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This is the ns-3 Manual. Primary documentation for the ns-3 project is available in five forms:
* ns-3 Doxygen: Documentation of the public APIs of the simulator
* Tutorial, Manual (this document), and Model Library for the latest release and development tree
* ns-3 wiki

This document is written in reStructuredText for Sphinx and is maintained in the doc/manual directory of ns-3’s
source code.
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CHAPTER
ONE

ORGANIZATION

This chapter describes the overall ns-3 software organization and the corresponding organization of this manual.

ns-3 is a discrete-event network simulator in which the simulation core and models are implemented in C++. ns-3 is
built as a library which may be statically or dynamically linked to a C++ main program that defines the simulation
topology and starts the simulator. ns-3 also exports nearly all of its API to Python, allowing Python programs to import
an “ns3” module in much the same way as the ns-3 library is linked by executables in C++.

High-level wrappers
for everything else

ABC stands for "abstract base class"
Aimed at scripting

Node class ~
test
NetDevice ABC /
Address types helper -
(IPv4, MAC, etc.) protocold applications | devices | propagation | - Mobility models
Queues internet | mobility <« S;Ialzlce'trca)ndom
Socket ABC D> network '
IPv4/IPv6 ABCs \
Packet sockets / < K
Smart pointers Callbacks, Tracing Packets Events
Dynamic type system Logging Packet Tags Schedulers
Attributes Random Variables Packet Headers Time arithmetic

Pcap/Ascii file writing

Figure 1.1: Software organization of ns-3

The source code for ns-3 is mostly organized in the src directory and can be described by the diagram in Software
organization of ns-3. We will work our way from the bottom up; in general, modules only have dependencies on
modules beneath them in the figure.

We first describe the core of the simulator; those components that are common across all protocol, hardware, and
environmental models. The simulation core is implemented in src/core. Packets are fundamental objects in a
network simulator and are implemented in src/network. These two simulation modules by themselves are intended
to comprise a generic simulation core that can be used by different kinds of networks, not just Internet-based networks.
The above modules of ns-3 are independent of specific network and device models, which are covered in subsequent
parts of this manual.

In addition to the above ns-3 core, we introduce, also in the initial portion of the manual, two other modules that
supplement the core C++-based APIL. ns-3 programs may access all of the API directly or may make use of a so-called
helper API that provides convenient wrappers or encapsulation of low-level API calls. The fact that ns-3 programs
can be written to two APIs (or a combination thereof) is a fundamental aspect of the simulator. We also describe how
Python is supported in ns-3 before moving onto specific models of relevance to network simulation.
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The remainder of the manual is focused on documenting the models and supporting capabilities. The next part focuses
on two fundamental objects in ns-3: the Node and NetDevice. Two special NetDevice types are designed to
support network emulation use cases, and emulation is described next. The following chapter is devoted to Internet-
related models, including the sockets API used by Internet applications. The next chapter covers applications, and the
following chapter describes additional support for simulation, such as animators and statistics.

The project maintains a separate manual devoted to testing and validation of ns-3 code (see the ns-3 Testing and
Validation manual).

4 Chapter 1. Organization
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CHAPTER
TWO

RANDOM VARIABLES

ns-3 contains a built-in pseudo-random number generator (PRNG). It is important for serious users of the simulator to
understand the functionality, configuration, and usage of this PRNG, and to decide whether it is sufficient for his or
her research use.

2.1

Quick Overview

ns-3 random numbers are provided via instances of ns3: :RandomVariableStream.

by default, ns-3 simulations use a fixed seed; if there is any randomness in the simulation, each run of the
program will yield identical results unless the seed and/or run number is changed.

in ns-3.3 and earlier, ns-3 simulations used a random seed by default; this marks a change in policy starting with
ns-3.4.

in ns-3.14 and earlier, ns-3 simulations used a different wrapper class called ns3: : RandomVariable. As of
ns-3.15, this class has been replaced by ns3: :RandomVariableStream; the underlying pseudo-random
number generator has not changed.

to obtain randomness across multiple simulation runs, you must either set the seed differently or set the run
number differently. To set a seed, call ns3: :RngSeedManager: : SetSeed () at the beginning of the pro-
gram; to set a run number with the same seed, call ns3: :RngSeedManager: : SetRun () at the beginning
of the program; see Seeding and independent replications.

each RandomVariableStream used in ns-3 has a virtual random number generator associated with it; all random
variables use either a fixed or random seed based on the use of the global seed (previous bullet);

if you intend to perform multiple runs of the same scenario, with different random numbers, please be sure to
read the section on how to perform independent replications: Seeding and independent replications.

Read further for more explanation about the random number facility for ns-3.

2.2

Background

Simulations use a lot of random numbers; one study found that most network simulations spend as much as 50% of
the CPU generating random numbers. Simulation users need to be concerned with the quality of the (pseudo) random
numbers and the independence between different streams of random numbers.

Users need to be concerned with a few issues, such as:

the seeding of the random number generator and whether a simulation outcome is deterministic or not,

how to acquire different streams of random numbers that are independent from one another, and
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* how long it takes for streams to cycle

We will introduce a few terms here: a RNG provides a long sequence of (pseudo) random numbers. The length
of this sequence is called the cycle length or period, after which the RNG will repeat itself. This sequence can be
partitioned into disjoint streams. A stream of a RNG is a contiguous subset or block of the RNG sequence. For
instance, if the RNG period is of length N, and two streams are provided from this RNG, then the first stream might
use the first N/2 values and the second stream might produce the second N/2 values. An important property here is that
the two streams are uncorrelated. Likewise, each stream can be partitioned disjointedly to a number of uncorrelated
substreams. The underlying RNG hopefully produces a pseudo-random sequence of numbers with a very long cycle
length, and partitions this into streams and substreams in an efficient manner.

ns-3 uses the same underlying random number generator as does ns-2: the MRG32k3a generator from Pierre
L’Ecuyer. A detailed description can be found in http://www.iro.umontreal.ca/~lecuyer/myftp/papers/streams00.pdf.
The MRG32k3a generator provides 1.8210'° independent streams of random numbers, each of which consists of
2.3210'® substreams. Each substream has a period (i.e., the number of random numbers before overlap) of 7.621022.
The period of the entire generator is 3.121057.

Class ns3::RandomVariableStream is the public interface to this underlying random number
generator. When users create new random variables (such as ns3::UniformRandomVariable,
ns3: :ExponentialRandomVariable, etc.), they create an object that uses one of the distinct, indepen-
dent streams of the random number generator. Therefore, each object of type ns3: :RandomVariableStream
has, conceptually, its own “virtual” RNG. Furthermore, each ns3: : RandomVariableStream can be configured
to use one of the set of substreams drawn from the main stream.

An alternate implementation would be to allow each RandomVariable to have its own (differently seeded) RNG.
However, we cannot guarantee as strongly that the different sequences would be uncorrelated in such a case; hence,
we prefer to use a single RNG and streams and substreams from it.

2.3 Seeding and independent replications

ns-3 simulations can be configured to produce deterministic or random results. If the ns-3 simulation is configured to
use a fixed, deterministic seed with the same run number, it should give the same output each time it is run.

By default, ns-3 simulations use a fixed seed and run number. These values are stored in two ns3: : GlobalValue
instances: g_rngSeed and g_rngRun.

A typical use case is to run a simulation as a sequence of independent trials, so as to compute statistics on a large
number of independent runs. The user can either change the global seed and rerun the simulation, or can advance the
substream state of the RNG, which is referred to as incrementing the run number.

A class ns3: :RngSeedManager provides an API to control the seeding and run number behavior. This seeding
and substream state setting must be called before any random variables are created; e.g:

RngSeedManager: :SetSeed (3); // Changes seed from default of 1 to 3
RngSeedManager: :SetRun (7); // Changes run number from default of 1 to 7

// Now, create random variables

Ptr<UniformRandomVariable> x = CreateObject<UniformRandomVariable> ();
Ptr<ExponentialRandomVariable> y = CreateObject<ExponentialRandomVarlable> ();

Which is better, setting a new seed or advancing the substream state? There is no guarantee that the streams pro-
duced by two random seeds will not overlap. The only way to guarantee that two streams do not overlap is to use
the substream capability provided by the RNG implementation. Therefore, use the substream capability to produce
multiple independent runs of the same simulation. In other words, the more statistically rigorous way to configure
multiple independent replications is to use a fixed seed and to advance the run number. This implementation allows
for a maximum of 2.3210'% independent replications using the substreams.

6 Chapter 2. Random Variables
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For ease of use, it is not necessary to control the seed and run number from within the program; the user can set the
NS_GLOBAL_VALUE environment variable as follows:

$ NS_GLOBAL_VALUE="RngRun=3" ./waf —--run program-name
Another way to control this is by passing a command-line argument; since this is an ns-3 Global Value instance, it is
equivalently done such as follows:

./waf —--command-template="%s --RngRun=3" —-run program-name

or, if you are running programs directly outside of waf:

./build/optimized/scratch/program-name —-RngRun=3

The above command-line variants make it easy to run lots of different runs from a shell script by just passing a different
RngRun index.

2.4 Class RandomVariableStream

All random variables should derive from class RandomVariable. This base class provides a few methods for
globally configuring the behavior of the random number generator. Derived classes provide API for drawing random
variates from the particular distribution being supported.

Each RandomVariableStream created in the simulation is given a generator that is a new RNGStream from the under-
lying PRNG. Used in this manner, the L’ Ecuyer implementation allows for a maximum of 1.8210'9 random variables.
Each random variable in a single replication can produce up to 7.62:10?2 random numbers before overlapping.

2.5 Base class public API

Below are excerpted a few public methods of class RandomVariableStream that access the next value in the
substream.

J ok k
* \brief Returns a random double from the underlying distribution
* \return A floating point random value
*/

double GetValue (void) const;

J ok k
* \brief Returns a random integer from the underlying distribution
+ \return Integer cast of ::GetValue/()
*/

uint32_t GetInteger (void) const;

We have already described the seeding configuration above. Different Random Variable subclasses may have additional
APL

2.6 Types of RandomVariables

The following types of random variables are provided, and are documented in the ns-3 Doxygen or by reading
src/core/model/random-variable-stream.h. Users can also create their own custom random variables
by deriving from class RandomVariableStream.

2.4. Class RandomVariableStream 7
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e class UniformRandomVariable

* class ConstantRandomVariable

* class SequentialRandomVariable
¢ class ExponentialRandomVariable
* class ParetoRandomVariable

e class WeibullRandomVariable

e class NormalRandomVariable

¢ class LogNormalRandomVariable

¢ class GammaRandomVariable

* class ErlangRandomVariable

e class TriangularRandomVariable
e class ZipfRandomVariable

e class ZetaRandomVariable

e class DeterministicRandomVariable

e class EmpiricalRandomVariable

2.7 Semantics of RandomVariableStream objects

RandomVariableStream objects derive from ns3: : Object and are handled by smart pointers.

RandomVariableStream instances can also be used in ns-3 attributes, which means that values can be set for them
through the ns-3 attribute system. An example is in the propagation models for WifiNetDevice:

TypeId
RandomPropagationDelayModel: :GetTypeld (wvoid)
{
static TypelId tid = Typeld ("ns3::RandomPropagationDelayModel™)
.SetParent<PropagationDelayModel> ()
.AddConstructor<RandomPropagationDelayModel> ()
.AddAttribute ("Variable",
"The random variable which generates random delays (s).",
StringValue ("ns3::UniformRandomVariable"),
MakePointerAccessor (&RandomPropagationDelayModel::m_variable),
MakePointerChecker<RandomVariableStream> ())
2
return tid;

}

Here, the ns-3 user can change the default random variable for this delay model (which is a UniformRandomVariable
ranging from O to 1) through the attribute system.

2.8 Using other PRNG

There is presently no support for substituting a different underlying random number generator (e.g., the GNU Scientific
Library or the Akaroa package). Patches are welcome.

8 Chapter 2. Random Variables
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2.9 Setting the stream number

The underlying MRG32k3a generator provides 2764 independent streams. In ns-3, these are assigned sequentially
starting from the first stream as new RandomVariableStream instances make their first call to GetValue().

As aresult of how these RandomVariableStream objects are assigned to underlying streams, the assignment is sensitive
to perturbations of the simulation configuration. The consequence is that if any aspect of the simulation configuration
is changed, the mapping of RandomVariables to streams may (or may not) change.

As a concrete example, a user running a comparative study between routing protocols may find that the act of changing
one routing protocol for another will notice that the underlying mobility pattern also changed.

Starting with ns-3.15, some control has been provided to users to allow users to optionally fix the assignment of
selected RandomVariableStream objects to underlying streams. This is the St ream attribute, part of the base class
RandomVariableStream.

By partitioning the existing sequence of streams from before:

stream 0 stream (2764 - 1)

into two equal-sized sets:

o >
| [ \
stream 0 stream (2763 - 1) stream 2763 stream (2764 - 1)
<- automatically assigned ——————————— ><- assigned by user —-———————————————— >

The first 263 streams continue to be automatically assigned, while the last 2263 are given stream indices starting with
zero up to 2°63-1.

The assignment of streams to a fixed stream number is optional; instances of RandomVariableStream that do not have
a stream value assigned will be assigned the next one from the pool of automatic streams.

To fix a RandomVariableStream to a particular underlying stream, assign its St ream attribute to a non-negative
integer (the default value of -1 means that a value will be automatically allocated).

2.10 Publishing your results

When you publish simulation results, a key piece of configuration information that you should always state is how you
used the the random number generator.

* what seeds you used,

* what RNG you used if not the default,

* how were independent runs performed,

* for large simulations, how did you check that you did not cycle.

It is incumbent on the researcher publishing results to include enough information to allow others to reproduce his or
her results. It is also incumbent on the researcher to convince oneself that the random numbers used were statistically
valid, and to state in the paper why such confidence is assumed.

2.11 Summary

Let’s review what things you should do when creating a simulation.

2.9. Setting the stream number 9
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* Decide whether you are running with a fixed seed or random seed; a fixed seed is the default,
* Decide how you are going to manage independent replications, if applicable,

» Convince yourself that you are not drawing more random values than the cycle length, if you are running a very
long simulation, and

* When you publish, follow the guidelines above about documenting your use of the random number generator.

10 Chapter 2. Random Variables



CHAPTER
THREE

HASH FUNCTIONS

ns-3 provides a generic interface to general purpose hash functions. In the simplest usage, the hash function returns
the 32-bit or 64-bit hash of a data buffer or string. The default underlying hash function is murmur3, chosen because
it has good hash function properties and offers a 64-bit version. The venerable FNV 1a hash is also available.

There is a straight-forward mechanism to add (or provide at run time) alternative hash function implementations.

3.1 Basic Usage

The simplest way to get a hash value of a data buffer or string is just:

#include "ns3/hash.h"
using namespace ns3;

char » buffer =
size t buffer_size =

uint32_t buffer_hash = Hash32 ( buffer, buffer_size);

std::string s;
uint32_t string_hash = Hash32 (s);

Equivalent functions are defined for 64-bit hash values.

3.2 Incremental Hashing

In some situations it’s useful to compute the hash of multiple buffers, as if they had been joined together. (For example,
you might want the hash of a packet stream, but not want to assemble a single buffer with the combined contents of
all the packets.)

This is almost as straight-forward as the first example:

#include "ns3/hash.h"
using namespace ns3;

char » buffer;
size_t buffer_size;

Hasher hasher; // Use default hash function

11
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for (<every buffer>)
{
buffer = get_next_buffer ();
hasher (buffer, buffer_ size);

}
uint32_t combined_hash = hasher.GetHash32 ();

By default Hasher preserves internal state to enable incremental hashing. If you want to reuse a Hasher object (for
example because it’s configured with a non-default hash function), but don’t want to add to the previously computed
hash, you need to clear () first:

hasher.clear ().GetHash32 (buffer, buffer_size);

This reinitializes the internal state before hashing the buffer.

3.3 Using an Alternative Hash Function

The default hash function is murmur3. FNVla is also available. To specify the hash function explicitly, use this
contructor:

Hasher hasher = Hasher ( Create<Hash::Function::Fnvla> () );

3.4 Adding New Hash Function Implementations

To add the hash function foo, follow the hash-murmur3.h/. cc pattern:
* Create a class declaration (. h) and definition (. cc) inheriting from Hash: : Implementation.
¢ include the declaration in hash.h (at the point where hash-murmur3.h is included.

*In your own code, instantiatte a Hasher object via the constructor Hasher
(Ptr<Hash::Function::Foo> ())

If your hash function is a single function, e.g. hashf, you don’t even need to create a new class derived from
HashImplementation:

Hasher hasher =
Hasher ( Create<Hash::Function::Hash32> (&hashf) );

For this to compile, your hashf has to match one of the function pointer signatures:

typedef uint32_t (*xHash32Function_ptr) (const char %, const size_t);
typedef uint64_t (xHash64Function_ptr) (const char %, const size_ t);

3.5 Sources for Hash Functions

Sources for other hash function implementations include:
¢ Peter Kankowski: http://www.strchr.com
* Arash Partow: http://www.partow.net/programming/hashfunctions/index.html
e SMHasher: http://code.google.com/p/smhasher/

* Sanmayce: http://www.sanmayce.com/Fastest_Hash/index.html

12 Chapter 3. Hash Functions
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CHAPTER
FOUR

EVENTS AND SIMULATOR

ns-3 is a discrete-event network simulator. Conceptually, the simulator keeps track of a number of events that are
scheduled to execute at a specified simulation time. The job of the simulator is to execute the events in sequential time
order. Once the completion of an event occurs, the simulator will move to the next event (or will exit if there are no
more events in the event queue). If, for example, an event scheduled for simulation time “100 seconds” is executed,
and the next event is not scheduled until “200 seconds”, the simulator will immediately jump from 100 seconds to 200
seconds (of simulation time) to execute the next event. This is what is meant by “discrete-event” simulator.

To make this all happen, the simulator needs a few things:

1. a simulator object that can access an event queue where events are stored and that can manage the execution of
events

2. ascheduler responsible for inserting and removing events from the queue
3. a way to represent simulation time
4. the events themselves

This chapter of the manual describes these fundamental objects (simulator, scheduler, time, event) and how they are
used.

4.1 Event

To be completed

4.2 Simulator

The Simulator class is the public entry point to access event scheduling facilities. Once a couple of events have
been scheduled to start the simulation, the user can start to execute them by entering the simulator main loop (call
Simulator: :Run). Once the main loop starts running, it will sequentially execute all scheduled events in order
from oldest to most recent until there are either no more events left in the event queue or Simulator::Stop has been
called.

To schedule events for execution by the simulator main loop, the Simulator class provides the Simulator::Schedule*
family of functions.

1. Handling event handlers with different signatures

These functions are declared and implemented as C++ templates to handle automatically the wide variety of C++ event
handler signatures used in the wild. For example, to schedule an event to execute 10 seconds in the future, and invoke
a C++ method or function with specific arguments, you might write this:

13
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void handler (int arg0, int argl)

{

std::cout << "handler called with argument arg0=" << arg0 << " and
argl=" << argl << std::endl;

Simulator: :Schedule (Seconds (10), &handler, 10, 5);

Which will output:

handler called with argument arg0=10 and argl=5

Of course, these C++ templates can also handle transparently member methods on C++ objects:
To be completed: member method example
Notes:

¢ the ns-3 Schedule methods recognize automatically functions and methods only if they take less than 5 argu-
ments. If you need them to support more arguments, please, file a bug report.

* Readers familiar with the term ‘fully-bound functors’ will recognize the Simulator::Schedule methods as a way
to automatically construct such objects.

2. Common scheduling operations

The Simulator API was designed to make it really simple to schedule most events. It provides three variants to do so
(ordered from most commonly used to least commonly used):

* Schedule methods which allow you to schedule an event in the future by providing the delay between the current
simulation time and the expiration date of the target event.

* ScheduleNow methods which allow you to schedule an event for the current simulation time: they will execute
_after_ the current event is finished executing but _before_ the simulation time is changed for the next event.

* ScheduleDestroy methods which allow you to hook in the shutdown process of the Simulator to cleanup simu-
lation resources: every ‘destroy’ event is executed when the user calls the Simulator::Destroy method.

3. Maintaining the simulation context
There are two basic ways to schedule events, with and without context. What does this mean?

Simulator::Schedule (Time const &time, MEM mem_ptr, OBJ obj);

VS.

Simulator::ScheduleWithContext (uint32_t context, Time const &time, MEM mem_ptr, OBJ ob7j);

Readers who invest time and effort in developing or using a non-trivial simulation model will know the value of the
ns-3 logging framework to debug simple and complex simulations alike. One of the important features that is provided
by this logging framework is the automatic display of the network node id associated with the ‘currently’ running
event.

The node id of the currently executing network node is in fact tracked by the Simulator class. It can be accessed with
the Simulator::GetContext method which returns the ‘context’ (a 32-bit integer) associated and stored in the currently-
executing event. In some rare cases, when an event is not associated with a specific network node, its ‘context’ is set
to OxfIffftff.

