine() object. Example:

NUM_NODES_SIDE_DEFAULT = 3

cmd = ns3.CommandLine()

cmd.NumNodesSide = None
cmd.AddValue("NumNodesSide", "Grid side number of nodes (total number of nodes will be this number squared)")

cmd.Parse(argv)

[...]

if cmd.NumNodesSide is None:
num_nodes_side = NUM_NODES_SIDE_DEFAULT

else:
num_nodes_side = int(cmd.NumNodesSide)

16.4. Caveats 121

http://publib.boulder.ibm.com/infocenter/compbgpl/v9v111/topic/com.ibm.xlcpp9.bg.doc/language_ref/cplr384.htm

ns-3 Manual, Release ns-3.18

16.4.4 Tracing

Callback based tracing is not yet properly supported for Python, as new ns-3 API needs to be provided for this to be
supported.

Pcap file writing is supported via the normal API.

Ascii tracing is supported since ns-3.4 via the normal C++ API translated to Python. However, ascii tracing requires
the creation of an ostream object to pass into the ascii tracing methods. In Python, the C++ std::ofstream has been
minimally wrapped to allow this. For example:

ascii = ns3.ofstream("wifi-ap.tr") # create the file
ns3.YansWifiPhyHelper.EnableAsciiAll(ascii)
ns3.Simulator.Run()
ns3.Simulator.Destroy()
ascii.close() # close the file

There is one caveat: you must not allow the file object to be garbage collected while ns-3 is still using it. That means
that the ‘ascii’ variable above must not be allowed to go out of scope or else the program will crash.

16.4.5 Cygwin limitation

Python bindings do not work on Cygwin. This is due to a gccxml bug.

You might get away with it by re-scanning API definitions from within the cygwin environment (./waf –python-scan).
However the most likely solution will probably have to be that we disable python bindings in CygWin.

If you really care about Python bindings on Windows, try building with mingw and native python instead. Or else, to
build without python bindings, disable python bindings in the configuration stage:

$./waf configure --disable-python

16.5 Working with Python Bindings

There are currently two kinds of Python bindings in ns-3:

1. Monolithic bindings contain API definitions for all of the modules and can be found in a single directory,
bindings/python.

2. Modular bindings contain API definitions for a single module and can be found in each module’s bindings
directory.

16.5.1 Python Bindings Workflow

The process by which Python bindings are handled is the following:

1. Periodically a developer uses a GCC-XML (http://www.gccxml.org) based API scanning script, which saves
the scanned API definition as bindings/python/ns3_module_*.py files or as Python files in each
modules’ bindings directory. These files are kept under version control in the main ns-3 repository;

2. Other developers clone the repository and use the already scanned API definitions;

3. When configuring ns-3, pybindgen will be automatically downloaded if not already installed. Released ns-3
tarballs will ship a copy of pybindgen.

122 Chapter 16. Using Python to Run ns-3

http://www.gccxml.org

ns-3 Manual, Release ns-3.18

If something goes wrong with compiling Python bindings and you just want to ignore them and move on with C++,
you can disable Python with:

$./waf --disable-python

16.6 Instructions for Handling New Files or Changed API’s

So you have been changing existing ns-3 APIs and Python bindings no longer compile? Do not despair, you can rescan
the bindings to create new bindings that reflect the changes to the ns-3 API.

Depending on if you are using monolithic or modular bindings, see the discussions below to learn how to rescan your
Python bindings.

16.7 Monolithic Python Bindings

16.7.1 Scanning the Monolithic Python Bindings

To scan the monolithic Python bindings do the following:

$./waf --python-scan

16.7.2 Organization of the Monolithic Python Bindings

The monolithic Python API definitions are organized as follows. For each ns-3 module <name>, the file
bindings/python/ns3_module_<name>.py describes its API. Each of those files have 3 toplevel functions:

1. def register_types(module)(): this function takes care of registering new types (e.g. C++ classes,
enums) that are defined in tha module;

2. def register_methods(module)(): this function calls, for each class <name>, another function reg-
ister_methods_Ns3<name>(module). These latter functions add method definitions for each class;

3. def register_functions(module)(): this function registers ns-3 functions that belong to that mod-
ule.

16.8 Modular Python Bindings

16.8.1 Overview

Since ns 3.11, the modular bindings are being added, in parallel to the old monolithic bindings.

The new python bindings are generated into an ‘ns’ namespace, instead of ‘ns3’ for the old bindings. Example:

from ns.network import Node
n1 = Node()

With modular Python bindings:

1. There is one separate Python extension module for each ns-3 module;

2. Scanning API definitions (apidefs) is done on a per ns- module basis;

3. Each module’s apidefs files are stored in a ‘bindings’ subdirectory of the module directory;

16.6. Instructions for Handling New Files or Changed API’s 123

ns-3 Manual, Release ns-3.18

16.8.2 Scanning the Modular Python Bindings

To scan the modular Python bindings for the core module, for example, do the following:

$./waf --apiscan=core

To scan the modular Python bindings for all of the modules, do the following:

$./waf --apiscan=all

16.8.3 Creating a New Module

If you are adding a new module, Python bindings will continue to compile but will not cover the new module.

To cover a new module, you have to create a bindings/python/ns3_module_<name>.py file, simi-
lar to the what is described in the previous sections, and register it in the variable LOCAL_MODULES() in
bindings/python/ns3modulegen.py

16.8.4 Adding Modular Bindings To A Existing Module

To add support for modular bindings to an existing ns-3 module, simply add the following line to its wscript build()
function:

bld.ns3_python_bindings()

16.8.5 Organization of the Modular Python Bindings

The src/<module>/bindings directory may contain the following files, some of them optional:

• callbacks_list.py: this is a scanned file, DO NOT TOUCH. Contains a list of Callback<...> template
instances found in the scanned headers;

• modulegen__gcc_LP64.py: this is a scanned file, DO NOT TOUCH. Scanned API definitions for the
GCC, LP64 architecture (64-bit)

• modulegen__gcc_ILP32.py: this is a scanned file, DO NOT TOUCH. Scanned API definitions for the
GCC, ILP32 architecture (32-bit)

• modulegen_customizations.py: you may optionally add this file in order to customize the pybindgen
code generation

• scan-header.h: you may optionally add this file to customize what header file is scanned for the mod-
ule. Basically this file is scanned instead of ns3/<module>-module.h. Typically, the first statement is #include
“ns3/<module>-module.h”, plus some other stuff to force template instantiations;

• module_helpers.cc: you may add additional files, such as this, to be linked to python extension module,
but they have to be registered in the wscript. Look at src/core/wscript for an example of how to do so;

• <module>.py: if this file exists, it becomes the “frontend” python module for the ns3 module, and the exten-
sion module (.so file) becomes _<module>.so instead of <module>.so. The <module>.py file has to import all
symbols from the module _<module> (this is more tricky than it sounds, see src/core/bindings/core.py for an
example), and then can add some additional pure-python definitions.

124 Chapter 16. Using Python to Run ns-3

ns-3 Manual, Release ns-3.18

16.9 More Information for Developers

If you are a developer and need more information on ns-3‘s Python bindings, please see the Python Bindings wiki
page.

16.9. More Information for Developers 125

http://www.nsnam.org/wiki/index.php/NS-3_Python_Bindings
http://www.nsnam.org/wiki/index.php/NS-3_Python_Bindings

ns-3 Manual, Release ns-3.18

126 Chapter 16. Using Python to Run ns-3

CHAPTER

SEVENTEEN

TESTS

17.1 Overview

This document is concerned with the testing and validation of ns-3 software.

This document provides

• background about terminology and software testing (Chapter 2);

• a description of the ns-3 testing framework (Chapter 3);

• a guide to model developers or new model contributors for how to write tests (Chapter 4);

In brief, the first three chapters should be read by ns developers and contributors who need to understand how to
contribute test code and validated programs, and the remainder of the document provides space for people to report on
what aspects of selected models have been validated.

17.2 Background

This chapter may be skipped by readers familiar with the basics of software testing.

Writing defect-free software is a difficult proposition. There are many dimensions to the problem and there is much
confusion regarding what is meant by different terms in different contexts. We have found it worthwhile to spend a
little time reviewing the subject and defining some terms.

Software testing may be loosely defined as the process of executing a program with the intent of finding errors. When
one enters a discussion regarding software testing, it quickly becomes apparent that there are many distinct mind-sets
with which one can approach the subject.

For example, one could break the process into broad functional categories like ‘’correctness testing,” ‘’performance
testing,” ‘’robustness testing” and ‘’security testing.” Another way to look at the problem is by life-cycle: ‘’require-
ments testing,” ‘’design testing,” ‘’acceptance testing,” and ‘’maintenance testing.” Yet another view is by the scope
of the tested system. In this case one may speak of ‘’unit testing,” ‘’component testing,” ‘’integration testing,” and
‘’system testing.” These terms are also not standardized in any way, and so ‘’maintenance testing” and ‘’regression
testing” may be heard interchangeably. Additionally, these terms are often misused.

There are also a number of different philosophical approaches to software testing. For example, some organizations
advocate writing test programs before actually implementing the desired software, yielding ‘’test-driven development.”
Some organizations advocate testing from a customer perspective as soon as possible, following a parallel with the
agile development process: ‘’test early and test often.” This is sometimes called ‘’agile testing.” It seems that there is
at least one approach to testing for every development methodology.

127

ns-3 Manual, Release ns-3.18

The ns-3 project is not in the business of advocating for any one of these processes, but the project as a whole has
requirements that help inform the test process.

Like all major software products, ns-3 has a number of qualities that must be present for the product to succeed.
From a testing perspective, some of these qualities that must be addressed are that ns-3 must be ‘’correct,” ‘’robust,”
‘’performant” and ‘’maintainable.” Ideally there should be metrics for each of these dimensions that are checked by
the tests to identify when the product fails to meet its expectations / requirements.

17.2.1 Correctness

The essential purpose of testing is to determine that a piece of software behaves ‘’correctly.” For ns-3 this means
that if we simulate something, the simulation should faithfully represent some physical entity or process to a specified
accuracy and precision.

It turns out that there are two perspectives from which one can view correctness. Verifying that a particular model is
implemented according to its specification is generically called verification. The process of deciding that the model is
correct for its intended use is generically called validation.

