
ns-3 Reference Manual

ns-3 project
feedback: ns-developers@isi.edu
19 December 2008

This is an ns-3 reference manual. Primary documentation for the ns-3 project is available
in four forms:
• ns-3 Tutorial
• ns-3 Doxygen: Documentation of the public APIs of the simulator
• Reference Manual (this document)
• ns-3 wiki

This document is written in GNU Texinfo and is to be maintained in revision control on
the ns-3 code server. Both PDF and HTML versions should be available on the server.
Changes to the document should be discussed on the ns-developers@isi.edu mailing list.
This software is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This software is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program.
If not, see http://www.gnu.org/licenses/.

http://www.nsnam.org/tutorial/index.html
http://www.nsnam.org/doxygen/index.html
http://www.nsnam.org/wiki/index.php
http://www.gnu.org/licenses/

i

Table of Contents

1 Random variables . 1
1.1 Quick Overview . 1
1.2 Background . 1
1.3 Seeding and independent replications . 2
1.4 class RandomVariable . 3
1.5 Base class public API . 3
1.6 Types of RandomVariables . 4
1.7 Semantics of RandomVariable objects . 4
1.8 Using other PRNG . 5
1.9 More advanced usage . 5
1.10 Publishing your results . 5
1.11 Summary . 5

2 Callbacks. 6
2.1 Motivation . 6
2.2 Using the Callback API . 7

2.2.1 Using the Callback API with static functions 8
2.2.2 Using the Callback API with member functions 9
2.2.3 Building Null Callbacks . 10

2.3 Callback locations in ns-3 . 10
2.3.1 Socket API . 10
2.3.2 Layer-2/Layer-3 API . 10
2.3.3 Tracing subsystem . 10
2.3.4 Routing . 10

2.4 Implementation details . 10

3 Attributes . 12
3.1 Object Overview . 12

3.1.1 Smart pointers . 12
3.1.2 CreateObject . 12
3.1.3 TypeId . 13
3.1.4 Object Summary . 13

3.2 Attribute Overview . 14
3.2.1 Functional overview . 14
3.2.2 Basic usage . 15

3.2.2.1 Pointer-based access . 16
3.2.2.2 Namespace-based access . 17

3.2.3 Setting through constructors helper classes 17
3.2.4 Value classes . 17

3.3 Extending attributes . 18
3.3.1 Adding an existing internal variable to the metadata system

. 18

ii

3.3.2 Adding a new TypeId . 18
3.4 Adding new class type to the attribute system 19
3.5 ConfigStore . 20

3.5.1 GTK-based ConfigStore . 22
3.5.2 Future work . 22

4 Object model . 23
4.1 Object-oriented behavior . 23
4.2 Object base classes . 23
4.3 Memory management and class Ptr . 24

4.3.1 Reference counting smart pointer (Ptr) 24
4.3.2 CreateObject and Create . 24
4.3.3 Aggregation . 25

4.3.3.1 Aggregation example . 25
4.3.3.2 GetObject example . 26

4.4 Downcasting . 26

5 Real-Time Scheduler . 28
5.1 Behavior. 28
5.2 Usage . 28
5.3 Implementation . 29

6 Emulation . 30
6.1 Behavior. 31

6.1.1 Emu Net Device . 31
6.1.2 Tap Net Device . 32

6.2 Usage . 32
6.2.1 Emu Net Device . 32
6.2.2 Tap Net Device . 34

6.3 Implementation . 34
6.3.1 Emu Net Device . 34
6.3.2 Tap Net Device . 36

7 Packets . 37
7.1 Packet design overview . 38
7.2 Packet interface . 40

7.2.1 Constructors . 40
7.2.2 Adding and removing Buffer data . 41
7.2.3 Adding and removing Tags . 41
7.2.4 Fragmentation . 42
7.2.5 Miscellaneous. 44

7.3 Using Headers . 44
7.4 Using Tags . 44
7.5 Using Fragmentation . 44
7.6 Sample program . 44
7.7 Implementation details . 46

7.7.1 Private member variables . 46

iii

7.7.2 Buffer implementation . 47
7.7.3 Tags implementation . 48
7.7.4 Memory management . 49
7.7.5 Copy-on-write semantics . 49

8 Sockets APIs . 51
8.1 ns-3 sockets API . 51

8.1.1 Basic operation and calls . 51
8.1.1.1 Creating sockets . 52
8.1.1.2 Using sockets . 53

8.1.2 Packet vs. buffer variants. 53
8.1.3 Sending dummy data . 54
8.1.4 Socket options . 54
8.1.5 Socket errno . 54
8.1.6 Example programs . 54

8.2 POSIX-like sockets API . 54

9 Node and Internet Stack 56
9.1 NodeList . 58
9.2 Internet stack aggregation . 58

9.2.1 Internet Node structure . 59
9.2.1.1 Layer-3 protocols . 59
9.2.1.2 Layer-4 protocols and sockets . 60

9.2.2 Internet Node interfaces . 61
9.2.3 Example path of a packet . 62

10 TCP models in ns-3 . 64
10.1 Generic support for TCP . 64
10.2 ns-3 TCP . 64

10.2.1 Usage . 64
10.2.2 Current limitations . 65

10.3 Network Simulation Cradle . 65
10.3.1 Prerequisites . 66
10.3.2 Configuring and Downloading . 66
10.3.3 Building and validating . 66
10.3.4 Usage . 67
10.3.5 Stack configuration . 67
10.3.6 NSC API . 67
10.3.7 ns-3 implementation . 68
10.3.8 Limitations . 69

iv

11 Routing overview . 70
11.1 Overview . 70
11.2 Support for multiple routing protocols . 70

11.2.1 class Ipv4RoutingProtocol . 70
11.2.2 Ipv4::AddRoutingProtocol . 71
11.2.3 Ipv4L3Protocol::Lookup . 71

11.3 Roadmap and Future work . 72
11.4 Static routing . 72
11.5 Unicast routing . 72
11.6 Multicast routing . 73
11.7 Global centralized routing . 74
11.8 Global Unicast Routing API . 74
11.9 Global Routing Implementation . 74
11.10 Optimized Link State Routing (OLSR) . 75

12 Wifi NetDevice . 76
12.1 Overview of the model . 76
12.2 Using the WifiNetDevice . 77

12.2.1 YansWifiChannelHelper . 77
12.2.2 YansWifiPhyHelper . 77
12.2.3 WifiHelper . 78
12.2.4 AdHoc WifiNetDevice configuration . 78
12.2.5 Infrastructure (Access Point and clients) WifiNetDevice

configuration . 78
12.3 The WifiChannel and WifiPhy models . 78

12.3.1 WifiChannel configuration . 80
12.4 The MAC model . 80
12.5 Wifi Attributes . 81
12.6 Wifi Tracing . 81

13 CSMA NetDevice . 83
13.1 Overview of the model . 83

13.1.1 CSMA Layer Model . 83
13.2 CSMA Channel Model . 84
13.3 CSMA Net Device Model . 85
13.4 Using the CsmaNetDevice . 86
13.5 CSMA Tracing . 87

13.5.1 Upper-Level (MAC) Hooks . 87
13.5.2 Lower-Level (PHY) Hooks . 87

14 PointToPoint NetDevice 89
14.1 Overview of the model . 89
14.2 Point-to-Point Channel Model . 89
14.3 Using the PointToPointNetDevice . 90
14.4 PointToPoint Tracing . 90

14.4.1 Upper-Level (MAC) Hooks . 90
14.4.2 Lower-Level (PHY) Hooks . 91

v

15 Troubleshooting . 92
15.1 Build errors . 92
15.2 Run-time errors . 92

Chapter 1: Random variables 1

1 Random variables

ns-3 contains a built-in pseudo-random number generator (PRNG). It is important for
serious users of the simulator to understand the functionality, configuration, and usage of
this PRNG, and to decide whether it is sufficient for his or her research use.

1.1 Quick Overview

ns-3 random numbers are provided via instances of class RandomVariable.
• by default, ns-3 simulations use a random seed; if there is any randomness in the

simulation, each run of the program will yield different results. To use a fixed seed,
users must call RandomVariable::UseGlobalSeed () at the beginning of the program;
see section See Section 1.3 [Seeding and independent replications], page 2

• each RandomVariable used in ns-3 has a virtual random number generator associated
with it; all random variables use either a fixed or random seed based on the use of the
global seed (previous bullet);

• if you intend to perform multiple runs of the same scenario, with different random
numbers, please be sure to read the section on how to perform independent replications:
See Section 1.3 [Seeding and independent replications], page 2.

Read further for more explanation about the random number facility for ns-3.

1.2 Background

Simulations use a lot of random numbers; the study in [cite] found that most network
simulations spend as much as 50% of the CPU generating random numbers. Simulation
users need to be concerned with the quality of the (pseudo) random numbers and the
independence between different streams of random numbers.

Users need to be concerned with a few issues, such as:
• the seeding of the random number generator and whether a simulation run is deter-

ministic or not,
• how to acquire different streams of random numbers that are independent from one

another, and
• how long it takes for streams to cycle

We will introduce a few terms here: a RNG provides a long sequence of (pseudo) random
numbers. The length of this sequence is called the cycle length or period, after which the
RNG will repeat itself. This sequence can be partitioned into disjoint streams. A stream
of a RNG is a contiguous subset or block of the RNG sequence. For instance, if the RNG
period is of length N, and two streams are provided from this RNG, then the first stream
might use the first N/2 values and the second stream might produce the second N/2 values.
An important property here is that the two streams are uncorrelated. Likewise, each stream
can be partitioned disjointly to a number of uncorrelated substreams. The underlying RNG
hopefully produces a pseudo-random sequence of numbers with a very long cycle length,
and partitions this into streams and substreams in an efficient manner.

ns-3 uses the same underlying random number generator as does ns-2: the
MRG32k3a generator from Pierre L’Ecuyer. A detailed description can be found

Chapter 1: Random variables 2

in http://www.iro.umontreal.ca/~lecuyer/myftp/papers/streams00.pdf. The
MRG32k3a generator provides 1.8x10^19 independent streams of random numbers, each
of which consists of 2.3x10^15 substreams. Each substream has a period (i.e., the number
of random numbers before overlap) of 7.6x10^22. The period of the entire generator is
3.1x10^57. Figure ref-streams provides a graphical idea of how the streams and substreams
fit together.

Class ns3::RandomVariable is the public interface to this underlying random number
generator. When users create new RandomVariables (such as UniformVariable, Exponen-
tialVariable, etc.), they create an object that uses one of the distinct, independent streams
of the random number generator. Therefore, each object of type RandomVariable has, con-
ceptually, its own "virtual" RNG. Furthermore, each RandomVariable can be configured to
use one of the set of substreams drawn from the main stream.

An alternate implementation would be to allow each RandomVariable to have its own
(differently seeded) RNG. However, we cannot guarantee as strongly that the different
sequences would be uncorrelated in such a case; hence, we prefer to use a single RNG and
streams and substreams from it.

1.3 Seeding and independent replications

ns-3 simulations can be configured to produce deterministic or random results. If the ns-3
simulation is configured to use a fixed, deterministic seed with the same run number, it
should give the same output each time it is run.

By default, ns-3 simulations use random seeds where the seeding is drawn from
/dev/random (if it is available) or else from the time of day. A user who wants to fix
the initial seeding of the PRNG must call the following static method during simulation
configuration:

RandomVariable::UseGlobalSeed (uint32_t s0, s1, s2, s3, s4, s5);

where the six parameters are each of type uint32 t.

A typical use case is to run a simulation as a sequence of independent trials, so as to
compute statistics on a large number of independent runs. The user can either change the
global seed and rerun the simulation, or can advance the substream state of the RNG. This
seeding and substream state setting must be called before any random variables are created;
e.g.

RandomVariable::UseGlobalSeed(1,2,3,4,5,6);
int N = atol(argv[1]); //read in run number from command line
RandomVariable::SetRunNumber(N);
// Now, create random variables
UniformVariable x(0,10);
ExponentialVariable y(2902);
...

Which is better, setting a new seed or advancing the substream state? There is no
guarantee that the streams produced by two random seeds will not overlap. The only way
to guarantee that two streams do not overlap is to use the substream capability provided
by the RNG implementation. Therefore, use the substream capability to produce multiple
independent runs of the same simulation. In other words, the more statistically rigorous way

http://www.iro.umontreal.ca/~lecuyer/myftp/papers/streams00.pdf

Chapter 1: Random variables 3

to configure multiple independent replications is not to simply ignore the seeding (and use
/dev/random to seed the generator each time) but instead to use a fixed seed and to iterate
the run number. This implementation allows for a maximum of 2.3x10^15 independent
replications using the substreams.

1.4 class RandomVariable

All random variables should derive from class RandomVariable. This base class provides
a few static methods for globally configuring the behavior of the random number generator.
Derived classes provide API for drawing random variates from the particular distribution
being supported.

Each RandomVariable created in the simulation is given a generator that is a new
RNGStream from the underlying PRNG. Used in this manner, the L’Ecuyer implemen-
tation allows for a maximum of 1.8x10^19 random variables. Each random variable in a
single replication can produce up to 7.6x10^22 random numbers before overlapping.

1.5 Base class public API

Below are excerpted a few public methods of class RandomVariable that deal with the
global configuration and state of the RNG.

/**
* \brief Set seeding behavior
*
* Specify whether the POSIX device /dev/random is to
* be used for seeding. When this is used, the underlying
* generator is seeded with data from /dev/random instead of
* being seeded based upon the time of day. Defaults to true.
*/
static void UseDevRandom(bool udr = true);

/**
* \brief Use the global seed to force precisely reproducible results.
*/
static void UseGlobalSeed(uint32_t s0, uint32_t s1, uint32_t s2,

uint32_t s3, uint32_t s4, uint32_t s5);

/**
* \brief Set the run number of this simulation
*/
static void SetRunNumber(uint32_t n);

/**
* \brief Get the internal state of the RNG
*
* This function is for power users who understand the inner workings
* of the underlying RngStream method used. It returns the internal
* state of the RNG via the input parameter.

Chapter 1: Random variables 4

* \param seed Output parameter; gets overwritten with the internal state
* of the RNG.
*/
void GetSeed(uint32_t seed[6]) const;

We have already described the seeding configuration above.

1.6 Types of RandomVariables

The following types of random variables are provided, and are documented in the ns-3
Doxygen or by reading src/core/random-variable.h. Users can also create their own
custom random variables by deriving from class RandomVariable.
• class UniformVariable

• class ConstantVariable

• class SequentialVariable

• class ExponentialVariable

• class ParetoVariable

• class WeibullVariable

• class NormalVariable

• class EmpiricalVariable

• class IntEmpiricalVariable

• class DeterministicVariable

• class LogNormalVariable

• class TriangularVariable

1.7 Semantics of RandomVariable objects

RandomVariable objects have value semantics. This means that they can be passed by
value to functions. The can also be passed by reference to const. RandomVariables do not
derive from ns3::Object and we do not use smart pointers to manage them; they are either
allocated on the stack or else users explicitly manage any heap-allocated RandomVariables.

RandomVariable objects can also be used in ns-3 attributes, which means that values
can be set for them through the ns-3 attribute system. An example is in the propagation
models for WifiNetDevice:
TypeId
RandomPropagationDelayModel::GetTypeId (void)
{
static TypeId tid = TypeId ("ns3::RandomPropagationDelayModel")
.SetParent<PropagationDelayModel> ()
.AddConstructor<RandomPropagationDelayModel> ()
.AddAttribute ("Variable",

"The random variable which generates random delays (s).",
RandomVariableValue (UniformVariable (0.0, 1.0)),

MakeRandomVariableAccessor (&RandomPropagationDelayModel::m_variable),
MakeRandomVariableChecker ())

Chapter 1: Random variables 5

;
return tid;

}

Here, the ns-3 user can change the default random variable for this delay model (which
is a UniformVariable ranging from 0 to 1) through the attribute system.

1.8 Using other PRNG

There is presently no support for substituting a different underlying random number gen-
erator (e.g., the GNU Scientific Library or the Akaroa package). Patches are welcome.

1.9 More advanced usage

To be completed

1.10 Publishing your results

When you publish simulation results, a key piece of configuration information that you
should always state is how you used the the random number generator.
• what seeds you used,
• what RNG you used if not the default,
• how were independent runs performed,
• for large simulations, how did you check that you did not cycle.

It is incumbent on the researcher publishing results to include enough information to
allow others to reproduce his or her results. It is also incumbent on the researcher to
convince oneself that the random numbers used were statistically valid, and to state in the
paper why such confidence is assumed.

1.11 Summary

Let’s review what things you should do when creating a simulation.
• Decide whether you are running with a fixed seed or random seed; a random seed is

the default,
• Decide how you are going to manage independent replications, if applicable,
• Convince yourself that you are not drawing more random values than the cycle length,

if you are running a long simulation, and
• When you publish, follow the guidelines above about documenting your use of the

random number generator.

The program samples/main-random.cc has some examples of usage.

Chapter 2: Callbacks 6

2 Callbacks

Some new users to ns-3 are unfamiliar with an extensively used programming idiom used
throughout the code: the “ns-3 callback”. This chapter provides some motivation on the
callback, guidance on how to use it, and details on its implementation.

2.1 Motivation

Consider that you have two simulation models A and B, and you wish to have them pass
information between them during the simulation. One way that you can do that is that you
can make A and B each explicitly knowledgable about the other, so that they can invoke
methods on each other.

class A {
public:
void ReceiveInput (// parameters);
...

}

(in another source file:)

class B {
public:
void ReceiveInput (// parameters);
void DoSomething (void);
...

private:
A* a_instance; // pointer to an A

}

void
B::DoSomething()
{
// Tell a_instance that something happened
a_instance->ReceiveInput (// parameters);
...

}

This certainly works, but it has the drawback that it introduces a dependency on A
and B to know about the other at compile time (this makes it harder to have independent
compilation units in the simulator) and is not generalized; if in a later usage scenario, B
needs to talk to a completely different C object, the source code for B needs to be changed
to add a “c instance” and so forth. It is easy to see that this is a brute force mechanism of
communication that can lead to programming cruft in the models.

This is not to say that objects should not know about one another if there is a hard
dependency between them, but that often the model can be made more flexible if its inter-
actions are less constrained at compile time.

Chapter 2: Callbacks 7

This is not an abstract problem for network simulation research, but rather it has been
a source of problems in previous simulators, when researchers want to extend or modify the
system to do different things (as they are apt to do in research). Consider, for example, a
user who wants to add an IPsec security protocol sublayer between TCP and IP:

------------ -----------
| TCP | | TCP |
------------ -----------

| becomes -> |
----------- -----------
| IP | | IPsec |
----------- -----------

|

IP

If the simulator has made assumptions, and hard coded into the code, that IP always
talks to a transport protocol above, the user may be forced to hack the system to get the
desired interconnections.

An alternative that provides this flexibility is to use a level of indirection that is com-
monly known in programming as a callback. A callback function is not invoked explicitly by
the caller but is rather delegated to another function that receives the callback function’s
address and can call it.

You may be familiar with function pointers in C or C++; these can be used to im-
plement callbacks. For more information on introductory callbacks, an online reference is:
Declaring Function Pointers and Implementing Callbacks and Callback (computer science)–
Wikipedia.

The callback API in ns-3 is designed to minimize the overall coupling between various
pieces of of the simulator by making each module depend on the callback API itself rather
than depend on other modules. It acts as a sort of third-party to which work is delegated
and which forwards this work to the proper target module. This callback API, being based
on C++ templates, is type-safe; that is, it performs static type checks to enforce proper
signature compatibility between callers and callees. It is therefore more type-safe to use
than traditional function pointers, but the syntax may look imposing at first. This section
is designed to walk you through the callback system so that you can be comfortable using
it in ns-3.

2.2 Using the Callback API

The Callback API is fairly minimal, providing only two services:

• callback type declaration: a way to declare a type of callback with a given signature,
and,

• callback instantiation: a way to instantiate a template-generated forwarding callback
which can forward any calls to another C++ class member method or C++ function.

This is best observed via walking through an example, based on samples/main-
callback.cc.

http://www.inquiry.com/techtips/cpp_pro/10min/10min0300.asp
http://en.wikipedia.org/wiki/Callback_(computer_science)
http://en.wikipedia.org/wiki/Callback_(computer_science)

Chapter 2: Callbacks 8

2.2.1 Using the Callback API with static functions

Consider a function:
static double
CbOne (double a, double b)
{
std::cout << "invoke cbOne a=" << a << ", b=" << b << std::endl;
return a;

}

Consider also the following main program snippett:
int main (int argc, char *argv[])
{
// return type: double
// first arg type: double
// second arg type: double
Callback<double, double, double> one;

}

This class template Callback implements what is known as the Functor Design Pattern.
It is used to declare the type of a callback. It contains one mandatory argument (the return
type of the function to be assigned to this callback) and up to five optional arguments, which
each specify the type of the arguments (if your function has more than five arguments, then
this can be handled by extending the callback implementation).

So in the above, we have a declared a callback named "one" that will eventually hold
a function pointer. The function that it will hold must return double and must support
two double arguments. If one tries to pass a function whose signature does not match the
declared callback, the compilation will fail.

Now, we need to tie together this callback instance and the actual target function
(CbOne). Notice above that CbOne has the same function signature types as the callback–
this is important. We can pass in any such properly-typed function to this callback. Let’s
look at this more closely:
static double CbOne (double a, double b) {}

^ ^ ^
| ---| ------|
| | |

Callback<double, double, double> one;

You can only bind a function to a callback if they have the matching signature. The
first template argument is the return type, and the additional template arguments are the
types of the arguments of the function signature.

Now, let’s bind our callback "one" to the function that matches its signature:
// build callback instance which points to cbOne function
one = MakeCallback (&CbOne);

Then, later in the program, if the callback is to be used, it can be used as follows:
// this is not a null callback
NS_ASSERT (!one.IsNull ());
// invoke cbOne function through callback instance

Chapter 2: Callbacks 9

double retOne;
retOne = one (10.0, 20.0);

The check IsNull() ensures that the callback is not null; that there is a function to call
behind this callback. Then, one() returns the same result as if CbOne() had been called
directly.