To associate a context to each event, the Schedule, and ScheduleNow methods automatically reuse the context of the
currently-executing event as the context of the event scheduled for execution later.

In some cases, most notably when simulating the transmission of a packet from a node to another, this behavior is
undesirable since the expected context of the reception event is that of the receiving node, not the sending node. To
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avoid this problem, the Simulator class provides a specific schedule method: ScheduleWithContext which allows one
to provide explicitly the node id of the receiving node associated with the receive event.

XXX: code example

In some very rare cases, developers might need to modify or understand how the context (node id) of the first event
is set to that of its associated node. This is accomplished by the NodeList class: whenever a new node is created,
the NodeList class uses ScheduleWithContext to schedule a ‘initialize’ event for this node. The ‘initialize’ event thus
executes with a context set to that of the node id and can use the normal variety of Schedule methods. It invokes
the Node::Initialize method which propagates the ‘initialize’ event by calling the Dolnitialize method for each object
associated with the node. The Dolnitialize method overridden in some of these objects (most notably in the Application
base class) will schedule some events (most notably Application::StartApplication) which will in turn scheduling
traffic generation events which will in turn schedule network-level events.

Notes:

» Users need to be careful to propagate Dolnitialize methods across objects by calling Initialize explicitely on
their member objects

* The context id associated with each ScheduleWithContext method has other uses beyond logging: it is used by
an experimental branch of ns-3 to perform parallel simulation on multicore systems using multithreading.

The Simulator::* functions do not know what the context is: they merely make sure that whatever context you specify
with ScheduleWithContext is available when the corresponding event executes with ::GetContext.

It is up to the models implemented on top of Simulator::* to interpret the context value. In ns-3, the network models
interpret the context as the node id of the node which generated an event. This is why it is important to call Sched-
uleWithContext in ns3::Channel subclasses because we are generating an event from node i to node j and we want to
make sure that the event which will run on node j has the right context.

4.3 Time

To be completed

4.4 Scheduler

To be completed
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CHAPTER
FIVE

CALLBACKS

Some new users to ns-3 are unfamiliar with an extensively used programming idiom used throughout the code: the
ns-3 callback. This chapter provides some motivation on the callback, guidance on how to use it, and details on its
implementation.

5.1 Callbacks Motivation

Consider that you have two simulation models A and B, and you wish to have them pass information between them
during the simulation. One way that you can do that is that you can make A and B each explicitly knowledgeable
about the other, so that they can invoke methods on each other:

class A {
public:
void Receivelnput ( // parameters );

(in another source file:)

class B {
public:
void DoSomething (void);

private:
Ax a_instance; // pointer to an A

void
B: :DoSomething ()
{

// Tell a_instance that something happened
a_instance->Receivelnput ( // parameters);

}

This certainly works, but it has the drawback that it introduces a dependency on A and B to know about the other at
compile time (this makes it harder to have independent compilation units in the simulator) and is not generalized; if
in a later usage scenario, B needs to talk to a completely different C object, the source code for B needs to be changed
to add a c_instance and so forth. It is easy to see that this is a brute force mechanism of communication that can
lead to programming cruft in the models.

17
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This is not to say that objects should not know about one another if there is a hard dependency between them, but that
often the model can be made more flexible if its interactions are less constrained at compile time.

This is not an abstract problem for network simulation research, but rather it has been a source of problems in previous
simulators, when researchers want to extend or modify the system to do different things (as they are apt to do in
research). Consider, for example, a user who wants to add an IPsec security protocol sublayer between TCP and IP:

| becomes —> |

If the simulator has made assumptions, and hard coded into the code, that IP always talks to a transport protocol above,
the user may be forced to hack the system to get the desired interconnections. This is clearly not an optimal way to
design a generic simulator.

5.2 Callbacks Background

Note: Readers familiar with programming callbacks may skip this tutorial section.

The basic mechanism that allows one to address the problem above is known as a callback. The ultimate goal is to
allow one piece of code to call a function (or method in C++) without any specific inter-module dependency.

This ultimately means you need some kind of indirection — you treat the address of the called function as a variable.
This variable is called a pointer-to-function variable. The relationship between function and pointer-to-function pointer
is really no different that that of object and pointer-to-object.

In C the canonical example of a pointer-to-function is a pointer-to-function-returning-integer (PFI). For a PFI taking
one int parameter, this could be declared like,:

int (*pfi) (int arg) = 0;

What you get from this is a variable named simply pfi that is initialized to the value 0. If you want to initialize this
pointer to something meaningful, you have to have a function with a matching signature. In this case:

int MyFunction (int arg) {}

If you have this target, you can initialize the variable to point to your function like:
pfi = MyFunction;

You can then call MyFunction indirectly using the more suggestive form of the call:

int result = (xpfi) (1234);

This is suggestive since it looks like you are dereferencing the function pointer just like you would dereference any
pointer. Typically, however, people take advantage of the fact that the compiler knows what is going on and will just
use a shorter form:
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int result = pfi (1234);

Notice that the function pointer obeys value semantics, so you can pass it around like any other value. Typically, when
you use an asynchronous interface you will pass some entity like this to a function which will perform an action and
call back to let you know it completed. It calls back by following the indirection and executing the provided function.

In C++ you have the added complexity of objects. The analogy with the PFI above means you have a pointer to a
member function returning an int (PMI) instead of the pointer to function returning an int (PFI).

The declaration of the variable providing the indirection looks only slightly different:

int (MyClass::xpmi) (int arg) = 0;

This declares a variable named pmi just as the previous example declared a variable named p£i. Since the will be to
call a method of an instance of a particular class, one must declare that method in a class:

class MyClass {
public:

int MyMethod (int arg);
}i

Given this class declaration, one would then initialize that variable like this:

pmi = &MyClass::MyMethod;

This assigns the address of the code implementing the method to the variable, completing the indirection. In order to
call a method, the code needs a this pointer. This, in turn, means there must be an object of MyClass to refer to. A
simplistic example of this is just calling a method indirectly (think virtual function):

int (MyClass::*pmi) (int arg) = 0; // Declare a PMIT

pmi = &MyClass::MyMethod; // Point at the implementation code
MyClass myClass; // Need an instance of the class
(myClass.*pmi) (1234); // Call the method with an object ptr

Just like in the C example, you can use this in an asynchronous call to another module which will call back using a
method and an object pointer. The straightforward extension one might consider is to pass a pointer to the object and
the PMI variable. The module would just do:

(xobjectPtr.xpmi) (1234);

to execute the callback on the desired object.

One might ask at this time, what’s the point? The called module will have to understand the concrete type of the calling
object in order to properly make the callback. Why not just accept this, pass the correctly typed object pointer and
do object->Method (1234) in the code instead of the callback? This is precisely the problem described above.
What is needed is a way to decouple the calling function from the called class completely. This requirement led to the
development of the Functor.

A functor is the outgrowth of something invented in the 1960s called a closure. It is basically just a packaged-up
function call, possibly with some state.

A functor has two parts, a specific part and a generic part, related through inheritance. The calling code (the code that
executes the callback) will execute a generic overloaded operator () of a generic functor to cause the callback to
be called. The called code (the code that wants to be called back) will have to provide a specialized implementation
of the operator () that performs the class-specific work that caused the close-coupling problem above.

With the specific functor and its overloaded operator () created, the called code then gives the specialized code
to the module that will execute the callback (the calling code).
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The calling code will take a generic functor as a parameter, so an implicit cast is done in the function call to convert the
specific functor to a generic functor. This means that the calling module just needs to understand the generic functor
type. It is decoupled from the calling code completely.

The information one needs to make a specific functor is the object pointer and the pointer-to-method address.
The essence of what needs to happen is that the system declares a generic part of the functor:

template <typename T>
class Functor
{
public:
virtual int operator() (T arg) = 0;

}i

The caller defines a specific part of the functor that really is just there to implement the specific operator () method:

template <typename T, typename ARG>

class SpecificFunctor : public Functor<ARG>

{

public:
SpecificFunctor (T p, int (T::%_pmi) (ARG arg))
{

m_p = p;
m_pmi = _pmi;
}
virtual int operator () (ARG arg)

{
(*m_p.*m_pmi) (arg) ;
}
private:
int (T::*m_pmi) (ARG arg);
T+ m_p;
}i

Here is an example of the usage:

class A
{
public:
A (int a0) : a (a0) {}
int Hello (int b0)
{
std::cout << "Hello from A, a = " << a << " b0 = " << b0 << std::endl;
}
int a;

}i

int main ()

{
A a(10);
SpecificFunctor<A, int> sf(&a, &A::Hello);
st (5);

Note: The previous code is not real ns-3 code. It is simplistic example code used only to illustrate the concepts
involved and to help you understand the system more. Do not expect to find this code anywhere in the ns-3 tree.
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Notice that there are two variables defined in the class above. The m_p variable is the object pointer and m_pmi is the
variable containing the address of the function to execute.

Notice that when operator () is called, it in turn calls the method provided with the object pointer using the C++
PMI syntax.

To use this, one could then declare some model code that takes a generic functor as a parameter:

void LibraryFunction (Functor functor);

The code that will talk to the model would build a specific functor and pass it to LibraryFunction:

MyClass myClass;
SpecificFunctor<MyClass, int> functor (&myclass, MyClass::MyMethod) ;

When LibraryFunction is done, it executes the callback using the operator () on the generic functor it was
passed, and in this particular case, provides the integer argument:

void
LibraryFunction (Functor functor)

{

// Execute the library function
functor (1234) ;
}

Notice that LibraryFunction is completely decoupled from the specific type of the client. The connection is
made through the Functor polymorphism.

The Callback API in ns-3 implements object-oriented callbacks using the functor mechanism. This callback API, being
based on C++ templates, is type-safe; that is, it performs static type checks to enforce proper signature compatibility
between callers and callees. It is therefore more type-safe to use than traditional function pointers, but the syntax may
look imposing at first. This section is designed to walk you through the Callback system so that you can be comfortable
using it in ns-3.

5.3 Using the Callback API

The Callback API is fairly minimal, providing only two services:
1. callback type declaration: a way to declare a type of callback with a given signature, and,

2. callback instantiation: a way to instantiate a template-generated forwarding callback which can forward any calls
to another C++ class member method or C++ function.

This is best observed via walking through an example, based on samples/main-callback.cc.

5.3.1 Using the Callback API with static functions

Consider a function:

static double

CbOne (double a, double b)

{
std::cout << "invoke cbOne a=" << a << ", b=" << b << std::endl;
return 3a;

}

Consider also the following main program snippet:
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int main (int argc, char xargv([])
{
// return type: double
// first arg type: double
// second arg type: double
Callback<double, double, double> one;
}

This is an example of a C-style callback — one which does not include or need a this pointer. The function template
Callback is essentially the declaration of the variable containing the pointer-to-function. In the example above,
we explicitly showed a pointer to a function that returned an integer and took a single integer as a parameter, The
Callback template function is a generic version of that — it is used to declare the type of a callback.

Note: Readers unfamiliar with C++ templates may consult http://www.cplusplus.com/doc/tutorial/templates/.

The Callback template requires one mandatory argument (the return type of the function to be assigned to this
callback) and up to five optional arguments, which each specify the type of the arguments (if your particular callback
function has more than five arguments, then this can be handled by extending the callback implementation).

So in the above example, we have a declared a callback named “one” that will eventually hold a function pointer. The
signature of the function that it will hold must return double and must support two double arguments. If one tries to
pass a function whose signature does not match the declared callback, a compilation error will occur. Also, if one
tries to assign to a callback an incompatible one, compilation will succeed but a run-time NS_FATAL_ERROR will
be raised. The sample program src/core/examples/main-callback.cc demonstrates both of these error
cases at the end of the main () program.

Now, we need to tie together this callback instance and the actual target function (CbOne). Notice above that CbOne
has the same function signature types as the callback— this is important. We can pass in any such properly-typed
function to this callback. Let’s look at this more closely:

static double CbOne (double a, double b) ({}

A A A

| \ |
| \ |
Callback<double, double, double> one;

You can only bind a function to a callback if they have the matching signature. The first template argument is the
return type, and the additional template arguments are the types of the arguments of the function signature.

Now, let’s bind our callback “one” to the function that matches its signature:

// build callback instance which points to chOne function
one = MakeCallback (&CbOne);

This call to MakeCallback is, in essence, creating one of the specialized functors mentioned above. The variable
declared using the Callback template function is going to be playing the part of the generic functor. The assign-
ment one = MakeCallback (&CbOne) is the cast that converts the specialized functor known to the callee to a
generic functor known to the caller.

Then, later in the program, if the callback is needed, it can be used as follows:

NS_ASSERT (!one.IsNull ());

// invoke cbOne function through callback instance
double retOne;
retOne = one (10.0, 20.0);
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The check for IsNull () ensures that the callback is not null — that there is a function to call behind this call-
back. Then, one () executes the generic operator () which is really overloaded with a specific implementation of
operator () and returns the same result as if CbOne () had been called directly.

5.3.2 Using the Callback API with member functions

Generally, you will not be calling static functions but instead public member functions of an object. In this case, an
extra argument is needed to the MakeCallback function, to tell the system on which object the function should be
invoked. Consider this example, also from main-callback.cc:

class MyCb {
public:
int CbTwo (double a) {
std::cout << "invoke cbTwo a=" << a << std::endl;
return -5;
}
}i

int main ()

{

// return type: int

// first arg type: double

Callback<int, double> two;

MyCb cb;

// build callback instance which points to MyCb::cbTwo
two = MakeCallback (&MyCb::CbTwo, &cb);

}

Here, we pass an additional object pointer to the MakeCallback<> function. Recall from the background section
above that Operator () will use the pointer to member syntax when it executes on an object:

virtual int operator () (ARG argqg)

{
(*m_p.*m_pmi) (arg) ;

}

And so we needed to provide the two variables (m_p and m_pmi) when we made the specific functor. The line:

two = MakeCallback (&MyCb::CbTwo, &cb);

does precisely that. In this case, when two () is invoked:

int result = two (1.0);

will result in a call tothe CbTwo member function (method) on the object pointed to by &cb.

5.3.3 Building Null Callbacks

It is possible for callbacks to be null; hence it may be wise to check before using them. There is a special construct
for a null callback, which is preferable to simply passing “0” as an argument; it is the MakeNullCallback<>
construct:

two = MakeNullCallback<int, double> ();
NS_ASSERT (two.IsNull ());

Invoking a null callback is just like invoking a null function pointer: it will crash at runtime.
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5.4 Bound Callbacks

A very useful extension to the functor concept is that of a Bound Callback. Previously it was mentioned that closures
were originally function calls packaged up for later execution. Notice that in all of the Callback descriptions above,
there is no way to package up any parameters for use later — when the Callback is called via operator (). All of
the parameters are provided by the calling function.

What if it is desired to allow the client function (the one that provides the callback) to provide some of the parameters?
Alexandrescu calls the process of allowing a client to specify one of the parameters “binding”. One of the parameters
of operator () has been bound (fixed) by the client.

Some of our pcap tracing code provides a nice example of this. There is a function that needs to be called whenever
a packet is received. This function calls an object that actually writes the packet to disk in the pcap file format. The
signature of one of these functions will be:

static void DefaultSink (Ptr<PcapFileWrapper> file, Ptr<const Packet> p);

The static keyword means this is a static function which does not need a this pointer, so it will be using C-style
callbacks. We don’t want the calling code to have to know about anything but the Packet. What we want in the calling
code is just a call that looks like:

m_promiscSnifferTrace (m_currentPkt);

What we want to do is to bind the Pt r<PcapFileWriter> file to the specific callback implementation when
it is created and arrange for the operator () of the Callback to provide that parameter for free.

We provide the MakeBoundCallback template function for that purpose. It takes the same parameters as the
MakeCallback template function but also takes the parameters to be bound. In the case of the example above:

MakeBoundCallback (&DefaultSink, file);

will create a specific callback implementation that knows to add in the extra bound arguments. Conceptually, it extends
the specific functor described above with one or more bound arguments:

template <typename T, typename ARG, typename BOUND_ARG>
class SpecificFunctor : public Functor
{
public:
SpecificFunctor (T p, int (T::»_pmi) (ARG arg), BOUND_ARG boundArg)
{
mp = p;
m_pmi = pmi;
m_boundArg = boundArg;
}

virtual int operator () (ARG arg)

{
(*m_p.*m_pmi) (m_boundArg, arg);

}

private:
void (T::»m_pmi) (ARG arqg);
T m_p;

BOUND_ARG m_boundArg;
}i

You can see that when the specific functor is created, the bound argument is saved in the functor / callback object
itself. When the operator () is invoked with the single parameter, as in:
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m_promiscSnifferTrace (m_currentPkt);

the implementation of operator () adds the bound parameter into the actual function call:

(*m_p.*m_pmi) (m_boundArg, arg);

It’s possible to bind two or three arguments as well. Say we have a function with signature:

static void NotifyEvent (Ptr<A> a, Ptr<B> b, MyEventType e);

One can create bound callback binding first two arguments like:

MakeBoundCallback (&NotifyEvent, al, bl);

assuming al and b1 are objects of type A and B respectively. Similarly for three arguments one would have function
with a signature:

static void NotifyEvent (Ptr<A> a, Ptr<B> b, MyEventType e);

Binding three arguments in done with:

MakeBoundCallback (&NotifyEvent, al, bl, cl);

again assuming al, bl and c1 are objects of type A, B and C respectively.

This kind of binding can be used for exchanging information between objects in simulation; specifically, bound call-
backs can be used as traced callbacks, which will be described in the next section.

5.5 Traced Callbacks

Placeholder subsection

5.6 Callback locations in ns-3

Where are callbacks frequently used in ns-3? Here are some of the more visible ones to typical users:
* Socket API
e Layer-2/Layer-3 API
* Tracing subsystem

* API between IP and routing subsystems

5.7 Implementation details

The code snippets above are simplistic and only designed to illustrate the mechanism itself. The actual Callback code
is quite complicated and very template-intense and a deep understanding of the code is not required. If interested,
expert users may find the following useful.

The code was originally written based on the techniques described in
http://www.codeproject.com/cpp/TTLFunction.asp. It was subsequently rewritten to follow the architecture
outlined in Modern C++ Design, Generic Programming and Design Patterns Applied, Alexandrescu, chapter 5,
Generalized Functors.

This code uses:
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default template parameters to saves users from having to specify empty parameters when the number of param-
eters is smaller than the maximum supported number

the pimpl idiom: the Callback class is passed around by value and delegates the crux of the work to its pimpl
pointer.

two pimpl implementations which derive from CallbackImpl FunctorCallbackImpl can be used with any functor-
type while MemPtrCallbackImpl can be used with pointers to member functions.

a reference list implementation to implement the Callback’s value semantics.

This code most notably departs from the Alexandrescu implementation in that it does not use type lists to specify and
pass around the types of the callback arguments. Of course, it also does not use copy-destruction semantics and relies
on a reference list rather than autoPtr to hold the pointer.

26
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CHAPTER
SIX

OBJECT MODEL

ns-3 is fundamentally a C++ object system. Objects can be declared and instantiated as usual, per C++ rules. ns-3 also
adds some features to traditional C++ objects, as described below, to provide greater functionality and features. This
manual chapter is intended to introduce the reader to the ns-3 object model.

This section describes the C++ class design for ns-3 objects. In brief, several design patterns in use include classic
object-oriented design (polymorphic interfaces and implementations), separation of interface and implementation,
the non-virtual public interface design pattern, an object aggregation facility, and reference counting for memory
management. Those familiar with component models such as COM or Bonobo will recognize elements of the design
in the ns-3 object aggregation model, although the ns-3 design is not strictly in accordance with either.

6.1 Object-oriented behavior

C++ objects, in general, provide common object-oriented capabilities (abstraction, encapsulation, inheritance, and
polymorphism) that are part of classic object-oriented design. ns-3 objects make use of these properties; for instance:

class Address
{
public:
Address ();
Address (uint8_t type, const uint8_t +buffer, uint8_t len);
Address (const Address & address);
Address &operator = (const Address &address);

private:
uint8_t m_type;
uint8_t m_len;

}i

6.2 Object base classes

There are three special base classes used in ns-3. Classes that inherit from these base classes can instantiate objects
with special properties. These base classes are:

¢ class Object
e class ObjectBase

e class SimpleRefCount
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It is not required that ns-3 objects inherit from these class, but those that do get special properties. Classes deriving
from class Ob ject get the following properties.

* the ns-3 type and attribute system (see Attributes)
* an object aggregation system
* a smart-pointer reference counting system (class Ptr)

Classes that derive from class ObjectBase get the first two properties above, but do not get smart pointers. Classes
that derive from class SimpleRefCount: get only the smart-pointer reference counting system.

In practice, class Object is the variant of the three above that the ns-3 developer will most commonly encounter.

6.3 Memory management and class Ptr

Memory management in a C++ program is a complex process, and is often done incorrectly or inconsistently. We have
settled on a reference counting design described as follows.