17.2.2 Validation and Verification

A computer model is a mathematical or logical representation of something. It can represent a vehicle, an elephant
(see David Harel’s talk about modeling an elephant at SIMUTools 2009, or a networking card. Models can also
represent processes such as global warming, freeway traffic flow or a specification of a networking protocol. Models
can be completely faithful representations of a logical process specification, but they necessarily can never completely
simulate a physical object or process. In most cases, a number of simplifications are made to the model to make
simulation computationally tractable.

Every model has a target system that it is attempting to simulate. The first step in creating a simulation model is to
identify this target system and the level of detail and accuracy that the simulation is desired to reproduce. In the case
of a logical process, the target system may be identified as ‘’TCP as defined by RFC 793.” In this case, it will probably
be desirable to create a model that completely and faithfully reproduces RFC 793. In the case of a physical process
this will not be possible. If, for example, you would like to simulate a wireless networking card, you may determine
that you need, ‘’an accurate MAC-level implementation of the 802.11 specification and [...] a not-so-slow PHY-level
model of the 802.11a specification.’‘

Once this is done, one can develop an abstract model of the target system. This is typically an exercise in managing
the tradeoffs between complexity, resource requirements and accuracy. The process of developing an abstract model
has been called model qualification in the literature. In the case of a TCP protocol, this process results in a design
for a collection of objects, interactions and behaviors that will fully implement RFC 793 in ns-3. In the case of the
wireless card, this process results in a number of tradeoffs to allow the physical layer to be simulated and the design
of a network device and channel for ns-3, along with the desired objects, interactions and behaviors.

This abstract model is then developed into an ns-3 model that implements the abstract model as a computer program.
The process of getting the implementation to agree with the abstract model is called model verification in the literature.

The process so far is open loop. What remains is to make a determination that a given ns-3 model has some connection
to some reality – that a model is an accurate representation of a real system, whether a logical process or a physical
entity.

If one is going to use a simulation model to try and predict how some real system is going to behave, there must be
some reason to believe your results – i.e., can one trust that an inference made from the model translates into a correct
prediction for the real system. The process of getting the ns-3 model behavior to agree with the desired target system
behavior as defined by the model qualification process is called model validation in the literature. In the case of a TCP
implementation, you may want to compare the behavior of your ns-3 TCP model to some reference implementation
in order to validate your model. In the case of a wireless physical layer simulation, you may want to compare the
behavior of your model to that of real hardware in a controlled setting,

128 Chapter 17. Tests

http://simutools.org/2009/

ns-3 Manual, Release ns-3.18

The ns-3 testing environment provides tools to allow for both model validation and testing, and encourages the publi-
cation of validation results.

17.2.3 Robustness

Robustness is the quality of being able to withstand stresses, or changes in environments, inputs or calculations, etc.
A system or design is ‘’robust” if it can deal with such changes with minimal loss of functionality.

This kind of testing is usually done with a particular focus. For example, the system as a whole can be run on many
different system configurations to demonstrate that it can perform correctly in a large number of environments.

The system can be also be stressed by operating close to or beyond capacity by generating or simulating resource
exhaustion of various kinds. This genre of testing is called ‘’stress testing.’‘

The system and its components may be exposed to so-called ‘’clean tests” that demonstrate a positive result – that is
that the system operates correctly in response to a large variation of expected configurations.

The system and its components may also be exposed to ‘’dirty tests” which provide inputs outside the expected range.
For example, if a module expects a zero-terminated string representation of an integer, a dirty test might provide
an unterminated string of random characters to verify that the system does not crash as a result of this unexpected
input. Unfortunately, detecting such ‘’dirty” input and taking preventive measures to ensure the system does not fail
catastrophically can require a huge amount of development overhead. In order to reduce development time, a decision
was taken early on in the project to minimize the amount of parameter validation and error handling in the ns-3
codebase. For this reason, we do not spend much time on dirty testing – it would just uncover the results of the design
decision we know we took.

We do want to demonstrate that ns-3 software does work across some set of conditions. We borrow a couple of
definitions to narrow this down a bit. The domain of applicability is a set of prescribed conditions for which the model
has been tested, compared against reality to the extent possible, and judged suitable for use. The range of accuracy is
an agreement between the computerized model and reality within a domain of applicability.

The ns-3 testing environment provides tools to allow for setting up and running test environments over multiple systems
(buildbot) and provides classes to encourage clean tests to verify the operation of the system over the expected ‘’domain
of applicability” and ‘’range of accuracy.’‘

17.2.4 Performant

Okay, ‘’performant” isn’t a real English word. It is, however, a very concise neologism that is quite often used to
describe what we want ns-3 to be: powerful and fast enough to get the job done.

This is really about the broad subject of software performance testing. One of the key things that is done is to compare
two systems to find which performs better (cf benchmarks). This is used to demonstrate that, for example, ns-3 can
perform a basic kind of simulation at least as fast as a competing tool, or can be used to identify parts of the system
that perform badly.

In the ns-3 test framework, we provide support for timing various kinds of tests.

17.2.5 Maintainability

A software product must be maintainable. This is, again, a very broad statement, but a testing framework can help
with the task. Once a model has been developed, validated and verified, we can repeatedly execute the suite of tests
for the entire system to ensure that it remains valid and verified over its lifetime.

When a feature stops functioning as intended after some kind of change to the system is integrated, it is called generi-
cally a regression. Originally the term regression referred to a change that caused a previously fixed bug to reappear,

17.2. Background 129

ns-3 Manual, Release ns-3.18

but the term has evolved to describe any kind of change that breaks existing functionality. There are many kinds of
regressions that may occur in practice.

A local regression is one in which a change affects the changed component directly. For example, if a component is
modified to allocate and free memory but stale pointers are used, the component itself fails.

A remote regression is one in which a change to one component breaks functionality in another component. This
reflects violation of an implied but possibly unrecognized contract between components.

An unmasked regression is one that creates a situation where a previously existing bug that had no affect is suddenly
exposed in the system. This may be as simple as exercising a code path for the first time.

A performance regression is one that causes the performance requirements of the system to be violated. For example,
doing some work in a low level function that may be repeated large numbers of times may suddenly render the system
unusable from certain perspectives.

The ns-3 testing framework provides tools for automating the process used to validate and verify the code in nightly
test suites to help quickly identify possible regressions.

17.3 Testing framework

ns-3 consists of a simulation core engine, a set of models, example programs, and tests. Over time, new contributors
contribute models, tests, and examples. A Python test program test.py serves as the test execution manager;
test.py can run test code and examples to look for regressions, can output the results into a number of forms,
and can manage code coverage analysis tools. On top of this, we layer Buildbots that are automated build robots
that perform robustness testing by running the test framework on different systems and with different configuration
options.

17.3.1 BuildBots

At the highest level of ns-3 testing are the buildbots (build robots). If you are unfamiliar with this system look at
http://djmitche.github.com/buildbot/docs/0.7.11/. This is an open-source automated system that allows ns-3 to be
rebuilt and tested each time something has changed. By running the buildbots on a number of different systems we
can ensure that ns-3 builds and executes properly on all of its supported systems.

Users (and developers) typically will not interact with the buildbot system other than to read its messages regarding
test results. If a failure is detected in one of the automated build and test jobs, the buildbot will send an email to the
ns-developers mailing list. This email will look something like

In the full details URL shown in the email, one can search for the keyword failed and select the stdio link for the
corresponding step to see the reason for the failure.

The buildbot will do its job quietly if there are no errors, and the system will undergo build and test cycles every day
to verify that all is well.

17.3.2 Test.py

The buildbots use a Python program, test.py, that is responsible for running all of the tests and collecting the
resulting reports into a human- readable form. This program is also available for use by users and developers as well.

test.py is very flexible in allowing the user to specify the number and kind of tests to run; and also the amount and
kind of output to generate.

Before running test.py, make sure that ns3’s examples and tests have been built by doing the following

130 Chapter 17. Tests

http://djmitche.github.com/buildbot/docs/0.7.11/

ns-3 Manual, Release ns-3.18

$./waf configure --enable-examples --enable-tests
$./waf

By default, test.py will run all available tests and report status back in a very concise form. Running the command

$./test.py

will result in a number of PASS, FAIL, CRASH or SKIP indications followed by the kind of test that was run and its
display name.

Waf: Entering directory ‘/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
Waf: Leaving directory ‘/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
’build’ finished successfully (0.939s)
FAIL: TestSuite ns3-wifi-propagation-loss-models
PASS: TestSuite object-name-service
PASS: TestSuite pcap-file-object
PASS: TestSuite ns3-tcp-cwnd
...
PASS: TestSuite ns3-tcp-interoperability
PASS: Example csma-broadcast
PASS: Example csma-multicast

This mode is intended to be used by users who are interested in determining if their distribution is working correctly,
and by developers who are interested in determining if changes they have made have caused any regressions.

There are a number of options available to control the behavior of test.py. if you run test.py --help you
should see a command summary like:

Usage: test.py [options]

Options:
-h, --help show this help message and exit
-b BUILDPATH, --buildpath=BUILDPATH

specify the path where ns-3 was built (defaults to the
build directory for the current variant)

-c KIND, --constrain=KIND
constrain the test-runner by kind of test

-e EXAMPLE, --example=EXAMPLE
specify a single example to run (no relative path is
needed)

-g, --grind run the test suites and examples using valgrind
-k, --kinds print the kinds of tests available
-l, --list print the list of known tests
-m, --multiple report multiple failures from test suites and test

cases
-n, --nowaf do not run waf before starting testing
-p PYEXAMPLE, --pyexample=PYEXAMPLE

specify a single python example to run (with relative
path)

-r, --retain retain all temporary files (which are normally
deleted)

-s TEST-SUITE, --suite=TEST-SUITE
specify a single test suite to run

-t TEXT-FILE, --text=TEXT-FILE
write detailed test results into TEXT-FILE.txt

-v, --verbose print progress and informational messages
-w HTML-FILE, --web=HTML-FILE, --html=HTML-FILE

write detailed test results into HTML-FILE.html
-x XML-FILE, --xml=XML-FILE

17.3. Testing framework 131

ns-3 Manual, Release ns-3.18

write detailed test results into XML-FILE.xml

If one specifies an optional output style, one can generate detailed descriptions of the tests and status. Available styles
are text and HTML. The buildbots will select the HTML option to generate HTML test reports for the nightly builds
using

$./test.py --html=nightly.html

In this case, an HTML file named ‘’nightly.html” would be created with a pretty summary of the testing done. A
‘’human readable” format is available for users interested in the details.

