nsS-3

NETWORK SIMULATOR

ns-3 Model Library

Release ns-3.26

ns-3 project

October 04, 2016

10

11

Organization

Animation

2.1 NetAnim o e e e e

Antenna Module

3.1 Designdocumentation
3.2 UserDocumentation
3.3 Testing Documentation,

Ad Hoc On-Demand Distance Vector (AODYV)

4.1 Model Description e
Applications

Bridge NetDevice

BRITE Integration

7.1 Model Description oL
7.2 Usage o oo e
Buildings Module

8.1 Designdocumentation
8.2 User Documentation
8.3 Testing Documentation
84 References e

Click Modular Router Integration

9.1 Model Description
0.2 USAZE .« v v e e e e e e e e e e
93 Validation.

CSMA NetDevice

10.1 Overview of the CSMAmodel
10.2 CSMA ChannelModel
10.3 CSMA NetDevice Model
10.4 Using the CsmaNetDevice
105 CSMATracing o v v v v i e e et e e e
10,6 Summary e e e e e e

Data Collection

I1.1 Design . . . o oo o e

CONTENTS

13

.................. 13
.................. 14
.................. 14

17

.................. 17

19

21

23

.................. 23
.................. 24

27

.................. 27
.................. 33
.................. 36
.................. 38

39

.................. 39
.................. 40
.................. 42

43

.................. 43
.................. 44
.................. 45
.................. 46
.................. 47
.................. 48

49

12

13

14

15

16

17

18

19

20

11.2 Data Collection Helpers o . e e e e e e e e e e
I1.3 Probes
I11.4 Collectors o o o e e e e e e e e
115 AgEregators i it e e e e e
11.6 Adaptors o o o e e e e e e e e e e e
11.7 Scope/Limitations o v v vttt e e e e e e e e e e e e

DSDV Routing
12.1 DSDV Routing OVerview it vt e e e e e e e e e e
12.2 References i i e e e e

DSR Routing

13.1 DSRRouting OVerview i i it e e e e e e e e
13.2 DSRINStructions i i i e e e e e e e e e e e e
13.3 Helper o e e e e e e e e
13.4 Examples o o e e e e e e e e e e
13.5 Validation L e e e e e
13.6 Limitations e e e e e e e e e e e
13.7 References e e e e e e

Emulation Overview

Energy Framework
15.1 Model Description e e e
152 Usage o ot o e e e e e e e e e

File Descriptor NetDevice
16.1 Model Description e e
16.2 Usage o o o i e e e e e e e e

Flow Monitor

17.1 Model DesCription o i it e e e e e e e e e e e e e e e
172 Usage o o o o e e e e e e e e e e
173 Validation o e e e e e e e

Internet Models (IP, TCP, Routing, UDP, Internet Applications)

18.1 Internet Stack o . e e e e e e e e e e e e
18.2 IPVA . . o e e e e e e e e e
183 IPVO . . o o o e e e e e e e e e
184 ROULINZ OVEIVIEW i i ittt et ettt e e e e e e e e e
18.5 TCPmodels inns-3 e e e e e e
18.6 Internet Applications Module Documentation 0.

Low-Rate Wireless Personal Area Network (LR-WPAN)

19.1 Model Description e e e
19.2 Usage o ot o e e e e e e
19.3 Validation e e e e e e e e e e e e

LTE Module

20.1 Design Documentationo e e e e e e e e e e e
20.2 User Documentationo v ittt e e e e e e e e e e e
20.3 Testing Documentation i it it e e e e e e e e e e e e e e e e e e
20.4 Profiling Documentation oL e e e e e
20.5 References e e e e e e e

75
75
75

77
77
79
79
80
80
80
80

81

85
85
87

91
91
93

99
99
100
102

103
103
107
110
117
124
146

147
147
150
152

21

22

23

24

25

26

27

28

29

30

Wi-Fi Mesh Module Documentation

21.1 Design Documentation v vttt e e e e e e e e e e
21.2 User Documentation o v v it e e e e e e e e
21.3 Testing Documentation Lo e
21.4 References i i e e e e e e e e e e

MPI for Distributed Simulation

22.1 Current Implementation Details L.
22.2 Running Distributed Simulations
22.3 Tracing During Distributed Simulations

Mobility

23.1 Model Description e e e e
232 USAZE .« v v e
233 Validation.

Network Module

24.1 Packets e e
242 ErrorModel e
24.3 Node and NetDevices Overview i i v i it e e
244 Sockets APIS e e e e
245 Simple NetDevice e
246 QUEUES v o i e e e e e e e e
247 Queue iMits e e e e e e e e

Optimized Link State Routing (OLSR)

25.1 Model Description v i i e e e e e e e e e e e e e e
252 USAZE . . v v e e e e e e e e e e e e e e e e
253 Validation e

OpenFlow switch support

26.1 Model Description e e e e e e e e e
2602 USAZE . . . v i e e e e e e e e e
26.3 Validation. L e e

PointToPoint NetDevice

27.1 Overview of the PointToPoint model
27.2 Point-to-Point Channel Model
27.3 Using the PointToPointNetDevice
27.4 PointToPoint Tracing o 0 v i i e e e e e e e

Propagation

28.1 PropagationLossModel
28.2 PropagationDelayModel e
283 References e

Spectrum Module

29.1 Model Description vt i e e e e e e e e e e e e
202 USAZE . . v v e e e e e e e e e e e e e e
2903 Testingo e e e
29.4 Additional Models e e e e e e

6LoWPAN: Transmission of IPv6 Packets over IEEE 802.15.4 Networks

30.1 Model Descriptiono e e e e e
302 Usage o e e e e e

325
325
328
328
328

329
329
330
333

335
335
338
341

343
343
354
356
358
362
363
364

367
367
367
368

369
369
370
372

373
373
374
374
374

377
377
384
385

387
387
390
392
393

30.3 Validation L e e e e e e e

31 Tap NetDevice
31.1 TapBridge Model Overview it e e
31.2 Tap Bridge Channel Model e e
31.3 Tap Bridge Tracing Model e e e
31.4 Usingthe TapBridge e

32 Topology Input Readers

33 Traffic Control Layer
33.1 TrafficControl Layer e
33.2 Queue diSCIPINeS v v v v s e e e e e e e e e e e e e e e e e e e
33.3 pfifo_fastqueue disc L e e e e e e
334 REDqueuediscC i it i i e e e
335 CoDelqueue disc. o o o e e e e e e e e
33.6 FqCoDelqueue disC o o i i i e e e
337 PIEQUeUe diSC v i i e e e e e e e e e e e e e e e e e e

34 UAN Framework
34.1 Model Description e e e e e
342 USAZE .« v v v e
343 Validation L. e e e

35 WAVE models
35.1 Model Description v v v v e i e e e e e e e e e e e e e e e e e e e
352 USAZE .« . v e e e e e e e e e e e e e e e
353 Validation o .. e e e e e e e e e e e

36 Wi-Fi Module
36.1 Design Documentation L e e e e e e e
36.2 User Documentation 0 it e e e e e e e e e e e e e e
36.3 Testing Documentationo e e e e e e e
36.4 References e

37 Wimax NetDevice
37.1 Scopeofthemodel
37.2 Usingthe Wimax models 0 e e e e e e e e e
37.3 Wimax Attributes oo e e e e e e e e
374 Wimax Tracing o o o o e e e e e e e e e e e e
37.5 Wimax MAC model e e e
37.6 WimaxChannel and WimaxPhy models
3777 Channel model e e
37.8 Physicalmodel L e e e e e e e

Bibliography

Index

401
401
406
406
406

407

409
409
411
417
418
420
422
425

427
427
433
436

439
439
444
450

453
453
463
475
479

481
481
482
483
484
484
488
488
488

491

497

ns-3 Model Library, Release ns-3.26

This is the ns-3 Model Library documentation. Primary documentation for the ns-3 project is available in five forms:
* ns-3 Doxygen: Documentation of the public APIs of the simulator
* Tutorial, Manual, and Model Library (this document) for the latest release and development tree
* ns-3 wiki

This document is written in reStructuredText for Sphinx and is maintained in the doc/models directory of ns-3’s
source code.

CONTENTS 1

http://www.nsnam.org/doxygen/index.html
http://www.nsnam.org/documentation/latest/
http://www.nsnam.org/ns-3-dev/documentation/
http://www.nsnam.org/wiki
http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org/

ns-3 Model Library, Release ns-3.26

2 CONTENTS

CHAPTER
ONE

ORGANIZATION

This manual compiles documentation for ns-3 models and supporting software that enable users to construct network
simulations. It is important to distinguish between modules and models:

* ns-3 software is organized into separate modules that are each built as a separate software library. Individual
ns-3 programs can link the modules (libraries) they need to conduct their simulation.

* ns-3 models are abstract representations of real-world objects, protocols, devices, etc.

An ns-3 module may consist of more than one model (for instance, the internet module contains models for both
TCP and UDP). In general, ns-3 models do not span multiple software modules, however.

This manual provides documentation about the models of ns-3. It complements two other sources of documentation
concerning models:

¢ the model APIs are documented, from a programming perspective, using Doxygen. Doxygen for ns-3 models is
available on the project web server.

¢ the ns-3 core is documented in the developer’s manual. ns-3 models make use of the facilities of the core, such
as attributes, default values, random numbers, test frameworks, etc. Consult the main web site to find copies of
the manual.

Finally, additional documentation about various aspects of ns-3 may exist on the project wiki.

A sample outline of how to write model library documentation can be found by executing the create-module.py
program and looking at the template created in the file new-module/doc/new-module.rst.

S cd src
./create-module.py new-module

The remainder of this document is organized alphabetically by module name.

If you are new to ns-3, you might first want to read below about the network module, which contains some fundamental
models for the simulator. The packet model, models for different address formats, and abstract base classes for objects
such as nodes, net devices, channels, sockets, and applications are discussed there.

http://www.doxygen.org
http://www.nsnam.org/docs/doxygen/index.html
http://www.nsnam.org
http://www.nsnam.org/wiki

ns-3 Model Library, Release ns-3.26

4 Chapter 1. Organization

CHAPTER
TWO

ANIMATION

Animation is an important tool for network simulation. While ns-3 does not contain a default graphical animation
tool, we currently have two ways to provide animation, namely using the PyViz method or the NetAnim method. The
PyViz method is described in http://www.nsnam.org/wiki/PyViz.

We will describe the NetAnim method briefly here.

2.1 NetAnim

NetAnim is a standalone, Qt4-based software executable that uses a trace file generated during an ns-3 simulation to
display the topology and animate the packet flow between nodes.

- Stals | Packets |

@ B rumnjess b Cmsen smime o IRBHBERRER ¢ toesls) temsae [T ¢ P w7

| Node aal

A v 0

e 2

| = Progerty Value
‘ Node id 0

Database Server Server Node Desc... | 0
v Node Position

Node X | 10.00
NodeY | 0.00
v Node Color | [l 255, 0,0]...
Red 255
Green 0
Blue 0
Alpha 255
(“NodoSizo 700 |
Node Reso... | [Usersfjchn/D...
‘ = Show Nod... False
) v Ipvé Addresses
Firewall 5 10.1.1.1
¥ Mac Addresses
00:00:0...

Access Point

Not Playing

Figure 2.1: An example of packet animation on wired-links

In addition, NetAnim also provides useful features such as tables to display meta-data of packets like the image below

A way to visualize the trajectory of a mobile node

http://www.nsnam.org/wiki/PyViz

ns-3 Model Library, Release ns-3.26

Packet count 11208 TxTime From Node Id | To Node Id Meta Info
From Node Id 1 s | 1 0.0301008 1 TCP 50000 > 49153 SYN ACK Seq=0 Ack=1 Win=65535

To Node Id 2 0.0711264 1

Transmission time >= 0

TCP 50000 > 49153 ACK Seq=1 Ack=537 Win=65535

3 0.112581 1 TCP 50000 > 49153 ACK Seq=1 Ack=1609 Win=65535

| Apply filter |
4 0.154035 1 TCP 50000 > 49153 ACK Seq=1 Ack=2681 Win=65535
Select All
=B s 0195027 1 TCP 50000 > 49153 ACK Seq=1 Ack=3753 Win=65535
DeSelect All
) All Packets 6 0.195952 1 TCP 50000 > 49153 ACK Seq=1 Ack=4825 Win=65535
7: :,“:"‘“ 7 0236482 1 TCP 50000 > 49153 ACK Seq=1 Ack=5897 Win=65535
_wif 8 0237406 1 TCP 50000 > 49153 ACK Seq=1 Ack=6969 Win=65535
| Arp
| Ipvé 3 0.238331 1 TCP 50000 > 49153 ACK Seq=1 Ack=8041 Win=65535
| lcmpv4 T T
‘ Udpp 10 0277936 1 TCP 50000 > 49153 ACK Seq=1 Ack=9113 Win=65535
@‘IZZV 11 0.278861 1 TCP 50000 > 49153 ACK Seq=1 Ack=10185 Win=65535
(. O'Sd' 12 0279786 1 TCP 50000 > 49153 ACK Seq=1 Ack=11257 Win=65535
| Dsdv

13 0.28071 1 TCP 50000 > 49153 ACK Seq=1 Ack=12329 Win=65535

14 0318928 1 TCP 50000 > 49153 ACK Seg=1 Ack=13401 Win=65535
15 0319853 1 TCP 50000 > 49153 ACK Seq=1 Ack=14473 Win=65535
16 0320778 1 TCP 50000 > 49153 ACK Seg=1 Ack=15545 Win=65535
17 0.321702 1 TCP 50000 > 49153 ACK Seq=1 Ack=16617 Win=65535
18 0322627 1 TCP 50000 > 49153 ACK Seq=1 Ack=17689 Win=65535
19 0323552 1 TCP 50000 > 49153 ACK Seq=1 Ack=18761 Win=65535
20 0.35992 1 TCP 50000 > 49153 ACK Seq=1 Ack=19833 Win=65535
21 0.360845 1 TCP 50000 > 49153 ACK Seq=1 Ack=20905 Win=65535

22 036177 1 TCP 50000 > 49153 ACK Seq=1 Ack=21977 Win=65535

©O © © © ©o © © ©o 0 0o 0o 0o 0o 0o ool o|lo 0ol oo

23 0.362694 1 TCP 50000 > 49153 ACK Seq=1 Ack=23049 Win=65535

Figure 2.2: An example of tables for packet meta-data with protocol filters

6 Chapter 2. Animation

ns-3 Model Library, Release ns-3.26

8 00
€1 » ——(~250ms Simtime 0 [| 4 | Grid Lnes | 17 LEJ Nodesize 2 (5] From: [Al 3| To: [Al 3]
’\ Entry count 100
s Node Id |0 4
.......... Add Nodeld |1 &

' Add NodeId | None 4|
.......... Add Nodeld | None 4|
0 Aol fiter |

Show Trajectory ~

Time Nodeld X coord Y cc

"N‘ () 1 0 0 110.168 | 77.1
|®‘ 2 0 |0 110.168 | 77.1
(P | (30250 110.637 | 76.9
4 0750 111.106 | 76.7

38.04 s 1750 112.045 | 76.4

i T s 2 0 111.968 | 76.1

7 2250 111.89 |75.9

' 8 3250 111.582 | 74.9

9 3750 111.428 | 74.5

10 45 [0 111.811 | 73.8

1m 5 |0 112.066 | 73.4

12 5750 112.449 | 72.7

13 6.25(0 112.867 | 73.0

14 6.5 |0 113.076 | 73.2

15 7.75|0 114.121 | 73.8

6 8 |0 114.342 | 74.0

17 87510 115.006 | 74.3

!

Figure 2.3: An example of the trajectory of a mobile node

2.1. NetAnim 7

ns-3 Model Library, Release ns-3.26

A way to display the routing-tables of multiple nodes at various points in time

MNode: 0 Time: 05 Ipv4ListSouting table Mode: 1 Time: Os Ipv4ListSouting table

Nade: 2 Time: Os Ipv4ListAouting table
Priority: 0 Protocel: ns3:ipv4StaticRouting Priority: 0 Protocol: ns3::pvaStaticRouting Priority: 0 Protocol: ns3:: Ipv4SlancRGmlng
Destindlion Gateway G enmass " Fiags Metric Fler Uselface | Destinglion —Gateway G enmas< -~ Fiags Metric Hel Use ltace Desllnzulon Gamway SK Flags Metric Ret Use Iface
127.0.0.0 .0.0.0 127.0.00 0.0.00 0 U Cl 0 - -0
10.1.3.0 0.0.00 255 255 250U 0 - - 1 10.1.3.0 0.0.00 255 255 280U 0 - - 1 10.1 .S.D U.D.O.Cl 255.255.255.0 uo - -1
Priority: -10 Protocol: ns3::ipv4Global Routing Priority: -10 Protocol: ne3:Ipv4Global Routing Priority: -10 Protocol: ne3::ipv4Global Aouting

Desllnajlon Gawwav Genmask Flags Metric Aet Use Iface Desllnallon Gatswa\r Genmask Flags Metric Rel Use Iface Destination Gateway Genmask Flags Metric Rel Use llace

011 0.1.3.2 255.255.255.255 UH - - -1 0.1.1. 0.13.2 255, 255.255.255 H- - -1 10.1.1.1 10.1.3.21 255.255.256 255 UH - - -
lm 12 1013,21 255.255255355 UH - - - 1 IDI 12 101321 255255255255 UH - - - 1 101321 255255255255 UH - - - 1
10130 0.0.00 2552552550 U - - - 1 10.1.3.0 0.0.00 2552552550 U - - - 1 0.0.0.0 2552552550 U - - - 1
10120 10.1.3.21 255255255.0 UG ST | 10.1.20 101321 2552552550 UG SR | 10.1.3.21 255.255.255.0 UG S |
127.000 10132 255000 UG - -1 127.000 10131 255000 UG - -1 10.1.31 255000 UG S|
127.000 10133 255.0. o 0 uG -1 127.0.00 10133 255000 UG -1 10132 255000 UG 1
127.000 10.1.3.4 00 UG -1 127.0.00 10.1.34 255000 UG -1 10.1.34 255000 UG 1
127.000 10135 uG -1 127.0.00 10.1.35 255000 UG -1 10135 255000 UG 1
127.000 10.1.36 uG -1 127.0.00 10.1.36 255000 UG -1 10.1.36 255000 UG 1
127.000 10137 ug - -1 127.0.00 10.1.37 255000 UG -1 10.137 255000 UG 1
127.000 10.1.38 UG -1 127.000 10.1.38 255000 UG -1 10.1.38 255000 UG 1
127.000 10.1.38 ug - -1 127.000 10138 255000 UG - -1 10.1.39 255000 UG - 1
127.0.00 10.1.3.10 UG - -1 127.0.00 10.1.3.10 255.0.00 uGg - -1 10.1.3.10 255.0.0.0 uGg - =1
127.0.00 10.1.3.11 uG -1 127.0.00 10.1.3.11 255.000 ug - =1 10.1.3.11 255.0.00 uG =1
127.0.00 10.1.3.12 uG - -1 127.0.00 10.1.312 255.0.00 ug - -1 10.1.3.12 255.0.0.0 uG =1
127.0.00 10.1.3.13 uG - -1 127.0.00 10.1.313 255.0.00 ug - -1 10.1.3.13 255.0.0.0 ug - =1
127.000 10.1.3.14 ug - -1 127.000 101314 255000 UG - -1 10.1.314 255000 UG - -1
127.000 10.1.3.15 uG -1 127.000 101315 255.0.00 UG - -1 10.1.315 255000 UG -1
127.000 10.1.3.16 uG - -1 10.1.316 255000 UG - -1 10.1.316 255000 UG -1
127.000 10.1.3.147 uG - -1 10.1.317 255000 UG - -1 10.1.317 255000 UG -1
127.000 10.1.3.18 ug - -1 10.1.318 255000 UG - -1 10.1.318 255.000 UG -1
127.000 10.1.3.19 ug - -1 10.1.319 255.0. 0 o ug - -1 10.1.3.19 255.u.0.0 UG -1
127.000 10.1.3.20 uG -1 10.1.3.20 255.0. uG ERE | 10.1.3.20 255.0. -1
10.1.1.0 101321 255 2552550 uG -1 10.1.3.21 255 2552550 uG - - =1 101321 255 255 2550 uG -1
127.000 10.1.3.21 uG 10.1.321 255000 UG -1 10,1321 255.0.0.0 1
10010 109321 2552552550 UG -1 101321 250.255.2550 UG - 1 101321 255.255.255 D UG 1
127.000 10.1.3.21 ug - 1 101321 255.000 UG - 1 10,1321 255000 UG - - - 1
127.0.00 10.1.3.21 255.0.0.0 UG - 1 10.1.3.21 255.0.00 uGc - 1 10.1.3.21 255.0.0.0 uc - - -1

A way to display counters associated with multiple nodes as a chart or a table

14000 -

12000 -

10000 ~

8000 -

Congestion Window

6000 -

4000 -

2000 -

Time

A way to view the timeline of packet transmit and receive events

2.1.1 Methodology

The class ns3::AnimationInterface is responsible for the creation the trace XML file. AnimationInterface uses the
tracing infrastructure to track packet flows between nodes. AnimationInterface registers itself as a trace hook for tx and
rx events before the simulation begins. When a packet is scheduled for transmission or reception, the corresponding
tx and rx trace hooks in AnimationInterface are called. When the rx hooks are called, AnimationInterface will be
aware of the two endpoints between which a packet has flowed, and adds this information to the trace file, in XML

Chapter 2. Animation

ns-3 Model Library, Release ns-3.26

| Counter Tables 3| (] SimTime (j Font Size @ . Flowhon file | ["Double Counter 1 :)

1.0416
1.04252

1.0436
1.04452

1.04652

1.049582
1.05084

1.05192

| Export Table |

Time a 12 3 4 5 B|7(8|9[10(11
1 0.1 |134.532
2 0.1 101.387
a 0.2 |164.8
4 0.2 168.151
5 0.3 | 154.444
& 03 115.763
7 04 |179.264
8 0.4 126.946
9 0.5 |144.204
10 0.5 136.543
1 0.6 | 118.857
12 0.6 158.689
13 07 174138
14 0.7 138.387
15 0.8 | 101.934
16 0.8 149,555
17 0.9 | 195.25
68 09 192.968
19 1 132.337
20 1 114.404
21 1.1 | 142.992
2z 141 190.218
2a |12 | 122185

2.1. NetAnim

ns-3 Model Library, Release ns-3.26

format along with the corresponding tx and rx timestamps. The XML format will be discussed in a later section. It is
important to note that AnimationInterface records a packet only if the rx trace hooks are called. Every tx event must
be matched by an rx event.

2.1.2 Downloading NetAnim

If NetAnim is not already available in the ns-3 package you downloaded, you can do the following:

Please ensure that you have installed mercurial. The latest version of NetAnim can be downloaded using mercurial
with the following command:

S hg clone http://code.nsnam.org/netanim

2.1.3 Building NetAnim
Prerequisites

Qt4 (4.8 and over) is required to build NetAnim. This can be obtained using the following ways:
For Debian/Ubuntu Linux distributions:
$ apt-get install gt4-dev-tools

For Red Hat/Fedora based distribution:

&

> yum install gt4
$ yum install gt4-devel

For Mac/OSX, see http://qt.nokia.com/downloads/

Build steps

To build NetAnim use the following commands:

$ cd netanim

$ make clean

$ dgmake NetAnim.pro (For MAC Users: gmake —-spec macx—g++ NetAnim.pro)
S make

Note: gmake could be “gmake-qt4” in some systems

This should create an executable named “NetAnim” in the same directory:

$ 1ls -1 NetAnim
—rwxr-xr-x 1 john john 390395 2012-05-22 08:32 NetAnim

2.1.4 Usage

Using NetAnim is a two-step process

Step 1:Generate the animation XML trace file during simulation using “ns3::Animationlnterface” in the ns-3 code
base.

Step 2:Load the XML trace file generated in Step 1 with the offline Qt4-based animator named NetAnim.

10 Chapter 2. Animation

http://qt.nokia.com/downloads/

ns-3 Model Library, Release ns-3.26

Step 1: Generate XML animation trace file

The class “AnimationInterface” under “src/netanim” uses underlying ns-3 trace sources to construct a timestamped
ASCII file in XML format.

Examples are found under src/netanim/examples Example:

./waf -d debug configure —--enable-examples
./waf —-run "dumbbell-animation"

The above will create an XML file dumbbell-animation.xml

Mandatory

1. Ensure that your program’s wscript includes the “netanim” module. An example of such a wscript is at
src/netanim/examples/wscript.

2. Include the header [#include “ns3/netanim-module.h”] in your test program
3. Add the statement
AnimationInterface anim ("animation.xml"); // where "animation.xml" is any arbitrary filename

[for versions before ns-3.13 you also have to use the line “anim.SetXMLOutput() to set the XML mode and also use
anim.StartAnimation();]

Optional

The following are optional but useful steps:

// Step 1
anim.SetMobilityPollInterval (Seconds (1));

AnimationInterface records the position of all nodes every 250 ms by default. The statement above sets the periodic
interval at which AnimationInterface records the position of all nodes. If the nodes are expected to move very little, it
is useful to set a high mobility poll interval to avoid large XML files.

// Step 2
anim.SetConstantPosition (Ptr< Node > n, double x, double vy);

AnimationInterface requires that the position of all nodes be set. In ns-3 this is done by setting an associated Mobili-
tyModel. “SetConstantPosition” is a quick way to set the x-y coordinates of a node which is stationary.

// Step 3
anim.SetStartTime (Seconds(150)); and anim.SetStopTime (Seconds (150));

AnimationInterface can generate large XML files. The above statements restricts the window between which Ani-
mationInterface does tracing. Restricting the window serves to focus only on relevant portions of the simulation and
creating manageably small XML files

// Step 4
AnimationInterface anim ("animation.xml'", 50000);

Using the above constructor ensures that each animation XML trace file has only 50000 packets. For example, if
AnimationInterface captures 150000 packets, using the above constructor splits the capture into 3 files

* animation.xml - containing the packet range 1-50000

* animation.xml-1 - containing the packet range 50001-100000

2.1. NetAnim 11

ns-3 Model Library, Release ns-3.26

* animation.xml-2 - containing the packet range 100001-150000

// Step 5
anim.EnablePacketMetadata (true);

With the above statement, AnimationInterface records the meta-data of each packet in the xml trace file. Metadata
can be used by NetAnim to provide better statistics and filter, along with providing some brief information about the
packet such as TCP sequence number or source & destination IP address during packet animation.

CAUTION: Enabling this feature will result in larger XML trace files. Please do NOT enable this feature when using
Wimax links.

// Step 6
anim.UpdateNodeDescription (5, "Access-point");

With the above statement, AnimationInterface assigns the text “Access-point” to node 5.
// Step 7
anim.UpdateNodeSize (6, 1.5, 1.5);

With the above statement, AnimationlInterface sets the node size to scale by 1.5. NetAnim automatically scales the
graphics view to fit the oboundaries of the topology. This means that NetAnim, can abnormally scale a node’s size too
high or too low. Using AnimationInterface::UpdateNodeSize allows you to overwrite the default scaling in NetAnim
and use your own custom scale.

// Step 8
anim.UpdateNodeCounter (89, 7, 3.4);

With the above statement, AnimationInterface sets the counter with Id == 89, associated with Node 7 with the value
3.4. The counter with Id 89 is obtained using AnimationInterface:: AddNodeCounter. An example usage for this is in
src/netanim/examples/resource-counters.cc.

Step 2: Loading the XML in NetAnim
1. Assuming NetAnim was built, use the command ”./NetAnim” to launch NetAnim. Please review the section
“Building NetAnim” if NetAnim is not available.

2. When NetAnim is opened, click on the File open button at the top-left corner, select the XML file generated
during Step 1.

3. Hit the green play button to begin animation.

Here is a video illustrating this http://www.youtube.com/watch?v=tz_hUuNwFDs

2.1.5 Wiki

For detailed instructions on installing “NetAnim”, F.A.Qs and loading the XML trace file (mentioned earlier) using
NetAnim please refer: http://www.nsnam.org/wiki/NetAnim

12 Chapter 2. Animation

http://www.youtube.com/watch?v=tz_hUuNwFDs
http://www.nsnam.org/wiki/NetAnim

CHAPTER
THREE

ANTENNA MODULE

3.1 Design documentation

3.1.1 Overview

The Antenna module provides:

1. a new base class (AntennaModel) that provides an interface for the modeling of the radiation pattern of an
antenna;

2. aset of classes derived from this base class that each models the radiation pattern of different types of antennas.

3.1.2 AntennaModel

The AntennaModel uses the coordinate system adopted in [Balanis] and depicted in Figure Coordinate system of the
AntennaModel. This system is obtained by traslating the cartesian coordinate system used by the ns-3 MobilityModel
into the new origin o which is the location of the antenna, and then transforming the coordinates of every generic
point p of the space from cartesian coordinates (x,y, z) into spherical coordinates (7,8, ¢). The antenna model ne-
glects the radial component r, and only considers the angle components (6, ¢). An antenna radiation pattern is then
expressed as a mathematical function g(6,) — R that returns the gain (in dB) for each possible direction of trans-
mission/reception. All angles are expressed in radians.

Figure 3.1: Coordinate system of the AntennaModel

13

ns-3 Model Library, Release ns-3.26

3.1.3 Provided models

In this section we describe the antenna radiation pattern models that are included within the antenna module.

IsotropicAntennaModel

This antenna radiation pattern model provides a unitary gain (0 dB) for all direction.

CosineAntennaModel

This is the cosine model described in [Chunjian]: the antenna gain is determined as:

00 - (452)

2
where ¢ is the azimuthal orientation of the antenna (i.e., its direction of maximum gain) and the exponential
3
201logq (cos d’%%)

n=—

determines the desired 3dB beamwidth ¢345. Note that this radiation pattern is independent of the inclination angle 6.

A major difference between the model of [Chunjian] and the one implemented in the class CosineAntennaModel is that
only the element factor (i.e., what described by the above formulas) is considered. In fact, [Chunjian] also considered
an additional antenna array factor. The reason why the latter is excluded is that we expect that the average user would
desire to specify a given beamwidth exactly, without adding an array factor at a latter stage which would in practice
alter the effective beamwidth of the resulting radiation pattern.

ParabolicAntennaModel

This model is based on the parabolic approximation of the main lobe radiation pattern. It is often used in the context
of cellular system to model the radiation pattern of a cell sector, see for instance [R4-092042a] and [Calcev]. The
antenna gain in dB is determined as:

2
9ap(¢,0) = —min <12 (¢’ — ¢°> ,Amam)

3dB

where ¢ is the azimuthal orientation of the antenna (i.e., its direction of maximum gain), ¢34p is its 3 dB beamwidth,
and A,,4. is the maximum attenuation in dB of the antenna. Note that this radiation pattern is independent of the
inclination angle 6.

3.2 User Documentation

The antenna moduled can be used with all the wireless technologies and physical layer models that support it. Cur-
rently, this includes the physical layer models based on the SpectrumPhy. Please refer to the documentation of each of
these models for details.

3.3 Testing Documentation

In this section we describe the test suites included with the antenna module that verify its correct functionality.

14 Chapter 3. Antenna Module

ns-3 Model Library, Release ns-3.26

3.3.1 Angles

The unit test suite angles verifies that the Angles class is constructed properly by correct conversion from 3D
cartesian coordinates according to the available methods (construction from a single vector and from a pair of vectors).
For each method, several test cases are provided that compare the values (¢, #) determied by the constructor to known
reference values. The test passes if for each case the values are equal to the reference up to a tolerance of 10~1° which
accounts for numerical errors.

3.3.2 DegreesToRadians

The unit test suite degrees-radians verifies that the methods DegreesToRadians and
RadiansToDegrees work properly by comparing with known reference values in a number of test cases.
Each test case passes if the comparison is equal up to a tolerance of 10~!? which accounts for numerical errors.

3.3.3 IsotropicAntennaModel

The unit test suite 1 sot ropic—antenna-model checks that the IsotropicAntennaModel class works prop-
erly, i.e., returns always a OdB gain regardless of the direction.

3.3.4 CosineAntennaModel

The unit test suite cosine-antenna-model checks that the CosineAntennaModel class works properly.
Several test cases are provided that check for the antenna gain value calculated at different directions and for different
values of the orientation, the reference gain and the beamwidth. The reference gain is calculated by hand. Each test
case passes if the reference gain in dB is equal to the value returned by CosineAntennaModel within a tolerance
of 0.001, which accounts for the approximation done for the calculation of the reference values.

3.3.5 ParabolicAntennaModel

The unit test suite parabolic—-antenna-model checks thatthe ParabolicAntennaModel class works prop-
erly. Several test cases are provided that check for the antenna gain value calculated at different directions and for
different values of the orientation, the maximum attenuation and the beamwidth. The reference gain is calculated by
hand. Each test case passes if the reference gain in dB is equal to the value returned by ParabolicAntennaModel
within a tolerance of 0.001, which accounts for the approximation done for the calculation of the reference values.

3.3. Testing Documentation 15

ns-3 Model Library, Release ns-3.26

16 Chapter 3. Antenna Module

CHAPTER
FOUR

AD HOC ON-DEMAND DISTANCE VECTOR (AODV)

This model implements the base specification of the Ad Hoc On-Demand Distance Vector (AODV) protocol. The
implementation is based on RFC 3561.

The model was written by Elena Buchatskaia and Pavel Boyko of ITTP RAS, and is based on the ns-2 AODV model
developed by the CMU/MONARCH group and optimized and tuned by Samir Das and Mahesh Marina, University of
Cincinnati, and also on the AODV-UU implementation by Erik Nordstrém of Uppsala University.

4.1 Model Description

The source code for the AODV model lives in the directory src/aodv.

4.1.1 Design

Class ns3::aodv: :RoutingProtocol implements all functionality of service packet exchange and inherits
from ns3::Ipv4RoutingProtocol. The base class defines two virtual functions for packet routing and for-
warding. The first one, ns3: :aodv: :RouteOutput, is used for locally originated packets, and the second one,
ns3::aodv::Routelnput, is used for forwarding and/or delivering received packets.

Protocol operation depends on many adjustable parameters. Parameters for this functionality are attributes of
ns3::aodv: :RoutingProtocol. Parameter default values are drawn from the RFC and allow the en-
abling/disabling protocol features, such as broadcasting HELLO messages, broadcasting data packets and so on.

AODV discovers routes on demand. Therefore, the AODV model buffers all packets while
a route request packet (RREQ) is disseminated. A packet queue is implemented in aodv-
rqueue.cc. A smart pointer to the packet, ns3::Ipv4RoutingProtocol::ErrorCallback,

ns3::Ipv4RoutingProtocol: :UnicastForwardCallback, and the IP header are stored in this
queue. The packet queue implements garbage collection of old packets and a queue size limit.

The routing table implementation supports garbage collection of old entries and state machine, defined in the standard.
It is implemented as a STL map container. The key is a destination IP address.

Some elements of protocol operation aren’t described in the RFC. These elements generally concern cooperation of
different OSI model layers. The model uses the following heuristics:

* This AODV implementation can detect the presence of unidirectional links and avoid them if necessary. If the
node the model receives an RREQ for is a neighbor, the cause may be a unidirectional link. This heuristic is
taken from AODV-UU implementation and can be disabled.

* Protocol operation strongly depends on broken link detection mechanism. The model implements two such
heuristics. First, this implementation support HELLO messages. However HELLO messages are not a good
way to perform neighbor sensing in a wireless environment (at least not over 802.11). Therefore, one may ex-
perience bad performance when running over wireless. There are several reasons for this: 1) HELLO messages

17

http://tools.ietf.org/html/rfc3561.html

ns-3 Model Library, Release ns-3.26

are broadcasted. In 802.11, broadcasting is often done at a lower bit rate than unicasting, thus HELLO messages
can travel further than unicast data. 2) HELLO messages are small, thus less prone to bit errors than data trans-
missions, and 3) Broadcast transmissions are not guaranteed to be bidirectional, unlike unicast transmissions.
Second, we use layer 2 feedback when possible. Link are considered to be broken if frame transmission results
in a transmission failure for all retries. This mechanism is meant for active links and works faster than the first
method.

The layer 2 feedback implementation relies on the TxEr rHeader trace source, currently supported in AdhocWifiMac
only.

4.1.2 Scope and Limitations

The model is for IPv4 only. The following optional protocol optimizations are not implemented:
1. Expanding ring search.
2. Local link repair.
3. RREP, RREQ and HELLO message extensions.

These techniques require direct access to IP header, which contradicts the assertion from the AODV RFC that AODV
works over UDP. This model uses UDP for simplicity, hindering the ability to implement certain protocol optimiza-
tions. The model doesn’t use low layer raw sockets because they are not portable.

4.1.3 Future Work

No announced plans.

18 Chapter 4. Ad Hoc On-Demand Distance Vector (AODV)

CHAPTER
FIVE

APPLICATIONS

Placeholder chapter

19

ns-3 Model Library, Release ns-3.26

20

Chapter 5. Applications

CHAPTER
SIX

BRIDGE NETDEVICE

Placeholder chapter

Some examples of the use of Bridge NetDevice can be found in examples/csma/ directory.

21

ns-3 Model Library, Release ns-3.26

22

Chapter 6. Bridge NetDevice

CHAPTER
SEVEN

BRITE INTEGRATION

This model implements an interface to BRITE, the Boston university Representative Internet Topology gEnerator .
BRITE is a standard tool for generating realistic internet topologies. The ns-3 model, described herein, provides
a helper class to facilitate generating ns-3 specific topologies using BRITE configuration files. BRITE builds the
original graph which is stored as nodes and edges in the ns-3 BriteTopolgyHelper class. In the ns-3 integration of
BRITE, the generator generates a topology and then provides access to leaf nodes for each AS generated. ns-3 users
can than attach custom topologies to these leaf nodes either by creating them manually or using topology generators
provided in ns-3.

There are three major types of topologies available in BRITE: Router, AS, and Hierarchical which is a combination of
AS and Router. For the purposes of ns-3 simulation, the most useful are likely to be Router and Hierarchical. Router
level topologies be generated using either the Waxman model or the Barabasi-Albert model. Each model has different
parameters that effect topology creation. For flat router topologies, all nodes are considered to be in the same AS.

BRITE Hierarchical topologies contain two levels. The first is the AS level. This level can be also be created by
using either the Waxman model or the Barabasi-Albert model. Then for each node in the AS topology, a router
level topology is constructed. These router level topologies can again either use the Waxman model or the Barbasi-
Albert model. BRITE interconnects these separate router topologies as specified by the AS level topology. Once the
hierarchical topology is constructed, it is flattened into a large router level topology.

Further information can be found in the BRITE user manual: http://www.cs.bu.edu/brite/publications/usermanual.pdf

7.1 Model Description

The model relies on building an external BRITE library, and then building some ns-3 helpers that call out to the library.
The source code for the ns-3 helpers lives in the directory src/brite/helper.

7.1.1 Design

To generate the BRITE topology, ns-3 helpers call out to the external BRITE library, and using a standard BRITE
configuration file, the BRITE code builds a graph with nodes and edges according to this configuration file. Please see
the BRITE documenation or the example configuration files in src/brite/examples/conf_files to get a better grasp of
BRITE configuration options. The graph built by BRITE is returned to ns-3, and a ns-3 implementation of the graph
is built. Leaf nodes for each AS are available for the user to either attach custom topologies or install ns-3 applications
directly.

! Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE: An Approach to Universal Topology Generation. In Proceedings
of the International Workshop on Modeling, Analysis and Simulation of Computer and Telecommunications Systems- MASCOTS ‘01, Cincinnati,
Ohio, August 2001.

23

http://www.cs.bu.edu/brite/publications/usermanual.pdf

ns-3 Model Library, Release ns-3.26

7.1.2 References

7.2 Usage

The brite-generic-example can be referenced to see basic usage of the BRITE interface. In summary, the BriteTopol-
ogyHelper is used as the interface point by passing in a BRITE configuration file. Along with the configuration file a
BRITE formatted random seed file can also be passed in. If a seed file is not passed in, the helper will create a seed
file using ns-3’s UniformRandomVariable. Once the topology has been generated by BRITE, BuildBriteTopology()
is called to create the ns-3 representation. Next IP Address can be assigned to the topology using either Assig-
nlpv4Addresses() or AssignlpvoAddresses(). It should be noted that each point-to-point link in the topology will
be treated as a new network therefore for IPV4 a /30 subnet should be used to avoid wasting a large amount of the
available address space.

Example BRITE configuration files can be found in /src/brite/examples/conf_files/. ASBarbasi and ASWaxman are
examples of AS only topologies. The RTBarabasi and RTWaxman files are examples of router only topologies. Finally
the TD_ASBarabasi_RTWaxman configuration file is an example of a Hierarchical topology that uses the Barabasi-
Albert model for the AS level and the Waxman model for each of the router level topologies. Information on the
BRITE parameters used in these files can be found in the BRITE user manual.

7.2.1 Building BRITE Integration

The first step is to download and build the ns-3 specific BRITE repository:

$ hg clone http://code.nsnam.org/BRITE
S cd BRITE
S make

This will build BRITE and create a library, libbrite.so, within the BRITE directory.

Once BRITE has been built successfully, we proceed to configure ns-3 with BRITE support. Change to your ns-3
directory:

S ./waf configure --with-brite=/your/path/to/brite/source --enable-examples

Make sure it says ‘enabled’ beside ‘BRITE Integration’. If it does not, then something has gone wrong. Either you
have forgotten to build BRITE first following the steps above, or ns-3 could not find your BRITE directory.
Next, build ns-3:

S ./waf

7.2.2 Examples

For an example demonstrating BRITE integration run:
5 ./waf —--run 'brite-generic-example'
By enabling the verbose parameter, the example will print out the node and edge information in a similar format

to standard BRITE output. There are many other command-line parameters including confFile, tracing, and nix,
described below:

confFile A BRITE configuration file. Many different BRITE configuration file examples exist in
the src/brite/examples/conf_files directory, for example, RTBarabasi20.conf and RTWaxman.conf.
Please refer to the conf_files directory for more examples.

tracing Enables ascii tracing.

24 Chapter 7. BRITE Integration

ns-3 Model Library, Release ns-3.26

nix Enables nix-vector routing. Global routing is used by default.
The generic BRITE example also support visualization using pyviz, assuming python bindings in ns-3 are enabled:

./waf --run brite-generic-example --vis

Simulations involving BRITE can also be used with MPI. The total number of MPI instances is passed to the BRITE
topology helper where a modulo divide is used to assign the nodes for each AS to a MPI instance. An example can be
found in src/brite/examples:

S mpirun -np 2 ./waf —--run brite-MPI-example

Please see the ns-3 MPI documentation for information on setting up MPI with ns-3.

7.2. Usage 25

ns-3 Model Library, Release ns-3.26

26

Chapter 7. BRITE Integration

CHAPTER
EIGHT

BUILDINGS MODULE

cd .. include:: replace.txt

8.1 Design documentation

8.1.1 Overview

The Buildings module provides:
1. anew class (Building) that models the presence of a building in a simulation scenario;

2. anew class (MobilityBuildingInfo) thatallows to specify the location, size and characteristics of build-
ings present in the simulated area, and allows the placement of nodes inside those buildings;

3. a container class with the definition of the most useful pathloss models and the correspondent variables called
BuildingsPropagationLossModel.

4. a new propagation model (HybridBuildingsPropagationLossModel) working with the mobility
model just introduced, that allows to model the phenomenon of indoor/outdoor propagation in the presence
of buildings.

5. a simplified model working only with Okumura Hata (OhBuildingsPropagationLossModel) consid-
ering the phenomenon of indoor/outdoor propagation in the presence of buildings.

The models have been designed with LTE in mind, though their implementation is in fact independent from any
LTE-specific code, and can be used with other ns-3 wireless technologies as well (e.g., wifi, wimax).