All objects using reference counting maintain an internal reference count to determine when an object can safely
delete itself. Each time that a pointer is obtained to an interface, the object’s reference count is incremented by calling
Ref (). It is the obligation of the user of the pointer to explicitly Unref () the pointer when done. When the
reference count falls to zero, the object is deleted.

* When the client code obtains a pointer from the object itself through object creation, or via GetObject, it does
not have to increment the reference count.

* When client code obtains a pointer from another source (e.g., copying a pointer) it must call Re f () to increment
the reference count.

* All users of the object pointer must call Unref () to release the reference.

The burden for calling Unref () is somewhat relieved by the use of the reference counting smart pointer class de-
scribed below.

Users using a low-level API who wish to explicitly allocate non-reference-counted objects on the heap, using operator
new, are responsible for deleting such objects.

6.3.1 Reference counting smart pointer (Ptr)

Calling Ref () and Unref () all the time would be cumbersome, so ns-3 provides a smart pointer class Pt r similar
to Boost::intrusive_ptr. This smart-pointer class assumes that the underlying type provides a pair of Ref
and Unre f methods that are expected to increment and decrement the internal refcount of the object instance.

This implementation allows you to manipulate the smart pointer as if it was a normal pointer: you can compare it with
zero, compare it against other pointers, assign zero to it, etc.

It is possible to extract the raw pointer from this smart pointer with the GetPointer () and PeekPointer ()
methods.

If you want to store a newed object into a smart pointer, we recommend you to use the CreateObject template functions
to create the object and store it in a smart pointer to avoid memory leaks. These functions are really small convenience
functions and their goal is just to save you a small bit of typing.

28 Chapter 6. Object model



ns-3 Manual, Release ns-3.20

6.4 CreateObject and Create

Objects in C++ may be statically, dynamically, or automatically created. This holds true for ns-3 also, but some objects
in the system have some additional frameworks available. Specifically, reference counted objects are usually allocated
using a templated Create or CreateObject method, as follows.

For objects deriving from class Ob ject:

Ptr<WifiNetDevice> device = CreateObject<WifiNetDevice> ();

Please do not create such objects using operator new; create them using CreateObject () instead.

For objects deriving from class SimpleRefCount, or other objects that support usage of the smart pointer class, a
templated helper function is available and recommended to be used:

Ptr<B> b = Create<B> ();

This is simply a wrapper around operator new that correctly handles the reference counting system.

In summary, use Create<B> if B is not an object but just uses reference counting (e.g. Packet), and use
CreateObject<B> if B derives from ns3: :Object.

6.5 Aggregation

The ns-3 object aggregation system is motivated in strong part by a recognition that a common use case for ns-2 has
been the use of inheritance and polymorphism to extend protocol models. For instance, specialized versions of TCP
such as RenoTcpAgent derive from (and override functions from) class TcpAgent.

However, two problems that have arisen in the ns-2 model are downcasts and “weak base class.” Downcasting refers
to the procedure of using a base class pointer to an object and querying it at run time to find out type information, used
to explicitly cast the pointer to a subclass pointer so that the subclass API can be used. Weak base class refers to the
problems that arise when a class cannot be effectively reused (derived from) because it lacks necessary functionality,
leading the developer to have to modify the base class and causing proliferation of base class API calls, some of which
may not be semantically correct for all subclasses.

ns-3 is using a version of the query interface design pattern to avoid these problems. This design is based on ele-
ments of the Component Object Model and GNOME Bonobo although full binary-level compatibility of replaceable
components is not supported and we have tried to simplify the syntax and impact on model developers.

6.6 Examples

6.6.1 Aggregation example

Node is a good example of the use of aggregation in ns-3. Note that there are not derived classes of Nodes in ns-3
such as class InternetNode. Instead, components (protocols) are aggregated to a node. Let’s look at how some
Ipv4 protocols are added to a node.:

static void
AddIpv4Stack (Ptr<Node> node)
{
Ptr<Ipv4L3Protocol> ipv4 = CreateObject<Ipv4L3Protocol> ();
ipv4->SetNode (node);
node->AggregateObject (ipv4);
Ptr<Ipv4Impl> ipv4Impl = CreateObject<Ipv4Impl> ();

6.4. CreateObject and Create 29


http://en.wikipedia.org/wiki/Component_Object_Model
http://en.wikipedia.org/wiki/Bonobo_(component_model)

ns-3 Manual, Release ns-3.20

ipv4Impl->SetIpv4d (ipv4);
node->AggregateObject (ipv4Impl);
}

Note that the Ipv4 protocols are created using CreateObject (). Then, they are aggregated to the node. In this
manner, the Node base class does not need to be edited to allow users with a base class Node pointer to access the Ipv4
interface; users may ask the node for a pointer to its Ipv4 interface at runtime. How the user asks the node is described
in the next subsection.

Note that it is a programming error to aggregate more than one object of the same type to an ns3: : Object. So, for
instance, aggregation is not an option for storing all of the active sockets of a node.

6.6.2 GetObject example

GetObject is a type-safe way to achieve a safe downcasting and to allow interfaces to be found on an object.

Consider a node pointer m_node that points to a Node object that has an implementation of IPv4 previously aggregated
to it. The client code wishes to configure a default route. To do so, it must access an object within the node that has an
interface to the IP forwarding configuration. It performs the following:

Ptr<Ipv4> ipv4 = m_node->GetObject<Ipv4> ();

If the node in fact does not have an Ipv4 object aggregated to it, then the method will return null. Therefore, it is good
practice to check the return value from such a function call. If successful, the user can now use the Ptr to the Ipv4
object that was previously aggregated to the node.

Another example of how one might use aggregation is to add optional models to objects. For instance, an existing
Node object may have an “Energy Model” object aggregated to it at run time (without modifying and recompiling the
node class). An existing model (such as a wireless net device) can then later “GetObject” for the energy model and
act appropriately if the interface has been either built in to the underlying Node object or aggregated to it at run time.
However, other nodes need not know anything about energy models.

We hope that this mode of programming will require much less need for developers to modify the base classes.

6.7 Object factories

A common use case is to create lots of similarly configured objects. One can repeatedly call CreateObject () but
there is also a factory design pattern in use in the ns-3 system. It is heavily used in the “helper” API.

Class ObjectFactory can be used to instantiate objects and to configure the attributes on those objects:

void SetTypeld (Typeld tid);
void Set (std::string name, const AttributeValue &value);
Ptr<T> Create (void) const;

The first method allows one to use the ns-3 Typeld system to specify the type of objects created. The second allows
one to set attributes on the objects to be created, and the third allows one to create the objects themselves.

For example:

ObjectFactory factory;

// Make this factory create objects of type FriisPropagationLossModel
factory.SetTypeld ("ns3::FriisPropagationLossModel™)

// Make this factory object change a default value of an attribute, for
// subsequently created objects

factory.Set ("SystemLoss", DoubleValue (2.0));

// Create one such object
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Ptr<Object> object = factory.Create ();

factory.Set ("SystemLoss", DoubleValue (3.0));

// Create another object with a different SystemLoss
Ptr<Object> object = factory.Create ();

6.8 Downcasting

A question that has arisen several times is, “If I have a base class pointer (Ptr) to an object and I want the derived class
pointer, should I downcast (via C++ dynamic cast) to get the derived pointer, or should I use the object aggregation
system to GetObject<> () to find a Ptr to the interface to the subclass API?”

The answer to this is that in many situations, both techniques will work. ns-3 provides a templated function for making
the syntax of Object dynamic casting much more user friendly:

template <typename T1l, typename T2>
Ptr<Tl>

DynamicCast (Ptr<T2> consté&p)

{

return Ptr<Tl> (dynamic_cast<Tl x> (PeekPointer (p)));

}

DynamicCast works when the programmer has a base type pointer and is testing against a subclass pointer. GetObject
works when looking for different objects aggregated, but also works with subclasses, in the same way as DynamicCast.
If unsure, the programmer should use GetObject, as it works in all cases. If the programmer knows the class hierarchy
of the object under consideration, it is more direct to just use DynamicCast.
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CHAPTER
SEVEN

ATTRIBUTES

In ns-3 simulations, there are two main aspects to configuration:
* the simulation topology and how objects are connected
* the values used by the models instantiated in the topology

This chapter focuses on the second item above: how the many values in use in ns-3 are organized, documented, and
modifiable by ns-3 users. The ns-3 attribute system is also the underpinning of how traces and statistics are gathered
in the simulator.

Before delving into details of the attribute value system, it will help to review some basic properties of class
ns3::0bject.

7.1 Object Overview

ns-3 is fundamentally a C++ object-based system. By this we mean that new C++ classes (types) can be declared,
defined, and subclassed as usual.

Many ns-3 objects inherit from the ns3: : Object base class. These objects have some additional properties that we
exploit for organizing the system and improving the memory management of our objects:

* a “metadata” system that links the class name to a lot of meta-information about the object, including the base
class of the subclass, the set of accessible constructors in the subclass, and the set of “attributes” of the subclass

* areference counting smart pointer implementation, for memory management.

ns-3 objects that use the attribute system derive from either ns3: :ObJject or ns3: :0bjectBase. Most ns-3
objects we will discuss derive from ns3: : Object, but a few that are outside the smart pointer memory management
framework derive from ns3: : ObjectBase.

Let’s review a couple of properties of these objects.

7.2 Smart pointers

As introduced in the ns-3 tutorial, ns-3 objects are memory managed by a reference counting smart pointer implemen-
tation, class ns3: :Ptr.

Smart pointers are used extensively in the ns-3 APIs, to avoid passing references to heap-allocated objects that may
cause memory leaks. For most basic usage (syntax), treat a smart pointer like a regular pointer:
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Ptr<WifiNetDevice> nd = ...;
nd->CallSomeFunction ();
// etc.

7.2.1 CreateObject

As we discussed above in Memory management and class Ptr, at the lowest-level API, objects of type ns3: : Object
are not instantiated using operator new as usual but instead by a templated function called CreateObject ().

A typical way to create such an object is as follows:

Ptr<WifiNetDevice> nd = CreateObject<WifiNetDevice> ();

You can think of this as being functionally equivalent to:

WifiNetDevice* nd = new WifiNetDevice ();

Objects that derive from ns3: : Object must be allocated on the heap using CreateObject(). Those deriving from
ns3: :0bjectBase, such as ns-3 helper functions and packet headers and trailers, can be allocated on the stack.

In some scripts, you may not see a lot of CreateObject() calls in the code; this is because there are some helper objects
in effect that are doing the CreateObject()s for you.

7.2.2 Typeld

ns-3 classes that derive from class ns3::Object can include a metadata class called TypeId that records meta-
information about the class, for use in the object aggregation and component manager systems:

* aunique string identifying the class
* the base class of the subclass, within the metadata system

« the set of accessible constructors in the subclass

7.2.3 Object Summary

Putting all of these concepts together, let’s look at a specific example: class ns3: :Node.
The public header file node.h has a declaration that includes a static GetTypeld function call:

class Node : public Object
{
public:
static TypeId GetTypeId (void);

This is defined in the node. cc file as follows:

TypeId
Node: :GetTypeId (void)
{
static TypelId tid = TypelId ("ns3::Node")
.SetParent<Object> ()
.AddConstructor<Node> ()
.AddAttribute ("DeviceList", "The list of devices associated to this Node.",
ObjectVectorvalue (),
MakeObjectVectorAccessor (&Node::m_devices),
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MakeObjectVectorChecker<NetDevice> ())

.AddAttribute ("ApplicationList", "The list of applications associated to this Node.",

ObjectVectorvalue (),
MakeObjectVectorAccessor (&Node::m_applications),
MakeObjectVectorChecker<Application> ())

.AddAttribute ("Id", "The id (unique integer) of this Node.",
Typeld::ATTR_GET, // allow only getting it.
Uintegervalue (0),
MakeUintegerAccessor (&Node::m_id),
MakeUintegerChecker<uint32_t> ())

7

return tid;

}

Consider the Typeld of an ns-3 Object class as an extended form of run time type information (RTTI). The C++
language includes a simple kind of RTTI in order to support dynamic_cast and typeid operators.

The “. SetParent<Object> ()” call in the declaration above is used in conjunction with our object aggregation
mechanisms to allow safe up- and down-casting in inheritance trees during GetObject.

The “.AddConstructor<Node> ()” call is used in conjunction with our abstract object factory mechanisms to
allow us to construct C++ objects without forcing a user to know the concrete class of the object she is building.

The three calls to “.AddAttribute” associate a given string with a strongly typed value in the class. Notice
that you must provide a help string which may be displayed, for example, via command line processors. Each
Attribute is associated with mechanisms for accessing the underlying member variable in the object (for example,
MakeUintegerAccessor tells the generic Attribute code how to get to the node ID above). There are also
“Checker” methods which are used to validate values.

When users want to create Nodes, they will usually call some form of CreateObject,:

Ptr<Node> n = CreateObject<Node> ();

or more abstractly, using an object factory, you can create a Node object without even knowing the concrete C++ type:

ObjectFactory factory;

const std::string typeld = "ns3::Node’’;
factory.SetTypeId (typeld);

Ptr<Object> node = factory.Create <Object> ();

Both of these methods result in fully initialized attributes being available in the resulting Ob ject instances.

We next discuss how attributes (values associated with member variables or functions of the class) are plumbed into
the above Typeld.

7.3 Attribute Overview

The goal of the attribute system is to organize the access of internal member objects of a simulation. This goal arises
because, typically in simulation, users will cut and paste/modify existing simulation scripts, or will use higher-level
simulation constructs, but often will be interested in studying or tracing particular internal variables. For instance, use
cases such as:

» “I want to trace the packets on the wireless interface only on the first access point”
* “I want to trace the value of the TCP congestion window (every time it changes) on a particular TCP socket”

* “I want a dump of all values that were used in my simulation.”
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Similarly, users may want fine-grained access to internal variables in the simulation, or may want to broadly change the
initial value used for a particular parameter in all subsequently created objects. Finally, users may wish to know what
variables are settable and retrievable in a simulation configuration. This is not just for direct simulation interaction
on the command line; consider also a (future) graphical user interface that would like to be able to provide a feature
whereby a user might right-click on an node on the canvas and see a hierarchical, organized list of parameters that are
settable on the node and its constituent member objects, and help text and default values for each parameter.

7.3.1 Functional overview

We provide a way for users to access values deep in the system, without having to plumb accessors (pointers) through
the system and walk pointer chains to get to them. Consider a class DropTailQueue that has a member variable that is
an unsigned integer m_maxPacket s; this member variable controls the depth of the queue.

If we look at the declaration of DropTailQueue, we see the following:

class DropTailQueue : public Queue {
public:
static TypeId GetTypelId (void);

private:
std: :queue<Ptr<Packet> > m_packets;
uint32_t m_maxPackets;

}i

Let’s consider things that a user may want to do with the value of m_maxPackets:

¢ Set a default value for the system, such that whenever a new DropTailQueue is created, this member is initialized
to that default.

 Set or get the value on an already instantiated queue.
The above things typically require providing Set() and Get() functions, and some type of global default value.
In the ns-3 attribute system, these value definitions and accessor functions are moved into the Typeld class; e.g.:

NS_OBJECT_ENSURE_REGISTERED (DropTailQueue);

Typeld DropTailQueue: :GetTypeld (wvoid)
{
static TypelId tid = Typeld ("ns3::DropTailQueue")
.SetParent<Queue> ()
.AddConstructor<DropTailQueue> ()
.AddAttribute ("MaxPackets",
"The maximum number of packets accepted by this DropTailQueue.",
UintegerValue (100),
MakeUintegerAccessor (&DropTailQueue::m_maxPackets),
MakeUintegerChecker<uint32_t> ())

return tid;

}

The AddAttribute() method is performing a number of things with this value:
* Binding the variable m_maxPackets to a string “MaxPackets”
* Providing a default value (100 packets)

* Providing some help text defining the value
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 Providing a “checker” (not used in this example) that can be used to set bounds on the allowable range of values

The key point is that now the value of this variable and its default value are accessible in the attribute namespace,
which is based on strings such as “MaxPackets” and Typeld strings. In the next section, we will provide an example
script that shows how users may manipulate these values.

Note that initialization of the attribute relies on the macro NS_OBJECT_ENSURE_REGISTERED (DropTailQueue)
being called; if you leave this out of your new class implementation, your attributes will not be initialized correctly.

While we have described how to create attributes, we still haven’t described how to access and manage these values.
For instance, there is no globals.h header file where these are stored; attributes are stored with their classes.
Questions that naturally arise are how do users easily learn about all of the attributes of their models, and how does a
user access these attributes, or document their values as part of the record of their simulation?

7.3.2 Default values and command-line arguments

Let’s look at how a wuser script might access these values. This is based on the script found at
src/point-to-point/examples/main-attribute-value. cc, with some details stripped out.:
//

// This is a basic example of how to use the attribute system to
// set and get a value in the underlying system; namely, an unsigned
// integer of the maximum number of packets in a queue

//

int
main (int argc, char xargv([])

{

// By default, the MaxPackets attribute has a value of 100 packets

// (this default can be observed in the function DropTailQueue: :GetTypeId)
//

// Here, we set it to 80 packets. We could use one of two value types:

// a string-based value or a Uinteger value

Config::SetDefault ("ns3::DropTailQueue::MaxPackets", StringValue ("80"));
// The below function call is redundant

Config::SetDefault ("ns3::DropTailQueue::MaxPackets", UintegerValue (80));

// Allow the user to override any of the defaults and the above
// SetDefaults () at run-time, via command-line arguments
CommandLine cmd;

cmd.Parse (argc, argv);

The main thing to notice in the above are the two calls to Config: : SetDefault. This is how we set the default
value for all subsequently instantiated DropTailQueues. We illustrate that two types of Value classes, a StringValue and
a UintegerValue class, can be used to assign the value to the attribute named by “ns3::DropTailQueue::MaxPackets”.

Now, we will create a few objects using the low-level API; here, our newly created queues will not have a
m_maxPackets initialized to 100 packets but to 80 packets, because of what we did above with default values.:

Ptr<Node> n0 = CreateObject<Node> ();

Ptr<PointToPointNetDevice> net0 = CreateObject<PointToPointNetDevice> ();
n0->AddDevice (netO0);

Ptr<Queue> g = CreateObject<DropTailQueue> ();
net0->AddQueue (q) ;
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At this point, we have created a single node (Node 0) and a single PointToPointNetDevice (NetDevice 0) and added a
DropTailQueue to it.

Now, we can manipulate the MaxPackets value of the already instantiated DropTailQueue. Here are various ways to
do that.

7.3.3 Pointer-based access

We assume that a smart pointer (Ptr) to a relevant network device is in hand; in the current example, it is the net0
pointer.

One way to change the value is to access a pointer to the underlying queue and modify its attribute.

First, we observe that we can get a pointer to the (base class) queue via the PointToPointNetDevice attributes, where
it is called TxQueue:

PointerValue tmp;
net0->GetAttribute ("TxQueue", tmp);
Ptr<Object> txQueue = tmp.GetObject ();

Using the GetObject function, we can perform a safe downcast to a DropTailQueue, where MaxPackets is a member:

Ptr<DropTailQueue> dtg = txQueue->GetObject <DropTailQueue> ();
NS_ASSERT (dtg != 0);

Next, we can get the value of an attribute on this queue. We have introduced wrapper “Value” classes for the underlying
data types, similar to Java wrappers around these types, since the attribute system stores values and not disparate types.
Here, the attribute value is assigned to a UintegerValue, and the Get() method on this value produces the (unwrapped)
uint32 _t.:

UintegerValue limit;
dtg->GetAttribute ("MaxPackets", limit);
NS_LOG_INFO ("1. dtg limit: " << limit.Get () << " packets");

Note that the above downcast is not really needed; we could have done the same using the Ptr<Queue> even though
the attribute is a member of the subclass:

txQueue->GetAttribute ("MaxPackets", limit);
NS_LOG_INFO ("2. txQueue limit: " << limit.Get () << " packets");

Now, let’s set it to another value (60 packets):

txQueue—->SetAttribute ("MaxPackets", UintegerValue (60));
txQueue—->GetAttribute ("MaxPackets", limit);
NS_LOG_INFO ("3. txQueue limit changed: " << limit.Get () << " packets");

7.3.4 Namespace-based access

An alternative way to get at the attribute is to use the configuration namespace. Here, this attribute resides on a known
path in this namespace; this approach is useful if one doesn’t have access to the underlying pointers and would like to
configure a specific attribute with a single statement.:

Config::Set ("/NodeList/0/DevicelList/0/TxQueue/MaxPackets", UintegerValue (25));
txQueue->GetAttribute ("MaxPackets", limit);
NS_LOG_INFO ("4. txQueue limit changed through namespace: " <<

limit.Get () << " packets");
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We could have also used wildcards to set this value for all nodes and all net devices (which in this simple example has
the same effect as the previous Set()):

Config::Set ("/NodeList/«/DevicelList/*/TxQueue/MaxPackets", UintegerValue (15));

txQueue->GetAttribute ("MaxPackets", limit);

NS_LOG_INFO ("5. txQueue limit changed through wildcarded namespace: " <<
limit.Get () << " packets");

7.3.5 Object Name Service-based access

Another way to get at the attribute is to use the object name service facility. Here, this attribute is found using a name
string. This approach is useful if one doesn’t have access to the underlying pointers and it is difficult to determine the
required concrete configuration namespaced path.