$./test.py --text=results.txt

In the example above, the test suite checking the ns-3 wireless device propagation loss models failed. By default no
further information is provided.

To further explore the failure, test.py allows a single test suite to be specified. Running the command

$./test.py --suite=ns3-wifi-propagation-loss-models

or equivalently

$./test.py -s ns3-wifi-propagation-loss-models

results in that single test suite being run.

FAIL: TestSuite ns3-wifi-propagation-loss-models

To find detailed information regarding the failure, one must specify the kind of output desired. For example, most
people will probably be interested in a text file:

$./test.py --suite=ns3-wifi-propagation-loss-models --text=results.txt

This will result in that single test suite being run with the test status written to the file ‘’results.txt’‘.

You should find something similar to the following in that file

FAIL: Test Suite ’’ns3-wifi-propagation-loss-models’’ (real 0.02 user 0.01 system 0.00)
PASS: Test Case "Check ... Friis ... model ..." (real 0.01 user 0.00 system 0.00)
FAIL: Test Case "Check ... Log Distance ... model" (real 0.01 user 0.01 system 0.00)

Details:
Message: Got unexpected SNR value
Condition: [long description of what actually failed]
Actual: 176.395
Limit: 176.407 +- 0.0005
File: ../src/test/ns3wifi/propagation-loss-models-test-suite.cc
Line: 360

Notice that the Test Suite is composed of two Test Cases. The first test case checked the Friis propagation loss model
and passed. The second test case failed checking the Log Distance propagation model. In this case, an SNR of 176.395
was found, and the test expected a value of 176.407 correct to three decimal places. The file which implemented the
failing test is listed as well as the line of code which triggered the failure.

If you desire, you could just as easily have written an HTML file using the --html option as described above.

Typically a user will run all tests at least once after downloading ns-3 to ensure that his or her environment has been
built correctly and is generating correct results according to the test suites. Developers will typically run the test suites
before and after making a change to ensure that they have not introduced a regression with their changes. In this case,
developers may not want to run all tests, but only a subset. For example, the developer might only want to run the unit
tests periodically while making changes to a repository. In this case, test.py can be told to constrain the types of
tests being run to a particular class of tests. The following command will result in only the unit tests being run:

132 Chapter 17. Tests

ns-3 Manual, Release ns-3.18

$./test.py --constrain=unit

Similarly, the following command will result in only the example smoke tests being run:

$./test.py --constrain=unit

To see a quick list of the legal kinds of constraints, you can ask for them to be listed. The following command

$./test.py --kinds

will result in the following list being displayed:

Waf: Entering directory ‘/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
Waf: Leaving directory ‘/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
’build’ finished successfully (0.939s)Waf: Entering directory ‘/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
bvt: Build Verification Tests (to see if build completed successfully)
core: Run all TestSuite-based tests (exclude examples)
example: Examples (to see if example programs run successfully)
performance: Performance Tests (check to see if the system is as fast as expected)
system: System Tests (spans modules to check integration of modules)
unit: Unit Tests (within modules to check basic functionality)

Any of these kinds of test can be provided as a constraint using the --constraint option.

To see a quick list of all of the test suites available, you can ask for them to be listed. The following command,

$./test.py --list

will result in a list of the test suite being displayed, similar to

Waf: Entering directory ‘/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
Waf: Leaving directory ‘/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
’build’ finished successfully (0.939s)
histogram
ns3-wifi-interference
ns3-tcp-cwnd
ns3-tcp-interoperability
sample
devices-mesh-flame
devices-mesh-dot11s
devices-mesh
...
object-name-service
callback
attributes
config
global-value
command-line
basic-random-number
object

Any of these listed suites can be selected to be run by itself using the --suite option as shown above.

Similarly to test suites, one can run a single C++ example program using the --example option. Note that the
relative path for the example does not need to be included and that the executables built for C++ examples do not have
extensions. Entering

$./test.py --example=udp-echo

results in that single example being run.

17.3. Testing framework 133

ns-3 Manual, Release ns-3.18

PASS: Example examples/udp/udp-echo

You can specify the directory where ns-3 was built using the --buildpath option as follows.

$./test.py --buildpath=/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build/debug --example=wifi-simple-adhoc

One can run a single Python example program using the --pyexample option. Note that the relative path for the
example must be included and that Python examples do need their extensions. Entering

$./test.py --pyexample=examples/tutorial/first.py

results in that single example being run.

PASS: Example examples/tutorial/first.py

Because Python examples are not built, you do not need to specify the directory where ns-3 was built to run them.

Normally when example programs are executed, they write a large amount of trace file data. This is normally saved
to the base directory of the distribution (e.g., /home/user/ns-3-dev). When test.py runs an example, it really is
completely unconcerned with the trace files. It just wants to to determine if the example can be built and run without
error. Since this is the case, the trace files are written into a /tmp/unchecked-traces directory. If you run the
above example, you should be able to find the associated udp-echo.tr and udp-echo-n-1.pcap files there.

The list of available examples is defined by the contents of the ‘’examples” directory in the distribution. If you select
an example for execution using the --example option, test.pywill not make any attempt to decide if the example
has been configured or not, it will just try to run it and report the result of the attempt.

When test.py runs, by default it will first ensure that the system has been completely built. This can be defeated
by selecting the --nowaf option.

$./test.py --list --nowaf

will result in a list of the currently built test suites being displayed, similar to:

ns3-wifi-propagation-loss-models
ns3-tcp-cwnd
ns3-tcp-interoperability
pcap-file-object
object-name-service
random-number-generators

Note the absence of the Waf build messages.

test.py also supports running the test suites and examples under valgrind. Valgrind is a flexible program for
debugging and profiling Linux executables. By default, valgrind runs a tool called memcheck, which performs a range
of memory- checking functions, including detecting accesses to uninitialised memory, misuse of allocated memory
(double frees, access after free, etc.) and detecting memory leaks. This can be selected by using the --grind option.

$./test.py --grind

As it runs, test.py and the programs that it runs indirectly, generate large numbers of temporary files. Usually,
the content of these files is not interesting, however in some cases it can be useful (for debugging purposes) to view
these files. test.py provides a --retain option which will cause these temporary files to be kept after the run is
completed. The files are saved in a directory named testpy-output under a subdirectory named according to the
current Coordinated Universal Time (also known as Greenwich Mean Time).

$./test.py --retain

Finally, test.py provides a --verbose option which will print large amounts of information about its progress. It
is not expected that this will be terribly useful unless there is an error. In this case, you can get access to the standard
output and standard error reported by running test suites and examples. Select verbose in the following way:

134 Chapter 17. Tests

ns-3 Manual, Release ns-3.18

$./test.py --verbose

All of these options can be mixed and matched. For example, to run all of the ns-3 core test suites under valgrind, in
verbose mode, while generating an HTML output file, one would do:

$./test.py --verbose --grind --constrain=core --html=results.html

17.3.3 TestTaxonomy

As mentioned above, tests are grouped into a number of broadly defined classifications to allow users to selectively
run tests to address the different kinds of testing that need to be done.

• Build Verification Tests

• Unit Tests

• System Tests

• Examples

• Performance Tests

BuildVerificationTests

These are relatively simple tests that are built along with the distribution and are used to make sure that the build is
pretty much working. Our current unit tests live in the source files of the code they test and are built into the ns-3
modules; and so fit the description of BVTs. BVTs live in the same source code that is built into the ns-3 code. Our
current tests are examples of this kind of test.

Unit Tests

Unit tests are more involved tests that go into detail to make sure that a piece of code works as advertised in isolation.
There is really no reason for this kind of test to be built into an ns-3 module. It turns out, for example, that the unit
tests for the object name service are about the same size as the object name service code itself. Unit tests are tests
that check a single bit of functionality that are not built into the ns-3 code, but live in the same directory as the code
it tests. It is possible that these tests check integration of multiple implementation files in a module as well. The file
src/core/test/names-test-suite.cc is an example of this kind of test. The file src/network/test/pcap-file-test-suite.cc is
another example that uses a known good pcap file as a test vector file. This file is stored locally in the src/network
directory.

System Tests

System tests are those that involve more than one module in the system. We have lots of this kind of test running in
our current regression framework, but they are typically overloaded examples. We provide a new place for this kind
of test in the directory src/test. The file src/test/ns3tcp/ns3-interop-test-suite.cc is an example of this kind of test.
It uses NSC TCP to test the ns-3 TCP implementation. Often there will be test vectors required for this kind of test,
and they are stored in the directory where the test lives. For example, ns3tcp-interop-response-vectors.pcap is a file
consisting of a number of TCP headers that are used as the expected responses of the ns-3 TCP under test to a stimulus
generated by the NSC TCP which is used as a ‘’known good” implementation.

17.3. Testing framework 135

ns-3 Manual, Release ns-3.18

Examples

The examples are tested by the framework to make sure they built and will run. Nothing is checked, and currently the
pcap files are just written off into /tmp to be discarded. If the examples run (don’t crash) they pass this smoke test.

Performance Tests

Performance tests are those which exercise a particular part of the system and determine if the tests have executed to
completion in a reasonable time.

17.3.4 Running Tests

Tests are typically run using the high level test.py program. To get a list of the available command-line options,
run test.py --help

The test program test.py will run both tests and those examples that have been added to the list to check. The
difference between tests and examples is as follows. Tests generally check that specific simulation output or events
conforms to expected behavior. In contrast, the output of examples is not checked, and the test program merely checks
the exit status of the example program to make sure that it runs without error.

Briefly, to run all tests, first one must configure tests during configuration stage, and also (optionally) examples if
examples are to be checked:

$./waf --configure --enable-examples --enable-tests

Then, build ns-3, and after it is built, just run test.py. test.py -h will show a number of configuration options
that modify the behavior of test.py.

The program test.py invokes, for C++ tests and examples, a lower-level C++ program called test-runner to
actually run the tests. As discussed below, this test-runner can be a helpful way to debug tests.

17.3.5 Debugging Tests

The debugging of the test programs is best performed running the low-level test-runner program. The test-runner is
the bridge from generic Python code to ns-3 code. It is written in C++ and uses the automatic test discovery process
in the ns-3 code to find and allow execution of all of the various tests.

The main reason why test.py is not suitable for debugging is that it is not allowed for logging to be turned on using
the NS_LOG environmental variable when test.py runs. This limitation does not apply to the test-runner executable.
Hence, if you want to see logging output from your tests, you have to run them using the test-runner directly.