2.2.2 Using the Callback API with member functions

Generally, you will not be calling static functions but instead public member functions of
an object. In this case, an extra argument is needed to the MakeCallback function, to tell
the system on which object the function should be invoked. Consider this example, also
from main-callback.cc:
class MyCb {
public:
int CbTwo (double a) {

std::cout << "invoke cbTwo a=" << a << std::endl;
return -5;

}
};

int main ()
{
...
// return type: int
// first arg type: double
Callback<int, double> two;
MyCb cb;
// build callback instance which points to MyCb::cbTwo
two = MakeCallback (&MyCb::CbTwo, &cb);
...

}

Here, we pass a (raw) pointer to the MakeCallback<> function, that says, when two ()
is invoked, to call the CbTwo function on the object pointed to by &cb.

A variation of this is used when objects are referred to by ns-3 smart pointers. The
MakeCallback API takes a raw pointer, so we need to call PeekPointer () to obtain this
raw pointer. So the example above would look like:
class MyCb : public Object {
public:
int CbTwo (double a) {

std::cout << "invoke cbTwo a=" << a << std::endl;
return -5;

}
};

int main ()
{
...

Chapter 2: Callbacks 10

// return type: int
// first arg type: double
Callback<int, double> two;
Ptr<MyCb> cb = CreateObject<MyCb> ();
// build callback instance which points to MyCb::cbTwo
two = MakeCallback (&MyCb::CbTwo, PeekPointer (cb));
...

}

2.2.3 Building Null Callbacks

It is possible for callbacks to be null; hence it may be wise to check before using them.
There is a special construct for a null callback, which is preferable to simply passing "0" as
an argument; it is the MakeNullCallback<> construct:
two = MakeNullCallback<int, double> ();
// invoking a null callback is just like
// invoking a null function pointer:
// it will crash at runtime.
//int retTwoNull = two (20.0);
NS_ASSERT (two.IsNull ());

2.3 Callback locations in ns-3

Where are callbacks frequently used in ns-3? Here are some of the more visible ones to
typical users:

2.3.1 Socket API

2.3.2 Layer-2/Layer-3 API

2.3.3 Tracing subsystem

2.3.4 Routing

Route Reply

2.4 Implementation details

This section is advanced explanation for C++ experts interested in the implementation, and
may be skipped by most users.

This code was originally written based on the techniques described here. It was sub-
sequently rewritten to follow the architecture outlined in Modern C++ Design: Generic
Programming and Design Patterns Applied– Alexandrescu, chapter 5, "Generalized Func-
tors".

This code uses:
• default template parameters to saves users from having to specify empty parameters

when the number of parameters is smaller than the maximum supported number
• the pimpl idiom: the Callback class is passed around by value and delegates the crux

of the work to its pimpl pointer.

http://www.codeproject.com/cpp/TTLFunction.asp
http://www.amazon.com/Modern-C{�am =	tfam def rm{tt}	entt �ackslashcurfont }%2B{�am =	tfam def rm{tt}	entt �ackslashcurfont }%2B-Design-Programming-Patterns/dp/0201704315/ref=pd_bbs_sr_1/102-0157303-1900156?ie=UTF8{�am =	tfam def rm{tt}	entt �ackslashcurfont }&s=books{�am =	tfam def rm{tt}	entt �ackslashcurfont }&qid=1187982662{�am =	tfam def rm{tt}	entt �ackslashcurfont }&sr=1-1
http://www.amazon.com/Modern-C{�am =	tfam def rm{tt}	entt �ackslashcurfont }%2B{�am =	tfam def rm{tt}	entt �ackslashcurfont }%2B-Design-Programming-Patterns/dp/0201704315/ref=pd_bbs_sr_1/102-0157303-1900156?ie=UTF8{�am =	tfam def rm{tt}	entt �ackslashcurfont }&s=books{�am =	tfam def rm{tt}	entt �ackslashcurfont }&qid=1187982662{�am =	tfam def rm{tt}	entt �ackslashcurfont }&sr=1-1

Chapter 2: Callbacks 11

• two pimpl implementations which derive from CallbackImpl FunctorCallbackImpl can
be used with any functor-type while MemPtrCallbackImpl can be used with pointers
to member functions.

• a reference list implementation to implement the Callback’s value semantics.

This code most notably departs from the Alexandrescu implementation in that it does
not use type lists to specify and pass around the types of the callback arguments. Of course,
it also does not use copy-destruction semantics and relies on a reference list rather than
autoPtr to hold the pointer.

Chapter 3: Attributes 12

3 Attributes

In ns-3 simulations, there are two main aspects to configuration:

• the simulation topology and how objects are connected
• the values used by the models instantiated in the topology

This chapter focuses on the second item above: how the many values in use in ns-3 are
organized, documented, and modifiable by ns-3 users. The ns-3 attribute system is also the
underpinning of how traces and statistics are gathered in the simulator.

Before delving into details of the attribute value system, it will help to review some basic
properties of class ns3::Object.

3.1 Object Overview

ns-3 is fundamentally a C++ object-based system. By this we mean that new C++ classes
(types) can be declared, defined, and subclassed as usual.

Many ns-3 objects inherit from the ns3::Object base class. These objects have some
additional properties that we exploit for organizing the system and improving the memory
management of our objects:

• a "metadata" system that links the class name to a lot of meta-information about the
object, including the base class of the subclass, the set of accessible constructors in the
subclass, and the set of "attributes" of the subclass

• a reference counting smart pointer implementation, for memory management.

ns-3 objects that use the attribute system derive from either ns3::Object or
ns3::ObjectBase. Most ns-3 objects we will discuss derive from ns3::Object, but a
few that are outside the smart pointer memory management framework derive from
ns3::ObjectBase.

Let’s review a couple of properties of these objects.

3.1.1 Smart pointers

As introduced in the ns-3 tutorial, ns-3 objects are memory managed by a reference counting
smart pointer implementation, class ns3::Ptr.

Smart pointers are used extensively in the ns-3 APIs, to avoid passing references to
heap-allocated objects that may cause memory leaks. For most basic usage (syntax), treat
a smart pointer like a regular pointer:

Ptr<WifiNetDevice> nd = ...;
nd->CallSomeFunction ();
// etc.

3.1.2 CreateObject

As we discussed above in 〈undefined〉 [Object Creation], page 〈undefined〉, at the lowest-
level API, objects of type ns3::Object are not instantiated using operator new as usual
but instead by a templated function called CreateObject().

A typical way to create such an object is as follows:

http://en.wikipedia.org/wiki/Smart_pointer
http://en.wikipedia.org/wiki/Smart_pointer

Chapter 3: Attributes 13

Ptr<WifiNetDevice> nd = CreateObject<WifiNetDevice> ();

You can think of this as being functionally equivalent to:

WifiNetDevice* nd = new WifiNetDevice ();

Objects that derive from ns3::Object must be allocated on the heap using CreateOb-
ject(). Those deriving from ns3::ObjectBase, such as ns-3 helper functions and packet
headers and trailers, can be allocated on the stack.

In some scripts, you may not see a lot of CreateObject() calls in the code; this is because
there are some helper objects in effect that are doing the CreateObject()s for you.

3.1.3 TypeId

ns-3 classes that derive from class ns3::Object can include a metadata class called TypeId
that records meta-information about the class, for use in the object aggregation and com-
ponent manager systems:

• a unique string identifying the class

• the base class of the subclass, within the metadata system

• the set of accessible constructors in the subclass

3.1.4 Object Summary

Putting all of these concepts together, let’s look at a specific example: class ns3::Node.

The public header file node.h has a declaration that includes a static GetTypeId function
call:

class Node : public Object
{
public:
static TypeId GetTypeId (void);
...

This is defined in the node.cc file as follows:

TypeId
Node::GetTypeId (void)
{
static TypeId tid = TypeId ("ns3::Node")
.SetParent<Object> ()
;

return tid;
}

Finally, when users want to create Nodes, they call:

Ptr<Node> n = CreateObject<Node> ();

We next discuss how attributes (values associated with member variables or functions
of the class) are plumbed into the above TypeId.

Chapter 3: Attributes 14

3.2 Attribute Overview

The goal of the attribute system is to organize the access of internal member objects of a
simulation. This goal arises because, typically in simulation, users will cut and paste/modify
existing simulation scripts, or will use higher-level simulation constructs, but often will be
interested in studying or tracing particular internal variables. For instance, use cases such
as:
• "I want to trace the packets on the wireless interface only on the first access point"
• "I want to trace the value of the TCP congestion window (every time it changes) on a

particular TCP socket"
• "I want a dump of all values that were used in my simulation."

Similarly, users may want fine-grained access to internal variables in the simulation, or
may want to broadly change the initial value used for a particular parameter in all subse-
quently created objects. Finally, users may wish to know what variables are settable and
retrievable in a simulation configuration. This is not just for direct simulation interaction
on the command line; consider also a (future) graphical user interface that would like to be
able to provide a feature whereby a user might right-click on an node on the canvas and see
a hierarchical, organized list of parameters that are settable on the node and its constituent
member objects, and help text and default values for each parameter.

3.2.1 Functional overview

We provide a way for users to access values deep in the system, without having to plumb
accessors (pointers) through the system and walk pointer chains to get to them. Consider a
class DropTailQueue that has a member variable that is an unsigned integer m_maxPackets;
this member variable controls the depth of the queue.

If we look at the declaration of DropTailQueue, we see the following:
class DropTailQueue : public Queue {
public:
static TypeId GetTypeId (void);
...

private:
std::queue<Ptr<Packet> > m_packets;
uint32_t m_maxPackets;

};

Let’s consider things that a user may want to do with the value of m maxPackets:
• Set a default value for the system, such that whenever a new DropTailQueue is created,

this member is initialized to that default.
• Set or get the value on an already instantiated queue.

The above things typically require providing Set() and Get() functions, and some type
of global default value.

In the ns-3 attribute system, these value definitions and accessor functions are moved
into the TypeId class; e.g.:
TypeId DropTailQueue::GetTypeId (void)

Chapter 3: Attributes 15

{
static TypeId tid = TypeId ("ns3::DropTailQueue")
.SetParent<Queue> ()
.AddConstructor<DropTailQueue> ()
.AddAttribute ("MaxPackets",

"The maximum number of packets accepted by this DropTailQueue.",
UintegerValue (100),
MakeUintegerAccessor (&DropTailQueue::m_maxPackets),
MakeUintegerChecker<uint32_t> ())

;

return tid;
}

The AddAttribute() method is performing a number of things with this value:
• Binding the variable m maxPackets to a string "MaxPackets"
• Providing a default value (100 packets)
• Providing some help text defining the value
• Providing a "checker" (not used in this example) that can be used to set bounds on

the allowable range of values

The key point is that now the value of this variable and its default value are accessible
in the attribute namespace, which is based on strings such as "MaxPackets" and TypeId
strings. In the next section, we will provide an example script that shows how users may
manipulate these values.

3.2.2 Basic usage

Let’s look at how a user script might access these values. This is based on the script found
at samples/main-attribute-value.cc, with some details stripped out.
//
// This is a basic example of how to use the attribute system to
// set and get a value in the underlying system; namely, an unsigned
// integer of the maximum number of packets in a queue
//

int
main (int argc, char *argv[])
{

// By default, the MaxPackets attribute has a value of 100 packets
// (this default can be observed in the function DropTailQueue::GetTypeId)
//
// Here, we set it to 80 packets. We could use one of two value types:
// a string-based value or a Uinteger value
Config::SetDefault ("ns3::DropTailQueue::MaxPackets", StringValue ("80"));
// The below function call is redundant
Config::SetDefault ("ns3::DropTailQueue::MaxPackets", UintegerValue (80));

Chapter 3: Attributes 16

// Allow the user to override any of the defaults and the above
// SetDefaults() at run-time, via command-line arguments
CommandLine cmd;
cmd.Parse (argc, argv);

The main thing to notice in the above are the two calls to Config::SetDefault. This is
how we set the default value for all subsequently instantiated DropTailQueues. We illustrate
that two types of Value classes, a StringValue and a UintegerValue class, can be used to
assign the value to the attribute named by "ns3::DropTailQueue::MaxPackets".

Now, we will create a few objects using the low-level API; here, our newly created queues
will not have a m maxPackets initialized to 100 packets but to 80 packets, because of what
we did above with default values.

Ptr<Node> n0 = CreateObject<Node> ();

Ptr<PointToPointNetDevice> net0 = CreateObject<PointToPointNetDevice> ();
n0->AddDevice (net0);

Ptr<Queue> q = CreateObject<DropTailQueue> ();
net0->AddQueue(q);

At this point, we have created a single node (Node 0) and a single PointToPointNetDevice
(NetDevice 0) and added a DropTailQueue to it.

Now, we can manipulate the MaxPackets value of the already instantiated
DropTailQueue. Here are various ways to do that.

3.2.2.1 Pointer-based access

We assume that a smart pointer (Ptr) to a relevant network device is in hand; here, it is
the net0 pointer.

One way to change the value is to access a pointer to the underlying queue and modify
its attribute.

First, we observe that we can get a pointer to the (base class) queue via the PointTo-
PointNetDevice attributes, where it is called TxQueue

PointerValue tmp;
net0->GetAttribute ("TxQueue", tmp);
Ptr<Object> txQueue = tmp.GetObject ();

Using the GetObject function, we can perform a safe downcast to a DropTailQueue,
where MaxPackets is a member

Ptr<DropTailQueue> dtq = txQueue->GetObject <DropTailQueue> ();
NS_ASSERT (dtq != 0);

Next, we can get the value of an attribute on this queue. We have introduced wrapper
"Value" classes for the underlying data types, similar to Java wrappers around these types,
since the attribute system stores values and not disparate types. Here, the attribute value is
assigned to a UintegerValue, and the Get() method on this value produces the (unwrapped)
uint32 t.

Chapter 3: Attributes 17

UintegerValue limit;
dtq->GetAttribute ("MaxPackets", limit);
NS_LOG_INFO ("1. dtq limit: " << limit.Get () << " packets");

Note that the above downcast is not really needed; we could have done the same using
the Ptr<Queue> even though the attribute is a member of the subclass
txQueue->GetAttribute ("MaxPackets", limit);
NS_LOG_INFO ("2. txQueue limit: " << limit.Get () << " packets");

Now, let’s set it to another value (60 packets)
txQueue->SetAttribute("MaxPackets", UintegerValue (60));
txQueue->GetAttribute ("MaxPackets", limit);
NS_LOG_INFO ("3. txQueue limit changed: " << limit.Get () << " packets");

3.2.2.2 Namespace-based access

An alternative way to get at the attribute is to use the configuration namespace. Here, this
attribute resides on a known path in this namespace; this approach is useful if one doesn’t
have access to the underlying pointers and would like to configure a specific attribute with
a single statement.
Config::Set ("/NodeList/0/DeviceList/0/TxQueue/MaxPackets", UintegerValue (25));
txQueue->GetAttribute ("MaxPackets", limit);
NS_LOG_INFO ("4. txQueue limit changed through namespace: " <<
limit.Get () << " packets");

We could have also used wildcards to set this value for all nodes and all net devices
(which in this simple example has the same effect as the previous Set())
Config::Set ("/NodeList/*/DeviceList/*/TxQueue/MaxPackets", UintegerValue (15));
txQueue->GetAttribute ("MaxPackets", limit);
NS_LOG_INFO ("5. txQueue limit changed through wildcarded namespace: " <<
limit.Get () << " packets");

3.2.3 Setting through constructors helper classes

Arbitrary combinations of attributes can be set and fetched from the helper and low-level
APIs; either from the constructors themselves:
Ptr<Object> p = CreateObject<MyNewObject> ("n1", v1, "n2", v2, ...);

or from the higher-level helper APIs, such as:
mobility.SetPositionAllocator ("GridPositionAllocator",

"MinX", DoubleValue (-100.0),
"MinY", DoubleValue (-100.0),
"DeltaX", DoubleValue (5.0),
"DeltaY", DoubleValue (20.0),
"GridWidth", UintegerValue (20),
"LayoutType", StringValue ("RowFirst"));

3.2.4 Value classes

Readers will note the new FooValue classes which are subclasses of the AttributeValue base
class. These can be thought of as an intermediate class that can be used to convert from

Chapter 3: Attributes 18

raw types to the Values that are used by the attribute system. Recall that this database
is holding objects of many types with a single generic type. Conversions to this type can
either be done using an intermediate class (IntegerValue, DoubleValue for "floating point")
or via strings. Direct implicit conversion of types to Value is not really practical. So in the
above, users have a choice of using strings or values:
p->Set ("cwnd", StringValue ("100")); // string-based setter
p->Set ("cwnd", IntegerValue (100)); // integer-based setter

The system provides some macros that help users declare and define new AttributeValue
subclasses for new types that they want to introduce into the attribute system:
• ATTRIBUTE HELPER HEADER
• ATTRIBUTE HELPER CPP

3.3 Extending attributes

The ns-3 system will place a number of internal values under the attribute system, but
undoubtedly users will want to extend this to pick up ones we have missed, or to add their
own classes to this.

3.3.1 Adding an existing internal variable to the metadata system

Consider this variable in class TcpSocket:
uint32_t m_cWnd; // Congestion window

Suppose that someone working with Tcp wanted to get or set the value of that variable
using the metadata system. If it were not already provided by ns-3, the user could declare
the following addition in the metadata system (to the TypeId declaration for TcpSocket):

.AddParameter ("Congestion window",
"Tcp congestion window (bytes)",
Uinteger (1),
MakeUintegerAccessor (&TcpSocket::m_cWnd),
MakeUintegerChecker<uint16_t> ());

Now, the user with a pointer to the TcpSocket can perform operations such as setting
and getting the value, without having to add these functions explicitly. Furthermore, access
controls can be applied, such as allowing the parameter to be read and not written, or bounds
checking on the permissible values can be applied.

3.3.2 Adding a new TypeId

Here, we discuss the impact on a user who wants to add a new class to ns-3; what additional
things must be done to hook it into this system.

We’ve already introduced what a TypeId definition looks like:
TypeId
RandomWalk2dMobilityModel::GetTypeId (void)
{
static TypeId tid = TypeId ("ns3::RandomWalk2dMobilityModel")
.SetParent<MobilityModel> ()
.SetGroupName ("Mobility")

Chapter 3: Attributes 19

.AddConstructor<RandomWalk2dMobilityModel> ()

.AddAttribute ("Bounds",
"Bounds of the area to cruise.",
RectangleValue (Rectangle (0.0, 0.0, 100.0, 100.0)),
MakeRectangleAccessor (&RandomWalk2dMobilityModel::m_bounds),
MakeRectangleChecker ())

.AddAttribute ("Time",
"Change current direction and speed after moving for this delay.",
TimeValue (Seconds (1.0)),
MakeTimeAccessor (&RandomWalk2dMobilityModel::m_modeTime),
MakeTimeChecker ())

// etc (more parameters).
;

return tid;
}

The declaration for this in the class declaration is one-line public member method:

public:
static TypeId GetTypeId (void);

Typical mistakes here involve:

• Not calling the SetParent method or calling it with the wrong type
• Not calling the AddConstructor method of calling it with the wrong type
• Introducing a typographical error in the name of the TypeId in its constructor
• Not using the fully-qualified c++ typename of the enclosing c++ class as the name of

the TypeId

None of these mistakes can be detected by the ns-3 codebase so, users are advised to
check carefully multiple times that they got these right.

3.4 Adding new class type to the attribute system

From the perspective of the user who writes a new class in the system and wants to hook
it in to the attribute system, there is mainly the matter of writing the conversions to/from
strings and attribute values. Most of this can be copy/pasted with macro-ized code. For
instance, consider class Rectangle in the src/mobility/ directory:

One line is added to the class declaration:

/**
* \brief a 2d rectangle
*/
class Rectangle
{
...

};

One macro call and two operators, are added below the class declaration:

std::ostream &operator << (std::ostream &os, const Rectangle &rectangle);

Chapter 3: Attributes 20

std::istream &operator >> (std::istream &is, Rectangle &rectangle);

ATTRIBUTE_HELPER_HEADER (Rectangle);

In the class definition, the code looks like this:

ATTRIBUTE_HELPER_CPP (Rectangle);

std::ostream &
operator << (std::ostream &os, const Rectangle &rectangle)
{
os << rectangle.xMin << "|" << rectangle.xMax << "|" << rectangle.yMin << "|" << rectangle.yMax;
return os;

}
std::istream &
operator >> (std::istream &is, Rectangle &rectangle)
{
char c1, c2, c3;
is >> rectangle.xMin >> c1 >> rectangle.xMax >> c2 >> rectangle.yMin >> c3 >> rectangle.yMax;
if (c1 != ’|’ ||

c2 != ’|’ ||
c3 != ’|’)

{
is.setstate (std::ios_base::failbit);

}
return is;

}

These stream operators simply convert from a string representation of the Rectangle
("xMin|xMax|yMin|yMax") to the underlying Rectangle, and the modeler must specify
these operators and the string syntactical representation of an instance of the new class.

3.5 ConfigStore

Feedback requested: This is an experimental feature of ns-3. It is not in the main tree. If
you like this feature and would like to provide feedback on it, please email us.

Values for ns-3 attributes can be stored in an ascii text file and loaded into a future
simulation. This feature is known as the ns-3 ConfigStore. The ConfigStore code is in
src/contrib/. It is not yet main-tree code, because we are seeking some user feedback.

We can explore this system by using an example. Copy the csma-bridge.cc file to the
scratch directory:

cp examples/csma-bridge.cc scratch/
./waf

Let’s edit it to add the ConfigStore feature. First, add an include statement, and then
add these lines:

#include "contrib-module.h"
...
int main (...)

Chapter 3: Attributes 21

{
// setup topology

// Invoke just before entering Simulator::Run ()
ConfigStore config;
config.Configure ();

Simulator::Run ();
}

There is an attribute that governs whether the Configure() call either stores a simulation
configuration in a file and exits, or whether it loads a simulation configuration file annd
proceeds. First, the LoadFilename attribute is checked, and if non-empty, the program
loads the configuration from the filename provided. If LoadFilename is empty, and if the
StoreFilename attribute is populated, the configuration will be written to the output
filename specified.

While it is possible to generate a sample config file and lightly edit it to change a couple
of values, there are cases where this process will not work because the same value on the
same object can appear multiple times in the same automatically-generated configuration
file under different configuration paths.

As such, the best way to use this class is to use it to generate an initial configuration
file, extract from that configuration file only the strictly necessary elements, and move these
minimal elements to a new configuration file which can then safely be edited and loaded in
a subsequent simulation run.