The HybridBuildingsPropagationLossModel pathloss model included is obtained through a combination
of several well known pathloss models in order to mimic different environmental scenarios such as urban, suburban
and open areas. Moreover, the model considers both outdoor and indoor indoor and outdoor communication has to be
included since HeNB might be installed either within building and either outside. In case of indoor communication,
the model has to consider also the type of building in outdoor <-> indoor communication according to some general
criteria such as the wall penetration losses of the common materials; moreover it includes some general configuration
for the internal walls in indoor communications.

The OhBuildingsPropagationLossModel pathloss model has been created for simplifying the previous one
removing the thresholds for switching from one model to other. For doing this it has been used only one propagation
model from the one available (i.e., the Okumura Hata). The presence of building is still considered in the model;
therefore all the considerations of above regarding the building type are still valid. The same consideration can be
done for what concern the environmental scenario and frequency since both of them are parameters of the model
considered.

27

ns-3 Model Library, Release ns-3.26

8.1.2 The Building class

The model includes a specific class called Building which contains a ns3 Box class for defining the dimension of
the building. In order to implements the characteristics of the pathloss models included, the Building class supports
the following attributes:

* building type:
— Residential (default value)
— Office
— Commercial

* external walls type

- Wood

ConcreteWithWindows (default value)

Concrete WithoutWindows

StoneBlocks

¢ number of floors (default value 1, which means only ground-floor)
¢ number of rooms in x-axis (default value 1)
* number of rooms in y-axis (default value 1)
The Building class is based on the following assumptions:
* abuildings is represented as a rectangular parallelepiped (i.e., a box)
* the walls are parallel to the X, y, and z axis
* abuilding is divided into a grid of rooms, identified by the following parameters:
— number of floors
— number of rooms along the x-axis
— number of rooms along the y-axis
* the z axis is the vertical axis, i.e., floor numbers increase for increasing z axis values
¢ the x and y room indices start from 1 and increase along the x and y axis respectively

¢ all rooms in a building have equal size

8.1.3 The MobilityBuildinginfo class

The MobilityBuildingInfo class, which inherits from the ns3 class Object, is in charge of main-
taining information about the position of a node with respect to building. The information managed by
MobilityBuildingInfois:

¢ whether the node is indoor or outdoor
e if indoor:
— in which building the node is

— in which room the node is positioned (x, y and floor room indices)

28 Chapter 8. Buildings Module

ns-3 Model Library, Release ns-3.26

The class MobilityBuildingInfo is used by BuildingsPropagationLossModel class, which inherits
from the ns3 class PropagationLossModel and manages the pathloss computation of the single components and
their composition according to the nodes’ positions. Moreover, it implements also the shadowing, that is the loss due
to obstacles in the main path (i.e., vegetation, buildings, etc.).

It is to be noted that, MobilityBuildingInfo can be used by any other propagation model. However, based on
the information at the time of this writing, only the ones defined in the building module are designed for considering
the constraints introduced by the buildings.

8.1.4 ItuR1238PropagationLossModel

This class implements a building-dependent indoor propagation loss model based on the ITU P.1238 model, which
includes losses due to type of building (i.e., residential, office and commercial). The analytical expression is given in
the following.

Liotal = 201og f + Nlogd + Ly (n) — 28[dB]

where:

28 residential
N =< 30 office : power loss coefficient [dB]
22 commercial

4n residential
L=< 154+4(n—1) office
6+4+3(n—1) commercial

n : number of floors between base station and mobile (n > 1)
f : frequency [MHz]
d : distance (where d > 1) [m]

8.1.5 BuildingsPropagationLossModel

The BuildingsPropagationL.ossModel provides an additional set of building-dependent pathloss model elements that
are used to implement different pathloss logics. These pathloss model elements are described in the following subsec-
tions.

External Wall Loss (EWL)
This component models the penetration loss through walls for indoor to outdoor communications and vice-versa. The
values are taken from the [cost231] model.

* Wood ~ 4 dB

¢ Concrete with windows (not metallized) ~ 7 dB

* Concrete without windows ~ 15 dB (spans between 10 and 20 in COST231)

* Stone blocks ~ 12 dB

Internal Walls Loss (IWL)

This component models the penetration loss occurring in indoor-to-indoor communications within the same build-
ing. The total loss is calculated assuming that each single internal wall has a constant penetration loss Lg;,,, and

8.1. Design documentation 29

ns-3 Model Library, Release ns-3.26

approximating the number of walls that are penetrated with the manhattan distance (in number of rooms) between the
transmitter and the receiver. In detail, let x1, y1, Z2, y2 denote the room number along the x and y axis respectively
for user 1 and 2; the total loss Ly 1, is calculated as

Liwr = Lsiw(|z1 — 22| + |y1 — y2|)

Height Gain Model (HG)

This component model the gain due to the fact that the transmitting device is on a floor above the ground. In the
literature [turkmani] this gain has been evaluated as about 2 dB per floor. This gain can be applied to all the indoor to
outdoor communications and vice-versa.

Shadowing Model

The shadowing is modeled according to a log-normal distribution with variable standard deviation as function of the
relative position (indoor or outdoor) of the MobilityModel instances involved. One random value is drawn for each
pair of MobilityModels, and stays constant for that pair during the whole simulation. Thus, the model is appropriate
for static nodes only.

The model considers that the mean of the shadowing loss in dB is always 0. For the variance, the model considers
three possible values of standard deviation, in detail:

* outdoor (m_shadowingSigmaOutdoor, defaul value of 7dB) — X¢o ~ N(po0, 0(2)).
* indoor (m_shadowingSigmaIndoor, defaul value of 10 dB) — X ~ N (u1, o).
« external walls penetration (m_shadowingSigmaExtWalls, default value 5 dB) — Xw ~ N(uw, o)

The simulator generates a shadowing value per each active link according to nodes’ position the first time the link
is used for transmitting. In case of transmissions from outdoor nodes to indoor ones, and vice-versa, the standard
deviation (o1p) has to be calculated as the square root of the sum of the quadratic values of the standard deviatio in
case of outdoor nodes and the one for the external walls penetration. This is due to the fact that that the components
producing the shadowing are independent of each other; therefore, the variance of a distribution resulting from the
sum of two independent normal ones is the sum of the variances.

X ~ N(u,0*) and Y ~ N(v,7?)
Z=X+Y ~Z(p+v,0%+71°)

= 010 = /04 + 0%

8.1.6 Pathloss logics

In the following we describe the different pathloss logic that are implemented by inheriting from BuildingsPropaga-
tionLossModel.

HybridBuildingsPropagationLossModel

The HybridBuildingsPropagationLossModel pathloss model included is obtained through a combination
of several well known pathloss models in order to mimic different outdoor and indoor scenarios, as well as indoor-
to-outdoor and outdoor-to-indoor scenarios. In detail, the class HybridBuildingsPropagationLossModel
integrates the following pathloss models:

e OkumuraHataPropagationLossModel = (OH) (at frequencies > 2.3 GHz substituted by
Kun2600MhzPropagationLossModel)

30 Chapter 8. Buildings Module

ns-3 Model Library, Release ns-3.26

* ItuR1411LosPropagationLossModel and ItuR1411NlosOverRooftopPropagationLossModel (I1411)
* TtuR1238PropagationLossModel (11238)
* the pathloss elements of the BuildingsPropagationL.ossModel (EWL, HG, IWL)

The following pseudo-code illustrates how the different pathloss model elements described above are integrated in
HybridBuildingsPropagationLossModel:

if (txNode 1is outdoor)
then
if (rxNode is outdoor)
then
if (distance > 1 km)
then
if (rxNode or txNode is below the rooftop)
then
L = I1411
else
L = OH
else
L = I1411
else (rxNode is indoor)
if (distance > 1 km)
then
if (rxNode or txNode is below the rooftop)
L = I1411 + EWL + HG
else
L = OH + EWL + HG
else
L = I1411 + EWL + HG
else (txNode is indoor)
if (rxNode is indoor)

then
if (same building)
then
L = I1238 + IWL
else

L = I1411 + 2+EWL
else (rxNode 1is outdoor)
if (distance > 1 km)

then
if (rxNode or txNode is below the rooftop)
then
L = I1411 + EWL + HG
else
L = OH + EWL + HG
else

L = I1411 + EWL

We note that, for the case of communication between two nodes below rooftop level with distance is greater then 1
km, we still consider the 11411 model, since OH is specifically designed for macro cells and therefore for antennas
above the roof-top level.

For the ITU-R P.1411 model we consider both the LOS and NLoS versions. In particular, we considers the LoS
propagation for distances that are shorted than a tunable threshold (m_itul411NlosThreshold). In case on
NLoS propagation, the over the roof-top model is taken in consideration for modeling both macro BS and SC. In case
on NLoS several parameters scenario dependent have been included, such as average street width, orientation, etc. The
values of such parameters have to be properly set according to the scenario implemented, the model does not calculate
natively their values. In case any values is provided, the standard ones are used, apart for the height of the mobile and

8.1. Design documentation 31

ns-3 Model Library, Release ns-3.26

BS, which instead their integrity is tested directly in the code (i.e., they have to be greater then zero). In the following
we give the expressions of the components of the model.

We also note that the use of different propagation models (OH, 11411, 11238 with their variants) in HybridBuild-
ingsPropagationLossModel can result in discontinuities of the pathloss with respect to distance. A proper tuning of
the attributes (especially the distance threshold attributes) can avoid these discontinuities. However, since the behavior
of each model depends on several other parameters (frequency, node heigth, etc), there is no default value of these
thresholds that can avoid the discontinuities in all possible configurations. Hence, an appropriate tuning of these
parameters is left to the user.

OhBuildingsPropagationLossModel

The OhBuildingsPropagationLossModel class has been created as a simple means to solve the discontinuity
problems of HybridBuildingsPropagationLossModel without doing scenario-specific parameter tuning.
The solution is to use only one propagation loss model (i.e., Okumura Hata), while retaining the structure of the
pathloss logic for the calculation of other path loss components (such as wall penetration losses). The result is a model
that is free of discontinuities (except those due to walls), but that is less realistic overall for a generic scenario with
buildings and outdoor/indoor users, e.g., because Okumura Hata is not suitable neither for indoor communications nor
for outdoor communications below rooftop level.

In detail, the class OhBuildingsPropagationLossModel integrates the following pathloss models:
¢ OkumuraHataPropagationL.ossModel (OH)
* the pathloss elements of the BuildingsPropagationLossModel (EWL, HG, IWL)

The following pseudo-code illustrates how the different pathloss model elements described above are integrated in
OhBuildingsPropagationLossModel:

if (txNode is outdoor)
then
if (rxNode is outdoor)
then
L = OH
else (rxNode is indoor)
L = OH + EWL
else (txNode is indoor)
if (rxNode is indoor)

then
if (same building)
then
L = OH + IWL
else

L = OH + 2*xEWL
else (rxNode is outdoor)
L = OH + EWL

We note that OhBuildingsPropagationLossModel is a significant simplification with respect to HybridBuildingsProp-
agationLossModel, due to the fact that OH is used always. While this gives a less accurate model in some scenarios
(especially below rooftop and indoor), it effectively avoids the issue of pathloss discontinuities that affects Hybrid-
BuildingsPropagationLossModel.

32 Chapter 8. Buildings Module

ns-3 Model Library, Release ns-3.26

8.2 User Documentation

8.2.1 How to use buildings in a simulation

In this section we explain the basic usage of the buildings model within a simulation program.

Include the headers

Add this at the beginning of your simulation program:

#include <ns3/buildings-module.h>

Create a building

As an example, let’s create a residential 10 x 20 x 10 building:

double x_min = 0.0;

double x_max = 10.0;

double y_min = 0.0;

double y_max = 20.0;

double z_min = 0.0;

double z_max = 10.0;

Ptr<Building> b = CreateObject <Building> ();
b->SetBoundaries (Box (x_min, x_max, y_min, y_max, z_min, z_max));
b->SetBuildingType (Building::Residential);
b->SetExtWallsType (Building::ConcreteWithWindows) ;
b->SetNFloors (3);

b->SetNRoomsX (3);

b->SetNRoomsY (2);

This building has three floors and an internal 3 x 2 grid of rooms of equal size.

The helper class GridBuildingAllocator is also available to easily create a set of buildings with identical characteristics
placed on a rectangular grid. Here’s an example of how to use it:

Ptr<GridBuildingAllocator> gridBuildingAllocator;

gridBuildingAllocator = CreateObject<GridBuildingAllocator> ();
gridBuildingAllocator->SetAttribute ("GridWidth", UintegerValue (3));
gridBuildingAllocator—->SetAttribute ("LengthX", DoubleValue (7));
gridBuildingAllocator—->SetAttribute ("Length¥Y", DoubleValue (13));
gridBuildingAllocator->SetAttribute ("DeltaX", DoubleValue (3));
gridBuildingAllocator—->SetAttribute ("Delta¥Y", DoubleValue (3));
gridBuildingAllocator—->SetAttribute ("Height", DoubleValue (6));
gridBuildingAllocator—->SetBuildingAttribute ("NRoomsX", UintegerValue (2));
gridBuildingAllocator—->SetBuildingAttribute ("NRoomsY", UintegerValue (4));
gridBuildingAllocator—->SetBuildingAttribute ("NFloors", UintegerValue (2));
gridBuildingAllocator->SetAttribute ("MinX", DoubleValue (0));
gridBuildingAllocator—->SetAttribute ("MinY", DoubleValue (0));
gridBuildingAllocator—->Create (6);

(
(
(
(

This will create a 3x2 grid of 6 buildings, each 7 x 13 x 6 m with 2 x 4 rooms inside and 2 foors; the buildings are
spaced by 3 m on both the x and the y axis.

8.2. User Documentation 33

ns-3 Model Library, Release ns-3.26

Setup nodes and mobility models

Nodes and mobility models are configured as usual, however in order to use them with the buildings model you need
an additional call to BuildingsHelper: :Install (), so as to let the mobility model include the informtion on
their position w.r.t. the buildings. Here is an example:

MobilityHelper mobility;

mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
ueNodes.Create (2);

mobility.Install (ueNodes);

BuildingsHelper::Install (ueNodes);

It is to be noted that any mobility model can be used. However, the user is advised to make sure that the behavior
of the mobility model being used is consistent with the presence of Buildings. For example, using a simple random
mobility over the whole simulation area in presence of buildings might easily results in node moving in and out of
buildings, regardless of the presence of walls.

Place some nodes

You can place nodes in your simulation using several methods, which are described in the following.

Legacy positioning methods

Any legacy ns-3 positioning method can be used to place node in the simulation. The important additional step is to
For example, you can place nodes manually like this:

Ptr<ConstantPositionMobilityModel> mmO = enbNodes.Get (0)->GetObject<ConstantPositionMobilityModel>
Ptr<ConstantPositionMobilityModel> mml = enbNodes.Get (1)->GetObject<ConstantPositionMobilityModel>
mmO->SetPosition (Vector (5.0, 5.0, 1.5));

mml->SetPosition (Vector (30.0, 40.0, 1.5));

MobilityHelper mobility;

mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
ueNodes.Create (2);

mobility.Install (ueNodes);

BuildingsHelper::Install (ueNodes);

mmO0->SetPosition (Vector (5.0, 5.0, 1.5));

mml->SetPosition (Vector (30.0, 40.0, 1.5));

Alternatively, you could use any existing PositionAllocator class. The coordinates of the node will determine whether
it is placed outdoor or indoor and, if indoor, in which building and room it is placed.

Building-specific positioning methods

The following position allocator classes are available to place node in special positions with respect to buildings:

* RandomBuildingPositionAllocator: Allocate each position by randomly chosing a building from the
list of all buildings, and then randomly chosing a position inside the building.

* RandomRoomPositionAllocator: Allocate each position by randomly chosing a room from the list of
rooms in all buildings, and then randomly chosing a position inside the room.

* SameRoomPositionAllocator: Walks a given NodeContainer sequentially, and for each node allocate a
new position randomly in the same room of that node.

34 Chapter 8. Buildings Module

ns-3 Model Library, Release ns-3.26

* FixedRoomPositionAllocator: Generate a random position uniformly distributed in the volume of a
chosen room inside a chosen building.

Make the Mobility Model Consistent
Important: whenever you use buildings, you have to issue the following command after we have placed all nodes and
buildings in the simulation:

BuildingsHelper: :MakeMobilityModelConsistent ();

This command will go through the lists of all nodes and of all buildings, determine for each user if it is indoor or
outdoor, and if indoor it will also determine the building in which the user is located and the corresponding floor and
number inside the building.

Building-aware pathloss model

After you placed buildings and nodes in a simulation, you can use a building-aware pathloss model in a simulation
exactly in the same way you would use any regular path loss model. How to do this is specific for the wireless
module that you are considering (Ite, wifi, wimax, etc.), so please refer to the documentation of that model for specific
instructions.

8.2.2 Main configurable attributes

The Building class has the following configurable parameters:
* building type: Residential, Office and Commercial.
* external walls type: Wood, ConcreteWithWindows, ConcreteWithoutWindows and StoneBlocks.
* building bounds: a Box class with the building bounds.
* number of floors.
* number of rooms in x-axis and y-axis (rooms can be placed only in a grid way).

The BuildingMobilityLossModel parameter configurable with the ns3 attribute system is represented by the
bound (string Bounds) of the simulation area by providing a Box class with the area bounds. Moreover, by means of
its methos the following parameters can be configured:

¢ the number of floor the node is placed (default 0).
¢ the position in the rooms grid.

The BuildingPropagationLossModel class has the following configurable parameters configurable with the
attribute system:

* Frequency: reference frequency (default 2160 MHz), note that by setting the frequency the wavelength is set
accordingly automatically and viceversa).

* Lambda: the wavelength (0.139 meters, considering the above frequency).
* ShadowSigmaOutdoor: the standard deviation of the shadowing for outdoor nodes (defaul 7.0).
* ShadowSigmaIndoor: the standard deviation of the shadowing for indoor nodes (default 8.0).

* ShadowSigmaExtWalls: the standard deviation of the shadowing due to external walls penetration for
outdoor to indoor communications (default 5.0).

* RooftopLevel: the level of the rooftop of the building in meters (default 20 meters).

8.2. User Documentation 35

ns-3 Model Library, Release ns-3.26

* Los2NlosThr: the value of distance of the switching point between line-of-sigth and non-line-of-sight prop-
agation model in meters (default 200 meters).

* ITUl411DistanceThr: the value of distance of the switching point between short range (ITU 1211) com-
munications and long range (Okumura Hata) in meters (default 200 meters).

e MinDistance: the minimum distance in meters between two nodes for evaluating the pathloss (considered
neglictible before this threshold) (default 0.5 meters).

* Environment: the environment scenario among Urban, SubUrban and OpenAreas (default Urban).
e CitySize: the dimension of the city among Small, Medium, Large (default Large).

In order to use the hybrid mode, the class to be used is the HybridBuildingMobilityLossModel, which allows
the selection of the proper pathloss model according to the pathloss logic presented in the design chapter. However,
this solution has the problem that the pathloss model switching points might present discontinuities due to the different
characteristics of the model. This implies that according to the specific scenario, the threshold used for switching have
to be properly tuned. The simple OhBuildingMobilityLossModel overcome this problem by using only the
Okumura Hata model and the wall penetration losses.

8.3 Testing Documentation

8.3.1 Overview
To test and validate the ns-3 Building Pathloss module, some test suites is provided which are integrated with the ns-3
test framework. To run them, you need to have configured the build of the simulator in this way:

S ./waf configure —--enable-tests —-enable-modules=buildings
S ./test.py

The above will run not only the test suites belonging to the buildings module, but also those belonging to all the other
ns-3 modules on which the buildings module depends. See the ns-3 manual for generic information on the testing
framework.

You can get a more detailed report in HTML format in this way:

$./test.py -w results.html

After the above command has run, you can view the detailed result for each test by opening the file results.html
with a web browser.

You can run each test suite separately using this command:

S ./test.py -s test-suite-name

For more details about test . py and the ns-3 testing framework, please refer to the ns-3 manual.

8.3.2 Description of the test suites
BuildingsHelper test

The test suite buildings—helper checks that the method BuildingsHelper: :MakeAllInstancesConsistent
() works properly, i.e., that the BuildingsHelper is successful in locating if nodes are outdoor or indoor, and if indoor

that they are located in the correct building, room and floor. Several test cases are provided with different buildings
(having different size, position, rooms and floors) and different node positions. The test passes if each every node is
located correctly.

36 Chapter 8. Buildings Module

ns-3 Model Library, Release ns-3.26

BuildingPositionAllocator test

The test suite building-position-allocator feature two test cases that check that respectively Random-
RoomPositionAllocator and SameRoomPositionAllocator work properly. Each test cases involves a single 2x3x2
room building (total 12 rooms) at known coordinates and respectively 24 and 48 nodes. Both tests check that the
number of nodes allocated in each room is the expected one and that the position of the nodes is also correct.

Buildings Pathloss tests

The test suite buildings—-pathloss—-model provides different unit tests that compare the expected results of
the buildings pathloss module in specific scenarios with pre calculated values obtained offline with an Octave script
(test/reference/buildings-pathloss.m). The tests are considered passed if the two values are equal up to a tolerance of
0.1, which is deemed appropriate for the typical usage of pathloss values (which are in dB).

In the following we detailed the scenarios considered, their selection has been done for covering the wide set of
possible pathloss logic combinations. The pathloss logic results therefore implicitly tested.

Test #1 Okumura Hata

In this test we test the standard Okumura Hata model; therefore both eNB and UE are placed outside at a distance
of 2000 m. The frequency used is the E-UTRA band #5, which correspond to 869 MHz (see table 5.5-1 of 36.101).
The test includes also the validation of the areas extensions (i.e., urban, suburban and open-areas) and of the city size
(small, medium and large).

Test #2 COST231 Model

This test is aimed at validating the COST231 model. The test is similar to the Okumura Hata one, except that the
frequency used is the EUTRA band #1 (2140 MHz) and that the test can be performed only for large and small cities
in urban scenarios due to model limitations.

Test #3 2.6 GHz model

This test validates the 2.6 GHz Kun model. The test is similar to Okumura Hata one except that the frequency is the
EUTRA band #7 (2620 MHz) and the test can be performed only in urban scenario.

Test #4 ITU1411 LoS model

This test is aimed at validating the ITU1411 model in case of line of sight within street canyons transmissions. In this
case the UE is placed at 100 meters far from the eNB, since the threshold for switching between LoS and NLoS is left
to default one (i.e., 200 m.).

Test #5 ITU1411 NLoS model

This test is aimed at validating the ITU1411 model in case of non line of sight over the rooftop transmissions. In this
case the UE is placed at 900 meters far from the eNB, in order to be above the threshold for switching between LoS
and NLoS is left to default one (i.e., 200 m.).

8.3. Testing Documentation 37

ns-3 Model Library, Release ns-3.26

Test #6 ITUP1238 model

This test is aimed at validating the ITUP1238 model in case of indoor transmissions. In this case both the UE and the
eNB are placed in a residential building with walls made of concrete with windows. Ue is placed at the second floor
and distances 30 meters far from the eNB, which is placed at the first floor.

Test #7 Outdoor -> Indoor with Okumura Hata model

This test validates the outdoor to indoor transmissions for large distances. In this case the UE is placed in a residential
building with wall made of concrete with windows and distances 2000 meters from the outdoor eNB.

Test #8 Outdoor -> Indoor with ITU1411 model

This test validates the outdoor to indoor transmissions for short distances. In this case the UE is placed in a residential
building with walls made of concrete with windows and distances 100 meters from the outdoor eNB.

Test #9 Indoor -> Outdoor with ITU1411 model

This test validates the outdoor to indoor transmissions for very short distances. In this case the eNB is placed in the
second floor of a residential building with walls made of concrete with windows and distances 100 meters from the
outdoor UE (i.e., LoS communication). Therefore the height gain has to be included in the pathloss evaluation.

Test #10 Indoor -> Outdoor with ITU1411 model

This test validates the outdoor to indoor transmissions for short distances. In this case the eNB is placed in the second
floor of a residential building with walls made of concrete with windows and distances 500 meters from the outdoor
UE (i.e., NLoS communication). Therefore the height gain has to be included in the pathloss evaluation.

Buildings Shadowing Test

The test suite buildings-shadowing-test is a unit test intended to verify the statistical distribution of the
shadowing model implemented by BuildingsPathlossModel. The shadowing is modeled according to a nor-
mal distribution with mean ¢ = 0 and variable standard deviation o, according to models commonly used in lit-
erature. Three test cases are provided, which cover the cases of indoor, outdoor and indoor-to-outdoor commu-
nications. Each test case generates 1000 different samples of shadowing for different pairs of MobilityModel in-
stances in a given scenario. Shadowing values are obtained by subtracting from the total loss value returned by
HybridBuildingsPathlossModel the path loss component which is constant and pre-determined for each test
case. The test verifies that the sample mean and sample variance of the shadowing values fall within the 99% confi-
dence interval of the sample mean and sample variance. The test also verifies that the shadowing values returned at
successive times for the same pair of MobilityModel instances is constant.

8.4 References

38 Chapter 8. Buildings Module

CHAPTER
NINE

CLICK MODULAR ROUTER INTEGRATION

Click is a software architecture for building configurable routers. By using different combinations of packet processing
units called elements, a Click router can be made to perform a specific kind of functionality. This flexibility provides
a good platform for testing and experimenting with different protocols.

9.1 Model Description

The source code for the Click model lives in the directory src/click.

9.1.1 Design

ns-3’s design is well suited for an integration with Click due to the following reasons:

 Packets in ns-3 are serialised/deserialised as they move up/down the stack. This allows ns-3 packets to be passed
to and from Click as they are.

* This also means that any kind of ns-3 traffic generator and transport should work easily on top of Click.

* By striving to implement click as an Ipv4RoutingProtocol instance, we can avoid significant changes to the LL
and MAC layer of the ns-3 code.

The design goal was to make the ns-3-click public API simple enough such that the user needs to merely add an
Ipv4ClickRouting instance to the node, and inform each Click node of the Click configuration file (.click file) that it is
to use.

This model implements the interface to the Click Modular Router and provides the Ipv4ClickRouting class to allow a
node to use Click for external routing. Unlike normal Ipv4RoutingProtocol sub types, Ipv4ClickRouting doesn’t use a
Routelnput() method, but instead, receives a packet on the appropriate interface and processes it accordingly. Note that
you need to have a routing table type element in your Click graph to use Click for external routing. This is needed by
the RouteOutput() function inherited from Ipv4RoutingProtocol. Furthermore, a Click based node uses a different kind
of L3 in the form of Ipv4L3ClickProtocol, which is a trimmed down version of Ipv4L3Protocol. Ipv4L3ClickProtocol
passes on packets passing through the stack to Ipv4ClickRouting for processing.

Developing a Simulator API to allow ns-3 to interact with Click

Much of the API is already well defined, which allows Click to probe for information from the simulator (like a Node’s
ID, an Interface ID and so forth). By retaining most of the methods, it should be possible to write new implementations
specific to ns-3 for the same functionality.

Hence, for the Click integration with ns-3, a class named Ipv4ClickRouting will handle the interaction with Click. The
code for the same can be found in src/click/model/ipv4-click-routing. {cc, h}.

39

ns-3 Model Library, Release ns-3.26

Packet hand off between ns-3 and Click

There are four kinds of packet hand-offs that can occur between ns-3 and Click.
* L4toL3
* L3toL4
e L3t0L2
e [2t0L3

To overcome this, we implement Ipv4L3ClickProtocol, a stripped down version of Ipv4L3Protocol.
Ipv4L3ClickProtocol passes packets to and from Ipv4ClickRouting appropriately to perform routing.

9.1.2 Scope and Limitations

* Inits current state, the NS-3 Click Integration is limited to use only with L3, leaving NS-3 to handle L2. We are
currently working on adding Click MAC support as well. See the usage section to make sure that you design
your Click graphs accordingly.

* Furthermore, ns-3-click will work only with userlevel elements. The complete list of elements are available at
http://read.cs.ucla.edu/click/elements. Elements that have ‘all’, ‘userlevel’ or ‘ns’ mentioned beside them may
be used.

¢ As of now, the ns-3 interface to Click is Ipv4 only. We will be adding Ipv6 support in the future.

9.1.3 References
» Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The click modular router.
ACM Transactions on Computer Systems 18(3), August 2000, pages 263-297.

 Lalith Suresh P., and Ruben Merz. Ns-3-click: click modular router integration for ns-3. In Proc. of 3rd
International ICST Workshop on NS-3 (WNS3), Barcelona, Spain. March, 2011.

* Michael Neufeld, Ashish Jain, and Dirk Grunwald. Nsclick: bridging network simulation and deployment.
MSWiM ‘02: Proceedings of the Sth ACM international workshop on Modeling analysis and simulation of
wireless and mobile systems, 2002, Atlanta, Georgia, USA. http://doi.acm.org/10.1145/570758.570772

9.2 Usage

9.2.1 Building Click

The first step is to clone Click from the github repository and build it:

$ git clone https://github.com/kohler/click

$ cd click/

$./configure —--disable-linuxmodule —--enable-nsclick —-—-enable-wifi
S make

The —enable-wifi flag may be skipped if you don’t intend on using Click with Wifi. * Note: You don’t need to do a
‘make install’.

Once Click has been built successfully, change into the ns-3 directory and configure ns-3 with Click Integration
support:

40 Chapter 9. Click Modular Router Integration

http://read.cs.ucla.edu/click/elements
http://doi.acm.org/10.1145/570758.570772

ns-3 Model Library, Release ns-3.26

S ./waf configure —--enable-examples —--enable-tests —--with-nsclick=/path/to/click/source

Hint: If you have click installed one directory above ns-3 (such as in the ns-3-allinone directory), and the name of
the directory is ‘click’ (or a symbolic link to the directory is named ‘click’), then the —with-nsclick specifier is not
necessary; the ns-3 build system will successfully find the directory.

If it says ‘enabled’ beside ‘NS-3 Click Integration Support’, then you’re good to go. Note: If running modular ns-3,
the minimum set of modules required to run all ns-3-click examples is wifi, csma and config-store.

Next, try running one of the examples:

S ./waf —-run nsclick-simple-lan

You may then view the resulting .pcap traces, which are named nsclick-simple-lan-0-0.pcap and nsclick-simple-lan-0-
1.pcap.

9.2.2 Click Graph Instructions

The following should be kept in mind when making your Click graph:
* Only userlevel elements can be used.
* You will need to replace FromDevice and ToDevice elements with FromSimDevice and ToSimDevice elements.
* Packets to the kernel are sent up using ToSimDevice(tap0,IP).

» For any node, the device which sends/receives packets to/from the kernel, is named ‘tap0’. The remaining
interfaces should be named ethO, ethl and so forth (even if you’re using wifi). Please note that the device
numbering should begin from 0. In future, this will be made flexible so that users can name devices in their
Click file as they wish.

* A routing table element is a mandatory. The OUTports of the routing table element should correspond to the
interface number of the device through which the packet will ultimately be sent out. Violating this rule will lead
to really weird packet traces. This routing table element’s name should then be passed to the Ipv4ClickRouting
protocol object as a simulation parameter. See the Click examples for details.

* The current implementation leaves Click with mainly L3 functionality, with ns-3 handling L2. We will soon
begin working to support the use of MAC protocols on Click as well. This means that as of now, Click’s Wifi
specific elements cannot be used with ns-3.

9.2.3 Debugging Packet Flows from Click

From any point within a Click graph, you may use the Print (http://read.cs.ucla.edu/click/elements/print) element and
its variants for pretty printing of packet contents. Furthermore, you may generate pcap traces of packets flowing
through a Click graph by using the ToDump (http://read.cs.ucla.edu/click/elements/todump) element as well. For
instance:

myarpquerier
—> Print (fromarpquery, 64)
—> ToDump (out_arpquery, PER_NODE 1)
-> ethout;

and ...will print the contents of packets that flow out of the ArpQuerier, then generate a pcap trace file which will have
a suffix ‘out_arpquery’, for each node using the Click file, before pushing packets onto ‘ethout’.

9.2. Usage 41

http://read.cs.ucla.edu/click/elements/print
http://read.cs.ucla.edu/click/elements/todump

ns-3 Model Library, Release ns-3.26

9.2.4 Helper

To have a node run Click, the easiest way would be to use the ClickInternetStackHelper class in your simulation script.
For instance:

ClickInternetStackHelper click;

click.SetClickFile (myNodeContainer, "nsclick-simple-lan.click");
click.SetRoutingTableElement (myNodeContainer, "u/rt");
click.Install (myNodeContainer);

The example scripts inside src/click/examples/ demonstrate the use of Click
based nodes in different scenarios. The helper source can be found inside
src/click/helper/click-internet-stack-helper. {h,cc}

9.2.5 Examples

The following examples have been written, which can be found in src/click/examples/:

¢ nsclick-simple-lan.cc and nsclick-raw-wlan.cc: A Click based node communicating with a normal ns-3 node
without Click, using Csma and Wifi respectively. It also demonstrates the use of TCP on top of Click, something
which the original nsclick implementation for NS-2 couldn’t achieve.

* nsclick-udp-client-server-csma.cc and nsclick-udp-client-server-wifi.cc: A 3 node LAN (Csma and Wifi respec-
tively) wherein 2 Click based nodes run a UDP client, that sends packets to a third Click based node running a
UDP server.

¢ nsclick-routing.cc: One Click based node communicates to another via a third node that acts as an IP router
(using the IP router Click configuration). This demonstrates routing using Click.

Scripts are available within <click-dir>/conf/ that allow you to generate Click files for some common sce-
narios. The IP Router used in nsclick-routing.cc was generated from the make-ip-conf.pl file and slightly
adapted to work with ns-3-click.

9.3 Validation

This model has been tested as follows:

e Unit tests have been written to verify the internals of Ipv4ClickRouting. This can be found in
src/click/ipvéd-click-routing-test.cc. These tests verify whether the methods inside
Ipv4ClickRouting which deal with Device name to ID, IP Address from device name and Mac Address from
device name bindings work as expected.

e The examples have been used to test Click with actual simulation scenarios. These can be found in
src/click/examples/. These tests cover the following: the use of different kinds of transports on top
of Click, TCP/UDP, whether Click nodes can communicate with non-Click based nodes, whether Click nodes
can communicate with each other, using Click to route packets using static routing.

* Click has been tested with Csma, Wifi and Point-to-Point devices. Usage instructions are available in the pre-
ceding section.

42 Chapter 9. Click Modular Router Integration

CHAPTER
TEN

CSMA NETDEVICE

This is the introduction to CSMA NetDevice chapter, to complement the Csma model doxygen.

10.1 Overview of the CSMA model

The ns-3 CSMA device models a simple bus network in the spirit of Ethernet. Although it does not model any real
physical network you could ever build or buy, it does provide some very useful functionality.

Typically when one thinks of a bus network Ethernet or IEEE 802.3 comes to mind. Ethernet uses CSMA/CD (Car-
rier Sense Multiple Access with Collision Detection with exponentially increasing backoff to contend for the shared
transmission medium. The ns-3 CSMA device models only a portion of this process, using the nature of the globally
available channel to provide instantaneous (faster than light) carrier sense and priority-based collision “avoidance.”
Collisions in the sense of Ethernet never happen and so the ns-3 CSMA device does not model collision detection, nor
will any transmission in progress be “jammed.”

10.1.1 CSMA Layer Model

There are a number of conventions in use for describing layered communications architectures in the literature and in
textbooks. The most common layering model is the ISO seven layer reference model. In this view the CsmaNetDevice
and CsmaChannel pair occupies the lowest two layers — at the physical (layer one), and data link (layer two) positions.
Another important reference model is that specified by RFC 1122, “Requirements for Internet Hosts — Communication
Layers.” In this view the CsmaNetDevice and CsmaChannel pair occupies the lowest layer — the link layer. There is
also a seemingly endless litany of alternative descriptions found in textbooks and in the literature. We adopt the naming
conventions used in the IEEE 802 standards which speak of LLC, MAC, MII and PHY layering. These acronyms are
defined as:

* LLC: Logical Link Control;

¢ MAC: Media Access Control;

* MII: Media Independent Interface;
* PHY: Physical Layer.

In this case the LLC and MAC are sublayers of the OSI data link layer and the MII and PHY are sublayers of the OSI
physical layer.

The “top” of the CSMA device defines the transition from the network layer to the data link layer. This transition is
performed by higher layers by calling either CsmaNetDevice::Send or CsmaNetDevice::SendFrom.

In contrast to the IEEE 802.3 standards, there is no precisely specified PHY in the CSMA model in the sense of wire
types, signals or pinouts. The “bottom” interface of the CsmaNetDevice can be thought of as as a kind of Media
Independent Interface (MII) as seen in the “Fast Ethernet” (IEEE 802.3u) specifications. This MII interface fits into a

43

ns-3 Model Library, Release ns-3.26

corresponding media independent interface on the CsmaChannel. You will not find the equivalent of a 10BASE-T or
a 1000BASE-LX PHY.

The CsmaNetDevice calls the CsmaChannel through a media independent interface. There is a method defined to tell
the channel when to start “wiggling the wires” using the method CsmaChannel:: TransmitStart, and a method to tell
the channel when the transmission process is done and the channel should begin propagating the last bit across the
“wire”: CsmaChannel::TransmitEnd.

When the TransmitEnd method is executed, the channel will model a single uniform signal propagation delay in the
medium and deliver copes of the packet to each of the devices attached to the packet via the CsmaNetDevice::Receive
method.

There is a “pin” in the device media independent interface corresponding to “COL” (collision). The state of the channel
may be sensed by calling CsmaChannel::GetState. Each device will look at this “pin” before starting a send and will
perform appropriate backoff operations if required.

Properly received packets are forwarded up to higher levels from the CsmaNetDevice via a callback mechanism.
The callback function is initialized by the higher layer (when the net device is attached) using CsmaNetDe-
vice::SetReceiveCallback and is invoked upon “proper” reception of a packet by the net device in order to forward
the packet up the protocol stack.

10.2 CSMA Channel Model

The class CsmaChannel models the actual transmission medium. There is no fixed limit for the number of devices
connected to the channel. The CsmaChannel models a data rate and a speed-of-light delay which can be accessed via
the attributes “DataRate” and “Delay” respectively. The data rate provided to the channel is used to set the data rates
used by the transmitter sections of the CSMA devices connected to the channel. There is no way to independently set
data rates in the devices. Since the data rate is only used to calculate a delay time, there is no limitation (other than
by the data type holding the value) on the speed at which CSMA channels and devices can operate; and no restriction
based on any kind of PHY characteristics.

The CsmaChannel has three states, IDLE, TRANSMITTING and PROPAGATING. These three states are “seen” in-
stantaneously by all devices on the channel. By this we mean that if one device begins or ends a simulated transmission,
all devices on the channel are immediately aware of the change in state. There is no time during which one device may
see an IDLE channel while another device physically further away in the collision domain may have begun transmit-
ting with the associated signals not propagated down the channel to other devices. Thus there is no need for collision
detection in the CsmaChannel model and it is not implemented in any way.

We do, as the name indicates, have a Carrier Sense aspect to the model. Since the simulator is single threaded, access
to the common channel will be serialized by the simulator. This provides a deterministic mechanism for contending
for the channel. The channel is allocated (transitioned from state IDLE to state TRANSMITTING) on a first-come
first-served basis. The channel always goes through a three state process:

IDLE -> TRANSMITTING -> PROPAGATING —-> IDLE

The TRANSMITTING state models the time during which the source net device is actually wiggling the signals on the
wire. The PROPAGATING state models the time after the last bit was sent, when the signal is propagating down the
wire to the “far end.”

The transition to the TRANSMITTING state is driven by a call to CsmaChannel::TransmitStart which is called by
the net device that transmits the packet. It is the responsibility of that device to end the transmission with a call to
CsmaChannel::TransmitEnd at the appropriate simulation time that reflects the time elapsed to put all of the packet
bits on the wire. When TransmitEnd is called, the channel schedules an event corresponding to a single speed-of-
light delay. This delay applies to all net devices on the channel identically. You can think of a symmetrical hub in
which the packet bits propagate to a central location and then back out equal length cables to the other devices on the
channel. The single “speed of light” delay then corresponds to the time it takes for: 1) a signal to propagate from one

44 Chapter 10. CSMA NetDevice

ns-3 Model Library, Release ns-3.26

CsmaNetDevice through its cable to the hub; plus 2) the time it takes for the hub to forward the packet out a port; plus
3) the time it takes for the signal in question to propagate to the destination net device.

The CsmaChannel models a broadcast medium so the packet is delivered to all of the devices on the channel (including
the source) at the end of the propagation time. It is the responsibility of the sending device to determine whether or
not it receives a packet broadcast over the channel.

The CsmaChannel provides following Attributes:
» DataRate: The bitrate for packet transmission on connected devices;

¢ Delay: The speed of light transmission delay for the channel.

10.3 CSMA Net Device Model

The CSMA network device appears somewhat like an Ethernet device. The CsmaNetDevice provides following At-
tributes:

* Address: The Mac48Address of the device;

» SendEnable: Enable packet transmission if true;

* ReceiveEnable: Enable packet reception if true;

* EncapsulationMode: Type of link layer encapsulation to use;
¢ RxErrorModel: The receive error model;

¢ TxQueue: The transmit queue used by the device;

¢ InterframeGap: The optional time to wait between “frames”;
* Rx: A trace source for received packets;

* Drop: A trace source for dropped packets.

The CsmaNetDevice supports the assignment of a “receive error model.” This is an ErrorModel object that is used to
simulate data corruption on the link.

Packets sent over the CsmaNetDevice are always routed through the transmit queue to provide a trace hook for packets
sent out over the network. This transmit queue can be set (via attribute) to model different queuing strategies.

Also configurable by attribute is the encapsulation method used by the device. Every packet gets an EthernetHeader
that includes the destination and source MAC addresses, and a length/type field. Every packet also gets an Ethernet-
Trailer which includes the FCS. Data in the packet may be encapsulated in different ways.

By default, or by setting the “EncapsulationMode” attribute to “Dix”, the encapsulation is according to the DEC,
Intel, Xerox standard. This is sometimes called Ethernetll framing and is the familiar destination MAC, source MAC,
EtherType, Data, CRC format.

If the “EncapsulationMode” attribute is set to “Llc”, the encapsulation is by LLC SNAP. In this case, a SNAP header
is added that contains the EtherType (IP or ARP).

The other implemented encapsulation modes are IP_ARP (set “EncapsulationMode” to “IpArp”) in which the length
type of the Ethernet header receives the protocol number of the packet; or ETHERNET_V1 (set “EncapsulationMode”
to “EthernetV1”) in which the length type of the Ethernet header receives the length of the packet. A “Raw” encapsu-
lation mode is defined but not implemented — use of the RAW mode results in an assertion.

Note that all net devices on a channel must be set to the same encapsulation mode for correct results. The encapsulation
mode is not sensed at the receiver.

The CsmaNetDevice implements a random exponential backoff algorithm that is executed if the channel is determined
to be busy (TRANSMITTING or PPROPAGATING) when the device wants to start propagating. This results in a

10.3. CSMA Net Device Model 45

ns-3 Model Library, Release ns-3.26

random delay of up to pow (2, retries) - 1 microseconds before a retry is attempted. The default maximum number of
retries is 1000.

10.4 Using the CsmaNetDevice

The CSMA net devices and channels are typically created and configured using the associated CsmaHe lper object.
The various ns-3 device helpers generally work in a similar way, and their use is seen in many of our example programs.