Names: :Add ("server", serverNode);
Names: :Add ("server/eth0", serverDevice);

Config::Set ("/Names/server/eth(O/TxQueue/MaxPackets", UintegerValue (25));

See Object names for a fuller treatment of the ns-3 configuration namespace.

7.3.6 Setting through constructors helper classes

Arbitrary combinations of attributes can be set and fetched from the helper and low-level APIs; either from the con-
structors themselves:

Ptr<Object> p = CreateObject<MyNewObject> ("nl", v1, "n2", v2, ...);

or from the higher-level helper APIs, such as:

mobility.SetPositionAllocator ("ns3::GridPositionAllocator",
"MinX", DoubleValue (-100.0),
"MinY", DoubleValue (-100.0),
"DeltaX", DoubleValue (5.0),
"DeltaY", DoublevValue (20.0),
"GridWidth", UintegerValue (20),
"LayoutType", StringValue ("RowFirst"));

7.3.7 Implementation details

Value classes

Readers will note the new FooValue classes which are subclasses of the AttributeValue base class. These can be
thought of as an intermediate class that can be used to convert from raw types to the Values that are used by the
attribute system. Recall that this database is holding objects of many types with a single generic type. Conversions to
this type can either be done using an intermediate class (IntegerValue, DoubleValue for “floating point™) or via strings.
Direct implicit conversion of types to Value is not really practical. So in the above, users have a choice of using strings
or values:

p—>Set ("cwnd", StringValue ("100")); // string-based setter
p->Set ("cwnd", IntegerValue (100)); // integer-based setter
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The system provides some macros that help users declare and define new AttributeValue subclasses for new types that
they want to introduce into the attribute system:

» ATTRIBUTE_HELPER_HEADER
e ATTRIBUTE_HELPER_CPP

Initialization order

Attributes in the system must not depend on the state of any other Attribute in this system. This is because an ordering
of Attribute initialization is not specified, nor enforced, by the system. A specific example of this can be seen in
automated configuration programs such as ns3: :ConfigStore. Although a given model may arrange it so that
Attributes are initialized in a particular order, another automatic configurator may decide independently to change
Attributes in, for example, alphabetic order.

Because of this non-specific ordering, no Attribute in the system may have any dependence on any other Attribute. As
a corollary, Attribute setters must never fail due to the state of another Attribute. No Attribute setter may change (set)
any other Attribute value as a result of changing its value.

This is a very strong restriction and there are cases where Attributes must set consistently to allow correct oper-
ation. To this end we do allow for consistency checking when the attribute is used (cf. NS_ASSERT_MSG or
NS_ABORT_MSG).

In general, the attribute code to assign values to the underlying class member variables is executed after an object is
constructed. But what if you need the values assigned before the constructor body executes, because you need them
in the logic of the constructor? There is a way to do this, used for example in the class ns3: :ConfigStore: call
ObjectBase: :ConstructSelf () as follows:

ConfigStore::ConfigStore ()

{
ObjectBase: :ConstructSelf (AttributeConstructionList ());
// continue on with constructor.

}

Beware that the object and all its derived classes must also implement a virtual TypeId
GetInstanceTypeId (void) const; method. Otherwise the ObjectBase::ConstructSelf
() will not be able to read the attributes.

7.4 Extending attributes

The ns-3 system will place a number of internal values under the attribute system, but undoubtedly users will want to
extend this to pick up ones we have missed, or to add their own classes to this.

7.4.1 Adding an existing internal variable to the metadata system

Consider this variable in class TcpSocket:
uint32_t m_cWnd; // Congestion window
Suppose that someone working with TCP wanted to get or set the value of that variable using the metadata system. If

it were not already provided by ns-3, the user could declare the following addition in the runtime metadata system (to
the Typeld declaration for TcpSocket):
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.AddAttribute ("Congestion window",
"Tcp congestion window (bytes)",
UintegervValue (1),
MakeUintegerAccessor (&TcpSocket::m_cWnd),
MakeUintegerChecker<uintl6é_t> ())

Now, the user with a pointer to the TcpSocket can perform operations such as setting and getting the value, without
having to add these functions explicitly. Furthermore, access controls can be applied, such as allowing the parameter
to be read and not written, or bounds checking on the permissible values can be applied.

7.4.2 Adding a new Typeld

Here, we discuss the impact on a user who wants to add a new class to ns-3; what additional things must be done to
hook it into this system.

We’ve already introduced what a Typeld definition looks like:

Typeld
RandomWalk2dMobilityModel: :GetTypeId (void)

{
static TypeId tid = Typeld ("ns3::RandomWalk2dMobilityModel")

.SetParent<MobilityModel> ()

.SetGroupName ("Mobility")

.AddConstructor<RandomWalk2dMobilityModel> ()

.AddAttribute ("Bounds",
"Bounds of the area to cruise.",
RectangleValue (Rectangle (0.0, 0.0, 100.0, 100.0)),
MakeRectangleAccessor (&RandomWalk2dMobilityModel: :m_bounds),
MakeRectangleChecker ())

.AddAttribute ("Time",
"Change current direction and speed after moving for this delay.",
TimeValue (Seconds (1.0)),
MakeTimeAccessor (&RandomWalk2dMobilityModel: :m_modeTime),
MakeTimeChecker ())

// etc (more parameters).

7

return tid;

}

The declaration for this in the class declaration is one-line public member method:

public:
static TypeId GetTypelId (void);

Typical mistakes here involve:
* Not calling the SetParent method or calling it with the wrong type
* Not calling the AddConstructor method of calling it with the wrong type
* Introducing a typographical error in the name of the Typeld in its constructor
* Not using the fully-qualified c++ typename of the enclosing c++ class as the name of the Typeld

None of these mistakes can be detected by the ns-3 codebase so, users are advised to check carefully multiple times
that they got these right.
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7.5 Adding new class type to the attribute system

From the perspective of the user who writes a new class in the system and wants to hook it in to the at-
tribute system, there is mainly the matter of writing the conversions to/from strings and attribute values. Most
of this can be copy/pasted with macro-ized code. For instance, consider class declaration for Rectangle in the
src/mobility/model directory:

7.5.1 Header file

Ve
* \brief a 2d rectangle
*/

class Rectangle

{

double xMin;

double xMax;

double yMin;

double yMax;
bi

One macro call and two operators, must be added below the class declaration in order to turn a Rectangle into a value
usable by the Attribute system:

std: :ostream &operator << (std::ostream &os, const Rectangle &rectangle);
std::istream &operator >> (std::istream &is, Rectangle &rectangle);

ATTRIBUTE_HELPER_HEADER (Rectangle);

7.5.2 Implementation file

In the class definition (. cc file), the code looks like this:

ATTRIBUTE_HELPER_CPP (Rectangle);

std::ostream &
operator << (std::ostream &os, const Rectangle &rectangle)
{
0os << rectangle.xMin << "|" << rectangle.xMax << "|" << rectangle.yMin << "|"
<< rectangle.yMax;
return os;
}
std::istream &
operator >> (std::istream &is, Rectangle &rectangle)
{
char cl, c2, c3;
is >> rectangle.xMin >> cl >> rectangle.xMax >> c2 >> rectangle.yMin >> c3
>> rectangle.yMax;

if (cl !'= 71" ||
cz = "1" |
c3 = "17)

is.setstate (std::ios_base::failbit);
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return is;

These stream operators simply convert from a string representation of the Rectangle (“xMinlxMaxlyMinlyMax”) to
the underlying Rectangle, and the modeler must specify these operators and the string syntactical representation of an
instance of the new class.

7.6 ConfigStore

The ConfigStore is a specialized database for attribute values and default values. Although it is a separately maintained
modulein src/config-store/ directory, we document it here because of its sole dependency on ns-3 core module
and attributes.

Values for ns-3 attributes can be stored in an ASCII or XML text file and loaded into a future simula-
tion. This feature is known as the ns-3 ConfigStore. We can explore this system by using an example from
src/config-store/examples/config-store—-save.cc.

First, all users must include the following statement:

#include "ns3/config-store-module.h"

Next, this program adds a sample object A to show how the system is extended:

class A : public Object
{
public:
static TypelId GetTypelId (wvoid) {
static TypeId tid = TypeId ("ns3::A")
.SetParent<Object> ()
.AddAttribute ("TestIntl6", "help text",
IntegervValue (-2),
MakeIntegerAccessor (&A::m_intl6),
MakeIntegerChecker<intl6_t> ())
7
return tid;
}
intl6_t m_intl6;
bi

NS_OBJECT_ENSURE_REGISTERED (A);

Next, we use the Config subsystem to override the defaults in a couple of ways:

Config::SetDefault ("ns3::A::TestIntl6", IntegerValue (-5));

Ptr<A> a_obj = CreateObject<A> ();
NS_ABORT_MSG_UNLESS (a_obj->m_intl6 == -5, "Cannot set A’s integer attribute via Config::SetDefault",

Ptr<A> a2_obj = CreateObject<A> ();

az_obj->SetAttribute ("TestIntl6", IntegerValue (-3));

IntegerValue 1iv;

a2_obj->GetAttribute ("TestIntle", iv);

NS_ABORT_MSG_UNLESS (iv.Get () == -3, "Cannot set A’s integer attribute via SetAttribute");

The next statement is necessary to make sure that (one of) the objects created is rooted in the configuration namespace
as an object instance. This normally happens when you aggregate objects to ns3::Node or ns3::Channel but here, since
we are working at the core level, we need to create a new root namespace object:
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Config::RegisterRootNamespaceObject (a2_obj);

Next, we want to output the configuration store. The examples show how to do it in two formats, XML and raw text.
In practice, one should perform this step just before calling Simulator: :Run (); it will allow the configuration
to be saved just before running the simulation.

There are three attributes that govern the behavior of the ConfigStore: “Mode”, “Filename”, and “FileFormat”.
The Mode (default “None”) configures whether ns-3 should load configuration from a previously saved file (spec-
ify “Mode=Load”) or save it to a file (specify “Mode=Save”). The Filename (default ) is where the ConfigStore
should store its output data. The FileFormat (default “RawText”) governs whether the ConfigStore format is Xml or
RawText format.

The example shows:

Config::SetDefault ("ns3::ConfigStore::Filename", StringValue ("output-attributes.xml"));
Config::SetDefault ("ns3::ConfigStore::FileFormat", StringValue ("Xml"));
Config::SetDefault ("ns3::ConfigStore::Mode", StringValue ("Save"));

ConfigStore outputConfig;

outputConfig.ConfigureDefaults ();

outputConfig.ConfigureAttributes ();

// Output config store to txt format

Config::SetDefault ("ns3::ConfigStore::Filename", StringValue ("output-attributes.txt"));
Config::SetDefault ("ns3::ConfigStore::FileFormat", StringValue ("RawText"));
Config::SetDefault ("ns3::ConfigStore::Mode", StringValue ("Save"));

ConfigStore outputConfig2;

outputConfig2.ConfigureDefaults ();

outputConfig2.ConfigureAttributes ();

Simulator::Run ();
Simulator::Destroy ();

Note the placement of these statements just prior to the Simulator: :Run () statement. This output logs all of
the values in place just prior to starting the simulation (i.e. after all of the configuration has taken place).

After running, you can open the output-attributes.txt file and see:

default ns3::RealtimeSimulatorImpl::SynchronizationMode "BestEffort"
default ns3::RealtimeSimulatorImpl::HardLimit "+100000000.0ns"
default ns3::PcapFileWrapper: :CaptureSize "65535"

default ns3::PacketSocket::RcvBufSize "131072"

default ns3::ErrorModel: :IsEnabled "true"

default ns3::RateErrorModel: :ErrorUnit "EU_BYTE"

default ns3::RateErrorModel::ErrorRate "O"

default ns3::RateErrorModel::RanVar "Uniform:0:1"

default ns3::DropTailQueue: :Mode "Packets"

default ns3::DropTailQueue: :MaxPackets "100"

default ns3::DropTailQueue: :MaxBytes "6553500"

default ns3::Application::StartTime "+0.0ns"

default ns3::Application::StopTime "+0.0ns"

default ns3::ConfigStore: :Mode "Save"

default ns3::ConfigStore::Filename "output-attributes.txt"
default ns3::ConfigStore::FileFormat "RawText"

default ns3::A::TestIntl6e "-5"

global RngSeed "1"

global RngRun "1"

global SimulatorImplementationType "ns3::DefaultSimulatorImpl"
global SchedulerType "ns3::MapScheduler"
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global ChecksumEnabled "false"
value /$ns3::A/TestIntlé "-3"

In the above, all of the default values for attributes for the core module are shown. Then, all the values for the ns-3
global values are recorded. Finally, the value of the instance of A that was rooted in the configuration namespace is
shown. In a real ns-3 program, many more models, attributes, and defaults would be shown.

An XML version also exists in output—-attributes.xml:

<?xml version="1.0" encoding="UTEF-8"?>
<ns3>

<default name="ns3::RealtimeSimulatorImpl::SynchronizationMode" value="BestEffort"/>
<default name="ns3::RealtimeSimulatorImpl::HardLimit" value="+100000000.0ns"/>
<default name="ns3::PcapFileWrapper: :CaptureSize" value="65535"/>

<default name="ns3::PacketSocket::RcvBufSize" value="131072"/>

<default name="ns3::ErrorModel::IsEnabled" value="true"/>

<default name="ns3::RateErrorModel::ErrorUnit" value="EU_BYTE"/>

<default name="ns3::RateErrorModel: :ErrorRate" value="0"/>

<default name="ns3::RateErrorModel::RanVar" value="Uniform:0:1"/>

<default name="ns3::DropTailQueue: :Mode" value="Packets"/>

<default name="ns3::DropTailQueue: :MaxPackets" value="100"/>

<default name="ns3::DropTailQueue: :MaxBytes" value="6553500"/>

<default name="ns3::Application::StartTime" value="+0.0ns"/>

<default name="ns3::Application::StopTime" value="+0.0ns"/>

<default name="ns3::ConfigStore: :Mode" value="Save"/>

<default name="ns3::ConfigStore::Filename" value="output-attributes.xml"/>
<default name="ns3::ConfigStore::FileFormat" value="Xml"/>

<default name="ns3::A::TestIntl6" value="-5"/>

<global name="RngSeed" value="1"/>

<global name="RngRun" value="1"/>

<global name="SimulatorImplementationType" value="ns3::DefaultSimulatorImpl"/>
<global name="SchedulerType" value="ns3::MapScheduler"/>

<global name="ChecksumEnabled" value="false"/>

<value path="/Sns3::A/TestIntl6" value="-3"/>

</ns3>

This file can be archived with your simulation script and output data.

Next, we discuss using this to configure simulations via an input configuration file. There are a couple of key differ-
ences when compared to use for logging the final simulation configuration. First, we need to place statements such
as these at the beginning of the program, before simulation configuration statements are written (so the values are
registered before being used in object construction).

Config::SetDefault ("ns3::ConfigStore::Filename", StringValue ("input-defaults.xml"));
Config::SetDefault ("ns3::ConfigStore::Mode", StringValue ("Load"));
Config::SetDefault ("ns3::ConfigStore::FileFormat", StringValue ("Xml"));

ConfigStore inputConfig;

inputConfig.ConfigureDefaults ();

Next, note that loading of input configuration data is limited to attribute default (i.e. not instance) values, and global
values. Attribute instance values are not supported because at this stage of the simulation, before any objects are
constructed, there are no such object instances around. (Note, future enhancements to the config store may change this
behavior).

Second, while the output of config store state will list everything in the database, the input file need only contain the
specific values to be overridden. So, one way to use this class for input file configuration is to generate an initial
configuration using the output (Save) method described above, extract from that configuration file only the elements
one wishes to change, and move these minimal elements to a new configuration file which can then safely be edited
and loaded in a subsequent simulation run.
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When the ConfigStore object is instantiated, its attributes Filename, Mode, and FileFormat must be set, either via
command-line or via program statements.

As a more complicated example, let’s assume that we want to read in a configuration of defaults from an input file
named “input-defaults.xml”, and write out the resulting attributes to a separate file called “output-attributes.xml”.:

#include "ns3/config-store-module.h"

int main (...)

{

Config::SetDefault ("ns3::ConfigStore::Filename", StringValue ("input-defaults.xml"));
Config::SetDefault ("ns3::ConfigStore::Mode", StringValue ("Load"));
Config::SetDefault ("ns3::ConfigStore::FileFormat", StringValue ("Xml"));

ConfigStore inputConfig;

inputConfig.ConfigureDefaults ();

//

// Allow the user to override any of the defaults and the above Bind() at
// run-time, via command-line arguments

//

CommandLine cmd;

cmd.Parse (argc, argv);

// setup topology

// Invoke just before entering Simulator::Run ()

Config::SetDefault ("ns3::ConfigStore::Filename", StringValue ("output-attributes.xml"));
Config::SetDefault ("ns3::ConfigStore::Mode", StringValue ("Save"));

ConfigStore outputConfig;

outputConfig.ConfigureAttributes ();

Simulator::Run ();

7.6.1 GTK-based ConfigStore

There is a GTK-based front end for the ConfigStore. This allows users to use a GUI to access and change variables.
Screenshots of this feature are available in the Ins3| Overview presentation.

To use this feature, one must install libgtk and libgtk-dev; an example Ubuntu installation command is:

sudo apt-get install libgtk2.0-0 libgtk2.0-dev

To check whether it is configured or not, check the output of the step:

&

$ ./waf configure --enable-examples —-enable-tests

—-——— Summary of optional NS-3 features:

Python Bindings : enabled
Python API Scanning Support : enabled
NS-3 Click Integration : enabled
GtkConfigStore : not enabled (library ’'gtk+-2.0 >= 2.12’ not found)

In the above example, it was not enabled, so it cannot be used until a suitable version is installed and:

S ./waf configure —--enable-examples —--enable-tests
S ./waf
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is rerun.
Usage is almost the same as the non-GTK-based version, but there are no ConfigStore attributes involved:

// Invoke just before entering Simulator::Run ()
GtkConfigStore config;

config.ConfigureDefaults ();
config.ConfigureAttributes ();

Now, when you run the script, a GUI should pop up, allowing you to open menus of attributes on different
nodes/objects, and then launch the simulation execution when you are done.

7.6.2 Future work

There are a couple of possible improvements:
* save a unique version number with date and time at start of file
* save rng initial seed somewhere.

¢ make each Random Variable serialize its own initial seed and re-read it later
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CHAPTER
NINE

LOGGING

The ns-3 logging facility can be used to monitor or debug the progress of simulation programs. Logging output can
be enabled by program statements in your main () program or by the use of the NS_LOG environment variable.

Logging statements are not compiled into optimized builds of ns-3. To use logging, one must build the (default) debug
build of ns-3.

The project makes no guarantee about whether logging output will remain the same over time. Users are cautioned
against building simulation output frameworks on top of logging code, as the output and the way the output is enabled
may change over time.

9.1 Overview

ns-3 logging statements are typically used to log various program execution events, such as the occurrence of simula-
tion events or the use of a particular function.

For example, this code snippet is from Ipv4L3Protocol: :IsDestinationAddress ():

if (address == iaddr.GetBroadcast ())
{
NS_LOG_LOGIC ("For me (interface broadcast address)");
return true;

}

If logging has been enabled for the Ipv4L3Protocol component at a severity of LOGIC or above (see below about
log severity), the statement will be printed out; otherwise, it will be suppressed.

9.1.1 Enabling Output
There are two ways that users typically control log output. The first is by setting the NS_LOG environment variable;
e.g.

S NS_LOG="+«" _,/waf —-—-run first

will run the £irst tutorial program with all logging output. (The specifics of the NS_LOG format will be discussed
below.)

This can be made more granular by selecting individual components:

S NS_LOG="Ipv4L3Protocol" ./waf —--run first
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The output can be further tailored with prefix options.

The second way to enable logging is to use explicit statements in your program, such as in the £ i rst tutorial program:
int

main (int argc, char xargv([])

{

LogComponentEnable ("UdpEchoClientApplication", LOG_LEVEL_INFO);
LogComponentEnable ("UdpEchoServerApplication”, LOG_LEVEL_INFO) ;

(The meaning of LOG_LEVEL_INFO, and other possible values, will be discussed below.)

9.1.2 NS_LOG Syntax

The NS_LOG environment variable contains a list of log components and options. Log components are separated by
‘7 characters:

$ NS_LOG="<log-component>:<log-component>...
Options for each log component are given as flags after each log component:
$ NS_LOG="<log-component>=<option>|<option>...:<log-component>..."