In order to execute the test-runner, you run it like any other ns-3 executable – using waf. To get a list of available
options, you can type:

$./waf --run "test-runner --help"

You should see something like the following

Waf: Entering directory ‘/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
Waf: Leaving directory ‘/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
’build’ finished successfully (0.353s)
--assert: Tell tests to segfault (like assert) if an error is detected
--basedir=dir: Set the base directory (where to find src) to ’’dir’’
--tempdir=dir: Set the temporary directory (where to find data files) to ’’dir’’
--constrain=test-type: Constrain checks to test suites of type ’’test-type’’
--help: Print this message

136 Chapter 17. Tests

ns-3 Manual, Release ns-3.18

--kinds: List all of the available kinds of tests
--list: List all of the test suites (optionally constrained by test-type)
--out=file-name: Set the test status output file to ’’file-name’’
--suite=suite-name: Run the test suite named ’’suite-name’’
--verbose: Turn on messages in the run test suites

There are a number of things available to you which will be familiar to you if you have looked at test.py. This
should be expected since the test- runner is just an interface between test.py and ns-3. You may notice that
example-related commands are missing here. That is because the examples are really not ns-3 tests. test.py runs
them as if they were to present a unified testing environment, but they are really completely different and not to be
found here.

The first new option that appears here, but not in test.py is the --assert option. This option is useful when debug-
ging a test case when running under a debugger like gdb. When selected, this option tells the underlying test case to
cause a segmentation violation if an error is detected. This has the nice side-effect of causing program execution to
stop (break into the debugger) when an error is detected. If you are using gdb, you could use this option something
like,

$./waf shell
$ cd build/debug/utils
$ gdb test-runner
$ run --suite=global-value --assert

If an error is then found in the global-value test suite, a segfault would be generated and the (source level) debugger
would stop at the NS_TEST_ASSERT_MSG that detected the error.

Another new option that appears here is the --basedir option. It turns out that some tests may need to reference
the source directory of the ns-3 distribution to find local data, so a base directory is always required to run a test.

If you run a test from test.py, the Python program will provide the basedir option for you. To run one of the tests
directly from the test-runner using waf, you will need to specify the test suite to run along with the base directory. So
you could use the shell and do:

$./waf --run "test-runner --basedir=‘pwd‘ --suite=pcap-file-object"

Note the ‘’backward” quotation marks on the pwd command.

If you are running the test suite out of a debugger, it can be quite painful to remember and constantly type the absolute
path of the distribution base directory. Because of this, if you omit the basedir, the test-runner will try to figure one
out for you. It begins in the current working directory and walks up the directory tree looking for a directory file with
files named VERSION and LICENSE. If it finds one, it assumes that must be the basedir and provides it for you.

Test output

Many test suites need to write temporary files (such as pcap files) in the process of running the tests. The tests then
need a temporary directory to write to. The Python test utility (test.py) will provide a temporary file automatically,
but if run stand-alone this temporary directory must be provided. Just as in the basedir case, it can be annoying to
continually have to provide a --tempdir, so the test runner will figure one out for you if you don’t provide one. It
first looks for environment variables named TMP and TEMP and uses those. If neither TMP nor TEMP are defined it
picks /tmp. The code then tacks on an identifier indicating what created the directory (ns-3) then the time (hh.mm.ss)
followed by a large random number. The test runner creates a directory of that name to be used as the temporary
directory. Temporary files then go into a directory that will be named something like

/tmp/ns-3.10.25.37.61537845

The time is provided as a hint so that you can relatively easily reconstruct what directory was used if you need to go
back and look at the files that were placed in that directory.

17.3. Testing framework 137

ns-3 Manual, Release ns-3.18

Another class of output is test output like pcap traces that are generated to compare to reference output. The test
program will typically delete these after the test suites all run. To disable the deletion of test output, run test.py
with the “retain” option:

$./test.py -r

and test output can be found in the testpy-output/ directory.

Reporting of test failures

When you run a test suite using the test-runner it will run the test quietly by default. The only indication that you will
get that the test passed is the absence of a message from waf saying that the program returned something other than
a zero exit code. To get some output from the test, you need to specify an output file to which the tests will write their
XML status using the --out option. You need to be careful interpreting the results because the test suites will append
results onto this file. Try,

$./waf --run "test-runner --basedir=‘pwd‘ --suite=pcap-file-object --out=myfile.xml"

If you look at the file myfile.xml you should see something like,

<TestSuite>
<SuiteName>pcap-file-object</SuiteName>
<TestCase>
<CaseName>Check to see that PcapFile::Open with mode ’’w’’ works</CaseName>
<CaseResult>PASS</CaseResult>
<CaseTime>real 0.00 user 0.00 system 0.00</CaseTime>

</TestCase>
<TestCase>
<CaseName>Check to see that PcapFile::Open with mode ’’r’’ works</CaseName>
<CaseResult>PASS</CaseResult>
<CaseTime>real 0.00 user 0.00 system 0.00</CaseTime>

</TestCase>
<TestCase>
<CaseName>Check to see that PcapFile::Open with mode ’’a’’ works</CaseName>
<CaseResult>PASS</CaseResult>
<CaseTime>real 0.00 user 0.00 system 0.00</CaseTime>

</TestCase>
<TestCase>
<CaseName>Check to see that PcapFileHeader is managed correctly</CaseName>
<CaseResult>PASS</CaseResult>
<CaseTime>real 0.00 user 0.00 system 0.00</CaseTime>

</TestCase>
<TestCase>
<CaseName>Check to see that PcapRecordHeader is managed correctly</CaseName>
<CaseResult>PASS</CaseResult>
<CaseTime>real 0.00 user 0.00 system 0.00</CaseTime>

</TestCase>
<TestCase>
<CaseName>Check to see that PcapFile can read out a known good pcap file</CaseName>
<CaseResult>PASS</CaseResult>
<CaseTime>real 0.00 user 0.00 system 0.00</CaseTime>

</TestCase>
<SuiteResult>PASS</SuiteResult>
<SuiteTime>real 0.00 user 0.00 system 0.00</SuiteTime>

</TestSuite>

If you are familiar with XML this should be fairly self-explanatory. It is also not a complete XML file since test suites
are designed to have their output appended to a master XML status file as described in the test.py section.

138 Chapter 17. Tests

ns-3 Manual, Release ns-3.18

Debugging test suite failures

To debug test crashes, such as

CRASH: TestSuite ns3-wifi-interference

You can access the underlying test-runner program via gdb as follows, and then pass the “–basedir=‘pwd‘” argument
to run (you can also pass other arguments as needed, but basedir is the minimum needed):

$./waf --command-template="gdb %s" --run "test-runner"
Waf: Entering directory ‘/home/tomh/hg/sep09/ns-3-allinone/ns-3-dev-678/build’
Waf: Leaving directory ‘/home/tomh/hg/sep09/ns-3-allinone/ns-3-dev-678/build’
’build’ finished successfully (0.380s)
GNU gdb 6.8-debian
Copyright (C) 2008 Free Software Foundation, Inc.
L cense GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu"...
(gdb) r --basedir=‘pwd‘
Starting program: <..>/build/debug/utils/test-runner --basedir=‘pwd‘
[Thread debugging using libthread_db enabled]
assert failed. file=../src/core/model/type-id.cc, line=138, cond="uid <= m_information.size () && uid != 0"
...

Here is another example of how to use valgrind to debug a memory problem such as:

VALGR: TestSuite devices-mesh-dot11s-regression

$./waf --command-template="valgrind %s --basedir=‘pwd‘ --suite=devices-mesh-dot11s-regression" --run test-runner

17.3.6 Class TestRunner

The executables that run dedicated test programs use a TestRunner class. This class provides for automatic test regis-
tration and listing, as well as a way to execute the individual tests. Individual test suites use C++ global constructors
to add themselves to a collection of test suites managed by the test runner. The test runner is used to list all of the
available tests and to select a test to be run. This is a quite simple class that provides three static methods to provide
or Adding and Getting test suites to a collection of tests. See the doxygen for class ns3::TestRunner for details.

17.3.7 Test Suite

All ns-3 tests are classified into Test Suites and Test Cases. A test suite is a collection of test cases that completely
exercise a given kind of functionality. As described above, test suites can be classified as,

• Build Verification Tests

• Unit Tests

• System Tests

• Examples

• Performance Tests

This classification is exported from the TestSuite class. This class is quite simple, existing only as a place to export
this type and to accumulate test cases. From a user perspective, in order to create a new TestSuite in the system one
only has to define a new class that inherits from class TestSuite and perform these two duties.

17.3. Testing framework 139

ns-3 Manual, Release ns-3.18

The following code will define a new class that can be run by test.py as a ‘’unit” test with the display name,
my-test-suite-name.

class MySuite : public TestSuite
{
public:

MyTestSuite ();
};

MyTestSuite::MyTestSuite ()
: TestSuite ("my-test-suite-name", UNIT)

{
AddTestCase (new MyTestCase);

}

MyTestSuite myTestSuite;

The base class takes care of all of the registration and reporting required to be a good citizen in the test framework.

17.3.8 Test Case

Individual tests are created using a TestCase class. Common models for the use of a test case include “one test case
per feature”, and “one test case per method.” Mixtures of these models may be used.

In order to create a new test case in the system, all one has to do is to inherit from the TestCase base class, override
the constructor to give the test case a name and override the DoRun method to run the test.

class MyTestCase : public TestCase
{

MyTestCase ();
virtual void DoRun (void);

};

MyTestCase::MyTestCase ()
: TestCase ("Check some bit of functionality")

{
}

void
MyTestCase::DoRun (void)
{

NS_TEST_ASSERT_MSG_EQ (true, true, "Some failure message");
}

17.3.9 Utilities

There are a number of utilities of various kinds that are also part of the testing framework. Examples include a
generalized pcap file useful for storing test vectors; a generic container useful for transient storage of test vectors
during test execution; and tools for generating presentations based on validation and verification testing results.

These utilities are not documented here, but for example, please see how the TCP tests found in
src/test/ns3tcp/ use pcap files and reference output.