So, let’s do that as an example. We’lll run the program once to create a configure file,
and look at it. If you are running bash shell, the below command should work (which
illustrates how to set an attribute from the command line):

./build/debug/scratch/csma-bridge --ns3::ConfigStore::StoreFilename=test.config

or, if the above does not work (the above requires rpath support), try this:

./waf --command-template="%s --ns3::ConfigStore::StoreFilename=test.config" --run scratch/csma-bridge

Running the program should yield a "test.config" output configuration file that looks
like this:

/$ns3::NodeListPriv/NodeList/0/$ns3::Node/DeviceList/0/$ns3::CsmaNetDevice/Addre
ss 00:00:00:00:00:01
/$ns3::NodeListPriv/NodeList/0/$ns3::Node/DeviceList/0/$ns3::CsmaNetDevice/Frame
Size 1518
/$ns3::NodeListPriv/NodeList/0/$ns3::Node/DeviceList/0/$ns3::CsmaNetDevice/SendE
nable true
/$ns3::NodeListPriv/NodeList/0/$ns3::Node/DeviceList/0/$ns3::CsmaNetDevice/Recei
veEnable true
/$ns3::NodeListPriv/NodeList/0/$ns3::Node/DeviceList/0/$ns3::CsmaNetDevice/TxQue
ue/$ns3::DropTailQueue/MaxPackets 100
/$ns3::NodeListPriv/NodeList/0/$ns3::Node/DeviceList/0/$ns3::CsmaNetDevice/Mtu 1
500
...

Chapter 3: Attributes 22

The above lists, for each object in the script topology, the value of each registered
attribute. The syntax of this file is that the unique name of the attribute (in the attribute
namespace) is specified on each line, followed by a value.

This file is intended to be a convenient record of the parameters that were used in a
given simulation run, and can be stored with simulation output files. Additionally, this file
can also be used to parameterize a simulation, instead of editing the script or passing in
command line arguments. For instance, a person wanting to run the simulation can examine
and tweak the values in a pre-existing configuration file, and pass the file to the program.
In this case, the relevant commands are:
./build/debug/scratch/csma-bridge --ns3::ConfigStore::LoadFilename=test.config

or, if the above does not work (the above requires rpath support), try this:
./waf --command-template="%s --ns3::ConfigStore::LoadFilename=test.config" --run scratch/csma-bridge

3.5.1 GTK-based ConfigStore

There is a GTK-based front end for the ConfigStore. This allows users to use a GUI to
access and change variables. Screenshots of this feature are available in the ns-3 Overview
presentation.

To use this feature, one must install libgtk and libgtk-dev; an example Ubuntu installa-
tion command is:
sudo apt-get install libgtk2.0-0 libgtk2.0-dev

To check whether it is configured or not, check the output of the ./waf configure step:
---- Summary of optional NS-3 features:
Threading Primitives : enabled
Real Time Simulator : enabled
GtkConfigStore : not enabled (library ’gtk+-2.0 >= 2.12’ not found)

In the above example, it was not enabled, so it cannot be used until a suitable version
is installed and ./waf configure; ./waf is rerun.

Usage is almost the same as the non-GTK-based version:
// Invoke just before entering Simulator::Run ()
GtkConfigStore config;
config.Configure ();

Now, when you run the script, a GUI should pop up, allowing you to open menus of
attributes on different nodes/objects, and then launch the simulation execution when you
are done.

3.5.2 Future work

There are a couple of possible improvements:
• save a unique version number with date and time at start of file
• save rng initial seed somewhere.
• make each RandomVariable serialize its own initial seed and re-read it later
• add the default values

http://www.nsnam.org/docs/ns-3-overview.pdf

Chapter 4: Object model 23

4 Object model

ns-3 is fundamentally a C++ object system. Objects can be declared and instantiated as
usual, per C++ rules. ns-3 also adds some features to traditional C++ objects, as described
below, to provide greater functionality and features. This manual chapter is intended to
introduce the reader to the ns-3 object model.

This section describes the C++ class design for ns-3 objects. In brief, several design
patterns in use include classic object-oriented design (polymorphic interfaces and imple-
mentations), separation of interface and implementation, the non-virtual public interface
design pattern, an object aggregation facility, and reference counting for memory man-
agement. Those familiar with component models such as COM or Bonobo will recognize
elements of the design in the ns-3 object aggregation model, although the ns-3 design is not
strictly in accordance with either.

4.1 Object-oriented behavior

C++ objects, in general, provide common object-oriented capabilities (abstraction, encapsu-
lation, inheritance, and polymorphism) that are part of classic object-oriented design. ns-3
objects make use of these properties; for instance:
class Address
{
public:
Address ();
Address (uint8_t type, const uint8_t *buffer, uint8_t len);
Address (const Address & address);
Address &operator = (const Address &address);
...

private:
uint8_t m_type;
uint8_t m_len;
...

};

4.2 Object base classes

There are three special base classes used in ns-3. Classes that inherit from these base classes
can instantiate objects with special properties. These base classes are:
• class Object

• class ObjectBase

• class RefCountBase

It is not required that ns-3 objects inherit from these class, but those that do get special
properties. Classes deriving from class Object get the following properties.
• the ns-3 type and attribute system (see Chapter 3 [Attributes], page 12)
• an object aggregation system
• a smart-pointer reference counting system (class Ptr)

Chapter 4: Object model 24

Classes that derive from class ObjectBase get the first two properties above, but do
not get smart pointers. Classes that derive from class RefCountBase get only the smart-
pointer reference counting system.

In practice, class Object is the variant of the three above that the ns-3 developer will
most commonly encounter.

4.3 Memory management and class Ptr

Memory management in a C++ program is a complex process, and is often done incorrectly
or inconsistently. We have settled on a reference counting design described as follows.

All objects using reference counting maintain an internal reference count to determine
when an object can safely delete itself. Each time that a pointer is obtained to an interface,
the object’s reference count is incremented by calling Ref(). It is the obligation of the user
of the pointer to explicitly Unref() the pointer when done. When the reference count falls
to zero, the object is deleted.
• When the client code obtains a pointer from the object itself through object creation,

or via QueryInterface, it does not have to increment the reference count.
• When client code obtains a pointer from another source (e.g., copying a pointer) it

must call Ref() to increment the reference count.
• All users of the object pointer must call Unref() to release the reference.

The burden for calling Unref() is somewhat relieved by the use of the reference counting
smart pointer class described below.

Users using a low-level API who wish to explicitly allocate non-reference-counted objects
on the heap, using operator new, are responsible for deleting such objects.

4.3.1 Reference counting smart pointer (Ptr)

Calling Ref() and Unref() all the time would be cumbersome, so ns-3 provides a smart
pointer class Ptr similar to Boost::intrusive_ptr. This smart-pointer class assumes
that the underlying type provides a pair of Ref and Unref methods that are expected to
increment and decrement the internal refcount of the object instance.

This implementation allows you to manipulate the smart pointer as if it was a normal
pointer: you can compare it with zero, compare it against other pointers, assign zero to it,
etc.

It is possible to extract the raw pointer from this smart pointer with the GetPointer and
PeekPointer methods.

If you want to store a newed object into a smart pointer, we recommend you to use
the CreateObject template functions to create the object and store it in a smart pointer to
avoid memory leaks. These functions are really small convenience functions and their goal
is just is save you a small bit of typing.

4.3.2 CreateObject and Create

Objects in C++ may be statically, dynamically, or automatically created. This holds true
for ns-3 also, but some objects in the system have some additional frameworks available.
Specifically, reference counted objects are usually allocated using a templated Create or
CreateObject method, as follows.

Chapter 4: Object model 25

For objects deriving from class Object:
Ptr<WifiNetDevice> device = CreateObject<WifiNetDevice> ();

Please do not create such objects using operator new; create them using
CreateObject() instead.

For objects deriving from class RefCountBase, or other objects that support usage of
the smart pointer class (in particular, the ns-3 Packet class), a templated helper function
is available and recommended to be used:
Ptr b = Create ();

This is simply a wrapper around operator new that correctly handles the reference
counting system.

4.3.3 Aggregation

The ns-3 object aggregation system is motivated in strong part by a recognition that a
common use case for ns-2 has been the use of inheritance and polymorphism to extend
protocol models. For instance, specialized versions of TCP such as RenoTcpAgent derive
from (and override functions from) class TcpAgent.

However, two problems that have arisen in the ns-2 model are downcasts and “weak
base class.” Downcasting refers to the procedure of using a base class pointer to an object
and querying it at run time to find out type information, used to explicitly cast the pointer
to a subclass pointer so that the subclass API can be used. Weak base class refers to the
problems that arise when a class cannot be effectively reused (derived from) because it lacks
necessary functionality, leading the developer to have to modify the base class and causing
proliferation of base class API calls, some of which may not be semantically correct for all
subclasses.

ns-3 is using a version of the query interface design pattern to avoid these problems.
This design is based on elements of the Component Object Model and GNOME Bonobo
although full binary-level compatibility of replaceable components is not supported and we
have tried to simplify the syntax and impact on model developers.

4.3.3.1 Aggregation example

class Node is a good example of the use of aggregation in ns-3. Note that there are not
derived classes of Nodes in ns-3 such as class InternetNode. Instead, components (protocols)
are aggregated to a node. Let’s look at how some Ipv4 protocols are added to a node.
static void
AddIpv4Stack(Ptr<Node> node)
{
Ptr<Ipv4L3Protocol> ipv4 = CreateObject<Ipv4L3Protocol> ();
ipv4->SetNode (node);
node->AggregateObject (ipv4);
Ptr<Ipv4Impl> ipv4Impl = CreateObject<Ipv4Impl> ();
ipv4Impl->SetIpv4 (ipv4);
node->AggregateObject (ipv4Impl);

}

Note that the Ipv4 protocols are created using CreateObject(). Then, they are aggre-
gated to the node. In this manner, the Node base class does not need to be edited to allow

http://en.wikipedia.org/wiki/Component_Object_Model
http://en.wikipedia.org/wiki/Bonobo_(component_model)

Chapter 4: Object model 26

users with a base class Node pointer to access the Ipv4 interface; users may ask the node
for a pointer to its Ipv4 interface at runtime. How the user asks the node is described in
the next subsection.

Note that it is a programming error to aggregate more than one object of the same type
to an ns3::Object. So, for instance, aggregation is not an option for storing all of the active
sockets of a node.

4.3.3.2 GetObject example

GetObject is a type-safe way to achieve a safe downcasting and to allow interfaces to be
found on an object.

Consider a node pointer m_node that points to a Node object that has an implementation
of IPv4 previously aggregated to it. The client code wishes to configure a default route. To
do so, it must access an object within the node that has an interface to the IP forwarding
configuration. It performs the following:
Ptr<Ipv4> ipv4 = m_node->GetObject<Ipv4> ();

If the node in fact does not have an Ipv4 object aggregated to it, then the method will
return null. Therefore, it is good practice to check the return value from such a function
call. If successful, the user can now use the Ptr to the Ipv4 object that was previously
aggregated to the node.

Another example of how one might use aggregation is to add optional models to objects.
For in For instance, an existing Node object may have an “Energy Model” object aggregated
to it at run time (without modifying and recompiling the node class). An existing model
(such as a wireless net device) can then later "GetObject" for the energy model and act
appropriately if the interface has been either built in to the underlying Node object or
aggregated to it at run time. However, other nodes need not know anything about energy
models.

We hope that this mode of programming will require much less need for developers to
modify the base classes.

4.4 Downcasting

A question that has arisen several times is, "If I have a base class pointer (Ptr) to an object
and I want the derived class pointer, should I downcast (via C++ dynamic cast) to get the
derived pointer, or should I use the object aggregation system to GetObject<> () to find a
Ptr to the interface to the subclass API?"

The answer to this is that in many situations, both techniques will work. ns-3 provides
a templated function for making the syntax of Object dynamic casting much more user
friendly:
template <typename T1, typename T2>
Ptr<T1>
DynamicCast (Ptr<T2> const&p)
{
return Ptr<T1> (dynamic_cast<T1 *> (PeekPointer (p)));

}

DynamicCast works when the programmer has a base type pointer and is testing against
a subclass pointer. GetObject works when looking for different objects aggregated, but also

Chapter 4: Object model 27

works with subclasses, in the same way as DynamicCast. If unsure, the programmer should
use GetObject, as it works in all cases. If the programmer knows the class hierarchy of the
object under consideration, it is more direct to just use DynamicCast.

Chapter 5: Real-Time Scheduler 28

5 Real-Time Scheduler

ns-3 has been designed for integration into testbed and virtual machine environments. To
integrate with real network stacks and emit/consume packets, a real-time scheduler is needed
to try to lock the simulation clock with the hardware clock. We describe here a component
of this: the RealTime scheduler.

The purpose of the realtime scheduler is to cause the progression of the simulation clock
to occur synchronously with respect to some external time base. Without the presence of
an external time base (wall clock), simulation time jumps instantly from one simulated time
to the next.

5.1 Behavior

When using a non-realtime scheduler (the default in ns-3), the simulator advances the
simulation time to the next scheduled event. During event execution, simulation time
is frozen. With the realtime scheduler, the behavior is similar from the perspective of
simulation models (i.e., simulation time is frozen during event execution), but between
events, the simulator will attempt to keep the simulation clock aligned with the machine
clock.

When an event is finished executing, and the scheduler moves to the next event, the
scheduler compares the next event execution time with the machine clock. If the next event
is scheduled for a future time, the simulator sleeps until that realtime is reached and then
executes the next event.

It may happen that, due to the processing inherent in the execution of simulation events,
that the simulator cannot keep up with realtime. In such a case, it is up to the user
configuration what to do. There are two ns-3 attributes that govern the behavior. The
first is ns3::RealTimeSimulatorImpl::SynchronizationMode. The two entries possible
for this attribute are BestEffort (the default) or HardLimit. In "BestEffort" mode, the
simulator will just try to catch up to realtime by executing events until it reaches a point
where the next event is in the (realtime) future, or else the simulation ends. In BestEffort
mode, then, it is possible for the simulation to consume more time than the wall clock time.
The other option "HardLimit" will cause the simulation to abort if the tolerance threshold
is exceeded. This attribute is ns3::RealTimeSimulatorImpl::HardLimit and the default
is 0.1 seconds.

A different mode of operation is one in which simulated time is not frozen during an
event execution. This mode of realtime simulation was implemented but removed from the
ns-3 tree because of questions of whether it would be useful. If users are interested in a
realtime simulator for which simulation time does not freeze during event execution (i.e.,
every call to Simulator::Now() returns the current wall clock time, not the time at which
the event started executing), please contact the ns-developers mailing list.

5.2 Usage

The usage of the realtime simulator is straightforward, from a scripting perspective. Users
just need to set the attribute SimulatorImplementationType to the Realtime simulator,
such as follows:

Chapter 5: Real-Time Scheduler 29

GlobalValue::Bind ("SimulatorImplementationType",
StringValue ("ns3::RealtimeSimulatorImpl"));

There is a script in examples/realtime-udp-echo.cc that has an example of how to
configure the realtime behavior. Try:
./waf --run realtime-udp-echo

Whether the simulator will work in a best effort or hard limit policy fashion is governed
by the attributes explained in the previous section.

5.3 Implementation

The implementation is contained in the following files:
• src/simulator/realtime-simulator-impl.cc,h

• src/simulator/wall-clock-synchronizer.cc,h

In order to create a realtime scheduler, to a first approximation you just want to cause
simulation time jumps to consume real time. We propose doing this using a combination of
sleep- and busy- waits. Sleep-waits cause the calling process (thread) to yield the processor
for some amount of time. Even though this specified amount of time can be passed to
nanosecond resolution, it is actually converted to an OS-specific granularity. In Linux, the
granularity is called a Jiffy. Typically this resolution is insufficient for our needs (on the
order of a ten milliseconds), so we round down and sleep for some smaller number of Jiffies.
The process is then awakened after the specified number of Jiffies has passed. At this time,
we have some residual time to wait. This time is generally smaller than the minimum sleep
time, so we busy-wait for the remainder of the time. This means that the thread just sits in
a for loop consuming cycles until the desired time arrives. After the combination of sleep-
and busy-waits, the elapsed realtime (wall) clock should agree with the simulation time of
the next event and the simulation proceeds.

Chapter 6: Emulation 30

6 Emulation

ns-3 has been designed for integration into testbed and virtual machine environments. We
have addressed this need by providing two kinds of net devices. The first kind, which we call
an Emu NetDevice allows ns-3 simulations to send data on a “real” network. The second
kind, called a Tap NetDevice allows a “real” host to participate in an ns-3 simulation as
if it were one of the simulated nodes. An ns-3 simulation may be constructed with any
combination of simulated, Emu, or Tap devices.

One of the use-cases we want to support is that of a testbed. A concrete example of
an environment of this kind is the ORBIT testbed. ORBIT is a laboratory emulator/field
trial network arranged as a two dimensional grid of 400 802.11 radio nodes. We integrate
with ORBIT by using their “imaging” process to load and run ns-3 simulations on the
ORBIT array. We use our Emu NetDevices to drive the hardware in the testbed and we
can accumulate results either using the ns-3 tracing and logging functions, or the native
ORBIT data gathering techniques. See http://www.orbit-lab.org/ for details on the
ORBIT testbed.

A simulation of this kind is shown in the following figure:

Figure 6.1

You can see that there are separate hosts, each running a subset of a “global” simulation.
Instead of an ns-3 channel connecting the hosts, we use real hardware provided by the
testbed. This allows ns-3 applications and protocol stacks attached to a simulation node to
communicate over real hardware.

We expect the primary use for this configuration will be to generate repeatable exper-
imental results in a real-world network environment that includes all of the ns-3 tracing,
loging, visualization and statistics gathering tools.

http://www.orbit-lab.org/

Chapter 6: Emulation 31

In what can be viewed as essentially an inverse configuration, we allow “real” machines
running native applications and protocol stacks to integrate with an ns-3 simulation. This
allows for the simulation of large networks connected to a real mahince, and also enables
virtualization. A simulation of this kind is shown in the following figure:

Figure 6.2: Implementation overview of emulated channel.

Here, you will see that there is a single host with a number of virtual machines running
on it. An ns-3 simulation is shown running in the virtual machine shown in the center
of the figure. This simulation has a number of nodes with associated ns-3 applications
and protocol stacks that are talking to an ns-3 channel through native simulated ns-3 net
devices.

There are also two virtual machines shown at the far left and far right of the figure. These
VMs are running native (Linux) applications and protocol stacks. The VM is connected
into the simulation by a Linux Tap net device. The user-mode handler for the Tap device is
instantiated in the simulation and attached to a proxy node that represents the native VM
in the simulation. These handlers allow the Tap devices on the native VMs to behave as if
they were ns-3 net devices in the simulation VM. This, in turn, allows the native software
and protocol suites in the native VMs to believe that they are connected to the simulated
ns-3 channel.

We expect the typical use case for this environment will be to analyze the behavior of
native applications and protocol suites in the presence of large simulated ns-3 networks.

6.1 Behavior

6.1.1 Emu Net Device

The Emu net device allows a simulation node to send and receive packets over a real network.
The emulated net device relies on a specified interface being in promiscuous mode. It opens
a raw socket and binds to that interface. We perform MAC spoofing to separate simulation
network traffic from other network traffic that may be flowing to and from the host.

Normally, the use case for emulated net devices is in collections of small simulations that
connect to the outside world through specific interfaces. For example, one could construct a
number of virtual machines and connect them via a host-only network. To use the emulated

Chapter 6: Emulation 32

net device, you would need to set all of the host-only interfaces in promiscuous mode and
provide an appropriate device name, "eth1" for example.

One could also use the Emu net device in a testbed situation where the host on which the
simulation is running has a specific interface of interest which drives the testbed hardware.
You would also need to set this specific interface into promiscuous mode and provide an
appropriate device name to the ns-3 emulated net device. An example of this environment
is the ORBIT testbed as described above.

The Emu net device only works if the underlying interface is up and in promiscuous mode.
Packets will be sent out over the device, but we use MAC spoofing. The MAC addresses
will be generated (by default) using the Organizationally Unique Identifier (OUI) 00:00:00
as a base. This vendor code is not assigned to any organization and so should not conflict
with any real hardware.

It is always up to the user to determine that using these MAC addresses is okay on
your network and won’t conflict with anything else (including another simulation using Emu
devices) on your network. If you are using the emulated net device in separate simulations
you must consider global MAC address assignment issues and ensure that MAC addresses
are unique across all simulations. The emulated net device respects the MAC address
provided in the SetAddress method so you can do this manually. For larger simulations,
you may want to set the OUI in the MAC address allocation function.

IP addresses corresponding to the emulated net devices are the addresses generated in
the simulation, which are generated in the usual way via helper functions. Since we are
using MAC spoofing, there will not be a conflict between ns-3 network stacks and any native
network stacks.

The emulated net device comes with a helper function as all ns-3 devices do. One unique
aspect is that there is no channel associated with the underlying medium. We really have
no idea what this external medium is, and so have not made an effort to model it abstractly.
The primary thing to be aware of is the implication this has for static global routing. The
global router module attempts to walk the channels looking for adjacent networks. Since
there is no channel, the global router will be unable to do this and you must then use a
dynamic routing protocol such as OLSR to include routing in Emu-based networks.

6.1.2 Tap Net Device

The Tap Net Device is scheduled for inclusion in ns-3.4 at the writing of this section. We
will include details as soon as the Tap device is merged.

6.2 Usage

6.2.1 Emu Net Device

The usage of the Emu net device is straightforward once the network of simulations has
been configured. Since most of the work involved in working with this device is in network
configuration before even starting a simulation, you may want to take a moment to review a
couple of HOWTO pages on the ns-3 wiki that describe how to set up a virtual test network
using VMware and how to run a set of example (client server) simulations that use Emu net
devices.

Chapter 6: Emulation 33

http://www.nsnam.org/wiki/index.php/HOWTO_use_VMware_to_set_up_virtual_
networks_(Windows) http://www.nsnam.org/wiki/index.php/HOWTO_use_ns-3_
scripts_to_drive_real_hardware_(experimental)

Once you are over the configuration hurdle, the script changes required to use an Emu
device are trivial. The main structural difference is that you will need to create an ns-3
simulation script for each node. In the case of the HOWTOs above, there is one client script
and one server script. The only “challenge” is to get the addresses set correctly.