Options control the severity and level for that component, and whether optional information should be included, such
as the simulation time, simulation node, function name, and the symbolic severity.

9.1.3 Log Components

Generally a log component refers to a single source code . cc file, and encompasses the entire file.

Some helpers have special methods to enable the logging of all components in a module, spanning different compila-
tion units, but logically grouped together, such as the ns-3 wifi code:

WifiHelper wifiHelper;
wifiHelper.EnableLogComponents () ;

The NS_LOG log component wildcard ‘*’ will enable all components.
To see what log components are defined, any of these will work:

&

$ NS_LOG="print-list" ./waf —--run
> NS_LOG="foo" # a token not matching any log-component

The first form will print the name and enabled flags for all log components which are linked in; try it with
scratch-simulator. The second form prints all registered log components, then exit with an error.

9.1.4 Severity and Level Options

Individual messages belong to a single “severity class,” set by the macro creating the message. In the example above,
NS_LOG_LOGIC (..) creates the message in the LOG_LOGIC severity class.

The following severity classes are defined as enum constants:
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Severity Class Meaning

LOG_NONE The default, no logging
LOG_ERROR Serious error messages only
LOG_WARN Warning messages

LOG_DEBUG For use in debugging

LOG_INFO Informational

LOG_FUNCTION | Function tracing

LOG_LOGIC Control flow tracing within functions

Typically one wants to see messages at a given severity class and higher. This is done by defining inclusive logging
“levels™:

Level
LOG_LEVEL_ERROR

Meaning
Only LOG_ERROR severity class messages.

LOG_LEVEL_WARN

LOG_WARN and above.

LOG_LEVEL_DEBUG

LOG_DEBUG and above.

LOG_LEVEL_INFO

LOG_INFO and above.

LOG_LEVEL_FUNCTION

LOG_FUNCTION and above.

LOG_LEVEL_LOGIC

LOG_LOGIC and above.

LOG_LEVEL_ALL
LOG_ALL

All severity classes.
Synonym for LOG_LEVEL_ALL

The severity class and level options can be given in the NS_LOG environment variable by these tokens:

Class Level

error level_error
warn level_warn
debug level_debug
info level_info
function level_function
logic level_logic

level_all
all

*

Using a severity class token enables log messages at that severity only. For example, NS_LOG="+=warn" won’t out-
put messages with severity error. NS_LOG="x=1level_debug" will output messages at severity levels debug
and above.

Severity classes and levels can be combined with the ‘I’ operator: NS_LOG="+=1level_warn|logic" will output
messages at severity levels error, warn and logic.

The NS_LOG severity level wildcard ‘*’ and a1l are synonyms for level_all.
For log components merely mentioned in NS__LOG

$ NS_LOG="<log-component>:..."

the default severity is LOG_LEVEL_ALL.

9.1.5 Prefix Options

A number of prefixes can help identify where and when a message originated, and at what severity.

The available prefix options (as enum constants) are
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Prefix Symbol Meaning

LOG_PREFIX_FUNC Prefix the name of the calling function.
LOG_PREFIX_TIME Prefix the simulation time.
LOG_PREFIX_NODE Prefix the node id.
LOG_PREFIX_LEVEL | Prefix the severity level.
LOG_PREFIX_ALL Enable all prefixes.

The prefix options are described briefly below.

The options can be given in the NS_LOG environment variable by these tokens:

Token Alternate
prefix_func func
prefix_time time
prefix_node node
prefix_level level
prefix_all

all

*

For log components merely mentioned in NS_LOG

$ NS_LOG="<log-component>:..."

the default prefix options are LOG_PREFIX_ALL.

Severity Prefix

The severity class of a message can be included with the options prefix_level or level. For example, this value
of NS_LOG enables logging for all log components (‘*’) and all severity classes (=al1l), and prefixes the message
with the severity class (| prefix_level).

S NS_LOG="+=all|prefix_level" ./waf —--run scratch-simulator
Scratch Simulator

ERROR] error message

WARN] warn message

DEBUG] debug message

INFO] info message

FUNCT] function message

LOGIC] logic message

[
[
[
[
[
[
Time Prefix

The simulation time can be included with the options prefix_time or time. This prints the simulation time in
seconds.

Node Prefix

The simulation node id can be included with the options prefix_node or node.

Function Prefix

The name of the calling function can be included with the options prefix_func or func.

54 Chapter 9. Logging



ns-3 Manual, Release ns-3.20

NS_LoG Wildcards
The log component wildcard “** will enable all components. To enable all components at a specific severity level use
x*=<severity>.

The severity level option wildcard “*’ is a synonym for all. This must occur before any ‘I’ characters separating
options. To enable all severity classes, use <log-component>=x, or <log—component>=x* | <options>.

The option wildcard “*’ or token all enables all prefix options, but must occur after a ‘I’ character. To enable a
specific severity class or level, and all prefixes, use <log—component>=<severity>| *.

The combined option wildcard = enables all severities and all prefixes; for example, <log—component >=xx.

The uber-wildcard * = enables all severities and all prefixes for all log components. These are all equivalent:

S NS_LOG="xxx" ... S NS_LOG="x=all]|«"

S NS_LOG="#=x"

$ NS_LOC
*=level_alll|+" ... S NS_LOG

"e=%|all"

*=x%|prefix_all"

S NS_LOG="x=x|*x"

Be advised: even the trivial scratch-simulator produces over 46K lines of output with NS_LOG="+ +"!

9.2 How to add logging to your code

Adding logging to your code is very simple:
1. Invoke the NS_LOG_COMPONENT_DEFINE (...); macro outside of namespace ns3.

Create a unique string identifier (usually based on the name of the file and/or class defined within the file)
and register it with a macro call such as follows:

NS_LOG_COMPONENT_DEFINE ("Ipv4L3Protocol");

namespace ns3 {

This registers Ipv4L3Protocol as a log component.

(The macro was carefully written to permit inclusion either within or outside of namespace ns3, and
usage will vary across the codebase, but the original intent was to register this outside of namespace ns3
at file global scope.)

2. Add logging statements (macro calls) to your functions and function bodies.

9.2.1 Logging Macros

The logging macros and associated severity levels are

Severity Class Macro

LOG_NONE (none needed)

LOG_ERROR NS_LOG_ERROR (...);
LOG_WARN NS_LOG_WARN (...);
LOG_DEBUG NS_LOG_DEBUG (...);
LOG_INFO NS_LOG_INFO (...);
LOG_FUNCTION | NS_LOG_FUNCTION (...);
LOG_LOGIC NS_LOG_LOGIC (...);

The macros function as output streamers, so anything you can send to std: : cout, joined by << opera-
tors, is allowed:
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void MyClass::Check (int value, char » item)
{
NS_LOG_FUNCTION (this << arg << item);
if (arg > 10)
{
NS_LOG_ERROR ("encountered bad value " << value <<
" while checking " << name << "!I");

}

Note that NS_LOG_FUNCTION automatically inserts a ‘, * (comma-space) separator between each of
its arguments. This simplifies logging of function arguments; just concatenate them with << as in the
example above.

9.2.2 Unconditional Logging

As a convenience, the NS_LOG_UNCOND (.. .); macro will always log its arguments, even if the associated log-
component is not enabled at any severity. This macro does not use any of the prefix options. Note that logging is only
enabled in debug builds; this macro won’t produce output in optimized builds.

9.2.3 Guidelines

* Start every class method with NS_LOG_FUNCTION (this << args...); This enables easy function
call tracing.

— Except: don’t log operators or explicit copy constructors, since these will cause infinite recursion and stack
overflow.

— For methods without arguments use the same form: NS_LOG_FUNCTION (this);
— For static functions:
% With arguments use NS_LOG_FUNCTION (...); asnormal.
* Without arguments use NS_LOG_FUNCTION_NOARGS () ;
» Use NS_LOG_ERROR for serious error conditions that probably invalidate the simulation execution.

* Use NS_LOG_WARN for unusual conditions that may be correctable. Please give some hints as to the nature of
the problem and how it might be corrected.

* NS_LOG_DEBUG is usually used in an ad hoc way to understand the execution of a model.

e Use NS_LOG_INFO for additional information about the execution, such as the size of a data structure when
adding/removing from it.

* Use NS_LOG_LOGIC to trace important logic branches within a function.

* Test that your logging changes do not break the code. Run some example programs with all log components
turned on (e.g. NS_LOG="xx*").
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TEN

TRACING

The tracing subsystem is one of the most important mechanisms to understand in ns-3. In most cases, ns-3 users
will have a brilliant idea for some new and improved networking feature. In order to verify that this idea works, the
researcher will make changes to an existing system and then run experiments to see how the new feature behaves by
gathering statistics that capture the behavior of the feature.

In other words, the whole point of running a simulation is to generate output for further study. In ns-3, the subsystem
that enables a researcher to do this is the tracing subsystem.

10.1 Tracing Motivation

There are many ways to get information out of a program. The most straightforward way is to just directly print the
information to the standard output, as in,

#include <iostream>

int main ()

{

std::cout << "The value of x is " << x << std::endl;
}

This is workable in small environments, but as your simulations get more and more complicated, you end up with
more and more prints and the task of parsing and performing computations on the output begins to get harder and
harder.

Another thing to consider is that every time a new tidbit is needed, the software core must be edited and another print
introduced. There is no standardized way to control all of this output, so the amount of output tends to grow without
bounds. Eventually, the bandwidth required for simply outputting this information begins to limit the running time of
the simulation. The output files grow to enormous sizes and parsing them becomes a problem.

ns-3 provides a simple mechanism for logging and providing some control over output via Log Components, but the
level of control is not very fine grained at all. The logging module is a relatively blunt instrument.

It is desirable to have a facility that allows one to reach into the core system and only get the information required
without having to change and recompile the core system. Even better would be a system that notified the user when
an item of interest changed or an interesting event happened.

The ns-3 tracing system is designed to work along those lines and is well-integrated with the Attribute and Config
substems allowing for relatively simple use scenarios.
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10.2 Overview

The tracing subsystem relies heavily on the ns-3 Callback and Attribute mechanisms. You should read and understand
the corresponding sections of the manual before attempting to understand the tracing system.

The ns-3 tracing system is built on the concepts of independent tracing sources and tracing sinks; along with a uniform
mechanism for connecting sources to sinks.

Trace sources are entities that can signal events that happen in a simulation and provide access to interesting underlying
data. For example, a trace source could indicate when a packet is received by a net device and provide access to the
packet contents for interested trace sinks. A trace source might also indicate when an interesting state change happens
in a model. For example, the congestion window of a TCP model is a prime candidate for a trace source.

Trace sources are not useful by themselves; they must be connected to other pieces of code that actually do something
useful with the information provided by the source. The entities that consume trace information are called trace sinks.
Trace sources are generators of events and trace sinks are consumers.

This explicit division allows for large numbers of trace sources to be scattered around the system in places which model
authors believe might be useful. Unless a user connects a trace sink to one of these sources, nothing is output. This
arrangement allows relatively unsophisticated users to attach new types of sinks to existing tracing sources, without
requiring editing and recompiling the core or models of the simulator.

There can be zero or more consumers of trace events generated by a trace source. One can think of a trace source as a
kind of point-to-multipoint information link.

The “transport protocol” for this conceptual point-to-multipoint link is an ns-3 Callback.

Recall from the Callback Section that callback facility is a way to allow two modules in the system to communicate
via function calls while at the same time decoupling the calling function from the called class completely. This is the
same requirement as outlined above for the tracing system.

Basically, a trace source is a callback to which multiple functions may be registered. When a trace sink expresses
interest in receiving trace events, it adds a callback to a list of callbacks held by the trace source. When an interesting
event happens, the trace source invokes its operator () providing zero or more parameters. This tells the source to
go through its list of callbacks invoking each one in turn. In this way, the parameter(s) are communicated to the trace
sinks, which are just functions.

10.2.1 The Simplest Example

It will be useful to go walk a quick example just to reinforce what we’ve said.:

#include "ns3/object.h"”

#include "ns3/uinteger.h"

#include "ns3/traced-value.h""
#include "ns3/trace-source-accessor.h"

#include <iostream>
using namespace ns3;

The first thing to do is include the required files. As mentioned above, the trace system makes heavy use of the Object
and Attribute systems. The first two includes bring in the declarations for those systems. The file, t raced-value.h
brings in the required declarations for tracing data that obeys value semantics.

In general, value semantics just means that you can pass the object around, not an address. In order to use value
semantics at all you have to have an object with an associated copy constructor and assignment operator available.
We extend the requirements to talk about the set of operators that are pre-defined for plain-old-data (POD) types.
Operator=, operator++, operator—, operator+, operator==, etc.
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What this all means is that you will be able to trace changes to an object made using those operators.:

class MyObject : public Object
{
public:
static TypelId GetTypelId (wvoid)
{
static TypeId tid = Typeld ("MyObject")
.SetParent (Object::GetTypelId ())
.AddConstructor<MyObject> ()
.AddTraceSource ("MyInteger",
"An integer value to trace.",
MakeTraceSourceAccessor (&MyObject::m_myInt))
2
return tid;

MyObject () {}
TracedValue<uint32_t> m_myInt;
}i

Since the tracing system is integrated with Attributes, and Attributes work with Objects, there must be an ns-3 Ob ject
for the trace source to live in. The two important lines of code are the . AddTraceSource and the TracedValue
declaration.

The .AddTraceSource provides the “hooks” used for connecting the trace source to the outside world. The
TracedValue declaration provides the infrastructure that overloads the operators mentioned above and drives the
callback process.:

void
IntTrace (Int oldValue, Int newValue)
{

std::cout << "Traced " << oldValue << " to " << newValue << std::endl;

}

This is the definition of the trace sink. It corresponds directly to a callback function. This function will be called
whenever one of the operators of the TracedValue is executed.:

int

main (int argc, char xargv[])

{
Ptr<MyObject> myObject = CreateObject<MyObject> ();

myObject->TraceConnectWithoutContext ("MyInteger", MakeCallback (&IntTrace));

myObject->m_myInt = 1234;
}

In this snippet, the first thing that needs to be done is to create the object in which the trace source lives.

The next step, the TraceConnectWithoutContext, forms the connection between the trace source and the trace
sink. Notice the MakeCallback template function. Recall from the Callback section that this creates the specialized
functor responsible for providing the overloaded operator () used to “fire” the callback. The overloaded operators
(++, —, etc.) will use this operator () to actually invoke the callback. The TraceConnectWithoutContext,
takes a string parameter that provides the name of the Attribute assigned to the trace source. Let’s ignore the bit about
context for now since it is not important yet.

Finally, the line,:
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myObject->m_myInt = 1234;

should be interpreted as an invocation of operat or= on the member variable m_my Int with the integer 1234 passed
as a parameter. It turns out that this operator is defined (by TracedvValue) to execute a callback that returns void
and takes two integer values as parameters — an old value and a new value for the integer in question. That is exactly
the function signature for the callback function we provided — IntTrace.

To summarize, a trace source is, in essence, a variable that holds a list of callbacks. A trace sink is a function used
as the target of a callback. The Attribute and object type information systems are used to provide a way to connect
trace sources to trace sinks. The act of “hitting” a trace source is executing an operator on the trace source which fires
callbacks. This results in the trace sink callbacks registering interest in the source being called with the parameters
provided by the source.

10.2.2 Using the Config Subsystem to Connect to Trace Sources

The TraceConnectWithoutContext call shown above in the simple example is actually very rarely used in the
system. More typically, the Config subsystem is used to allow selecting a trace source in the system using what is
called a config path.

For example, one might find something that looks like the following in the system (taken from
examples/tcp-large-transfer.cc):

void CwndTracer (uint32_t oldval, uint32_t newval) {}

Config::ConnectWithoutContext (
"/NodeList/0/$ns3::TcpL4Protocol/SocketList/0/CongestionWindow",
MakeCallback (&CwndTracer));

This should look very familiar. It is the same thing as the previous example, except that a static member function of
class Config is being called instead of a method on Object; and instead of an Att ribute name, a path is being
provided.

The first thing to do is to read the path backward. The last segment of the path must be an Attribute of an
Object. In fact, if you had a pointer to the Object that has the “CongestionWindow” Attribute handy (call it
theObject), you could write this just like the previous example:

void CwndTracer (uint32_t oldval, uint32_t newval) {}

theObject->TraceConnectWithoutContext ("CongestionWindow", MakeCallback (&CwndTracer));

It turns out that the code for Config: :ConnectWithoutContext does exactly that. This function takes a path
that represents a chain of Ob ject pointers and follows them until it gets to the end of the path and interprets the last
segment as an Attribute on the last object. Let’s walk through what happens.

The leading “/” character in the path refers to a so-called namespace. One of the predefined namespaces in the config
system is “NodeList” which is a list of all of the nodes in the simulation. Items in the list are referred to by indices into
the list, so “/NodeList/0” refers to the zeroth node in the list of nodes created by the simulation. This node is actually
a Pt r<Node> and so is a subclass of an ns3: :Object.

As described in the Object model section, ns-3 supports an object aggregation model. The next path segment begins
with the “$” character which indicates a Get Ob ject call should be made looking for the type that follows. When a
node is initialized by an InternetStackHelper a number of interfaces are aggregated to the node. One of these
is the TCP level four protocol. The runtime type of this protocol objectis ns3: : TcpL4Protocol”. When the
* ‘GetObject is executed, it returns a pointer to the object of this type.
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The TcpL4Protocol class defines an Attribute called “SocketList” which is a list of sockets. Each socket is actually
an ns3: :0bject withits own Attributes. The items in the list of sockets are referred to by index just as in the
NodeList, so “SocketList/0” refers to the zeroth socket in the list of sockets on the zeroth node in the NodeList — the
first node constructed in the simulation.

This socket, the type of which turns out to be an ns3: : TcpSocketImpl defines an attribute called “Congestion-
Window” which is a TracedValue<uint32_t>. The Config: :ConnectWithoutContext now does a,:

object->TraceConnectWithoutContext ("CongestionWindow", MakeCallback (&CwndTracer));

using the object pointer from “SocketList/0” which makes the connection between the trace source defined in the
socket to the callback — CwndTracer.

Now, whenever a change is made to the TracedValue<uint32_t> representing the congestion window in the
TCP socket, the registered callback will be executed and the function CwndTracer will be called printing out the
old and new values of the TCP congestion window.

10.3 Using the Tracing API

There are three levels of interaction with the tracing system:
* Beginning user can easily control which objects are participating in tracing;

 Intermediate users can extend the tracing system to modify the output format generated or use existing trace
sources in different ways, without modifying the core of the simulator;

* Advanced users can modify the simulator core to add new tracing sources and sinks.

10.4 Using Trace Helpers

The ns-3 trace helpers provide a rich environment for configuring and selecting different trace events and writing
them to files. In previous sections, primarily “Building Topologies,” we have seen several varieties of the trace helper
methods designed for use inside other (device) helpers.

Perhaps you will recall seeing some of these variations:

pointToPoint .EnablePcapAll ("second");

pointToPoint.EnablePcap ("second", p2pNodes.Get (0)->GetId (), 0);
csma.EnablePcap ("third", csmaDevices.Get (0), true);

pointToPoint .EnableAsciiAll (ascii.CreateFileStream ("myfirst.tr"));

What may not be obvious, though, is that there is a consistent model for all of the trace-related methods found in the
system. We will now take a little time and take a look at the “big picture”.

There are currently two primary use cases of the tracing helpers in ns-3: Device helpers and protocol helpers. Device
helpers look at the problem of specifying which traces should be enabled through a node, device pair. For example,
you may want to specify that pcap tracing should be enabled on a particular device on a specific node. This follows
from the ns-3 device conceptual model, and also the conceptual models of the various device helpers. Following
naturally from this, the files created follow a <prefix>-<node>-<device> naming convention.

Protocol helpers look at the problem of specifying which traces should be enabled through a protocol and interface
pair. This follows from the ns-3 protocol stack conceptual model, and also the conceptual models of internet stack
helpers. Naturally, the trace files should follow a <prefix>-<protocol>-<interface> naming convention.

The trace helpers therefore fall naturally into a two-dimensional taxonomy. There are subtleties that prevent all four
classes from behaving identically, but we do strive to make them all work as similarly as possible; and whenever
possible there are analogs for all methods in all classes.
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pcap | ascii
Device Helper v v
Protocol Helper | v/ v

‘We use an approach called amixin to add tracing functionality to our helper classes. A mixin is a class that provides
functionality to that is inherited by a subclass. Inheriting from a mixin is not considered a form of specialization but
is really a way to collect functionality.

Let’s take a quick look at all four of these cases and their respective mixins.

10.4.1 Pcap Tracing Device Helpers

The goal of these helpers is to make it easy to add a consistent pcap trace facility to an ns-3 device. We want all of the
various flavors of pcap tracing to work the same across all devices, so the methods of these helpers are inherited by
device helpers. Take a look at src/network/helper/trace-helper.h if you want to follow the discussion
while looking at real code.