140 Chapter 17. Tests

ns-3 Manual, Release ns-3.18

17.4 How to write tests

A primary goal of the ns-3 project is to help users to improve the validity and credibility of their results. There are
many elements to obtaining valid models and simulations, and testing is a major component. If you contribute models
or examples to ns-3, you may be asked to contribute test code. Models that you contribute will be used for many years
by other people, who probably have no idea upon first glance whether the model is correct. The test code that you
write for your model will help to avoid future regressions in the output and will aid future users in understanding the
verification and bounds of applicability of your models.

There are many ways to verify the correctness of a model’s implementation. In this section, we hope to cover some
common cases that can be used as a guide to writing new tests.

17.4.1 Sample TestSuite skeleton

When starting from scratch (i.e. not adding a TestCase to an existing TestSuite), these things need to be decided up
front:

• What the test suite will be called

• What type of test it will be (Build Verification Test, Unit Test, System Test, or Performance Test)

• Where the test code will live (either in an existing ns-3 module or separately in src/test/ directory). You will
have to edit the wscript file in that directory to compile your new code, if it is a new file.

A program called src/create-module.py is a good starting point. This program can be invoked such as
create-module.py router for a hypothetical new module called router. Once you do this, you will see
a router directory, and a test/router-test-suite.cc test suite. This file can be a starting point for your
initial test. This is a working test suite, although the actual tests performed are trivial. Copy it over to your module’s
test directory, and do a global substitution of “Router” in that file for something pertaining to the model that you want
to test. You can also edit things such as a more descriptive test case name.

You also need to add a block into your wscript to get this test to compile:

module_test.source = [
’test/router-test-suite.cc’,
]

Before you actually start making this do useful things, it may help to try to run the skeleton. Make sure that ns-3 has
been configured with the “–enable-tests” option. Let’s assume that your new test suite is called “router” such as here:

RouterTestSuite::RouterTestSuite ()
: TestSuite ("router", UNIT)

Try this command:

$./test.py -s router

Output such as below should be produced:

PASS: TestSuite router
1 of 1 tests passed (1 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

See src/lte/test/test-lte-antenna.cc for a worked example.

17.4.2 Test macros

There are a number of macros available for checking test program output with expected output. These macros are
defined in src/core/model/test.h.

17.4. How to write tests 141

ns-3 Manual, Release ns-3.18

The main set of macros that are used include the following:

NS_TEST_ASSERT_MSG_EQ(actual, limit, msg)
NS_TEST_ASSERT_MSG_NE(actual, limit, msg)
NS_TEST_ASSERT_MSG_LT(actual, limit, msg)
NS_TEST_ASSERT_MSG_GT(actual, limit, msg)
NS_TEST_ASSERT_MSG_EQ_TOL(actual, limit, tol, msg)

The first argument actual is the value under test, the second value limit is the expected value (or the value to test
against), and the last argument msg is the error message to print out if the test fails.

The first four macros above test for equality, inequality, less than, or greater than, respectively. The fifth macro above
tests for equality, but within a certain tolerance. This variant is useful when testing floating point numbers for equality
against a limit, where you want to avoid a test failure due to rounding errors.

Finally, there are variants of the above where the keyword ASSERT is replaced by EXPECT. These variants are
designed specially for use in methods (especially callbacks) returning void. Reserve their use for callbacks that you
use in your test programs; otherwise, use the ASSERT variants.

17.4.3 How to add an example program to the test suite

One can “smoke test” that examples compile and run successfully to completion (without memory leaks) using the
examples-to-run.py script located in your module’s test directory. Briefly, by including an instance of this file
in your test directory, you can cause the test runner to execute the examples listed. It is usually best to make sure
that you select examples that have reasonably short run times so as to not bog down the tests. See the example in
src/lte/test/ directory.

17.4.4 Testing for boolean outcomes

17.4.5 Testing outcomes when randomness is involved

17.4.6 Testing output data against a known distribution

17.4.7 Providing non-trivial input vectors of data

17.4.8 Storing and referencing non-trivial output data

17.4.9 Presenting your output test data

142 Chapter 17. Tests

CHAPTER

EIGHTEEN

SUPPORT

18.1 Creating a new ns-3 model

This chapter walks through the design process of an ns-3 model. In many research cases, users will not be satisfied
to merely adapt existing models, but may want to extend the core of the simulator in a novel way. We will use the
example of adding an ErrorModel to a simple ns-3 link as a motivating example of how one might approach this
problem and proceed through a design and implementation.

18.1.1 Design-approach

Consider how you want it to work; what should it do. Think about these things:

• functionality: What functionality should it have? What attributes or configuration is exposed to the user?

• reusability: How much should others be able to reuse my design? Can I reuse code from ns-2 to get started?
How does a user integrate the model with the rest of another simulation?

• dependencies: How can I reduce the introduction of outside dependencies on my new code as much as possible
(to make it more modular)? For instance, should I avoid any dependence on IPv4 if I want it to also be used by
IPv6? Should I avoid any dependency on IP at all?

Do not be hesitant to contact the ns-3-users or ns-developers list if you have questions. In particular, it is important to
think about the public API of your new model and ask for feedback. It also helps to let others know of your work in
case you are interested in collaborators.

Example: ErrorModel

An error model exists in ns-2. It allows packets to be passed to a stateful object that determines, based on a random
variable, whether the packet is corrupted. The caller can then decide what to do with the packet (drop it, etc.).

The main API of the error model is a function to pass a packet to, and the return value of this function is a boolean
that tells the caller whether any corruption occurred. Note that depending on the error model, the packet data buffer
may or may not be corrupted. Let’s call this function “IsCorrupt()”.

So far, in our design, we have::

class ErrorModel
{
public:
/**
* \returns true if the Packet is to be considered as errored/corrupted

* \param pkt Packet to apply error model to

143

ns-3 Manual, Release ns-3.18

*/
bool IsCorrupt (Ptr<Packet> pkt);

};

Note that we do not pass a const pointer, thereby allowing the function to modify the packet if IsCorrupt() returns
true. Not all error models will actually modify the packet; whether or not the packet data buffer is corrupted should be
documented.

We may also want specialized versions of this, such as in ns-2, so although it is not the only design choice for poly-
morphism, we assume that we will subclass a base class ErrorModel for specialized classes, such as RateErrorModel,
ListErrorModel, etc, such as is done in ns-2.

You may be thinking at this point, “Why not make IsCorrupt() a virtual method?”. That is one approach; the other is
to make the public non-virtual function indirect through a private virtual function (this in C++ is known as the non
virtual interface idiom and is adopted in the ns-3 ErrorModel class).

Next, should this device have any dependencies on IP or other protocols? We do not want to create dependencies on
Internet protocols (the error model should be applicable to non-Internet protocols too), so we’ll keep that in mind later.

Another consideration is how objects will include this error model. We envision putting an explicit setter in certain
NetDevice implementations, for example.:

/**
* Attach a receive ErrorModel to the PointToPointNetDevice.

*
* The PointToPointNetDevice may optionally include an ErrorModel in

* the packet receive chain.

*
* @see ErrorModel

* @param em Ptr to the ErrorModel.

*/
void PointToPointNetDevice::SetReceiveErrorModel(Ptr<ErrorModel> em);

Again, this is not the only choice we have (error models could be aggregated to lots of other objects), but it satisfies
our primary use case, which is to allow a user to force errors on otherwise successful packet transmissions, at the
NetDevice level.

After some thinking and looking at existing ns-2 code, here is a sample API of a base class and first subclass that could
be posted for initial review::

class ErrorModel
{
public:

ErrorModel ();
virtual ~ErrorModel ();
bool IsCorrupt (Ptr<Packet> pkt);
void Reset (void);
void Enable (void);
void Disable (void);
bool IsEnabled (void) const;

private:
virtual bool DoCorrupt (Ptr<Packet> pkt) = 0;
virtual void DoReset (void) = 0;

};

enum ErrorUnit
{
EU_BIT,
EU_BYTE,
EU_PKT

144 Chapter 18. Support

ns-3 Manual, Release ns-3.18

};

// Determine which packets are errored corresponding to an underlying
// random variable distribution, an error rate, and unit for the rate.
class RateErrorModel : public ErrorModel
{
public:

RateErrorModel ();
virtual ~RateErrorModel ();
enum ErrorUnit GetUnit (void) const;
void SetUnit (enum ErrorUnit error_unit);
double GetRate (void) const;
void SetRate (double rate);
void SetRandomVariable (const RandomVariable &ranvar);

private:
virtual bool DoCorrupt (Ptr<Packet> pkt);
virtual void DoReset (void);

};

18.1.2 Scaffolding

Let’s say that you are ready to start implementing; you have a fairly clear picture of what you want to build, and you
may have solicited some initial review or suggestions from the list. One way to approach the next step (implementa-
tion) is to create scaffolding and fill in the details as the design matures.

This section walks through many of the steps you should consider to define scaffolding, or a non-functional skeleton
of what your model will eventually implement. It is usually good practice to not wait to get these details integrated at
the end, but instead to plumb a skeleton of your model into the system early and then add functions later once the API
and integration seems about right.

Note that you will want to modify a few things in the below presentation for your model since if you follow the error
model verbatim, the code you produce will collide with the existing error model. The below is just an outline of how
ErrorModel was built that you can adapt to other models.

Review the ns-3 coding style document

At this point, you may want to pause and read the ns-3 coding style document, especially if you are considering to
contribute your code back to the project. The coding style document is linked off the main project page: ns-3 coding
style.

Decide where in the source tree the model will reside in

All of the ns-3 model source code is in the directory src/. You will need to choose which subdirectory it resides in.
If it is new model code of some sort, it makes sense to put it into the src/ directory somewhere, particularly for ease
of integrating with the build system.

In the case of the error model, it is very related to the packet class, so it makes sense to implement this in the
src/network/ module where ns-3 packets are implemented.

waf and wscript

ns-3 uses the Waf build system. You will want to integrate your new ns-3 uses the Waf build system. You will want
to integrate your new source files into this system. This requires that you add your files to the wscript file found in

18.1. Creating a new ns-3 model 145

http://www.nsnam.org/developers/contributing-code/coding-style/
http://www.nsnam.org/developers/contributing-code/coding-style/
http://www.freehackers.org/~tnagy/waf.html

ns-3 Manual, Release ns-3.18

each directory.

Let’s start with empty files error-model.h and error-model.cc, and add this to src/network/wscript. It is really
just a matter of adding the .cc file to the rest of the source files, and the .h file to the list of the header files.