Just as with all other ns-3 net devices, we provide a helper class for the Emu net device.
The following code snippet illustrates how one would declare an EmuHelper and use it to
set the “DeviceName” attribute to “eth1” and install Emu devices on a group of nodes. You
would do this on both the client and server side in the case of the HOWTO seen above.
EmuHelper emu;
emu.SetAttribute ("DeviceName", StringValue ("eth1"));
NetDeviceContainer d = emu.Install (n);

The only other change that may be required is to make sure that the address spaces
(MAC and IP) on the client and server simulations are compatible. First the MAC address
is set to a unique well-known value in both places (illustrated here for one side).
//
// We’ve got the devices in place. Since we’re using MAC address
// spoofing under the sheets, we need to make sure that the MAC addresses
// we have assigned to our devices are unique. Ns-3 will happily
// automatically assign the same MAC addresses to the devices in both halves
// of our two-script pair, so let’s go ahead and just manually change them
// to something we ensure is unique.
//
Ptr<NetDevice> nd = d.Get (0);
Ptr<EmuNetDevice> ed = nd->GetObject<EmuNetDevice> ();
ed->SetAddress ("00:00:00:00:00:02");

And then the IP address of the client or serveris set in the usual way using helpers.
//
// We’ve got the "hardware" in place. Now we need to add IP addresses.
// This is the server half of a two-script pair. We need to make sure
// that the addressing in both of these applications is consistent, so
// we use provide an initial address in both cases. Here, the client
// will reside on one machine running ns-3 with one node having ns-3
// with IP address "10.1.1.2" and talk to a server script running in
// another ns-3 on another computer that has an ns-3 node with IP
// address "10.1.1.3"
//
Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0", "0.0.0.2");
Ipv4InterfaceContainer i = ipv4.Assign (d);

You will use application helpers to generate traffic exactly as you do in any ns-3 simu-
lation script. Note that the server address shown below in a snippet from the client, must
correspond to the IP address assigned to the server node similarly to the snippet above.

http://www.nsnam.org/wiki/index.php/HOWTO_use_VMware_to_set_up_virtual_networks_(Windows)
http://www.nsnam.org/wiki/index.php/HOWTO_use_VMware_to_set_up_virtual_networks_(Windows)
http://www.nsnam.org/wiki/index.php/HOWTO_use_ns-3_scripts_to_drive_real_hardware_(experimental)
http://www.nsnam.org/wiki/index.php/HOWTO_use_ns-3_scripts_to_drive_real_hardware_(experimental)

Chapter 6: Emulation 34

uint32_t packetSize = 1024;
uint32_t maxPacketCount = 2000;
Time interPacketInterval = Seconds (0.001);
UdpEchoClientHelper client ("10.1.1.3", 9);
client.SetAttribute ("MaxPackets", UintegerValue (maxPacketCount));
client.SetAttribute ("Interval", TimeValue (interPacketInterval));
client.SetAttribute ("PacketSize", UintegerValue (packetSize));
ApplicationContainer apps = client.Install (n.Get (0));
apps.Start (Seconds (1.0));
apps.Stop (Seconds (2.0));

The Emu net device and helper provide access to ASCII and pcap tracing functionality
just as other ns-3 net devices to. You enable tracing similarly to these other net devices:
EmuHelper::EnablePcapAll ("emu-udp-echo-client");

To see an example of a client script using the Emu net device, see examples/emu-
udp-echo-client.cc and examples/emu-udp-echo-server.cc in the repository
http://code.nsnam.org/craigdo/ns-3-emu/.

6.2.2 Tap Net Device

The Tap Net Device is scheduled for inclusion in ns-3.4 at the writing of this section. We
will include details as soon as the Tap device is merged.

6.3 Implementation

Perhaps the most unusual part of the Emu and Tap device implementation relates to the
requirement for executing some of the code with super-user permissions. Rather than force
the user to execute the entire simulation as root, we provide a small “creator” program that
runs as root and does any required high-permission sockets work.

We do a similar thing for both the Emu and the Tap devices. The high-level view is that
the CreateSocket method creates a local interprocess (Unix) socket, forks, and executes
the small creation program. The small program, which runs as suid root, creates a raw
socket and sends back the raw socket file descriptor over the Unix socket that is passed to it
as a parameter. The raw socket is passed as a control message (sometimes called ancillary
data) of type SCM RIGHTS.

6.3.1 Emu Net Device

The Emu net device uses the ns-3 threading and multithreaded real-time scheduler ex-
tensions. The interesting work in the Emu device is done when the net device is started
(EmuNetDevice::StartDevice ()). An attribute (“Start”) provides a simulation time at
which to spin up the net device. At this specified time (which defaults to t=0), the socket
creation function is called and executes as described above. You may also specify a time at
which to stop the device using the “Stop” attribute.

Once the (promiscuous mode) socket is created, we bind it to an interface name also
provided as an attribute (“DeviceName”) that is stored internally as m_deviceName:
struct ifreq ifr;
bzero (&ifr, sizeof(ifr));
strncpy ((char *)ifr.ifr_name, m_deviceName.c_str (), IFNAMSIZ);

http://code.nsnam.org/craigdo/ns-3-emu/

Chapter 6: Emulation 35

int32_t rc = ioctl (m_sock, SIOCGIFINDEX, &ifr);

struct sockaddr_ll ll;
bzero (&ll, sizeof(ll));

ll.sll_family = AF_PACKET;
ll.sll_ifindex = m_sll_ifindex;
ll.sll_protocol = htons(ETH_P_ALL);

rc = bind (m_sock, (struct sockaddr *)&ll, sizeof (ll));

After the promiscuous raw socket is set up, a separate thread is spawned to do reads
from that socket and the link state is set to Up.
m_readThread = Create<SystemThread> (
MakeCallback (&EmuNetDevice::ReadThread, this));

m_readThread->Start ();

NotifyLinkUp ();

The EmuNetDevice::ReadThread function basically just sits in an infinite loop reading
from the promiscuous mode raw socket and scheduling packet receptions using the real-time
simulator extensions.
for (;;)
{
...

len = recvfrom (m_sock, buf, bufferSize, 0, (struct sockaddr *)&addr,
&addrSize);

...

DynamicCast<RealtimeSimulatorImpl> (Simulator::GetImplementation ())->
ScheduleRealtimeNow (
MakeEvent (&EmuNetDevice::ForwardUp, this, buf, len));

...
}

The line starting with our templated DynamicCast function probably deserves
a comment. It gains access to the simulator implementation object using the
Simulator::GetImplementation method and then casts to the real-time simulator
implementation to use the real-time schedule method ScheduleRealtimeNow. This
function will cause a handler for the newly received packet to be scheduled for execution
at the current real time clock value. This will, in turn cause the simulation clock to be
advanced to that real time value when the scheduled event (EmuNetDevice::ForwardUp)
is fired.

The ForwardUp function operates as most other similar ns-3 net device methods do. The
packet is first filtered based on the destination address. In the case of the Emu device, the

Chapter 6: Emulation 36

MAC destination address will be the address of the Emu device and not the hardware address
of the real device. Headers are then stripped off and the trace hooks are hit. Finally, the
packet is passed up the ns-3 protocol stack using the receive callback function of the net
device.

Sending a packet is equally straightforward as shown below. The first thing we do is to
add the ethernet header and trailer to the ns-3 Packet we are sending. The source address
corresponds to the address of the Emu device and not the underlying native device MAC
address. This is where the MAC address spoofing is done. The trailer is added and we
enqueue and dequeue the packet from the net device queue to hit the trace hooks.
header.SetSource (source);
header.SetDestination (destination);
header.SetLengthType (packet->GetSize ());
packet->AddHeader (header);

EthernetTrailer trailer;
trailer.CalcFcs (packet);
packet->AddTrailer (trailer);

m_queue->Enqueue (packet);
packet = m_queue->Dequeue ();

struct sockaddr_ll ll;
bzero (&ll, sizeof (ll));

ll.sll_family = AF_PACKET;
ll.sll_ifindex = m_sll_ifindex;
ll.sll_protocol = htons(ETH_P_ALL);

rc = sendto (m_sock, packet->PeekData (), packet->GetSize (), 0,
reinterpret_cast<struct sockaddr *> (&ll), sizeof (ll));

Finally, we simply send the packet to the raw socket which puts it out on the real
network.

6.3.2 Tap Net Device

The Tap Net Device is scheduled for inclusion in ns-3.4 at the writing of this section. We
will include details as soon as the Tap device is merged.

Chapter 7: Packets 37

7 Packets

The design of the Packet framework of ns was heavily guided by a few important use-cases:
• avoid changing the core of the simulator to introduce new types of packet headers or

trailers
• maximize the ease of integration with real-world code and systems
• make it easy to support fragmentation, defragmentation, and, concatenation which are

important, especially in wireless systems.
• make memory management of this object efficient
• allow actual application data or dummy application bytes for emulated applications

ns Packet objects contain a buffer of bytes: protocol headers and trailers are serialized
in this buffer of bytes using user-provided serialization and deserialization routines. The
content of this byte buffer is expected to match bit-for-bit the content of a real packet on
a real network implementing the protocol of interest.

Fragmentation and defragmentation are quite natural to implement within this context:
since we have a buffer of real bytes, we can split it in multiple fragments and re-assemble
these fragments. We expect that this choice will make it really easy to wrap our Packet
data structure within Linux-style skb or BSD-style mbuf to integrate real-world kernel code
in the simulator. We also expect that performing a real-time plug of the simulator to a
real-world network will be easy.

Because we understand that simulation developers often wish to store in packet objects
data which is not found in the real packets (such as timestamps or any kind of similar in-
band data), the ns Packet class can also store extra per-packet "Tags" which are 16 bytes
blobs of data. Any Packet can store any number of unique Tags, each of which is uniquely
identified by its C++ type. These tags make it easy to attach per-model data to a packet
without having to patch the main Packet class or Packet facilities.

Memory management of Packet objects is entirely automatic and extremely efficient:
memory for the application-level payload can be modelized by a virtual buffer of zero-filled
bytes for which memory is never allocated unless explicitely requested by the user or unless
the packet is fragmented. Furthermore, copying, adding, and, removing headers or trailers
to a packet has been optimized to be virtually free through a technique known as Copy On
Write.

Packets (messages) are fundamental objects in the simulator and their design is impor-
tant from a performance and resource management perspective. There are various ways to
design the simulation packet, and tradeoffs among the different approaches. In particular,
there is a tension between ease-of-use, performance, and safe interface design.

There are a few requirements on this object design:
• Creation, management, and deletion of this object should be as simple as possible,

while avoiding the chance for memory leaks and/or heap corruption;
• Packets should support serialization and deserialization so that network emulation is

supported;
• Packets should support fragmentation and concatenation (multiple packets in a data

link frame), especially for wireless support;

Chapter 7: Packets 38

• It should be natural for packets to carry actual application data, or if there is only
an emulated application and there is no need to carry dummy bytes, smaller packets
could be used with just the headers and a record of the payload size, but not actual
application bytes, conveyed in the simulated packet.

• Packets should facilitate BSD-like operations on mbufs, for support of ported operating
system stacks.

• Additional side-information should be supported, such as a tag for cross-layer informa-
tion.

7.1 Packet design overview

Unlike ns-2, in which Packet objects contain a buffer of C++ structures corresponding to
protocol headers, each network packet in ns-3 contains a byte Buffer and a list of Tags:

• The byte buffer stores the serialized content of the chunks added to a packet. The
serialized representation of these chunks is expected to match that of real network
packets bit for bit (although nothing forces you to do this) which means that the
content of a packet buffer is expected to be that of a real packet. Packets can also be
created with an arbitrary zero-filled payload for which no real memory is allocated.

• The list of tags stores an arbitrarily large set of arbitrary user-provided data structures
in the packet. Each Tag is uniquely identified by its type; only one instance of each type
of data structure is allowed in a list of tags. These tags typically contain per-packet
cross-layer information or flow identifiers (i.e., things that you wouldn’t find in the bits
on the wire). Each tag stored in the tag list can be at most 16 bytes. Trying to attach
bigger data structures will trigger crashes at runtime. The 16 byte limit is a modifiable
compilation constant.

Chapter 7: Packets 39

Figure 7.1: Implementation overview of Packet class.

Chapter 7: Packets 40

Figure Figure 7.1 is a high-level overview of the Packet implementation; more detail on
the byte Buffer implementation is provided later in Figure Figure 7.2. In \nsthree, the
Packet byte buffer is analogous to a Linux skbuff or BSD mbuf; it is a serialized represen-
tation of the actual data in the packet. The tag list is a container for extra items useful
for simulation convenience; if a Packet is converted to an emulated packet and put over an
actual network, the tags are stripped off and the byte buffer is copied directly into a real
packet.

The Packet class has value semantics: it can be freely copied around, allocated on the
stack, and passed to functions as arguments. Whenever an instance is copied, the full
underlying data is not copied; it has “copy-on-write” (COW) semantics. Packet instances
can be passed by value to function arguments without any performance hit.

The fundamental classes for adding to and removing from the byte buffer are class
Header and class Trailer. Headers are more common but the below discussion also
largely applies to protocols using trailers. Every protocol header that needs to be inserted
and removed from a Packet instance should derive from the abstract Header base class and
implement the private pure virtual methods listed below:
• ns3::Header::SerializeTo()

• ns3::Header::DeserializeFrom()

• ns3::Header::GetSerializedSize()

• ns3::Header::PrintTo()

Basically, the first three functions are used to serialize and deserialize protocol control
information to/from a Buffer. For example, one may define class TCPHeader : public
Header. The TCPHeader object will typically consist of some private data (like a sequence
number) and public interface access functions (such as checking the bounds of an input).
But the underlying representation of the TCPHeader in a Packet Buffer is 20 serialized bytes
(plus TCP options). The TCPHeader::SerializeTo() function would therefore be designed
to write these 20 bytes properly into the packet, in network byte order. The last function
is used to define how the Header object prints itself onto an output stream.

Similarly, user-defined Tags can be appended to the packet. Unlike Headers, Tags are
not serialized into a contiguous buffer but are stored in an array. By default, Tags are
limited to 16 bytes in size. Tags can be flexibly defined to be any type, but there can
only be one instance of any particular object type in the Tags buffer at any time. The
implementation makes use of templates to generate the proper set of Add(), Remove(), and
Peek() functions for each Tag type.

7.2 Packet interface

The public member functions of a Packet object are as follows:

7.2.1 Constructors

/**
* Create an empty packet with a new uid (as returned
* by getUid).
*/
Packet ();

Chapter 7: Packets 41

/**
* Create a packet with a zero-filled payload.
* The memory necessary for the payload is not allocated:
* it will be allocated at any later point if you attempt
* to fragment this packet or to access the zero-filled
* bytes. The packet is allocated with a new uid (as
* returned by getUid).
*
* \param size the size of the zero-filled payload
*/
Packet (uint32_t size);

7.2.2 Adding and removing Buffer data

The below code is reproduced for Header class only; similar functions exist for Trailers.
/**
* Add header to this packet. This method invokes the
* ns3::Header::serializeTo method to request the header to serialize
* itself in the packet buffer.
*
* \param header a reference to the header to add to this packet.
*/
void Add (Header const &header);
/**
* Deserialize header from this packet. This method invokes the
* ns3::Header::deserializeFrom method to request the header to deserialize
* itself from the packet buffer. This method does not remove
* the data from the buffer. It merely reads it.
*
* \param header a reference to the header to deserialize from the buffer
*/
void Peek (Header &header);
/**
* Remove a deserialized header from the internal buffer.
* This method removes the bytes read by Packet::peek from
* the packet buffer.
*
* \param header a reference to the header to remove from the internal buffer.
*/
void Remove (Header const &header);
/**
* Add trailer to this packet. This method invokes the
* ns3::Trailer::serializeTo method to request the trailer to serialize
* itself in the packet buffer.
*
* \param trailer a reference to the trailer to add to this packet.
*/

Chapter 7: Packets 42

7.2.3 Adding and removing Tags

/**
* Attach a tag to this packet. The tag is fully copied
* in a packet-specific internal buffer. This operation
* is expected to be really fast.
*
* \param tag a pointer to the tag to attach to this packet.
*/
template <typename T>
void AddTag (T const &tag);
/**
* Remove a tag from this packet. The data stored internally
* for this tag is copied in the input tag if an instance
* of this tag type is present in the internal buffer. If this
* tag type is not present, the input tag is not modified.
*
* This operation can be potentially slow and might trigger
* unexpectedly large memory allocations. It is thus
* usually a better idea to create a copy of this packet,
* and invoke removeAllTags on the copy to remove all
* tags rather than remove the tags one by one from a packet.
*
* \param tag a pointer to the tag to remove from this packet
* \returns true if an instance of this tag type is stored
* in this packet, false otherwise.
*/
template <typename T>
bool RemoveTag (T &tag);
/**
* Copy a tag stored internally to the input tag. If no instance
* of this tag is present internally, the input tag is not modified.
*
* \param tag a pointer to the tag to read from this packet
* \returns true if an instance of this tag type is stored
* in this packet, false otherwise.
*/
template <typename T>
bool PeekTag (T &tag) const;
/**
* Remove all the tags stored in this packet. This operation is
* much much faster than invoking removeTag n times.
*/
void RemoveAllTags (void);

7.2.4 Fragmentation

/**

Chapter 7: Packets 43

* Create a new packet which contains a fragment of the original
* packet. The returned packet shares the same uid as this packet.
*
* \param start offset from start of packet to start of fragment to create
* \param length length of fragment to create
* \returns a fragment of the original packet
*/
Packet CreateFragment (uint32_t start, uint32_t length) const;

/**
* Concatenate the input packet at the end of the current
* packet. This does not alter the uid of either packet.
*
* \param packet packet to concatenate
*/

void addAtEnd (Packet packet);

/oncatenate the input packet at the end of the current
* packet. This does not alter the uid of either packet.
*
* \param packet packet to concatenate
*/
void AddAtEnd (Packet packet);
/**
* Concatenate the fragment of the input packet identified
* by the offset and size parameters at the end of the current
* packet. This does not alter the uid of either packet.
*
* \param packet to concatenate
* \param offset offset of fragment to copy from the start of the input packet
* \param size size of fragment of input packet to copy.
*/
void AddAtEnd (Packet packet, uint32_t offset, uint32_t size);
/**
* Remove size bytes from the end of the current packet
* It is safe to remove more bytes that what is present in
* the packet.
*
* \param size number of bytes from remove
*/
void RemoveAtEnd (uint32_t size);
/**
* Remove size bytes from the start of the current packet.
* It is safe to remove more bytes that what is present in
* the packet.
*
* \param size number of bytes from remove

Chapter 7: Packets 44

*/
void RemoveAtStart (uint32_t size);

7.2.5 Miscellaneous

/**
* \returns the size in bytes of the packet (including the zero-filled
* initial payload)
*/
uint32_t GetSize (void) const;
/**
* If you try to change the content of the buffer
* returned by this method, you will die.
*
* \returns a pointer to the internal buffer of the packet.
*/
uint8_t const *PeekData (void) const;
/**
* A packet is allocated a new uid when it is created
* empty or with zero-filled payload.
*
* \returns an integer identifier which uniquely
* identifies this packet.
*/
uint32_t GetUid (void) const;

7.3 Using Headers

walk through an example of adding a UDP header

7.4 Using Tags

walk through an example of adding a flow ID

7.5 Using Fragmentation

walk through an example of link-layer fragmentation/reassembly

7.6 Sample program

The below sample program (from ns3/samples/main-packet.cc) illustrates some use of
the Packet, Header, and Tag classes.

/* -*- Mode:C++; c-basic-offset:4; tab-width:4; indent-tabs-mode:nil -*- */
#include "ns3/packet.h"
#include "ns3/header.h"
#include <iostream>

using namespace ns3;

Chapter 7: Packets 45

/* A sample Header implementation
*/
class MyHeader : public Header {
public:

MyHeader ();
virtual ~MyHeader ();

void SetData (uint16_t data);
uint16_t GetData (void) const;

private:
virtual void PrintTo (std::ostream &os) const;
virtual void SerializeTo (Buffer::Iterator start) const;
virtual void DeserializeFrom (Buffer::Iterator start);
virtual uint32_t GetSerializedSize (void) const;

uint16_t m_data;
};

MyHeader::MyHeader ()
{}
MyHeader::~MyHeader ()
{}
void
MyHeader::PrintTo (std::ostream &os) const
{

os << "MyHeader data=" << m_data << std::endl;
}
uint32_t
MyHeader::GetSerializedSize (void) const
{

return 2;
}
void
MyHeader::SerializeTo (Buffer::Iterator start) const
{

// serialize in head of buffer
start.WriteHtonU16 (m_data);

}
void
MyHeader::DeserializeFrom (Buffer::Iterator start)
{

// deserialize from head of buffer
m_data = start.ReadNtohU16 ();

}

void
MyHeader::SetData (uint16_t data)

Chapter 7: Packets 46

{
m_data = data;

}
uint16_t
MyHeader::GetData (void) const
{

return m_data;
}

/* A sample Tag implementation
*/
struct MyTag {

uint16_t m_streamId;
};

static TagRegistration<struct MyTag> g_MyTagRegistration ("ns3::MyTag", 0);

static void
Receive (Packet p)
{

MyHeader my;
p.Peek (my);
p.Remove (my);
std::cout << "received data=" << my.GetData () << std::endl;
struct MyTag myTag;
p.PeekTag (myTag);

}

int main (int argc, char *argv[])
{

Packet p;
MyHeader my;
my.SetData (2);
std::cout << "send data=2" << std::endl;
p.Add (my);
struct MyTag myTag;
myTag.m_streamId = 5;
p.AddTag (myTag);
Receive (p);
return 0;

}

7.7 Implementation details

Chapter 7: Packets 47

7.7.1 Private member variables

A Packet object’s interface provides access to some private data:

Buffer m_buffer;
Tags m_tags;
uint32_t m_uid;
static uint32_t m_global_uid;

Each Packet has a Buffer and a Tags object, and a 32-bit unique ID (m\ uid). A static
member variable keeps track of the UIDs allocated. Note that real network packets do not
have a UID; the UID is therefore an instance of data that normally would be stored as a
Tag in the packet. However, it was felt that a UID is a special case that is so often used in
simulations that it would be more convenient to store it in a member variable.

7.7.2 Buffer implementation

Class Buffer represents a buffer of bytes. Its size is automatically adjusted to hold any
data prepended or appended by the user. Its implementation is optimized to ensure that
the number of buffer resizes is minimized, by creating new Buffers of the maximum size
ever used. The correct maximum size is learned at runtime during use by recording the
maximum size of each packet.