The class PcapHelperForDevice is a mixin provides the high level functionality for using pcap tracing in an
ns-3 device. Every device must implement a single virtual method inherited from this class.:

virtual void EnablePcaplInternal (std::string prefix, Ptr<NetDevice> nd, bool promiscuous) = 0;

The signature of this method reflects the device-centric view of the situation at this level. All of the public methods
inherited from class PcapUserHelperForDevice reduce to calling this single device-dependent implementation
method. For example, the lowest level pcap method,:

void EnablePcap (std::string prefix, Ptr<NetDevice> nd, bool promiscuous = false, bool explicitFilen:
will call the device implementation of EnablePcapInternal directly. All other public pcap tracing methods build
on this implementation to provide additional user-level functionality. What this means to the user is that all device

helpers in the system will have all of the pcap trace methods available; and these methods will all work in the same
way across devices if the device implements EnablePcapInternal correctly.

Pcap Tracing Device Helper Methods

void EnablePcap (std::string prefix, Ptr<NetDevice> nd,

bool promiscuous = false, bool explicitFilename = false);
void EnablePcap (std::string prefix, std::string ndName,
bool promiscuous = false, bool explicitFilename = false);
void EnablePcap (std::string prefix, NetDeviceContainer d,
bool promiscuous = false);
void EnablePcap (std::string prefix, NodeContainer n,
bool promiscuous = false);
void EnablePcap (std::string prefix, uint32_t nodeid, uint32_t deviceid,
bool promiscuous = false);
void EnablePcapAll (std::string prefix, bool promiscuous = false);

In each of the methods shown above, there is a default parameter called promiscuous that defaults to false. This
parameter indicates that the trace should not be gathered in promiscuous mode. If you do want your traces to include
all traffic seen by the device (and if the device supports a promiscuous mode) simply add a true parameter to any of
the calls above. For example,:

Ptr<NetDevice> nd;

helper.EnablePcap ("prefix", nd, true);
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will enable promiscuous mode captures on the NetDevice specified by nd.
The first two methods also include a default parameter called explicitFilename that will be discussed below.

You are encouraged to peruse the Doxygen for class PcapHelperForDevice to find the details of these methods;
but to summarize ...

You can enable pcap tracing on a particular node/net-device pair by providing a Ptr<NetDevice> to an
EnablePcap method. The Ptr<Node> is implicit since the net device must belong to exactly one Node. For
example,:

Ptr<NetDevice> nd;
helper.EnablePcap ("prefix", nd);

You can enable pcap tracing on a particular node/net-device pair by providing a std: : st ring representing an object
name service string to an EnablePcap method. The Pt r<NetDevice> is looked up from the name string. Again,
the <Node> is implicit since the named net device must belong to exactly one Node. For example,:

Names: :Add ("server" ...);
Names: :Add ("server/eth0" ...);

helper.EnablePcap ("prefix", "server/ath0");

You can enable pcap tracing on a collection of node/net-device pairs by providing a NetDeviceContainer. For
each NetDevice in the container the type is checked. For each device of the proper type (the same type as is managed
by the device helper), tracing is enabled. Again, the <Node> is implicit since the found net device must belong to
exactly one Node. For example,:

NetDeviceContainer d = ...;
helper.EnablePcap ("prefix", d);

You can enable pcap tracing on a collection of node/net-device pairs by providing a NodeContainer. For each
Node in the NodeContainer its attached Net Devices are iterated. For each NetDevice attached to each node
in the container, the type of that device is checked. For each device of the proper type (the same type as is managed
by the device helper), tracing is enabled.:

NodeContainer nj;

helper.EnablePcap ("prefix", n);

You can enable pcap tracing on the basis of node ID and device ID as well as with explicit Pt r. Each Node in the
system has an integer node ID and each device connected to a node has an integer device ID.:

helper.EnablePcap ("prefix", 21, 1);

Finally, you can enable pcap tracing for all devices in the system, with the same type as that managed by the device
helper.:

helper.EnablePcapAll ("prefix");

Pcap Tracing Device Helper Filename Selection

Implicit in the method descriptions above is the construction of a complete filename by the implementation method.
By convention, pcap traces in the ns-3 system are of the form <prefix>-<node id>-<device id>.pcap

As previously mentioned, every node in the system will have a system-assigned node id; and every device will have
an interface index (also called a device id) relative to its node. By default, then, a pcap trace file created as a result of
enabling tracing on the first device of node 21 using the prefix “prefix” would be prefix-21-1.pcap.
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You can always use the ns-3 object name service to make this more clear. For example, if you use the object
name service to assign the name “server” to node 21, the resulting pcap trace file name will automatically become,
prefix—-server-1.pcap and if you also assign the name “eth(Q” to the device, your pcap file name will automat-
ically pick this up and be called prefix—-server-eth0.pcap.

Finally, two of the methods shown above,:

void EnablePcap (std::string prefix, Ptr<NetDevice> nd, bool promiscuous = false, bool explicitFilen:
void EnablePcap (std::string prefix, std::string ndName, bool promiscuous = false, bool explicitFile:

have a default parameter called explicitFilename. When set to true, this parameter disables the automatic
filename completion mechanism and allows you to create an explicit filename. This option is only available in the
methods which enable pcap tracing on a single device.

For example, in order to arrange for a device helper to create a single promiscuous pcap capture file of a specific name
(my-pcap-file.pcap) on a given device, one could:

Ptr<NetDevice> nd;
helper.EnablePcap ("my-pcap-file.pcap", nd, true, true);

The first t rue parameter enables promiscuous mode traces and the second tells the helper to interpret the prefix
parameter as a complete filename.

10.4.2 Ascii Tracing Device Helpers

The behavior of the ascii trace helper mixin is substantially similar to the pcap version. Take a look at
src/network/helper/trace-helper.h if you want to follow the discussion while looking at real code.

The class AsciiTraceHelperForDevice adds the high level functionality for using ascii tracing to a device
helper class. As in the pcap case, every device must implement a single virtual method inherited from the ascii trace
mixin.:

virtual void EnableAsciilnternal (Ptr<OutputStreamWrapper> stream, std::string prefix, Ptr<NetDevice:

The signature of this method reflects the device-centric view of the situation at this level; and also the fact that the
helper may be writing to a shared output stream. All of the public ascii-trace-related methods inherited from class
AsciiTraceHelperForDevice reduce to calling this single device- dependent implementation method. For
example, the lowest level ascii trace methods,:

void EnableAscii (std::string prefix, Ptr<NetDevice> nd);
void EnableAscii (Ptr<OutputStreamWrapper> stream, Ptr<NetDevice> nd);

will call the device implementation of EnableAsciiInternal directly, providing either a valid prefix or stream.
All other public ascii tracing methods will build on these low-level functions to provide additional user-level func-
tionality. What this means to the user is that all device helpers in the system will have all of the ascii trace
methods available; and these methods will all work in the same way across devices if the devices implement
EnablAsciiInternal correctly.

Ascii Tracing Device Helper Methods

void EnableAscii (std::string prefix, Ptr<NetDevice> nd);
void EnableAscii (Ptr<OutputStreamWrapper> stream, Ptr<NetDevice> nd);

void EnableAscii (std::string prefix, std::string ndName) ;
void EnableAscii (Ptr<OutputStreamWrapper> stream, std::string ndName) ;
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void EnableAscii (std::string prefix, NetDeviceContainer d);
void EnableAscii (Ptr<OutputStreamWrapper> stream, NetDeviceContainer d);

void EnableAscii (std::string prefix, NodeContainer n);
void EnableAscii (Ptr<OutputStreamWrapper> stream, NodeContainer n);

void EnableAscii (std::string prefix, uint32_t nodeid, uint32_t deviceid);
void EnableAscii (Ptr<OutputStreamWrapper> stream, uint32_t nodeid, uint32_t deviceid);

void EnableAsciiAll (std::string prefix);
void EnableAsciiAll (Ptr<OutputStreamWrapper> stream);

You are encouraged to peruse the Doxygen for class TraceHelperForDevice to find the details of these methods;
but to summarize ...

There are twice as many methods available for ascii tracing as there were for pcap tracing. This is because, in addition
to the pcap-style model where traces from each unique node/device pair are written to a unique file, we support
a model in which trace information for many node/device pairs is written to a common file. This means that the
<prefix>-<node>-<device> file name generation mechanism is replaced by a mechanism to refer to a common file;
and the number of API methods is doubled to allow all combinations.

Just as in pcap tracing, you can enable ascii tracing on a particular node/net-device pair by providing a
Ptr<NetDevice>toan EnableAscii method. The Pt r<Node> is implicit since the net device must belong to
exactly one Node. For example,:

Ptr<NetDevice> nd;
helper.EnableAscii ("prefix", nd);

In this case, no trace contexts are written to the ascii trace file since they would be redundant. The system will pick the
file name to be created using the same rules as described in the pcap section, except that the file will have the suffix
”.tr” instead of ”.pcap”.

If you want to enable ascii tracing on more than one net device and have all traces sent to a single file, you can do that
as well by using an object to refer to a single file:

Ptr<NetDevice> ndl;
Ptr<NetDevice> nd2;

Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("trace-file-name.tr");

helper.EnableAscii (stream, ndl);
helper.EnableAscii (stream, nd2);

In this case, trace contexts are written to the ascii trace file since they are required to disambiguate traces from the
two devices. Note that since the user is completely specifying the file name, the string should include the .tr”” for
consistency.

You can enable ascii tracing on a particular node/net-device pair by providing a std: : st ring representing an object
name service string to an EnablePcap method. The Pt r<NetDevice> is looked up from the name string. Again,
the <Node> is implicit since the named net device must belong to exactly one Node. For example,:

Names: :Add ("client" ...);
Names: :Add ("client/eth0" ...);
Names: :Add ("server" ...);
Names: :Add ("server/eth0" ...);

helper.EnableAscii ("prefix", "client/ethO0");
helper.EnableAscii ("prefix", "server/eth0");
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This would result in two files named prefix—-client—ethO.tr and prefix—-server—-eth0.tr with traces
for each device in the respective trace file. Since all of the EnableAscii functions are overloaded to take a stream
wrapper, you can use that form as well:

Names: :Add ("client" ...);

Names: :Add ("client/eth0" ...);

Names: :Add ("server" ...);

Names: :Add ("server/eth0" ...);

Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("trace-file-name.tr");

helper.EnableAscii (stream, "client/eth0");
helper.EnableAscii (stream, "server/eth0");

This would result in a single trace file called trace—-file—name. tr that contains all of the trace events for both
devices. The events would be disambiguated by trace context strings.

You can enable ascii tracing on a collection of node/net-device pairs by providing a NetDeviceContainer. For
each NetDevice in the container the type is checked. For each device of the proper type (the same type as is managed
by the device helper), tracing is enabled. Again, the <Node> is implicit since the found net device must belong to
exactly one Node. For example,:

NetDeviceContainer d = ...;

helper.EnableAscii ("prefix", d);

This would result in a number of ascii trace files being created, each of which follows the <prefix>-<node id>-<device
id>.tr convention. Combining all of the traces into a single file is accomplished similarly to the examples above:

NetDeviceContainer d = ...;
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("trace-file-name.tr");
helper.EnableAscii (stream, d);

You can enable ascii tracing on a collection of node/net-device pairs by providing a NodeContainer. For each
Node in the NodeContainer its attached NetDevices are iterated. For each NetDevice attached to each node
in the container, the type of that device is checked. For each device of the proper type (the same type as is managed
by the device helper), tracing is enabled.:

NodeContainer nj;

helper.EnableAscii ("prefix", n);

This would result in a number of ascii trace files being created, each of which follows the <prefix>-<node id>-<device
id>.tr convention. Combining all of the traces into a single file is accomplished similarly to the examples above:

You can enable pcap tracing on the basis of node ID and device ID as well as with explicit Pt r. Each Node in the
system has an integer node ID and each device connected to a node has an integer device ID.:

helper.EnableAscii ("prefix", 21, 1);

Of course, the traces can be combined into a single file as shown above.

Finally, you can enable pcap tracing for all devices in the system, with the same type as that managed by the device
helper.:

helper.EnableAsciiAll ("prefix");
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This would result in a number of ascii trace files being created, one for every device in the system of the type managed
by the helper. All of these files will follow the <prefix>-<node id>-<device id>.tr convention. Combining all of the
traces into a single file is accomplished similarly to the examples above.

Ascii Tracing Device Helper Filename Selection

Implicit in the prefix-style method descriptions above is the construction of the complete filenames by the implemen-
tation method. By convention, ascii traces in the ns-3 system are of the form <prefix>-<node id>-<device
id>.tr.

As previously mentioned, every node in the system will have a system-assigned node id; and every device will have
an interface index (also called a device id) relative to its node. By default, then, an ascii trace file created as a result of
enabling tracing on the first device of node 21, using the prefix “prefix”, would be prefix-21-1.tr.

You can always use the ns-3 object name service to make this more clear. For example, if you use the object
name service to assign the name “server” to node 21, the resulting ascii trace file name will automatically become,
prefix—server-1.tr and if you also assign the name “eth0” to the device, your ascii trace file name will auto-
matically pick this up and be called prefix—server-ethO.tr.

10.4.3 Pcap Tracing Protocol Helpers

The goal of these mixins is to make it easy to add a consistent pcap trace facility to protocols. We want all of the
various flavors of pcap tracing to work the same across all protocols, so the methods of these helpers are inherited by
stack helpers. Take a look at src/network/helper/trace-helper.h if you want to follow the discussion
while looking at real code.

In this section we will be illustrating the methods as applied to the protocol Ipv4. To specify traces in similar
protocols, just substitute the appropriate type. For example, use a Pt r<Ipv6> instead of a Pt r<Ipv4> and call
EnablePcaplIpvé instead of EnablePcapIpvi4.

The class PcapHelperForIpv4 provides the high level functionality for using pcap tracing in the Ipv4 protocol.
Each protocol helper enabling these methods must implement a single virtual method inherited from this class. There
will be a separate implementation for ITpv6, for example, but the only difference will be in the method names and
signatures. Different method names are required to disambiguate class Ipv4 from Ipv6é which are both derived from
class Ob ject, and methods that share the same signature.:

virtual void EnablePcapIpvé4Internal (std::string prefix, Ptr<Ipv4> ipv4, uint32_t interface) = 0;

The signature of this method reflects the protocol and interface-centric view of the situation at this level. All of the
public methods inherited from class PcapHelperForIpv4 reduce to calling this single device-dependent imple-
mentation method. For example, the lowest level pcap method,:

void EnablePcapIpv4 (std::string prefix, Ptr<Ipv4> ipv4, uint32_t interface);

will call the device implementation of EnablePcapIpv4Internal directly. All other public pcap tracing methods
build on this implementation to provide additional user-level functionality. What this means to the user is that all
protocol helpers in the system will have all of the pcap trace methods available; and these methods will all work in the
same way across protocols if the helper implements EnablePcapIpv4Internal correctly.

Pcap Tracing Protocol Helper Methods

These methods are designed to be in one-to-one correspondence with the Node- and NetDevice- centric versions
of the device versions. Instead of Node and NetDevice pair constraints, we use protocol and interface constraints.

Note that just like in the device version, there are six methods:
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void EnablePcapIpvé
void EnablePcapIpvé

(std::string prefix, Ptr<Ipv4> ipv4, uint32_t interface);
(std::string prefix, std::string ipv4Name, uint32_t interface);
void EnablePcapIpv4 (std::string prefix, Ipv4InterfaceContainer c);
void EnablePcaplIpv4 (std::string prefix, NodeContainer n);

void EnablePcaplIpv4 (std::string prefix, uint32_t nodeid, uint32_t interface);
void EnablePcapIpv4All (std::string prefix);

You are encouraged to peruse the Doxygen for class PcapHelperForIpv4 to find the details of these methods; but
to summarize ...

You can enable pcap tracing on a particular protocol/interface pair by providing a Pt r<Ipv4> and interface to
an EnablePcap method. For example,:

Ptr<Ipv4> ipv4 = node->GetObject<Ipv4d> ();
helper.EnablePcaplIpv4d ("prefix", ipv4, 0);
You can enable pcap tracing on a particular node/net-device pair by providing a std: : st ring representing an object
name service string to an EnablePcap method. The Pt r<Ipwv4> is looked up from the name string. For example,:

Names: :Add ("serverIPv4" ...);
helper.EnablePcaplIpv4 ("prefix", "serverlIpv4d", 1);

You can enable pcap tracing on a collection of protocol/interface pairs by providing an
Ipv4InterfaceContainer. For each Ipv4 / interface pair in the container the protocol type is checked.
For each protocol of the proper type (the same type as is managed by the device helper), tracing is enabled for the
corresponding interface. For example,:

NodeContainer nodes;
NetDeviceContainer devices = deviceHelper.Install (nodes);

Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
Ipv4InterfaceContainer interfaces = ipv4.Assign (devices);

helper.EnablePcaplIpv4 ("prefix", interfaces);

You can enable pcap tracing on a collection of protocol/interface pairs by providing a NodeContainer. For each
Node in the NodeContainer the appropriate protocol is found. For each protocol, its interfaces are enumerated
and tracing is enabled on the resulting pairs. For example,:

NodeContainer nj;
helper.EnablePcaplIpv4 ("prefix", n);

You can enable pcap tracing on the basis of node ID and interface as well. In this case, the node-id is translated to a
Ptr<Node> and the appropriate protocol is looked up in the node. The resulting protocol and interface are used to
specify the resulting trace source.:

helper.EnablePcaplIpv4 ("prefix", 21, 1);

Finally, you can enable pcap tracing for all interfaces in the system, with associated protocol being the same type as
that managed by the device helper.:

helper.EnablePcapIpv4All ("prefix");
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Pcap Tracing Protocol Helper Filename Selection

Implicit in all of the method descriptions above is the construction of the complete filenames by the implementa-
tion method. By convention, pcap traces taken for devices in the ns-3 system are of the form <prefix>-<node
id>-<device id>.pcap. In the case of protocol traces, there is a one-to-one correspondence between protocols
and Nodes. This is because protocol Ob jects are aggregated to Node Objects. Since there is no global proto-
col id in the system, we use the corresponding node id in file naming. Therefore there is a possibility for file name
collisions in automatically chosen trace file names. For this reason, the file name convention is changed for protocol
traces.

As previously mentioned, every node in the system will have a system-assigned node id. Since there is a one-to-one
correspondence between protocol instances and node instances we use the node id. Each interface has an interface
id relative to its protocol. We use the convention “<prefix>-n<node id>-i<interface id>.pcap” for trace file naming in
protocol helpers.

Therefore, by default, a pcap trace file created as a result of enabling tracing on interface 1 of the Ipv4 protocol of
node 21 using the prefix “prefix”” would be “prefix-n21-il.pcap”.

You can always use the ns-3 object name service to make this more clear. For example, if you use the object name ser-
vice to assign the name “serverIpv4” to the Ptr<Ipv4> on node 21, the resulting pcap trace file name will automatically
become, “prefix-nserverlpv4-il.pcap”.

10.4.4 Ascii Tracing Protocol Helpers

The behavior of the ascii trace helpers is substantially similar to the pcap -case. Take a look at
src/network/helper/trace-helper.h if you want to follow the discussion while looking at real code.

In this section we will be illustrating the methods as applied to the protocol Ipv4. To specify traces in similar
protocols, just substitute the appropriate type. For example, use a Pt r<Ipv6> instead of a Pt r<Ipv4> and call
EnableAsciiIpvé6 instead of EnableAsciiIpvd4.

The class AsciiTraceHelperForIpv4 adds the high level functionality for using ascii tracing to a protocol
helper. Each protocol that enables these methods must implement a single virtual method inherited from this class.:

virtual void EnableAsciilpvé4Internal (Ptr<OutputStreamWrapper> stream, std::string prefix,
Ptr<Ipv4> ipv4, uint32_t interface) = 0;

The signature of this method reflects the protocol- and interface-centric view of the situation at this level; and also
the fact that the helper may be writing to a shared output stream. All of the public methods inherited from class
PcapAndAsciiTraceHelperForIpv4 reduce to calling this single device- dependent implementation method.
For example, the lowest level ascii trace methods,:

void EnableAsciilpv4 (std::string prefix, Ptr<Ipv4> ipv4, uint32_t interface);
void EnableAsciilpv4 (Ptr<OutputStreamWrapper> stream, Ptr<Ipv4> ipv4, uint32_t interface);

will call the device implementation of EnableAsciiIpv4Internal directly, providing either the prefix or the
stream. All other public ascii tracing methods will build on these low-level functions to provide additional user-level
functionality. What this means to the user is that all device helpers in the system will have all of the ascii trace
methods available; and these methods will all work in the same way across protocols if the protocols implement
EnablAsciiIpv4Internal correctly.