The conceptual model of interest is that of a bare computer “husk” into which you plug net devices. The bare computers
are created using a NodeContainer helper. You just ask this helper to create as many computers (we call them
Nodes) as you need on your network:

NodeContainer csmaNodes;
csmaNodes.Create (nCsmaNodes) ;

Once you have your nodes, you need to instantiate a CsmaHe lper and set any attributes you may want to change.:

CsmaHelper csma;
csma.SetChannelAttribute ("DataRate", StringValue ("100Mbps"));
csma.SetChannelAttribute ("Delay", TimeValue (NanoSeconds (6560)));

csma.SetDeviceAttribute ("EncapsulationMode", StringValue ("Dix"));
csma.SetDeviceAttribute ("FrameSize", UintegerValue (2000));

Once the attributes are set, all that remains is to create the devices and install them on the required nodes, and to
connect the devices together using a CSMA channel. When we create the net devices, we add them to a container to
allow you to use them in the future. This all takes just one line of code.:

NetDeviceContainer csmaDevices = csma.Install (csmaNodes);

We recommend thinking carefully about changing these Attributes, since it can result in behavior that surprises users.
We allow this because we believe flexibility is important. As an example of a possibly surprising effect of changing
Attributes, consider the following:

The Mtu Attribute indicates the Maximum Transmission Unit to the device. This is the size of the largest Protocol
Data Unit (PDU) that the device can send. This Attribute defaults to 1500 bytes and corresponds to a number found
in RFC 894, “A Standard for the Transmission of IP Datagrams over Ethernet Networks.” The number is actually
derived from the maximum packet size for 10Base5 (full-spec Ethernet) networks — 1518 bytes. If you subtract DIX
encapsulation overhead for Ethernet packets (18 bytes) you will end up with a maximum possible data size (MTU)
of 1500 bytes. One can also find that the MTU for IEEE 802.3 networks is 1492 bytes. This is because LLC/SNAP
encapsulation adds an extra eight bytes of overhead to the packet. In both cases, the underlying network hardware is
limited to 1518 bytes, but the MTU is different because the encapsulation is different.

If one leaves the Mtu Attribute at 1500 bytes and changes the encapsulation mode Attribute to Llc, the result will be a
network that encapsulates 1500 byte PDUs with LLC/SNAP framing resulting in packets of 1526 bytes. This would
be illegal in many networks, but we allow you do do this. This results in a simulation that quite subtly does not reflect
what you might be expecting since a real device would balk at sending a 1526 byte packet.

There also exist jumbo frames (1500 < MTU <= 9000 bytes) and super-jumbo (MTU > 9000 bytes) frames that
are not officially sanctioned by IEEE but are available in some high-speed (Gigabit) networks and NICs. In the
CSMA model, one could leave the encapsulation mode set to Dix, and set the Mtu to 64000 bytes — even though an
associated CsmaChannel DataRate was left at 10 megabits per second (certainly not Gigabit Ethernet). This would
essentially model an Ethernet switch made out of vampire-tapped 1980s-style 10Base5 networks that support super-
jumbo datagrams, which is certainly not something that was ever made, nor is likely to ever be made; however it is
quite easy for you to configure.

46 Chapter 10. CSMA NetDevice

ns-3 Model Library, Release ns-3.26

Be careful about assumptions regarding what CSMA is actually modelling and how configuration (Attributes) may
allow you to swerve considerably away from reality.

10.5 CSMA Tracing

Like all ns-3 devices, the CSMA Model provides a number of trace sources. These trace sources can be hooked using
your own custom trace code, or you can use our helper functions to arrange for tracing to be enabled on devices you
specify.

10.5.1 Upper-Level (MAC) Hooks

From the point of view of tracing in the net device, there are several interesting points to insert trace hooks. A con-
vention inherited from other simulators is that packets destined for transmission onto attached networks pass through
a single “transmit queue” in the net device. We provide trace hooks at this point in packet flow, which corresponds
(abstractly) only to a transition from the network to data link layer, and call them collectively the device MAC hooks.

When a packet is sent to the CSMA net device for transmission it always passes through the transmit queue. The
transmit queue in the CsmaNetDevice inherits from Queue, and therefore inherits three trace sources:

* An Enqueue operation source (see Queue::m_traceEnqueue);
* A Dequeue operation source (see Queue::m_traceDequeue);
* A Drop operation source (see Queue::m_traceDrop).

The upper-level (MAC) trace hooks for the CsmaNetDevice are, in fact, exactly these three trace sources on the single
transmit queue of the device.

The m_traceEnqueue event is triggered when a packet is placed on the transmit queue. This happens at the time that
CsmaNetDevice::Send or CsmaNetDevice::SendFrom is called by a higher layer to queue a packet for transmission.

The m_traceDequeue event is triggered when a packet is removed from the transmit queue. Dequeues from the trans-
mit queue can happen in three situations: 1) If the underlying channel is idle when the CsmaNetDevice::Send or
CsmaNetDevice::SendFrom is called, a packet is dequeued from the transmit queue and immediately transmitted; 2)
If the underlying channel is idle, a packet may be dequeued and immediately transmitted in an internal TransmitCom-
pleteEvent that functions much like a transmit complete interrupt service routine; or 3) from the random exponential
backoff handler if a timeout is detected.

Case (3) implies that a packet is dequeued from the transmit queue if it is unable to be transmitted according to the
backoff rules. It is important to understand that this will appear as a Dequeued packet and it is easy to incorrectly
assume that the packet was transmitted since it passed through the transmit queue. In fact, a packet is actually dropped
by the net device in this case. The reason for this behavior is due to the definition of the Queue Drop event. The
m_traceDrop event is, by definition, fired when a packet cannot be enqueued on the transmit queue because it is full.
This event only fires if the queue is full and we do not overload this event to indicate that the CsmaChannel is “full.”

10.5.2 Lower-Level (PHY) Hooks

Similar to the upper level trace hooks, there are trace hooks available at the lower levels of the net device. We call
these the PHY hooks. These events fire from the device methods that talk directly to the CsmaChannel.

The trace source m_dropTrace is called to indicate a packet that is dropped by the device. This happens in two cases:
First, if the receive side of the net device is not enabled (see CsmaNetDevice::m_receiveEnable and the associated
attribute “ReceiveEnable”).

The m_dropTrace is also used to indicate that a packet was discarded as corrupt if a receive error model is used (see
CsmaNetDevice::m_receiveErrorModel and the associated attribute “ReceiveErrorModel”).

10.5. CSMA Tracing 47

ns-3 Model Library, Release ns-3.26

The other low-level trace source fires on reception of an accepted packet (see CsmaNetDevice::m_rxTrace). A packet
is accepted if it is destined for the broadcast address, a multicast address, or to the MAC address assigned to the net
device.

10.6 Summary

The ns3 CSMA model is a simplistic model of an Ethernet-like network. It supports a Carrier-Sense function and
allows for Multiple Access to a shared medium. It is not physical in the sense that the state of the medium is instan-
taneously shared among all devices. This means that there is no collision detection required in this model and none
is implemented. There will never be a “jam” of a packet already on the medium. Access to the shared channel is on
a first-come first-served basis as determined by the simulator scheduler. If the channel is determined to be busy by
looking at the global state, a random exponential backoff is performed and a retry is attempted.

Ns-3 Attributes provide a mechanism for setting various parameters in the device and channel such as addresses,
encapsulation modes and error model selection. Trace hooks are provided in the usual manner with a set of upper level
hooks corresponding to a transmit queue and used in ASCII tracing; and also a set of lower level hooks used in pcap
tracing.

Although the ns-3 CsmaChannel and CsmaNetDevice does not model any kind of network you could build or buy, it
does provide us with some useful functionality. You should, however, understand that it is explicitly not Ethernet or
any flavor of IEEE 802.3 but an interesting subset.

48 Chapter 10. CSMA NetDevice

CHAPTER
ELEVEN

DATA COLLECTION

This chapter describes the ns-3 Data Collection Framework (DCF), which provides capabilities to obtain data gener-
ated by models in the simulator, to perform on-line reduction and data processing, and to marshal raw or transformed
data into various output formats.

The framework presently supports standalone ns-3 runs that don’t rely on any external program execution control. The
objects provided by the DCF may be hooked to ns-3 trace sources to enable data processing.

The source code for the classes lives in the directory src/stats.

This chapter is organized as follows. First, an overview of the architecture is presented. Next, the helpers for these
classes are presented; this initial treatment should allow basic use of the data collection framework for many use cases.
Users who wish to produce output outside of the scope of the current helpers, or who wish to create their own data
collection objects, should read the remainder of the chapter, which goes into detail about all of the basic DCF object
types and provides low-level coding examples.

11.1 Design

The DCF consists of three basic classes:

* Probe is a mechanism to instrument and control the output of simulation data that is used to monitor interesting
events. It produces output in the form of one or more ns-3 trace sources. Probe objects are hooked up to one or
more trace sinks (called Collectors), which process samples on-line and prepare them for output.

* Collector consumes the data generated by one or more Probe objects. It performs transformations on the data,
such as normalization, reduction, and the computation of basic statistics. Collector objects do not produce data
that is directly output by the ns-3 run; instead, they output data downstream to another type of object, called
Aggregator, which performs that function. Typically, Collectors output their data in the form of trace sources as
well, allowing collectors to be chained in series.

» Aggregator is the end point of the data collected by a network of Probes and Collectors. The main responsibility
of the Aggregator is to marshal data and their corresponding metadata, into different output formats such as
plain text files, spreadsheet files, or databases.

All three of these classes provide the capability to dynamically turn themselves on or off throughout a simulation.

Any standalone ns-3 simulation run that uses the DCF will typically create at least one instance of each of the three
classes above.

The overall flow of data processing is depicted in Data Collection Framework overview. On the left side, a running
ns-3 simulation is depicted. In the course of running the simulation, data is made available by models through trace
sources, or via other means. The diagram depicts that probes can be connected to these trace sources to receive data
asynchronously, or probes can poll for data. Data is then passed to a collector object that transforms the data. Finally,
an aggregator can be connected to the outputs of the collector, to generate plots, files, or databases.

49

ns-3 Model Library, Release ns-3.26

(asynchronous)
trace sources

> ’
----- >
Probe Collector Aggregator> -p
\
\

or
<4—
\
Get raw Transform data Marshal data >
(synchronous) ;¢4 into output »_ files
polling formats 4
databases
Figure 11.1: Data Collection Framework overview
(asynchronous)
trace s

o S hrebe >,
—

4—
h Get raw
(syr.1c ronous) data
polling

ources.
""" > Probe Collector
>

“A

Transform data :l
s

Aggregator>» - - »

Marshal data
into output
formats

Figure 11.2: Data Collection Framework aggregation

50

Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.26

A variation on the above figure is provided in Data Collection Framework aggregation. This second figure illustrates
that the DCF objects may be chained together in a manner that downstream objects take inputs from multiple upstream
objects. The figure conceptually shows that multiple probes may generate output that is fed into a single collector; as
an example, a collector that outputs a ratio of two counters would typically acquire each counter data from separate
probes. Multiple collectors can also feed into a single aggregator, which (as its name implies) may collect a number
of data streams for inclusion into a single plot, file, or database.

11.2 Data Collection Helpers

The full flexibility of the data collection framework is provided by the interconnection of probes, collectors, and
aggregators. Performing all of these interconnections leads to many configuration statements in user programs. For
ease of use, some of the most common operations can be combined and encapsulated in helper functions. In addition,
some statements involving ns-3 trace sources do not have Python bindings, due to limitations in the bindings.

11.2.1 Data Collection Helpers Overview

In this section, we provide an overview of some helper classes that have been created to ease the configuration of the
data collection framework for some common use cases. The helpers allow users to form common operations with
only a few statements in their C++ or Python programs. But, this ease of use comes at the cost of significantly less
flexibility than low-level configuration can provide, and the need to explicitly code support for new Probe types into
the helpers (to work around an issue described below).

The emphasis on the current helpers is to marshal data out of ns-3 trace sources into gnuplot plots or text files, without
a high degree of output customization or statistical processing (initially). Also, the use is constrained to the available
probe types in ns-3. Later sections of this documentation will go into more detail about creating new Probe types, as
well as details about hooking together Probes, Collectors, and Aggregators in custom arrangements.

To date, two Data Collection helpers have been implemented:
* GnuplotHelper
* FileHelper

11.2.2 GnuplotHelper

The GnuplotHelper is a helper class for producing output files used to make gnuplots. The overall goal is to provide
the ability for users to quickly make plots from data exported in ns-3 trace sources. By default, a minimal amount of
data transformation is performed; the objective is to generate plots with as few (default) configuration statements as
possible.

GnuplotHelper Overview

The GnuplotHelper will create 3 different files at the end of the simulation:
* A space separated gnuplot data file
* A gnuplot control file
* A shell script to generate the gnuplot

There are two configuration statements that are needed to produce plots. The first statement configures the plot
(filename, title, legends, and output type, where the output type defaults to PNG if unspecified):

11.2. Data Collection Helpers 51

ns-3 Model Library, Release ns-3.26

void ConfigurePlot (const std::string &outputFileNameWithoutExtension,
const std::string &title,
const std::string &xLegend,
const std::string &yLegend,
const std::string &terminalType = ".png");

The second statement hooks the trace source of interest:

void PlotProbe (const std::string &typeld,
const std::string &path,
const std::string &probeTraceSource,
const std::string &title);

The arguments are as follows:
* typeld: The ns-3 Typeld of the Probe
* path: The path in the ns-3 configuration namespace to one or more trace sources
» probeTraceSource: Which output of the probe (itself a trace source) should be plotted
« title: The title to associate with the dataset(s) (in the gnuplot legend)

A variant on the PlotProbe above is to specify a fifth optional argument that controls where in the plot the key (legend)
is placed.

A fully worked example (from seventh. cc) is shown below:

// Create the gnuplot helper.
GnuplotHelper plotHelper;

// Configure the plot.
// Configure the plot. The first argument is the file name prefix
// for the output files generated. The second, third, and fourth
// arguments are, respectively, the plot title, x—-axis, and y-axis labels
plotHelper.ConfigurePlot ("seventh-packet-byte-count",
"Packet Byte Count vs. Time",
"Time (Seconds)",
"Packet Byte Count",
"png") ;

// Specify the probe type, trace source path (in configuration namespace), and
// probe output trace source ("OutputBytes") to plot. The fourth argument
// specifies the name of the data series label on the plot. The last
// argument formats the plot by specifying where the key should be placed.
plotHelper.PlotProbe (probeType,

tracePath,

"OutputBytes",

"Packet Byte Count",

GnuplotAggregator: :KEY_BELOW) ;

In this example, the probeType and t racePath are as follows (for IPv4):

probeType = "ns3::Ipv4PacketProbe";
tracePath = "/NodeList/*/$ns3::Ipv4L3Protocol/Tx";

The probeType is a key parameter for this helper to work. This Typeld must be registered in the system, and the
signature on the Probe’s trace sink must match that of the trace source it is being hooked to. Probe types are pre-
defined for a number of data types corresponding to ns-3 traced values, and for a few other trace source signatures
such as the ‘Tx’ trace source of ns3: : Ipv4L3Protocol class.

52 Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.26

Note that the trace source path specified may contain wildcards. In this case, multiple datasets are plotted on one plot;
one for each matched path.

The main output produced will be three files:

seventh-packet-byte-count.dat
seventh-packet-byte-count.plt
seventh-packet-byte—-count.sh

At this point, users can either hand edit the .plt file for further customizations, or just run it through gnuplot. Running
sh seventh-packet-byte-count.sh simply runs the plot through gnuplot, as shown below.

Paclcet Byte Count vs, Time

Probe Path: /Modelist/*/$ns3:: lpv4L3Protocol /[Tx
6':”:' T T T T T T T T

500 F .

400 |]

300 .

200 ¢ 1

Paclet Byte Count

100 + 1

|:| 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Time (Seconds)

Packet Byte Count-0 —+— Paclet Byte Count-1 ——«—
Figure 11.3: 2-D Gnuplot Created by seventh.cc Example.

It can be seen that the key elements (legend, title, legend placement, xlabel, ylabel, and path for the data) are all placed
on the plot. Since there were two matches to the configuration path provided, the two data series are shown:

¢ Packet Byte Count-0 corresponds to /NodeList/0/$ns3::Ipv4L3Protocol/Tx
* Packet Byte Count-1 corresponds to /NodeList/1/$ns3::Ipv4L3Protocol/Tx

GnuplotHelper ConfigurePlot

The GnuplotHelper’s ConfigurePlot () function can be used to configure plots.

11.2. Data Collection Helpers 53

ns-3 Model Library, Release ns-3.26

It has the following prototype:

void ConfigurePlot (const std::string &outputFileNameWithoutExtension,
const std::string &title,
const std::string &xLegend,
const std::string &yLegend,
const std::string &terminalType = ".png");
It has the following arguments:
Argument Description
outputFileNameWithoutExten- | Name of gnuplot related files to write with no extension.
sion
title Plot title string to use for this plot.
xLegend The legend for the x horizontal axis.
yLegend The legend for the y vertical axis.
terminal Type Terminal type setting string for output. The default terminal type is

. i1

png .

The GnuplotHelper’s ConfigurePlot () function configures plot related parameters for this gnuplot helper so that
it will create a space separated gnuplot data file named outputFileNameWithoutExtension + .dat”, a gnuplot control
file named outputFileNameWithoutExtension + ”.plt”, and a shell script to generate the gnuplot named outputFile-

NameWithoutExtension + ”.sh”.

An example of how to use this function can be seen in the seventh. cc code described above where it was used as

follows:

plotHelper.ConfigurePlot

GnuplotHelper PlotProbe

("seventh-packet-byte-count",

"Packet Byte Count vs. Time",

"Time

n
’

(Seconds)

"Packet Byte Count",
"pngll) ;

The GnuplotHelper’s P1otProbe () function can be used to plot values generated by probes.

It has the following prototype:

void PlotProbe (const std:
const std:
const std:
const std:

It has the following arguments:

:string &typeld,

:string &path,

:string &probeTraceSource,

:string &title,

enum GnuplotAggregator::KeyLocation keyLocation = GnuplotAggregator

Argument Description

typeld The type ID for the probe created by this helper.

path Config path to access the trace source.

probeTraceSource | The probe trace source to access.

title The title to be associated to this dataset

keyLocation The location of the key in the plot. The default location is inside.

: :KEY_INSIDE) ;

The GnuplotHelper’s PlotProbe () function plots a dataset generated by hooking the ns-3 trace source with a probe
created by the helper, and then plotting the values from the probeTraceSource. The dataset will have the provided title,
and will consist of the ‘newValue’ at each timestamp.

54

Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.26

If the config path has more than one match in the system because there is a wildcard, then one dataset for each match
will be plotted. The dataset titles will be suffixed with the matched characters for each of the wildcards in the config
path, separated by spaces. For example, if the proposed dataset title is the string “bytes”, and there are two wildcards
in the path, then dataset titles like “bytes-0 0” or “bytes-12 9” will be possible as labels for the datasets that are plotted.

An example of how to use this function can be seen in the seventh.cc code described above where it was used
(with variable substitution) as follows:

plotHelper.PlotProbe ("ns3::Ipvé4PacketProbe",
"/NodeList/*/%$ns3::Ipv4L3Protocol/Tx",
"OutputBytes",
"Packet Byte Count",
GnuplotAggregator: :KEY_BELOW) ;

Other Examples

Gnuplot Helper Example

A slightly simpler example than the seventh.cc example can be found in
src/stats/examples/gnuplot-helper-example.cc. The following 2-D gnuplot was created us-
ing the example.

Emitter Counts wvs. Time

Probe Path: /Mames/Probe/Output
12D T T T T T

" Emitter Count ———

100

80

60

Emitter Count

40

20

|:| 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 B0 70 80 18] 100

Time (Seconds)

Figure 11.4: 2-D Gnuplot Created by gnuplot-helper-example.cc Example.

11.2. Data Collection Helpers 55

ns-3 Model Library, Release ns-3.26

In this example, there is an Emitter object that increments its counter according to a Poisson process and then emits
the counter’s value as a trace source.

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names: :Add ("/Names/Emitter", emitter);

Note that because there are no wildcards in the path used below, only 1 datastream was drawn in the plot. This single
datastream in the plot is simply labeled “Emitter Count”, with no extra suffixes like one would see if there were
wildcards in the path.

// Create the gnuplot helper.
GnuplotHelper plotHelper;

// Configure the plot.

plotHelper.ConfigurePlot ("gnuplot-helper—-example",
"Emitter Counts vs. Time",
"Time (Seconds)",
"Emitter Count",
"png") ;

// Plot the values generated by the probe. The path that we provide
// helps to disambiguate the source of the trace.
plotHelper.PlotProbe ("ns3::Uinteger32Probe",

"/Names/Emitter/Counter",

"Output",

"Emitter Count",

GnuplotAggregator: :KEY_INSIDE) ;

11.2.3 FileHelper

The FileHelper is a helper class used to put data values into a file. The overall goal is to provide the ability for
users to quickly make formatted text files from data exported in ns-3 trace sources. By default, a minimal amount of
data transformation is performed; the objective is to generate files with as few (default) configuration statements as
possible.

FileHelper Overview

The FileHelper will create 1 or more text files at the end of the simulation.
The FileHelper can create 4 different types of text files:
* Formatted
» Space separated (the default)
* Comma separated
* Tab separated
Formatted files use C-style format strings and the sprintf() function to print their values in the file being written.

The following text file with 2 columns of formatted values named seventh-packet-byte-count-0.txt was
created using more new code that was added to the original ns-3 Tutorial example’s code. Only the first 10 lines of
this file are shown here for brevity.

Time (Seconds) = 1.000e+00 Packet Byte Count = 40
Time (Seconds) = 1.004e+00 Packet Byte Count = 40
Time (Seconds) 1.004e+00 Packet Byte Count 576

56 Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.26

Time
Time
Time
Time
Time
Time
Time

The

(Seconds)
(Seconds)
(Seconds)
(Seconds)
(Seconds)
(Seconds)
(Seconds)

following

[= T = S = S SR U SRR S

.009e+00
.009e+00
.015e+00
.017e+00
.017e+00
.025e+00
.025e+00

different

Packet
Packet
Packet
Packet
Packet
Packet
Packet

file

Byte
Byte
Byte
Byte
Byte
Byte
Byte

with

Count
Count
Count
Count
Count
Count
Count

2

576
576
512
576
544
576
544

columns

of formatted values named

seventh-packet-byte-count-1.txt was also created using the same new code that was added to the
original ns-3 Tutorial example’s code. Only the first 10 lines of this file are shown here for brevity.

Time
Time
Time
Time
Time
Time
Time
Time
Time
Time

(Seconds)
(Seconds)
(Seconds)
(Seconds)
(Seconds)
(Seconds)
(Seconds)
(Seconds)
(Seconds)
(Seconds)

I = = T = N = S S et

.002e+00
.007e+00
.013e+00
.020e+00
.028e+00
.036e+00
.045e+00
.053e+00
.061e+00
.069e+00

Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet

Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte

Count
Count
Count
Count
Count
Count
Count
Count
Count
Count

40
40
40
40
40
40
40
40
40
40

The new code that was added to produce the two text files is below. More details about this API will be covered in a
later section.

Note that because there were 2 matches for the wildcard in the path, 2 separate text files were created. The first text
file, which is named “seventh-packet-byte-count-0.txt”, corresponds to the wildcard match with the “*” replaced with
“0”. The second text file, which is named “seventh-packet-byte-count-1.txt”, corresponds to the wildcard match with
the “*” replaced with “1”. Also, note that the function call to WriteProbe () will give an error message if there are
no matches for a path that contains wildcards.

// Create the file helper.
FileHelper fileHelper;

// Configure the file to be written.

fileHelper.ConfigureFile

// Set the labels for this formatted output file.
fileHelper.Set2dFormat

("Time

(Seconds) =

("seventh—-packet-byte-count",
FileAggregator: :FORMATTED) ;

%.3e\tPacket Byte Count = %.0f");

// Write the values generated by the probe.

fileHelper.WriteProbe

("ns3::Ipv4PacketProbe",

"/NodeList/+/$ns3::Ipv4L3Protocol/Tx",
"OutputBytes") ;

FileHelper ConfigureFile

The FileHelper’s ConfigureFile () function can be used to configure text files.

It has the following prototype:

11.2. Data Collection Helpers

57

ns-3 Model Library, Release ns-3.26

void ConfigureFile (const std::string &outputFileNameWithoutExtension,
enum FileAggregator::FileType fileType = FileAggregator::SPACE_SEPARATED) ;

It has the following arguments:

Argument Description
outputFileNameWithoutExtension | Name of output file to write with no extension.
fileType Type of file to write. The default type of file is space separated.

The FileHelper’s ConfigureFile () function configures text file related parameters for the file helper so that it
will create a file named outputFileNameWithoutExtension plus possible extra information from wildcard matches plus
”.txt” with values printed as specified by fileType. The default file type is space-separated.

An example of how to use this function can be seen in the seventh. cc code described above where it was used as
follows:

fileHelper.ConfigureFile ("seventh-packet-byte-count",
FileAggregator: :FORMATTED) ;

FileHelper WriteProbe

The FileHelper’s WriteProbe () function can be used to write values generated by probes to text files.
It has the following prototype:

void WriteProbe (const std::string &typeld,
const std::string &path,
const std::string &probeTraceSource);

It has the following arguments:

Argument Description

typeld The type ID for the probe to be created.
path Config path to access the trace source.
probeTraceSource | The probe trace source to access.

The FileHelper’s WriteProbe () function creates output text files generated by hooking the ns-3 trace source with
a probe created by the helper, and then writing the values from the probeTraceSource. The output file names will
have the text stored in the member variable m_outputFileNameWithoutExtension plus ”.txt”, and will consist of the
‘newValue’ at each timestamp.

If the config path has more than one match in the system because there is a wildcard, then one output file for each
match will be created. The output file names will contain the text in m_outputFileNameWithoutExtension plus the
matched characters for each of the wildcards in the config path, separated by dashes, plus ”.txt”. For example, if
the value in m_outputFileNameWithoutExtension is the string “packet-byte-count”, and there are two wildcards in the
path, then output file names like “packet-byte-count-0-0.txt” or “packet-byte-count-12-9.txt” will be possible as names

for the files that will be created.

An example of how to use this function can be seen in the seventh. cc code described above where it was used as
follows:

fileHelper.WriteProbe ("ns3::Ipv4PacketProbe",
"/NodeList/+/$ns3::Ipv4L3Protocol/Tx",
"OutputBytes") ;

58 Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.26

Other Examples

File Helper Example

A slightly simpler example than the seventh.cc example can be found in
src/stats/examples/file-helper—example. cc. This example only uses the FileHelper.

The following text file with 2 columns of formatted values named file-helper—-example.txt was created using
the example. Only the first 10 lines of this file are shown here for brevity.

Time (Seconds) = 0.203 Count =1
Time (Seconds) = 0.702 Count = 2
Time (Seconds) = 1.404 Count = 3
Time (Seconds) = 2.368 Count = 4
Time (Seconds) = 3.364 Count = 5
Time (Seconds) = 3.579 Count = 6
Time (Seconds) = 5.873 Count = 7
Time (Seconds) = 6.410 Count = 8
Time (Seconds) = 6.472 Count = 9

In this example, there is an Emitter object that increments its counter according to a Poisson process and then emits
the counter’s value as a trace source.

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names: :Add ("/Names/Emitter", emitter);

Note that because there are no wildcards in the path used below, only 1 text file was created. This single text file is
simply named “file-helper-example.txt”, with no extra suffixes like you would see if there were wildcards in the path.

// Create the file helper.
FileHelper fileHelper;

// Configure the file to be written.
fileHelper.ConfigureFile ("file-helper-example",
FileAggregator: :FORMATTED) ;

// Set the labels for this formatted output file.
fileHelper.Set2dFormat ("Time (Seconds) = %.3e\tCount = %.0f");

// Write the values generated by the probe. The path that we
// provide helps to disambiguate the source of the trace.
fileHelper.WriteProbe ("ns3::Uinteger32Probe",
"/Names/Emitter/Counter",
"Output") ;

11.2.4 Scope and Limitations

Currently, only these Probes have been implemented and connected to the GnuplotHelper and to the FileHelper:
* BooleanProbe
* DoubleProbe
* Uinteger8Probe
* Uinteger16Probe

Uinteger32Probe

11.2. Data Collection Helpers 59

ns-3 Model Library, Release ns-3.26

* TimeProbe
 PacketProbe
* ApplicationPacketProbe
¢ Ipv4PacketProbe
These Probes, therefore, are the only Typelds available to be used in P1otProbe () and WriteProbe ().

In the next few sections, we cover each of the fundamental object types (Probe, Collector, and Aggregator) in more
detail, and show how they can be connected together using lower-level API.

11.3 Probes

This section details the functionalities provided by the Probe class to an ns-3 simulation, and gives examples on how
to code them in a program. This section is meant for users interested in developing simulations with the ns-3 tools and
using the Data Collection Framework, of which the Probe class is a part, to generate data output with their simulation’s
results.

11.3.1 Probe Overview

A Probe object is supposed to be connected to a variable from the simulation whose values throughout the experiment
are relevant to the user. The Probe will record what were values assumed by the variable throughout the simulation and
pass such data to another member of the Data Collection Framework. While it is out of this section’s scope to discuss
what happens after the Probe produces its output, it is sufficient to say that, by the end of the simulation, the user will
have detailed information about what values were stored inside the variable being probed during the simulation.

Typically, a Probe is connected to an ns-3 trace source. In this manner, whenever the trace source exports a new value,
the Probe consumes the value (and exports it downstream to another object via its own trace source).

The Probe can be thought of as kind of a filter on trace sources. The main reasons for possibly hooking to a Probe
rather than directly to a trace source are as follows:

* Probes may be dynamically turned on and off during the simulation with calls to Enable () and Disable ().
For example, the outputting of data may be turned off during the simulation warmup phase.

* Probes may perform operations on the data to extract values from more complicated structures; for instance,
outputting the packet size value from a received ns3::Packet.

* Probes register a name in the ns3::Config namespace (using Names: : Add ()) so that other objects may refer
to them.

* Probes provide a static method that allows one to manipulate a Probe by name, such as what is done in
ns2measure [Cic006]

Stat::put ("my_metric", ID, sample);

The ns-3 equivalent of the above ns2measure code is, e.g.

DoubleProbe: :SetValueByPath ("/path/to/probe", sample);

Creation

Note that a Probe base class object can not be created because it is an abstract base class, i.e. it has pure virtual
functions that have not been implemented. An object of type DoubleProbe, which is a subclass of the Probe class, will
be created here to show what needs to be done.

60 Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.26

One declares a DoubleProbe in dynamic memory by using the smart pointer class (Ptr<T>). To create a DoubleProbe
in dynamic memory with smart pointers, one just needs to call the ns-3 method CreateObject ():

Ptr<DoubleProbe> myprobe = CreateObject<DoubleProbe> ();
The declaration above creates DoubleProbes using the default values for its attributes. There are four attributes in the
DoubleProbe class; two in the base class object DataCollectionObject, and two in the Probe base class:
¢ “Name” (DataCollectionObject), a StringValue
* “Enabled” (DataCollectionObject), a BooleanValue
e “Start” (Probe), a TimeValue
* “Stop” (Probe), a TimeValue
One can set such attributes at object creation by using the following method:

Ptr<DoubleProbe> myprobe = CreateObjectWithAttributes<DoubleProbe> (
"Name", StringValue ("myprobe"),
"Enabled", BooleanValue (false),
"Start", TimeValue (Seconds (100.0)),
"Stop", TimeValue (Seconds (1000.0)));

Start and Stop are Time variables which determine the interval of action of the Probe. The Probe will only output data
if the current time of the Simulation is inside of that interval. The special time value of O seconds for Stop will disable
this attribute (i.e. keep the Probe on for the whole simulation). Enabled is a flag that turns the Probe on or off, and
must be set to true for the Probe to export data. The Name is the object’s name in the DCF framework.

Importing and exporting data

ns-3 trace sources are strongly typed, so the mechanisms for hooking Probes to a trace source and for exporting data
belong to its subclasses. For instance, the default distribution of ns-3 provides a class DoubleProbe that is designed to
hook to a trace source exporting a double value. We’ll next detail the operation of the DoubleProbe, and then discuss
how other Probe classes may be defined by the user.

11.3.2 DoubleProbe Overview

The DoubleProbe connects to a double-valued ns-3 trace source, and itself exports a different double-valued ns-3 trace
source.

The following code, drawn from src/stats/examples/double-probe—example. cc, shows the basic op-
erations of plumbing the DoubleProbe into a simulation, where it is probing a Counter exported by an emitter object
(class Emitter).

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names: :Add ("/Names/Emitter", emitter);

Ptr<DoubleProbe> probel = CreateObject<DoubleProbe> ();

// Connect the probe to the emitter's Counter
bool connected = probel->ConnectByObject ("Counter", emitter);

The following code is probing the same Counter exported by the same emitter object. This DoubleProbe, however,
is using a path in the configuration namespace to make the connection. Note that the emitter registered itself in the
configuration namespace after it was created; otherwise, the ConnectByPath would not work.

11.3. Probes 61

ns-3 Model Library, Release ns-3.26

Ptr<DoubleProbe> probe2 = CreateObject<DoubleProbe> ();

// Note, no return value 1is checked here
probe2->ConnectByPath ("/Names/Emitter/Counter");

The next DoubleProbe shown that is shown below will have its value set using its path in the configuration namespace.
Note that this time the DoubleProbe registered itself in the configuration namespace after it was created.

Ptr<DoubleProbe> probe3 = CreateObject<DoubleProbe> ();
probe3->SetName ("StaticallyAccessedProbe");

// We must add it to the config database
Names: :Add ("/Names/Probes", probe3->GetName (), probe3);

The emitter’s Count() function is now able to set the value for this DoubleProbe as follows:

void
Emitter: :Count (void)

{

m_counter += 1.0;
DoubleProbe: :SetValueByPath ("/Names/StaticallyAccessedProbe", m_counter);

}

The above example shows how the code calling the Probe does not have to have an explicit reference to the Probe,
but can direct the value setting through the Config namespace. This is similar in functionality to the Stat::Put method
introduced by ns2measure paper [Cic06], and allows users to temporarily insert Probe statements like printf statements
within existing ns-3 models. Note that in order to be able to use the DoubleProbe in this example like this, 2 things
were necessary:

1. the stats module header file was included in the example .cc file
2. the example was made dependent on the stats module in its wscript file.
Analogous things need to be done in order to add other Probes in other places in the ns-3 code base.

The values for the DoubleProbe can also be set using the function DoubleProbe::SetValue(), while the values for the
DoubleProbe can be gotten using the function DoubleProbe::GetValue().

The DoubleProbe exports double values in its “Output” trace source; a downstream object can hook a trace sink
(NotifyViaProbe) to this as follows:

connected = probel->TraceConnect ("Output", probel->GetName (), MakeCallback (&NotifyViaProbe));

11.3.3 Other probes

Besides the DoubleProbe, the following Probes are also available:
 Uinteger8Probe connects to an ns-3 trace source exporting an uint8_t.
» Uinteger16Probe connects to an ns-3 trace source exporting an uint16_t.
 Uinteger32Probe connects to an ns-3 trace source exporting an uint32_t.
 PacketProbe connects to an ns-3 trace source exporting a packet.

* ApplicationPacketProbe connects to an ns-3 trace source exporting a packet and a socket address.

Ipv4PacketProbe connects to an ns-3 trace source exporting a packet, an IPv4 object, and an interface.

62 Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.26

11.3.4 Creating new Probe types

To create a new Probe type, you need to perform the following steps:
* Be sure that your new Probe class is derived from the Probe base class.

* Be sure that the pure virtual functions that your new Probe class inherits from the Probe base class are imple-
mented.

* Find an existing Probe class that uses a trace source that is closest in type to the type of trace source your Probe
will be using.

» Copy that existing Probe class’s header file (.h) and implementation file (.cc) to two new files with names
matching your new Probe.

» Replace the types, arguments, and variables in the copied files with the appropriate type for your Probe.

* Make necessary modifications to make the code compile and to make it behave as you would like.

11.3.5 Examples

Two examples will be discussed in detail here:
* Double Probe Example
» IPv4 Packet Plot Example

Double Probe Example

The double probe example has been discussed previously. The example program can be found in
src/stats/examples/double-probe-example.cc. To summarize what occurs in this program, there is
an emitter that exports a counter that increments according to a Poisson process. In particular, two ways of emitting
data are shown:

1. through a traced variable hooked to one Probe:

TracedValue<double> m_counter; // normally this would be integer type

2. through a counter whose value is posted to a second Probe, referenced by its name in the Config system:

void

Emitter::Count (void)

{
NS_LOG_FUNCTION (this);
NS_LOG_DEBUG ("Counting at " << Simulator::Now () .GetSeconds ());
m_counter += 1.0;
DoubleProbe: :SetValueByPath ("/Names/StaticallyAccessedProbe", m_counter);
Simulator::Schedule (Seconds (m_var->GetValue ()), &Emitter::Count, this);

}

Let’s look at the Probe more carefully. Probes can receive their values in a multiple ways:
1. by the Probe accessing the trace source directly and connecting a trace sink to it
2. by the Probe accessing the trace source through the config namespace and connecting a trace sink to it
3. by the calling code explicitly calling the Probe’s SetValue() method
4. by the calling code explicitly calling SetValueByPath (“/path/through/Config/namespace”, ...)

11.3. Probes 63

ns-3 Model Library, Release ns-3.26

The first two techniques are expected to be the most common. Also in the example, the hooking of a normal callback
function is shown, as is typically done in ns-3. This callback function is not associated with a Probe object. We’ll call

this case 0) below.

// This 1s a function to test hooking a raw function to the trace source
void
NotifyViaTraceSource (std::string context, double oldvVal, double newVal)

{
NS_LOG_DEBUG ("context: " << context << " old " << oldvVal << " new " << newVal);

First, the emitter needs to be setup:

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names: :Add ("/Names/Emitter", emitter);

// The Emitter object is not associated with an ns—-3 node, so
// it won't get started automatically, so we need to do this ourselves
Simulator: :Schedule (Seconds (0.0), &Emitter::Start, emitter);

The various DoubleProbes interact with the emitter in the example as shown below.
Case 0):

// The below shows typical functionality without a probe

// (connect a sink function to a trace source)

//

connected = emitter->TraceConnect ("Counter", "sample context", MakeCallback
NS_ASSERT_MSG (connected, "Trace source not connected");

case 1):

/7
// Probel will be hooked directly to the Emitter trace source object

/7

// probel will be hooked to the Emitter trace source
Ptr<DoubleProbe> probel = CreateObject<DoubleProbe> ();

// the probe's name can serve as 1its context in the tracing
probel->SetName ("ObjectProbe™);

// Connect the probe to the emitter's Counter
connected = probel->ConnectByObject ("Counter", emitter);
NS_ASSERT_MSG (connected, "Trace source not connected to probel");

case 2):

//

// Probe2 will be hooked to the Emitter trace source object by
// accessing it by path name in the Config database

//

// Create another similar probe; this will hook up via a Config path
Ptr<DoubleProbe> probe2 = CreateObject<DoubleProbe> ();
probe2->SetName ("PathProbe");

// Note, no return value is checked here
probe2->ConnectByPath ("/Names/Emitter/Counter");

case 4) (case 3 is not shown in this example):

(&NotifyViaTraceSou

64 Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.26

//

// Probe3 will be called by the emitter directly through the
// static method SetValueByPath().

//

Ptr<DoubleProbe> probe3 = CreateObject<DoubleProbe> ();
probe3->SetName ("StaticallyAccessedProbe");

// We must add it to the config database

Names: :Add ("/Names/Probes", probe3->GetName (), probe3);

And finally, the example shows how the probes can be hooked to generate output:

// The probe itself should generate output. The context that we provide

// to this probe (in this case, the probe name) will help to disambiguate

// the source of the trace

connected = probe3->TraceConnect ("Output",
"/Names/Probes/StaticallyAccessedProbe/Output",
MakeCallback (&NotifyViaProbe));

NS_ASSERT_MSG (connected, "Trace source not .. connected to probe3 Output");

The following callback is hooked to the Probe in this example for illustrative purposes; normally, the Probe would be
hooked to a Collector object.

// This is a function to test hooking it to the probe output

void

NotifyViaProbe (std::string context, double oldval, double newVal)
{

NS_LOG_DEBUG ("context: " << context << " old " << oldVal << " new " << newVal);

IPv4 Packet Plot Example

The IPv4 packet plot example is based on the fifth.cc example from the ns-3 Tutorial. It can be found in
src/stats/examples/ipv4—-packet-plot—-example.cc

node 0 node 1
o ——— + o +
| ns—-3 TCP | | ns—-3 TCP |
o + o +
| 10.1.1.1 | \ 10.1.1.2 \
o ——— + o ——— +
| point-to-point | | point-to-point |
o + o +

\ I
e +

We’ll just look at the Probe, as it illustrates that Probes may also unpack values from structures (in this case, packets)
and report those values as trace source outputs, rather than just passing through the same type of data.

There are other aspects of this example that will be explained later in the documentation. The two types of data that
are exported are the packet itself (Output) and a count of the number of bytes in the packet (OutputBytes).

TypeId
Ipv4PacketProbe: :GetTypeld ()

{
static TypelId tid = Typeld ("ns3::Ipv4PacketProbe™)

.SetParent<Probe> ()
.AddConstructor<Ipv4PacketProbe> ()
.AddTraceSource ("Output",

11.3. Probes 65

ns-3 Model Library, Release ns-3.26

"The packet plus its IPv4 object and interface that serve as the output for th:
MakeTraceSourceAccessor (&Ipv4PacketProbe::m_output))
.AddTraceSource ("OutputBytes",
"The number of bytes in the packet",
MakeTraceSourceAccessor (&Ipv4PacketProbe::m_outputBytes))
’
return tid;

}

When the Probe’s trace sink gets a packet, if the Probe is enabled, then it will output the packet on its Output trace
source, but it will also output the number of bytes on the OutputBytes trace source.

void
Ipv4PacketProbe: :TraceSink (Ptr<const Packet> packet, Ptr<Ipv4> ipv4, uint32_t interface)
{
NS_LOG_FUNCTION (this << packet << ipv4 << interface);
if (IsEnabled ())
{

m_packet = packet;
m_ipv4 = ipv4;
m_interface = interface;

m_output (packet, ipv4, interface);

uint32_t packetSizeNew = packet->GetSize ();
m_outputBytes (m_packetSizeOld, packetSizeNew);
m_packetSizeOld = packetSizeNew;

11.3.6 References

11.4 Collectors

This section is a placeholder to detail the functionalities provided by the Collector class to an ns-3 simulation, and
gives examples on how to code them in a program.

Note: As of ns-3.18, Collectors are still under development and not yet provided as part of the framework.

11.5 Aggregators

This section details the functionalities provided by the Aggregator class to an ns-3 simulation. This section is meant
for users interested in developing simulations with the ns-3 tools and using the Data Collection Framework, of which
the Aggregator class is a part, to generate data output with their simulation’s results.

11.5.1 Aggregator Overview

An Aggregator object is supposed to be hooked to one or more trace sources in order to receive input. Aggregators are
the end point of the data collected by the network of Probes and Collectors during the simulation. It is the Aggregator’s
job to take these values and transform them into their final output format such as plain text files, spreadsheet files, plots,
or databases.

66 Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.26

Typically, an aggregator is connected to one or more Collectors. In this manner, whenever the Collectors’ trace sources
export new values, the Aggregator can process the value so that it can be used in the final output format where the data
values will reside after the simulation.

Note the following about Aggregators:

* Aggregators may be dynamically turned on and off during the simulation with calls to Enable () and
Disable (). For example, the aggregating of data may be turned off during the simulation warmup phase,
which means those values won’t be included in the final output medium.

* Aggregators receive data from Collectors via callbacks. When a Collector is associated to an aggregator, a call
to TraceConnect is made to establish the Aggregator’s trace sink method as a callback.

To date, two Aggregators have been implemented:
* GnuplotAggregator
* FileAggregator

11.5.2 GnuplotAggregator

The GnuplotAggregator produces output files used to make gnuplots.