Now, pop up to the top level directory and type ”./test.py”. You shouldn’t have broken anything by this operation.

include guards

Next, let’s add some include guards in our header file.:

#ifndef ERROR_MODEL_H
#define ERROR_MODEL_H
...
#endif

namespace ns3

ns-3 uses the ns-3 namespace to isolate its symbols from other namespaces. Typically, a user will next put an ns-3
namespace block in both the cc and h file.:

namespace ns3 {
...
}

At this point, we have some skeletal files in which we can start defining our new classes. The header file looks like
this::

#ifndef ERROR_MODEL_H
#define ERROR_MODEL_H

namespace ns3 {

} // namespace ns3
#endif

while the error-model.cc file simply looks like this::

#include "error-model.h"

namespace ns3 {

} // namespace ns3

These files should compile since they don’t really have any contents. We’re now ready to start adding classes.

18.1.3 Initial Implementation

At this point, we’re still working on some scaffolding, but we can begin to define our classes, with the functionality to
be added later.

use of class Object?

This is an important design step; whether to use class Object as a base class for your new classes.

As described in the chapter on the ns-3 Object model, classes that inherit from class Object get special properties:

146 Chapter 18. Support

http://en.wikipedia.org/wiki/Include_guard
http://en.wikipedia.org/wiki/Namespace_(computer_science)#Use_in_common_languages

ns-3 Manual, Release ns-3.18

• the ns-3 type and attribute system (see Attributes)

• an object aggregation system

• a smart-pointer reference counting system (class Ptr)

Classes that derive from class ObjectBase} get the first two properties above, but do not get smart pointers. Classes
that derive from class RefCountBase get only the smart-pointer reference counting system.

In practice, class Object is the variant of the three above that the ns-3 developer will most commonly encounter.

In our case, we want to make use of the attribute system, and we will be passing instances of this object across the
ns-3 public API, so class Object is appropriate for us.

initial classes

One way to proceed is to start by defining the bare minimum functions and see if they will compile. Let’s review what
all is needed to implement when we derive from class Object.:

#ifndef ERROR_MODEL_H
#define ERROR_MODEL_H

#include "ns3/object.h"

namespace ns3 {

class ErrorModel : public Object
{
public:

static TypeId GetTypeId (void);

ErrorModel ();
virtual ~ErrorModel ();

};

class RateErrorModel : public ErrorModel
{
public:

static TypeId GetTypeId (void);

RateErrorModel ();
virtual ~RateErrorModel ();

};
#endif

A few things to note here. We need to include object.h. The convention in ns-3 is that if the header file is
co-located in the same directory, it may be included without any path prefix. Therefore, if we were implementing
ErrorModel in src/core/model directory, we could have just said “#include "object.h"”. But we are
in src/network/model, so we must include it as “#include "ns3/object.h"”. Note also that this goes
outside the namespace declaration.

Second, each class must implement a static public member function called GetTypeId (void).

Third, it is a good idea to implement constructors and destructors rather than to let the compiler generate them, and to
make the destructor virtual. In C++, note also that copy assignment operator and copy constructors are auto-generated
if they are not defined, so if you do not want those, you should implement those as private members. This aspect of
C++ is discussed in Scott Meyers’ Effective C++ book. item 45.

Let’s now look at some corresponding skeletal implementation code in the .cc file.:

18.1. Creating a new ns-3 model 147

ns-3 Manual, Release ns-3.18

#include "error-model.h"

namespace ns3 {

NS_OBJECT_ENSURE_REGISTERED (ErrorModel);

TypeId ErrorModel::GetTypeId (void)
{

static TypeId tid = TypeId ("ns3::ErrorModel")
.SetParent<Object> ()
;

return tid;
}

ErrorModel::ErrorModel ()
{
}

ErrorModel::~ErrorModel ()
{
}

NS_OBJECT_ENSURE_REGISTERED (RateErrorModel);

TypeId RateErrorModel::GetTypeId (void)
{

static TypeId tid = TypeId ("ns3::RateErrorModel")
.SetParent<ErrorModel> ()
.AddConstructor<RateErrorModel> ()
;

return tid;
}

RateErrorModel::RateErrorModel ()
{
}

RateErrorModel::~RateErrorModel ()
{
}

What is the GetTypeId (void) function? This function does a few things. It registers a unique string into the
TypeId system. It establishes the hierarchy of objects in the attribute system (via SetParent). It also declares that
certain objects can be created via the object creation framework (AddConstructor).

The macro NS_OBJECT_ENSURE_REGISTERED (classname) is needed also once for every class that defines
a new GetTypeId method, and it does the actual registration of the class into the system. The Object model chapter
discusses this in more detail.

how to include files from elsewhere

log component

Here, write a bit about adding |ns3| logging macros. Note that LOG_COMPONENT_DEFINE is done outside the
namespace ns3

148 Chapter 18. Support

ns-3 Manual, Release ns-3.18

constructor, empty function prototypes

key variables (default values, attributes)

test program 1

Object Framework

18.1.4 Adding-a-sample-script

At this point, one may want to try to take the basic scaffolding defined above and add it into the system. Performing
this step now allows one to use a simpler model when plumbing into the system and may also reveal whether any
design or API modifications need to be made. Once this is done, we will return to building out the functionality of the
ErrorModels themselves.

Add basic support in the class

/* point-to-point-net-device.h */
class ErrorModel;

/**
* Error model for receive packet events

*/
Ptr<ErrorModel> m_receiveErrorModel;

Add Accessor

void
PointToPointNetDevice::SetReceiveErrorModel (Ptr<ErrorModel> em)
{

NS_LOG_FUNCTION (this << em);
m_receiveErrorModel = em;

}

.AddAttribute ("ReceiveErrorModel",
"The receiver error model used to simulate packet loss",
PointerValue (),
MakePointerAccessor (&PointToPointNetDevice::m_receiveErrorModel),
MakePointerChecker<ErrorModel> ())

Plumb into the system

void PointToPointNetDevice::Receive (Ptr<Packet> packet)
{

NS_LOG_FUNCTION (this << packet);
uint16_t protocol = 0;

if (m_receiveErrorModel && m_receiveErrorModel->IsCorrupt (packet))
{

//
// If we have an error model and it indicates that it is time to lose a
// corrupted packet, don’t forward this packet up, let it go.
//

18.1. Creating a new ns-3 model 149

ns-3 Manual, Release ns-3.18

m_dropTrace (packet);
}

else
{

//
// Hit the receive trace hook, strip off the point-to-point protocol header
// and forward this packet up the protocol stack.
//

m_rxTrace (packet);
ProcessHeader(packet, protocol);
m_rxCallback (this, packet, protocol, GetRemote ());
if (!m_promiscCallback.IsNull ())

{ m_promiscCallback (this, packet, protocol, GetRemote (),
GetAddress (), NetDevice::PACKET_HOST);

}
}

}

Create null functional script

/* simple-error-model.cc */

// Error model
// We want to add an error model to node 3’s NetDevice
// We can obtain a handle to the NetDevice via the channel and node
// pointers
Ptr<PointToPointNetDevice> nd3 = PointToPointTopology::GetNetDevice
(n3, channel2);

Ptr<ErrorModel> em = Create<ErrorModel> ();
nd3->SetReceiveErrorModel (em);

bool
ErrorModel::DoCorrupt (Packet& p)
{

NS_LOG_FUNCTION;
NS_LOG_UNCOND("Corrupt!");
return false;

}

At this point, we can run the program with our trivial ErrorModel plumbed into the receive path of the PointToPoint-
NetDevice. It prints out the string “Corrupt!” for each packet received at node n3. Next, we return to the error model
to add in a subclass that performs more interesting error modeling.

18.1.5 Add subclass

The trivial base class ErrorModel does not do anything interesting, but it provides a useful base class interface (Corrupt
() and Reset ()), forwarded to virtual functions that can be subclassed. Let’s next consider what we call a BasicError-
Model which is based on the ns-2 ErrorModel class (in ns-2/queue/errmodel.{cc,h}).

What properties do we want this to have, from a user interface perspective? We would like for the user to be able to
trivially swap out the type of ErrorModel used in the NetDevice. We would also like the capability to set configurable
parameters.

Here are a few simple requirements we will consider:

150 Chapter 18. Support

ns-3 Manual, Release ns-3.18

• Ability to set the random variable that governs the losses (default is UniformVariable)

• Ability to set the unit (bit, byte, packet, time) of granularity over which errors are applied.

• Ability to set the rate of errors (e.g. 10^-3) corresponding to the above unit of granularity.

• Ability to enable/disable (default is enabled)

How to subclass

We declare BasicErrorModel to be a subclass of ErrorModel as follows,:

class BasicErrorModel : public ErrorModel
{
public:

static TypeId GetTypeId (void);
...

private:
// Implement base class pure virtual functions
virtual bool DoCorrupt (Ptr<Packet> p);
virtual bool DoReset (void);
...

}

and configure the subclass GetTypeId function by setting a unique TypeId string and setting the Parent to ErrorModel::

TypeId RateErrorModel::GetTypeId (void)
{

static TypeId tid = TypeId ("ns3::RateErrorModel")
.SetParent<ErrorModel> ()
.AddConstructor<RateErrorModel> ()

...

18.1.6 Build-core-functions-and-unit-tests

assert macros

Writing unit tests

18.2 Adding a New Module to ns-3

When you have created a group of related classes, examples, and tests, they can be combined together into an ns-3
module so that they can be used with existing ns-3 modules and by other researchers.

This chapter walks you through the steps necessary to add a new module to ns-3.

18.2.1 Step 1 - Familiarize yourself with the module layout

All modules can be found in the src directory. Each module can be found in a directory that has the same name as
the module. For example, the spectrum module can be found here:

src/spectrum

A prototypical module has the following directory structure and required files:

18.2. Adding a New Module to ns-3 151

ns-3 Manual, Release ns-3.18

src/
module-name/

bindings/
doc/
examples/

wscript
helper/
model/
test/

examples-to-run.py
wscript

Not all directories will be present in each module.