Ascii Tracing Device Helper Methods

void EnableAsciilIpv4 (std::string prefix, Ptr<Ipv4> ipv4, uint32_t interface);
void EnableAsciilpv4 (Ptr<OutputStreamWrapper> stream, Ptr<Ipv4> ipv4, uint32_t interface);
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void EnableAsciilpv4 (std::string prefix, std::string ipv4Name, uint32_t interface);
void EnableAsciilpv4 (Ptr<OutputStreamWrapper> stream, std::string ipv4Name, uint32_t interface);

void EnableAsciilpv4 (std::string prefix, Ipv4InterfaceContainer c);
void EnableAsciilIpv4 (Ptr<OutputStreamWrapper> stream, Ipv4InterfaceContainer c);

void EnableAsciilpv4 (std::string prefix, NodeContainer n);
void EnableAsciilIpv4 (Ptr<OutputStreamWrapper> stream, NodeContainer n);

void EnableAsciilpv4 (std::string prefix, uint32_t nodeid, uint32_t deviceid);
void EnableAsciilpv4 (Ptr<OutputStreamWrapper> stream, uint32_t nodeid, uint32_t interface);

void EnableAsciilpv4All (std::string prefix);
void EnableAsciiIpv4All (Ptr<OutputStreamWrapper> stream);

You are encouraged to peruse the Doxygen for class PcapAndAsciiHelperForIpv4 to find the details of these
methods; but to summarize ...

There are twice as many methods available for ascii tracing as there were for pcap tracing. This is because, in addition
to the pcap-style model where traces from each unique protocol/interface pair are written to a unique file, we support
a model in which trace information for many protocol/interface pairs is written to a common file. This means that the
<prefix>-n<node id>-<interface> file name generation mechanism is replaced by a mechanism to refer to a common
file; and the number of API methods is doubled to allow all combinations.

Just as in pcap tracing, you can enable ascii tracing on a particular protocol/interface pair by providing a Pt r<Ipv4>
and an interface to an EnableAscii method. For example,:

Ptr<Ipv4d> ipv4;
helper.EnableAsciilpv4 ("prefix", ipv4, 1);

In this case, no trace contexts are written to the ascii trace file since they would be redundant. The system will pick the
file name to be created using the same rules as described in the pcap section, except that the file will have the suffix
”.tr” instead of “.pcap”.

If you want to enable ascii tracing on more than one interface and have all traces sent to a single file, you can do that
as well by using an object to refer to a single file. We have already something similar to this in the “cwnd” example
above:

Ptr<Ipv4> protocoll = nodel->GetObject<Ipv4> ();
Ptr<Ipv4> protocol2 = node2->GetObject<Ipv4d> ();

Ptr<OutputStreamWrapper> stream

asciiTraceHelper.CreateFileStream ("trace-file-name.tr");

helper.EnableAsciiIpv4 (stream, protocoll, 1);
helper.EnableAsciilpv4 (stream, protocol2, 1);

In this case, trace contexts are written to the ascii trace file since they are required to disambiguate traces from the
two interfaces. Note that since the user is completely specifying the file name, the string should include the ”.tr” for
consistency.

You can enable ascii tracing on a particular protocol by providing a std: : string representing an object name
service string to an EnablePcap method. The Pt r<Ipv4> is looked up from the name string. The <Node> in the
resulting filenames is implicit since there is a one-to-one correspondence between protocol instances and nodes, For
example,:

Names: :Add ("nodelIpv4" ...);
Names: :Add ("node2Ipv4"™ ...);
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helper.EnableAsciilpv4 ("prefix", "nodellIpv4", 1);
helper.EnableAsciiIpv4 ("prefix", "node2Ipv4", 1);

This would result in two files named “prefix-nnodellpv4-il.tr” and “prefix-nnode2lpv4-il.tr” with traces for each
interface in the respective trace file. Since all of the EnableAscii functions are overloaded to take a stream wrapper,
you can use that form as well:

Names: :Add ("nodelIpv4"™ ...);
Names: :Add ("node2Ipv4" ...);
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("trace-file-name.tr");

helper.EnableAsciiIpv4 (stream, "nodellIpv4", 1);
helper.EnableAsciilpv4 (stream, "node2Ipv4", 1);

This would result in a single trace file called “trace-file-name.tr” that contains all of the trace events for both interfaces.
The events would be disambiguated by trace context strings.

You can enable ascii tracing on a collection of protocol/interface pairs by providing an
Ipvd4InterfaceContainer. For each protocol of the proper type (the same type as is managed by the
device helper), tracing is enabled for the corresponding interface. Again, the <Node> is implicit since there is a
one-to-one correspondence between each protocol and its node. For example,:

NodeContainer nodes;

NetDeviceContainer devices = deviceHelper.Install (nodes);
Ipv4AddressHelper ipv4;

ipv4.SetBase ("10.1.1.0", "255.255.255.0");
Ipv4InterfaceContainer interfaces = ipv4.Assign (devices);

helper.EnableAsciilIpv4 ("prefix", interfaces);

This would result in a number of ascii trace files being created, each of which follows the <prefix>-n<node id>-
i<interface>.tr convention. Combining all of the traces into a single file is accomplished similarly to the examples
above:

NodeContainer nodes;

NetDeviceContainer devices = deviceHelper.Install (nodes);

Ipv4AddressHelper ipv4;

ipvéd.SetBase ("10.1.1.0", "255.255.255.0");

Ipv4InterfaceContainer interfaces = ipv4.Assign (devices);

Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("trace-file-name.tr");

helper.EnableAsciilpv4 (stream, interfaces);

You can enable ascii tracing on a collection of protocol/interface pairs by providing a NodeContainer. For each
Node in the NodeContainer the appropriate protocol is found. For each protocol, its interfaces are enumerated
and tracing is enabled on the resulting pairs. For example,:

NodeContainer nj;
helper.EnableAsciilpv4 ("prefix", n);

This would result in a number of ascii trace files being created, each of which follows the <prefix>-<node id>-<device
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id>.tr convention. Combining all of the traces into a single file is accomplished similarly to the examples above:

You can enable pcap tracing on the basis of node ID and device ID as well. In this case, the node-id is translated to a
Ptr<Node> and the appropriate protocol is looked up in the node. The resulting protocol and interface are used to
specify the resulting trace source.:

helper.EnableAsciiIpv4 ("prefix", 21, 1);

Of course, the traces can be combined into a single file as shown above.

Finally, you can enable ascii tracing for all interfaces in the system, with associated protocol being the same type as
that managed by the device helper.:

helper.EnableAsciiIpv4All ("prefix");

This would result in a number of ascii trace files being created, one for every interface in the system related to a
protocol of the type managed by the helper. All of these files will follow the <prefix>-n<node id>-i<interface.tr
convention. Combining all of the traces into a single file is accomplished similarly to the examples above.

Ascii Tracing Device Helper Filename Selection

Implicit in the prefix-style method descriptions above is the construction of the complete filenames by the implemen-
tation method. By convention, ascii traces in the ns-3 system are of the form “<prefix>-<node id>-<device id>.tr.”

As previously mentioned, every node in the system will have a system-assigned node id. Since there is a one-to-one
correspondence between protocols and nodes we use to node-id to identify the protocol identity. Every interface on a
given protocol will have an interface index (also called simply an interface) relative to its protocol. By default, then,
an ascii trace file created as a result of enabling tracing on the first device of node 21, using the prefix “prefix”, would
be “prefix-n21-il.tr”. Use the prefix to disambiguate multiple protocols per node.

You can always use the ns-3 object name service to make this more clear. For example, if you use the object name
service to assign the name “serverIpv4” to the protocol on node 21, and also specify interface one, the resulting ascii
trace file name will automatically become, “prefix-nserverlpv4-1.tr”.

10.5 Tracing implementation details
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CHAPTER
ELEVEN

DATA COLLECTION

This chapter describes the ns-3 Data Collection Framework (DCF), which provides capabilities to obtain data gener-
ated by models in the simulator, to perform on-line reduction and data processing, and to marshal raw or transformed
data into various output formats.

The framework presently supports standalone ns-3 runs that don’t rely on any external program execution control. The
objects provided by the DCF may be hooked to ns-3 trace sources to enable data processing.

The source code for the classes lives in the directory src/stats.

This chapter is organized as follows. First, an overview of the architecture is presented. Next, the helpers for these
classes are presented; this initial treatment should allow basic use of the data collection framework for many use cases.
Users who wish to produce output outside of the scope of the current helpers, or who wish to create their own data
collection objects, should read the remainder of the chapter, which goes into detail about all of the basic DCF object
types and provides low-level coding examples.

11.1 Design

The DCF consists of three basic classes:

* Probe is a mechanism to instrument and control the output of simulation data that is used to monitor interesting
events. It produces output in the form of one or more ns-3 trace sources. Probe objects are hooked up to one or
more trace sinks (called Collectors), which process samples on-line and prepare them for output.

* Collector consumes the data generated by one or more Probe objects. It performs transformations on the data,
such as normalization, reduction, and the computation of basic statistics. Collector objects do not produce data
that is directly output by the ns-3 run; instead, they output data downstream to another type of object, called
Aggregator, which performs that function. Typically, Collectors output their data in the form of trace sources as
well, allowing collectors to be chained in series.

» Aggregator is the end point of the data collected by a network of Probes and Collectors. The main responsibility
of the Aggregator is to marshal data and their corresponding metadata, into different output formats such as
plain text files, spreadsheet files, or databases.

All three of these classes provide the capability to dynamically turn themselves on or off throughout a simulation.

Any standalone ns-3 simulation run that uses the DCF will typically create at least one instance of each of the three
classes above.

The overall flow of data processing is depicted in Data Collection Framework overview. On the left side, a running
ns-3 simulation is depicted. In the course of running the simulation, data is made available by models through trace
sources, or via other means. The diagram depicts that probes can be connected to these trace sources to receive data
asynchronously, or probes can poll for data. Data is then passed to a collector object that transforms the data. Finally,
an aggregator can be connected to the outputs of the collector, to generate plots, files, or databases.

73



ns-3 Manual, Release ns-3.20

(asynchronous)
trace sources

> ’
----- >
Probe Collector Aggregator> -p
\
\

or
<4—
\
Get raw Transform data Marshal data >
(synchronous) ;¢4 into output »_ files
polling formats 4
databases
Figure 11.1: Data Collection Framework overview
(asynchronous)
trace s

o S hrebe >,
4—

4—
h Get raw
(syr.1c ronous) data
polling

ources.
""" > Probe Collector
>

“A

Transform data :l
s

Aggregator>» - - »

Marshal data
into output
formats

Figure 11.2: Data Collection Framework aggregation

74

Chapter 11. Data Collection



ns-3 Manual, Release ns-3.20

A variation on the above figure is provided in Data Collection Framework aggregation. This second figure illustrates
that the DCF objects may be chained together in a manner that downstream objects take inputs from multiple upstream
objects. The figure conceptually shows that multiple probes may generate output that is fed into a single collector; as
an example, a collector that outputs a ratio of two counters would typically acquire each counter data from separate
probes. Multiple collectors can also feed into a single aggregator, which (as its name implies) may collect a number
of data streams for inclusion into a single plot, file, or database.

11.2 Data Collection Helpers

The full flexibility of the data collection framework is provided by the interconnection of probes, collectors, and
aggregators. Performing all of these interconnections leads to many configuration statements in user programs. For
ease of use, some of the most common operations can be combined and encapsulated in helper functions. In addition,
some statements involving ns-3 trace sources do not have Python bindings, due to limitations in the bindings.

11.2.1 Data Collection Helpers Overview

In this section, we provide an overview of some helper classes that have been created to ease the configuration of the
data collection framework for some common use cases. The helpers allow users to form common operations with
only a few statements in their C++ or Python programs. But, this ease of use comes at the cost of significantly less
flexibility than low-level configuration can provide, and the need to explicitly code support for new Probe types into
the helpers (to work around an issue described below).

The emphasis on the current helpers is to marshal data out of ns-3 trace sources into gnuplot plots or text files, without
a high degree of output customization or statistical processing (initially). Also, the use is constrained to the available
probe types in ns-3. Later sections of this documentation will go into more detail about creating new Probe types, as
well as details about hooking together Probes, Collectors, and Aggregators in custom arrangements.

To date, two Data Collection helpers have been implemented:
* GnuplotHelper
* FileHelper

11.2.2 GnuplotHelper

The GnuplotHelper is a helper class for producing output files used to make gnuplots. The overall goal is to provide
the ability for users to quickly make plots from data exported in ns-3 trace sources. By default, a minimal amount of
data transformation is performed; the objective is to generate plots with as few (default) configuration statements as
possible.

GnuplotHelper Overview

The GnuplotHelper will create 3 different files at the end of the simulation:
* A space separated gnuplot data file
* A gnuplot control file
* A shell script to generate the gnuplot

There are two configuration statements that are needed to produce plots. The first statement configures the plot
(filename, title, legends, and output type, where the output type defaults to PNG if unspecified):
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void ConfigurePlot (const std::string &outputFileNameWithoutExtension,
const std::string &title,
const std::string &xLegend,
const std::string &yLegend,
const std::string &terminalType = ".png");

The second statement hooks the Probe of interest:

void PlotProbe (const std::string &typeld,
const std::string &path,
const std::string &probeTraceSource,
const std::string &title);

The arguments are as follows:
e typeld: The ns-3 Typeld of the Probe
e path: The path in the ns-3 configuration namespace to one or more probes
 probeTraceSource: Which output of the probe should be connected to
« title: The title to associate with the dataset (in the gnuplot legend)

A variant on the PlotProbe above is to specify a fifth optional argument that controls where in the plot the key (legend)
is placed.

A fully worked example (from seventh. cc) is shown below:

// Create the gnuplot helper.
GnuplotHelper plotHelper;

// Configure the plot.

plotHelper.ConfigurePlot ("seventh-packet-byte-count",
"Packet Byte Count vs. Time",
"Time (Seconds)",
"Packet Byte Count",

"png");

// Plot the values generated by the probe.
plotHelper.PlotProbe ("ns3::Ipv4PacketProbe",
"/NodeList/*/$ns3::Ipv4L3Protocol/Tx",
"OutputBytes",
"Packet Byte Count",
GnuplotAggregator: :KEY_BELOW) ;

Note that the path specified may contain wildcards. In this case, multiple datasets are plotted on one plot; one for each
matched path.
The main output produced will be three files:

seventh-packet-byte-count.dat
seventh-packet-byte-count.plt
seventh-packet-byte-count.sh

At this point, users can either hand edit the .plt file for further customizations, or just run it through gnuplot. Running
sh seventh-packet-byte-count.sh simply runs the plot through gnuplot, as shown below.

It can be seen that the key elements (legend, title, legend placement, xlabel, ylabel, and path for the data) are all placed
on the plot. Since there were two matches to the configuration path provided, the two data series are shown:

* Packet Byte Count-0 corresponds to /NodeList/0/$ns3::Ipv4L3Protocol/Tx
¢ Packet Byte Count-1 corresponds to /NodeList/1/$ns3::Ipv4L3Protocol/Tx
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GnuplotHelper ConfigurePlot

The GnuplotHelper’s ConfigurePlot () function can be used to configure plots.

It has the following prototype:

void ConfigurePlot (const std::string &outputFileNameWithoutExtension,
const std::string &title,
const std::string &xLegend,
const std::string &yLegend,
const std::string &terminalType = ".png");

It has the following arguments:

Argument Description

outputFileNameWithoutExten- | Name of gnuplot related files to write with no extension.

sion

title Plot title string to use for this plot.

xLegend The legend for the x horizontal axis.

yLegend The legend for the y vertical axis.

terminal Type Terminal type setting string for output. The default terminal type is

113 L1

png .

The GnuplotHelper’s ConfigurePlot () function configures plot related parameters for this gnuplot helper so that
it will create a space separated gnuplot data file named outputFileNameWithoutExtension + .dat”, a gnuplot control
file named outputFileNameWithoutExtension + “.plt”, and a shell script to generate the gnuplot named outputFile-
NameWithoutExtension + ”.sh”.

An example of how to use this function can be seen in the seventh. cc code described above where it was used as

follows:

plotHelper.ConfigurePlot ("seventh-packet-byte-count",

"Packet Byte Count vs. Time",
"Time (Seconds)",
"Packet Byte Count",

"png");

GnuplotHelper PlotProbe

The GnuplotHelper’s P1lotProbe () function can be used to plot values generated by probes.

It has the following prototype:

void PlotProbe (const
const
const
const

enum GnuplotAggregator::KeyLocation keyLocation = GnuplotAggregator

std::string &typeld,
std::string &path,

std::string &probeTraceSource,
std::string &title,

It has the following arguments:

Argument Description

typeld The type ID for the probe used when it is created.

path Config path to access the probe.

probeTraceSource | The probe trace source to access.

title The title to be associated to this dataset

keyLocation The location of the key in the plot. The default location is inside.

: :KEY_INSIDE) ;
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The GnuplotHelper’'s P1otProbe () function plots a dataset generated by hooking the ns-3 trace source with a probe,
and then plotting the values from the probeTraceSource. The dataset will have the provided title, and will consist of
the ‘newValue’ at each timestamp.

If the config path has more than one match in the system because there is a wildcard, then one dataset for each match
will be plotted. The dataset titles will be suffixed with the matched characters for each of the wildcards in the config
path, separated by spaces. For example, if the proposed dataset title is the string “bytes”, and there are two wildcards
in the path, then dataset titles like “bytes-0 0 or “bytes-12 9” will be possible as labels for the datasets that are plotted.

An example of how to use this function can be seen in the seventh. cc code described above where it was used as
follows:

plotHelper.PlotProbe ("ns3::Ipv4PacketProbe",
"/NodeList/*/$ns3::Ipv4L3Protocol/Tx",
"OutputBytes",
"Packet Byte Count",
GnuplotAggregator: :KEY_BELOW) ;

Other Examples

Gnuplot Helper Example

A slightly  simpler example than  the seventh.cc  example can be found in
src/stats/examples/gnuplot—helper-example.cc. It is more of a toy example than seventh.cc
because it has a made-up trace source created for demonstration purposes.

The following 2-D gnuplot was created using the example.

In this example, there is an Emitter object that increments its counter at various random times and then emits the
counter’s value as a trace source.

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names: :Add ("/Names/Emitter", emitter);

The following code is probing the Counter exported by the emitter object. This DoubleProbe is using a path in the
configuration namespace to make the connection. Note that the emitter registered itself in the configuration namespace
after it was created; otherwise, the ConnectByPath would not work.

Ptr<DoubleProbe> probe = CreateObject<DoubleProbe> ();
probe->SetName ("PathProbe");
Names: :Add ("/Names/Probe", probe);

// Note, no return value 1s checked here.
probe->ConnectByPath ("/Names/Emitter/Counter");

Note that because there are no wildcards in the path used below, only 1 datastream was drawn in the plot. This single
datastream in the plot is simply labeled “Emitter Count”, with no extra suffixes like you would see if there were
wildcards in the path.

// Create the gnuplot helper.
GnuplotHelper plotHelper;

// Configure the plot.

plotHelper.ConfigurePlot ("gnuplot-helper—-example",
"Emitter Counts vs. Time",
"Time (Seconds)",
"Emitter Count",

"png");
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// Plot the values generated by the probe. The path that we provide
// helps to disambiguate the source of the trace.
plotHelper.PlotProbe ("ns3::DoubleProbe”,

"/Names/Probe/Output",

"Output",

"Emitter Count",

GnuplotAggregator: :KEY_INSIDE);

11.2.3 FileHelper

The FileHelper is a helper class used to put data values into a file. The overall goal is to provide the ability for
users to quickly make formatted text files from data exported in ns-3 trace sources. By default, a minimal amount of
data transformation is performed; the objective is to generate files with as few (default) configuration statements as
possible.

FileHelper Overview

The FileHelper will create 1 or more text files at the end of the simulation.
The FileHelper can create 4 different types of text files:
* Formatted
* Space separated (the default)
* Comma separated
* Tab separated
Formatted files use C-style format strings and the sprintf() function to print their values in the file being written.

The following text file with 2 columns of formatted values named seventh-packet-byte-count—-0.txt was
created using more new code that was added to the original ns-3 Tutorial example’s code. Only the first 10 lines of
this file are shown here for brevity.

Time (Seconds) = 1.000e+00 Packet Byte Count = 40

Time (Seconds) = 1.004e+00 Packet Byte Count = 40

Time (Seconds) = 1.004e+00 Packet Byte Count = 576
Time (Seconds) = 1.009e+00 Packet Byte Count = 576
Time (Seconds) = 1.009e+00 Packet Byte Count = 576
Time (Seconds) = 1.015e+00 Packet Byte Count = 512
Time (Seconds) = 1.017e+00 Packet Byte Count = 576
Time (Seconds) = 1.017e+00 Packet Byte Count = 544
Time (Seconds) = 1.025e+00 Packet Byte Count = 576
Time (Seconds) = 1.025e+00 Packet Byte Count = 544

The following different  text  file with 2 columns of  formatted values named
seventh-packet-byte-count-1.txt was also created using the same new code that was added to the
original ns-3 Tutorial example’s code. Only the first 10 lines of this file are shown here for brevity.