The GnuplotAggregator will create 3 different files at the end of the simulation:
* A space separated gnuplot data file
¢ A gnuplot control file

* A shell script to generate the gnuplot

Creation

An object of type GnuplotAggregator will be created here to show what needs to be done.

One declares a GnuplotAggregator in dynamic memory by using the smart pointer class (Ptr<T>). To create a Gnu-
plotAggregator in dynamic memory with smart pointers, one just needs to call the zns-3 method CreateObject ().
The following code from src/stats/examples/gnuplot—-aggregator—-example.cc shows how to do
this:

string fileNameWithoutExtension = "gnuplot-aggregator";

// Create an aggregator.
Ptr<GnuplotAggregator> aggregator =
CreateObject<GnuplotAggregator> (fileNameWithoutExtension);

The first argument for the constructor, fileNameWithoutExtension, is the name of the gnuplot related files to write with
no extension. This GnuplotAggregator will create a space separated gnuplot data file named “gnuplot-aggregator.dat”,
a gnuplot control file named “gnuplot-aggregator.plt”, and a shell script to generate the gnuplot named + “gnuplot-
aggregator.sh”.

The gnuplot that is created can have its key in 4 different locations:
* No key
» Key inside the plot (the default)
* Key above the plot
* Key below the plot

11.5. Aggregators 67

ns-3 Model Library, Release ns-3.26

The following gnuplot key location enum values are allowed to specify the key’s position:

enum KeyLocation {
NO_KEY,
KEY_INSIDE,
KEY_ABOVE,
KEY_BELOW

}i

If it was desired to have the key below rather than the default position of inside, then you could do the following.

aggregator->SetKeyLocation (GnuplotAggregator: :KEY_BELOW) ;

Examples

One example will be discussed in detail here:

* Gnuplot Aggregator Example

Gnuplot Aggregator Example

An example that exercises the GnuplotAggregator can be foundin src/stats/examples/gnuplot-aggregator—example.c
The following 2-D gnuplot was created using the example.
This code from the example shows how to construct the GnuplotAggregator as was discussed above.

void Create2dPlot ()
{

using namespace std;

string fileNameWithoutExtension = "gnuplot—-aggregator";
string plotTitle = "Gnuplot Aggregator Plot";
string plotXAxisHeading = "Time (seconds)";

string plotYAxisHeading = "Double Values";

string plotDatasetLabel = "Data Values";

string datasetContext = "Dataset/Context/String";

// Create an aggregator.
Ptr<GnuplotAggregator> aggregator =
CreateObject<GnuplotAggregator> (fileNameWithoutExtension);

Various GnuplotAggregator attributes are set including the 2-D dataset that will be plotted.

// Set the aggregator's properties.

aggregator->SetTerminal ("png");

aggregator->SetTitle (plotTitle);

aggregator->SetLegend (plotXAxisHeading, plotYAxisHeading);

// Add a data set to the aggregator.
aggregator->Add2dDataset (datasetContext, plotDatasetLabel);

// aggregator must be turned on
aggregator—->Enable ();

Next, the 2-D values are calculated, and each one is individually written to the GnuplotAggregator using the
Write2d () function.

68 Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.26

Gnuplot Aggregator Plot
25 T T T

I'jata ‘u’alue's

20 ¢

15 ¢

10 +

Double Values

6 il 2 0 2 4 5]

Time (seconds)

Figure 11.5: 2-D Gnuplot Created by gnuplot-aggregator-example.cc Example.

11.5. Aggregators 69

ns-3 Model Library, Release ns-3.26

double time;
double value;

// Create the 2-D dataset.
for (time = -5.0; time <= +5.0; time += 1.0)
{
// Calculate the 2-D curve

//

// 2
// value = time
//

value = time » time;

// Add this point to the plot.
aggregator—->Write2d (datasetContext, time, value);

// Disable logging of data for the aggregator.
aggregator—->Disable ();

11.5.3 FileAggregator

The FileAggregator sends the values it receives to a file.
The FileAggregator can create 4 different types of files:
* Formatted
» Space separated (the default)
* Comma separated
* Tab separated

Formatted files use C-style format strings and the sprintf() function to print their values in the file being written.

Creation

An object of type FileAggregator will be created here to show what needs to be done.

One declares a FileAggregator in dynamic memory by using the smart pointer class (Ptr<T>). To create a FileAggre-
gator in dynamic memory with smart pointers, one just needs to call the ns-3 method CreateObject. The following
code from src/stats/examples/file-aggregator—example.cc shows how to do this:

string fileName = "file-aggregator-formatted-values.txt";

// Create an aggregator that will have formatted values.
Ptr<FileAggregator> aggregator =
CreateObject<FileAggregator> (fileName, FileAggregator::FORMATTED) ;

The first argument for the constructor, filename, is the name of the file to write; the second argument, fileType, is
type of file to write. This FileAggregator will create a file named “file-aggregator-formatted-values.txt” with its values
printed as specified by fileType, i.e., formatted in this case.

The following file type enum values are allowed:

70 Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.26

enum FileType {
FORMATTED,
SPACE_SEPARATED,
COMMA_SEPARATED,
TAB_SEPARATED

bi

Examples

One example will be discussed in detail here:

* File Aggregator Example

File Aggregator Example

An example that exercises the FileAggregator can be foundin src/stats/examples/file-aggregator-example.cc.
The following text file with 2 columns of values separated by commas was created using the example.

-5,25
-4,16
-3,9
-2,4

This code from the example shows how to construct the FileAggregator as was discussed above.

void CreateCommaSeparatedFile ()
{

using namespace std;

string fileName = "file-aggregator-comma-separated.txt";
string datasetContext = "Dataset/Context/String";

// Create an aggregator.
Ptr<FileAggregator> aggregator =
CreateObject<FileAggregator> (fileName, FileAggregator::COMMA_SEPARATED) ;

FileAggregator attributes are set.

// aggregator must be turned on
aggregator—->Enable ();

Next, the 2-D values are calculated, and each one is individually written to the FileAggregator using the Write2d ()
function.

double time;
double value;

// Create the 2-D dataset.
for (time = -5.0; time <= +5.0; time += 1.0)

11.5. Aggregators 71

ns-3 Model Library, Release ns-3.26

// Calculate the 2-D curve

//

// 2
// value = time
//

value = time » time;

// Add this point to the plot.
aggregator->Write2d (datasetContext, time, wvalue);

// Disable logging of data for the aggregator.
aggregator->Disable ();

The following text file with 2 columns of formatted values was also created using the example.

Time = -5.000e+00 Value = 25
Time = -4.000e+00 Value = 16
Time = -3.000e+00 Value = 9
Time = -2.000e+00 Value = 4
Time = -1.000e+00 Value = 1
Time = 0.000e+00 Value = 0
Time = 1.000e+00 Value = 1
Time = 2.000e+00 Value = 4
Time = 3.000e+00 Value = 9
Time = 4.000e+00 Value = 16
Time = 5.000e+00 Value = 25

This code from the example shows how to construct the FileAggregator as was discussed above.

void CreateFormattedFile ()

{

using namespace std;

string fileName = "file-aggregator-formatted-values.txt";
string datasetContext = "Dataset/Context/String";

// Create an aggregator that will have formatted values.
Ptr<FileAggregator> aggregator =
CreateObject<FileAggregator> (fileName, FileAggregator::FORMATTED) ;

FileAggregator attributes are set, including the C-style format string to use.

// Set the format for the values.
aggregator—>Set2dFormat ("Time = %.3e\tValue = %.0f");

// aggregator must be turned on
aggregator—->Enable ();

Next, the 2-D values are calculated, and each one is individually written to the FileAggregator using the Write2d ()
function.

double time;
double value;

// Create the 2-D dataset.
for (time = -5.0; time <= +5.0; time += 1.0)

72 Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.26

// Calculate the 2-D curve

//

// 2
// value = time
//

value = time *» time;

// Add this point to the plot.
aggregator->Write2d (datasetContext, time, wvalue);

}

// Disable logging of data for the aggregator.
aggregator->Disable ();

}

11.6 Adaptors

This section details the functionalities provided by the Adaptor class to an ns-3 simulation. This section is meant for
users interested in developing simulations with the ns-3 tools and using the Data Collection Framework, of which the
Adaptor class is a part, to generate data output with their simulation’s results.

Note: the term ‘adaptor’ may also be spelled ‘adapter’; we chose the spelling aligned with the C++ standard.

11.6.1 Adaptor Overview

An Adaptor is used to make connections between different types of DCF objects.
To date, one Adaptor has been implemented:

* TimeSeriesAdaptor

11.6.2 Time Series Adaptor

The TimeSeriesAdaptor lets Probes connect directly to Aggregators without needing any Collector in between.

Both of the implemented DCF helpers utilize TimeSeriesAdaptors in order to take probed values of different types and
output the current time plus the value with both converted to doubles.

The role of the TimeSeriesAdaptor class is that of an adaptor, which takes raw-valued probe data of different types
and outputs a tuple of two double values. The first is a timestamp, which may be set to different resolutions (e.g.
Seconds, Milliseconds, etc.) in the future but which is presently hardcoded to Seconds. The second is the conversion
of a non-double value to a double value (possibly with loss of precision).

11.7 Scope/Limitations

This section discusses the scope and limitations of the Data Collection Framework.
Currently, only these Probes have been implemented in DCF:
* BooleanProbe

¢ DoubleProbe

11.6. Adaptors 73

ns-3 Model Library, Release ns-3.26

* Uinteger8Probe
* Uinteger16Probe
 Uinteger32Probe
* TimeProbe
 PacketProbe
* ApplicationPacketProbe
 Ipv4PacketProbe
Currently, no Collectors are available in the DCEF, although a BasicStatsCollector is under development.
Currently, only these Aggregators have been implemented in DCF:
* GnuplotAggregator
* FileAggregator
Currently, only this Adaptor has been implemented in DCF:

Time-Series Adaptor.

11.7.1 Future Work

This section discusses the future work to be done on the Data Collection Framework.
Here are some things that still need to be done:
* Hook up more trace sources in ns-3 code to get more values out of the simulator.
* Implement more types of Probes than there currently are.
* Implement more than just the single current 2-D Collector, BasicStatsCollector.
* Implement more Aggregators.

* Implement more than just Adaptors.

74 Chapter 11. Data Collection

CHAPTER
TWELVE

DSDV ROUTING

Destination-Sequenced Distance Vector (DSDV) routing protocol is a pro-active, table-driven routing protocol for
MANETs developed by Charles E. Perkins and Pravin Bhagwat in 1994. It uses the hop count as metric in route
selection.

This model was developed by the ResiliNets research group at the University of Kansas. A paper on this model exists
at this URL.

12.1 DSDV Routing Overview

DSDV Routing Table: Every node will maintain a table listing all the other nodes it has known either directly or
through some neighbors. Every node has a single entry in the routing table. The entry will have information about
the node’s IP address, last known sequence number and the hop count to reach that node. Along with these details the
table also keeps track of the nexthop neighbor to reach the destination node, the timestamp of the last update received
for that node.

The DSDV update message consists of three fields, Destination Address, Sequence Number and Hop Count.
Each node uses 2 mechanisms to send out the DSDV updates. They are,

1. Periodic Updates Periodic updates are sent out after every m_periodicUpdateInterval(default:15s). In this up-
date the node broadcasts out its entire routing table.

2. Trigger Updates Trigger Updates are small updates in-between the periodic updates. These updates are sent
out whenever a node receives a DSDV packet that caused a change in its routing table. The original paper
did not clearly mention when for what change in the table should a DSDV update be sent out. The current
implemntation sends out an update irrespective of the change in the routing table.

The updates are accepted based on the metric for a particular node. The first factor determinig the acceptance of an
update is the sequence number. It has to accept the update if the sequence number of the update message is higher
irrespective of the metric. If the update with same sequence number is received, then the update with least metric
(hopCount) is given precedence.

In highly mobile scenarios, there is a high chance of route fluctuations, thus we have the concept of weighted settling
time where an update with change in metric will not be advertised to neighbors. The node waits for the settling time
to make sure that it did not receive the update from its old neighbor before sending out that update.

The current implementation covers all the above features of DSDV. The current implementation also has a request
queue to buffer packets that have no routes to destination. The default is set to buffer up to 5 packets per destination.

12.2 References

Link to the Paper: http://portal.acm.org/citation.cfm?doid=190314.190336

75

http://www.ittc.ku.edu/resilinets
https://wiki.ittc.ku.edu/resilinets/ResiliNets_Publications#.E2.80.9CDestination-Sequenced_Distance_Vector_.28DSDV.29_Routing_Protocol_Implementation_in_ns-3.E2.80.9D
http://portal.acm.org/citation.cfm?doid=190314.190336

ns-3 Model Library, Release ns-3.26

76

Chapter 12. DSDV Routing

CHAPTER
THIRTEEN

DSR ROUTING

Dynamic Source Routing (DSR) protocol is a reactive routing protocol designed specifically for use in multi-hop
wireless ad hoc networks of mobile nodes.

This model was developed by the ResiliNets research group at the University of Kansas.

13.1 DSR Routing Overview

This model implements the base specification of the Dynamic Source Routing (DSR) protocol. Implementation is
based on RFC 4728, with some extensions and modifications to the RFC specifications.

DSR operates on a on-demand behavior. Therefore, our DSR model buffers all packets while a route request packet
(RREQ) is disseminated. We implement a packet buffer in dsr-rsendbuff.cc. The packet queue implements garbage
collection of old packets and a queue size limit. When the packet is sent out from the send buffer, it will be queued in
maintenance buffer for next hop acknowledgment.

The maintenance buffer then buffers the already sent out packets and waits for the notification of packet delivery.
Protocol operation strongly depends on broken link detection mechanism. We implement the three heuristics recom-
mended based the RFC as follows:

First, we use link layer feedback when possible, which is also the fastest mechanism of these three to detect link errors.
A link is considered to be broken if frame transmission results in a transmission failure for all retries. This mechanism
is meant for active links and works much faster than in its absence. DSR is able to detect the link layer transmission
failure and notify that as broken. Recalculation of routes will be triggered when needed. If user does not want to use
link layer acknowledgment, it can be tuned by setting “LinkAcknowledgment” attribute to false in “dsr-routing.cc”.

Second, passive acknowledgment should be used whenever possible. The node turns on “promiscuous” receive mode,
in which it can receive packets not destined for itself, and when the node assures the delivery of that data packet to its
destination, it cancels the passive acknowledgment timer.

Last, we use a network layer acknowledge scheme to notify the receipt of a packet. Route request packet will not be
acknowledged or retransmitted.

The Route Cache implementation support garbage collection of old entries and state machine, as defined in the stan-
dard. It implements as a STL map container. The key is the destination IP address.

DSR operates with direct access to IP header, and operates between network and transport layer. When packet is sent
out from transport layer, it passes itself to DSR and DSR header is appended.

We have two caching mechanisms: path cache and link cache. The path cache saves the whole path in the cache. The
paths are sorted based on the hop count, and whenever one path is not able to be used, we change to the next path.
The link cache is a slightly better design in the sense that it uses different subpaths and uses Implemented Link Cache
using Dijsktra algorithm, and this part is implemented by Song Luan <Isuper @mail.ustc.edu.cn>.

The following optional protocol optimizations aren’t implemented:

77

http://www.ittc.ku.edu/resilinets
http://tools.ietf.org/html/rfc4728.html
mailto:lsuper@mail.ustc.edu.cn

ns-3 Model Library, Release ns-3.26

* Flow state
* First Hop External (F), Last Hop External (L) flags
* Handling unknown DSR options
¢ Two types of error headers:
1. flow state not supported option

2. unsupported option (not going to happen in simulation)

13.1.1 DSR update in ns-3.17

We originally used “TxErrHeader” in Ptr<WifiMac> to indicate the transmission error of a specific packet in link layer,
however, it was not working quite correctly since even when the packet was dropped, this header was not recorded in
the trace file. We used to a different path on implementing the link layer notification mechanism. We look into the
trace file by finding packet receive event. If we find one receive event for the data packet, we count that as the indicator
for successful data delivery.

13.1.2 Useful parameters

o e it P o +
| Parameter | Description | Default |
+ == ====4== == ====== =+= ======4
| MaxSendBufflen | Maximum number of packets that can | 64 |
| | be stored in send buffer | |
f————————————— ——_——— o ————— +
| MaxSendBuffTime | Maximum time packets can be queued | Seconds (30)

| | in the send buffer |
f————————————— ——_—— o ————— +
| MaxMaintLen | Maximum number of packets that can | 50 |
| | be stored in maintenance buffer | |
t——— - o ————— +
| MaxMaintTime | Maximum time packets can be queued | Seconds (30)

| | in maintenance buffer |

t——— —— o ———— +
| MaxCacheLen | Maximum number of route entries | 64 |
| | that can be stored in route cache | |
t—— -——— o +
| RouteCacheTimeout | Maximum time the route cache can | Seconds (300)

| | be queued in route cache | |
- - F————— +
| RregRetries | Maximum number of retransmissions | 16 |
| | for request discovery of a route | |
+--— - - +
| CacheType | Use Link Cache or use Path Cache | "LinkCache"

| \ |
+--— - - +
| LinkAcknowledgment | Enable Link layer acknowledgment | True |
| | mechanism |
o A —— o +

78 Chapter 13. DSR Routing

ns-3 Model Library, Release ns-3.26

13.1.3 Implementation modification

¢ The DsrFsHeader has added 3 fields: message type, source id, destination id, and these changes only for post-processing

1. Message type is used to identify the data packet from control packet

2. source id is used to identify the real source of the data packet since we have to deliver the packet
hop-by-hop and the ipv4header is not carrying the real source and destination ip address as needed

3. destination id is for same reason of above
* Route Reply header is not word-aligned in DSR RFC, change it to word-aligned in implementation

* DSR works as a shim header between transport and network protocol, it needs its own forwarding mechanism,
we are changing the packet transmission to hop-by-hop delivery, so we added two fields in dsr fixed header to
notify packet delivery

13.1.4 Current Route Cache implementation

This implementation used “path cache”, which is simple to implement and ensures loop-free paths:
* the path cache has automatic expire policy
* the cache saves multiple route entries for a certain destination and sort the entries based on hop counts
* the MaxEntriesEachDst can be tuned to change the maximum entries saved for a single destination

* when adding mulitiple routes for one destination, the route is compared based on hop-count and expire time, the
one with less hop count or relatively new route is favored

* Future implementation may include “link cache” as another possibility

13.2 DSR Instructions

The following should be kept in mind when running DSR as routing protocol:

* NodeTraversalTime is the time it takes to traverse two neighboring nodes and should be chosen to fit the trans-
mission range

» PassiveAckTimeout is the time a packet in maintenance buffer wait for passive acknowledgment, normally set
as two times of NodeTraversalTime

* RouteCacheTimeout should be set smaller value when the nodes’ velocity become higher. The default value is
300s.

13.3 Helper

To have a node run DSR, the easiest way would be to use the DsrHelper and DsrMainHelpers in your simulation script.
For instance:

DsrHelper dsr;
DsrMainHelper dsrMain;
dsrMain.Install (dsr, adhocNodes);

13.2. DSR Instructions 79

ns-3 Model Library, Release ns-3.26

The example scripts inside src/dsr/examples/ demonstrate the use of DSR based nodesin different
scenarios. The helper source can be found inside src/dsr/helper/dsr-main-helper.{h,cc} and
src/dsr/helper/dsr-helper. {h,cc}

13.4 Examples

The example can be found in src/dsr/examples/:
¢ dsr.cc use DSR as routing protocol within a traditional MANETS environment[3].
DSR is also built in the routing comparison case in examples/routing/:

* manet-routing-compare.cc is a comparison case with built in MANET routing protocols and can gen-
erate its own results.

13.5 Validation

This model has been tested as follows:

e Unit tests have been written to verify the internals of DSR. This can be found in
src/dsr/test/dsr-test-suite.cc. These tests verify whether the methods inside DSR mod-
ule which deal with packet buffer, headers work correctly.

» Simulation cases similar to [3] have been tested and have comparable results.
* manet-routing-compare.cc has been used to compare DSR with three of other routing protocols.

A paper was presented on these results at the Workshop on ns-3 in 2011.

13.6 Limitations

The model is not fully compliant with RFC 4728. As an example, Dsr fixed size header has been extended and it is
four octects longer then the RFC specification. As a consequence, the DSR headers can not be correctly decoded by
Wireshark.

The model full compliance with the RFC is planned for the future.

13.7 References

[1] Original paper: http://www.monarch.cs.rice.edu/monarch-papers/dsr-chapter00.pdf
[2] RFC 4728 http://www6.ietf.org/rfc/rfc4728.txt

[3] Broch’s comparison paper: http://www.monarch.cs.rice.edu/monarch-papers/mobicom98.ps

80 Chapter 13. DSR Routing

http://tools.ietf.org/html/rfc4728.html
http://www.monarch.cs.rice.edu/monarch-papers/dsr-chapter00.pdf
http://www6.ietf.org/rfc/rfc4728.txt
http://www.monarch.cs.rice.edu/monarch-papers/mobicom98.ps

CHAPTER
FOURTEEN

EMULATION OVERVIEW

ns-3 has been designed for integration into testbed and virtual machine environments. We have addressed this need by
providing two kinds of net devices. The first kind of device is a file descriptor net device (FdNetDevice), which is
a generic device type that can read and write from a file descriptor. By associating this file descriptor with different
things on the host system, different capabilities can be provided. For instance, the FdNetDevice can be associated
with an underlying packet socket to provide emulation capabilities. This allows ns-3 simulations to send data on a
“real” network. The second kind, called a TapBridge NetDevice allows a “real” host to participate in an ns-3
simulation as if it were one of the simulated nodes. An ns-3 simulation may be constructed with any combination of
simulated or emulated devices.

Note: Prior to ns-3.17, the emulation capability was provided by a special device called an Emu NetDevice; the Emu
NetDevice has been replaced by the FdNetDevice.

One of the use-cases we want to support is that of a testbed. A concrete example of an environment of this kind is the
ORBIT testbed. ORBIT is a laboratory emulator/field trial network arranged as a two dimensional grid of 400 802.11
radio nodes. We integrate with ORBIT by using their “imaging” process to load and run ns-3 simulations on the ORBIT
array. We can use our EmuFdNetDevice to drive the hardware in the testbed and we can accumulate results either
using the ns-3 tracing and logging functions, or the native ORBIT data gathering techniques. See http://www.orbit-
lab.org/ for details on the ORBIT testbed.

A simulation of this kind is shown in the following figure:

You can see that there are separate hosts, each running a subset of a “global” simulation. Instead of an ns-3 channel
connecting the hosts, we use real hardware provided by the testbed. This allows ns-3 applications and protocol stacks
attached to a simulation node to communicate over real hardware.

We expect the primary use for this configuration will be to generate repeatable experimental results in a real-world
network environment that includes all of the ns-3 tracing, logging, visualization and statistics gathering tools.

In what can be viewed as essentially an inverse configuration, we allow “real” machines running native applications
and protocol stacks to integrate with an ns-3 simulation. This allows for the simulation of large networks connected to
a real machine, and also enables virtualization. A simulation of this kind is shown in the following figure:

Here, you will see that there is a single host with a number of virtual machines running on it. An ns-3 simulation is
shown running in the virtual machine shown in the center of the figure. This simulation has a number of nodes with
associated ns-3 applications and protocol stacks that are talking to an ns-3 channel through native simulated ns-3 net
devices.

There are also two virtual machines shown at the far left and far right of the figure. These VMs are running native
(Linux) applications and protocol stacks. The VM is connected into the simulation by a Linux Tap net device. The
user-mode handler for the Tap device is instantiated in the simulation and attached to a proxy node that represents the
native VM in the simulation. These handlers allow the Tap devices on the native VMs to behave as if they were ns-3
net devices in the simulation VM. This, in turn, allows the native software and protocol suites in the native VMs to
believe that they are connected to the simulated ns-3 channel.

81

http://www.orbit-lab.org/
http://www.orbit-lab.org/

ns-3 Model Library, Release ns-3.26

Host Host Host
ns-3 Simulation ns-3 Simulation ns-3 Simulation
Node Node Node
FdNetDevice FdNetDevice FdNetDevice
Raw Raw Raw —
Socket Socket Socket
Real Real Real
Device Device Device
Testbed

Figure 14.1: Example Implementation of Testbed Emulation.

Host
Native VM Native VM
ns-3 Simulation VM
Native Native
Application(s) Application(s)
ns-3 Node ns-3 Node ns-3 Node ns-3 Node
Native -3 -3 Native
Protocol N Protocol
Stack Application Application Stack
Ta ns-3 ns-3 ns-3 ns-3 Ta
etho Devf’ce < > Tap Internet Internet Tap < > Devf’ce etho
Handler Stack Stack Handler
ns-3 ns-3 ns-3 ns-3
Net Device Net Device Net Device Net Device

| ns-3 Chamnel |

Figure 14.2: Implementation overview of emulated channel.

82 Chapter 14. Emulation Overview

ns-3 Model Library, Release ns-3.26

We expect the typical use case for this environment will be to analyze the behavior of native applications and protocol
suites in the presence of large simulated ns-3 networks.

For more details:
* FdNetDevice chapter.
* TapBridge chapter.

83

ns-3 Model Library, Release ns-3.26

84

Chapter 14. Emulation Overview

CHAPTER
FIFTEEN

ENERGY FRAMEWORK

Energy consumption is a key issue for wireless devices, and wireless network researchers often need to investigate the
energy consumption at a node or in the overall network while running network simulations in ns-3. This requires ns-3
to support energy consumption modeling. Further, as concepts such as fuel cells and energy scavenging are becoming
viable for low power wireless devices, incorporating the effect of these emerging technologies into simulations requires
support for modeling diverse energy sources in ns-3. The ns-3 Energy Framework provides the basis for energy
consumption, energy source and energy harvesting modeling.

15.1 Model Description

The source code for the Energy Framework is currently at: src/energy.

15.1.1 Design

The ns-3 Energy Framework is composed of 3 parts: Energy Source, Device Energy Model and Energy Harvester.
The framework is implemented into the src/energy/models folder.

Energy Source

The Energy Source represents the power supply on each node. A node can have one or more energy sources, and
each energy source can be connected to multiple device energy models. Connecting an energy source to a device
energy model implies that the corresponding device draws power from the source. The basic functionality of the
Energy Source is to provide energy for devices on the node. When energy is completely drained from the Energy
Source, it notifies the devices on node such that each device can react to this event. Further, each node can access the
Energy Source Objects for information such as remaining energy or energy fraction (battery level). This enables the
implementation of energy aware protocols in ns-3.

In order to model a wide range of power supplies such as batteries, the Energy Source must be able to capture charac-
teristics of these supplies. There are 2 important characteristics or effects related to practical batteries:

Rate Capacity Effect Decrease of battery lifetime when the current draw is higher than the rated value of the battery.
Recovery Effect Increase of battery lifetime when the battery is alternating between discharge and idle states.

In order to incorporate the Rate Capacity Effect, the Energy Source uses current draw from all the devices on the same
node to calculate energy consumption. Moreover, multiple Energy Harvesters can be connected to the Energy Source
in order to replenish its energy. The Energy Source periodically polls all the devices and energy harvesters on the
same node to calculate the total current drain and hence the energy consumption. When a device changes state, its
corresponding Device Energy Model will notify the Energy Source of this change and new total current draw will be
calculated. Similarly, every Energy Harvester update triggers an update to the connected Energy Source.

85

ns-3 Model Library, Release ns-3.26

The Energy Source base class keeps a list of devices (Device Energy Model objects) and energy harvesters (Energy
Harvester objects) that are using the particular Energy Source as power supply. When energy is completely drained,
the Energy Source will notify all devices on this list. Each device can then handle this event independently, based on
the desired behavior that should be followed in case of power outage.

Device Energy Model

The Device Energy Model is the energy consumption model of a device installed on the node. It is designed to be a
state based model where each device is assumed to have a number of states, and each state is associated with a power
consumption value. Whenever the state of the device changes, the corresponding Device Energy Model will notify
the Energy Source of the new current draw of the device. The Energy Source will then calculate the new total current
draw and update the remaining energy.

The Device Energy Model can also be used for devices that do not have finite number of states. For example, in an
electric vehicle, the current draw of the motor is determined by its speed. Since the vehicle’s speed can take continuous
values within a certain range, it is infeasible to define a set of discrete states of operation. However, by converting the
speed value into current directly, the same set of Device Energy Model APIs can still be used.

Energy Harvester

The energy harvester represents the elements that harvest energy from the environment and recharge the Energy Source
to which it is connected. The energy harvester includes the complete implementation of the actual energy harvesting
device (e.g., a solar panel) and the environment (e.g., the solar radiation). This means that in implementing an energy
harvester, the energy contribution of the environment and the additional energy requirements of the energy harvesting
device such as the conversion efficiency and the internal power consumption of the device needs to be jointly modeled.

WiFi Radio Energy Model

The WiFi Radio Energy Model is the energy consumption model of a Wifi net device. It provides a state for each of
the available states of the PHY layer: Idle, CcaBusy, Tx, Rx, ChannelSwitch, Sleep. Each of such states is associated
with a value (in Ampere) of the current draw (see below for the corresponding attribute names). A Wifi Radio Energy
Model PHY Listener is registered to the Wifi PHY in order to be notified of every Wifi PHY state transition. At every
transition, the energy consumed in the previous state is computed and the energy source is notified in order to update
its remaining energy.

The Wifi Tx Current Model gives the possibility to compute the current draw in the transmit state as a function
of the nominal tx power (in dBm), as observed in several experimental measurements. To this purpose, the Wifi
Radio Energy Model PHY Listener is notified of the nominal tx power used to transmit the current frame and passes
such a value to the Wifi Tx Current Model which takes care of updating the current draw in the Tx state. Hence,
the energy consumption is correctly computed even if the Wifi Remote Station Manager performs per-frame power
control. Currently, a Linear Wifi Tx Current Model is implemented which computes the tx current as a linear function
(according to parameters that can be specified by the user) of the nominal tx power in dBm.

The Wifi Radio Energy Model offers the possibility to specify a callback that is invoked when the energy source is
depleted. If such a callback is not specified when the Wifi Radio Energy Model Helper is used to install the model on
a device, a callback is implicitly made so that the Wifi PHY is put in the SLEEP mode (hence no frame is transmitted
nor received afterwards) when the energy source is depleted. Likewise, it is possible to specify a callback that is
invoked when the energy source is recharged (which might occur in case an energy harvester is connected to the
energy source). If such a callback is not specified when the Wifi Radio Energy Model Helper is used to install the
model on a device, a callback is implicitly made so that the Wifi PHY is resumed from the SLEEP mode when the
energy source is recharged.

86 Chapter 15. Energy Framework

ns-3 Model Library, Release ns-3.26

15.1.2 Future Work

For Device Energy Models, we are planning to include support for other PHY layer models provided in ns-3 such as
WiMAX, and to model the energy consumptions of other non communicating devices, like a generic sensor and a CPU.
For Energy Sources, we are planning to included new types of Energy Sources such as Supercapacitor and Nickel-
Metal Hydride (Ni-MH) battery. For the Energy Harvesters, we are planning to implement an energy harvester that
recharges the energy sources according to the power levels defined in a user customizable dataset of real measurements.

15.1.3 References

15.2 Usage

The main way that ns-3 users will typically interact with the Energy Framework is through the helper API and through
the publicly visible attributes of the framework. The helper API is defined in src/energy/helper/*.h.

In order to use the energy framework, the user must install an Energy Source for the node of interest, the corresponding
Device Energy Model for the network devices and, if necessary, the one or more Energy Harvester. Energy Source
(objects) are aggregated onto each node by the Energy Source Helper. In order to allow multiple energy sources per
node, we aggregate an Energy Source Container rather than directly aggregating a source object.

The Energy Source object keeps a list of Device Energy Model and Energy Harvester objects using the source as
power supply. Device Energy Model objects are installed onto the Energy Source by the Device Energy Model Helper,
while Energy Harvester object are installed by the Energy Harvester Helper. User can access the Device Energy Model
objects through the Energy Source object to obtain energy consumption information of individual devices. Moreover,
the user can access to the Energy Harvester objects in order to gather information regarding the current harvestable
power and the total energy harvested by the harvester.

15.2.1 Examples

The example directories, src/examples/energy and examples/energy, contain some basic code that shows
how to set up the framework.

15.2.2 Helpers

Energy Source Helper

Base helper class for Energy Source objects, this helper Aggregates Energy Source object onto a node. Child imple-
mentation of this class creates the actual Energy Source object.

Device Energy Model Helper

Base helper class for Device Energy Model objects, this helper attaches Device Energy Model objects onto Energy
Source objects. Child implementation of this class creates the actual Device Energy Model object.

Energy Harvesting Helper

Base helper class for Energy Harvester objects, this helper attaches Energy Harvester objects onto Energy Source
objects. Child implementation of this class creates the actual Energy Harvester object.

15.2. Usage 87

ns-3 Model Library, Release ns-3.26

15.2.3 Attributes

Attributes differ between Energy Sources, Devices Energy Models and Energy Harvesters implementations, please
look at the specific child class for details.

Basic Energy Source

* BasicEnergySourcelInitialEnergyJ: Initial energy stored in basic energy source.
* BasicEnergySupplyVoltageV: Initial supply voltage for basic energy source.

* PeriodicEnergyUpdateInterval: Time between two consecutive periodic energy updates.

RV Battery Model

* RvBatteryModelPeriodicEnergyUpdateInterval: RV battery model sampling interval.
* RvBatteryModelOpenCircuitVoltage: RV battery model open circuit voltage.

* RvBatteryModelCutoffVoltage: RV battery model cutoff voltage.

* RvBatteryModelAlphaValue: RV battery model alpha value.

* RvBatteryModelBetaValue: RV battery model beta value.

* RvBatteryModelNumOfTerms: The number of terms of the infinite sum for estimating battery level.

WiFi Radio Energy Model

e IdleCurrentA: The default radio Idle current in Ampere.

* CcaBusyCurrentA: The default radio CCA Busy State current in Ampere.

e TxCurrentA: The radio Tx current in Ampere.

* RxCurrentA: The radio Rx current in Ampere.

e SwitchingCurrentA: The default radio Channel Switch current in Ampere.
* SleepCurrentA: The radio Sleep current in Ampere.

e TxCurrentModel: A pointer to the attached tx current model.

Basic Energy Harvester

* PeriodicHarvestedPowerUpdateInterval: Time between two consecutive periodic updates of the
harvested power.

* HarvestablePower: Random variables that represents the amount of power that is provided by the energy
harvester.

15.2.4 Tracing

Traced values differ between Energy Sources, Devices Energy Models and Energy Harvesters implementations, please
look at the specific child class for details.

88 Chapter 15. Energy Framework

ns-3 Model Library, Release ns-3.26

Basic Energy Source

* RemainingEnergy: Remaining energy at BasicEnergySource.

RV Battery Model

* RvBatteryModelBatteryLevel: RV battery model battery level.

* RvBatteryModelBatteryLifetime: RV battery model battery lifetime.
WiFi Radio Energy Model

* TotalEnergyConsumption: Total energy consumption of the radio device.

Basic Energy Harvester

* HarvestedPower: Current power provided by the BasicEnergyHarvester.

* TotalEnergyHarvested: Total energy harvested by the BasicEnergyHarvester.

15.2.5 Validation

Comparison of the Energy Framework against actual devices have not been performed. Current implementation of the
Energy Framework is checked numerically for computation errors. The RV battery model is validated by comparing
results with what was presented in the original RV battery model paper.

15.2. Usage 89

ns-3 Model Library, Release ns-3.26

90

Chapter 15. Energy Framework

CHAPTER
SIXTEEN

FILE DESCRIPTOR NETDEVICE

The src/fd-net-device module provides the FdNetDevice class, which is able to read and write traffic using
a file descriptor provided by the user. This file descriptor can be associated to a TAP device, to a raw socket, to a user
space process generating/consuming traffic, etc. The user has full freedom to define how external traffic is generated
and ns-3 traffic is consumed.

Different mechanisms to associate a simulation to external traffic can be provided through helper classes. Three
specific helpers are provided:

* EmuFdNetDeviceHelper (to associate the ns-3 device with a physical device in the host machine)

» TapFdNetDeviceHelper (to associate the ns-3 device with the file descriptor from a tap device in the host ma-
chine)

* PlanteLabFdNetDeviceHelper (to automate the creation of tap devices in PlanetLab nodes, enabling ns-3 simu-
lations that can send and receive traffic though the Internet using PlanetLab resource.

16.1 Model Description

The source code for this module lives in the directory src/fd-net-device.

The FdNetDevice is a special type of ns-3 NetDevice that reads traffic to and from a file descriptor. That is, unlike pure
simulation NetDevice objects that write frames to and from a simulated channel, this FdNetDevice directs frames out
of the simulation to a file descriptor. The file descriptor may be associated to a Linux TUN/TAP device, to a socket,
or to a user-space process.

It is up to the user of this device to provide a file descriptor. The type of file descriptor being provided determines
what is being modelled. For instance, if the file descriptor provides a raw socket to a WiFi card on the host machine,
the device being modelled is a WiFi device.

From the conceptual “top” of the device looking down, it looks to the simulated node like a device supporting a 48-bit
IEEE MAC address that can be bridged, supports broadcast, and uses IPv4 ARP or IPv6 Neighbor Discovery, although
these attributes can be tuned on a per-use-case basis.

16.1.1 Design

The FdNetDevice implementation makes use of a reader object, extended from the FdReader class in the ns-3
src/core module, which manages a separate thread from the main ns-3 execution thread, in order to read traffic
from the file descriptor.

Upon invocation of the StartDevice method, the reader object is initialized and starts the reading thread. Before
device start, a file descriptor must be previously associated to the FdNetDevice with the SetFileDescriptor
invocation.

91

ns-3 Model Library, Release ns-3.26

The creation and configuration of the file descriptor can be left to a number of helpers, described in more detail below.
When this is done, the invocation of SetFileDescriptor is responsibility of the helper and must not be directly
invoked by the user.

Upon reading an incoming frame from the file descriptor, the reader will pass the frame to the ReceiveCallback
method, whose task it is to schedule the reception of the frame by the device as a ns-3 simulation event. Since the new
frame is passed from the reader thread to the main ns-3 simulation thread, thread-safety issues are avoided by using
the ScheduleWithContext call instead of the regular Schedule call.

In order to avoid overwhelming the scheduler when the incoming data rate is too high, a counter is kept with the
number of frames that are currently scheduled to be received by the device. If this counter reaches the value given by
the RxQueueSize attribute in the device, then the new frame will be dropped silently.

The actual reception of the new frame by the device occurs when the scheduled FordwarUp method is invoked by
the simulator. This method acts as if a new frame had arrived from a channel attached to the device. The device
then decapsulates the frame, removing any layer 2 headers, and forwards it to upper network stack layers of the node.
The ForwardUp method will remove the frame headers, according to the frame encapsulation type defined by the
EncapsulationMode attribute, and invoke the receive callback passing an IP packet.

An extra header, the PI header, can be present when the file descriptor is associated to a TAP device that was created
without setting the IFF_NO_PI flag. This extra header is removed if EncapsulationMode is set to DIXPI value.

In the opposite direction, packets generated inside the simulation that are sent out through the device, will be passed to
the Send method, which will in turn invoke the SendFrom method. The latter method will add the necessary layer
2 headers, and simply write the newly created frame to the file descriptor.

16.1.2 Scope and Limitations

Users of this device are cautioned that there is no flow control across the file descriptor boundary, when using in
emulation mode. That is, in a Linux system, if the speed of writing network packets exceeds the ability of the
underlying physical device to buffer the packets, backpressure up to the writing application will be applied to avoid
local packet loss. No such flow control is provided across the file descriptor interface, so users must be aware of this
limitation.

As explained before, the RxQueueSize attribute limits the number of packets that can be pending to be received by the
device. Frames read from the file descriptor while the number of pending packets is in its maximum will be silently
dropped.

The mtu of the device defaults to the Ethernet Il MTU value. However, helpers are supposed to set the mtu to the right
value to reflect the characteristics of the network interface associated to the file descriptor. If no helper is used, then
the responsibility of setting the correct mtu value for the device falls back to the user. The size of the read buffer on
the file descriptor reader is set to the mtu value in the StartDevice method.

The FdNetDevice class currently supports three encapsulation modes, DIX for Ethernet II frames, LLC for 802.2
LLC/SNAP frames, and DIXPI for Ethernet II frames with an additional TAP PI header. This means that traffic
traversing the file descriptor is expected to be Ethernet II compatible. IEEE 802.1q (VLAN) tagging is not supported.
Attaching an FdNetDevice to a wireless interface is possible as long as the driver provides Ethernet II frames to the
socket API. Note that to associate a FdNetDevice to a wireless card in ad-hoc mode, the MAC address of the device
must be set to the real card MAC address, else any incoming traffic a fake MAC address will be discarded by the
driver.

As mentioned before, three helpers are provided with the fd-net-device module. Each individual helper (file descriptor
type) may have platform limitations. For instance, threading, real-time simulation mode, and the ability to create
TUN/TAP devices are prerequisites to using the provided helpers. Support for these modes can be found in the output
of the waf configure step,e.g.:

Threading Primitives : enabled
Real Time Simulator : enabled

92 Chapter 16. File Descriptor NetDevice

ns-3 Model Library, Release ns-3.26

Emulated Net Device : enabled
Tap Bridge : enabled

It is important to mention that while testing the FdNetDevice we have found an upper bound limit for TCP through-
put when using 1Gb Ethernet links of 60Mbps. This limit is most likely due to the processing power of the computers
involved in the tests.

16.2 Usage

The usage pattern for this type of device is similar to other net devices with helpers that install to node pointers or
node containers. When using the base FdNetDeviceHelper the user is responsible for creating and setting the file
descriptor by himself.

FdNetDeviceHelper f£fd;
NetDeviceContainer devices = fd.Install (nodes);

// file descriptor generation

device->SetFileDescriptor (£fd);

Most commonly a FdNetDevice will be used to interact with the host system. In these cases it is almost certain that
the user will want to run in real-time emulation mode, and to enable checksum computations. The typical program
statements are as follows:

GlobalValue: :Bind ("SimulatorImplementationType", StringValue ("ns3::RealtimeSimulatorImpl™));
GlobalValue: :Bind ("ChecksumEnabled", BooleanValue (true));

The easiest way to set up an experiment that interacts with a Linux host system is to user the Emu and Tap helpers.
Perhaps the most unusual part of these helper implementations relates to the requirement for executing some of the
code with super-user permissions. Rather than force the user to execute the entire simulation as root, we provide a
small “creator” program that runs as root and does any required high-permission sockets work. The easiest way to
set the right privileges for the “creator” programs, is by enabling the ——enable-sudo flag when performing wa f
configure.

We do a similar thing for both the Emu and the Tap devices. The high-level view is that the
CreateFileDescriptor method creates a local interprocess (Unix) socket, forks, and executes the small cre-
ation program. The small program, which runs as suid root, creates a raw socket and sends back the raw socket file
descriptor over the Unix socket that is passed to it as a parameter. The raw socket is passed as a control message
(sometimes called ancillary data) of type SCM_RIGHTS.

16.2.1 Helpers

EmuFdNetDeviceHelper

The EmuFdNetDeviceHelper creates a raw socket to an underlying physical device, and provides the socket descriptor
to the FdNetDevice. This allows the ns-3 simulation to read frames from and write frames to a network device on the
host.

The emulation helper permits to transparently integrate a simulated ns-3 node into a network composed of real nodes.

| ns-3 simulation | | |

16.2. Usage 93

ns-3 Model Library, Release ns-3.26

fo——— = + | Linux |
| ns—3 Node | | Network Stack |
| A + [o +
| | ns—-3 TCP | | | | TCP | |
| + | | - + |
[ns-3 IP [| | IP [
| Hmmm—mmm e + I +
| | FdNetDevice | | | | |
| | 10.1.1.1 | | | | |
T + |+ ETHERNET +
[raw socket [| | [
[| | e +
| ethO | | | ethO | |
- - o + = +——— o +
10.1.1.11 10.1.1.12
| |
S +

This helper replaces the functionality of the EmuNetDevice found in ns-3 prior to ns-3.17, by bringing this type of
device into the common framework of the FdNetDevice. The EmuNetDevice was deprecated in favor of this new
helper.