18.2.2 Step 2 - Create your new module based on the template module

A python program is provided in the source directory that will create a skeleton for a new module

$ src/create-module.py

For the purposes of this discussion we will assume that your new module is called “new-module”. From the src
directory, do the following to create the new module:

$./create-module.py new-module

Next, cd into new-module; you will find this directory layout:

$ examples helper model test wscript

We next walk through how to customize this module. All ns-3 modules depend on the ‘core’ module and usually
on other modules. This dependency is specified in the wscript file. Let’s assume that ‘new-module’ depends on the
internet, mobility, and aodv modules. Then the call to the function that will create this module should look like this
before editing:

def build(bld):
module = bld.create_ns3_module(’new-module’, [’core’])

and after editing:

def build(bld):
module = bld.create_ns3_module(’new-module’, [’internet’, ’mobility’, ’aodv’])

Your module will most likely have model source files. Initial skeletons (which will compile successfully) are created
in model/new-module.cc and model/new-module.h.

If your module will have helper source files, then they will go into the helper/ directory; again, initial skeletons are
created in that directory.

Finally, it is good practice to write tests. A skeleton test suite and test case is created in the test/ directory. The below
constructor specifies that it will be a unit test named ‘new-module’:

New-moduleTestSuite::New-moduleTestSuite ()
: TestSuite ("new-module", UNIT)

{
AddTestCase (new New-moduleTestCase1);

}

152 Chapter 18. Support

ns-3 Manual, Release ns-3.18

18.2.3 Step 3 - Adding to your module’s source files

If your new module has model and/or helper source files, then they must be specified in your

src/new-module/wscript

file by modifying it with your text editor.

As an example, the source files for the spectrum module are specified in

src/spectrum/wscript

with the following list of source files:

module.source = [
’model/spectrum-model.cc’,
’model/spectrum-value.cc’,

.

.

.
’model/microwave-oven-spectrum-value-helper.cc’,
’helper/spectrum-helper.cc’,
’helper/adhoc-aloha-noack-ideal-phy-helper.cc’,
’helper/waveform-generator-helper.cc’,
’helper/spectrum-analyzer-helper.cc’,
]

18.2.4 Step 4 - Specify your module’s header files

If your new module has model and/or helper header files, then they must be specified in your

src/new-module/wscript

file by modifying it with your text editor.

As an example, the header files for the spectrum module are specified in

src/spectrum/wscript

with the following function call, module name, and list of header files. Note that the argument for the function
new_task_gen() tells waf to install this module’s headers with the other ns-3 headers:

headers = bld.new_task_gen(features=[’ns3header’])

headers.module = ’spectrum’

headers.source = [
’model/spectrum-model.h’,
’model/spectrum-value.h’,

.

.

.
’model/microwave-oven-spectrum-value-helper.h’,
’helper/spectrum-helper.h’,
’helper/adhoc-aloha-noack-ideal-phy-helper.h’,
’helper/waveform-generator-helper.h’,
’helper/spectrum-analyzer-helper.h’,
]

18.2. Adding a New Module to ns-3 153

ns-3 Manual, Release ns-3.18

18.2.5 Step 5 - Specify your module’s tests

If your new module has tests, then they must be specified in your

src/new-module/wscript

file by modifying it with your text editor.

As an example, the tests for the spectrum module are specified in

src/spectrum/wscript

with the following function call and list of test suites:

module_test = bld.create_ns3_module_test_library(’spectrum’)

module_test.source = [
’test/spectrum-interference-test.cc’,
’test/spectrum-value-test.cc’,
]

18.2.6 Step 6 - Specify your module’s examples

If your new module has examples, then they must be specified in your

src/new-module/examples/wscript

file by modifying it with your text editor.

As an example, the examples for the core module are specified in

src/core/examples/wscript

The core module’s C++ examples are specified using the following function calls and source file names. Note that the
second argument for the function create_ns3_program() is the list of modules that the program being created
depends on:

obj = bld.create_ns3_program(’main-callback’, [’core’])
obj.source = ’main-callback.cc’

obj = bld.create_ns3_program(’sample-simulator’, [’core’])
obj.source = ’sample-simulator.cc’

The core module’s Python examples are specified using the following function call. Note that the second argument for
the function register_ns3_script() is the list of modules that the Python example depends on:

bld.register_ns3_script(’sample-simulator.py’, [’core’])

18.2.7 Step 7 - Specify which of your module’s examples should be run as tests

The test framework can also be instrumented to run example programs to try to catch regressions in the examples.
However, not all examples are suitable for regression tests. A file called examples-to-run.py that exists in each
module’s test directory can control the invocation of the examples when the test framework runs.

As an example, the examples that are run by test.py for the core module are specified in

src/core/test/examples-to-run.py

154 Chapter 18. Support

ns-3 Manual, Release ns-3.18

using the following two lists of C++ and Python examples:

A list of C++ examples to run in order to ensure that they remain
buildable and runnable over time. Each tuple in the list contains
#
(example_name, do_run, do_valgrind_run).
#
See test.py for more information.
cpp_examples = [

("main-attribute-value", "True", "True"),
("main-callback", "True", "True"),
("sample-simulator", "True", "True"),
("main-ptr", "True", "True"),
("main-random-variable", "True", "True"),
("sample-random-variable", "True", "True"),

]

A list of Python examples to run in order to ensure that they remain
runnable over time. Each tuple in the list contains
#
(example_name, do_run).
#
See test.py for more information.
python_examples = [

("sample-simulator.py", "True"),
]

Each tuple in the C++ list of examples to run contains

(example_name, do_run, do_valgrind_run)

where example_name is the executable to be run, do_run is a condition under which to run the example, and
do_valgrind_run is a condition under which to run the example under valgrind. This is needed because NSC causes
illegal instruction crashes with some tests when they are run under valgrind.

Note that the two conditions are Python statements that can depend on waf configuration variables. For example,

("tcp-nsc-lfn", "NSC_ENABLED == True", "NSC_ENABLED == False"),

Each tuple in the Python list of examples to run contains

(example_name, do_run)

where example_name is the Python script to be run and do_run is a condition under which to run the example.

Note that the condition is a Python statement that can depend on waf configuration variables. For example,

("realtime-udp-echo.py", "ENABLE_REAL_TIME == False"),

If your new module has examples, then you must specify which of them should be run in your

src/new-module/test/examples-to-run.py

file by modifying it with your text editor. These examples are run by test.py.

18.2.8 Step 8 - Build and test your new module

You can now build and test your module as normal:

18.2. Adding a New Module to ns-3 155

ns-3 Manual, Release ns-3.18

$./waf configure --enable-examples --enable-tests
$./waf build
$./test.py

and look for your new module’s test suite (and example programs, if enabled) in the test output.

18.3 Enabling Subsets of ns-3 Modules

As with most software projects, ns-3 is ever growing larger in terms of number of modules, lines of code, and memory
footprint. Users, however, may only use a few of those modules at a time. For this reason, users may want to explicitly
enable only the subset of the possible ns-3 modules that they actually need for their research.

This chapter discusses how to enable only the ns-3 modules that you are intersted in using.

18.3.1 How to enable a subset of ns-3‘s modules

If shared libraries are being built, then enabling a module will cause at least one library to be built:

libns3-modulename.so

If the module has a test library and test libraries are being built, then

libns3-modulename-test.so

will be built, too. Other modules that the module depends on and their test libraries will also be built.

By default, all modules are built in ns-3. There are two ways to enable a subset of these modules:

1. Using waf’s –enable-modules option

2. Using the ns-3 configuration file

Enable modules using waf’s –enable-modules option

To enable only the core module with example and tests, for example, try these commands:

$./waf clean
$./waf configure --enable-examples --enable-tests --enable-modules=core
$./waf build
$ cd build/debug/
$ ls

and the following libraries should be present:

bindings libns3-core.so ns3 scratch utils
examples libns3-core-test.so samples src

Note the ./waf clean step is done here only to make it more obvious which module libraries were built. You don’t
have to do ./waf clean in order to enable subsets of modules.

Running test.py will cause only those tests that depend on module core to be run:

24 of 24 tests passed (24 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

Repeat the above steps for the “network” module instead of the “core” module, and the following will be built, since
network depends on core:

156 Chapter 18. Support

ns-3 Manual, Release ns-3.18

bindings libns3-core.so libns3-network.so ns3 scratch utils
examples libns3-core-test.so libns3-network-test.so samples src

Running test.py will cause those tests that depend on only the core and network modules to be run:

31 of 31 tests passed (31 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

Enable modules using the ns-3 configuration file

A configuration file, .ns3rc, has been added to ns-3 that allows users to specify which modules are to be included in
the build.

When enabling a subset of ns-3 modules, the precedence rules are as follows:

1. the –enable-modules configure string overrides any .ns3rc file

2. the .ns3rc file in the top level ns-3 directory is next consulted, if present

3. the system searches for ~/.ns3rc if the above two are unspecified

If none of the above limits the modules to be built, all modules that waf knows about will be built.

The maintained version of the .ns3rc file in the ns-3 source code repository resides in the utils directory. The
reason for this is if it were in the top-level directory of the repository, it would be prone to accidental checkins from
maintainers that enable the modules they want to use. Therefore, users need to manually copy the .ns3rc from the
utils directory to their preferred place (top level directory or their home directory) to enable persistent modular
build configuration.

Assuming that you are in the top level ns-3 directory, you can get a copy of the .ns3rc file that is in the utils directory
as follows:

$ cp utils/.ns3rc .

The .ns3rc file should now be in your top level ns-3 directory, and it contains the following:

#! /usr/bin/env python

A list of the modules that will be enabled when ns-3 is run.
Modules that depend on the listed modules will be enabled also.
#
All modules can be enabled by choosing ’all_modules’.
modules_enabled = [’all_modules’]

Set this equal to true if you want examples to be run.
examples_enabled = False

Set this equal to true if you want tests to be run.
tests_enabled = False

Use your favorite editor to modify the .ns3rc file to only enable the core module with examples and tests like this:

#! /usr/bin/env python

A list of the modules that will be enabled when ns-3 is run.
Modules that depend on the listed modules will be enabled also.
#
All modules can be enabled by choosing ’all_modules’.
modules_enabled = [’core’]

Set this equal to true if you want examples to be run.

18.3. Enabling Subsets of ns-3 Modules 157

ns-3 Manual, Release ns-3.18

examples_enabled = True

Set this equal to true if you want tests to be run.
tests_enabled = True

Only the core module will be enabled now if you try these commands:

$./waf clean
$./waf configure
$./waf build
$ cd build/debug/
$ ls

and the following libraries should be present:

bindings libns3-core.so ns3 scratch utils
examples libns3-core-test.so samples src

Note the ./waf clean step is done here only to make it more obvious which module libraries were built. You don’t
have to do ./waf clean in order to enable subsets of modules.