Authors of new Header or Trailer classes need to know the public API of the Buffer class.
(add summary here)

The byte buffer is implemented as follows:

struct BufferData {
uint32_t m_count;
uint32_t m_size;
uint32_t m_initialStart;
uint32_t m_dirtyStart;
uint32_t m_dirtySize;
uint8_t m_data[1];

};
struct BufferData *m_data;
uint32_t m_zeroAreaSize;
uint32_t m_start;
uint32_t m_size;

• BufferData::m_count: reference count for BufferData structure
• BufferData::m_size: size of data buffer stored in BufferData structure
• BufferData::m_initialStart: offset from start of data buffer where data was first

inserted
• BufferData::m_dirtyStart: offset from start of buffer where every Buffer which holds

a reference to this BufferData instance have written data so far
• BufferData::m_dirtySize: size of area where data has been written so far
• BufferData::m_data: pointer to data buffer
• Buffer::m_zeroAreaSize: size of zero area which extends before m_initialStart

• Buffer::m_start: offset from start of buffer to area used by this buffer

Chapter 7: Packets 48

• Buffer::m_size: size of area used by this Buffer in its BufferData structure

Figure 7.2: Implementation overview of a packet’s byte Buffer.

This data structure is summarized in Figure Figure 7.2. Each Buffer holds a pointer
to an instance of a BufferData. Most Buffers should be able to share the same underlying
BufferData and thus simply increase the BufferData’s reference count. If they have to
change the content of a BufferData inside the Dirty Area, and if the reference count is
not one, they first create a copy of the BufferData and then complete their state-changing
operation.

7.7.3 Tags implementation

Tags are implemented by a single pointer which points to the start of a linked list ofTagData
data structures. Each TagData structure points to the next TagData in the list (its next
pointer contains zero to indicate the end of the linked list). Each TagData contains an
integer unique id which identifies the type of the tag stored in the TagData.

Chapter 7: Packets 49

struct TagData {
struct TagData *m_next;
uint32_t m_id;
uint32_t m_count;
uint8_t m_data[Tags::SIZE];

};
class Tags {

struct TagData *m_next;
};

Adding a tag is a matter of inserting a new TagData at the head of the linked list.
Looking at a tag requires you to find the relevant TagData in the linked list and copy its
data into the user data structure. Removing a tag and updating the content of a tag requires
a deep copy of the linked list before performing this operation. On the other hand, copying
a Packet and its tags is a matter of copying the TagData head pointer and incrementing its
reference count.

Tags are found by the unique mapping betweent the Tag type and its underlying id. This
is why at most one instance of any Tag can be stored in a packet. The mapping between
Tag type and underlying id is performed by a registration as follows:

/* A sample Tag implementation
*/
struct MyTag {

uint16_t m_streamId;
};

add description of TagRegistration for printing

7.7.4 Memory management

Describe free list.

Describe dataless vs. data-full packets.

7.7.5 Copy-on-write semantics

The current implementation of the byte buffers and tag list is based on COW (Copy On
Write). An introduction to COW can be found in Scott Meyer’s "More Effective C++",
items 17 and 29). This design feature and aspects of the public interface borrows from the
packet design of the Georgia Tech Network Simulator. This implementation of COW uses
a customized reference counting smart pointer class.

What COW means is that copying packets without modifying them is very cheap (in
terms of CPU and memory usage) and modifying them can be also very cheap. What is key
for proper COW implementations is being able to detect when a given modification of the
state of a packet triggers a full copy of the data prior to the modification: COW systems
need to detect when an operation is “dirty” and must therefore invoke a true copy.

Dirty operations:

• Packet::RemoveTag()
• Packet::Add()
• both versions of ns3::Packet::AddAtEnd()

Chapter 7: Packets 50

Non-dirty operations:
• Packet::AddTag()
• Packet::RemoveAllTags()
• Packet::PeekTag()
• Packet::Peek()
• Packet::Remove()
• Packet::CreateFragment()
• Packet::RemoveAtStart()
• Packet::RemoveAtEnd()

Dirty operations will always be slower than non-dirty operations, sometimes by several
orders of magnitude. However, even the dirty operations have been optimized for common
use-cases which means that most of the time, these operations will not trigger data copies
and will thus be still very fast.

Chapter 8: Sockets APIs 51

8 Sockets APIs

The sockets API is a long-standing API used by user-space applications to access network
services in the kernel. A “socket” is an abstraction, like a Unix file handle, that allows
applications to connect to other Internet hosts and exchange reliable byte streams and
unreliable datagrams, among other services.

ns-3 provides two types of sockets APIs, and it is important to understand the differences
between them. The first is a native ns-3 API, while the second uses the services of the
native API to provide a POSIX-like API as part of an overall application process. Both
APIs strive to be close to the typical sockets API that application writers on Unix systems
are accustomed to, but the POSIX variant is much closer to a real system’s sockets API.

8.1 ns-3 sockets API

The native sockets API for ns-3 provides an interface to various types of transport protocols
(TCP, UDP) as well as to packet sockets and, in the future, Netlink-like sockets. However,
users are cautioned to understand that the semantics are not the exact same as one finds in
a real system (for an API which is very much aligned to real systems, see the next section).

class ns3::Socket is defined in src/node/socket.cc,h. Readers will note that many
public member functions are aligned with real sockets function calls, and all other things
being equal, we have tried to align with a Posix sockets API. However, note that:

• ns-3 applications handle a smart pointer to a Socket object, not a file descriptor;

• there is no notion of synchronous API or a “blocking” API; in fact, the model for
interaction between application and socket is one of asynchronous I/O, which is not
typically found in real systems (more on this below);

• the C-style socket address structures are not used;

• the API is not a complete sockets API, such as supporting all socket options or all
function variants;

• many calls use ns3::Packet class to transfer data between application and socket.
This may seem a little funny to people to pass “Packets” across a stream socket API,
but think of these packets as just fancy byte buffers at this level (more on this also
below).

http://en.wikipedia.org/wiki/Berkeley_sockets
http://en.wikipedia.org/wiki/POSIX

Chapter 8: Sockets APIs 52

8.1.1 Basic operation and calls

Figure 8.1: Implementation overview of native sockets API

8.1.1.1 Creating sockets

An application that wants to use sockets must first create one. On real systems, this is
accomplished by calling socket():

int
socket(int domain, int type, int protocol);

which creates a socket in the system and returns an integer descriptor.

In ns-3, we have no equivalent of a system call at the lower layers, so we adopt the
following model. There are certain factory objects that can create sockets. Each factory
is capable of creating one type of socket, and if sockets of a particular type are able to be
created on a given node, then a factory that can create such sockets must be aggregated to
the Node.

static Ptr<Socket> CreateSocket (Ptr<Node> node, TypeId tid);

Examples of TypeIds to pass to this method are TcpSocketFactory,
PacketSocketFactory, and UdpSocketFactory.

This method returns a smart pointer to a Socket object. Here is an example:

Ptr<Node> n0;
// Do some stuff to build up the Node’s internet stack
Ptr<Socket> localSocket = Socket::CreateSocket (n0, TcpSocketFactory::GetTypeId ());

In some ns-3 code, sockets will not be explicitly created by user’s main programs, if
an ns-3 application does it. For instance, for class ns3::OnOffApplication, the function

Chapter 8: Sockets APIs 53

StartApplication() performs the socket creation, and the application holds the socket
pointer.

8.1.1.2 Using sockets

Below is a typical sequence of socket calls for a TCP client in a real implementation:

• sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

• bind(sock, ...);

• connect(sock, ...);

• send(sock, ...);

• recv(sock, ...);

• close(sock);

There are analogs to all of these calls in ns-3, but we will focus on two aspects here.
First, most usage of sockets in real systems requires a way to manage I/O between the
application and kernel. These models include blocking sockets, signal-based I/O, and non-
blocking sockets with polling. In ns-3, we make use of the callback mechanisms to support
a fourth mode, which is analogous to POSIX asynchronous I/O.

In this model, on the sending side, if the send() call were to fail because of insufficient
buffers, the application suspends the sending of more data until a function registered at the
SetSendCallback() callback is invoked. An application can also ask the socket how much
space is available by calling GetTxAvailable (). A typical sequence of events for sending
data (ignoring connection setup) might be:

• SetSendCallback (MakeCallback(&HandleSendCallback));

• Send ();

• Send ();

• ...

• // Send fails because buffer is full

• (wait until HandleSendCallback() is called)

• (HandleSendCallback() is called by socket, since space now available)

• Send (); // Start sending again

Similarly, on the receive side, the socket user does not block on a call to recv(). Instead,
the application sets a callback with SetRecvCallback () in which the socket will notify the
application when (and how much) there is data to be read, and the application then calls
Recv() to read the data until no more can be read.

8.1.2 Packet vs. buffer variants

There are two basic variants of Send() and Recv() supported:

virtual int Send (Ptr<Packet> p) = 0;
int Send (const uint8_t* buf, uint32_t size);

Ptr<Packet> Recv (void);
int Recv (uint8_t* buf, uint32_t size);

Chapter 8: Sockets APIs 54

The non-Packet variants are left for legacy API reasons. When calling the raw buffer vari-
ant of Send(), the buffer is immediately written into a Packet and the Send (Ptr<Packet>
p) is invoked.

Users may find it semantically odd to pass a Packet to a stream socket such as TCP.
However, do not let the name bother you; think of ns3::Packet to be a fancy byte buffer.
There are a few reasons why the Packet variants are more likely to be preferred in ns-3:
• Users can use the Tags facility of packets to, for example, encode a flow ID or other

helper data.
• Users can exploit the copy-on-write implementation to avoid memory copies (on the

receive side, the conversion back to a uint8_t* buf may sometimes incur an additional
copy).

• Use of Packet is more aligned with the rest of the ns-3 API

8.1.3 Sending dummy data

Sometimes, users want the simulator to just pretend that there is an actual data payload
in the packet (e.g. to calculate transmission delay) but do not want to actually produce
or consume the data. This is straightforward to support in ns-3; have applications call
Create<Packet> (size); instead of Create<Packet> (buffer, size);. Similarly, passing
in a zero to the pointer argument in the raw buffer variants has the same effect. Note that, if
some subsequent code tries to read the Packet data buffer, the fake buffer will be converted
to a real (zero’ed) buffer on the spot, and the efficiency will be lost there.

8.1.4 Socket options

to be completed

8.1.5 Socket errno

to be completed

8.1.6 Example programs

to be completed

8.2 POSIX-like sockets API

this capability is under development and is scheduled for inclusion in the ns-3.5 releasetime-
frame; see the repository http://code.nsnam.org/mathieu/ns-3-simu for details

The below is excerpted from Mathieu’s post to ns-developers list on April 4, 2008.
"To summarize, the goal is that the full posix/socket API is defined in

src/process/simu.h: each posix type and function is re-defined there with a simu or
SIMU prefix to avoid ugly name clashes and collisions (feel free to come up with a better
prefix).

Each process is created with a call to ProcessManager::Create and is attached to that
ProcessManager instance. So, if the ProcessManager (which is aggregated to a Node in
src/helper/process-helper.cc) is killed when the simulation ends, the system will automat-
ically reclaim all the resources of each process associated to each manager. The same
happens when an application "exits" from its main function.

Chapter 8: Sockets APIs 55

The example application defines two posix "processes": the function ClientProgram
creates a udp socket on the localhost port 2000 and the function ServerProgram creates a
udp socket on the localhost port 2000. The code does not work right now because I did not
get the details of simu read right yet but, I do plan to make this work at some point.

I really think that this approach is worthwhile for many reasons, a few of which are
outlined below:
• makes porting real world application code much easier
• makes write applications for new users much easier because they can read the bsd

socket api reference and documentation and write code directly.
• can be used to write applications which work in both simulation and in the real world

at the same time. To do this, all you have to do is write your application to use the
simu API, and, then, you can chose at compile-time which implementation of that
API you want to use: you can pick one implementation which forwards all calls to
the system BSD socket API or another one which forwards all calls to the attached
ProcessManager. Arguably, I did not implement the version which forwards to system
BSD sockets but, that should be pretty trivial.

So, anyway, comments about the overall API would be welcome. Students interested in
the gsoc project for real-world code integration should consider looking at this also."

Chapter 9: Node and Internet Stack 56

9 Node and Internet Stack

This chapter describes how ns-3 nodes are put together, and provides a walk-through of
how packets traverse an internet-based Node.

Figure 9.1: High-level node architecture.

In ns-3, nodes are instances of class Node. This class may be subclassed, but instead, the
conceptual model is that we aggregate or insert objects to it rather than define subclasses.

One might think of a bare ns-3 node as a shell of a computer, to which one may add
NetDevices (cards) and other innards including the protocols and applications. Figure 9.1
illustrates that Node objects contain a list of Applications (initially, the list is empty), a
list of NetDevices (initially, the list is empty), a unique integer ID, and a system ID (for
distributed simulation).

The design tries to avoid putting too many dependencies on the base class Node, Appli-
cation, or NetDevice for the following:

• IP version, or whether IP is at all even used in the Node.

• implementation details of the IP stack

Chapter 9: Node and Internet Stack 57

From a software perspective, the lower interface of applications corresponds to the C-
based sockets API. The upper interface of NetDevice objects corresponds to the device
independent sublayer of the Linux stack. Everything in between can be aggregated and
plumbed together as needed.

Let’s look more closely at the protocol demultiplexer. We want incoming frames at
layer-2 to be delivered to the right layer-3 protocol such as Ipv4. The function of this
demultiplexer is to register callbacks for receiving packets. The callbacks are indexed based
on the EtherType in the layer-2 frame.

Many different types of higher-layer protocols may be connected to the NetDevice, such
as IPv4, IPv6, ARP, MPLS, IEEE 802.1x, and packet sockets. Therefore, the use of a
callback-based demultiplexer avoids the need to use a common base class for all of these
protocols, which is problematic because of the different types of objects (including packet
sockets) expected to be registered there.

Each NetDevice delivers packets to a callback with the following signature:

/**
* \param device a pointer to the net device which is calling this callback
* \param packet the packet received
* \param protocol the 16 bit protocol number associated with this packet.
* This protocol number is expected to be the same protocol number
* given to the Send method by the user on the sender side.
* \param address the address of the sender
* \returns true if the callback could handle the packet successfully,
* false otherwise.
*/
typedef Callback<bool, Ptr<NetDevice>, Ptr<Packet>, uint16_t,
const Address &> ReceiveCallback;

There is a function in class Node that matches that signature:

private:
bool ReceiveFromDevice (Ptr<NetDevice> device, Ptr<Packet>,

uint16_t protocol, const Address &from);

However, users do not need to access this function directly. Instead, when users call
uint32_t AddDevice (Ptr<NetDevice> device), the implementation of this function sets
the callback (and the function returns the ifIndex of the NetDevice on that Node).

But what does the ReceiveFromDevice function do? Here, it looks up another callback,
in its list of callbacks, corresponding to the matching EtherType. This callback is called a
ProtocolHandler, and is specified as follows:

typedef Callback<void, Ptr<NetDevice>, Ptr<Packet>, uint16_t,
const Address &> ProtocolHandler;

Upper-layer protocols or objects are expected to provide such a function. and register
it with the list of ProtocolHandlers by calling Node::RegisterProtocolHandler (); For
instance, if Ipv4 is aggregated to a Node, then the Ipv4 receive function can be registered
with the protocol handler by calling:

RegisterProtocolHandler (
MakeCallback (&Ipv4L3Protocol::Receive, ipv4),

http://en.wikipedia.org/wiki/EtherType

Chapter 9: Node and Internet Stack 58

Ipv4L3Protocol::PROT_NUMBER, 0);

and likewise for Ipv6, Arp, etc.

9.1 NodeList

Every Node created is automatically added to the ns-3 NodeList. The NodeList class
provides an Add() method and C++ iterators to allow one to walk the node list or fetch a
Node pointer by its integer identifier.

9.2 Internet stack aggregation

The above class Node is not very useful as-is; other objects must be aggregated to it to
provide useful node functionality.

The ns-3 source code directory src/internet-stack provides implmentation of
TCP/IPv4-related components. These include IPv4, ARP, UDP, TCP, and other related
protocols.

Internet Nodes are not subclasses of class Node; they are simply Nodes that have had a
bunch of IPv4-related objects aggregated to them. They can be put together by hand, or
via a helper function AddInternetStack () which does the following:
void AddInternetStack (Ptr<Node> node)
{
// Create layer-3 protocols
Ptr<Ipv4L3Protocol> ipv4 = CreateObject<Ipv4L3Protocol> ();
Ptr<ArpL3Protocol> arp = CreateObject<ArpL3Protocol> ();
ipv4->SetNode (node);
arp->SetNode (node);

// Create an L4 demux
Ptr<Ipv4L4Demux> ipv4L4Demux = CreateObject<Ipv4L4Demux> ();

// Create transport protocols and insert them into the demux
Ptr<UdpL4Protocol> udp = CreateObject<UdpL4Protocol> ();
Ptr<TcpL4Protocol> tcp = CreateObject<TcpL4Protocol> ();

ipv4L4Demux->SetNode (node);
udp->SetNode (node);
tcp->SetNode (node);

ipv4L4Demux->Insert (udp);
ipv4L4Demux->Insert (tcp);

// Add factories for instantiating transport protocol sockets
Ptr<UdpSocketFactoryImpl> udpFactory = CreateObject<UdpSocketFactoryImpl> ();
Ptr<TcpSocketFactoryImpl> tcpFactory = CreateObject<TcpSocketFactoryImpl> ();
Ptr<Ipv4Impl> ipv4Impl = CreateObject<Ipv4Impl> ();

udpFactory->SetUdp (udp);

Chapter 9: Node and Internet Stack 59

tcpFactory->SetTcp (tcp);
ipv4Impl->SetIpv4 (ipv4);

// Aggregate all of these new objects to the node
node->AggregateObject (ipv4);
node->AggregateObject (arp);
node->AggregateObject (ipv4Impl);
node->AggregateObject (udpFactory);
node->AggregateObject (tcpFactory);
node->AggregateObject (ipv4L4Demux);

}

9.2.1 Internet Node structure

The Internet Node (an ns-3 Node augmented by aggregation to have one or more IP stacks)
has the following internal structure.

9.2.1.1 Layer-3 protocols

At the lowest layer, sitting above the NetDevices, are the "layer 3" protocols, including IPv4,
IPv6, and ARP. These protocols provide the following key methods and data members:

class Ipv4L3Protocol : public Object
{
public:
// Add an Ipv4 interface corresponding to the provided NetDevice
uint32_t AddInterface (Ptr<NetDevice> device);

// Receive function that can be bound to a callback, for receiving
// packets up the stack
void Receive(Ptr<NetDevice> device, Ptr<Packet> p, uint16_t protocol,
const Address &from);

// Higher-level layers call this method to send a packet
// down the stack to the MAC and PHY layers
//
void Send (Ptr<Packet> packet, Ipv4Address source,

Ipv4Address destination, uint8_t protocol);

private:
Ipv4InterfaceList m_interfaces;

// Protocol handlers
}

There are many more functions (such as Forward ()) but we will focus on the above
four items from an architectural perspective.

First, note that the Receive () function has a matching signature to the ReceiveCallback
in the class Node. This function pointer is inserted into the the Node’s protocol handler

Chapter 9: Node and Internet Stack 60

when AddInterface () is called. The actual registration is done with a statement such as:
follows:

RegisterProtocolHandler (MakeCallback (&Ipv4Protocol::Receive, ipv4),
Ipv4L3Protocol::PROT_NUMBER, 0);

The Ipv4L3Protocol object is aggregated to the Node; there is only one such
Ipv4L3Protocol object. Higher-layer protocols that have a packet to send down to the
Ipv4L3Protocol object can call GetObject<Ipv4L3Protocol> () to obtain a pointer, as
follows:

Ptr<Ipv4L3Protocol> ipv4 = m_node->GetObject<Ipv4L3Protocol> ();
if (ipv4 != 0)
{
ipv4->Send (packet, saddr, daddr, PROT_NUMBER);

}

This class nicely demonstrates two techniques we exploit in ns-3 to bind objects together:
callbacks, and object aggregation.

Once IPv4 has determined that a packet is for the local node, it forwards it up the stack.
This is done with the following function:

void
Ipv4L3Protocol::ForwardUp (Ptr<Packet> p, Ipv4Header const&ip,

Ptr<Ipv4Interface> incomingInterface)
{
NS_LOG_FUNCTION (this << p << &ip);

Ptr<Ipv4L4Demux> demux = m_node->GetObject<Ipv4L4Demux> ();
Ptr<Ipv4L4Protocol> protocol = demux->GetProtocol (ip.GetProtocol ());
protocol->Receive (p, ip.GetSource (), ip.GetDestination (), incomingInterface);

}

The first step is to find the aggregated Ipv4L4Demux object. Then, this object is con-
sulted to look up the right Ipv4L4Protocol, based on IP protocol number. For instance,
TCP is registered in the demux as protocol number 6. Finally, the Receive() function on
the Ipv4L4Protocol (such as TcpL4Protocol::Receive is called.

We have not yet introduced the class Ipv4Interface. Basically, each NetDevice is paired
with an IPv4 representation of such device. In Linux, this class Ipv4Interface roughly
corresponds to the struct in_device; the main purpose is to provide address-family spe-
cific information (addresses) about an interface.

9.2.1.2 Layer-4 protocols and sockets

We next describe how the transport protocols, sockets, and applications tie together. In
summary, each transport protocol implementation is a socket factory. An application that
needs a new socket

For instance, to create a UDP socket, an application would use a code snippet such as
the following:

Ptr<Udp> udpSocketFactory = GetNode ()->GetObject<Udp> ();
Ptr<Socket> m_socket = socketFactory->CreateSocket ();

Chapter 9: Node and Internet Stack 61

m_socket->Bind (m_local_address);
...

The above will query the node to get a pointer to its UDP socket factory, will create one
such socket, and will use the socket with an API similar to the C-based sockets API, such
as Connect () and Send (). See the chapter on ns-3 sockets for more information.