The device is configured to perform MAC spoofing to separate simulation network traffic from other network traffic
that may be flowing to and from the host.

One can use this helper in a testbed situation where the host on which the simulation is running has a specific interface
of interest which drives the testbed hardware. You would also need to set this specific interface into promiscuous mode
and provide an appropriate device name to the ns-3 simulation. Additionally, hardware offloading of segmentation and
checksums should be disabled.

The helper only works if the underlying interface is up and in promiscuous mode. Packets will be sent out over the
device, but we use MAC spoofing. The MAC addresses will be generated (by default) using the Organizationally
Unique Identifier (OUI) 00:00:00 as a base. This vendor code is not assigned to any organization and so should not
conflict with any real hardware.

It is always up to the user to determine that using these MAC addresses is okay on your network and won’t conflict
with anything else (including another simulation using such devices) on your network. If you are using the emulated
FdNetDevice configuration in separate simulations, you must consider global MAC address assignment issues and
ensure that MAC addresses are unique across all simulations. The emulated net device respects the MAC address
provided in the Address attribute so you can do this manually. For larger simulations, you may want to set the OUI
in the MAC address allocation function.

Before invoking the Install method, the correct device name must be configured on the helper using the
SetDeviceName method. The device name is required to identify which physical device should be used to open the
raw socket.

EmuFdNetDeviceHelper emu;
emu.SetDeviceName (deviceName) ;

NetDeviceContainer devices = emu.Install (node);
Ptr<NetDevice> device = devices.Get (0);
device->SetAttribute ("Address", Mac48AddressValue (Mac48Address::Allocate ()));

TapFdNetDeviceHelper

A Tap device is a special type of Linux device for which one end of the device appears to the kernel as a virtual
net_device, and the other end is provided as a file descriptor to user-space. This file descriptor can be passed to the

94 Chapter 16. File Descriptor NetDevice

ns-3 Model Library, Release ns-3.26

FdNetDevice. Packets forwarded to the TAP device by the kernel will show up in the FdNetDevice in ns-3.

Users should note that this usage of TAP devices is different than that provided by the TapBridge NetDevice found in
src/tap-bridge. The model in this helper is as follows:

R +
| host |
e +
| ns—3 simulation | |
fo + |
| ns-3 Node | |
e + |
| | ns—3 TCP | | |
e + |
| | ns-3 IP | | |
e + |
| | FdNetDevice | | |
| ————— +—— fo————— +
| | TAP | | ethO | |
| o + R +
| 192.168.0.1 |
el [+

———————————— (Internet) —-———-

In the above, the configuration requires that the host be able to forward traffic generated by the simulation to the
Internet.

The model in TapBridge (in another module) is as follows:

fo———— +

| Linux |

| host | Fo———————— +

| —m [\ ghost |

| apps | | node |

[=== | | - |

| stack | \ IP | Fomm = +

| —————— | | stack | | node ‘

| TAP | |==========| [‘

| device | <-———-- IPC —————- > tap | | IP \

fom + | bridge | | stack |
| - | | === \
| ns-3 | | ns—-3 |
| net | | net \
| device | | device |
o + o +

I I

B ittt e +
| ns—-3 channel |
e +

In the above, packets instead traverse ns-3 NetDevices and Channels.

The usage pattern for this example is that the user sets the MAC address and either (or both) the IPv4 and IPv6
addresses and masks on the device, and the PI header if needed. For example:

TapFdNetDeviceHelper helper;
helper.SetDeviceName (deviceName) ;
helper.SetModePi (modePi);
helper.SetTapIpv4Address (taplp);

16.2. Usage 95

ns-3 Model Library, Release ns-3.26

helper.SetTapIpv4Mask (tapMask);

helper.Install (node);

PlanetLabFdNetDeviceHelper

PlanetLab is a world wide distributed network testbed composed of nodes connected to the Internet. Running ns-3
simulations in PlanetLab nodes using the PlanetLabFdNetDeviceHelper allows to send simulated traffic generated by
ns-3 directly to the Internet. This setup can be useful to validate ns-3 Internet protocols or other future protocols
implemented in ns-3.

To run experiments using PlanetLab nodes it is required to have a PlanetLab account. Only members of PlanetLab part-
ner institutions can obtain such accounts (for more information visit http://www.planet-lab.org/ or http://www.planet-
lab.eu). Once the account is obtained, a PlanetLab slice must be requested in order to conduct experiments. A slice
represents an experiment unit related to a group of PlanetLab users, and can be associated to virtual machines in dif-
ferent PlanetLab nodes. Slices can also be customized by adding configuration tags to it (this is done by PlanetLab
administrators).

The PlanetLabFdNetDeviceHelper creates TAP devices on PlanetLab nodes using specific PlanetLab mechanisms (i.e.
the vsys system), and associates the TAP device to a FdNetDevice in ns-3. The functionality provided by this helper
is similar to that provided by the FdTapNetDeviceHelper, except that the underlying mechanisms to create the TAP
device are different.

e +
| PlanetLab host |
o +
| ns—-3 simulation | |
e + |
| ns-3 Node | |
e + |
| | ns—3 TCP | | |
e + |
| | ns-3 IP | | |
/f + |
| | FdNetDevice | | |
| == ——— +——+ - +
| | TAP | | ethO | |
| R + fo———— +
| 192.168.0.1 |

777777777777 (Internet) —--—-———

In order to be able to assign private [Pv4 addresses to the TAP devices, account holders must request the vsys_vnet tag
to be added to their slice by PlanetLab administrators. The vsys_vnet tag is associated to private network segment and
only addresses from this segment can be used in experiments.

The syntax used to create a TAP device with this helper is similar to that used for the previously described helpers:

PlanetLabFdNetDeviceHelper helper;
helper.SetTapIpAddress (taplp);
helper.SetTapMask (tapMask);

helper.Install (node);

PlanetLab nodes have a Fedora based distribution, so ns-3 can be installed following the instructions for ns-3 Linux
installation.

96 Chapter 16. File Descriptor NetDevice

http://www.planet-lab.org/
http://www.planet-lab.eu
http://www.planet-lab.eu

ns-3 Model Library, Release ns-3.26

16.2.2 Attributes

The FdNetDevice provides a number of attributes:
e Address: The MAC address of the device
e Start: The simulation start time to spin up the device thread
* Stop: The simulation start time to stop the device thread
* EncapsulationMode: Link-layer encapsulation format
* RxQueueSize: The buffer size of the read queue on the file descriptor thread (default of 1000 packets)

Start and Stop do not normally need to be specified unless the user wants to limit the time during which this device
is active. Address needs to be set to some kind of unique MAC address if the simulation will be interacting with
other real devices somehow using real MAC addresses. Typical code:

device->SetAttribute ("Address", Mac48AddressValue (Mac48Address::Allocate ()));

16.2.3 Output

Ascii and PCAP tracing is provided similar to the other ns-3 NetDevice types, through the helpers, such as (e.g.):

:: EmuFdNetDeviceHelper emu; NetDeviceContainer devices = emu.Install (node); ... emu.EnablePcap (“emu-ping”,
device, true);

The standard set of Mac-level NetDevice trace sources is provided.
* MaxTx: Trace source triggered when ns-3 provides the device with a new frame to send
* MaxTxDrop: Trace source if write to file descriptor fails
* MaxPromiscRx: Whenever any valid Mac frame is received
* MaxRx: Whenever a valid Mac frame is received for this device
* Sniffer: Non-promiscuous packet sniffer

e PromiscSniffer: Promiscuous packet sniffer (for tcpdump-like traces)

16.2.4 Examples

Several examples are provided:

e dummy-network.cc: This simple example creates two nodes and interconnects them with a Unix pipe by
passing the file descriptors from the socketpair into the FdNetDevice objects of the respective nodes.

* realtime—dummy-network.cc: Same as dummy-network.cc but uses the real time simulator implement-
nation instead of the default one.

e fd2fd-onoff.cc: This example is aimed at measuring the throughput of the FdNetDevice in a pure simu-
lation. For this purpose two FdNetDevices, attached to different nodes but in a same simulation, are connected
using a socket pair. TCP traffic is sent at a saturating data rate.

e fd-emu-onoff.cc: This example is aimed at measuring the throughput of the FdNetDevice when using the
EmuFdNetDeviceHelper to attach the simulated device to a real device in the host machine. This is achieved by
saturating the channel with TCP traffic.

e fd-emu-ping.cc: This example uses the EmuFdNetDeviceHelper to send ICMP traffic over a real channel.

16.2. Usage 97

ns-3 Model Library, Release ns-3.26

e fd-emu—udp—-echo.cc: This example uses the EmuFdNetDeviceHelper to send UDP traffic over a real

channel.

* fd-planetlab-ping.cc: This example shows how to set up an experiment to send ICMP traffic from a
PlanetLab node to the Internet.

e fd-tap-ping.cc: This example uses the TapFdNetDeviceHelper to send ICMP traffic over a real channel.

98 Chapter 16. File Descriptor NetDevice

CHAPTER
SEVENTEEN

FLOW MONITOR

17.1 Model Description

The source code for the new module lives in the directory src/flow-monitor.

The Flow Monitor module goal is to provide a flexible system to measure the performance of network protocols. The
module uses probes, installed in network nodes, to track the packets exchanged by the nodes, and it will measure a
number of parameters. Packets are divided according to the flow they belong to, where each flow is defined according
to the probe’s characteristics (e.g., for IP, a flow is defined as the packets with the same {protocol, source (IP, port),
destination (IP, port)} tuple.

The statistics are collected for each flow can be exported in XML format. Moreover, the user can access the probes
directly to request specific stats about each flow.

17.1.1 Design

Flow Monitor module is designed in a modular way. It can be extended by subclassing ns3: :FlowProbe and
ns3::FlowClassifier.

The full module design is described in [FlowMonitor]

17.1.2 Scope and Limitations

At the moment, probes and classifiers are available for [Pv4 and IPv6.
Each probe will classify packets in four points:

* When a packet is sent (SendOutgoing IPv[4,6] traces)

* When a packet is forwarded (UnicastForward IPv[4,6] traces)

* When a packet is received (LocalDeliver IPv[4,6] traces)

* When a packet is dropped (Drop IPv[4,6] traces)

Since the packets are tracked at IP level, any retransmission caused by L4 protocols (e.g., TCP) will be seen by the
probe as a new packet.

A Tag will be added to the packet (ns3::Ipv[4, 6]FlowProbeTag). The tag will carry basic packet’s data,
useful for the packet’s classification.

It must be underlined that only L4 (TCP, UDP) packets are, so far, classified. Moreover, only unicast packets will be
classified. These limitations may be removed in the future.

The data collected for each flow are:

99

ns-3 Model Library, Release ns-3.26

* timeFirstTxPacket: when the first packet in the flow was transmitted;
 timeLastTxPacket: when the last packet in the flow was transmitted;

* timeFirstRxPacket: when the first packet in the flow was received by an end node;
« timeLastRxPacket: when the last packet in the flow was received;

¢ delaySum: the sum of all end-to-end delays for all received packets of the flow;

e jitterSum: the sum of all end-to-end delay jitter (delay variation) values for all received packets of the flow, as
defined in RFC 3393;

* txBytes, txPackets: total number of transmitted bytes / packets for the flow;

* rxBytes, rxPackets: total number of received bytes / packets for the flow;

* lostPackets: total number of packets that are assumed to be lost (not reported over 10 seconds);
* timesForwarded: the number of times a packet has been reportedly forwarded,;

* delayHistogram, jitterHistogram, packetSizeHistogram: histogram versions for the delay, jitter, and packet sizes,
respectively;

* packetsDropped, bytesDropped: the number of lost packets and bytes, divided according to the loss reason code
(defined in the probe).

It is worth pointing out that the probes measure the packet bytes including IP headers. The L2 headers are not included
in the measure.

These stats will be written in XML form upon request (see the Usage section).

17.1.3 References

17.2 Usage

The module usage is extremely simple. The helper will take care of about everything.
The typical use is:

// Flow monitor

Ptr<FlowMonitor> flowMonitor;
FlowMonitorHelper flowHelper;
flowMonitor = flowHelper.InstallAll();

Simulator::Stop (Seconds (stop_time));
Simulator::Run ();

flowMonitor->SerializeToXmlFile ("NameOfFile.xml", true, true);

the SerializeToXmlFile () function 2nd and 3rd parameters are used respectively to activate/deactivate the
histograms and the per-probe detailed stats.

Other possible alternatives can be found in the Doxygen documentation.

17.2.1 Helpers

The helper API follows the pattern usage of normal helpers. Through the helper you can install the monitor in the
nodes, set the monitor attributes, and print the statistics.

One important thing is: the ns3: :FlowMonitorHelper must be instantiated only once in the main.

100 Chapter 17. Flow Monitor

http://tools.ietf.org/html/rfc3393.html

ns-3 Model Library, Release ns-3.26

17.2.2 Attributes

The module provides the following attributes in ns3: :FlowMonitor:
¢ MaxPerHopDelay (Time, default 10s): The maximum per-hop delay that should be considered;
* StartTime (Time, default Os): The time when the monitoring starts;
e DelayBinWidth (double, default 0.001): The width used in the delay histogram;
* JitterBinWidth (double, default 0.001): The width used in the jitter histogram;
* PacketSizeBinWidth (double, default 20.0): The width used in the packetSize histogram;
* FlowInterruptionsBinWidth (double, default 0.25): The width used in the flowInterruptions histogram;

* FlowInterruptionsMinTime (double, default 0.5): The minimum inter-arrival time that is considered a flow
interruption.

17.2.3 Output

The main model output is an XML formatted report about flow statistics. An example is:

<?xml version="1.0" 72>
<FlowMonitor>
<FlowStats>
<Flow flowId="1" timeFirstTxPacket="+0.0ns" timeFirstRxPacket="+20067198.0ns" timeLastTxPacket="+2
</Flow>
</FlowStats>
<Ipv4FlowClassifier>
<Flow flowId="1" sourceAddress="10.1.3.1" destinationAddress="10.1.2.2" protocol="6" sourcePort="4
</Ipv4FlowClassifier>
<Ipv6FlowClassifier>
</Ipv6FlowClassifier>
<FlowProbes>
<FlowProbe index="0">
<FlowStats flowId="1" packets="3735" bytes="2149400" delayFromFirstProbeSum="+0.0ns" >
</FlowStats>
</FlowProbe>
<FlowProbe index="2">
<FlowStats flowId="1" packets="7466" bytes="2224020" delayFromFirstProbeSum="+199415389258.0ns"
</FlowStats>
</FlowProbe>
<FlowProbe index="4">
<FlowStats flowId="1" packets="3735" bytes="2149400" delayFromFirstProbeSum="+138731526300.0ns"
</FlowStats>
</FlowProbe>
</FlowProbes>
</FlowMonitor>

The output was generated by a TCP flow from 10.1.3.1 to 10.1.2.2.

It is worth noticing that the index 2 probe is reporting more packets and more bytes than the other probes. That’s a
perfectly normal behaviour, as packets are fragmented at IP level in that node.

It should also be observed that the receiving node’s probe (index 4) doesn’t count the fragments, as the reassembly is
done before the probing point.

17.2. Usage 101

ns-3 Model Library, Release ns-3.26

17.2.4 Examples

The examples are located in src/flow-monitor/examples.

Moreover, the following examples use the flow-monitor module:

examples/matrix-topology/matrix-topology.cc
examples/routing/manet-routing-compare.cc
examples/routing/simple-global-routing.cc
examples/tcp/tcp-variants-comparison.cc
examples/wireless/multirate.cc

examples/wireless/wifi-hidden-terminal.cc

17.2.5 Troubleshooting

Do not define more than one ns3: :FlowMonitorHelper in the simulation.

17.3 Validation

The paper in the references contains a full description of the module validation against a test network.

Tests are provided to ensure the Histogram correct functionality.

102

Chapter 17. Flow Monitor

CHAPTER
EIGHTEEN

INTERNET MODELS (IP, TCP, ROUTING, UDP, INTERNET
APPLICATIONS)

18.1 Internet Stack

18.1.1 Internet stack aggregation

A bare class Node is not very useful as-is; other objects must be aggregated to it to provide useful node functionality.

The ns-3 source code directory src/internet provides implementation of TCP/IPv4- and IPv6-related compo-
nents. These include IPv4, ARP, UDP, TCP, IPv6, Neighbor Discovery, and other related protocols.

Internet Nodes are not subclasses of class Node; they are simply Nodes that have had a bunch of IP-related objects ag-
gregated to them. They can be put together by hand, or via a helper function InternetStackHelper: :Install
() which does the following to all nodes passed in as arguments:

void
InternetStackHelper::Install (Ptr<Node> node) const
{
if (m_ipv4Enabled)
{
/* IPv4 stack =/
if (node->GetObject<Ipv4> () != 0)
{
NS_FATAL_ERROR ("InternetStackHelper::Install (): Aggregating "
"an InternetStack to a node with an existing Ipv4 object");

return;

CreateAndAggregateObjectFromTypeId (node, "ns3::ArpL3Protocol");
CreateAndAggregateObjectFromTypeId (node, "ns3::Ipv4L3Protocol");
CreateAndAggregateObjectFromTypeId (node, "ns3::Icmpv4L4Protocol");
// Set routing

Ptr<Ipv4> ipv4 = node->GetObject<Ipv4d> ();

Ptr<Ipv4RoutingProtocol> ipv4Routing = m_routing->Create (node);
ipv4->SetRoutingProtocol (ipv4Routing);

if (m_ipv6Enabled)
{
/% IPv6 stack */
if (node->GetObject<Ipvée> () != 0)
{
NS_FATAL_ERROR ("InternetStackHelper::Install (): Aggregating
"an InternetStack to a node with an existing Ipvé6 object");

n

103

ns-3 Model Library, Release ns-3.26

return;

CreateAndAggregateObjectFromTypeId (node, "ns3::Ipv6L3Protocol");
CreateAndAggregateObjectFromTypeld (node, "ns3::Icmpv6L4Protocol");
// Set routing

Ptr<Ipv6> ipv6 = node->GetObject<Ipv6> ();

Ptr<Ipv6RoutingProtocol> ipv6Routing = m_routingv6->Create (node);
ipv6->SetRoutingProtocol (ipv6Routing);

/% register IPv6é extensions and options #/
ipv6->RegisterExtensions ();
ipv6->RegisterOptions ();

if (m_ipv4Enabled || m_ipv6Enabled)
{
/* UDP and TCP stacks x/
CreateAndAggregateObjectFromTypeId (node, "ns3::UdpL4Protocol");
node->AggregateObject (m_tcpFactory.Create<Object> ());
Ptr<PacketSocketFactory> factory = CreateObject<PacketSocketFactory> ();
node->AggregateObject (factory);

Where multiple implementations exist in ns-3 (TCP, IP routing), these objects are added by a factory object (TCP) or
by a routing helper (m_routing).

Note that the routing protocol is configured and set outside this function. By default, the following protocols are added:

void InternetStackHelper::Initialize ()

{
SetTcp ("ns3::TcpL4Protocol");
Ipv4StaticRoutingHelper staticRouting;
Ipv4GlobalRoutingHelper globalRouting;
Ipv4ListRoutingHelper listRouting;
Ipv6ListRoutingHelper listRoutingvé;
Ipv6StaticRoutingHelper staticRoutingv6;
listRouting.Add (staticRouting, O0);
listRouting.Add (globalRouting, -10);
listRoutingv6.Add (staticRoutingvé, 0);
SetRoutingHelper (listRouting);
SetRoutingHelper (listRoutingve6);

By default, IPv4 and IPv6 are enabled.

Internet Node structure

An IP-capable Node (an ns-3 Node augmented by aggregation to have one or more IP stacks) has the following internal
structure.

Layer-3 protocols

At the lowest layer, sitting above the NetDevices, are the “layer 3” protocols, including IPv4, IPv6, ARP and so on.
The class Tpv4L3Protocol is an implementation class whose public interface is typically class Ipv4, but the
Ipv4L3Protocol public API is also used internally at present.

104 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

ns-3 Model Library, Release ns-3.26

In class Ipv4L3Protocol, one method described below is Receive ():

/% *
* Lower layer calls this method after calling L3Demux::Lookup
* The ARP subclass needs to know from which NetDevice this
* packet is coming to:

* - implement a per—-NetDevice ARP cache
* — send back arp replies on the right device
*/

void Receive (Ptr<NetDevice> device, Ptr<const Packet> p, uintl6é_t protocol,
const Address &from, const Address &to, NetDevice::PacketType packetType);

First, note that the Receive () function has a matching signature to the ReceiveCallback in the class Node. This
function pointer is inserted into the Node’s protocol handler when AddInterface () is called. The actual regis-
tration is done with a statement such as follows:

RegisterProtocolHandler (MakeCallback (&Ipv4Protocol::Receive, ipv4),
Ipv4L3Protocol: :PROT_NUMBER, O0);

The Ipv4L3Protocol object is aggregated to the Node; there is only one such Ipv4L3Protocol object. Higher-layer
protocols that have a packet to send down to the Ipv4L3Protocol object can call GetObject<Ipv4L3Protocol>
() to obtain a pointer, as follows:

Ptr<Ipv4L3Protocol> ipvi4
if (ipv4 != 0)
{

m_node—->GetObject<Ipv4L3Protocol> ();

ipv4->Send (packet, saddr, daddr, PROT_NUMBER);
}

This class nicely demonstrates two techniques we exploit in ns-3 to bind objects together: callbacks, and object
aggregation.

Once IPv4 routing has determined that a packet is for the local node, it forwards it up the stack. This is done with the
following function:

void
Ipv4L3Protocol: :LocalDeliver (Ptr<const Packet> packet, Ipv4Header consté&ip, uint32_t iif)

The first step is to find the right Ipv4L4Protocol object, based on IP protocol number. For instance, TCP is reg-
istered in the demux as protocol number 6. Finally, the Receive () function on the Ipv4L4Protocol (such as
TcpL4Protocol: :Receive is called.

We have not yet introduced the class Ipv4Interface. Basically, each NetDevice is paired with an IPv4 representation
of such device. In Linux, this class Ipv4 Interface roughly corresponds to the struct in_device;the main
purpose is to provide address-family specific information (addresses) about an interface.

All the classes have appropriate traces in order to track sent, received and lost packets. The users is encouraged to
use them so to find out if (and where) a packet is dropped. A common mistake is to forget the effects of local queues
when sending packets, e.g., the ARP queue. This can be particularly puzzling when sending jumbo packets or packet
bursts using UDP. The ARP cache pending queue is limited (3 datagrams) and IP packets might be fragmented, easily
overfilling the ARP cache queue size. In those cases it is useful to increase the ARP cache pending size to a proper
value, e.g.:

Config: :SetDefault ("ns3::ArpCache::PendingQueueSize", UintegerValue (MAX_BURST_SIZE/L2MTUx3)) ;

The IPv6 implementation follows a similar architecture. Dual-stacked nodes (one with support for both IPv4 and IPv6)
will allow an IPv6 socket to receive IPv4 connections as a standard dual-stacked system does. A socket bound and
listening to an IPv6 endpoint can receive an IPv4 connection and will return the remote address as an IPv4-mapped
address. Support for the IPV6_V60ONLY socket option does not currently exist.

18.1. Internet Stack 105

ns-3 Model Library, Release ns-3.26

Layer-4 protocols and sockets

We next describe how the transport protocols, sockets, and applications tie together. In summary, each transport
protocol implementation is a socket factory. An application that needs a new socket

For instance, to create a UDP socket, an application would use a code snippet such as the following:

Ptr<Udp> udpSocketFactory = GetNode ()->GetObject<Udp> ();
Ptr<Socket> m_socket = socketFactory->CreateSocket ();
m_socket->Bind (m_local_address);

The above will query the node to get a pointer to its UDP socket factory, will create one such socket, and will use the
socket with an API similar to the C-based sockets API, such as Connect () and Send (). The address passed to
the Bind (), Connect (),or Send () functions may be a Ipv4Address, Ipv6Address, or Address. If
a Address is passed in and contains anything other than a Ipv4Address or Ipv6Address, these functions will
return an error. The Bind (void) and Bind6 (void) functions bind to “0.0.0.0” and ::” respectively.

The socket can also be bound to a specific NetDevice though the BindToNetDevice (Ptr<NetDevice>
netdevice) function. BindToNetDevice (Ptr<NetDevice> netdevice) will bind the socket to
“0.0.0.0” and ::” (equivalent to calling Bind () and Bind6 (), unless the socket has been already bound to
a specific address. Summarizing, the correct sequence is:

Ptr<Udp> udpSocketFactory = GetNode ()->GetObject<Udp> ();
Ptr<Socket> m_socket = socketFactory->CreateSocket ();
m_socket->BindToNetDevice (n_netDevice);

or:
Ptr<Udp> udpSocketFactory = GetNode ()->GetObject<Udp> ();
Ptr<Socket> m_socket = socketFactory->CreateSocket ();

m_socket->Bind (m_local_address);
m_socket->BindToNetDevice (n_netDevice);

The following raises an error:

Ptr<Udp> udpSocketFactory = GetNode ()->GetObject<Udp> ();
Ptr<Socket> m_socket = socketFactory->CreateSocket ();
m_socket->BindToNetDevice (n_netDevice);

m_socket->Bind (m_local_address);

See the chapter on ns-3 sockets for more information.

We have described so far a socket factory (e.g. class Udp) and a socket, which may be specialized (e.g., class
UdpSocket). There are a few more key objects that relate to the specialized task of demultiplexing a packet to one
or more receiving sockets. The key object in this task is class Ipv4EndPointDemux. This demultiplexer stores
objects of class Ipv4EndPoint. This class holds the addressing/port tuple (local port, local address, destination port,
destination address) associated with the socket, and a receive callback. This receive callback has a receive function
registered by the socket. The Lookup () function to Ipv4EndPointDemux returns a list of Ipv4EndPoint objects
(there may be a list since more than one socket may match the packet). The layer-4 protocol copies the packet to each
Ipv4EndPoint and calls its ForwardUp () method, which then calls the Receive () function registered by the
socket.

An issue that arises when working with the sockets API on real systems is the need to manage the reading from a
socket, using some type of I/O (e.g., blocking, non-blocking, asynchronous, ...). ns-3 implements an asynchronous
model for socket I/O; the application sets a callback to be notified of received data ready to be read, and the callback
is invoked by the transport protocol when data is available. This callback is specified as follows:

106 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

ns-3 Model Library, Release ns-3.26

void Socket::SetRecvCallback (Callback<wvoid, Ptr<Socket>,
Ptr<Packet>,
const Address&> receivedData);

The data being received is conveyed in the Packet data buffer. An example usage is in class PacketSink:

m_socket->SetRecvCallback (MakeCallback (&PacketSink::HandleRead, this));

To summarize, internally, the UDP implementation is organized as follows:
* aUdpImpl class that implements the UDP socket factory functionality
* aUdpL4Protocol class that implements the protocol logic that is socket-independent
* aUdpSocketImpl class that implements socket-specific aspects of UDP

* a class called Ipv4EndPoint that stores the addressing tuple (local port, local address, destination port,
destination address) associated with the socket, and a receive callback for the socket.

IP-capable node interfaces

Many of the implementation details, or internal objects themselves, of IP-capable Node objects are not exposed at the
simulator public API. This allows for different implementations; for instance, replacing the native ns-3 models with
ported TCP/IP stack code.

The C++ public APIs of all of these objects is found in the src/network directory, including principally:
* address.h
e socket.h
* node.h
* packet.h

These are typically base class objects that implement the default values used in the implementation, implement access
methods to get/set state variables, host attributes, and implement publicly-available methods exposed to clients such
as CreateSocket.

Example path of a packet

These two figures show an example stack trace of how packets flow through the Internet Node objects.

18.2 IPv4

18.2.1 Tracing in the IPv4 Stack

The internet stack provides a number of trace sources in its various protocol implementations. These trace sources can
be hooked using your own custom trace code, or you can use our helper functions in some cases to arrange for tracing
to be enabled.

18.2. IPv4 107

ns-3 Model Library, Release ns-3.26

Application
::RouteOutput ()
.

i
Socket::Send ()

/
4
UdpSocketimpl Ipv4RoutingProtgcol

::Send ()

UdpL4Protocol

(m_downTarget() callback)

Ipv4L3Protocol

:Send ()

Step in packet sending process

1. The Application has previously created a socket (here, a UDPSocket)
It calls Socket::Send(). Either real data or dummy data is passed at the API.

2. Socket::Send forwards to UdpSocketimpl::DoSend() and later to

UdpSocketimpl::DoSendTo().

These functions set the proper source and destination addresses, handle socket calls.

such as bind() and connect() and then the UdpL4Protocol::Send() function is called. Asina

real implementation, the socket must query the Ipv4 routing system to find the right source address
to match the destination address.

3. UdpL4Protocol is where the socket-independent

protocol logic for UDP is implemented. The Send() method adds the

UDP header, initializes the checksum, and sends the packet to the Ipv4 layer.

The packet is not sent directly to the Ipv4 layer but via a callback called m_downTarget.

In this example, the downtarget is Ipv4L3Protocol, but it could be some other shim layer in general.

4. Ipv4L3Protocol adds the IP header and sends the packet to an
appropriate Ipv4interface instance, based on the route that was passed
down from the UDP layer. In this example, the device is one that supports Arp.

5. Ipvéinterface looks up the MAC address if Arp is supported on this
NetDevice technology, and if there is a cache hit, it sends the packet to the NetDevice, or
else it first initiates an Arp request and waits for a reply.

Figure 18.1: Send path of a packet.

Application

(m_rxCallback)->Recv()

UdpSocketimpl

(m_rxCallback)->ForwardUp()

Ipv4EndPoint

::ForwardUp ()

_.-=150kup()
UdpL4Protocol]””

:Receive ()
::LocalDeliver

-

Ipv4L3Protocol

::Routelnput()

gemmesmecsmcsmaas

S
g’

Step in packet receiving process
7. UdpSocketimpl itself calls the Recv() callback set by the Application
when data is ready to be read. The application can then call the socket
Recv() or RecvFrom() methods to read data (or dummy data) from the socket.

6. Ipv4EndPoint has a callback where a Socket object is able to register
a receive method. Here, this callback calls to UdpSocketimpl::ForwardUp()

;

N))
\Jpv4EndPomtD'§mux 5. UdpL4Protocol is where the socket-independent protocol logic for UDP

is implemented. The Receive() method removes the UDP header and looks
up the per-flow context state, which is one or more Ipv4EndPoint objects
stored in an Ipv4EndPointDemux (indexed by src addr, src port,

dest addr, dest port). It then calls Ipv4EndPoint::ForwardUp() when done.

4. Ipv4L3Protocol removes the IP header, checks checksum (if implemented),
and passes the packet to the Ipv4RoutingProtocol registered with Ipv4L3Protocol.

Ipv4RoutingProtdcol The routing protocol in this case decides the packet is for the local host, so it

calls back to Ipv4L3Protocol::LocalDeliver(). This function looks up the protocol
(in this case UDP) and calls the Receive () method for that protocol.

::Receive() R . 3. Node::ReceiveFromDevice stores a set of callbacks (protocol handlers)
. % that are looked up based on protocol number and device. In this case,
1 Node::ProtocolHandlers the lookup will result in an Ipv4L3Protocol::Receive() being called.
. .

.-*":m_receiveCallback

NetDevice

2. This is typically the Node::ReceiveFromDevice() function

1. NetDevice calls the function registered at Node::m_receiveCallback

Figure 18.2: Receive path of a packet.

108

Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

ns-3 Model Library, Release ns-3.26

Tracing in ARP

ARP provides two trace hooks, one in the cache, and one in the layer three protocol. The trace accessor in the cache
is given the name “Drop.” When a packet is transmitted over an interface that requires ARP, it is first queued for
transmission in the ARP cache until the required MAC address is resolved. There are a number of retries that may be
done trying to get the address, and if the maximum retry count is exceeded the packet in question is dropped by ARP.
The single trace hook in the ARP cache is called,

* If an outbound packet is placed in the ARP cache pending address resolution and no resolution can be made
within the maximum retry count, the outbound packet is dropped and this trace is fired;

A second trace hook lives in the ARP L3 protocol (also named “Drop”) and may be called for a number of reasons.

 If an ARP reply is received for an entry that is not waiting for a reply, the ARP reply packet is dropped and this
trace is fired;

 If an ARP reply is received for a non-existant entry, the ARP reply packet is dropped and this trace is fired;

 If an ARP cache entry is in the DEAD state (has timed out) and an ARP reply packet is received, the reply
packet is dropped and this trace is fired.

» Each ARP cache entry has a queue of pending packets. If the size of the queue is exceeded, the outbound packet
is dropped and this trace is fired.

Tracing in IPv4
The IPv4 layer three protocol provides three trace hooks. These are the “Tx” (ns3::Ipv4L3Protocol::m_txTrace), “Rx”
(ns3::Ipv4L3Protocol::m_rxTrace) and “Drop” (ns3::Ipv4L3Protocol::m_dropTrace) trace sources.

The “Tx” trace is fired in a number of situations, all of which indicate that a given packet is about to be sent down to
a given ns3::Ipv4Interface.

* In the case of a packet destined for the broadcast address, the Ipv4InterfaceList is iterated and for every interface
that is up and can fragment the packet or has a large enough MTU to transmit the packet, the trace is hit. See
ns3::Ipv4L3Protocol::Send.

* In the case of a packet that needs routing, the “Tx” trace may be fired just before a packet is sent to the interface
appropriate to the default gateway. See ns3::Ipv4L3Protocol::SendRealOut.

» Also in the case of a packet that needs routing, the “Tx” trace may be fired just before a packet is sent to the
outgoing interface appropriate to the discovered route. See ns3::Ipv4L3Protocol::SendRealOut.

The “Rx” trace is fired when a packet is passed from the device up to the ns3::Ipv4L3Protocol::Receive function.

* In the receive function, the Ipv4InterfaceList is iterated, and if the Ipv4Interface corresponding to the receiving
device is fount to be in the UP state, the trace is fired.

The “Drop” trace is fired in any case where the packet is dropped (in both the transmit and receive paths).

¢ In the ns3::Ipv4Interface::Receive function, the packet is dropped and the drop trace is hit if the interface corre-
sponding to the receiving device is in the DOWN state.

 Also in the ns3::Ipv4Interface::Receive function, the packet is dropped and the drop trace is hit if the checksum
is found to be bad.

¢ In ns3::Ipv4L3Protocol::Send, an outgoing packet bound for the broadcast address is dropped and the “Drop”
trace is fired if the “don’t fragment” bit is set and fragmentation is available and required.

* Also in ns3::Ipv4L3Protocol::Send, an outgoing packet destined for the broadcast address is dropped and the
“Drop” trace is hit if fragmentation is not available and is required (MTU < packet size).

18.2. IPv4 109

ns-3 Model Library, Release ns-3.26

¢ In the case of a broadcast address, an outgoing packet is cloned for each outgoing interface. If any of the
interfaces is in the DOWN state, the “Drop” trace event fires with a reference to the copied packet.

* In the case of a packet requiring a route, an outgoing packet is dropped and the “Drop” trace event fires if no
route to the remote host is found.

¢ In ns3::Ipv4L3Protocol::SendRealOut, an outgoing packet being routed is dropped and the “Drop” trace is fired
if the “don’t fragment” bit is set and fragmentation is available and required.

* Also in ns3::Ipv4L3Protocol::SendRealOut, an outgoing packet being routed is dropped and the “Drop” trace is
hit if fragmentation is not available and is required (MTU < packet size).

* An outgoing packet being routed is dropped and the “Drop” trace event fires if the required Ipv4Interface is in
the DOWN state.

* If a packet is being forwarded, and the TTL is exceeded (see ns3::Ipv4L3Protocol::DoForward), the packet is
dropped and the “Drop” trace event is fired.

18.3 IPv6

This chapter describes the ns-3 IPv6 model capabilities and limitations along with its usage and examples.

18.3.1 IPv6 model description

The IPv6 model is loosely patterned after the Linux implementation; the implementation is not complete as some
features of IPv6 are not of much interest to simulation studies, and some features of IPv6 are simply not modeled yet
in ns-3.

The base class Ipv6 defines a generic API, while the class Ipv6L3Protocol is the actual class implementing the
protocol. The actual classes used by the IPv6 stack are located mainly in the directory src/internet.

The implementation of IPv6 is contained in the following files:

src/internet/model/icmpv6-header. {cc,h}
src/internet/model/icmpv6-14-protocol. {cc,h}
src/internet/model/ipvé6. {cc, h}
src/internet/model/ipvé6-address—generator.{cc,h}
src/internet/model/ipvé—autoconfigured-prefix.{cc,h}
src/internet/model/ipv6—end-point.{cc,h}
src/internet/model/ipv6-end-point-demux. {cc,h}
src/internet/model/ipv6—extension. {cc, h}
src/internet/model/ipv6—extension—-demux. {cc,h}
src/internet/model/ipvé6-extension-header. {cc,h}
src/internet/model/ipvé6-header. {cc, h}
src/internet/model/ipvé6—-interface. {cc,h}
src/internet/model/ipvé6—-interface-address.{cc,h}
src/internet/model/ipv6-13-protocol. {cc,h}
src/internet/model/ipvé-list-routing.{cc,h}
src/internet/model/ipv6-option. {cc,h}
src/internet/model/ipv6-option—-demux. {cc, h}
src/internet/model/ipv6-option—-header. {cc,h}
src/internet/model/ipv6-packet—-info-tag.{cc,h}
src/internet/model/ipv6-pmtu-cache. {cc,h}
src/internet/model/ipv6-raw-socket—-factory.{cc,h}
src/internet/model/ipv6-raw-socket—-factory—-impl.{cc,h}
src/internet/model/ipv6-raw—socket—impl. {cc, h}
src/internet/model/ipvé6-route. {cc,h}

110 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

ns-3 Model Library, Release ns-3.26

src/internet/model/ipvé6-routing-protocol.{cc,h}
src/internet/model/ipv6-routing-table—-entry. {cc,h}
src/internet/model/ipv6-static-routing. {cc,h}
src/internet/model/ndisc—-cache. {cc,h}
src/network/utils/inet6-socket-address. {cc, h}
src/network/utils/ipvé6—-address.{cc,h}

Also some helpers are involved with IPv6:

src/internet/helper/internet-stack-helper.{cc, h}
src/internet/helper/ipv6-address-helper.{cc, h}
src/internet/helper/ipv6-interface—-container. {cc,h}
src/internet/helper/ipv6-list-routing-helper. {cc, h}
src/internet/helper/ipv6-routing-helper.{cc, h}
src/internet/helper/ipv6-static-routing-helper. {cc,h}

The model files can be roughly divided into:
* protocol models (e.g., ipv6, ipv6-13-protocol, icmpv6-14-protocol, etc.)
* routing models (i.e., anything with ‘routing’ in its name)
* sockets and interfaces (e.g., ipv6-raw-socket, ipv6-interface, ipv6-end-point, etc.)
¢ address-related things
* headers, option headers, extension headers, etc.

* accessory classes (e.g., ndisc-cache)

18.3.2 Usage

The following description is based on using the typical helpers found in the example code.

IPv6 does not need to be activated in a node. it is automatically added to the available protocols once the Internet
Stack is installed.

In order to not install IPv6 along with IPv4, it is possible to use ns3::InternetStackHelper method
Setlpv6Stackinstall (bool enable) before installing the InternetStack in the nodes.

Note that to have an IPv6-only network (i.e., to not install the IPv4 stack in a node) one should use
ns3::InternetStackHelper method Setlpv4Stackinstall (bool enable) before the stack installation.

As an example, in the following code node O will have both IPv4 and IPv6, node 1 only only IPv6 and node 2 only
IPv4:

NodeContainer n;
n.Create (3);

InternetStackHelper internet;
InternetStackHelper internetV4donly;
InternetStackHelper internetVoonly;

internetV4only.SetIpv6StackInstall (false);
internetVé6only.SetIpv4StackInstall (false);

internet.Install (n.Get (0));
internetVéonly.Install (n.Get (1));
internetV4only.Install (n.Get (2));

18.3. IPv6 111

ns-3 Model Library, Release ns-3.26

IPv6 addresses assignment

In order to use IPv6 on a network, the first thing to do is assigning IPv6 addresses.

Any IPv6-enabled ns-3 node will have at least one NetDevice: the ns3: : LoopbackNetDevice. The loopback
device address is : : 1. All the other NetDevices will have one or more IPv6 addresses:

¢ One link-local address: £e80::interface ID, where interface ID is derived from the NetDevice
MAC address.

e Zero or more global addresses, e.g., 2001 : db8: : 1.

Typically the first address on an interface will be the link-local one, with the global address(es) being the following
ones.

IPv6 global addresses might be:
¢ manually assigned
* auto-generated

ns-3 can use both methods, and it’s quite important to understand the implications of both.

Manually assigned IPv6 adddresses

This is probably the easiest and most used method. As an example:

Ptr<Node> n0 = CreateObject<Node> ();
Ptr<Node> nl = CreateObject<Node> ();
NodeContainer net (n0O, nl);

CsmaHelper csma;

NetDeviceContainer ndc = csma.Install (net);

NS_LOG_INFO ("Assign IPv6 Addresses.");

Ipv6AddressHelper ipv6;

ipv6.SetBase (Ipv6Address ("2001:db8::"), Ipv6Prefix (64));
Ipv6InterfaceContainer ic = ipv6.Assign (ndc);

This method will add two global IPv6 addresses to the nodes. Note that, as usual for IPv6, all the nodes will also have
a link-local address. Typically the first address on an interface will be the link-local one, with the global address(es)
being the following ones.

Note that the global addesses will be derived from the MAC address. As a consequence, expect to have addresses
similar to 2001 :db8::200:£f:fe00:1.

It is possible to repeat the above to assign more than one global address to a node. However, due to the
Ipv6AddressHelper singleton nature, one should first assign all the adddresses of a network, then change the
network base (SetBase), then do a new assignment.

Alternatively, it is possible to assign a specific address to a node:

Ptr<Node> n0O = CreateObject<Node> ();
NodeContainer net (n0);

CsmaHelper csma;

NetDeviceContainer ndc = csma.Install (net);

NS_LOG_INFO ("Specifically Assign an IPv6 Address.");
Ipv6AddressHelper ipv6;

Ptr<NetDevice> device = ndc.Get (0);

Ptr<Node> node = device->GetNode ();

Ptr<Ipv6> ipvéproto = node->GetObject<Ipvé6> ();

112 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

ns-3 Model Library, Release ns-3.26

int32_t ifIndex = 0;

ifIndex = ipvéproto->GetInterfaceForDevice (device);

Ipv6InterfaceAddress ipv6Addr = IpvéInterfaceAddress (Ipv6Address ("2001:db8:£00d:cafe:
ipvéeproto->AddAddress (ifIndex, ipv6Addr);

Auto-generated IPv6 adddresses This is accomplished by relying on the RADVD protocol, implemented by the
class Radvd. A helper class is available, which can be used to ease the most common tasks, e.g., setting up a prefix
on an interface, if it is announced periodically, and if the router is the default router for that interface.

A fine grain configuration is possible though the RadvdInterface class, which allows to setup every parameter of
the announced router advetisement on a given interface.

It is worth mentioning that the configurations must be set up before installing the application in the node.

Upon using this method, the nodes will acquire dynamically (i.e., during the simulation) one (or more) global ad-
dress(es) according to the RADVD configuration. These addresses will be bases on the RADVD announced prefix and
the node’s EUI-64.