Time (Seconds) = 1.002e+00 Packet Byte Count = 40
Time (Seconds) = 1.007e+00 Packet Byte Count = 40
Time (Seconds) = 1.013e+00 Packet Byte Count = 40
Time (Seconds) = 1.020e+00 Packet Byte Count = 40
Time (Seconds) = 1.028e+00 Packet Byte Count = 40
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Time (Seconds) = 1.036e+00 Packet Byte Count = 40
Time (Seconds) = 1.045e+00 Packet Byte Count = 40
Time (Seconds) = 1.053e+00 Packet Byte Count = 40
Time (Seconds) = 1.061e+00 Packet Byte Count = 40
Time (Seconds) = 1.069e+00 Packet Byte Count = 40

The new code that was added to produce the two text files is below. More details about this API will be covered in a
later section.

Note that because there were 2 matches for the wildcard in the path, 2 separate text files were created. The first text
file, which is named “seventh-packet-byte-count-0.txt”, corresponds to the wildcard match with the “*” replaced with
“0”. The second text file, which is named “seventh-packet-byte-count-1.txt”, corresponds to the wildcard match with
the “*” replaced with “1”. Also, note that the function call to WriteProbe () will give an error message if there are
no matches for a path that contains wildcards.

// Create the file helper.
FileHelper fileHelper;

// Configure the file to be written.
fileHelper.ConfigureFile ("seventh-packet-byte-count",
FileAggregator: :FORMATTED) ;

// Set the labels for this formatted output file.
fileHelper.Set2dFormat ("Time (Seconds) = %.3e\tPacket Byte Count = %.0f");

// Write the values generated by the probe.

fileHelper.WriteProbe ("ns3::Ipv4PacketProbe",
"/NodeList/+/$ns3::Ipv4aL3Protocol/Tx",
"OutputBytes") ;

FileHelper ConfigureFile

The FileHelper’s ConfigureFile () function can be used to configure text files.
It has the following prototype:

void ConfigureFile (const std::string &outputFileNameWithoutExtension,
enum FileAggregator::FileType fileType = FileAggregator::SPACE_SEPARATED) ;

It has the following arguments:

Argument Description
outputFileNameWithoutExtension | Name of output file to write with no extension.
fileType Type of file to write. The default type of file is space separated.

The FileHelper’s ConfigureFile () function configures text file related parameters for the file helper so that it
will create a file named outputFileNameWithoutExtension plus possible extra information from wildcard matches plus
”.txt” with values printed as specified by fileType. The default file type is space-separated.

An example of how to use this function can be seen in the seventh. cc code described above where it was used as
follows:

fileHelper.ConfigureFile ("seventh-packet-byte-count",
FileAggregator: :FORMATTED) ;
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FileHelper WriteProbe

The FileHelper’s WriteProbe () function can be used to write values generated by probes to text files.
It has the following prototype:

void WriteProbe (const std::string &typeld,
const std::string &path,
const std::string &probeTraceSource);

It has the following arguments:

Argument Description

typeld The type ID for the probe used when it is created.
path Config path to access the probe.
probeTraceSource | The probe trace source to access.

The FileHelper’s WriteProbe () function creates output text files generated by hooking the ns-3 trace source with
a probe, and then writing the values from the probeTraceSource. The output file names will have the text stored
in the member variable m_outputFileNameWithoutExtension plus ”.txt”, and will consist of the ‘newValue’ at each
timestamp.

If the config path has more than one match in the system because there is a wildcard, then one output file for each
match will be created. The output file names will contain the text in m_outputFileNameWithoutExtension plus the
matched characters for each of the wildcards in the config path, separated by dashes, plus ”.txt”. For example, if
the value in m_outputFileNameWithoutExtension is the string “packet-byte-count”, and there are two wildcards in the
path, then output file names like “packet-byte-count-0-0.txt” or “packet-byte-count-12-9.txt” will be possible as names

for the files that will be created.

An example of how to use this function can be seen in the seventh . cc code described above where it was used as
follows:

fileHelper.WriteProbe ("ns3::Ipv4PacketProbe",
"/NodeList/*/$ns3::Ipv4L3Protocol/Tx",
"OutputBytes");

Other Examples

File Helper Example

A slightly simpler ~ example than  the seventh.cc example can be found in
src/stats/examples/file-helper—example.cc. This example only uses the FileHelper, not the
FileHelper. It is also more of a toy example than seventh. cc because it has a made-up trace source created for
demonstration purposes.

The following text file with 2 columns of formatted values named file-helper—-example.txt was created using
the example. Only the first 10 lines of this file are shown here for brevity.

Time (Seconds) = 4.995e-01 Count =1
Time (Seconds) = 1.463e+00 Count = 2
Time (Seconds) = 1.678e+00 Count = 3
Time (Seconds) = 3.972e+00 Count = 4
Time (Seconds) = 4.150e+00 Count = 5
Time (Seconds) = 8.066e+00 Count = 6
Time (Seconds) = 8.731e+00 Count = 7
Time (Seconds) = 9.807e+00 Count = 8
Time (Seconds) = 1.078e+01 Count = 9
Time (Seconds) = 1.083e+01 Count = 10
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In this example, there is an Emitter object that increments its counter at various random times and then emits the
counter’s value as a trace source.

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names: :Add ("/Names/Emitter", emitter);

The following code is probing the Counter exported by the emitter object. This DoubleProbe is using a path in the
configuration namespace to make the connection. Note that the emitter registered itself in the configuration namespace
after it was created; otherwise, the ConnectByPath would not work.

Ptr<DoubleProbe> probe = CreateObject<DoubleProbe> ();
probe->SetName ("PathProbe");
Names: :Add ("/Names/Probe", probe);

// Note, no return value is checked here.
probe->ConnectByPath ("/Names/Emitter/Counter");

Note that because there are no wildcards in the path used below, only 1 text file was created. This single text file is
simply named “file-helper-example.txt”, with no extra suffixes like you would see if there were wildcards in the path.

// Create the file helper.
FileHelper fileHelper;

// Configure the file to be written.
fileHelper.ConfigureFile ("file-helper-example",
FileAggregator: :FORMATTED) ;

// Set the labels for this formatted output file.
fileHelper.Set2dFormat ("Time (Seconds) = %.3e\tCount = %.0f");

// Write the values generated by the probe. The path that we
// provide helps to disambiguate the source of the trace.
fileHelper.WriteProbe ("ns3::DoubleProbe",
"/Names/Probe/Output",
"Output") ;

11.2.4 Scope and Limitations

Currently, only these Probes have been implemented and connected to the GnuplotHelper and to the FileHelper:
* BooleanProbe
* DoubleProbe
* Uinteger8Probe
* Uinteger16Probe
 Uinteger32Probe
 PacketProbe
* ApplicationPacketProbe
* Ipv4PacketProbe

These Probes, therefore, are the only ones available to be used in P1otProbe () and WriteProbe ().
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In the next few sections, we cover each of the fundamental object types (Probe, Collector, and Aggregator) in more
detail, and show how they can be connected together using lower-level API.

11.3 Probes

This section details the functionalities provided by the Probe class to an ns-3 simulation, and gives examples on how
to code them in a program. This section is meant for users interested in developing simulations with the ns-3 tools and
using the Data Collection Framework, of which the Probe class is a part, to generate data output with their simulation’s
results.

11.3.1 Probe Overview

A Probe object is supposed to be connected to a variable from the simulation whose values throughout the experiment
are relevant to the user. The Probe will record what were values assumed by the variable throughout the simulation and
pass such data to another member of the Data Collection Framework. While it is out of this section’s scope to discuss
what happens after the Probe produces its output, it is sufficient to say that, by the end of the simulation, the user will
have detailed information about what values were stored inside the variable being probed during the simulation.

Typically, a Probe is connected to an ns-3 trace source. In this manner, whenever the trace source exports a new value,
the Probe consumes the value (and exports it downstream to another object via its own trace source).

The Probe can be thought of as kind of a filter on trace sources. The main reasons for possibly hooking to a Probe
rather than directly to a trace source are as follows:

* Probes may be dynamically turned on and off during the simulation with calls to Enable () and Disable ().
For example, the outputting of data may be turned off during the simulation warmup phase.

* Probes may perform operations on the data to extract values from more complicated structures; for instance,
outputting the packet size value from a received ns3::Packet.

* Probes register a name in the ns3::Config namespace (using Names : : Add () ) so that other objects may refer
to them.

* Probes provide a static method that allows one to manipulate a Probe by name, such as what is done in
ns2measure [Cic06]

Stat::put ("my_metric", ID, sample);

The ns-3 equivalent of the above ns2measure code is, e.g.

DoubleProbe: :SetValueByPath ("/path/to/probe", sample);

Creation

Note that a Probe base class object can not be created because it is an abstract base class, i.e. it has pure virtual
functions that have not been implemented. An object of type DoubleProbe, which is a subclass of the Probe class, will
be created here to show what needs to be done.

One declares a DoubleProbe in dynamic memory by using the smart pointer class (Ptr<T>). To create a DoubleProbe
in dynamic memory with smart pointers, one just needs to call the ns-3 method CreateObject ():

Ptr<DoubleProbe> myprobe = CreateObject<DoubleProbe> ();

The declaration above creates DoubleProbes using the default values for its attributes. There are four attributes in the
DoubleProbe class; two in the base class object DataCollectionObject, and two in the Probe base class:
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* “Name” (DataCollectionObject), a StringValue
* “Enabled” (DataCollectionObject), a BooleanValue
e “Start” (Probe), a TimeValue
* “Stop” (Probe), a TimeValue
One can set such attributes at object creation by using the following method:

Ptr<DoubleProbe> myprobe = CreateObjectWithAttributes<DoubleProbe> (
"Name", StringValue ("myprobe"),
"Enabled", BooleanValue (false),
"Start", TimeValue (Seconds (100.0)),
"Stop", TimeValue (Seconds (1000.0)));

Start and Stop are Time variables which determine the interval of action of the Probe. The Probe will only output data
if the current time of the Simulation is inside of that interval. The special time value of 0 seconds for Stop will disable
this attribute (i.e. keep the Probe on for the whole simulation). Enabled is a flag that turns the Probe on or off, and
must be set to true for the Probe to export data. The Name is the object’s name in the DCF framework.

Importing and exporting data

ns-3 trace sources are strongly typed, so the mechanisms for hooking Probes to a trace source and for exporting data
belong to its subclasses. For instance, the default distribution of ns-3 provides a class DoubleProbe that is designed to
hook to a trace source exporting a double value. We’ll next detail the operation of the DoubleProbe, and then discuss
how other Probe classes may be defined by the user.

11.3.2 DoubleProbe Overview
The DoubleProbe connects to a double-valued ns-3 trace source, and itself exports a different double-valued ns-3 trace
source.

The following code, drawn from src/stats/examples/double-probe—-example. cc, shows the basic op-
erations of plumbing the DoubleProbe into a simulation, where it is probing a Counter exported by an emitter object
(class Emitter).

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names: :Add ("/Names/Emitter", emitter);

Ptr<DoubleProbe> probel = CreateObject<DoubleProbe> ();

// Connect the probe to the emitter’s Counter
bool connected = probel->ConnectByObject ("Counter", emitter);

The following code is probing the same Counter exported by the same emitter object. This DoubleProbe, however,
is using a path in the configuration namespace to make the connection. Note that the emitter registered itself in the
configuration namespace after it was created; otherwise, the ConnectByPath would not work.

Ptr<DoubleProbe> probe2 = CreateObject<DoubleProbe> ();

// Note, no return value is checked here
probe2->ConnectByPath ("/Names/Emitter/Counter");

The next DoubleProbe shown that is shown below will have its value set using its path in the configuration namespace.
Note that this time the DoubleProbe registered itself in the configuration namespace after it was created.
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Ptr<DoubleProbe> probe3 = CreateObject<DoubleProbe> ();
probe3->SetName ("StaticallyAccessedProbe");

// We must add it to the config database
Names: :Add ("/Names/Probes", probe3->GetName (), probe3);

The emitter’s Count() function is now able to set the value for this DoubleProbe as follows:

void
Emitter::Count (void)

{

m_counter += 1.0;
DoubleProbe: :SetValueByPath ("/Names/StaticallyAccessedProbe", m_counter);

}

The above example shows how the code calling the Probe does not have to have an explicit reference to the Probe,
but can direct the value setting through the Config namespace. This is similar in functionality to the Stat::Put method
introduced by ns2measure paper [Cic06], and allows users to temporarily insert Probe statements like printf statements
within existing ns-3 models. Note that in order to be able to use the DoubleProbe in this example like this, 2 things
were necessary:

1. the stats module header file was included in the example .cc file
2. the example was made dependent on the stats module in its wscript file.
Analogous things need to be done in order to add other Probes in other places in the ns-3 code base.

The values for the DoubleProbe can also be set using the function DoubleProbe::SetValue(), while the values for the
DoubleProbe can be gotten using the function DoubleProbe::GetValue().

The DoubleProbe exports double values in its “Output” trace source; a downstream object can hook a trace sink
(NotifyViaProbe) to this as follows:

connected = probel->TraceConnect ("Output", probel->GetName (), MakeCallback (&NotifyViaProbe));

11.3.3 Other probes

Besides the DoubleProbe, the following Probes are also available:
 Uinteger8Probe connects to an ns-3 trace source exporting an uint8_t.
 Uinteger16Probe connects to an ns-3 trace source exporting an uint16_t.
» Uinteger32Probe connects to an ns-3 trace source exporting an uint32_t.
» PacketProbe connects to an ns-3 trace source exporting a packet.

* ApplicationPacketProbe connects to an ns-3 trace source exporting a packet and a socket address.

Ipv4PacketProbe connects to an ns-3 trace source exporting a packet, an IPv4 object, and an interface.

11.3.4 Creating new Probe types

To create a new Probe type, you need to perform the following steps:

* Be sure that your new Probe class is derived from the Probe base class.
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* Be sure that the pure virtual functions that your new Probe class inherits from the Probe base class are imple-
mented.

* Find an existing Probe class that uses a trace source that is closest in type to the type of trace source your Probe
will be using.

* Copy that existing Probe class’s header file (.h) and implementation file (.cc) to two new files with names
matching your new Probe.

» Replace the types, arguments, and variables in the copied files with the appropriate type for your Probe.

* Make necessary modifications to make the code compile and to make it behave as you would like.

11.3.5 Examples

Two examples will be discussed in detail here:
* Double Probe Example
» [Pv4 Packet Plot Example

Double Probe Example

The double probe example has been discussed previously. The example program can be found in
src/stats/examples/double-probe-example.cc. To summarize what occurs in this program, there is
an emitter that exports a counter that increments according to a Poisson process. In particular, two ways of emitting
data are shown:

1. through a traced variable hooked to one Probe:

TracedValue<double> m_counter; // normally this would be integer type

2. through a counter whose value is posted to a second Probe, referenced by its name in the Config system:

void

Emitter::Count (wvoid)

{
NS_LOG_FUNCTION (this);
NS_LOG_DEBUG ("Counting at " << Simulator::Now () .GetSeconds ());
m_counter += 1.0;
DoubleProbe: :SetValueByPath ("/Names/StaticallyAccessedProbe", m_counter);
Simulator::Schedule (Seconds (m_var->GetValue ()), &Emitter::Count, this);

}

Let’s look at the Probe more carefully. Probes can receive their values in a multiple ways:
1. by the Probe accessing the trace source directly and connecting a trace sink to it
2. by the Probe accessing the trace source through the config namespace and connecting a trace sink to it
3. by the calling code explicitly calling the Probe’s SetValue() method
4. by the calling code explicitly calling SetValueByPath ( “/path/through/Config/namespace”, ...)

The first two techniques are expected to be the most common. Also in the example, the hooking of a normal callback
function is shown, as is typically done in ns-3. This callback function is not associated with a Probe object. We’ll call
this case 0) below.
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// This is a function to test hooking a raw function to the trace source
void

NotifyViaTraceSource (std::string context, double oldvVal, double newVal)
{

NS_LOG_DEBUG ("context: " << context << " old " << oldVal << " new " << newVal);

First, the emitter needs to be setup:

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names: :Add ("/Names/Emitter", emitter);

// The Emitter object is not associated with an ns—-3 node, so
// it won’t get started automatically, so we need to do this ourselves
Simulator::Schedule (Seconds (0.0), &Emitter::Start, emitter);

The various DoubleProbes interact with the emitter in the example as shown below.
Case 0):

// The below shows typical functionality without a probe
// (connect a sink function to a trace source)

//

connected = emitter—->TraceConnect ("Counter", "sample context", MakeCallback
NS_ASSERT_MSG (connected, "Trace source not connected");

case 1):

//
// Probel will be hooked directly to the Emitter trace source object

//

// probel will be hooked to the Emitter trace source
Ptr<DoubleProbe> probel = CreateObject<DoubleProbe> ();

// the probe’s name can serve as 1its context in the tracing
probel->SetName ("ObjectProbe");

// Connect the probe to the emitter’s Counter
connected = probel->ConnectByObject ("Counter", emitter);
NS_ASSERT_MSG (connected, "Trace source not connected to probel");

case 2):

//
// Probe2 will be hooked to the Emitter trace source object by
// accessing it by path name in the Config database

/7

// Create another similar probe; this will hook up via a Config path
Ptr<DoubleProbe> probe2 = CreateObject<DoubleProbe> ();
probe2->SetName ("PathProbe");

// Note, no return value is checked here
probe2->ConnectByPath ("/Names/Emitter/Counter");

case 4) (case 3 is not shown in this example):

//
// Probe3 will be called by the emitter directly through the

// static method SetValueByPath().

(&NotifyViaTraceSou
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//

Ptr<DoubleProbe> probe3 = CreateObject<DoubleProbe> ();
probe3->SetName ("StaticallyAccessedProbe");

// We must add it to the config database

Names: :Add ("/Names/Probes", probe3->GetName (), probe3);

And finally, the example shows how the probes can be hooked to generate output:

// The probe itself should generate output. The context that we provide

// to this probe (in this case, the probe name) will help to disambiguate

// the source of the trace

connected = probe3->TraceConnect ("Output",
"/Names/Probes/StaticallyAccessedProbe/Output",
MakeCallback (&NotifyViaProbe));

NS_ASSERT_MSG (connected, "Trace source not .. connected to probe3 Output");

The following callback is hooked to the Probe in this example for illustrative purposes; normally, the Probe would be
hooked to a Collector object.

// This is a function to test hooking it to the probe output

void

NotifyViaProbe (std::string context, double oldval, double newVal)
{

NS_LOG_DEBUG ("context: " << context << " old " << oldvVal << " new " << newVal);

IPv4 Packet Plot Example

The IPv4 packet plot example is based on the fifth.cc example from the ns-3 Tutorial. It can be found in
src/stats/examples/ipv4-packet-plot—-example.cc

node 0 node 1
o + o +
| ns—-3 TCP | | ns—-3 TCP |
fom + o —— +
| 10.1.1.1 | \ 10.1.1.2 \
fom + o +
| point-to-point | | point-to-point |
fom + o +

\ I
o +

We’ll just look at the Probe, as it illustrates that Probes may also unpack values from structures (in this case, packets)
and report those values as trace source outputs, rather than just passing through the same type of data.

There are other aspects of this example that will be explained later in the documentation. The two types of data that
are exported are the packet itself (Output) and a count of the number of bytes in the packet (OutputBytes).

TypeId
Ipv4PacketProbe: :GetTypeId ()

{
static TypelId tid = Typeld ("ns3::Ipv4PacketProbe™)

.SetParent<Probe> ()
.AddConstructor<Ipv4PacketProbe> ()
.AddTraceSource ( "Output",

"The packet plus its IPv4 object and interface that serve as the output for th:
MakeTraceSourceAccessor (&Ipv4PacketProbe::m_output))
.AddTraceSource ( "OutputBytes",
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"The number of bytes in the packet",
MakeTraceSourceAccessor (&Ipv4PacketProbe::m_outputBytes))
’
return tid;

}

When the Probe’s trace sink gets a packet, if the Probe is enabled, then it will output the packet on its Output trace
source, but it will also output the number of bytes on the OutputBytes trace source.

void
Ipv4PacketProbe: :TraceSink (Ptr<const Packet> packet, Ptr<Ipv4d> ipv4, uint32_t interface)
{
NS_LOG_FUNCTION (this << packet << ipv4 << interface);
if (IsEnabled ())
{

m_packet = packet;
m_ipv4 = ipv4;
m_interface = interface;

m_output (packet, ipv4, interface);

uint32_t packetSizeNew = packet->GetSize ();
m_outputBytes (m_packetSizeOld, packetSizeNew);
m_packetSizeOld = packetSizeNew;

11.3.6 References

11.4 Collectors

This section is a placeholder to detail the functionalities provided by the Collector class to an ns-3 simulation, and
gives examples on how to code them in a program.

Note: As of n