We have described so far a socket factory (e.g. class Udp) and a socket, which may
be specialized (e.g., class UdpSocket). There are a few more key objects that relate to
the specialized task of demultiplexing a packet to one or more receiving sockets. The
key object in this task is class Ipv4EndPointDemux. This demultiplexer stores objects of
class Ipv4EndPoint. This class holds the addressing/port tuple (local port, local address,
destination port, destination address) associated with the socket, and a receive callback.
This receive callback has a receive function registered by the socket. The Lookup () function
to Ipv4EndPointDemux returns a list of Ipv4EndPoint objects (there may be a list since
more than one socket may match the packet). The layer-4 protocol copies the packet to
each Ipv4EndPoint and calls its ForwardUp () method, which then calls the Receive ()
function registered by the socket.

An issue that arises when working with the sockets API on real systems is the need to
manage the reading from a socket, using some type of I/O (e.g., blocking, non-blocking,
asynchronous, ...). ns-3 implements an asynchronous model for socket I/O; the application
sets a callback to be notified of received data ready to be read, and the callback is invoked
by the transport protocol when data is available. This callback is specified as follows:
void Socket::SetRecvCallback (Callback<void, Ptr<Socket>,
Ptr<Packet>, const Address&> receivedData);

The data being received is conveyed in the Packet data buffer. An example usage is in
class PacketSink:
m_socket->SetRecvCallback (MakeCallback(&PacketSink::HandleRead, this));

To summarize, internally, the UDP implementation is organized as follows:
• a UdpImpl class that implements the Udp socket factory functionality
• a UdpL4Protocol class that implements the protocol logic that is socket-independent
• a UdpSocketImpl class that implements socket-specific aspects of UDP
• a class called Ipv4EndPoint that stores the addressing tuple (local port, local address,

destination port, destination address) associated with the socket, and a receive callback
for the socket.

9.2.2 Internet Node interfaces

Many of the implementation details, or internal objects themselves, of Internet Node objects
are not exposed at the simulator public API. This allows for different implementations; for
instance, replacing the native ns-3 models with ported TCP/IP stack code.

The C++ public APIs of all of these objects is found in the src/node directory, including
principally:
• socket.h

• tcp.h

• udp.h

Chapter 9: Node and Internet Stack 62

• ipv4.h

These are typically base class objects that implement the default values used in the
implementation, implement access methods to get/set state variables, host attributes, and
implement publicly-available methods exposed to clients such as CreateSocket.

9.2.3 Example path of a packet

These two figures show an example stack trace of how packets flow through the Internet
Node objects.

Figure 9.2: Send path of a packet.

Chapter 9: Node and Internet Stack 63

Figure 9.3: Receive path of a packet.

Chapter 10: TCP models in ns-3 64

10 TCP models in ns-3

This chapter describes the TCP models available in ns-3.

10.1 Generic support for TCP

ns-3 was written to support multiple TCP implementations. The implementations inherit
from a few common header classes in the src/node directory, so that user code can swap
out implementations with minimal changes to the scripts.

There are two important abstract base classes:
• class TcpSocket: This is defined in src/node/tcp-socket.cc,h. This class exists for

hosting TcpSocket attributes that can be reused across different implementations. For
instance, TcpSocket::SetInitialCwnd() can be used for any of the implementations
that derive from class TcpSocket.

• class TcpSocketFactory: This is used by applications to create TCP sockets. A
typical usage can be seen in this snippet:
// Create the socket if not already created
if (!m_socket)
{
m_socket = Socket::CreateSocket (GetNode(), m_tid);
m_socket->Bind (m_local);
...

}

The parameter m_tid controls the TypeId of the actual Tcp Socket implementation
that is instantiated. This way, the application can be written generically and different
socket implementations can be swapped out by specifying the TypeId.

10.2 ns-3 TCP

ns-3 contains a port of the TCP model from GTNetS. This model is a full TCP, in that it
is bidirectional and attempts to model the connection setup and close logic. In fact, it is
a more complete implementation of the TCP state machine than ns-2’s "FullTcp" model.
This TCP model was originally written by George Riley as part of GTNetS and ported to
ns-3 by Raj Bhattacharjea.

The implementation of TCP is contained in the following files:
src/internet-stack/tcp-header.{cc,h}
src/internet-stack/tcp-l4-protocol.{cc,h}
src/internet-stack/tcp-socket-factory-impl.{cc,h}
src/internet-stack/tcp-socket-impl.{cc,h}
src/internet-stack/tcp-typedefs.h
src/internet-stack/rtt-estimator.{cc,h}
src/internet-stack/sequence-number.{cc,h}

10.2.1 Usage

The file examples/tcp-star-server.cc contains an example that makes use of
ns3::OnOffApplication and ns3::PacketSink applications.

http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/index.html

Chapter 10: TCP models in ns-3 65

Using the helper functions defined in src/helper, here is how one would create a TCP
receiver:

// Create a packet sink on the star "hub" to receive these packets
uint16_t port = 50000;
Address sinkLocalAddress(InetSocketAddress (Ipv4Address::GetAny (), port));
PacketSinkHelper sinkHelper ("ns3::TcpSocketFactory", sinkLocalAddress);
ApplicationContainer sinkApp = sinkHelper.Install (serverNode);
sinkApp.Start (Seconds (1.0));
sinkApp.Stop (Seconds (10.0));

Similarly, the below snippet configures OnOffApplication traffic source to use TCP:

// Create the OnOff applications to send TCP to the server
OnOffHelper clientHelper ("ns3::TcpSocketFactory", Address ());

The careful reader will note above that we have specified the TypeId of an abstract base
class TcpSocketFactory. How does the script tell ns-3 that it wants the native ns-3 TCP
vs. some other one? Well, when internet stacks are added to the node, the default TCP
implementation that is aggregated to the node is the ns-3 TCP. This can be overridden as
we show below when using Network Simulation Cradle. So, by default, when using the ns-3
helper API, the TCP that is aggregated to nodes with an Internet stack is the native ns-3
TCP.

Once a TCP socket is created, you will want to follow conventional socket logic and
either connect() and send() (for a TCP client) or bind(), listen(), and accept() (for a TCP
server). See Chapter 8 [Sockets API], page 51 for a review of how sockets are used in ns-3.

To configure behavior of TCP, a number of parameters are exported through the Chap-
ter 3 [ns-3 attribute system], page 12. These are documented in the Doxygen for class
TcpSocket.

10.2.2 Current limitations

• Only Tahoe congestion control is presently supported.

• Only IPv4 is supported (IPv6 support will start to be added in ns-3.3).

• Bug 198: TcpSocketImpl doesn’t send acks with data packets in two-way transfers

• Bug 250: Tcp breaks if you set the DelAckCount parameter to be greater than 2

• Bug 311: Tcp socket close returns -1 but does not set errno.

10.3 Network Simulation Cradle

The Network Simulation Cradle (NSC) is a framework for wrapping real-world network code
into simulators, allowing simulation of real-world behavior at little extra cost. This work
has been validated by comparing situations using a test network with the same situations
in the simulator. To date, it has been shown that the NSC is able to produce extremely
accurate results. NSC supports four real world stacks: FreeBSD, OpenBSD, lwIP and
Linux. Emphasis has been placed on not changing any of the network stacks by hand. Not
a single line of code has been changed in the network protocol implementations of any of
the above four stacks. However, a custom C parser was built to programmatically change
source code.

http://www.nsnam.org/doxygen/classns3_1_1_tcp_socket.html
http://www.nsnam.org/bugzilla/show_bug.cgi?id=198
http://www.nsnam.org/bugzilla/show_bug.cgi?id=250
http://www.nsnam.org/bugzilla/show_bug.cgi?id=311
http://www.wand.net.nz/~stj2/nsc/

Chapter 10: TCP models in ns-3 66

NSC has previously been ported to ns-2 and OMNeT++, and recently was added to ns-3.
This section describes the ns-3 port of NSC and how to use it.

10.3.1 Prerequisites

Presently, NSC has been tested and shown to work on these platforms: Linux i386 and
Linux x86-64. NSC does not support powerpc at the moment.

NSC requires the packages mercurial, flex, and bison.

10.3.2 Configuring and Downloading

NSC is disbled by default and must be explicitly configured in. To try this, type

./waf configure --enable-nsc

the output of the configuration will show something like:

Checking for NSC supported architecture x86_64 : ok
Pulling nsc updates from https://secure.wand.net.nz/mercurial/nsc
pulling from https://secure.wand.net.nz/mercurial/nsc
searching for changes
no changes found
---- Summary of optional NS-3 features:
...
Network Simulation Cradle : enabled
...

if successful. Note that the configure script pulls a recent copy of NSC from a mercurial
repository. This download will not work if you are not online.

If everything went OK, you will see a directory called "nsc" in the top-level directory,
with contents like this:

audit.sh linux-2.6/ openbsd3/ scons-time.py*
ChangeLog linux-2.6.18/ README SConstruct
config.log linux-2.6.26/ sconsign.py* sim/
freebsd5/ lwip-1.3.0/ scons-LICENSE test/
globaliser/ lwip-HEAD/ scons-local-1.0.1/
INSTALL ns/ scons.py*
LICENSE omnetpp/ scons-README

10.3.3 Building and validating

Building ns-3 with nsc support is the same as building it without; no additional arguments
are needed for waf. Building nsc may take some time compared to ns-3; it is interleaved in
the ns-3 building process.

Try running the regression tests: ./waf --regression. If NSC has been successfully
built, the following test should show up in the results:

PASS test-tcp-nsc-lfn

This confirms that NSC is ready to use.

Chapter 10: TCP models in ns-3 67

10.3.4 Usage

There are a few example files. Try

./waf --run tcp-nsc-zoo

./waf --run tcp-nsc-lfn

These examples will deposit some .pcap files in your directory, which can be examined
by tcpdump or wireshark.

Let’s look at the examples/tcp-nsc-zoo.cc file for some typical usage. How does it
differ from using native ns-3 TCP? There is one main configuration line, when using NSC
and the ns-3 helper API, that needs to be set:

InternetStackHelper internetStack;

internetStack.SetNscStack ("liblinux2.6.26.so");
// this switches nodes 0 and 1 to NSCs Linux 2.6.26 stack.
internetStack.Install (n.Get(0));
internetStack.Install (n.Get(1));

The key line is the SetNscStack. This tells the InternetStack helper to aggregate in-
stances of NSC TCP instead of native ns-3 TCP to the remaining nodes. It is important
that this function be called before callling the Install() function, as shown above.

Which stacks are available to use? Presently, the focus has been on Linux 2.6.18 and
Linux 2.6.26 stacks for ns-3. To see which stacks were built, one can execute the following
find command at the ns-3 top level directory:

~/ns-3.2> find nsc -name "*.so" -type f
nsc/linux-2.6.18/liblinux2.6.18.so
nsc/linux-2.6.26/liblinux2.6.26.so

This tells us that we may either pass the library name liblinux2.6.18.so or
liblinux2.6.26.so to the above configuration step.

10.3.5 Stack configuration

NSC TCP shares the same configuration attributes that are common across TCP sockets,
as described above and documented in Doxygen

Additionally, NSC TCP exports a lot of configuration variables into the ns-3 Chapter 3
[Attributes], page 12 system, via a sysctl-like interface. In the examples/tcp-nsc-zoo
example, you can see the following configuration:

// this disables TCP SACK, wscale and timestamps on node 1 (the attributes represent sysctl-values).
Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipv4.tcp_sack", StringValue ("0"));
Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipv4.tcp_timestamps", StringValue ("0"));
Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipv4.tcp_window_scaling", StringValue ("0"));

These additional configuration variables are not available to native ns-3 TCP.

10.3.6 NSC API

This subsection describes the API that NSC presents to ns-3 or any other simulator. NSC
provides its API in the form of a number of classes that are defined in sim/sim_interface.h
in the nsc directory.

http://www.nsnam.org/doxygen/classns3_1_1_tcp_socket.html
http://en.wikipedia.org/wiki/Sysctl

Chapter 10: TCP models in ns-3 68

• INetStack INetStack contains the ’low level’ operations for the operating system net-
work stack, e.g. in and output functions from and to the network stack (think of this
as the ’network driver interface’. There are also functions to create new TCP or UDP
sockets.

• ISendCallback This is called by NSC when a packet should be sent out to the network.
This simulator should use this callback to re-inject the packet into the simulator so
the actual data can be delivered/routed to its destination, where it will eventually be
handed into Receive() (and eventually back to the receivers NSC instance via INetStack-
>if receive()).

• INetStreamSocket This is the structure defining a particular connection endpoint (file
descriptor). It contains methods to operate on this endpoint, e.g. connect, disconnect,
accept, listen, send data/read data, ...

• IInterruptCallback This contains the wakeup callback, which is called by NSC whenever
something of interest happens. Think of wakeup() as a replacement of the operating
systems wakeup function: Whenever the operating system would wake up a process
that has been waiting for an operation to complete (for example the TCP handshake
during connect()), NSC invokes the wakeup() callback to allow the simulator to check
for state changes in its connection endpoints.

10.3.7 ns-3 implementation

The ns-3 implementation makes use of the above NSC API, and is implemented as follows.

The three main parts are:

• ns3::NscTcpL4Protocol: a subclass of Ipv4L4Protocol (and two nsc classes: ISend-
Callback and IInterruptCallback)

• ns3::NscTcpSocketImpl: a subclass of TcpSocket
• ns3::NscTcpSocketFactoryImpl: a factory to create new NSC sockets

src/internet-stack/nsc-tcp-l4-protocol is the main class. Upon Initialization, it
loads an nsc network stack to use (via dlopen()). Each instance of this class may use a
different stack. The stack (=shared library) to use is set using the SetNscLibrary() method
(at this time its called indirectly via the internet stack helper). The nsc stack is then set
up accordingly (timers etc). The NscTcpL4Protocol::Receive() function hands the packet
it receives (must be a complete tcp/ip packet) to the nsc stack for further processing. To
be able to send packets, this class implements the nsc send callback method. This method
is called by nsc whenever the nsc stack wishes to send a packet out to the network. Its
arguments are a raw buffer, containing a complete TCP/IP packet, and a length value. This
method therefore has to convert the raw data to a Ptr<Packet> usable by ns-3. In order to
avoid various ipv4 header issues, the nsc ip header is not included. Instead, the tcp header
and the actual payload are put into the Ptr<Packet>, after this the Packet is passed down
to layer 3 for sending the packet out (no further special treatment is needed in the send
code path).

This class calls ns3::NscTcpSocketImpl both from the nsc wakeup() callback and from
the Receive path (to ensure that possibly queued data is scheduled for sending).

src/internet-stack/nsc-tcp-socket-impl implements the nsc socket interface. Each
instance has its own nscTcpSocket. Data that is Send() will be handed to the nsc stack

Chapter 10: TCP models in ns-3 69

via m nscTcpSocket->send data(). (and not to nsc-tcp-l4, this is the major difference com-
pared to ns-3 TCP). The class also queues up data that is Send() before the underlying
descriptor has entered an ESTABLISHED state. This class is called from the nsc-tcp-l4
class, when the nsc-tcp-l4 wakeup() callback is invoked by nsc. nsc-tcp-socket-impl then
checks the current connection state (SYN SENT, ESTABLISHED, LISTEN...) and sched-
ules appropriate callbacks as needed, e.g. a LISTEN socket will schedule Accept to see if
a new connection must be accepted, an ESTABLISHED socket schedules any pending data
for writing, schedule a read callback, etc.

Note that ns3::NscTcpSocketImpl does not interact with nsc-tcp directly: instead, data
is redirected to nsc. nsc-tcp calls the nsc-tcp-sockets of a node when its wakeup callback is
invoked by nsc.

10.3.8 Limitations

• NSC only works on single-interface nodes; attempting to run it on a multi-interface
node will cause a program error. This limitation should be fixed by ns-3.3.

• Cygwin and OS X PPC are not presently supported
• The non-Linux stacks of NSC are not supported
• NSC’s integration into the build system presently requires on-line access and mercurial,

and is a slow download.

For more information, see this wiki page.

http://www.nsnam.org/wiki/index.php/Network_Simulation_Cradle_Integration

Chapter 11: Routing overview 70

11 Routing overview

This chapter describes the overall design of routing in the src/internet-stack module,
and some details about the routing approachs currently implemented.

11.1 Overview

We intend to support traditional routing approaches and protocols, ports of open source
routing implementations, and facilitate research into unorthodox routing techniques. For
simulations that are not primarily focused on routing and that simply want correct routing
tables to occur somehow, we have an global centralized routing capability. A singleton object
(GlobalRouteManager) be instantiated, builds a network map, and populates a forwarding
table on each node at time t=0 in the simulation. Simulation script writers can use the
same node API to manually enter routes as well.

11.2 Support for multiple routing protocols

Typically, multiple routing protocols are supported in user space and coordinate to write
a single forwarding table in the kernel. Presently in ns-3, the implementation instead
allows for multiple routing protocols to build/keep their own routing state, and the IPv4
implementation will query each one of these routing protocols (in some order determined
by the simulation author) until a route is found.

We chose this approach because it may better faciliate the integration of disparate rout-
ing approaches that may be difficult to coordinate the writing to a single table, approaches
where more information than destination IP address (e.g., source routing) is used to deter-
mine the next hop, and on-demand routing approaches where packets must be cached.

There are presently two routing protocols defined:
• class Ipv4StaticRouting (covering both unicast and multicast)
• Optimized Link State Routing (a MANET protocol defined in RFC 3626)

but first we describe how multiple routing protocols are supported.

11.2.1 class Ipv4RoutingProtocol

class Ipv4RoutingProtocol derives from ns-3 Object which means that it supports inter-
face aggregation and reference counting. Routing protocols should inherit from this class,
defined in src/node/ipv4.cc.

The main function that must be supported by these protocols is called RequestRoute.
* This method is called whenever a node’s IPv4 forwarding engine
* needs to lookup a route for a given packet and IP header.
*
* The routing protocol implementation may determine immediately it
* should not be handling this particular the route request. For
* instance, a routing protocol may decline to search for routes for
* certain classes of addresses, like link-local. In this case,
* RequestRoute() should return false and the routeReply callback
* must not be invoked.
*

http://www.ietf.org/rfc/rfc3626.txt

Chapter 11: Routing overview 71

* If the routing protocol implementations assumes it can provide
* the requested route, then it should return true, and the
* routeReply callback must be invoked, either immediately before
* returning true (synchronously), or in the future (asynchronous).
* The routing protocol may use any information available in the IP
* header and packet as routing key, although most routing protocols
* use only the destination address (as given by
* ipHeader.GetDestination ()). The routing protocol is also
* allowed to add a new header to the packet, which will appear
* immediately after the IP header, although most routing do not
* insert any extra header.
*/
virtual bool RequestRoute (uint32_t ifIndex,

const Ipv4Header &ipHeader,
Ptr<Packet> packet,
RouteReplyCallback routeReply) = 0;

This class also provides a typedef (used above) for a special Callback that will pass to
the callback function the Ipv4Route that is found (see the Doxygen documentation):

typedef Callback<void, bool, const Ipv4Route&, Ptr<Packet>, const Ipv4Header&> RouteReplyCallback;

11.2.2 Ipv4::AddRoutingProtocol

Class Ipv4 provides a pure virtual function declaration for the method that allows one to
add a routing protocol:

void AddRoutingProtocol (Ptr<Ipv4RoutingProtocol> routingProtocol,
int16_t priority);

This method is implemented by class Ipv4L3Protocol in the internet-stack module.

The priority variable above governs the priority in which the routing protocols are in-
serted. Notice that it is a signed int. When the class Ipv4L3Protocol is instantiated, a
single routing protocol (Ipv4StaticRouting, introduced below) is added at priority zero. In-
ternally, a list of Ipv4RoutingProtocols is stored, and and the routing protocols are each
consulted in decreasing order of priority to see whether a match is found. Therefore, if you
want your Ipv4RoutingProtocol to have priority lower than the static routing, insert it with
priority less than 0; e.g.:

m_ipv4->AddRoutingProtocol (m_routingTable, -10);

11.2.3 Ipv4L3Protocol::Lookup

The main function for obtaining a route is shown below:

Ipv4L3Protocol::Lookup (
uint32_t ifIndex,
Ipv4Header const &ipHeader,
Ptr<Packet> packet,
Ipv4RoutingProtocol::RouteReplyCallback routeReply)

This function will search the list of routing protocols, in priority order, until a route is
found. It will then invoke the RouteReplyCallback and no further routing protocols will be

Chapter 11: Routing overview 72

searched. If the caller does not want to constrain the possible interface, it can be wildcarded
as such:

Lookup (Ipv4RoutingProtocol::IF_INDEX_ANY, ipHeader, packet, routeReply);

11.3 Roadmap and Future work

Some goals for future support are:

Users should be able to trace (either debug print, or redirect to a trace file) the routing
table in a format such as used in an Unix implementation:

netstat -nr (or # route -n)
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
127.0.0.1 * 255.255.255.255 UH 0 0 0 lo
172.16.1.0 * 255.255.255.0 U 0 0 0 eth0
172.16.2.0 172.16.1.1 255.255.255.0 UG 0 0 0 eth0

ip route show
192.168.99.0/24 dev eth0 scope link
127.0.0.0/8 dev lo scope link
default via 192.168.99.254 dev eth0

Global computation of multicast routing should be implemented as well. This would
ignore group membership and ensure that a copy of every sourced multicast datagram
would be delivered to each node. This might be implemented as an RPF mechanism that
functioned on-demand by querying the forwarding table, and perhaps optimized by a small
multicast forwarding cache. It is a bit trickier to implement over wireless links where the
input interface is the same as the output interface; other aspects of the packet must be
considered and the forwarding logic slightly changed to allow for forwarding out the same
interface.

In the future, work on bringing XORP or quagga routing to ns, but it will take several
months to port and enable.

There are presently no roadmap plans for IPv6.

11.4 Static routing

The internet-stack module provides one routing protocol (Ipv4StaticRouting) by default.
This routing protocol allows one to add unicast or multicast static routes to a node.

11.5 Unicast routing

The unicast static routing API may be accessed via the functions

void Ipv4::AddHostRouteTo ()
void Ipv4::AddNetworkRouteTo ()
void Ipv4::SetDefaultRoute ()
uint32_t Ipv4::GetNRoutes ()
Ipv4Route Ipv4::GetRoute ()

Chapter 11: Routing overview 73

Doxygen documentation provides full documentation of these methods. These methods
are forwarding functions to the actual implementation in Ipv4StaticRouting, when using
the internet-stack module.