Examples of RADVD use are shown in examples/ipv6/radvd.cc and
examples/ipv6/radvd-two-prefix.cc.

Random-generated IPv6 adddresses While IPv6 real nodes will use randomly generated addresses to protect pri-
vacy, ns-3 does NOT have this capability. This feature haven’t been so far considered as interesting for simulation.

Duplicate Address Detection (DAD) Nodes will perform DAD (it can be disabled using an Tcmpv6L4Protocol
attribute). Upon receiving a DAD, however, nodes will not react to it. As is: DAD reaction is incomplete so far. The
main reason relies on the missing random-generated address capability. Moreover, since ns-3 nodes will usually be
well-behaving, therea should’t be any Duplicate Address. This might be changed in the future, so as to avoid issues
with real-world integrated simulations.

Host and Router behaviour in IPv6 and ns-3
In IPv6 there is a clear distinction between routers and hosts. As one might expect, routers can forward packets from
an interface to another interface, while hosts drop packets not directed to them.

Unfortunately, forwarding is not the only thing affected by this distinction, and forwarding itself might be fine-tuned,
e.g., to forward packets incoming from an interface and drop packets from another interface.

In ns-3 a node is configured to be an host by default. There are two main ways to change this behaviour:

e Using ns3::Ipv6InterfaceContainer SetForwarding(uint32_t i, bool router) where i is the interface
index in the container.

* Changing the ns3: : Ipv6 attribute IpForward.
Either one can be used during the simulation.

A fine-grained setup can be accomplished by using ns3: : Ipv6Interface SetForwarding (bool forward); which
allows to change the behaviour on a per-interface-basis.

Note that the node-wide configuration only serves as a convenient method to enable/disable the
ns3::IpveInterface specific setting. An IpvbInterface added to a node with forwarding enabled will be
set to be forwarding as well. This is really important when a node has interfaces added during the simulation.

According to the ns3: : Ipv6Interface forwarding state, the following happens:

» Forwarding OFF

18.3. IPv6 113

142"y,

Ipv6Pre

ns-3 Model Library, Release ns-3.26

* The node will NOT reply to Router Solicitation

* The node will react to Router Advertisement

* The node will periodically send Router Solicitation

* Routing protocols MUST DROP packets not directed to the node
* Forwarding ON

* The node will reply to Router Solicitation

¢ The node will NOT react to Router Advertisement

* The node will NOT send Router Solicitation

* Routing protocols MUST forward packets

The behaviour is matching ip-sysctl.txt (http://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt) with the
difference that it’s not possible to override the behaviour using esoteric settings (e.g., forwarding but accept router
advertisements, accept_ra=2, or forwarding but send router solicitations forwarding=2).

Consider carefully the implications of packet forwarding. As an example, a node will NOT send ICMPv6
PACKET_TOO_BIG messages from an interface with frowarding off. This is completely normal, as the Routing
protocol will drop the packet before attempting to forward it.

Helpers

Typically the helpers used in IPv6 setup are:
* ns3::InternetStackHelper
* ns3::Ipvb6AddressHelper
* ns3::IpveInterfaceContainer
The use is almost identical to the corresponding IPv4 case, e.g.:

NodeContainer nj;
n.Create (4);

NS_LOG_INFO ("Create IPv6 Internet Stack");
InternetStackHelper internetv6;
internetv6.Install (n);

NS_LOG_INFO ("Create channels.");
CsmaHelper csma;
NetDeviceContainer d = csma.Install (n);

NS_LOG_INFO ("Create networks and assign IPv6 Addresses.");
Ipv6AddressHelper ipvb6;

ipv6.SetBase (Ipv6Address ("2001:db8::"), IpvePrefix (64));
Ipv6eInterfaceContainer iic = ipv6.Assign (d);

Additionally, a common task is to enable forwarding on one of the nodes and to setup a default route toward it in the
other nodes, e.g.:

iic.SetForwarding (0, true);
iic.SetDefaultRouteInAllNodes (0);

This will enable forwarding on the node 0 and will setup a default route in ns3: : Ipv6StaticRouting on all the
other nodes. Note that this requires that Ipv6StaticRouting is present in the nodes.

114 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

http://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

ns-3 Model Library, Release ns-3.26

The IPv6 routing helpers enable the user to perform specific tasks on the particular routing algorith and to print the
routing tables.

Attributes

Many classes in the ns-3 IPv6 implementation contain attributes. The most useful ones are:
* ns3::Ipvb

 IpForward, boolean, default false. Globally enable or disable IP forwarding for all current and future IPv6
devices.

* MtuDiscover, boolean, default true. If disabled, every interface will have its MTU set to 1280 bytes.

* ns3::IpveL3Protocol

* DefaultTtl, uint§_t, default 64. The TTL value set by default on all outgoing packets generated on this node.
* Sendlcmpv6Redirect, boolean, default true. Send the ICMPv6 Redirect when appropriate.

* ns3::Icmpv6L4Protocol

e DAD, boolean, default true. Always do DAD (Duplicate Address Detection) check.

* ns3::NdiscCache

» UnresolvedQueueSize, uint32_t, default 3. Size of the queue for packets pending an NA reply.

Output

The IPv6 stack provides some useful trace sources:
* ns3::Ipv6L3Protocol
e Tx, Send IPv6 packet to outgoing interface.
* Rx, Receive IPv6 packet from incoming interface.
* Drop, Drop IPv6 packet.
* ns3::Ipvb6Extension
* Drop, Drop IPv6 packet.
The latest trace source is generated when a packet contains an unknown option blocking its processing.

Mind that ns3: :NdiscCache could drop packets as well, and they are not logged in a trace source (yet). This
might generate some confusion in the sent/received packets counters.

Advanced Usage

IPv6 maximum transmission unit (MTU) and fragmentation

ns-3 NetDevices define the MTU according to the L2 simulated Device. IPv6 requires that the minimum MTU is 1280
bytes, so all NetDevices are required to support at least this MTU. This is the link-MTU.

In order to support different MTUs in a source-destination path, ns-3 IPv6 model can perform fragmentation. This
can be either triggered by receiving a packet bigger than the link-MTU from the L4 protocols (UDP, TCP, etc.), or
by receving an ICMPv6 PACKET_TOO_BIG message. The model mimics RFC 1981, with the following notable
exceptions:

18.3. IPv6 115

ns-3 Model Library, Release ns-3.26

* L4 protocols are not informed of the Path MTU change
e TCP can not change its Segment Size according to the Path-MTU.
Both limitations are going to be removed in due time.

The Path-MTU cache is currently based on the source-destination IPv6 addresses. Further classifications (e.g., flow
label) are possible but not yet implemented.

The Path-MTU default validity time is 10 minutes. After the cache entry expiration, the Path-MTU information is
removed and the next packet will (eventually) trigger a new ICMPv6 PACKET_TOO_BIG message. Note that 1) this
is consistent with the RFC specification and 2) L4 protocols are responsible for retransmitting the packets.

Examples

The examples for IPv6 are in the directory examples/ipv6é. These examples focus on the most interesting IPv6
peculiarities, such as fragmentation, redirect and so on.

Moreover, most TCP and UDP examples located in examples/udp, examples/tcp, etc. have a command-line
option to use IPv6 instead of IPv4.

Troubleshooting
There are just a few pitfalls to avoid while using ns-3 IPv6.
Routing loops

Since the only (so far) routing scheme available for IPv6 is ns3: : Ipv6StaticRout ing, default router have to be
setup manually. When there are two or more routers in a network (e.g., node A and node B), avoid using the helper
function SetDefaultRouteInAlINodes for more than one router.

The consequence would be to install a default route to B in A and a default route pointing to A in B, generating a loop.

Global address leakage

Remember that addresses in [Pv6 are global by definition. When using IPv6 with an emulation ns-3 capability, avoid
at all costs address leakage toward the global Internet. It is advisable to setup an external firewall to prevent leakage.

2001:DB8::/32 addresses

IPv6 standard (RFC 3849) defines the 2001 : DB8: : /32 address class for the documentation. This manual uses this
convention. The addresses in this class are, however, only usable in a document, and routers should discard them.

18.3.3 Validation

The IPv6 protocols has not yet been extensively validated against real implementations. The actual tests involve mainly
performing checks of the .pcap trace files with Wireshark, and the results are positive.

116 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

ns-3 Model Library, Release ns-3.26

18.4 Routing overview

ns-3 is intended to support traditional routing approaches and protocols, support ports of open source routing imple-
mentations, and facilitate research into unorthodox routing techniques. The overall routing architecture is described
below in Routing architecture. Users who wish to just read about how to configure global routing for wired topologies
can read Global centralized routing. Unicast routing protocols are described in Unicast routing. Multicast routing is
documented in Multicast routing.

18.4.1 Routing architecture

Future work: Future work:
API corresponding API corresponding
to IP unicast to IP multicast
"user-space" T Netlink sockets T routing sockets sockets API for applications
"kernel-space"
. ns3 raw sockets
Transport Ipv4Rout|ngProtocoI::RouteOutpu}) Transport
protocol s protocol
(e.g. UDP) Y| (e upP)
_,"' .”' x Note: am not showing
" -~ ptr<ipvaRoute> ARP, Ipvéinterface
Ipv4RoutingProtocol - returned
N
LocalDeliver() callba Unicast or ~“~~~:‘~...
Multicast AR Y Ipv4RoutingProfocol::
Forward "‘~..:"~~\ RouteOutput()
callback Ptr<|pv4RouteS'~.:' ~(.f?5 raw socketq)
returned RETORE I
Routelnput (Ptr<Packef>, ARTNREN
4 callbacks) \4 AV

I \ SendOut()
Receive() IpForward()
Ipv4L3Protocol IpMulticastForward()

(incoming)
NetDevice

(outgoing)
NetDevice

Figure 18.3: Overview of routing

Overview of routing shows the overall routing architecture for Ipv4. The key objects are Ipv4L3Protocol,
Ipv4RoutingProtocol(s) (a class to which all routing/forwarding has been delegated from Ipv4L3Protocol), and

Ipv4Route(s).

Ipv4L3Protocol must have at least one Ipv4RoutingProtocol added to it at simulation setup time. This is done explicitly
by calling Ipv4::SetRoutingProtocol ().

The abstract base class Ipv4RoutingProtocol () declares a minimal interface, consisting of two methods: RouteOutput
() and Routelnput (). For packets traveling outbound from a host, the transport protocol will query Ipv4 for the
Ipv4RoutingProtocol object interface, and will request a route via Ipv4RoutingProtocol::RouteOutput (). A Ptr to
Ipv4Route object is returned. This is analagous to a dst_cache entry in Linux. The Ipv4Route is carried down to the
Ipv4L3Protocol to avoid a second lookup there. However, some cases (e.g. Ipv4 raw sockets) will require a call to
RouteOutput() directly from Ipv4L3Protocol.

For packets received inbound for forwarding or delivery, the following steps occur. Ipv4L3Protocol::Receive() calls
Ipv4RoutingProtocol::RouteInput(). This passes the packet ownership to the Ipv4RoutingProtocol object. There are
four callbacks associated with this call:

¢ LocalDeliver

¢ UnicastForward

18.4. Routing overview 117

ns-3 Model Library, Release ns-3.26

e MulticastForward
¢ Error

The Ipv4RoutingProtocol must eventually call one of these callbacks for each packet that it takes responsibility for.
This is basically how the input routing process works in Linux.

Ipv4RoutingProtocol
abstract, in
src/node

+Routelnput ()
+RouteOutput ()

4 E-.---..---.---.---.---u---.---.---.---u-;

Ipv4ListRouting |[IpvaStaticRouting |IpvaGlobalRouting || OLSR j|lpv4LinuxRouting|lpv4ClickRouting |
(abstract, in (abstract, in (in src/ (insrc/ e.g. full-blown e.g. wrap the H
src/node) src/node) internet-stack) routing/olsr/)i] Linux policy Click Modular
routing with Router
route cache
4 Zl\ He

! ! eeaed Rassile fuburs, protocels (nofimelemanted yg

Ipv4ListRoutinglmpl| |lpv4StaticRoutingimpl
(in src/ (in src/
internet-stack) internet-stack/)

Figure 18.4: Ipv4Routing specialization.

This overall architecture is designed to support different routing approaches, including (in the future) a Linux-like
policy-based routing implementation, proactive and on-demand routing protocols, and simple routing protocols for
when the simulation user does not really care about routing.

Ipv4Routing specialization. illustrates how multiple routing protocols derive from this base class. A class
Ipv4ListRouting (implementation class Ipv4ListRoutinglmpl) provides the existing list routing approach in ns-3.
Its API is the same as base class Ipv4Routing except for the ability to add multiple prioritized routing protocols
(Ipv4ListRouting:: AddRoutingProtocol(), Ipv4ListRouting::GetRoutingProtocol()).

The details of these routing protocols are described below in Unicast routing. For now, we will first start with a basic
unicast routing capability that is intended to globally build routing tables at simulation time t=0 for simulation users
who do not care about dynamic routing.

18.4.2 Global centralized routing

Global centralized routing is sometimes called “God” routing; it is a special implementation that walks the simulation
topology and runs a shortest path algorithm, and populates each node’s routing tables. No actual protocol overhead
(on the simulated links) is incurred with this approach. It does have a few constraints:

¢ Wired only: It is not intended for use in wireless networks.
¢ Unicast only: It does not do multicast.

* Scalability: Some users of this on large topologies (e.g. 1000 nodes) have noticed that the current implemen-
tation is not very scalable. The global centralized routing will be modified in the future to reduce computations
and runtime performance.

Presently, global centralized IPv4 unicast routing over both point-to-point and shared (CSMA) links is supported.

By default, when using the ns-3 helper API and the default InternetStackHelper, global routing capability will be added
to the node, and global routing will be inserted as a routing protocol with lower priority than the static routes (i.e.,
users can insert routes via Ipv4StaticRouting API and they will take precedence over routes found by global routing).

118 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

ns-3 Model Library, Release ns-3.26

Global Unicast Routing API

The public API is very minimal. User scripts include the following:
#include "ns3/internet-module.h"
If the default InternetStackHelper is used, then an instance of global routing will be aggregated to each node. After IP

addresses are configured, the following function call will cause all of the nodes that have an Ipv4 interface to receive
forwarding tables entered automatically by the GlobalRouteManager:

Ipv4GlobalRoutingHelper: :PopulateRoutingTables ();

Note: A reminder that the wifi NetDevice will work but does not take any wireless effects into account. For wireless,
we recommend OLSR dynamic routing described below.

It is possible to call this function again in the midst of a simulation using the following additional public function:

Ipv4GlobalRoutingHelper: :RecomputeRoutingTables () ;

which flushes the old tables, queries the nodes for new interface information, and rebuilds the routes.
For instance, this scheduling call will cause the tables to be rebuilt at time 5 seconds:

Simulator: :Schedule (Seconds (5),
&Ipv4GlobalRoutingHelper: :RecomputeRoutingTables) ;

There are two attributes that govern the behavior. The first is Ipv4GlobalRouting::RandomEcmpRouting. If set to true,
packets are randomly routed across equal-cost multipath routes. If set to false (default), only one route is consistently
used. The second is Ipv4GlobalRouting::RespondToInterfaceEvents. If set to true, dynamically recompute the global
routes upon Interface notification events (up/down, or add/remove address). If set to false (default), routing may break
unless the user manually calls RecomputeRoutingTables() after such events. The default is set to false to preserve
legacy ns-3 program behavior.

Global Routing Implementation

This section is for those readers who care about how this is implemented. A singleton object (GlobalRouteManager)
is responsible for populating the static routes on each node, using the public Ipv4 API of that node. It queries each
node in the topology for a “globalRouter” interface. If found, it uses the API of that interface to obtain a “link
state advertisement (LSA)” for the router. Link State Advertisements are used in OSPF routing, and we follow their
formatting.

It is important to note that all of these computations are done before packets are flowing in the network. In particular,
there are no overhead or control packets being exchanged when using this implementation. Instead, this global route
manager just walks the list of nodes to build the necessary information and configure each node’s routing table.

The GlobalRouteManager populates a link state database with LSAs gathered from the entire topology. Then, for
each router in the topology, the GlobalRouteManager executes the OSPF shortest path first (SPF) computation on the
database, and populates the routing tables on each node.

The quagga (http://www.quagga.net) OSPF implementation was used as the basis for the routing computation logic.
One benefit of following an existing OSPF SPF implementation is that OSPF already has defined link state advertise-
ments for all common types of network links:

* point-to-point (serial links)
* point-to-multipoint (Frame Relay, ad hoc wireless)
* non-broadcast multiple access (ATM)

¢ broadcast (Ethernet)

18.4. Routing overview 119

http://www.quagga.net

ns-3 Model Library, Release ns-3.26

Therefore, we think that enabling these other link types will be more straightforward now that the underlying OSPF
SPF framework is in place.

Presently, we can handle IPv4 point-to-point, numbered links, as well as shared broadcast (CSMA) links. Equal-cost
multipath is also supported. Although wireless link types are supported by the implementation, note that due to the
nature of this implementation, any channel effects will not be considered and the routing tables will assume that every
node on the same shared channel is reachable from every other node (i.e. it will be treated like a broadcast CSMA
link).

The GlobalRouteManager first walks the list of nodes and aggregates a GlobalRouter interface to each one as follows:

typedef std::vector < Ptr<Node> >::iterator Iterator;
for (Iterator i = NodelList::Begin (); 1 != NodelList::End (); i++)
{
Ptr<Node> node = =*1ij;
Ptr<GlobalRouter> globalRouter = CreateObject<GlobalRouter> (node);
node->AggregateObject (globalRouter);
}

This interface is later queried and used to generate a Link State Advertisement for each router, and this link state
database is fed into the OSPF shortest path computation logic. The Ipv4 API is finally used to populate the routes
themselves.

18.4.3 Unicast routing

There are presently eigth unicast routing protocols defined for IPv4 and three for IPv6:
* class Ipv4StaticRouting (covering both unicast and multicast)
* [Pv4 Optimized Link State Routing (OLSR) (a MANET protocol defined in RFC 3626)
¢ [Pv4 Ad Hoc On Demand Distance Vector (AODV) (a MANET protocol defined in RFC 3561)
* [Pv4 Destination Sequenced Distance Vector (DSDV) (a MANET protocol)
e [Pv4 Dynamic Source Routing (DSR) (a MANET protocol)
* class Ipv4ListRouting (used to store a prioritized list of routing protocols)
* class Ipv4GlobalRouting (used to store routes computed by the global route manager, if that is used)

* class Ipv4NixVectorRouting (a more efficient version of global routing that stores source routes in a packet
header field)

¢ class Rip - the IPv4 RIPv2 protocol (RFC 2453)

* class Ipv6ListRouting (used to store a prioritized list of routing protocols)
* class Ipv6StaticRouting

* class RipNg - the IPv6 RIPng protocol (RFC 2080)

In the future, this architecture should also allow someone to implement a Linux-like implementation with routing
cache, or a Click modular router, but those are out of scope for now.

Ipv[4,6]ListRouting

This section describes the current default ns-3 Ipv[4,6]RoutingProtocol. Typically, multiple routing protocols are sup-
ported in user space and coordinate to write a single forwarding table in the kernel. Presently in ns-3, the implementa-
tion instead allows for multiple routing protocols to build/keep their own routing state, and the IP implementation will
query each one of these routing protocols (in some order determined by the simulation author) until a route is found.

120 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

http://tools.ietf.org/html/rfc3626.html
http://tools.ietf.org/html/rfc3561.html
http://tools.ietf.org/html/rfc2453.html
http://tools.ietf.org/html/rfc2080.html

ns-3 Model Library, Release ns-3.26

We chose this approach because it may better facilitate the integration of disparate routing approaches that may be
difficult to coordinate the writing to a single table, approaches where more information than destination IP address
(e.g., source routing) is used to determine the next hop, and on-demand routing approaches where packets must be
cached.

Ipv[4,6]4ListRouting::AddRoutingProtocol

Classes Ipv4ListRouting and Ipv6ListRouting provides a pure virtual function declaration for the method that allows
one to add a routing protocol:

void AddRoutingProtocol (Ptr<Ipv4RoutingProtocol> routingProtocol,
intl6_t priority);

void AddRoutingProtocol (Ptr<Ipv6RoutingProtocol> routingProtocol,
intl6_t priority);

These methods are implemented respectively by class Ipv4ListRoutingIlmpl and by class Ipv6ListRoutingImpl in the
internet module.

The priority variable above governs the priority in which the routing protocols are inserted. Notice that it is a
signed int. By default in ns-3, the helper classes will instantiate a Ipv[4,6]ListRoutinglmpl object, and add to it
an Ipv[4,6]StaticRoutingImpl object at priority zero. Internally, a list of Ipv[4,6]RoutingProtocols is stored, and and
the routing protocols are each consulted in decreasing order of priority to see whether a match is found. Therefore,
if you want your Ipv4RoutingProtocol to have priority lower than the static routing, insert it with priority less than 0;

e.g.

Ptr<MyRoutingProtocol> myRoutingProto = CreateObject<MyRoutingProtocol> ();
listRoutingPtr->AddRoutingProtocol (myRoutingProto, -10);

Upon calls to RouteOutput() or RouteInput(), the list routing object will search the list of routing protocols, in priority
order, until a route is found. Such routing protocol will invoke the appropriate callback and no further routing protocols
will be searched.

Optimized Link State Routing (OLSR)

This IPv4 routing protocol was originally ported from the OLSR-UM implementation for ns-2. The implementation
is found in the src/olsr directory, and an example script is in examples/simple-point-to-point-olsr.cc.

Typically, OLSR is enabled in a main program by use of an OlsrHelper class that installs OLSR into an
Ipv4ListRoutingProtocol object. The following sample commands will enable OLSR in a simulation using this helper
class along with some other routing helper objects. The setting of priority value 10, ahead of the staticRouting priority
of 0, means that OLSR will be consulted for a route before the node’s static routing table.:

NodeContainer c:

// Enable OLSR

NS_LOG_INFO ("Enabling OLSR Routing.");
OlsrHelper olsr;
Ipv4StaticRoutingHelper staticRouting;
Ipv4ListRoutingHelper list;

list.Add (staticRouting, 0);

list.Add (olsr, 10);

InternetStackHelper internet;

18.4. Routing overview 121

ns-3 Model Library, Release ns-3.26

internet.SetRoutingHelper (list);
internet.Install (c);

Once installed,the OLSR “main interface” can be set with the SetMainlnterface() command. If the user does not
specify a main address, the protocol will select the first primary IP address that it finds, starting first the loopback
interface and then the next non-loopback interface found, in order of Ipv4 interface index. The loopback address of
127.0.0.1 is not selected. In addition, a number of protocol constants are defined in olsr-routing-protocol.cc.

Olsr is started at time zero of the simulation, based on a call to Object::Start() that eventually calls OlsrRoutingProto-
col::DoStart(). Note: a patch to allow the user to start and stop the protocol at other times would be welcome.

Presently, OLSR is limited to use with an Ipv4ListRouting object, and does not respond to dynamic changes to a
device’s IP address or link up/down notifications; i.e. the topology changes are due to loss/gain of connectivity over a
wireless channel.

RIP and RIPng

The RIPv2 protocol for IPv4 is described in the RFC 2453, and it consolidates a number of improvements over the
base protocol defined in RFC 1058.

This IPv6 routing protocol (RFC 2080) is the evolution of the well-known RIPv1 (see RFC 1058 and RFC 1723)
routing protocol for IPv4.

The protocols are very simple, and are normally suitable for flat, simple network topologies.

RIPv1, RIPv2, and RIPng have the very same goals and limitations. In particular, RIP considers any route with a
metric equal or greater than 16 as unreachable. As a consequence, the maximum number of hops is the network must
be less than 15 (the number of routers is not set). Users are encouraged to read RFC 2080 and RFC 1058 to fully
understand RIP behaviour and limitations.

Routing convergence

RIP uses a Distance-Vector algorithm, and routes are updated according to the Bellman-Ford algorithm (sometimes
known as Ford-Fulkerson algorithm). The algorithm has a convergence time of O(IVI*|El) where VI and IEl are the
number of vertices (routers) and edges (links) respectively. It should be stressed that the convergence time is the
number of steps in the algorithm, and each step is triggered by a message. Since Triggered Updates (i.e., when a route
is changed) have a 1-5 seconds cooldown, the toplogy can require some time to be stabilized.

Users should be aware that, during routing tables construction, the routers might drop packets. Data traffic should be
sent only after a time long enough to allow RIP to build the network topology. Usually 80 seconds should be enough
to have a suboptimal (but working) routing setup. This includes the time needed to propagate the routes to the most
distant router (16 hops) with Triggered Updates.

If the network topology is changed (e.g., a link is broken), the recovery time might be quite high, and it might be
even higher than the initial setup time. Moreover, the network topology recovery is affected by the Split Horizoning
strategy.

The examples examples/routing/ripng-simple—-network.ccand examples/routing/rip-simple—network.cc
shows both the network setup and network recovery phases.

Split Horizoning

Split Horizon is a strategy to prevent routing instability. Three options are possible:

¢ No Split Horizon

122 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

http://tools.ietf.org/html/rfc2453.html
http://tools.ietf.org/html/rfc1058.html
http://tools.ietf.org/html/rfc2080.html
http://tools.ietf.org/html/rfc1058.html
http://tools.ietf.org/html/rfc1723.html
http://tools.ietf.org/html/rfc2080.html
http://tools.ietf.org/html/rfc1058.html

ns-3 Model Library, Release ns-3.26

* Split Horizon
¢ Poison Reverse

In the first case, routes are advertised on all the router’s interfaces. In the second case, routers will not advertise a route
on the interface from which it was learned. Poison Reverse will advertise the route on the interface from which it was
learned, but with a metric of 16 (infinity). For a full analysis of the three techniques, see RFC 1058, section 2.2.

The examples are based on the network toplogy described in the RFC, but it does not show the effect described there.

The reason are the Triggered Updates, together with the fact that when a router invalidates a route, it will immediately
propagate the route unreachability, thus preventing most of the issues described in the RFC.

However, with complex toplogies, it is still possible to have route instability phenomena similar to the one described
in the RFC after a link failure. As a consequence, all the considerations about Split Horizon remanins valid.

Default routes

RIP protocol should be installed only on routers. As a consequence, nodes will not know what is the default router.

To overcome this limitation, users should either install the default route manually (e.g., by resorting to
Ipv4StaticRouting or Ipv6StaticRouting), or by using RADVd (in case of IPv6). RADVd is available in ns-3 in
the Applications module, and it is strongly suggested.

Protocol parameters and options

The RIP ns-3 implementations allow to change all the timers associated with route updates and routes lifetime.
Moreover, users can change the interface metrics on a per-node basis.

The type of Split Horizoning (to avoid routes back-propagation) can be selected on a per-node basis, with the choices
being “no split horizon”, “split horizon” and “poison reverse”. See RFC 2080 for further details, and RFC 1058 for a
complete discussion on the split horizoning strategies.

Moreover, it is possible to use a non-standard value for Link Down Value (i.e., the value after which a link is considered
down). The defaul is value is 16.

Limitations

There is no support for the Next Hop option (RFC 2080, Section 2.1.1). The Next Hop option is useful when RIP is
not being run on all of the routers on a network. Support for this option may be considered in the future.

There is no support for CIDR prefix aggregation. As a result, both routing tables and route advertisements may be
larger than necessary. Prefix aggregation may be added in the future.

18.4.4 Multicast routing

The following function is used to add a static multicast route to a node:

void

Ipv4StaticRouting: :AddMulticastRoute (Ipv4Address origin,
Ipv4Address group,
uint32_t inputInterface,
std::vector<uint32_t> outputlInterfaces);

18.4. Routing overview 123

http://tools.ietf.org/html/rfc1058.html
http://tools.ietf.org/html/rfc2080.html
http://tools.ietf.org/html/rfc1058.html
http://tools.ietf.org/html/rfc2080.html

ns-3 Model Library, Release ns-3.26

A multicast route must specify an origin IP address, a multicast group and an input network interface index as condi-
tions and provide a vector of output network interface indices over which packets matching the conditions are sent.

Typically there are two main types of multicast routes: routes of the first kind are used during forwarding. All of the
conditions must be explicitly provided. The second kind of routes are used to get packets off of a local node. The differ-
ence is in the input interface. Routes for forwarding will always have an explicit input interface specified. Routes off of
anode will always set the input interface to a wildcard specified by the index Ipv4RoutingProtocol::IF_INDEX_ANY.

For routes off of a local node wildcards may be used in the origin and multicast group addresses. The wildcard used
for Ipv4Adresses is that address returned by Ipv4Address::GetAny () — typically “0.0.0.0”. Usage of a wildcard allows
one to specify default behavior to varying degrees.

For example, making the origin address a wildcard, but leaving the multicast group specific allows one (in the case of
a node with multiple interfaces) to create different routes using different output interfaces for each multicast group.

If the origin and multicast addresses are made wildcards, you have created essentially a default multicast address that
can forward to multiple interfaces. Compare this to the actual default multicast address that is limited to specifying a
single output interface for compatibility with existing functionality in other systems.

Another command sets the default multicast route:
void

Ipv4StaticRouting: :SetDefaultMulticastRoute (uint32_t outputInterface);

This is the multicast equivalent of the unicast version SetDefaultRoute. We tell the routing system what to do in the
case where a specific route to a destination multicast group is not found. The system forwards packets out the specified
interface in the hope that “something out there” knows better how to route the packet. This method is only used in
initially sending packets off of a host. The default multicast route is not consulted during forwarding — exact routes
must be specified using AddMulticastRoute for that case.

Since we’re basically sending packets to some entity we think may know better what to do, we don’t pay attention
to “subtleties” like origin address, nor do we worry about forwarding out multiple interfaces. If the default multicast
route is set, it is returned as the selected route from LookupStatic irrespective of origin or multicast group if another
specific route is not found.

Finally, a number of additional functions are provided to fetch and remove multicast routes:
uint32_t GetNMulticastRoutes (void) const;
Ipv4MulticastRoute *GetMulticastRoute (uint32_t i) const;
Ipv4MulticastRoute *GetDefaultMulticastRoute (void) const;
bool RemoveMulticastRoute (Ipv4Address origin,

Ipv4Address group,

uint32_t inputlInterface);

void RemoveMulticastRoute (uint32_t index);

18.5 TCP models in ns-3

This chapter describes the TCP models available in 7s-3.

18.5.1 Generic support for TCP

ns-3 was written to support multiple TCP implementations. The implementations inherit from a few common header
classes in the src/network directory, so that user code can swap out implementations with minimal changes to the

124 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

ns-3 Model Library, Release ns-3.26

scripts.
There are two important abstract base classes:

* class TcpSocket: This is defined in src/internet/model/tcp-socket. {cc,h}. This class exists
for hosting TcpSocket attributes that can be reused across different implementations. For instance, the attribute
InitialCwnd can be used for any of the implementations that derive from class TcpSocket.

* class TcpSocketFactory: This is used by the layer-4 protocol instance to create TCP sockets of the right
type.

There are presently three implementations of TCP available for ns-3.
* anatively implemented TCP for ns-3
* support for the Network Simulation Cradle (NSC)
* support for Direct Code Execution (DCE)

It should also be mentioned that various ways of combining virtual machines with ns-3 makes available also some
additional TCP implementations, but those are out of scope for this chapter.

18.5.2 ns-3 TCP

In brief, the native ns-3 TCP model supports a full bidirectional TCP with connection setup and close logic. Several
congestion control algorithms are supported, with NewReno the default, and Westwood, Hybla, and HighSpeed also
supported. Multipath-TCP and TCP Selective Acknowledgements (SACK) are not yet supported in the ns-3 releases.

Model history

Until the ns-3.10 release, ns-3 contained a port of the TCP model from GTNetS. This implementation was substantially
rewritten by Adriam Tam for ns-3.10. In 2015, the TCP module has been redesigned in order to create a better
environment for creating and carrying out automated tests. One of the main changes involves congestion control
algorithms, and how they are implemented.

Before ns-3.25 release, a congestion control was considered as a stand-alone TCP through an inheritance relation: each
congestion control (e.g. TcpNewReno) was a subclass of TcpSocketBase, reimplementing some inherited methods.
The architecture was redone to avoid this inheritance, the fundamental principle of the GSoC proposal was avoiding
this inheritance, by making each congestion control a separate class, and making an interface to exchange important
data between TcpSocketBase and the congestion modules. For instance, similar modularity is used in Linux.

Along with congestion control, Fast Retransmit and Fast Recovery algorithms have been modified; in previous re-
leases, these algorithms were demanded to TcpSocketBase subclasses. Starting from ns-3.25, they have been merged
inside TcpSocketBase. In future releases, they can be extracted as separate modules, following the congestion control
design.

Usage

In many cases, usage of TCP is set at the application layer by telling the ns-3 application which kind of socket factory
to use.

Using the helper functions defined in src/applications/helper and src/network/helper, here is how
one would create a TCP receiver:

// Create a packet sink on the star "hub" to receive these packets
uintl6_t port = 50000;

Address sinkLocalAddress (InetSocketAddress (Ipv4Address::GetAny (), port));
PacketSinkHelper sinkHelper ("ns3::TcpSocketFactory", sinkLocalAddress);

18.5. TCP models in ns-3 125

http://www.wand.net.nz/~stj2/nsc/
https://www.nsnam.org/overview/projects/direct-code-execution/
http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/index.html

ns-3 Model Library, Release ns-3.26

ApplicationContainer sinkApp = sinkHelper.Install (serverNode);
sinkApp.Start (Seconds (1.0));
sinkApp.Stop (Seconds (10.0));

Similarly, the below snippet configures OnOffApplication traffic source to use TCP:

// Create the OnOff applications to send TCP to the server
OnOffHelper clientHelper ("ns3::TcpSocketFactory", Address ());

The careful reader will note above that we have specified the Typeld of an abstract base class TcpSocketFactory.
How does the script tell ns-3 that it wants the native ns-3 TCP vs. some other one? Well, when internet stacks are added
to the node, the default TCP implementation that is aggregated to the node is the ns-3 TCP. This can be overridden as
we show below when using Network Simulation Cradle. So, by default, when using the ns-3 helper API, the TCP that
is aggregated to nodes with an Internet stack is the native ns-3 TCP.

To configure behavior of TCP, a number of parameters are exported through the ns-3 attribute system. These are
documented in the Doxygen <http://www.nsnam.org/doxygen/classns3_1_I_tcp_socket.html> for class TcpSocket.
For example, the maximum segment size is a settable attribute.

To set the default socket type before any internet stack-related objects are created, one may put the following statement
at the top of the simulation program:

Config::SetDefault ("ns3::TcplL4Protocol::SocketType", StringValue ("ns3::TcpNewReno"));

For users who wish to have a pointer to the actual socket (so that socket operations like Bind(), setting socket options,
etc. can be done on a per-socket basis), Tcp sockets can be created by using the Socket : :CreateSocket ()
method. The Typeld passed to CreateSocket() must be of type ns3::SocketFactory, so configuring the un-
derlying socket type must be done by twiddling the attribute associated with the underlying TcpL4Protocol object.
The easiest way to get at this would be through the attribute configuration system. In the below example, the Node
container “nOnl1” is accessed to get the zeroth element, and a socket is created on this node:

// Create and bind the socket...
Typeld tid = Typeld::LookupByName ("ns3::TcpNewReno");
Config::Set ("/NodeList/«x/$ns3::TcpL4Protocol/SocketType", Typeldvalue (tid));
Ptr<Socket> localSocket =
Socket::CreateSocket (nOnl.Get (0), TcpSocketFactory::GetTypeId ());

Above, the “*” wild card for node number is passed to the attribute configuration system, so that all future sockets on
all nodes are set to NewReno, not just on node ‘nOnl.Get (0)’. If one wants to limit it to just the specified node, one
would have to do something like:

// Create and bind the socket...
Typeld tid = Typeld::LookupByName ("ns3::TcpNewReno");
std::stringstream nodeld;
nodeId << nOnl.Get (0)->GetId ();
std::string specificNode = "/NodeList/" + nodeld.str () + "/$ns3::TcpL4Protocol/SocketType";
Config::Set (specificNode, TypelIdvValue (tid));
Ptr<Socket> localSocket =
Socket::CreateSocket (nOnl.Get (0), TcpSocketFactory::GetTypelId ());

Once a TCP socket is created, one will want to follow conventional socket logic and either connect() and send() (for a
TCP client) or bind(), listen(), and accept() (for a TCP server). Please note that applications usually create the sockets
they use automatically, and so is not straightforward to connect direcly to them using pointers. Please refer to the
source code of your preferred application to discover how and when it creates the socket.

126 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

ns-3 Model Library, Release ns-3.26

TCP Socket interaction and interface with Application layer

In the following there is an analysis on the public interface of the TCP socket, and how it can be used to interact
with the socket itself. An analysis of the callback fired by the socket is also carried out. Please note that, for the
sake of clarity, we will use the terminology “Sender” and “Receiver” to clearly divide the functionality of the socket.
However, in TCP these two roles can be applied at the same time (i.e. a socket could be a sender and a receiver at the
same time): our distinction does not lose generality, since the following definition can be applied to both sockets in
case of full-duplex mode.

TCP state machine (for commodity use)

CLOSED |
Active opernySYN
Fassive ope Close
Close
LISTEN

| |
SYN/SYN + W \iSaTdISYN '| l
SYN/SYN + AC

|
SYN_RCVD [F——— SYN_SENT
ACK \ ﬁmmcwam{
1
Close/FIN IESTABLaSHEq
]
v Close/FIN__ ,/ \ FINIACK
I FIN_WAIT 1 N "l cLosSE waIT
FIN/ACK
ACK Close/FIN
' o v v
[FIN_WA!T_2| “‘I:;SF | CLOSING I LAST ACK
o .
\ { | Ack Timeoutatiertwo | ack
___ FINJACK | J
. ~ TIME_WAIT | ~ CLOSED

Figure 18.5: TCP State machine

In ns-3 we are fully compliant with the state machine depicted in Figure TCP State machine.

18.5. TCP models in ns-3 127

ns-3 Model Library, Release ns-3.26

Public interface for receivers (e.g. servers receiving data)

Bind() Bind the socket to an address, or to a general endpoint. A general endpoint is an endpoint with an ephemeral
port allocation (that is, a random port allocation) on the 0.0.0.0 IP address. For instance, in current applications,
data senders usually binds automatically after a Connect() over a random port. Consequently, the connection
will start from this random port towards the well-defined port of the receiver. The IP 0.0.0.0 is then translated
by lower layers into the real IP of the device.

Bind6() Same as Bind(), but for IPv6.
BindToNetDevice() Bind the socket to the specified NetDevice, creating a general endpoint.

Listen() Listen on the endpoint for an incoming connection. Please note that this function can be called only in the
TCP CLOSED state, and transit in the LISTEN state. When an incoming request for connection is detected
(i.e. the other peer invoked Connect()) the application will be signaled with the callback NotifyConnectionRe-
quest (set in SetAcceptCallback() beforehand). If the connection is accepted (the default behavior, when the
associated callback is a null one) the Socket will fork itself, i.e. a new socket is created to handle the incoming
data/connection, in the state SYN_RCVD. Please note that this newly created socket is not connected anymore
to the callbacks on the “father” socket (e.g. DataSent, Recv); the pointer of the newly created socket is provided
in the Callback NotifyNewConnectionCreated (set beforehand in SetAcceptCallback), and should be used to
connect new callbacks to interesting events (e.g. Recv callback). After receiving the ACK of the SYN-ACK,
the socket will set the congestion control, move into ESTABLISHED state, and then notify the application with
NotifyNewConnectionCreated.

ShutdownSend() Signal a termination of send, or in other words revents data from being added to the buffer. After
this call, if buffer is already empty, the socket will send a FIN, otherwise FIN will go when buffer empties.
Please note that this is useful only for modeling “Sink™ applications. If you have data to transmit, please refer
to the Send() / Close() combination of API.

GetRxAvailable() Get the amount of data that could be returned by the Socket in one or multiple call to Recv or
RecvFrom. Please use the Attribute system to configure the maximum available space on the receiver buffer
(property “RcvBufSize”).

Recv() Grab data from the TCP socket. Please remember that TCP is a stream socket, and it is allowed to concatenate
multiple packets into bigger ones. If no data is present (i.e. GetRxAvailable returns 0) an empty packet is re-
turned. Set the callback RecvCallback through SetRecvCallback() in order to have the application automatically
notified when some data is ready to be read. It’s important to connect that callback to the newly created socket
in case of forks.

RecvFrom() Same as Recv, but with the source address as parameter.

Public interface for senders (e.g. clients uploading data)

Connect() Set the remote endpoint, and try to connect to it. The local endpoint should be set before this call, or
otherwise an ephemeral one will be created. The TCP then will be in the SYN_SENT state. If a SYN-ACK is
received, the TCP will setup the congestion control, and then call the callback ConnectionSucceeded.

GetTxAvailable() Return the amount of data that can be stored in the TCP Tx buffer. Set this property through the
Attribute system (“SndBufSize”).

Send() Send the data into the TCP Tx buffer. From there, the TCP rules will decide if, and when, this data will be
transmitted. Please note that, if the tx buffer has enough data to fill the congestion (or the receiver) window,
dynamically varying the rate at which data is injected in the TCP buffer does not have any noticeable effect on
the amount of data transmitted on the wire, that will continue to be decided by the TCP rules.

SendTo() Same as Send().

Close() Terminate the local side of the connection, by sending a FIN (after all data in the tx buffer has been trans-
mitted). This does not prevent the socket in receiving data, and employing retransmit mechanism if losses are

128 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

ns-3 Model Library, Release ns-3.26

detected. If the application calls Close() with unread data in its rx buffer, the socket will send a reset. If the
socket is in the state SYN_SENT, CLOSING, LISTEN or LAST_ACK, after that call the application will be
notified with NotifyNormalClose(). In all the other cases, the notification is delayed (see NotifyNormalClose()).

Public callbacks

These callbacks are called by the TCP socket to notify the application of interesting events. We will refer to these with
the protected name used in socket.h, but we will provide the API function to set the pointers to these callback as well.

NotifyConnectionSucceeded: SetConnectCallback, 1st argument Called in the SYN_SENT state, before moving to
ESTABLISHED. In other words, we have sent the SYN, and we received the SYN-ACK: the socket prepare the
sequence numbers, send the ACK for the SYN-ACK, try to send out more data (in another segment) and then
invoke this callback. After this callback, it invokes the NotifySend callback.

NotifyConnectionFailed: SetConnectCallback, 2nd argument Called after the SYN retransmission count goes to 0.
SYN packet is lost multiple time, and the socket give up.

NotifyNormalClose: SetCloseCallbacks, 1st argument A normal close is invoked. A rare case is when we receive
an RST segment (or a segment with bad flags) in normal states. All other cases are: - The application tries to
Connect() over an already connected socket - Received an ACK for the FIN sent, with or without the FIN bit set
(we are in LAST_ACK) - The socket reaches the maximum amount of retries in retransmitting the SYN (*) -
We receive a timeout in the LAST_ACK state - After 2¥Maximum Segment Lifetime seconds passed since the
socket entered the TIME_WAIT state.

NotifyErrorClose: SetCloseCallbacks, 2nd argument Invoked when we send an RST segment (for whatever reason)
or we reached the maximum amount of data retries.

NotifyConnectionRequest: SetAcceptCallback, 1st argument Invoked in the LISTEN state, when we receive a SYN.
The return value indicates if the socket should accept the connection (return true) or should ignore it (return
false).

NotifyNewConnectionCreated: SetAcceptCallback, 2nd argument Invoked when from SYN_RCVD the socket
passes to ESTABLISHED, and after setting up the congestion control, the sequence numbers, and processed
the incoming ACK. If there is some space in the buffer, NotifySend is called shortly after this callback. The
Socket pointer, passed with this callback, is the newly created socket, after a Fork().