Running test.py will cause only those tests that depend on module core to be run:

24 of 24 tests passed (24 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

Repeat the above steps for the “network” module instead of the “core” module, and the following will be built, since
network depends on core:

bindings libns3-core.so libns3-network.so ns3 scratch utils
examples libns3-core-test.so libns3-network-test.so samples src

Running test.py will cause those tests that depend on only the core and network modules to be run:

31 of 31 tests passed (31 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

18.4 Enabling/disabling ns-3 Tests and Examples

The ns-3 distribution includes many examples and tests that are used to validate the ns-3 system. Users, however, may
not always want these examples and tests to be run for their installation of ns-3.

This chapter discusses how to build ns-3 with or without its examples and tests.

18.4.1 How to enable/disable examples and tests in ns-3

There are 3 ways to enable/disable examples and tests in ns-3:

1. Using build.py when ns-3 is built for the first time

2. Using waf once ns-3 has been built

3. Using the ns-3 configuration file once ns-3 has been built

Enable/disable examples and tests using build.py

You can use build.py to enable/disable examples and tests when ns-3 is built for the first time.

By default, examples and tests are not built in ns-3.

158 Chapter 18. Support

ns-3 Manual, Release ns-3.18

From the ns-3-allinone directory, you can build ns-3 without any examples or tests simply by doing:

$./build.py

Running test.py in the top level ns-3 directory now will cause no examples or tests to be run:

0 of 0 tests passed (0 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

If you would like build ns-3 with examples and tests, then do the following from the ns-3-allinone directory:

$./build.py --enable-examples --enable-tests

Running test.py in the top level ns-3 directory will cause all of the examples and tests to be run:

170 of 170 tests passed (170 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

Enable/disable examples and tests using waf

You can use waf to enable/disable examples and tests once ns-3 has been built.

By default, examples and tests are not built in ns-3.

From the top level ns-3 directory, you can build ns-3 without any examples or tests simply by doing:

$./waf configure
$./waf build

Running test.py now will cause no examples or tests to be run:

0 of 0 tests passed (0 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

If you would like build ns-3 with examples and tests, then do the following from the top level ns-3 directory:

$./waf configure --enable-examples --enable-tests
$./waf build

Running test.py will cause all of the examples and tests to be run:

170 of 170 tests passed (170 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

Enable/disable examples and tests using the ns-3 configuration file

A configuration file, .ns3rc, has been added to ns-3 that allows users to specify whether examples and tests should be
built or not. You can use this file to enable/disable examples and tests once ns-3 has been built.

When enabling disabling examples and tests, the precedence rules are as follows:

1. the –enable-examples/–disable-examples configure strings override any .ns3rc file

2. the –enable-tests/–disable-tests configure strings override any .ns3rc file

3. the .ns3rc file in the top level ns-3 directory is next consulted, if present

4. the system searches for ~/.ns3rc if the .ns3rc file was not found in the previous step

If none of the above exists, then examples and tests will not be built.

The maintained version of the .ns3rc file in the ns-3 source code repository resides in the utils directory. The
reason for this is if it were in the top-level directory of the repository, it would be prone to accidental checkins from
maintainers that enable the modules they want to use. Therefore, users need to manually copy the .ns3rc from the

18.4. Enabling/disabling ns-3 Tests and Examples 159

ns-3 Manual, Release ns-3.18

utils directory to their preferred place (top level directory or their home directory) to enable persistent enabling of
examples and tests.

Assuming that you are in the top level ns-3 directory, you can get a copy of the .ns3rc file that is in the utils directory
as follows:

$ cp utils/.ns3rc .

The .ns3rc file should now be in your top level ns-3 directory, and it contains the following:

#! /usr/bin/env python

A list of the modules that will be enabled when ns-3 is run.
Modules that depend on the listed modules will be enabled also.
#
All modules can be enabled by choosing ’all_modules’.
modules_enabled = [’all_modules’]

Set this equal to true if you want examples to be run.
examples_enabled = False

Set this equal to true if you want tests to be run.
tests_enabled = False

From the top level ns-3 directory, you can build ns-3 without any examples or tests simply by doing:

$./waf configure
$./waf build

Running test.py now will cause no examples or tests to be run:

0 of 0 tests passed (0 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

If you would like build ns-3 with examples and tests, use your favorite editor to change the values in the .ns3rc file for
examples_enabled and tests_enabled file to be True:

#! /usr/bin/env python

A list of the modules that will be enabled when ns-3 is run.
Modules that depend on the listed modules will be enabled also.
#
All modules can be enabled by choosing ’all_modules’.
modules_enabled = [’all_modules’]

Set this equal to true if you want examples to be run.
examples_enabled = True

Set this equal to true if you want tests to be run.
tests_enabled = True

From the top level ns-3 directory, you can build ns-3 with examples and tests simply by doing:

$./waf configure
$./waf build

Running test.py will cause all of the examples and tests to be run:

170 of 170 tests passed (170 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

160 Chapter 18. Support

ns-3 Manual, Release ns-3.18

18.5 Troubleshooting

This chapter posts some information about possibly common errors in building or running ns-3 programs.

Please note that the wiki (http://www.nsnam.org/wiki/index.php/Troubleshooting) may have contributed items.

18.5.1 Build errors

18.5.2 Run-time errors

Sometimes, errors can occur with a program after a successful build. These are run-time errors, and can commonly
occur when memory is corrupted or pointer values are unexpectedly null.

Here is an example of what might occur::

$./waf --run tcp-point-to-point
Entering directory ’/home/tomh/ns-3-nsc/build’
Compilation finished successfully
Command [’/home/tomh/ns-3-nsc/build/debug/examples/tcp-point-to-point’] exited with code -11

The error message says that the program terminated unsuccessfully, but it is not clear from this information what might
be wrong. To examine more closely, try running it under the gdb debugger:

$./waf --run tcp-point-to-point --command-template="gdb %s"
Entering directory ’/home/tomh/ns-3-nsc/build’
Compilation finished successfully
GNU gdb Red Hat Linux (6.3.0.0-1.134.fc5rh)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux-gnu"...Using host libthread_db
library "/lib/libthread_db.so.1".

(gdb) run
Starting program: /home/tomh/ns-3-nsc/build/debug/examples/tcp-point-to-point
Reading symbols from shared object read from target memory...done.
Loaded system supplied DSO at 0xf5c000

Program received signal SIGSEGV, Segmentation fault.
0x0804aa12 in main (argc=1, argv=0xbfdfefa4)

at ../examples/tcp-point-to-point.cc:136
136 Ptr<Socket> localSocket = socketFactory->CreateSocket ();
(gdb) p localSocket
$1 = {m_ptr = 0x3c5d65}
(gdb) p socketFactory
$2 = {m_ptr = 0x0}
(gdb) quit
The program is running. Exit anyway? (y or n) y

Note first the way the program was invoked– pass the command to run as an argument to the command template “gdb
%s”.

This tells us that there was an attempt to dereference a null pointer socketFactory.

Let’s look around line 136 of tcp-point-to-point, as gdb suggests:

18.5. Troubleshooting 161

http://www.nsnam.org/wiki/index.php/Troubleshooting
http://sources.redhat.com/gdb/

ns-3 Manual, Release ns-3.18

Ptr<SocketFactory> socketFactory = n2->GetObject<SocketFactory> (Tcp::iid);
Ptr<Socket> localSocket = socketFactory->CreateSocket ();
localSocket->Bind ();

The culprit here is that the return value of GetObject is not being checked and may be null.

Sometimes you may need to use the valgrind memory checker for more subtle errors. Again, you invoke the use of
valgrind similarly:

$./waf --run tcp-point-to-point --command-template="valgrind %s"

162 Chapter 18. Support

http://valgrind.org

BIBLIOGRAPHY

[Cic06] Claudio Cicconetti, Enzo Mingozzi, Giovanni Stea, “An Integrated Framework for Enabling Effective Data
Collection and Statistical Analysis with ns2, Workshop on ns-2 (WNS2), Pisa, Italy, October 2006.

163

	Organization
	Random Variables
	Quick Overview
	Background
	Seeding and independent replications
	Class RandomVariableStream
	Base class public API
	Types of RandomVariables
	Semantics of RandomVariableStream objects
	Using other PRNG
	Setting the stream number
	Publishing your results
	Summary

	Hash Functions
	Basic Usage
	Incremental Hashing
	Using an Alternative Hash Function
	Adding New Hash Function Implementations
	Sources for Hash Functions

	Events and Simulator
	Event
	Simulator
	Time
	Scheduler

	Callbacks
	Callbacks Motivation
	Callbacks Background
	Using the Callback API
	Bound Callbacks
	Traced Callbacks
	Callback locations in ns-3
	Implementation details

	Object model
	Object-oriented behavior
	Object base classes
	Memory management and class Ptr
	CreateObject and Create
	Aggregation
	Exmaples
	Object factories
	Downcasting

	Attributes
	Object Overview
	Smart pointers
	Attribute Overview
	Extending attributes
	Adding new class type to the attribute system
	ConfigStore

	Object names
	Logging
	Logging overview
	How to add logging to your code

	Tracing
	Tracing Motivation
	Overview
	Using the Tracing API
	Using Trace Helpers
	Tracing implementation details

	Data Collection
	Design
	Data Collection Helpers
	Probes
	Collectors
	Aggregators
	Adaptors
	Scope/Limitations

	Statistical Framework
	Goals
	Overview
	To-Do
	Approach
	Example

	RealTime
	Behavior
	Usage
	Implementation

	Helpers
	Making Plots using the Gnuplot Class
	Creating Plots Using the Gnuplot Class
	An Example Program that Uses the Gnuplot Class
	An Example 2-Dimensional Plot
	An Example 2-Dimensional Plot with Error Bars
	An Example 3-Dimensional Plot

	Using Python to Run ns-3
	Introduction
	An Example Python Script that Runs ns-3
	Running Python Scripts
	Caveats
	Working with Python Bindings
	Instructions for Handling New Files or Changed API's
	Monolithic Python Bindings
	Modular Python Bindings
	More Information for Developers

	Tests
	Overview
	Background
	Testing framework
	How to write tests

	Support
	Creating a new ns-3 model
	Adding a New Module to ns-3
	Enabling Subsets of ns-3 Modules
	Enabling/disabling ns-3 Tests and Examples
	Troubleshooting

	Bibliography