11.6 Multicast routing

The following function is used to add a static multicast route to a node:

void
Ipv4StaticRouting::AddMulticastRoute (Ipv4Address origin,

Ipv4Address group,
uint32_t inputInterface,
std::vector<uint32_t> outputInterfaces);

A multicast route must specify an origin IP address, a multicast group and an input
network interface index as conditions and provide a vector of output network interface
indices over which packets matching the conditions are sent.

Typically there are two main types of multicast routes: routes of the first kind are
used during forwarding. All of the conditions must be exlicitly provided. The second
kind of routes are used to get packets off of a local node. The difference is in the in-
put interface. Routes for forwarding will always have an explicit input interface specified.
Routes off of a node will always set the input interface to a wildcard specified by the index
Ipv4RoutingProtocol::IF\ INDEX\ ANY.

For routes off of a local node wildcards may be used in the origin and multicast
group addresses. The wildcard used for Ipv4Adresses is that address returned by
Ipv4Address::GetAny () – typically "0.0.0.0". Usage of a wildcard allows one to specify
default behavior to varying degrees.

For example, making the origin address a wildcard, but leaving the multicast group
specific allows one (in the case of a node with multiple interfaces) to create different routes
using different output interfaces for each multicast group.

If the origin and multicast addresses are made wildcards, you have created essentially
a default multicast address that can forward to multiple interfaces. Compare this to the
actual default multicast address that is limited to specifying a single output interface for
compatibility with existing functionality in other systems.

Another command sets the default multicast route:

void
Ipv4StaticRouting::SetDefaultMulticastRoute (uint32_t outputInterface);

This is the multicast equivalent of the unicast version SetDefaultRoute. We tell the
routing system what to do in the case where a specific route to a destination multicast
group is not found. The system forwards packets out the specified interface in the hope
that "something out there" knows better how to route the packet. This method is only
used in initially sending packets off of a host. The default multicast route is not consulted
during forwarding – exact routes must be specified using AddMulticastRoute for that case.

Since we’re basically sending packets to some entity we think may know better what
to do, we don’t pay attention to "subtleties" like origin address, nor do we worry about
forwarding out multiple interfaces. If the default multicast route is set, it is returned as

http://www.nsnam.org/doxygen/index.html

Chapter 11: Routing overview 74

the selected route from LookupStatic irrespective of origin or multicast group if another
specific route is not found.

Finally, a number of additional functions are provided to fetch and remove multicast
routes:

uint32_t GetNMulticastRoutes (void) const;

Ipv4MulticastRoute *GetMulticastRoute (uint32_t i) const;

Ipv4MulticastRoute *GetDefaultMulticastRoute (void) const;

bool RemoveMulticastRoute (Ipv4Address origin,
Ipv4Address group,
uint32_t inputInterface);

void RemoveMulticastRoute (uint32_t index);

11.7 Global centralized routing

Presently, global centralized IPv4 unicast routing over both point-to-point and shared
(CSMA) links is supported. The global centralized routing will be modified in the future
to reduce computations once profiling finds the performance bottlenecks.

11.8 Global Unicast Routing API

The public API is very minimal. User scripts include the following:

#include "ns3/global-route-manager.h"

After IP addresses are configured, the following function call will cause all of the nodes
that have an Ipv4 interface to receive forwarding tables entered automatically by the Glob-
alRouteManager:

GlobalRouteManager::PopulateRoutingTables ();

Note: A reminder that the wifi NetDevice is not yet supported (only CSMA and Point-
ToPoint).

It is possible to call this function again in the midst of a simulation using the following
additional public function:

GlobalRouteManager::RecomputeRoutingTables ();

which flushes the old tables, queries the nodes for new interface information, and rebuilds
the routes.

For instance, this scheduling call will cause the tables to be rebuilt at time 5 seconds:

Simulator::Schedule (Seconds (5),&GlobalRouteManager::RecomputeRoutingTables);

11.9 Global Routing Implementation

A singleton object (GlobalRouteManager) is responsible for populating the static routes on
each node, using the public Ipv4 API of that node. It queries each node in the topology
for a "globalRouter" interface. If found, it uses the API of that interface to obtain a "link

Chapter 11: Routing overview 75

state advertisement (LSA)" for the router. Link State Advertisements are used in OSPF
routing, and we follow their formatting.

The GlobalRouteManager populates a link state database with LSAs gathered from the
entire topology. Then, for each router in the topology, the GlobalRouteManager executes
the OSPF shortest path first (SPF) computation on the database, and populates the routing
tables on each node.

The quagga (http://www.quagga.net) OSPF implementation was used as the basis for
the routing computation logic. One benefit of following an existing OSPF SPF implemen-
tation is that OSPF already has defined link state advertisements for all common types of
network links:
• point-to-point (serial links)
• point-to-multipoint (Frame Relay, ad hoc wireless)
• non-broadcast multiple access (ATM)
• broadcast (Ethernet)

Therefore, we think that enabling these other link types will be more straightforward
now that the underlying OSPF SPF framework is in place.

Presently, we can handle IPv4 point-to-point, numbered links, as well as shared broadcast
(CSMA) links, and we do not do equal-cost multipath.

The GlobalRouteManager first walks the list of nodes and aggregates a GlobalRouter
interface to each one as follows:
typedef std::vector < Ptr<Node> >::iterator Iterator;
for (Iterator i = NodeList::Begin (); i != NodeList::End (); i++)
{
Ptr<Node> node = *i;
Ptr<GlobalRouter> globalRouter = CreateObject<GlobalRouter> (node);
node->AggregateObject (globalRouter);

}

This interface is later queried and used to generate a Link State Advertisement for each
router, and this link state database is fed into the OSPF shortest path computation logic.
The Ipv4 API is finally used to populate the routes themselves.

11.10 Optimized Link State Routing (OLSR)

This is the first dynamic routing protocol for ns-3. The implementation is found in
the src/routing/olsr directory, and an example script is in examples/simple-point-to-point-
olsr.cc.

The following commands will enable OLSR in a simulation.
olsr::EnableAllNodes (); // Start OLSR on all nodes
olsr::EnableNodes(InputIterator begin, InputIterator end); // Start on
// a list of nodes

olsr::EnableNode (Ptr<Node> node); // Start OLSR on "node" only

Once instantiated, the agent can be started with the Start() command, and the OLSR
"main interface" can be set with the SetMainInterface() command. A number of protocol
constants are defined in olsr-agent-impl.cc.

Chapter 12: Wifi NetDevice 76

12 Wifi NetDevice

ns-3 nodes can contain a collection of NetDevice objects, much like an actual computer
contains separate interface cards for Ethernet, Wifi, Bluetooth, etc. This chapter describes
the ns-3 WifiNetDevice and related models. By adding WifiNetDevice objects to ns-3 nodes,
one can create models of 802.11-based infrastructure and ad hoc networks.

12.1 Overview of the model

Note: This overview is taken largely from the Doxygen for the WifiNetDevice module.

The set of 802.11 models provided in ns-3 attempts to provide an accurate MAC-level
implementation of the 802.11 specification and to provide a not-so-slow PHY-level model
of the 802.11a specification.

The current implementation provides roughly four levels of models:

• the PHY layer models

• the so-called MAC low models: they implement DCF
• the so-called MAC high models: they implement the MAC-level beacon generation,

probing, and association state machines, and
• a set of Rate control algorithms used by the MAC low models

There are presently three MAC high models:

1. a simple adhoc state machine that does not perform any kind of beacon
generation, probing, or association. This state machine is implemented by the
ns3::AdhocWifiNetDevice and ns3::MacHighAdhoc classes.

2. an active probing and association state machine that handles automatic
re-association whenever too many beacons are missed is implemented by the
ns3::NqstaWifiNetDevice and ns3::MacHighNqsta classes.

3. an access point that generates periodic beacons, and that accepts every attempt to
associate. This AP state machine is implemented by the ns3::NqapWifiNetDevice
and ns3::MacHighNqap classes.

The MAC low layer is split into three components:

1. ns3::MacLow which takes care of RTS/CTS/DATA/ACK transactions.
2. ns3::DcfManager and ns3::DcfState which implements the DCF function.
3. ns3::DcaTxop which handles the packet queue, packet fragmentation, and packet re-

transmissions if they are needed.

There are also several rate control algorithms that can be used by the Mac low layer:

• ns3::ArfMacStations

• ns3::AArfMacStations

• ns3::IdealMacStations

• ns3::CrMacStations

• ns3::OnoeMacStations

• ns3::AmrrMacStations

Chapter 12: Wifi NetDevice 77

The PHY layer implements a single model in the ns3::WifiPhy class: the physical
layer model implemented there is described fully in a paper entitled "Yet Another Network
Simulator".

In ns-3, nodes can have multiple WifiNetDevices on separate channels, and the WifiNet-
Device can coexist with other device types; this removes an architectural limitation found
in ns-2. Presently, however, there is no model for cross-channel interference or coupling.

The source code for the Wifi NetDevice lives in the directory src/devices/wifi.

12.2 Using the WifiNetDevice

Users who use the low-level ns-3 API and who wish to add a WifiNetDevice to their node
must create an instance of a WifiNetDevice, plus a number of consitutent objects, and bind
them together appropriately (the WifiNetDevice is very modular in this regard, for future
extensibility). At the low-level API, this can be done with about 20 lines of code (see
ns3::WifiHelper::Install and ns3::YansWifiPhyHelper::Create). They also must
create, at some point, a WifiChannel, which also contains a number of constituent objects
(see ns3::YansWifiChannelHelper::Create).

However, a few helpers are available for users to add these devices and channels with
only a few lines of code, if they are willing to use defaults, and the helpers provide addi-
tional API to allow the passing of attribute values to change default values. The scripts in
src/examples can be browsed to see how this is done.

12.2.1 YansWifiChannelHelper

The YansWifiChannelHelper has an unusual name. Readers may wonder why it is named
this way. The reference is to the yans simulator, from which this model is taken. The helper
can be used to create a WifiChannel with a default PropagationLoss and PropagationDelay
model. Specifically, the default is a channel model with a propagation delay equal to a
constant, the speed of light, and a propagation loss based on a log distance model with a
reference loss of 46.6777 dB at reference distance of 1m.

Users will typically type code such as:

YansWifiChannelHelper wifiChannelHelper = YansWifiChannelHelper::Default ();
Ptr<WifiChannel> wifiChannel = wifiChannelHelper.Create ();

to get the defaults. Note the distinction above in creating a helper object vs. an actual
simulation object. In ns-3, helper objects (used at the helper API only) are created on the
stack (they could also be created with operator new and later deleted). However, the actual
ns-3 objects typically inherit from class ns3::Object and are assigned to a smart pointer.
See the chapter on Object model for a discussion of the ns-3 object model, if you are not
familiar with it.

Todo: Add notes about how to configure attributes with this helper API

12.2.2 YansWifiPhyHelper

Physical devices (base class ns3::Phy) connect to ns3::Channel models in ns-3. We need
to create Phy objects appropriate for the YansWifiChannel; here the YansWifiPhyHelper
will do the work.

http://cutebugs.net/files/wns2-yans.pdf
http://cutebugs.net/files/wns2-yans.pdf
http://cutebugs.net/files/wns2-yans.pdf
Object model

Chapter 12: Wifi NetDevice 78

The YansWifiPhyHelper class configures an object factory to create instances of a
YansWifiPhy and adds some other objects to it, including possibly a supplemental Er-
rorRateModel and a pointer to a MobilityModel. The user code is typically:
YansWifiPhyHelper wifiPhyHelper = YansWifiPhyHelper::Default ();
wifiPhyHelper.SetChannel (wifiChannel);

Note that we haven’t actually created any WifiPhy objects yet; we’ve just prepared the
YansWifiPhyHelper by telling it which channel it is connected to. The phy objects are
created in the next step.

12.2.3 WifiHelper

We’re now ready to create WifiNetDevices. First, let’s create a WifiHelper with default
settings:
WifiHelper wifiHelper = WifiHelper::Default ();

What does this do? It sets the RemoteStationManager to ns3::ArfWifiManager and
the upper MAC to ns3::AdhocWifiMac by default (which can be overridden by other ar-
guments). Now, let’s use the wifiPhyHelper created above to install WifiNetDevices on a
set of nodes in a NodeContainer "c":
NetDeviceContainer wifiContainer = WifiHelper::Install (wifiPhyHelper, c);

This creates the WifiNetDevice which includes also a WifiRemoteStationManager, a
WifiMac, and a WifiPhy (connected to the matching WifiChannel).

There are many ns-3 Attributes that can be set on the above helpers to deviate from
the default behavior; the example scripts show how to do some of this reconfiguration.

12.2.4 AdHoc WifiNetDevice configuration

This is a typical example of how a user might configure an adhoc network.
Write me

12.2.5 Infrastructure (Access Point and clients) WifiNetDevice
configuration

This is a typical example of how a user might configure an access point and a set of clients.
Write me

12.3 The WifiChannel and WifiPhy models

The WifiChannel subclass can be used to connect together a set of ns3::WifiNetDevice
network interfaces. The class ns3::WifiPhy is the object within the WifiNetDevice that
receives bits from the channel. A WifiChannel contains a ns3::PropagationLossModel
and a ns3::PropagationDelayModel which can be overridden by the WifiChan-
nel::SetPropagationLossModel and the WifiChannel::SetPropagationDelayModel methods.
By default, no propagation models are set.

The WifiPhy models an 802.11a channel, in terms of frequency, modulation, and bit
rates, and interacts with the PropagationLossModel and PropagationDelayModel found in
the channel.

This section summarizes the description of the BER calculations found in the yans paper
taking into account the Forward Error Correction present in 802.11a and describes the

Attributes

Chapter 12: Wifi NetDevice 79

algorithm we implemented to decide whether or not a packet can be successfully received.
See "Yet Another Network Simulator" for more details.

The PHY layer can be in one of three states:

1. TX: the PHY is currently transmitting a signal on behalf of its associated MAC

2. RX: the PHY is synchronized on a signal and is waiting until it has received its last
bit to forward it to the MAC.

3. IDLE: the PHY is not in the TX or RX states.

When the first bit of a new packet is received while the PHY is not IDLE (that is, it is
already synchronized on the reception of another earlier packet or it is sending data itself),
the received packet is dropped. Otherwise, if the PHY is IDLE, we calculate the received
energy of the first bit of this new signal and compare it against our Energy Detection
threshold (as defined by the Clear Channel Assessment function mode 1). If the energy of
the packet k is higher, then the PHY moves to RX state and schedules an event when the
last bit of the packet is expected to be received. Otherwise, the PHY stays in IDLE state
and drops the packet.

The energy of the received signal is assumed to be zero outside of the reception interval
of packet k and is calculated from the transmission power with a path-loss propagation
model in the reception interval. where the path loss exponent, n, is chosen equal to 3, the
reference distance, d0 is choosen equal to 1.0m and the reference energy is based based on
a Friis propagation model.

When the last bit of the packet upon which the PHY is synchronized is received, we need
to calculate the probability that the packet is received with any error to decide whether or
not the packet on which we were synchronized could be successfully received or not: a ran-
dom number is drawn from a uniform distribution and is compared against the probability
of error.

To evaluate the probability of error, we start from the piecewise linear functions shown
in Figure Figure 12.1 and calculate the SNIR function.

http://cutebugs.net/files/wns2-yans.pdf

Chapter 12: Wifi NetDevice 80

Figure 12.1: SNIR function over time

From the SNIR function we can derive bit error rates for BPSK and QAM modulations.
Then, for each interval l where BER is constant, we define the upper bound of a probability
that an error is present in the chunk of bits located in the interval l for packet k. If
we assume an AWGN channel, binary convolutional coding (which is the case in 802.11a)
and hard-decision Viterbi decoding, the error rate is thus derived, and the packet error
probability for packet k can be computed..

12.3.1 WifiChannel configuration

WifiChannel models include both a PropagationDelayModel and a PropagationLossModel.
The following PropagationDelayModels are available:
• ConstantSpeedPropagationDelayModel
• RandomPropagationDelayModel

The following PropagationLossModels are available:
• RandomPropagationLossModel
• FriisPropagationLossModel
• LogDistancePropagationLossModel
• JakesPropagationLossModel
• CompositePropagationLossModel

12.4 The MAC model

The 802.11 Distributed Coordination Function is used to calculate when to grant access
to the transmission medium. While implementing the DCF would have been particularly
easy if we had used a recurring timer that expired every slot, we chose to use the method

Chapter 12: Wifi NetDevice 81

described in (missing reference here from Yans paper) where the backoff timer duration is
lazily calculated whenever needed since it is claimed to have much better performance than
the simpler recurring timer solution.

The higher-level MAC functions are implemented in a set of other C++ classes and deal
with:
• packet fragmentation and defragmentation,
• use of the rts/cts protocol,
• rate control algorithm,
• connection and disconnection to and from an Access Point,
• the MAC transmission queue,
• beacon generation,
• etc.

12.5 Wifi Attributes

The WifiNetDevice makes heavy use of the ns-3 Chapter 3 [Attributes], page 12 subsystem
for configuration and default value management. Presently, approximately 100 values are
stored in this system.

For instance, class ns-3::WifiMac exports these attributes:
• CtsTimeout: When this timeout expires, the RTS/CTS handshake has failed.
• AckTimeout: When this timeout expires, the DATA/ACK handshake has failed.
• Sifs: The value of the SIFS constant.
• EifsNoDifs: The value of EIFS-DIFS
• Slot: The duration of a Slot.
• Pifs: The value of the PIFS constant.
• MaxPropagationDelay: The maximum propagation delay. Unused for now.
• MaxMsduSize: The maximum size of an MSDU accepted by the MAC layer.This value

conforms to the specification.
• Ssid: The ssid we want to belong to.

12.6 Wifi Tracing

This needs revised/updating based on the latest Doxygen
ns-3 has a sophisticated tracing infrastructure that allows users to hook into existing

trace sources, or to define and export new ones.
Wifi-related trace sources that are available by default include:

• ns3::WifiNetDevice

• Rx: Received payload from the MAC layer.
• Tx: Send payload to the MAC layer.

• ns3::WifiPhy

• State: The WifiPhy state
• RxOk: A packet has been received successfully.

Chapter 12: Wifi NetDevice 82

• RxError: A packet has been received unsuccessfully.
• Tx: Packet transmission is starting.

Briefly, this means, for example, that a user can hook a processing function to the
"State" tracing hook above and be notified whenever the WifiPhy model changes state.

Chapter 13: CSMA NetDevice 83

13 CSMA NetDevice

This is the introduction to CSMA NetDevice chapter, to complement the Csma model
doxygen.

13.1 Overview of the model

The ns-3 CSMA device models a simple bus network in the spirit of Ethernet. Although it
does not model any real physical network you could ever build or buy, it does provide some
very useful functionality.

Typically when one thinks of a bus network Ethernet or IEEE 802.3 comes to mind.
Ethernet uses CSMA/CD (Carrier Sense Multiple Access with Collision Detection with
exponentially increasing backoff to contend for the shared transmission medium. The ns-3
CSMA device models only a portion of this process, using the nature of the globally available
channel to provide instantaneous (faster than light) carrier sense and priority-based collision
"avoidance." Collisions in the sense of Ethernet never happen and so the ns-3 CSMA device
does not model collision detection, nor will any transmission in progress be "jammed."

13.1.1 CSMA Layer Model

There are a number of conventions in use for describing layered communications architec-
tures in the literature and in textbooks. The most common layering model is the ISO seven
layer reference model. In this view the CsmaNetDevice and CsmaChannel pair occupies the
lowest two layers – at the physical (layer one), and data link (layer two) positions. Another
important reference model is that specified by RFC 1122, "Requirements for Internet Hosts
– Communication Layers." In this view the CsmaNetDevice and CsmaChannel pair occu-
pies the lowest layer – the link layer. There is also a seemingly endless litany of alternative
descriptions found in textbooks and in the literature. We adopt the naming conventions
used in the IEEE 802 standards which speak of LLC, MAC, MII and PHY layering. These
acronyms are defined as:

• LLC: Logical Link Control;

• MAC: Media Access Control;

• MII: Media Independent Interface;

• PHY: Physical Layer.

In this case the LLC and MAC are sublayers of the OSI data link layer and the MII and
PHY are sublayers of the OSI physical layer.

The "top" of the CSMA device defines the transition from the network layer to the
data link layer. This transition is performed by higher layers by calling either CsmaNetDe-
vice::Send or CsmaNetDevice::SendFrom.

In contrast to the IEEE 802.3 standards, there is no precisely specified PHY in the
CSMA model in the sense of wire types, signals or pinouts. The "bottom" interface of
the CsmaNetDevice can be thought of as as a kind of Media Independent Interface (MII)
as seen in the "Fast Ethernet" (IEEE 802.3u) specifications. This MII interface fits into
a corresponding media independent interface on the CsmaChannel. You will not find the
equivalent of a 10BASE-T or a 1000BASE-LX PHY.

Chapter 13: CSMA NetDevice 84

The CsmaNetDevice calls the CsmaChannel through a media independent interface.
There is a method defined to tell the channel when to start "wiggling the wires" using the
method CsmaChannel::TransmitStart, and a method to tell the channel when the trans-
mission process is done and the channel should begin propagating the last bit across the
"wire": CsmaChannel::TransmitEnd.

When the TransmitEnd method is executed, the channel will model a single uniform
signal propagation delay in the medium and deliver copes of the packet to each of the
devices attached to the packet via the CsmaNetDevice::Receive method.

There is a "pin" in the device media independent interface corresponding to "COL"
(collision). The state of the channel may be sensed by calling CsmaChannel::GetState.
Each device will look at this "pin" before starting a send and will perform appropriate
backoff operations if required.

Properly received packets are forwarded up to higher levels from the CsmaNetDevice
via a callback mechanism. The callback function is initialized by the higher layer (when
the net device is attached) using CsmaNetDevice::SetReceiveCallback and is invoked upon
"proper" reception of a packet by the net device in order to forward the packet up the
protocol stack.

13.2 CSMA Channel Model

The class CsmaChannel models the actual transmission medium. There is no fixed limit for
the number of devices connected to the channel. The CsmaChannel models a data rate and
a speed-of-light delay which can be accessed via the attributes "DataRate" and "Delay"
respectively. The data rate provided to the channel is used to set the data rates used by
the transmitter sections of the CSMA devices connected to the channel. There is no way
to independently set data rates in the devices. Since the data rate is only used to calculate
a delay time, there is no limitation (other than by the data type holding the value) on the
speed at which CSMA channels and devices can operate; and no restriction based on any
kind of PHY characteristics.