NotifyDataSent: SetDataSentCallback The Socket notifies the application that some bytes has been transmitted on
the IP level. These bytes could still be lost in the node (traffic control layer) or in the network.

NotifySend: SetSendCallback Invoked if there is some space in the tx buffer when entering the ESTABLISHED state
(e.g. after the ACK for SYN-ACK is received), after the connection succeeds (e.g. after the SYN-ACK is
received) and after each new ack (i.e. that advances SND.UNA).

NotifyDataRecv: SetRecvCallback Called when in the receiver buffere there are in-order bytes, and when in
FIN_WAIT_1 or FIN_WAIT_2 the socket receive a in-sequence FIN (that can carry data).

Congestion Control Algorithms

Here follows a list of supported TCP congestion control algorithms. For an academic peer-reviewed paper on these
congestion control algorithms, see http://dl.acm.org/citation.cfm?id=2756518 .

New Reno

New Reno algorithm introduces partial ACKs inside the well-established Reno algorithm. This and other modifications
are described in RFC 6582. We have two possible congestion window increment strategy: slow start and congestion
avoidance. Taken from RFC 5681:

18.5. TCP models in ns-3 129

http://dl.acm.org/citation.cfm?id=2756518

ns-3 Model Library, Release ns-3.26

During slow start, a TCP increments cwnd by at most SMSS bytes for each ACK received that cumu-
latively acknowledges new data. Slow start ends when cwnd exceeds ssthresh (or, optionally, when it
reaches it, as noted above) or when congestion is observed. While traditionally TCP implementations
have increased cwnd by precisely SMSS bytes upon receipt of an ACK covering new data, we REC-
OMMEND that TCP implementations increase cwnd, per Equation (18.1), where N is the number of
previously unacknowledged bytes acknowledged in the incoming ACK.

cwnd+ = min(N,SMSS) (18.1)

During congestion avoidance, cwnd is incremented by roughly 1 full-sized segment per round-trip time (RTT), and for
each congestion event, the slow start threshold is halved.

High Speed

TCP HighSpeed is designed for high-capacity channels or, in general, for TCP connections with large congestion
windows. Conceptually, with respect to the standard TCP, HighSpeed makes the cWnd grow faster during the probing
phases and accelerates the cWnd recovery from losses. This behavior is executed only when the window grows
beyond a certain threshold, which allows TCP Highspeed to be friendly with standard TCP in environments with
heavy congestion, without introducing new dangers of congestion collapse.

Mathematically:

a(cWnd)

Wnd = cWnd + ———
clWn Cn+and

The function a() is calculated using a fixed RTT the value 100 ms (the lookup table for this function is taken from RFC
3649). For each congestion event, the slow start threshold is decreased by a value that depends on the size of the slow
start threshold itself. Then, the congestion window is set to such value.

cWnd = (1 = b(cWnd)) - cWnd

The lookup table for the function b() is taken from the same RFC. More informations at:
http://dl.acm.org/citation.cfm?id=2756518

Hybla

The key idea behind TCP Hybla is to obtain for long RTT connections the same instantaneous transmission rate of
a reference TCP connection with lower RTT. With analytical steps, it is shown that this goal can be achieved by
modifying the time scale, in order for the throughput to be independent from the RTT. This independence is obtained
through the use of a coefficient rho.

This coefficient is used to calculate both the slow start threshold and the congestion window when in slow start and in
congestion avoidance, respectively.

More informations at: http://dl.acm.org/citation.cfm?id=2756518

Westwood

Westwood and Westwood+ employ the AIAD (Additive Increase/Adaptive Decrease)- congestion control paradigm.
When a congestion episode happens,- instead of halving the cwnd, these protocols try to estimate the network’s band-
width and use the estimated value to adjust the cwnd.- While Westwood performs the bandwidth sampling every ACK
reception,- Westwood+ samples the bandwidth every RTT.

More informations at: http://dl.acm.org/citation.cfm?id=381704 and http://dl.acm.org/citation.cfm?id=2512757

130 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

http://dl.acm.org/citation.cfm?id=2756518
http://dl.acm.org/citation.cfm?id=2756518
http://dl.acm.org/citation.cfm?id=381704
http://dl.acm.org/citation.cfm?id=2512757

ns-3 Model Library, Release ns-3.26

Vegas

TCP Vegas is a pure delay-based congestion control algorithm implementing a proactive scheme that tries to prevent
packet drops by maintaining a small backlog at the bottleneck queue. Vegas continuously samples the RTT and
computes the actual throughput a connection achieves using Equation (1) and compares it with the expected throughput
calculated in Equation (2). The difference between these 2 sending rates in Equation (3) reflects the amount of extra
packets being queued at the bottleneck.

actual = cWnd
~ RTT
cWnd
expected = BascRTT

dif f = expected — actual

To avoid congestion, Vegas linearly increases/decreases its congestion window to ensure the diff value fall between
the two predefined thresholds, alpha and beta. diff and another threshold, gamma, are used to determine when Vegas
should change from its slow-start mode to linear increase/decrease mode. Following the implementation of Vegas in
Linux, we use 2, 4, and 1 as the default values of alpha, beta, and gamma, respectively, but they can be modified
through the Attribute system.

More informations at: http://dx.doi.org/10.1109/49.464716

Scalable

Scalable improves TCP performance to better utilize the available bandwidth of a highspeed wide area network by
altering NewReno congestion window adjustment algorithm. When congestion has not been detected, for each ACK
received in an RTT, Scalable increases its cwnd per:

cund = cwnd + 0.01

Following Linux implementation of Scalable, we use 50 instead of 100 to account for delayed ACK.

On the first detection of congestion in a given RTT, cwnd is reduced based on the following equation:
cwnd = cwnd — ceil(0.125 - cwnd)

More informations at: http://dl.acm.org/citation.cfm?id=956989

Veno

TCP Veno enhances Reno algorithm for more effectively dealing with random packet loss in wireless access networks
by employing Vegas’s method in estimating the backlog at the bottleneck queue to distinguish between congestive and
non-congestive states.

The backlog (the number of packets accumulated at the bottleneck queue) is calculated using Equation (1):
N = Actual - (RTT — BaseRTT)
=Diff - BaseRTT
where:

Diff = Expected — Actual
cWnd — cWnd
BaseRTT RIT

Veno makes decision on cwnd modification based on the calculated N and its predefined threshold beta.

18.5. TCP models in ns-3 131

http://dx.doi.org/10.1109/49.464716
http://dl.acm.org/citation.cfm?id=956989

ns-3 Model Library, Release ns-3.26

Specifically, it refines the additive increase algorithm of Reno so that the connection can stay longer in the stable
state by incrementing cwnd by 1/cwnd for every other new ACK received after the available bandwidth has been fully
utilized, i.e. when N exceeds beta. Otherwise, Veno increases its cwnd by 1/cwnd upon every new ACK receipt as in
Reno.

In the multiplicative decrease algorithm, when Veno is in the non-congestive state, i.e. when N is less than beta,
Veno decrements its cwnd by only 1/5 because the loss encountered is more likely a corruption-based loss than a
congestion-based. Only when N is greater than beta, Veno halves its sending rate as in Reno.

More informations at: http://dx.doi.org/10.1109/JSAC.2002.807336

Bic

In TCP Bic the congestion control problem is viewed as a search problem. Taking as a starting point the current
window value and as a target point the last maximum window value (i.e. the cWnd value just before the loss event) a
binary search technique can be used to update the cWnd value at the midpoint between the two, directly or using an
additive increase strategy if the distance from the current window is too large.

This way, assuming a no-loss period, the congestion window logarithmically approaches the maximum value of cWnd
until the difference between it and cWnd falls below a preset threshold. After reaching such a value (or the maximum
window is unknown, i.e. the binary search does not start at all) the algorithm switches to probing the new maximum
window with a ‘slow start’ strategy.

If a loss occur in either these phases, the current window (before the loss) can be treated as the new maximum, and the
reduced (with a multiplicative decrease factor Beta) window size can be used as the new minimum.

More informations at: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1354672

YeAH

YeAH-TCP (Yet Another HighSpeed TCP) is a heuristic designed to balance various requirements of a state-of-the-art
congestion control algorithm:

1. fully exploit the link capacity of high BDP networks while inducing a small number of congestion events
2. compete friendly with Reno flows

3. achieve intra and RTT fairness

4. robust to random losses

5. achieve high performance regardless of buffer size

YeAH operates between 2 modes: Fast and Slow mode. In the Fast mode when the queue occupancy is small and
the network congestion level is low, YeAH increments its congestion window according to the aggressive STCP rule.
When the number of packets in the queue grows beyond a threshold and the network congestion level is high, YeAH
enters its Slow mode, acting as Reno with a decongestion algorithm. YeAH employs Vegas’ mechanism for calculating
the backlog as in Equation (18.2). The estimation of the network congestion level is shown in Equation (18.3).

Wnd
Q = (RTT — BaseRTT) - CRT’; (18.2)
I RTT — BaseRTT (18.3)

BaseRTT

To ensure TCP friendliness, YeAH also implements an algorithm to detect the presence of legacy Reno flows. Upon
the receipt of 3 duplicate ACKs, YeAH decreases its slow start threshold according to Equation (3) if it’s not competing

132 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

http://dx.doi.org/10.1109/JSAC.2002.807336
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1354672

ns-3 Model Library, Release ns-3.26

with Reno flows. Otherwise, the ssthresh is halved as in Reno:

cWnd cWnd
8 b Q)) 2

More information: http://www.csc.Isu.edu/~sjpark/cs7601/4-YeAH_TCP.pdf

ssthresh = min(max(

)

lllinois

TCP Illinois is a hybrid congestion control algorithm designed for high-speed networks. Illinois implements a
Concave-AIMD (or C-AIMD) algorithm that uses packet loss as the primary congestion signal to determine the direc-
tion of window update and queueing delay as the secondary congestion signal to determine the amount of change.

The additive increase and multiplicative decrease factors (denoted as alpha and beta, respectively) are functions of
the current average queueing delay da as shown in Equations (1) and (2). To improve the protocol robustness against
sudden fluctuations in its delay sampling, Illinois allows the increment of alpha to alphaMax only if da stays below d1
for a some (theta) amount of time.

alphaM azx if da <=dl
alpha = .
k1/(k2 + da) otherwise

betaMin if da <= d2
beta = k3 + kd da if d2 < da < d3
betaM ax otherwise

where the calculations of k1, k2, k3, and k4 are shown in the following:

(dm — d1) - alphaMin - alphaM ax

kl=
alphaMax — alphaMin
19 — (dm —d1) - alphaMm _a
alphaMax — alphaMin
53 — alphaMin - d3 — alphaMax - d2
B d3 — d2
A — alphaMax — alphaMin

d3 —d2

Other parameters include da (the current average queueing delay), and Ta (the average RTT, calculated as sumRtt /
cntRtt in the implementation) and Tmin (baseRtt in the implementation) which is the minimum RTT ever seen. dm is
the maximum (average) queueing delay, and Tmax (maxRtt in the implementation) is the maximum RTT ever seen.

da =Ta — Tmin
dm = Tmax — Tmin
d; = eta; - dm
[llinois only executes its adaptation of alpha and beta when cwnd exceeds a threshold called winThresh. Otherwise, it
sets alpha and beta to the base values of 1 and 0.5, respectively.
Following the implementation of Illinois in the Linux kernel, we use the following default parameter settings:

¢ alphaMin = 0.3 (0.1 in the Illinois paper)

18.5. TCP models in ns-3 133

http://www.csc.lsu.edu/~sjpark/cs7601/4-YeAH_TCP.pdf

ns-3 Model Library, Release ns-3.26

e alphaMax = 10.0

* betaMin = 0.125

* betaMax = 0.5

e winThresh = 15 (10 in the Illinois paper)

e theta=5

e etal =0.01
e eta2 =0.1
* eta3=0.8

More information: http://www.doi.org/10.1145/1190095.1190166

H-TCP

H-TCP has been designed for high BDP (Bandwidth-Delay Product) paths. It is a dual mode protocol. In normal
conditions, it works like traditional TCP with the same rate of increment and decrement for the congestion window.
However, in high BDP networks, when it finds no congestion on the path after deltal seconds, it increases the
window size based on the alpha function in the following:

alpha(delta) = 1+ 10(delta — deltal) 4 0.5(delta — deltal)?

where deltal is a threshold in seconds for switching between the modes and de 1t a is the elapsed time from the last
congestion. During congestion, it reduces the window size by multiplying by beta function provided in the reference
paper. The calculated throughput between the last two consecutive congestion events is considered for beta calculation.

The transport TcpHt cp can be selected in the program examples/tcp/tcp-variants/comparison to per-
form an experiment with H-TCP, although it is useful to increase the bandwidth in this example (e.g. to 20 Mb/s) to
create a higher BDP link, such as

./waf —--run "tcp-variants-comparison —--transport_prot=TcpHtcp --bandwidth=20Mbps —--duration=10"

More information (paper): http://www.hamilton.ie/net/htcp3.pdf

More information (Internet Draft): https://tools.ietf.org/html/draft-leith-tcp-htcp-06

Validation

The following tests are found in the src/internet/test directory. In general, TCP tests inherit from a class
called TcpGeneralTest, which provides common operations to set up test scenarios involving TCP objects. For
more information on how to write new tests, see the section below on Writing TCP tests.

* tcp: Basic transmission of string of data from client to server

* tcp-bytes-in-flight-test: TCP correctly estimates bytes in flight under loss conditions
* tcp-cong-avoid-test: TCP congestion avoidance for different packet sizes

¢ tcp-datasentcb: Check TCP’s ‘data sent’ callback

* tcp-endpoint-bug2211-test: A test for an issue that was causing stack overflow

* tcp-fast-retr-test: Fast Retransmit testing

* tcp-header: Unit tests on the TCP header

* tcp-highspeed-test: Unit tests on the Highspeed congestion control

134 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

http://www.doi.org/10.1145/1190095.1190166
http://www.hamilton.ie/net/htcp3.pdf
https://tools.ietf.org/html/draft-leith-tcp-htcp-06

ns-3 Model Library, Release ns-3.26

* tcp-htep-test: Unit tests on the H-TCP congestion control

¢ tcp-hybla-test: Unit tests on the Hybla congestion control

* tcp-vegas-test: Unit tests on the Vegas congestion control

* tcp-veno-test: Unit tests on the Veno congestion control

¢ tcp-scalable-test: Unit tests on the Scalable congestion control

¢ tcp-bic-test: Unit tests on the BIC congestion control

¢ tcp-yeah-test: Unit tests on the YeAH congestion control

* tep-illinois-test: Unit tests on the Illinois congestion control

e tcp-option: Unit tests on TCP options

* tcp-pkts-acked-test: Unit test the number of time that PktsAcked is called

¢ tcp-rto-test: Unit test behavior after a RTO timeout occurs

* tcp-rtt-estimation-test: Check RTT calculations, including retransmission cases
* tcp-slow-start-test: Check behavior of slow start

¢ tcp-timestamp: Unit test on the timestamp option

* tcp-wscaling: Unit test on the window scaling option

* tcp-zero-window-test: Unit test persist behavior for zero window conditions

Several tests have dependencies outside of the internet module, so they are located in a system test directory called
src/test/ns3tcp. Three of these six tests involve use of the Network Simulation Cradle, and are disabled if NSC
is not enabled in the build.

* ns3-tcp-cwnd: Check to see that ns-3 TCP congestion control works against liblinux2.6.26.s0 implementation
¢ ns3-tcp-interoperability: Check to see that ns-3 TCP interoperates with liblinux2.6.26.so implementation
 ns3-tcp-loss: Check behavior of ns-3 TCP upon packet losses

* nsc-tep-loss: Check behavior of NSC TCP upon packet losses

* ns3-tcp-no-delay: Check that ns-3 TCP Nagle”s algorithm works correctly and that it can be disabled

* ns3-tcp-socket: Check that ns-3 TCP successfully transfers an application data write of various sizes

* ns3-tcp-state: Check the operation of the TCP state machine for several cases

Several TCP validation test results can also be found in the wiki page describing this implementation.

Writing a new congestion control algorithm

Writing (or porting) a congestion control algorithms from scratch (or from other systems) is a process completely
separated from the internals of TcpSocketBase.

All operations that are delegated to a congestion control are contained in the class TcpCongestionOps. It mimics the
structure tcp_congestion_ops of Linux, and the following operations are defined:

virtual std::string GetName () const;

virtual uint32_t GetSsThresh (Ptr<const TcpSocketState> tcb, uint32_t bytesInFlight);
virtual void IncreaseWindow (Ptr<TcpSocketState> tcb, uint32_t segmentsAcked);

virtual void PktsAcked (Ptr<TcpSocketState> tcb, uint32_t segmentsAcked,const Time& rtt);
virtual Ptr<TcpCongestionOps> Fork ();

18.5. TCP models in ns-3 135

http://www.nsnam.org/wiki/New_TCP_Socket_Architecture

ns-3 Model Library, Release ns-3.26

The most interesting methods to write are GetSsThresh and IncreaseWindow. The latter is called when TcpSocketBase
decides that it is time to increase the congestion window. Much information is available in the Transmission Control
Block, and the method should increase cWnd and/or ssThresh based on the number of segments acked.

GetSsThresh is called whenever the socket needs an updated value of the slow start threshold. This happens after a
loss; congestion control algorithms are then asked to lower such value, and to return it.

PktsAcked is used in case the algorithm needs timing information (such as RTT), and it is called each time an ACK is
received.

Current limitations

* SACK is not supported
» TcpCongestionOps interface does not contain every possible Linux operation

* Fast retransmit / fast recovery are bound with TcpSocketBase, thereby preventing easy simulation of TCP Tahoe

Writing TCP tests

The TCP subsystem supports automated test cases on both socket functions and congestion control algorithms. To
show how to write tests for TCP, here we explain the process of creating a test case that reproduces a bug (#1571 in
the project bug tracker).

The bug concerns the zero window situation, which happens when the receiver can not handle more data. In this case,
it advertises a zero window, which causes the sender to pause transmission and wait for the receiver to increase the
window.

The sender has a timer to periodically check the receiver’s window: however, in modern TCP implementations, when
the receiver has freed a “significant” amount of data, the receiver itself sends an “active” window update, meaning that
the transmission could be resumed. Nevertheless, the sender timer is still necessary because window updates can be
lost.

Note: During the text, we will assume some knowledge about the general design of the TCP test infrastructure, which
is explained in detail into the Doxygen documentation. As a brief summary, the strategy is to have a class that sets

up a TCP connection, and that calls protected members of itself. In this way, subclasses can implement the necessary
members, which will be called by the main TcpGeneralTest class when events occour. For example, after processing
an ACK, the method ProcessedAck will be invoked. Subclasses interested in checking some particular things which
must have happened during an ACK processing, should implement the Processed Ack method and check the interesting
values inside the method. To get a list of available methods, please check the Doxygen documentation.

We describe the writing of two test case, covering both situations: the sender’s zero-window probing and the receiver
“active” window update. Our focus will be on dealing with the reported problems, which are:

* an ns-3 receiver does not send “active” window update when its receive buffer is being freed;
* even if the window update is artificially crafted, the transmission does not resume.
However, other things should be checked in the test:
* Persistent timer setup
* Persistent timer teardown if rWnd increases
To construct the test case, one first derives from the TcpGeneralTest class:

The code is the following:

136 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

ns-3 Model Library, Release ns-3.26

TcpZeroWindowTest: :TcpZeroWindowTest (const std::string &desc)
TcpGeneralTest (desc)

{

}

Then, one should define the general parameters for the TCP connection, which will be one-sided (one node is acting
as SENDER, while the other is acting as RECEIVER):

» Application packet size set to 500, and 20 packets in total (meaning a stream of 10k bytes)
* Segment size for both SENDER and RECEIVER set to 500 bytes

¢ Initial slow start threshold set to UINT32_MAX

* Initial congestion window for the SENDER set to 10 segments (5000 bytes)

» Congestion control: NewReno

We have also to define the link properties, because the above definition does not work for every combination of
propagation delay and sender application behavior.

 Link one-way propagation delay: 50 ms
* Application packet generation interval: 10 ms
* Application starting time: 20 s after the starting point

To define the properties of the environment (e.g. properties which should be set before the object creation, such as
propagation delay) one next implements ehe method ConfigureEnvironment:

void
TcpZeroWindowTest: :ConfigureEnvironment ()
{
TcpGeneralTest::ConfigureEnvironment ();
SetAppPktCount (20);
SetMTU (500);
SetTransmitStart (Seconds (2.0));
SetPropagationDelay (MilliSeconds (50));
}

For other properties, set after the object creation, one can use ConfigureProperties (). The difference is that some
values, such as initial congestion window or initial slow start threshold, are applicable only to a single instance, not to
every instance we have. Usually, methods that requires an id and a value are meant to be called inside ConfigureProp-
erties (). Please see the doxygen documentation for an exhaustive list of the tunable properties.

void
TcpZeroWindowTest: :ConfigureProperties ()
{
TcpGeneralTest::ConfigureProperties ();
SetInitialCwnd (SENDER, 10);
}

To see the default value for the experiment, please see the implementation of both methods inside TcpGeneralTest
class.

Note: If some configuration parameters are missing, add a method called “SetSomeValue” which takes as input the
value only (if it is meant to be called inside ConfigureEnvironment) or the socket and the value (if it is meant to be

called inside ConfigureProperties).

To define a zero-window situation, we choose (by design) to initiate the connection with a O-byte rx buffer. This implies
that the RECEIVER, in its first SYN-ACK, advertises a zero window. This can be accomplished by implementing the

18.5. TCP models in ns-3 137

ns-3 Model Library, Release ns-3.26

method CreateReceiverSocket, setting an Rx buffer value of 0 bytes (at line 6 of the following code):

Ptr<TcpSocketMsgBase>
TcpZeroWindowTest: :CreateReceiverSocket (Ptr<Node> node)

{

Ptr<TcpSocketMsgBase> socket = TcpGeneralTest::CreateReceiverSocket (node);

socket->SetAttribute ("RcvBufSize", UintegerValue (0));
Simulator: :Schedule (Seconds (10.0),
&TcpZeroWindowTest: :IncreaseBufSize, this);

return socket;

}

Even so, to check the active window update, we should schedule an increase of the buffer size. We do this at line 7
and 8, scheduling the function IncreaseBufSize.

void
TcpZeroWindowTest: :IncreaseBufSize ()

{
SetRcvBufSize (RECEIVER, 2500);

}

Which utilizes the SetRcvBufSize method to edit the RxBuffer object of the RECEIVER. As said before, check the
Doxygen documentation for class TcpGeneralTest to be aware of the various possibilities that it offers.

Note: By design, we choose to mantain a close relationship between TcpSocketBase and TcpGeneralTest: they are
connected by a friendship relation. Since friendship is not passed through inheritance, if one discovers that one needs

to access or to modify a private (or protected) member of TcpSocketBase, one can do so by adding a method in the
class TcpGeneralSocket. An example of such method is SetRcvBufSize, which allows TcpGeneralSocket subclasses
to forcefully set the RxBuffer size.

void
TcpGeneralTest: :SetRcvBufSize (SocketWho who, uint32_t size)
{
if (who == SENDER)
{
m_senderSocket->SetRcvBufSize (size);
}
else if (who == RECEIVER)
{
m_receiverSocket->SetRcvBufSize (size);
}
else
{
NS_FATAL_ERROR ("Not defined");
}

Next, we can start to follow the TCP connection:
1. Attime 0.0 s the connection is opened sender side, with a SYN packet sent from SENDER to RECEIVER
2. Attime 0.05 s the RECEIVER gets the SYN and replies with a SYN-ACK
3. Attime 0.10 s the SENDER gets the SYN-ACK and replies with a SYN.

While the general structure is defined, and the connection is started, we need to define a way to check the rWnd field
on the segments. To this aim, we can implement the methods Rx and Tx in the TcpGeneralTest subclass, checking
each time the actions of the RECEIVER and the SENDER. These methods are defined in TcpGeneralTest, and they

138 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

ns-3 Model Library, Release ns-3.26

are attached to the Rx and Tx traces in the TcpSocketBase. One should write small tests for every detail that one wants
to ensure during the connection (it will prevent the test from changing over the time, and it ensures that the behavior
will stay consistent through releases). We start by ensuring that the first SYN-ACK has 0 as advertised window size:

void
TcpZeroWindowTest: :Tx (const Ptr<const Packet> p, const TcpHeader &h, SocketWho who)
{

else if (who == RECEIVER)
{
NS_LOG_INFO ("\tRECEIVER TX " << h << " size " << p->GetSize());

if (h.GetFlags () & TcpHeader::SYN)
{
NS_TEST_ASSERT_MSG_EQ (h.GetWindowSize (), O,
"RECEIVER window size is not 0 in the SYN-ACK");

}

Pratically, we are checking that every SYN packet sent by the RECEIVER has the advertised window set to 0. The
same thing is done also by checking, in the Rx method, that each SYN received by SENDER has the advertised
window set to 0. Thanks to the log subsystem, we can print what is happening through messages. If we run the
experiment, enabling the logging, we can see the following:

./waf shell

gdb --args ./build/utils/ns3-dev-test-runner-debug --test-name=tcp-zero-window-test --stop-on-failure
(gdb) run

0.00s TcpZeroWindowTestSuite:Tx () 0.00 SENDER TX 49153 > 4477 [SYN] Seg=0 Ack=0 Win=32768 ns3:
0.05s TcpZeroWindowTestSuite:Rx () 0.05 RECEIVER RX 49153 > 4477 [SYN] Seg=0] Win=32768 ns!
0.05s TcpZeroWindowTestSuite:Tx(): 0.05 RECEIVER TX 4477 > 49153 [SYN|ACK] Ack=1 Win=0 ns:
0.10s TcpZeroWindowTestSuite:Rx () 0.10 SENDER RX 4477 > 49153 [SYN|ACK] Ack=1 Win=0 ns3:
0.10s TcpZeroWindowTestSuite:Tx () 0.10 SENDER TX 49153 > 4477 [ACK] Seg=1) Win=32768 ns3:
0.15s TcpZeroWindowTestSuite:Rx () 0.15 RECEIVER RX 49153 > 4477 [ACK] Seg=1 Acl Win=32768 ns:
(..

-)

The output is cut to show the threeway handshake. As we can see from the headers, the rWnd of RECEIVER is set
to 0, and thankfully our tests are not failing. Now we need to test for the persistent timer, which sould be started by
the SENDER after it receives the SYN-ACK. Since the Rx method is called before any computation on the received
packet, we should utilize another method, namely ProcessedAck, which is the method called after each processed
ACK. In the following, we show how to check if the persistent event is running after the processing of the SYN-ACK:

void
TcpZeroWindowTest: :ProcessedAck (const Ptr<const TcpSocketState> tcb,
const TcpHeaderé& h, SocketWho who)

if (who == SENDER)
{
if (h.GetFlags () & TcpHeader::SYN)
{
EventId persistentEvent = GetPersistentEvent (SENDER);
NS_TEST_ASSERT_MSG_EQ (persistentEvent.IsRunning (), true,
"Persistent event not started");

18.5. TCP models in ns-3 139

ns-3 Model Library, Release ns-3.26

Since we programmed the increase of the buffer size after 10 simulated seconds, we expect the persistent timer to fire
before any rWnd changes. When it fires, the SENDER should send a window probe, and the receiver should reply
reporting again a zero window situation. At first, we investigates on what the sender sends:

if (Simulator::Now () .GetSeconds () <= 6.0)

{
NS_TEST_ASSERT_MSG_EQ (p—>GetSize () - h.GetSerializedSize(), O,

"Data packet sent anyway");

}
else if (Simulator::Now () .GetSeconds () > 6.0 &&

Simulator: :Now () .GetSeconds () <= 7.0)
NS_TEST_ASSERT_MSG_EQ (m_zeroWindowProbe, false, "Sent another probe");

if (! m_zeroWindowProbe)
{
NS_TEST_ASSERT_MSG_EQ (p—->GetSize () - h.GetSerializedSize(), 1,
"Data packet sent instead of window probe");
NS_TEST_ASSERT_MSG_EQ (h.GetSequenceNumber (), SequenceNumber32 (1),
"Data packet sent instead of window probe");
m_zeroWindowProbe = true;

}

We divide the events by simulated time. At line 1, we check everything that happens before the 6.0 seconds mark; for
instance, that no data packets are sent, and that the state remains OPEN for both sender and receiver.

Since the persist timeout is initialized at 6 seconds (excercise left for the reader: edit the test, getting this value from
the Attribute system), we need to check (line 6) between 6.0 and 7.0 simulated seconds that the probe is sent. Only
one probe is allowed, and this is the reason for the check at line 11.

if (Simulator::Now () .GetSeconds () > 6.0 &&
Simulator: :Now () .GetSeconds () <= 7.0)

NS_TEST_ASSERT_MSG_EQ (h.GetSequenceNumber (), SequenceNumber32 (1),
"Data packet sent instead of window probe");
NS_TEST_ASSERT_MSG_EQ (h.GetWindowSize (), O,
"No zero window advertised by RECEIVER");

}

For the RECEIVER, the interval between 6 and 7 seconds is when the zero-window segment is sent.

Other checks are redundant; the safest approach is to deny any other packet exchange between the 7 and 10 seconds
mark.

else if (Simulator::Now () .GetSeconds () > 7.0 &&
Simulator::Now () .GetSeconds () < 10.0)

NS_FATAL_ERROR ("No packets should be sent before the window update");
}

The state checks are performed at the end of the methods, since they are valid in every condition:

NS_TEST_ASSERT_MSG_EQ (GetCongStateFrom (GetTcb (SENDER)), TcpSocketState::CA_OPEN,
"Sender State is not OPEN");

NS_TEST_ASSERT_MSG_EQ (GetCongStateFrom (GetTcb (RECEIVER)), TcpSocketState::CA_OPEN,
"Receiver State is not OPEN");

Now, the interesting part in the Tx method is to check that after the 10.0 seconds mark (when the RECEIVER sends
the active window update) the value of the window should be greater than zero (and precisely, set to 2500):

140 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

ns-3 Model Library, Release ns-3.26

else if (Simulator::Now () .GetSeconds () >= 10.0)

{
NS_TEST_ASSERT_MSG_EQ (h.GetWindowSize (), 2500,
"Receiver window not updated");

To be sure that the sender receives the window update, we can use the Rx method:

if (Simulator::Now () .GetSeconds () >= 10.0)

{
NS_TEST_ASSERT_MSG_EQ (h.GetWindowSize (), 2500,
"Receiver window not updated");

m_windowUpdated = true;

We check every packet after the 10 seconds mark to see if it has the window updated. At line 5, we also set to true a
boolean variable, to check that we effectively reach this test.

Last but not least, we implement also the NormalClose() method, to check that the connection ends with a success:

void
TcpZeroWindowTest: :NormalClose (SocketWho who)
{
if (who == SENDER)
{
m_senderFinished = true;
}
else if (who == RECEIVER)

{

m_receiverFinished = true;

The method is called only if all bytes are transmitted successfully. Then, in the method FinalChecks(), we check all
variables, which should be true (which indicates that we have perfectly closed the connection).

void
TcpZeroWindowTest: :FinalChecks ()
{
NS_TEST_ASSERT_MSG_EQ (m_zeroWindowProbe, true,
"Zero window probe not sent");
NS_TEST_ASSERT_MSG_EQ (m_windowUpdated, true,
"Window has not updated during the connection");
NS_TEST_ASSERT_MSG_EQ (m_senderFinished, true,
"Connection not closed successfully (SENDER)");
NS_TEST_ASSERT_MSG_EQ (m_receiverFinished, true,
"Connection not closed successfully (RECEIVER)");

To run the test, the usual way is

./test.py -s tcp-zero-window-test

PASS: TestSuite tcp-zero-window-test
1 of 1 tests passed (1 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

To see INFO messages, use a combination of ./waf shell and gdb (really useful):

./waf shell && gdb —--args ./build/utils/ns3-dev-test-runner-debug —--test-name=tcp-zero-window-test -

18.5. TCP models in ns-3 141

ns-3 Model Library, Release ns-3.26

and then, hit “Run”.

Note: This code magically runs without any reported errors; however, in real cases, when you discover a bug you
should expect the existing test to fail (this could indicate a well-written test and a bad-writted model, or a bad-written

test; hopefull the first situation). Correcting bugs is an iterative process. For instance, commits created to make this
test case running without errors are 11633:6b74df04cf44, (others to be merged).

18.5.3 Network Simulation Cradle

The Network Simulation Cradle (NSC) is a framework for wrapping real-world network code into simulators, allowing
simulation of real-world behavior at little extra cost. This work has been validated by comparing situations using a
test network with the same situations in the simulator. To date, it has been shown that the NSC is able to produce
extremely accurate results. NSC supports four real world stacks: FreeBSD, OpenBSD, IwIP and Linux. Emphasis
has been placed on not changing any of the network stacks by hand. Not a single line of code has been changed
in the network protocol implementations of any of the above four stacks. However, a custom C parser was built to
programmatically change source code.

NSC has previously been ported to ns-2 and OMNeT++, and was was added to ns-3 in September 2008 (ns-3.2 release).
This section describes the ns-3 port of NSC and how to use it.

To some extent, NSC has been superseded by the Linux kernel support within Direct Code Execution (DCE). However,
NSC is still available through the bake build system. NSC supports Linux kernels 2.6.18 and 2.6.26, but newer versions
of the kernel have not been ported.

Prerequisites

Presently, NSC has been tested and shown to work on these platforms: Linux i386 and Linux x86-64. NSC does not
support powerpc. Use on FreeBSD or OS X is unsupported (although it may be able to work).

Building NSC requires the packages flex and bison.

Configuring and Downloading
As of ns-3.17 or later, NSC must either be downloaded separately from its own repository, or downloading when using
the bake build system of ns-3.

For ns-3.17 or later releases, when using bake, one must configure NSC as part of an “allinone” configuration, such
as:

S cd bake

S python bake.py configure -e ns-allinone-3.19
S python bake.py download

$ python bake.py build

Instead of a released version, one may use the ns-3 development version by specifying “ns-3-allinone” to the configure
step above.

NSC may also be downloaded from its download site using Mercurial:

$ hg clone https://secure.wand.net.nz/mercurial/nsc

Prior to the ns-3.17 release, NSC was included in the allinone tarball and the released version did not need to be
separately downloaded.

142 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

http://www.wand.net.nz/~stj2/nsc/
http://www.nsnam.org/docs/dce/manual/singlehtml/index.html
http://www.nsnam.org/docs/tutorial/html/getting-started.html#downloading-ns3-using-bake
http://research.wand.net.nz/software/nsc.php

ns-3 Model Library, Release ns-3.26

Building and validating
NSC may be built as part of the bake build process; alternatively, one may build NSC by itself using its build system;
e.g.

$ cd nsc-dev
$ python scons.py

Once NSC has been built either manually or through the bake system, change into the ns-3 source directory and try
running the following configuration:

./waf configure

If NSC has been previously built and found by waf, then you will see:

Network Simulation Cradle : enabled

If NSC has not been found, you will see:

Network Simulation Cradle : not enabled (NSC not found (see option —--with-nsc))

In this case, you must pass the relative or absolute path to the NSC libraries with the “—with-nsc” configure option;
e.g.

./waf configure —--with-nsc=/path/to/my/nsc/directory

For ns-3 releases prior to the ns-3.17 release, using the build. py script in ns-3-allinone directory, NSC will be built
by default unless the platform does not support it. To explicitly disable it when building ns-3, type:

./waf configure —--enable-examples —--enable-tests —--disable-nsc

If waf detects NSC, then building ns-3 with NSC is performed the same way with waf as without it. Once 7ns-3 is built,
try running the following test suite:

./test.py —-s ns3-tcp-interoperability

If NSC has been successfully built, the following test should show up in the results:

PASS TestSuite ns3-tcp-interoperability

This confirms that NSC is ready to use.

Usage

There are a few example files. Try:

./waf —--run tcp-nsc-zoo
./waf —-run tcp-nsc-1lfn

These examples will deposit some . pcap files in your directory, which can be examined by tcpdump or wireshark.

Let’s look at the examples/tcp/tcp—nsc—-zoo. cc file for some typical usage. How does it differ from using
native ns-3 TCP? There is one main configuration line, when using NSC and the ns-3 helper API, that needs to be set:

InternetStackHelper internetStack;

internetStack.SetNscStack ("liblinux2.6.26.s0");

// this switches nodes 0 and 1 to NSCs Linux 2.6.26 stack.
internetStack.Install (n.Get (0));

internetStack.Install (n.Get (1));

18.5. TCP models in ns-3 143

ns-3 Model Library, Release ns-3.26

The key line is the SetNscStack. This tells the InternetStack helper to aggregate instances of NSC TCP instead of
native ns-3 TCP to the remaining nodes. It is important that this function be called before calling the Install ()
function, as shown above.

Which stacks are available to use? Presently, the focus has been on Linux 2.6.18 and Linux 2.6.26 stacks for ns-3. To
see which stacks were built, one can execute the following find command at the ns-3 top level directory:

S find nsc -name "x.so" -type f
nsc/linux-2.6.18/1iblinux2.6.18.so0
nsc/linux-2.6.26/1liblinux2.6.26.s0

This tells us that we may either pass the library name liblinux2.6.18.so or liblinux2.6.26.so to the above configuration
step.

Stack configuration

NSC TCP shares the same configuration attributes that are common across TCP sockets, as described above and
documented in Doxygen

Additionally, NSC TCP exports a lot of configuration variables into the ns-3 attributes system, via a sysctl-like inter-
face. In the examples/tcp/tcp-nsc-zoo example, you can see the following configuration:

// this disables TCP SACK, wscale and timestamps on node 1 (the attributes
represent sysctl-values).
Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipv4.tcp_sack",
StringValue ("0"));
Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipvéd.tcp_timestamps",
StringValue ("0"));
Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipvéd.tcp_window_scaling",
StringValue ("0"));

These additional configuration variables are not available to native ns-3 TCP.

Also note that default values for TCP attributes in ns-3 TCP may differ from the nsc TCP implementation. Specifically
in ns-3:

1. TCP default MSS is 536
2. TCP Delayed Ack count is 2

Therefore when making comparisons between results obtained using nsc and ns-3 TCP, care must be taken to ensure
these values are set appropriately. See /examples/tcp/tcp-nsc-comparision.cc for an example.

NSC API

This subsection describes the API that NSC presents to ns-3 or any other simulator. NSC provides its API in the form
of a number of classes that are defined in sim/sim_interface.h in the nsc directory.

» INetStack INetStack contains the ‘low level’ operations for the operating system network stack, e.g. in and
output functions from and to the network stack (think of this as the ‘network driver interface’. There are also
functions to create new TCP or UDP sockets.

¢ ISendCallback This is called by NSC when a packet should be sent out to the network. This simulator should
use this callback to re-inject the packet into the simulator so the actual data can be delivered/routed to its
destination, where it will eventually be handed into Receive() (and eventually back to the receivers NSC instance
via INetStack->if_receive()).

* INetStreamSocket This is the structure defining a particular connection endpoint (file descriptor). It contains
methods to operate on this endpoint, e.g. connect, disconnect, accept, listen, send_data/read_data, ...

144 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

http://www.nsnam.org/doxygen/classns3_1_1_tcp_socket.html
http://en.wikipedia.org/wiki/Sysctl

ns-3 Model Library, Release ns-3.26

¢ IInterruptCallback This contains the wakeup callback, which is called by NSC whenever something of in-
terest happens. Think of wakeup() as a replacement of the operating systems wakeup function: Whenever the
operating system would wake up a process that has been waiting for an operation to complete (for example the
TCP handshake during connect()), NSC invokes the wakeup() callback to allow the simulator to check for state
changes in its connection endpoints.

ns-3 implementation

The ns-3 implementation makes use of the above NSC API, and is implemented as follows.
The three main parts are:

* ns3::NscTcpL4Protocol: asubclass of Ipv4L4Protocol (and two nsc classes: ISendCallback and IInter-
ruptCallback)

* ns3::NscTcpSocketImpl: asubclass of TcpSocket
* ns3::NscTcpSocketFactoryImpl: afactory to create new NSC sockets

src/internet/model/nsc-tcp-l4-protocol isthe main class. Upon Initialization, it loads an nsc network
stack to use (via dlopen()). Each instance of this class may use a different stack. The stack (=shared library) to use
is set using the SetNscLibrary() method (at this time its called indirectly via the internet stack helper). The nsc stack
is then set up accordingly (timers etc). The NscTcpL4Protocol::Receive() function hands the packet it receives (must
be a complete tcp/ip packet) to the nsc stack for further processing. To be able to send packets, this class implements
the nsc send_callback method. This method is called by nsc whenever the nsc stack wishes to send a packet out to
the network. Its arguments are a raw buffer, containing a complete TCP/IP packet, and a length value. This method
therefore has to convert the raw data to a Ptr<Packet> usable by ns-3. In order to avoid various ipv4 header issues, the
nsc ip header is not included. Instead, the tcp header and the actual payload are put into the Ptr<Packet>, after this the
Packet is passed down to layer 3 for sending the packet out (no further special treatment is needed in the send code
path).

This class calls ns3: :NscTcpSocket Impl both from the nsc wakeup() callback and from the Receive path (to
ensure that possibly queued data is scheduled for sending).

src/internet/model/nsc-tcp-socket-impl implements the nsc socket interface. Each instance has its
own nscTcpSocket. Data that is Send() will be handed to the nsc stack via m_nscTcpSocket->send_data(). (and
not to nsc-tcp-14, this is the major difference compared to ns-3 TCP). The class also queues up data that is Send()
before the underlying descriptor has entered an ESTABLISHED state. This class is called from the nsc-tcp-14 class,
when the nsc-tcp-14 wakeup() callback is invoked by nsc. nsc-tcp-socket-impl then checks the current connection state
(SYN_SENT, ESTABLISHED, LISTEN...) and schedules appropriate callbacks as needed, e.g. a LISTEN socket will
schedule Accept to see if a new connection must be accepted, an ESTABLISHED socket schedules any pending data
for writing, schedule a read callback, etc.

Note that ns3: :NscTcpSocketImpl does not interact with nsc-tcp directly: instead, data is redirected to nsc.
nsc-tcp calls the nsc-tcp-sockets of a node when its wakeup callback is invoked by nsc.

Limitations
* NSC only works on single-interface nodes; attempting to run it on a multi-interface node will cause a program
error.
* Cygwin and OS X PPC are not supported; OS X Intel is not supported but may work
* The non-Linux stacks of NSC are not supported in ns-3
* Not all socket API callbacks are supported

For more information, see this wiki page.

18.5. TCP models in ns-3 145

http://www.nsnam.org/wiki/Network_Simulation_Cradle_Integration

ns-3 Model Library, Release ns-3.26

18.6 Internet Applications Module Documentation

The goal of this module is to hold all the Internet-specific applications, and most notably some very specific appli-
cations (e.g., ping) or daemons (e.g., radvd). Other non-Internet-specific applications such as packet generators are
contained in other modules.

18.6.1 Model Description

The source code for the new module lives in the directory src/internet-apps.

Each application has its own goals, limitations and scope, which are briefly explained in the following.

V4Ping

This app mimics a “ping” (ICMP Echo) using IPv4. The application allows the following attributes to be set:
* Remote address
* Verbose mode
* Packet size (default 56 bytes)
¢ Packet interval (default 1 second)

Moreover, the user can access the measured rtt value (as a Traced Source).

Ping6

This app mimics a “ping” (ICMP Echo) using IPv6. The application allows the following attributes to be set:
* Remote address
¢ Local address (sender address)
* Packet size (default 56 bytes)
¢ Packet interval (default 1 second)

¢ Max number of packets to send

Radvd

This app mimics a “RADVD” daemon. lL.e., the daemon responsible for IPv6 routers advertisements. All the IPv6
routers should have a RADVD daemon installed.

The configuration of the Radvd application mimics the one of the radvd Linux program.