The CsmaChannel has three states, IDLE, TRANSMITTING and PROPAGATING. These three
states are "seen" instantaneously by all devices on the channel. By this we mean that if one
device begins or ends a simulated transmission, all devices on the channel are immediately
aware of the change in state. There is no time during which one device may see an IDLE
channel while another device physically further away in the collision domain may have
begun transmitting with the associated signals not propagated down the channel to other
devices. Thus there is no need for collision detection in the CsmaChannel model and it is
not implemented in any way.

We do, as the name indicates, have a Carrier Sense aspect to the model. Since the sim-
ulator is single threaded, access to the common channel will be serialized by the simulator.
This provides a deterministic mechanism for contending for the channel. The channel is
allocated (transitioned from state IDLE to state TRANSMITTING) on a first-come first-served
basis. The channel always goes through a three state process:
IDLE -> TRANSMITTING -> PROPAGATING -> IDLE

The TRANSMITTING state models the time during which the source net device is actually
wiggling the signals on the wire. The PROPAGATING state models the time after the last bit
was sent, when the signal is propagating down the wire to the "far end."

Chapter 13: CSMA NetDevice 85

The transition to the TRANSMITTING state is driven by a call to CsmaChan-
nel::TransmitStart which is called by the net device that transmits the packet. It is
the responsibility of that device to end the transmission with a call to CsmaChan-
nel::TransmitEnd at the appropriate simulation time that reflects the time elapsed to put
all of the packet bits on the wire. When TransmitEnd is called, the channel schedules an
event corresponding to a single speed-of-light delay. This delay applies to all net devices
on the channel identically. You can think of a symmetrical hub in which the packet bits
propagate to a central location and then back out equal length cables to the other devices
on the channel. The single “speed of light” delay then corresponds to the time it takes for:
1) a singal to propagate from one CsmaNetDevice through its cable to the hub; plus 2)
the time it takes for the hub to forward the packet out a port; plus 3) the time it takes for
the signal in question to propagate to the destination net device.

The CsmaChannel models a broadcast medium so the packet is delivered to all of the
devices on the channel (including the source) at the end of the propagation time. It is
the responsibility of the sending device to determine whether or not it receives a packet
broadcast over the channel.

The CsmaChannel provides following Attributes:

• DataRate: The bitrate for packet transmission on connected devices;

• Delay: The speed of light transmission delay for the channel.

13.3 CSMA Net Device Model

The CSMA network device appears somewhat like an Ethernet device. The CsmaNetDevice
provides following Attributes:

• Address: The Mac48Address of the device;

• SendEnable: Enable packet transmission if true;

• ReceiveEnable: Enable packet reception if true;

• EncapsulationMode: Type of link layer encapsulation to use;

• RxErrorModel: The receive error model;

• TxQueue: The trasmit queue used by the device;

• InterframeGap: The optional time to wait between "frames";

• Rx: A trace source for received packets;

• Drop: A trace source for dropped packets.

The CsmaNetDevice supports the assignment of a "receive error model." This is an
ErrorModel object that is used to simulate data corruption on the link.

Packets sent over the CsmaNetDevice are always routed through the transmit queue to
provide a trace hook for packets sent out over the network. This transmit queue can be set
(via attribute) to model different queueing strategies.

Also configurable by attribute is the encapsulation method used by the device. Every
packet gets an EthernetHeader that includes the destination and source MAC addresses,
and a length/type field. Every packet also gets an EthernetTrailer which includes the FCS.
Data in the packet may be encapsulated in different ways.

Chapter 13: CSMA NetDevice 86

By default, or by setting the "EncapsulationMode" attribute to "Dix", the encapsulation
is according to the DEC, Intel, Xerox standard. This is sometimes called EthernetII framing
and is the familiar destination MAC, source MAC, EtherType, Data, CRC format.

If the "EncapsulationMode" attribute is set to "Llc", the encapsulation is by LLC SNAP.
In this case, a SNAP header is added that contains the EtherType (IP or ARP).

The other implemented encapsulation modes are IP ARP (set "EncapsulationMode" to
"IpArp") in which the length type of the Ethernet header receives the protocol number of
the packet; or ETHERNET V1 (set "EncapsulationMode" to "EthernetV1") in which the
length type of the Ethernet header receives the length of the packet. A "Raw" encapsulation
mode is defined but not implemented – use of the RAW mode results in an assertion.

Note that all net devices on a channel must be set to the same encapsulation mode for
correct results. The encapsulation mode is not sensed at the receiver.

The CsmaNetDevice implements a random exponential backoff algorithm that is exe-
cuted if the channel is determined to be busy (TRANSMITTING or PPROPAGATING) when the
device wants to start propagating. This results in a random delay of up to pow (2, retries)
- 1 microseconds before a retry is attempted. The default maximum number of retries is
1000.

13.4 Using the CsmaNetDevice

The CSMA net devices and channels are typically created and configured using the associ-
ated CsmaHelper object. The various ns3 device dhelpers generatlly work in a simlar way,
and their use is seen in many of our example programs.

The conceptual model of interest is that of a bare computer “husk” into which you plug
net devices. The bare computers are created using a NodeContainer helper. You just ask
this helper to create as many computers (we call them Nodes) as you need on your network:

NodeContainer csmaNodes;
csmaNodes.Create (nCsmaNodes);

Once you have your nodes, you need to instantiate a CsmaHelper and set any attributes
you may want to change.

CsmaHelper csma;
csma.SetChannelAttribute ("DataRate", StringValue ("100Mbps"));
csma.SetChannelAttribute ("Delay", TimeValue (NanoSeconds (6560)));

csma.SetDeviceAttribute ("EncapsulationMode", StringValue ("Dix"));
csma.SetDeviceAttribute ("FrameSize", UintegerValue (2000));

Once the attributes are set, all that remains is to create the devices and install them on
the required nodes, and to connect the devices together using a CSMA channel. When we
create the net devices, we add them to a container to allow you to use them in the future.
This all takes just one line of code.

NetDeviceContainer csmaDevices = csma.Install (csmaNodes);

Chapter 13: CSMA NetDevice 87

13.5 CSMA Tracing

Like all ns-3 devices, the CSMA Model provides a number of trace sources. These trace
sources can be hooked using your own custom trace code, or you can use our helper functions
to arrange for tracing to be enabled on devices you specify.

13.5.1 Upper-Level (MAC) Hooks

From the point of view of tracing in the net device, there are several interesting points to
insert trace hooks. A convention inherited from other simulators is that packets destined
for transmission onto attached networks pass through a single "transmit queue" in the net
device. We provide trace hooks at this point in packet flow, which corresponds (abstractly)
only to a transition from the network to data link layer, and call them collectively the device
MAC hooks.

When a packet is sent to the CSMA net device for transmission it always passes through
the transmit queue. The transmit queue in the CsmaNetDevice inherits from Queue, and
therefore inherits three trace sources:

• An Enqueue operation source (see Queue::m traceEnqueue);

• A Dequeue operation source (see Queue::m traceDequeue);

• A Drop operation source (see Queue::m traceDrop).

The upper-level (MAC) trace hooks for the CsmaNetDevice are, in fact, exactly these
three trace sources on the single transmit queue of the device.

The m traceEnqueue event is triggered when a packet is placed on the transmit queue.
This happens at the time that CsmaNetDevice::Send or CsmaNetDevice::SendFrom is called
by a higher layer to queue a packet for transmission.

The m traceDequeue event is triggered when a packet is removed from the transmit
queue. Dequeues from the transmit queue can happen in three situations: 1) If the un-
derlying channel is idle when the CsmaNetDevice::Send or CsmaNetDevice::SendFrom is
called, a packet is dequeued from the transmit queue and immediately transmitted; 2) If
the underlying channel is idle, a packet may be dequeued and immediately transmitted in
an internal TransmitCompleteEvent that functions much like a transmit complete interrupt
service routine; or 3) from the random exponential backoff handler if a timeout is detected.

Case (3) implies that a packet is dequeued from the transmit queue if it is unable to
be transmittted according to the backoff rules. It is important to understand that this
will appear as a Dequeued packet and it is easy to incorrectly assume that the packet was
transmitted since it passed through the transmit queue. In fact, a packet is actually dropped
by the net device in this case. The reason for this behavior is due to the definition of the
Queue Drop event. The m traceDrop event is, by defintion, fired when a packet cannot be
enqueued on the transmit queue becasue it is full. This event only fires if the queue is full
and we do not overload this event to indicate that the CsmaChannel is "full."

13.5.2 Lower-Level (PHY) Hooks

Similar to the upper level trace hooks, there are trace hooks available at the lower levels of
the net device. We call these the PHY hooks. These events fire from the device methods
that talk directly to the CsmaChannel.

Chapter 13: CSMA NetDevice 88

The trace source m dropTrace is called to indicate a packet that is dropped by the
device. This happens in two cases: First, if the receive side of the net device is not enabled
(see CsmaNetDevice::m receiveEnable and the associated attribute "ReceiveEnable").

The m dropTrace is also used to indicate that a packet was discarded as corrupt if a
receive error model is used (see CsmaNetDevice::m receiveErrorModel and the associated
attribute "ReceiveErrorModel").

The other low-level trace source fires on reception of an accepted packet (see CsmaN-
etDevice::m rxTrace). A packet is accepted if it is destined for the broadcast address, a
multicast address, or to the MAC address assigned to the net device.

Chapter 14: PointToPoint NetDevice 89

14 PointToPoint NetDevice

This is the introduction to PointToPoint NetDevice chapter, to complement the PointTo-
Point model doxygen.

14.1 Overview of the model

The ns-3 point-to-point model is of a very simple point to point data link connecting exactly
two PointToPointNetDevice devices over an PointToPointChannel. This can be viewed as
equivalent to a full duplex RS-232 or RS-422 link with null modem and no handshaking.

Data is encapsulated in the Point-to-Point Protocol (PPP – RFC 1661), however the
Link Control Protocol (LCP) and associated state machine is not implemented. The PPP
link is assumed to be established and authenticated at all times.

Data is not framed, therefore Address and Control fields will not be found. Since the
data is not framed, there is no need to provide Flag Sequence and Control Escape octets, nor
is a Frame Check Sequence appended. All that is required to implement non-framed PPP
is to prepend the PPP protocol number for IP Version 4 which is the sixteen-bit number
0x21 (see http://www.iana.org/assignments/ppp-numbers).

The PointToPointNetDevice provides following Attributes:
• Address: The ns3::Mac48Address of the device (if desired);
• DataRate: The data rate (ns3::DataRate) of the device;
• TxQueue: The trasmit queue (ns3::Queue) used by the device;
• InterframeGap: The optional ns3::Time to wait between "frames";
• Rx: A trace source for received packets;
• Drop: A trace source for dropped packets.

The PointToPointNetDevice models a transmitter section that puts bits on a corre-
sponding channel "wire." ‘The DataRate attribute specifies the number of bits per second
that the device will simulate sending over the channel. In reality no bits are sent, but an
event is scheduled for an elapsed time consistent with the number of bits in each packet
and the specified DataRate. The implication here is that the receiving device models a
receiver section that can receive any any data rate. Therefore there is no need, nor way to
set a receive data rate in this model. By setting the DataRate on the transmitter of both
devices connected to a given PointToPointChannel one can model a symmetric channel; or
by setting different DataRates one can model an asymmetric channel (e.g., ADSL).

The PointToPointNetDevice supports the assignment of a "receive error model." This is
an ErrorModel object that is used to simulate data corruption on the link.

14.2 Point-to-Point Channel Model

The point to point net devices are connected via an PointToPointChannel. This channel
models two wires transmitting bits at the data rate specified by the source net device. There
is no overhead beyond the eight bits per byte of the packet sent. That is, we do not model
Flag Sequences, Frame Check Sequences nor do we "escape" any data.

The PointToPointChannel provides following Attributes:
• Delay: An ns3::Time specifying the speed of light transmission delay for the channel.

Chapter 14: PointToPoint NetDevice 90

14.3 Using the PointToPointNetDevice

The PointToPoint net devices and channels are typically created and configured using the
associated PointToPointHelper object. The various ns3 device helpers generally work in
a simlar way, and their use is seen in many of our example programs and is also covered in
the ns-3 tutorial.

The conceptual model of interest is that of a bare computer “husk” into which you plug
net devices. The bare computers are created using a NodeContainer helper. You just ask
this helper to create as many computers (we call them Nodes) as you need on your network:

NodeContainer nodes;
nodes.Create (2);

Once you have your nodes, you need to instantiate a PointToPointHelper and set any
attributes you may want to change. Note that since this is a point-to-point (as compared
to a point-to-mulipoint) there may only be two nodes with associated net devices connected
by a PointToPointChannel.

PointToPointHelper pointToPoint;
pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

Once the attributes are set, all that remains is to create the devices and install them
on the required nodes, and to connect the devices together using a PointToPoint channel.
When we create the net devices, we add them to a container to allow you to use them in
the future. This all takes just one line of code.

NetDeviceContainer devices = pointToPoint.Install (nodes);

14.4 PointToPoint Tracing

Like all ns-3 devices, the Point-to-Point Model provides a number of trace sources. These
trace sources can be hooked using your own custom trace code, or you can use our helper
functions to arrange for tracing to be enabled on devices you specify.

14.4.1 Upper-Level (MAC) Hooks

From the point of view of tracing in the net device, there are several interesting points to
insert trace hooks. A convention inherited from other simulators is that packets destined
for transmission onto attached networks pass through a single "transmit queue" in the net
device. We provide trace hooks at this point in packet flow, which corresponds (abstractly)
only to a transition from the network to data link layer, and call them collectively the device
MAC hooks.

When a packet is sent to the Point-to-Point net device for transmission it always passes
through the transmit queue. The transmit queue in the PointToPointNetDevice inherits
from Queue, and therefore inherits three trace sources:

• An Enqueue operation source (see ns3::Queue::m traceEnqueue);

• A Dequeue operation source (see ns3::Queue::m traceDequeue);

• A Drop operation source (see ns3::Queue::m traceDrop).

Chapter 14: PointToPoint NetDevice 91

The upper-level (MAC) trace hooks for the PointToPointNetDevice are, in fact, exactly
these three trace sources on the single transmit queue of the device.

The m traceEnqueue event is triggered when a packet is placed on the trans-
mit queue. This happens at the time that ns3::PointtoPointNetDevice::Send or
ns3::PointToPointNetDevice::SendFrom is called by a higher layer to queue a packet for
transmission. An Enqueue trace event firing should be interpreted as only indicating that
a higher level protocol has sent a packet to the device.

The m traceDequeue event is triggered when a packet is removed from the transmit
queue. Dequeues from the transmit queue can happen in two situations: 1) If the un-
derlying channel is idle when PointToPointNetDevice::Send is called, a packet is dequeued
from the transmit queue and immediately transmitted; 2) a packet may be dequeued and
immediately transmitted in an internal TransmitCompleteEvent that functions much like a
transmit complete interrupt service routine. An Dequeue trace event firing may be viewed
as indicating that the PointToPointNetDevice has begun transmitting a packet.

14.4.2 Lower-Level (PHY) Hooks

Similar to the upper level trace hooks, there are trace hooks available at the lower levels of
the net device. We call these the PHY hooks. These events fire from the device methods
that talk directly to the PointToPointChannel.

The trace source m dropTrace is called to indicate a packet that is dropped by the
device. This happens when a packet is discarded as corrupt due to a receive error model
indication (see ns3::ErrorModel and the associated attribute "ReceiveErrorModel").

The other low-level trace source fires on reception of a packet (see
ns3::PointToPointNetDevice::m rxTrace) from the PointToPointChannel.

Chapter 15: Troubleshooting 92

15 Troubleshooting

This chapter posts some information about possibly common errors in building or running
ns-3 programs.

Please note that the wiki (http://www.nsnam.org/wiki/index.php/Troubleshooting)
may have contributed items.

15.1 Build errors

15.2 Run-time errors

Sometimes, errors can occur with a program after a successful build. These are run-time er-
rors, and can commonly occur when memory is corrupted or pointer values are unexpectedly
null.

Here is an example of what might occur:
ns-old:~/ns-3-nsc$./waf --run tcp-point-to-point
Entering directory ‘/home/tomh/ns-3-nsc/build’
Compilation finished successfully
Command [’/home/tomh/ns-3-nsc/build/debug/examples/tcp-point-to-point’] exited with code -11

The error message says that the program terminated unsuccessfully, but it is not clear
from this information what might be wrong. To examine more closely, try running it under
the gdb debugger:
ns-old:~/ns-3-nsc$./waf --run tcp-point-to-point --command-template="gdb %s"
Entering directory ‘/home/tomh/ns-3-nsc/build’
Compilation finished successfully
GNU gdb Red Hat Linux (6.3.0.0-1.134.fc5rh)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux-gnu"...Using host libthread_db library "/lib/libthread_db.so.1".

(gdb) run
Starting program: /home/tomh/ns-3-nsc/build/debug/examples/tcp-point-to-point
Reading symbols from shared object read from target memory...done.
Loaded system supplied DSO at 0xf5c000

Program received signal SIGSEGV, Segmentation fault.
0x0804aa12 in main (argc=1, argv=0xbfdfefa4)

at ../examples/tcp-point-to-point.cc:136
136 Ptr<Socket> localSocket = socketFactory->CreateSocket ();
(gdb) p localSocket
$1 = {m_ptr = 0x3c5d65}
(gdb) p socketFactory
$2 = {m_ptr = 0x0}

http://www.nsnam.org/wiki/index.php/Troubleshooting
http://sources.redhat.com/gdb/

Chapter 15: Troubleshooting 93

(gdb) quit
The program is running. Exit anyway? (y or n) y

Note first the way the program was invoked– pass the command to run as an argument
to the command template "gdb %s".

This tells us that there was an attempt to dereference a null pointer socketFactory.
Let’s look around line 136 of tcp-point-to-point, as gdb suggests:
Ptr<SocketFactory> socketFactory = n2->GetObject<SocketFactory> (Tcp::iid);
Ptr<Socket> localSocket = socketFactory->CreateSocket ();
localSocket->Bind ();

The culprit here is that the return value of GetObject is not being checked and may be
null.

Sometimes you may need to use the valgrind memory checker for more subtle errors.
Again, you invoke the use of valgrind similarly:
ns-old:~/ns-3-nsc$./waf --run tcp-point-to-point --command-template="valgrind %s"

(Index is nonexistent)

http://valgrind.org

	Random variables
	Quick Overview
	Background
	Seeding and independent replications
	class RandomVariable
	Base class public API
	Types of RandomVariables
	Semantics of RandomVariable objects
	Using other PRNG
	More advanced usage
	Publishing your results
	Summary

	Callbacks
	Motivation
	Using the Callback API
	Using the Callback API with static functions
	Using the Callback API with member functions
	Building Null Callbacks

	Callback locations in ns-3
	Socket API
	Layer-2/Layer-3 API
	Tracing subsystem
	Routing

	Implementation details

	Attributes
	Object Overview
	Smart pointers
	CreateObject
	TypeId
	Object Summary

	Attribute Overview
	Functional overview
	Basic usage
	Pointer-based access
	Namespace-based access

	Setting through constructors helper classes
	Value classes

	Extending attributes
	Adding an existing internal variable to the metadata system
	Adding a new TypeId

	Adding new class type to the attribute system
	ConfigStore
	GTK-based ConfigStore
	Future work

	Object model
	Object-oriented behavior
	Object base classes
	Memory management and class Ptr
	Reference counting smart pointer (Ptr)
	CreateObject and Create
	Aggregation
	Aggregation example
	GetObject example

	Downcasting

	Real-Time Scheduler
	Behavior
	Usage
	Implementation

	Emulation
	Behavior
	Emu Net Device
	Tap Net Device

	Usage
	Emu Net Device
	Tap Net Device

	Implementation
	Emu Net Device
	Tap Net Device

	Packets
	Packet design overview
	Packet interface
	Constructors
	Adding and removing Buffer data
	Adding and removing Tags
	Fragmentation
	Miscellaneous

	Using Headers
	Using Tags
	Using Fragmentation
	Sample program
	Implementation details
	Private member variables
	Buffer implementation
	Tags implementation
	Memory management
	Copy-on-write semantics

	Sockets APIs
	ns-3 sockets API
	Basic operation and calls
	Creating sockets
	Using sockets

	Packet vs. buffer variants
	Sending dummy data
	Socket options
	Socket errno
	Example programs

	POSIX-like sockets API

	Node and Internet Stack
	NodeList
	Internet stack aggregation
	Internet Node structure
	Layer-3 protocols
	Layer-4 protocols and sockets

	Internet Node interfaces
	Example path of a packet

	TCP models in ns-3
	Generic support for TCP
	ns-3 TCP
	Usage
	Current limitations

	Network Simulation Cradle
	Prerequisites
	Configuring and Downloading
	Building and validating
	Usage
	Stack configuration
	NSC API
	ns-3 implementation
	Limitations

	Routing overview
	Overview
	Support for multiple routing protocols
	class Ipv4RoutingProtocol
	Ipv4::AddRoutingProtocol
	Ipv4L3Protocol::Lookup

	Roadmap and Future work
	Static routing
	Unicast routing
	Multicast routing
	Global centralized routing
	Global Unicast Routing API
	Global Routing Implementation
	Optimized Link State Routing (OLSR)

	Wifi NetDevice
	Overview of the model
	Using the WifiNetDevice
	YansWifiChannelHelper
	YansWifiPhyHelper
	WifiHelper
	AdHoc WifiNetDevice configuration
	Infrastructure (Access Point and clients) WifiNetDevice configuration

	The WifiChannel and WifiPhy models
	WifiChannel configuration

	The MAC model
	Wifi Attributes
	Wifi Tracing

	CSMA NetDevice
	Overview of the model
	CSMA Layer Model

	CSMA Channel Model
	CSMA Net Device Model
	Using the CsmaNetDevice
	CSMA Tracing
	Upper-Level (MAC) Hooks
	Lower-Level (PHY) Hooks

	PointToPoint NetDevice
	Overview of the model
	Point-to-Point Channel Model
	Using the PointToPointNetDevice
	PointToPoint Tracing
	Upper-Level (MAC) Hooks
	Lower-Level (PHY) Hooks

	Troubleshooting
	Build errors
	Run-time errors