18.6.2 Examples and use

All the applications are extensively used in the top-level examples directories. The users are encouraged to check
the scripts therein to have a clear overview of the various options and usage tricks.

PageBreak

146 Chapter 18. Internet Models (IP, TCP, Routing, UDP, Internet Applications)

CHAPTER
NINETEEN

LOW-RATE WIRELESS PERSONAL AREA NETWORK (LR-WPAN)

This chapter describes the implementation of ns-3 models for the low-rate, wireless personal area network (LR-WPAN)

as specified by IEEE standard 802.15.4 (2006).

19.1 Model Description

The source code for the Ir-wpan module lives in the directory src/lr—-wpan.

19.1.1 Design

The model design closely follows the standard from an architectural standpoint.

< Upper Layers >

A

y

802.2 LLC

SSCS

i \ 4
MCPS-SAP MLME-SAP
MAC

0
\/

PD-SAP PLME-SAP
PHY

RF Channel

Figure 19.1: Architecture and scope of Ir-wpan models

The grey areas in the figure (adapted from Fig 3. of IEEE Std. 802.15.4-2006) show the scope of the model.

147

ns-3 Model Library, Release ns-3.26

The Spectrum NetDevice from Nicola Baldo is the basis for the implementation.

The implementation also plans to borrow from the ns-2 models developed by Zheng and Lee in the future.

APIs

The APIs closely follow the standard, adapted for ns-3 naming conventions and idioms. The APIs are organized around
the concept of service primitives as shown in the following figure adapted from Figure 14 of IEEE Std. 802.15.4-2006.

Service User
(N-User)

Request

Confirm

Service Provider
(N-Layer)

Service User
(N-User)

Indication

Response

PALSIRIES

Figure 19.2: Service primitives

The APIs are organized around four conceptual services and service access points (SAP):

¢ MAC data service (MCPS)

* MAC management service (MLME)
e PHY data service (PD)

¢ PHY management service (PLME)

In general, primitives are standardized as follows (e.g. Sec 7.1.1.1.1 of IEEE 802.15.4-2006)::

MCPS-DATA.request (
SrcAddrMode,
DstAddrMode,
DstPANId,
DstAddr,
msdulLength,
msdu,
msduHandle,
TxOptions,
SecurityLevel,
KeyIdMode,
KeySource,
KeyIndex
)

This maps to ns-3 classes and methods such as::

struct McpsDataRequestParameters
{

uint8_t m_srcAddrMode;

uint8_t m_dstAddrMode;

148 Chapter 19.

Low-Rate Wireless Personal Area Network (LR-WPAN)

ns-3 Model Library, Release ns-3.26

}i

void
LrWpanMac: :McpsDataRequest (McpsDataRequestParameters params)

{

}

MAC

The MAC at present implements the unslotted CSMA/CA variant, without beaconing. Currently there is no support
for coordinators and the relavant APIs.

The implemented MAC is similar to Contiki’s NullMAC, i.e., a MAC without sleep features. The radio is assumed
to be always active (receiving or transmitting), of completely shut down. Frame reception is not disabled while
performing the CCA.

The main API supported is the data transfer API (McpsDataRequest/Indication/Confirm). CSMA/CA according to Stc
802.15.4-2000, section 7.5.1.4 is supported. Frame reception and rejection according to Std 802.15.4-2006, section
7.5.6.2 is supported, including acknowledgements. Only short addressing completely implemented. Various trace
sources are supported, and trace sources can be hooked to sinks.

PHY

The physical layer components consist of a Phy model, an error rate model, and a loss model. The error rate model
presently models the error rate for IEEE 802.15.4 2.4 GHz AWGN channel for OQPSK; the model description can be
found in IEEE Std 802.15.4-2006, section E.4.1.7. The Phy model is based on SpectrumPhy and it follows specifica-
tion described in section 6 of IEEE Std 802.15.4-2006. It models PHY service specifications, PPDU formats, PHY
constants and PIB attributes. It currently only supports the transmit power spectral density mask specified in 2.4 GHz
per section 6.5.3.1. The noise power density assumes uniformly distributed thermal noise across the frequency bands.
The loss model can fully utilize all existing simple (non-spectrum phy) loss models. The Phy model uses the existing
single spectrum channel model. The physical layer is modeled on packet level, that is, no preamble/SFD detection is
done. Packet reception will be started with the first bit of the preamble (which is not modeled), if the SNR is more
than -5 dB, see IEEE Std 802.15.4-2006, appendix E, Figure E.2. Reception of the packet will finish after the packet
was completely transmitted. Other packets arriving during reception will add up to the interference/noise.

Currently the receiver sensitivity is set to a fixed value of -106.58 dBm. This corresponds to a packet error rate of 1%
for 20 byte reference packets for this signal power, according to IEEE Std 802.15.4-2006, section 6.1.7. In the future
we will provide support for changing the sensitivity to different values.

NetDevice

Although it is expected that other technology profiles (such as 6LoWPAN and ZigBee) will write their own NetDevice
classes, a basic LrWpanNetDevice is provided, which encapsulates the common operations of creating a generic
LrWpan device and hooking things together.

19.1.2 Scope and Limitations

Future versions of this document will contain a PICS proforma similar to Appendix D of IEEE 802.15.4-2006. The
current emphasis is on the unslotted mode of 802.15.4 operation for use in Zigbee, and the scope is limited to enabling a
single mode (CSMA/CA) with basic data transfer capabilities. Association with PAN coordinators is not yet supported,
nor the use of extended addressing. Interference is modeled as AWGN but this is currently not thoroughly tested.

19.1. Model Description 149

ns-3 Model Library, Release ns-3.26

100

0.01 \

0.0001 \
1e-06 \
1e-08 \
le-10 \

1e~12_ \

130 -125 -120 -115 -110 -105 -100
RxPower (dBm)

Packet Error Rate (PER)

Figure 19.3: Packet error rate vs. signal power

The NetDevice Tx queue is not limited, i.e., packets are never dropped due to queue becoming full. They may be
dropped due to excessive transmission retries or channel access failure.

19.1.3 References

* Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless
Personal Area Networks (WPANSs), IEEE Computer Society, IEEE Std 802.15.4-2006, 8 September 2006.

¢ 10. Zheng and Myung J. Lee, “A comprehensive performance study of IEEE 802.15.4,” Sensor Network Op-
erations, IEEE Press, Wiley Interscience, Chapter 4, pp. 218-237, 2006.

19.2 Usage

19.2.1 Enabling Ir-wpan

Add 1r-wpan to the list of modules built with ns-3.

19.2.2 Helper

The helper is patterned after other device helpers. In particular, tracing (ascii and pcap) is enabled simi-
larly, and enabling of all Ir-wpan log components is performed similarly. Use of the helper is exemplified in
examples/lr-wpan-data.cc. For ascii tracing, the transmit and receive traces are hooked at the Mac layer.

The default propagation loss model added to the channel, when this helper is used, is the LogDistancePropagation-
LossModel with default parameters.

150 Chapter 19. Low-Rate Wireless Personal Area Network (LR-WPAN)

ns-3 Model Library, Release ns-3.26

19.2.3 Examples

The following examples have been written, which can be found in src/lr-wpan/examples/:
e lr-wpan-data.cc: A simple example showing end-to-end data transfer.

e lr-wpan-error-distance-plot.cc: An example to plot variations of the packet success ratio as a
function of distance.

* lr-wpan-error-model-plot.cc: Anexample to test the phy.
* lr-wpan-packet-print.cc: Anexample to print out the MAC header fields.
* lr-wpan-phy-test.cc: An example to test the phy.

In particular, the module enables a very simplified end-to-end data transfer scenario, implemented in
lr-wpan-data.cc. The figure shows a sequence of events that are triggered when the MAC receives a DataRe-
quest from the higher layer. It invokes a Clear Channel Assessment (CCA) from the PHY, and if successful, sends the
frame down to the PHY where it is transmitted over the channel and results in a Datalndication on the peer node.

McpsDataRequest (Ptr<Packet> p) McpsDatalndication (Ptr<Packet> p)
l 1) //I'cpsDataConﬁrm (status) T 1)
MCPS-SAP > MCPS-SAP
/2) Add header and traiIer\ > /4) Request CCA \ 10) remove mac
3) Queue packet for CCA (implement CSMA state header and trailer
l } machine) }

—
\ class LilWpanMac \ dlassLriWpanCsmaCa

4) LrWpanPhy:: 5) LrWpanPhy::
8) LrWpanPhy:: PImeCcaRequest PImeCcaConfirm 9) LiWpanMac:

PdDataRequest .
q 7) LrWpanPhy::) PdDataConfirm
6) LrWpanPhy:: ImeSetTRXStageCopfirm
PImeSetTRXStateReque v
PD-SAP PLME-SAP PD-SAP
PHY PHY

f

Figure 19.4: Data example for simple LR-WPAN data transfer end-to-end

The example 1r-wpan-error-distance-plot.cc plots the packet success ratio (PSR) as a function of dis-
tance, using the default LogDistance propagation loss model and the 802.15.4 error model. The channel (default
11), packet size (default 20 bytes) and transmit power (default 0 dBm) can be varied by command line arguments.
The program outputs a file named 802.15.4-psr-distance.plt. Loading this file into gnuplot yields a file
802.15.4-psr—distance.eps, which can be converted to pdf or other formats. The default output is shown
below.

19.2.4 Tests

The following tests have been written, which can be found in src/lr-wpan/tests/:

* lr-wpan-ack-test.cc: Check that acknowledgments are being used and issued in the correct order.

19.2. Usage 151

ns-3 Model Library, Release ns-3.26

Packet (MSDU) size = 20 bytes; tx power = 0 dBm; channel =11

802.15.4|-psr-vsdi stance

0.8
&
a
> 06
hS
o4
A
o) 0.4
4
3
a

0.2 \

0 k
0 50 100 150 200

distance (m)

Figure 19.5: Default output of the program 1r-wpan-error-distance-plot.cc

* lr-wpan-collision-test.cc: Test correct reception of packets with interference and collisions.
* lr-wpan-error-model-test.cc: Check that the error model gives predictable values.

* lr-wpan-packet-test.cc: Test the 802.15.4 MAC header/trailer classes

* lr-wpan-pd-plme-sap-test.cc: Test the PLME and PD SAP per IEEE 802.15.4

* lr-wpan-spectrum-value-helper-test.cc: Test that the conversion between power (expressed as
a scalar quantity) and spectral power, and back again, falls within a 25% tolerance across the range of possible
channels and input powers.

19.3 Validation

The model has not been validated against real hardware. The error model has been validated against the data in IEEE
Std 802.15.4-2006, section E.4.1.7 (Figure E.2). The MAC behavior (CSMA backoff) has been validated by hand
against expected behavior. The below plot is an example of the error model validation and can be reproduced by
running lr-wpan—-error-model-plot.cc:

152 Chapter 19. Low-Rate Wireless Personal Area Network (LR-WPAN)

ns-3 Model Library, Release ns-3.26

'802.154 ——]

0.1 \
0.01 \

0.001 \
0.0001 \
1le-05 \
1e-06 \
1e-07 \
1e-08 \
1e-09 \

-10 -5 0 5 10 15
SNR (dB)

Bit Error Rate (BER)

Figure 19.6: Default output of the program 1r-wpan-error-model-plot.cc

19.3. Validation 153

ns-3 Model Library, Release ns-3.26

154 Chapter 19. Low-Rate Wireless Personal Area Network (LR-WPAN)

CHAPTER
TWENTY

LTE MODULE

20.1 Design Documentation

20.1.1 Overview

An overview of the LTE-EPC simulation model is depicted in the figure Overview of the LTE-EPC simulation model.
There are two main components:

¢ the LTE Model. This model includes the LTE Radio Protocol stack (RRC, PDCP, RLC, MAC, PHY). These
entities reside entirely within the UE and the eNB nodes.

 the EPC Model. This models includes core network interfaces, protocols and entities. These entities and proto-
cols reside within the SGW, PGW and MME nodes, and partially within the eNB nodes.

“=radio link
point to point link
== logical connection
any link

remote hosts

LTE interfage
model

EPC model SGW/PGW <

eNB

Figure 20.1: Overview of the LTE-EPC simulation model

20.1.2 Design Criteria

LTE Model

The LTE model has been designed to support the evaluation of the following aspects of LTE systems:
* Radio Resource Management
* QoS-aware Packet Scheduling
* Inter-cell Interference Coordination

* Dynamic Spectrum Access

155

ns-3 Model Library, Release ns-3.26

In order to model LTE systems to a level of detail that is sufficient to allow a correct evaluation of the above mentioned
aspects, the following requirements have been considered:

1.

At the radio level, the granularity of the model should be at least that of the Resource Block (RB). In fact,
this is the fundamental unit being used for resource allocation. Without this minimum level of granularity, it is
not possible to model accurately packet scheduling and inter-cell-interference. The reason is that, since packet
scheduling is done on a per-RB basis, an eNB might transmit on a subset only of all the available RBs, hence
interfering with other eNBs only on those RBs where it is transmitting. Note that this requirement rules out the
adoption of a system level simulation approach, which evaluates resource allocation only at the granularity of
call/bearer establishment.

The simulator should scale up to tens of eNBs and hundreds of User Equipments (UEs). This rules out the use of
a link level simulator, i.e., a simulator whose radio interface is modeled with a granularity up to the symbol level.
This is because to have a symbol level model it is necessary to implement all the PHY layer signal processing,
whose huge computational complexity severely limits simulation. In fact, link-level simulators are normally
limited to a single eNB and one or a few UEs.

It should be possible within the simulation to configure different cells so that they use different carrier frequen-
cies and system bandwidths. The bandwidth used by different cells should be allowed to overlap, in order to
support dynamic spectrum licensing solutions such as those described in [Ofcom2600MHz] and [RealWireless].
The calculation of interference should handle appropriately this case.

To be more representative of the LTE standard, as well as to be as close as possible to real-world implemen-
tations, the simulator should support the MAC Scheduler API published by the FemtoForum [FFAPI]. This
interface is expected to be used by femtocell manufacturers for the implementation of scheduling and Radio
Resource Management (RRM) algorithms. By introducing support for this interface in the simulator, we make
it possible for LTE equipment vendors and operators to test in a simulative environment exactly the same algo-
rithms that would be deployed in a real system.

The LTE simulation model should contain its own implementation of the API defined in [FFAPI]. Neither
binary nor data structure compatibility with vendor-specific implementations of the same interface are expected;
hence, a compatibility layer should be interposed whenever a vendor-specific MAC scheduler is to be used with
the simulator. This requirement is necessary to allow the simulator to be independent from vendor-specific
implementations of this interface specification. We note that [FFAPI] is a logical specification only, and its
implementation (e.g., translation to some specific programming language) is left to the vendors.

The model is to be used to simulate the transmission of IP packets by the upper layers. With this respect, it
shall be considered that in LTE the Scheduling and Radio Resource Management do not work with IP packets
directly, but rather with RLC PDUs, which are obtained by segmentation and concatenation of IP packets done
by the RLC entities. Hence, these functionalities of the RLC layer should be modeled accurately.

EPC Model

The main objective of the EPC model is to provides means for the simulation of end-to-end IP connectivity over the
LTE model. To this aim, it supports for the interconnection of multiple UEs to the Internet, via a radio access network
of multiple eNBs connected to a single SGW/PGW node, as shown in Figure Overview of the LTE-EPC simulation
model.

The following design choices have been made for the EPC model:

1.
2.

The only Packet Data Network (PDN) type supported is IPv4.

The SGW and PGW functional entities are implemented within a single node, which is hence referred to as the
SGW/PGW node.

The scenarios with inter-SGW mobility are not of interests. Hence, a single SGW/PGW node will be present in
all simulations scenarios

156

Chapter 20. LTE Module

ns-3 Model Library, Release ns-3.26

4. A requirement for the EPC model is that it can be used to simulate the end-to-end performance of realistic
applications. Hence, it should be possible to use with the EPC model any regular ns-3 application working on
top of TCP or UDP.

5. Another requirement is the possibility of simulating network topologies with the presence of multiple eNBs,
some of which might be equipped with a backhaul connection with limited capabilities. In order to simulate
such scenarios, the user data plane protocols being used between the eNBs and the SGW/PGW should be
modeled accurately.

6. It should be possible for a single UE to use different applications with different QoS profiles. Hence, multiple
EPS bearers should be supported for each UE. This includes the necessary classification of TCP/UDP traffic
over IP done at the UE in the uplink and at the PGW in the downlink.

7. The focus of the EPC model is mainly on the EPC data plane. The accurate modeling of the EPC control plane
is, for the time being, not a requirement; hence, the necessary control plane interactions can be modeled in a
simplified way by leveraging on direct interaction among the different simulation objects via the provided helper
objects.

8. The focus of the EPC model is on simulations of active users in ECM connected mode. Hence, all the function-
ality that is only relevant for ECM idle mode (in particular, tracking area update and paging) are not modeled at
all.

9. The model should allow the possibility to perform an X2-based handover between two eNBs.

20.1.3 Architecture
LTE Model

UE architecture

The architecture of the LTE radio protocol stack model of the UE is represented in the figures LTE radio protocol stack
architecture for the UE on the data plane and LTE radio protocol stack architecture for the UE on the control plane
which highlight respectively the data plane and the control plane.

The architecture of the PHY/channel model of the UE is represented in figure PHY and channel model architecture
for the UE.

eNB architecture

The architecture of the LTE radio protocol stack model of the eNB is represented in the figures LTE radio protocol
stack architecture for the eNB on the data plane and LTE radio protocol stack architecture for the eNB on the control
plane which highlight respectively the data plane and the control plane.

The architecture of the PHY/channel model of the eNB is represented in figure PHY and channel model architecture
for the eNB.

EPC Model

EPC data plane

In Figure LTE-EPC data plane protocol stack, we represent the end-to-end LTE-EPC data plane protocol stack as it
is modeled in the simulator. From the figure, it is evident that the biggest simplification introduced in the data plane
model is the inclusion of the SGW and PGW functionality within a single SGW/PGW node, which removes the need

20.1. Design Documentation 157

ns-3 Model Library, Release ns-3.26

LteUeNetDevice

lSend [§] m_rxCallback ()T
| EpcUeNas |
LteAsSiUsy
ﬁ\
LteAsSapProvider
LteUeRrc |
ﬁ‘

LtePdcp

LtﬁRlcSapUser

LtePdcpSapProviden)

LteMacSapProvider

LtePdcp
LteRIcSapUser

N

LteRlIc

LtePdcpSapProvider)

LteRIcSapProvider

. LteMacSapUser

LteUeMac

LteUePhySapUser
A

teUePhySapProvide

LteUePhy

Figure 20.2: LTE radio protocol stack architecture for the UE on the data plane

LteAsSapProvider

EpcUeNas

N

LteUechSw
HL

LteUeRrcSapUser

LteUeRrcProtocol

LtePdcpSapUser

v SRBO

LtePdcp

O

LtePdcpSapProvide)

LteRIcSapUser
SRB1 \

.

LteRIcAm

teRIcSapProvider

LteUeMac

LteUeRrc
LteRIcSapUser

|

|

|

|

|

|

|

|

|

|

eUeCmacSapProvidy (") teMacSapProvider,
raUECphySap?ov

teUePhySapProvidd

LtsUePhyS—aw
A

LteUePhy

Figure 20.3: LTE radio protocol stack architecture for the UE on the control plane

158

Chapter 20. LTE Module

ns-3 Model Library, Release ns-3.26

LteUePhy
A

_____________ Starth()__I - — StartRx()___________I
l PRSI SRS S SIS SIS E S m__——_—— | " | l A H A "||
| i eNB's UL SpectrumPhy E LteSpectrumPhy | | LteSpectrumPhy : eNB's DL SpectrumPhy EI
| i i I e —— L
I StartTx () ! I 1 StartRx () !
| StartRx () v I | StartTx () I

I I
| SpectrumChannel || SpectrumChannel |
I I

I I
I Uplink I Downlink

Figure 20.4: PHY and channel model architecture for the UE

| EpcEnbApplication (S1App)

Socket/Recv () Sock
Socket::Send () Socket:|Send ()

| EpcEnbNetDevice | |

T.Recv 0

51-U NetDevice

be"d 0 mjx@a\lba(k 0

LteEnbRrc

FfMacScheduler @

LteFfrAlgorithm

LteEnbPhy

Figure 20.5: LTE radio protocol stack architecture for the eNB on the data plane

20.1. Design Documentation

159

ns-3 Model Library, Release ns-3.26

X2Application

EpcEnbApplication (S1App) |

EocEnbs1SapUser

LteEnbRrc

EUeCphySapProvi

—

Lg€EnbCmacsapProvRyr

SUePhySapProvid:

T

LteUePhySapUser

LteMacsapProvider

LteEnbRrcProtocol

LtePdcp

LteRIcSapUser
LteRicSapProvider

A 4

LteEnbMac | |

Gornecsappronad
LteFfrAlgorithm

GiMacCschedsapUsg
jacCschedSapProvider

FfMacScheduler |

LteEnbPhy

Figure 20.6: LTE radio protocol stack architecture for the eNB on the control plane

LteEnbPhy
A
______ StartTx () _— _ _ | StartRx () — — _— _ _ _ j
one instance ..~ T 1 one instance L.
| per UE i \ 4 | H per UE -
vy eree—— il | !
| . ii LteSpectrumPhy | | LteSpectrumPhy ,
| UEs' DL SpectrumPhy = I UEs' UL SpectrumPhy
3 I A
| A StartTx | StartRx
StartRx () 0 I O StartTx ()
| \ 4 | | \ 4
| SpectrumChannel | | SpectrumChannel
| |
|
| Downlink | Uplink

Figure 20.7: PHY and channel model architecture for the eNB

160

Chapter 20. LTE Module

ns-3 Model Library, Release ns-3.26

for the S5 or S8 interfaces specified by 3GPP. On the other hand, for both the S1-U protocol stack and the LTE radio
protocol stack all the protocol layers specified by 3GPP are present.

I____'l __________ 1 - -"--=--"=-"=-"= === 1 -_—_e———— T

UE 11 eNB SGW/PGW I remote host |
I |

o — -

|
end-to-end a Iicaticl)
APP [. | APP

end-to-end TCP/UDP socket colnpection

I

| |

TCP/UDP |<4¢! i P TCP/UDP |I

11 lt'l 1 1] I

P e end-to-end IP connecI ion P ﬁ P I

:r - h‘ ::::.J:::: l--l ::::L.:::: F‘ - : | | |

- pbcp |1 1| PDcP EE GTP | GTP E I I

- I = I ! -] '

= RLC Il RLC == uDP | uop |2 I I

= I = ! = N '

=i| mac [r!f wmac == P ! P - I |

= I == ! = I '

- PHY Il PHY [== | - I I

e e e g SN DU LU [N SR DR [SR N
E LTE Radio Protocol stack :E S1-U protocol stack E
[AR R R R RRRRRRRRRRRRRRERRRRRTT RRRRRRRRRRRRRRRRRRRRRAREY]

Figure 20.8: LTE-EPC data plane protocol stack

EPC control plane

The architecture of the implementation of the control plane model is shown in figure EPC control model. The control
interfaces that are modeled explicitly are the S1-AP, the X2-AP and the S11 interfaces.

We note that the S1-AP and the S11 interfaces are modeled in a simplified fashion, by using just one pair of interface
classes to model the interaction between entities that reside on different nodes (the eNB and the MME for the S1-
AP interface, and the MME and the SGW for the S11 interface). In practice, this means that the primitives of these
interfaces are mapped to a direct function call between the two objects. On the other hand, the X2-AP interface is
being modeled using protocol data units sent over an X2 link (modeled as a point-to-point link); for this reason, the
X2-AP interface model is more realistic.

20.1. Design Documentation 161

ns-3 Model Library, Release ns-3.26

EpcSgwPgwApplication

A EpcS11SapSgw
EpcS11SapMme

EpcMme

EpcSlapiaw EpcSlapw
‘/J ¥
EpcSlapSapEnb EpcSlapSapEnb

EpcEnbApplication 0000 EpcEnbApplication

chanISw chanlSiw
y y -
EpcEnbS1SapUser EpcEnbS1SapUser

Y

7

y
LteEnbRrc 09000 LteEnbRrc
XZSap-lip x25ap—uD
A’ \ v %
X2SapProvider) &;mevider
N— Send N~—
EpcX2Application <€ > EpcX2Application
Recv

Figure 20.9: EPC control model

162 Chapter 20. LTE Module

ns-3 Model Library, Release ns-3.26

20.1.4 Channel and Propagation

For channel modeling purposes, the LTE module uses the SpectrumChannel interface provided by the
spectrum module. At the time of this writing, two implementations of such interface are available:
SingleModelSpectrumChannel and MultiModelSpectrumChannel, and the LTE module requires
the use of the MultiModelSpectrumChannel in order to work properly. This is because of the need
to support different frequency and bandwidth configurations. All the the propagation models supported by
MultiModelSpectrumChannel can be used within the LTE module.

Use of the Buildings model with LTE

The recommended propagation model to be used with the LTE module is the one provided by the Buildings mod-
ule, which was in fact designed specifically with LTE (though it can be used with other wireless technologies as
well). Please refer to the documentation of the Buildings module for generic information on the propagation model it
provides.

In this section we will highlight some considerations that specifically apply when the Buildings module is used together
with the LTE module.

The naming convention used in the following will be:
e User equipment: UE
* Macro Base Station: MBS
* Small cell Base Station (e.g., pico/femtocell): SC

The LTE module considers FDD only, and implements downlink and uplink propagation separately. As a consequence,
the following pathloss computations are performed

¢ MBS <-> UE (indoor and outdoor)
¢ SC (indoor and outdoor) <-> UE (indoor and outdoor)
The LTE model does not provide the following pathloss computations:
* UE <->UE
* MBS <-> MBS
* MBS <->SC
e SC<->SC

The Buildings model does not know the actual type of the node; i.e., it is not aware of whether a transmitter node is a
UE, a MBS, or a SC. Rather, the Buildings model only cares about the position of the node: whether it is indoor and
outdoor, and what is its z-axis respect to the rooftop level. As a consequence, for an eNB node that is placed outdoor
and at a z-coordinate above the rooftop level, the propagation models typical of MBS will be used by the Buildings
module. Conversely, for an eNB that is placed outdoor but below the rooftop, or indoor, the propagation models typical
of pico and femtocells will be used.

For communications involving at least one indoor node, the corresponding wall penetration losses will be calculated
by the Buildings model. This covers the following use cases:

* MBS <-> indoor UE

¢ outdoor SC <-> indoor UE
¢ indoor SC <-> indoor UE
* indoor SC <-> outdoor UE

Please refer to the documentation of the Buildings module for details on the actual models used in each case.

20.1. Design Documentation 163

ns-3 Model Library, Release ns-3.26

Fading Model

The LTE module includes a trace-based fading model derived from the one developed during the GSoC 2010
[Piro2011]. The main characteristic of this model is the fact that the fading evaluation during simulation run-time
is based on per-calculated traces. This is done to limit the computational complexity of the simulator. On the other
hand, it needs huge structures for storing the traces; therefore, a trade-off between the number of possible parameters
and the memory occupancy has to be found. The most important ones are:

» users’ speed: relative speed between users (affects the Doppler frequency, which in turns affects the time-
variance property of the fading)

* number of taps (and relative power): number of multiple paths considered, which affects the frequency property
of the fading.

* time granularity of the trace: sampling time of the trace.

* frequency granularity of the trace: number of values in frequency to be evaluated.

* length of trace: ideally large as the simulation time, might be reduced by windowing mechanism.
* number of users: number of independent traces to be used (ideally one trace per user).

With respect to the mathematical channel propagation model, we suggest the one provided by the rayleighchan
function of Matlab, since it provides a well accepted channel modelization both in time and frequency domain. For
more information, the reader is referred to [mathworks].

The simulator provides a matlab script (src/1te/model/fading-traces/fading-trace-generator.m)
for generating traces based on the format used by the simulator. In detail, the channel object created with the
rayleighchan function is used for filtering a discrete-time impulse signal in order to obtain the channel impulse
response. The filtering is repeated for different TTI, thus yielding subsequent time-correlated channel responses (one
per TTI). The channel response is then processed with the pwelch function for obtaining its power spectral density
values, which are then saved in a file with the proper format compatible with the simulator model.

Since the number of variable it is pretty high, generate traces considering all of them might produce a high number
of traces of huge size. On this matter, we considered the following assumptions of the parameters based on the 3GPP
fading propagation conditions (see Annex B.2 of [TS36104]):

* users’ speed: typically only a few discrete values are considered, i.e.:
— 0 and 3 kmph for pedestrian scenarios
— 30 and 60 kmph for vehicular scenarios
— 0, 3, 30 and 60 for urban scenarios

* channel taps: only a limited number of sets of channel taps are normally considered, for example three models
are mentioned in Annex B.2 of [TS36104].

e time granularity: we need one fading value per TTI, i.e., every 1 ms (as this is the granularity in time of the ns-3
LTE PHY model).

 frequency granularity: we need one fading value per RB (which is the frequency granularity of the spectrum
model used by the ns-3 LTE model).

e length of the trace: the simulator includes the windowing mechanism implemented during the GSoC 2011,
which consists of picking up a window of the trace each window length in a random fashion.

* per-user fading process: users share the same fading trace, but for each user a different starting point in the trace
is randomly picked up. This choice was made to avoid the need to provide one fading trace per user.

164 Chapter 20. LTE Module

ns-3 Model Library, Release ns-3.26

According to the parameters we considered, the following formula express in detail the total size S;.qces Of the fading
traces:

Ttrace

Straces = Ssample X NRB X X Nscenarios [byteS]

Tsample

where Ssqmpie is the size in bytes of the sample (e.g., 8 in case of double precision, 4 in case of float precision), Nrp
is the number of RB or set of RBs to be considered, T},.q. is the total length of the trace, T qmpie 18 the time resolution
of the trace (1 ms), and Ngcenarios 1S the number of fading scenarios that are desired (i.e., combinations of different
sets of channel taps and user speed values). We provide traces for 3 different scenarios one for each taps configuration
defined in Annex B.2 of [TS36104]:

* Pedestrian: with nodes’ speed of 3 kmph.
 Vehicular: with nodes’ speed of 60 kmph.
¢ Urban: with nodes’ speed of 3 kmph.

hence Ngcenarios = 3. All traces have Ty.qce = 10 s and RByy s = 100. This results in a total 24 MB bytes of
traces.

Antennas

Being based on the Spect rumPhy, the LTE PHY model supports antenna modeling via the ns-3 AntennaModel
class. Hence, any model based on this class can be associated with any eNB or UE instance. For instance, the use of
the CosineAntennaModel associated with an eNB device allows to model one sector of a macro base station. By
default, the ITsotropicAntennaModel is used for both eNBs and UEs.

20.1. Design Documentation 165

ns-3 Model Library, Release ns-3.26

20.1.5 PHY

Overview

The physical layer model provided in this LTE simulator is based on the one described in [Pir0201 1], with the following
modifications. The model now includes the inter cell intereference calculation and the simulation of uplink traffic,
including both packet transmission and CQI generation.

Subframe Structure

The subframe is divided into control and data part as described in Figure LTE subframe division..

13 symbols N 1 symbol

A
A

PUSCH & PUCCH SRS
PCFICH
& PDSCH
PDCCH
B symbolsy | 11 symbols |
Y L) L

subframe (1 TTI = 1 ms = 14 OFDM symbols)
A »
< ' o

Figure 20.10: LTE subframe division.

Considering the granularity of the simulator based on RB, the control and the reference signaling have to be conse-
quently modeled considering this constraint. According to the standard [TS36211], the downlink control frame starts
at the beginning of each subframe and lasts up to three symbols across the whole system bandwidth, where the actual
duration is provided by the Physical Control Format Indicator Channel (PCFICH). The information on the alloca-
tion are then mapped in the remaining resource up to the duration defined by the PCFICH, in the so called Physical
Downlink Control Channel (PDCCH). A PDCCH transports a single message called Downlink Control Information
(DCI) coming from the MAC layer, where the scheduler indicates the resource allocation for a specific user. The PC-
FICH and PDCCH are modeled with the transmission of the control frame of a fixed duration of 3/14 of milliseconds
spanning in the whole available bandwidth, since the scheduler does not estimate the size of the control region. This
implies that a single transmission block models the entire control frame with a fixed power (i.e., the one used for the
PDSCH) across all the available RBs. According to this feature, this transmission represents also a valuable support
for the Reference Signal (RS). This allows of having every TTI an evaluation of the interference scenario since all the
eNB are transmitting (simultaneously) the control frame over the respective available bandwidths. We note that, the
model does not include the power boosting since it does not reflect any improvement in the implemented model of the
channel estimation.

The Sounding Reference Signal (SRS) is modeled similar to the downlink control frame. The SRS is periodically
placed in the last symbol of the subframe in the whole system bandwidth. The RRC module already includes an algo-
rithm for dynamically assigning the periodicity as function of the actual number of UEs attached to a eNB according
to the UE-specific procedure (see Section 8.2 of [TS36213]).

166 Chapter 20. LTE Module

ns-3 Model Library, Release ns-3.26

MAC to Channel delay

To model the latency of real MAC and PHY implementations, the PHY model simulates a MAC-to-channel delay in
multiples of TTIs (1ms). The transmission of both data and control packets are delayed by this amount.

CAQl feedback

The generation of CQI feedback is done accordingly to what specified in [FFAPI]. In detail, we considered the gener-
ation of periodic wideband CQI (i.e., a single value of channel state that is deemed representative of all RBs in use)
and inband CQIs (i.e., a set of value representing the channel state for each RB).

The CQI index to be reported is obtained by first obtaining a SINR measurement and then passing this SINR measure-
ment to the Adaptive Modulation and Coding module which will map it to the CQI index.

In downlink, the SINR used to generate CQI feedback can be calculated in two different ways:

1. Ctrl method: SINR is calculated combining the signal power from the reference signals (which in the simulation
is equivalent to the PDCCH) and the interference power from the PDCCH. This approach results in consider-
ing any neighboring eNB as an interferer, regardless of whether this eNB is actually performing any PDSCH
transmission, and regardless of the power and RBs used for eventual interfering PDSCH transmissions.

2. Mixed method: SINR is calculated combining the signal power from the reference signals (which in the sim-
ulation is equivalent to the PDCCH) and the interference power from the PDSCH. This approach results in
considering as interferers only those neighboring eNBs that are actively transmitting data on the PDSCH, and
allows to generate inband CQIs that account for different amounts of interference on different RBs according
to the actual interference level. In the case that no PDSCH transmission is performed by any eNB, this method
consider that interference is zero, i.e., the SINR will be calculated as the ratio of signal to noise only.

To switch between this two CQI generation approaches, LteHelper: :UsePdschForCgiGeneration needs to
be configured: false for first approach and true for second approach (true is default value):

Config::SetDefault ("ns3::LteHelper::UsePdschForCgiGeneration", BooleanValue (true));

In uplink, two types of CQIs are implemented:
* SRS based, periodically sent by the UEs.
e PUSCH based, calculated from the actual transmitted data.

The scheduler interface include an attribute system calld UlCqgiFilter for managing the filtering of the CQIs
according to their nature, in detail:

e SRS_UL_CQT for storing only SRS based CQlIs.
e PUSCH_UL_CQI for storing only PUSCH based CQIs.
e ALL_UL_CQI for storing all the CQIs received.

It has to be noted that, the FfMacScheduler provides only the interface and it is matter of the actual scheduler
implementation to include the code for managing these attibutes (see scheduler related section for more information
on this matter).

Interference Model
The PHY model is based on the well-known Gaussian interference models, according to which the powers of interfer-
ing signals (in linear units) are summed up together to determine the overall interference power.

The sequence diagram of Figure Sequence diagram of the PHY interference calculation procedure shows how inter-
fering signals are processed to calculate the SINR, and how SINR is then used for the generation of CQI feedback.

20.1. Design Documentation 167

ns-3 Model Library, Release ns-3.26

I I
I I
I I
| 800015 |
AddSignal()
R
S,
€ -]‘
|
| | | | |
| | | | |
at0.0015; i | | | |
| | | |
| | | |
| | | |
| | | |
| | | |
100015 : 1 1 1
| | |
| | |
| | |
| | |
AddSignal(signal2) | | |
R
| |
| |
H | |
e | |
i | |
| | |
I I I
I I I
StartRx(signal2) | I I
——
I I
I I
I I
H I I
IR | |
i i i
i i i
I I I
i i i
Schedule (EndRx) I I I
i i i
i i i
i i i
i i i
77 > I I I
i i i
R
e
a10.0015
R
S
I
I
I
i
| | | | |
| | | | |
| | | | |
a10.0025: EndRx(i i | | |
T | | |
| | | |
| | | |
| | | |
| | | |
| EndRx() | | |
| | |
| | |
| | |
| | |
! EvaluateSinrChunk() | |
e »
| |
| |
I H I
| e T |
| i |
I I I
I I I
I I I
| End | |
I I
I I
I I
I I
1 GenerateCqiFeedback(SINR of signa2)
| —_—
i
i
i
| R
i
I I
i i
i i
I I I
I I I
I I I
I I I
I IR I I
I I I I
I I I I
I I I I
€ - | il b I I I
I I I I I
L I I I I I
I I I I I

Figure 20.11: Sequence diagram of the PHY interference calculation procedure

168 Chapter 20. LTE Module

ns-3 Model Library, Release ns-3.26

LTE Spectrum Model

The usage of the radio spectrum by eNBs and UEs in LTE is described in [TS36101]. In the simulator, radio spectrum
usage is modeled as follows. Let f. denote the LTE Absolute Radio Frequency Channel Number, which identifies the
carrier frequency on a 100 kHz raster; furthermore, let B be the Transmission Bandwidth Configuration in number of
Resource Blocks. For every pair (f., B) used in the simulation we define a corresponding SpectrumModel using the
functionality provided by the Spectrum Module . model using the Spectrum framework described in [Baldo2009]. f.
and B can be configured for every eNB instantiated in the simulation; hence, each eNB can use a different spectrum
model. Every UE will automatically use the spectrum model of the eNB it is attached to. Using the MultiModelSpec-
trumChannel described in [Baldo2009], the interference among eNBs that use different spectrum models is properly
accounted for. This allows to simulate dynamic spectrum access policies, such as for example the spectrum licensing
policies that are discussed in [Ofcom2600MHz].

Data PHY Error Model

The simulator includes an error model of the data plane (i.e., PDSCH and PUSCH) according to the standard link-
to-system mapping (LSM) techniques. The choice is aligned with the standard system simulation methodology of
OFDMA radio transmission technology. Thanks to LSM we are able to maintain a good level of accuracy and at the
same time limiting the computational complexity increase. It is based on the mapping of single link layer performance
obtained by means of link level simulators to system (in our case network) simulators. In particular link the layer
simulator is used for generating the performance of a single link from a PHY layer perspective, usually in terms
of code block error rate (BLER), under specific static conditions. LSM allows the usage of these parameters in
more complex scenarios, typical of system/network simulators, where we have more links, interference and “colored”
channel propagation phenomena (e.g., frequency selective fading).

To do this the Vienna LTE Simulator [ViennalteSim] has been used for what concerns the extraction of link layer
performance and the Mutual Information Based Effective SINR (MIESM) as LSM mapping function using part of the
work recently published by the Signet Group of University of Padua [PaduaPEM].

MIESM

The specific LSM method adopted is the one based on the usage of a mutual information metric, commonly referred
to as the mutual information per per coded bit (MIB or MMIB when a mean of multiples MIBs is involved). Another
option would be represented by the Exponential ESM (EESM); however, recent studies demonstrate that MIESM
outperforms EESM in terms of accuracy [LozanoCost].

The mutual information (MI) is dependent on the constellation mapping and can be calculated per transport block (TB)
basis, by evaluating the MI over the symbols and the subcarrier. However, this would be too complex for a network
simulator. Hence, in our implementation a flat channel response within the RB has been considered; therefore the
overall MI of a TB is calculated averaging the MI evaluated per each RB used in the TB. In detail, the implemented
scheme is depicted in Figure MIESM computational procedure diagram, where we see that the model starts by evalu-
ating the MI value for each RB, represented in the figure by the SINR samples. Then the equivalent MI is evaluated
per TB basis by averaging the MI values. Finally, a further step has to be done since the link level simulator returns
the performance of the link in terms of block error rate (BLER) in a addive white guassian noise (AWGN) channel,
where the blocks are the code blocks (CBs) independently encoded/decoded by the turbo encoder. On this matter the
standard 3GPP segmentation scheme has been used for estimating the actual CB size (described in section 5.1.2 of
[TS36212]). This scheme divides the the TB in Ng_ blocks of size K_ and N blocks of size K. Therefore the
overall TB BLER (TBLER) can be expressed as

c
TBLER=1-]](1 - CBLER;)
i=1
where the CBLER; is the BLER of the CB ¢ obtained according to the link level simulator CB BLER curves. For
estimating the C BLER;, the MI evaluation has been implemented according to its numerical approximation defined

20.1. Design Documentation 169

ns-3 Model Library, Release ns-3.26

Coding Model
ati 1#1 . . .
SINR#1 —> Modulation Model Vienna LTE Simulator Mapping
"2
SINR#2 —> ,
g 64QAM
SINR#3 —> = Fa 3 L N 1
‘f Information o TR]
2 16QAM collection & correction
& MI
[22]
A QPSK
MI-metric
mssi‘tw l
SINR
I#N
SINR#N—>

Performance
(tables)

Figure 20.12: MIESM computational procedure diagram

in [wimaxEmd]. Moreover, for reducing the complexity of the computation, the approximation has been converted
into lookup tables. In detail, Gaussian cumulative model has been used for approximating the AWGN BLER curves
with three parameters which provides a close fit to the standard AWGN performances, in formula:

1 T —bpcr
CBLER; = = |1 —erf ()]
2 { V2¢Ecr

where x is the MI of the TB, bgcr represents the “transition center” and cgcg is related to the “transition width”
of the Gaussian cumulative distribution for each Effective Code Rate (ECR) which is the actual transmission rate
according to the channel coding and MCS. For limiting the computational complexity of the model we considered
only a subset of the possible ECRs in fact we would have potentially 5076 possible ECRs (i.e., 27 MCSs and 188 CB
sizes). On this respect, we will limit the CB sizes to some representative values (i.e., 40, 140, 160, 256, 512, 1024,
2048, 4032, 6144), while for the others the worst one approximating the real one will be used (i.e., the smaller CB
size value available respect to the real one). This choice is aligned to the typical performance of turbo codes, where
the CB size is not strongly impacting on the BLER. However, it is to be notes that for CB sizes lower than 1000 bits
the effect might be relevant (i.e., till 2 dB); therefore, we adopt this unbalanced sampling interval for having more
precision where it is necessary. This behaviour is confirmed by the figures presented in the Annes Section.

BLER Curves

On this respect, we reused part of the curves obtained within [PaduaPEM]. In detail, we introduced the CB size depen-
dency to the CB BLER curves with the support of the developers of [PaduaPEM] and of the LTE Vienna Simulator.
In fact, the module released provides the link layer performance only for what concerns the MCSs (i.e, with a given
fixed ECR). In detail the new error rate curves for each has been evaluated with a simulation campaign with the link
layer simulator for a single link with AWGN noise and for CB size of 104, 140, 256, 512, 1024, 2048, 4032 and
6144. These curves has been mapped with the Gaussian cumulative model formula presented above for obtaining the
correspondents bpcr and cgpor parameters.

The BLER perfomance of all MCS obtained with the link level simulator are plotted in the following figures (blue
lines) together with their correspondent mapping to the Gaussian cumulative distribution (red dashed lines).

Integration of the BLER curves in the ns-3 LTE module

The model implemented uses the curves for the LSM of the recently LTE PHY Error Model released in the ns3 com-
munity by the Signet Group [PaduaPEM] and the new ones generated for different