nsS-3

NETWORK SIMULATOR

ns-3 Manual
Release ns-3-dev

ns-3 project

Jan 09, 2021

CONTENTS

Organization 3
Working with git as a user 5
2.1 ns-3’'sGitworkflowinanutshell 5
2.2 Setup of a personal TepoOSItOTY oL e e e e e e e e e e e e 6
2.3 Add the official ns-3 repository as remote upstreamol e 7
2.4 Add your forked repository as remote L. .o e e e e e e 7
2.5 Keep in sync your repository with latest ns-3-devupdateso 8
2.6 Startanewbranchtodosomework L 8
2.7 Edit and commit the modifications L. L e 9
2.8 Rebase your branchontopofmaster o oo 10
2.9 Pushing your changes toorigin L e 10
2.10 Submit work forreview L. L e e e e 10
2.11 Porting patches from mercurial repositories to @it 10
Working with git as a maintainer 11
3.1 Pushingyourown work e 11
3.2 Review and merge someone else’swork L. L e 11
3.3 Makingarelease e e e e e e e e e e e e e e e 11
Random Variables 17
4.1 Quick OVEIVIEW o o it e e e e e e e e e e e e 17
42 Background. e e e e e e 17
4.3 Creatingrandom variables oL 18
4.4 Seeding and independent replicationsol 18
4.5 Class RandomVariableStream e 19
4.6 Baseclasspublic APT 20
477 Typesof RandomVariables L e e e e e 20
4.8 Semantics of RandomVariableStream objects Lo 0oL 20
4.9 Usingother PRNG e 21
4.10 Setting the streamnumbero 21
4.11 Publishing yourresults e e e 22
412 SUMMATY .+ . v v o e 22
Hash Functions 23
5.1 BasicUsage e e e 23
5.2 Incremental Hashing o e e e e e 23
5.3 Using an Alternative Hash Function 24
5.4 Adding New Hash Function Implementations 24
5.5 Sources for Hash Functions e 24

6

10

11

12

Events and Simulator

6.1 Event e e e e e
6.2 Simulator L e e e e e e
6.3 TIMe e e e e e e
6.4 Scheduler L e e e e e e
Callbacks

7.1 Callbacks Motivation v i i e e e e e e e e e e e e e e e e
7.2 Callbacks Background
7.3 Usingthe Callback API
7.4 Bound Callbacks e e e e e e
7.5 Traced Callbacks e e e e e e e e
7.6 Callback locations IN NS-3 e e e e e e e e
7.7 Implementation details e e e
Object model

8.1 Object-oriented behavior e e e e e
8.2 Objectbase classes i e e e e e e
8.3 Memory managementandclass Ptr oL Lo
8.4 CreateObjectand Create v v v v i it e e e e e e e e e e e e e e e
8.5 AZEregation e e e e e e e e e e e e
8.6 Examples L. e e e e e e e
8.7 Objectfactories e e e e e e e e e e e
8.8 DOWNCAaSting e e e e e e e

Configuration and Attributes

9.1 ObJect OVEIVIEW o vttt it i e e e e e e e e e e e e
0.2 AMribULeS L e e e
9.3 Implementation Details e e e e e e e
0.4 ConfigStore e e e e e e e e e e e

Object names

Logging

T1L OVEIVIEW . . . o o o o e
11.2 How to add loggingtoyourcode i i i i it e e e e e e
11.3 Controlling imestamp Precision v v v v v v v e e e e e e e e e e e e e

Tracing

12.1 Tracing MOtivation o v e
122 OVerview L
12.3 Usingthe Tracing APT 0 . e
12.4 Using Trace Helpers o o i e e e e e e e
12.5 Tracing implementation detailso

13 Data Collection

13,1 Design . . . o v v o e e e e e e e e e e e e
13.2 Data Collection Helpers e
133 Probes
134 Collectors o o
13,5 AQEregators i e e e e e e e e e e e e e e e e e e e
13.6 Adaptors e e e e e e e e e e e e
13.7 Scope/Limitations o ot e e e e e e e e e

14 Statistical Framework

27
27
27
29
29

31
31
32
35
38
39
39
40

4
41
41
42
42
43
43
44
45

47
47
50
56
60

69

71
71
75
76

79
79
80
83
83
95

97
97
99
108
115
115
122
122

125

14.1
14.2
14.3
14.4
14.5

Goals . . . e e e

Approach L L e
Example e e

15 RealTime

15.1
15.2
15.3

Behavior L e
USage . . . o o e e e e e
Implementation e e e e e e e e e e e e e e e e e e e

16 Helpers

17 Utilities

17.1
17.2

Print-introspected-doxygen L e e e
Bench-simulator Lo e e

18 Making Plots using the Gnuplot Class

18.1
18.2
18.3
18.4
18.5

Creating Plots Using the Gnuplot Class
An Example Program that Uses the Gnuplot Class
An Example 2-Dimensional Plot o
An Example 2-Dimensional Plot with ErrorBars
An Example 3-Dimensional Plot

19 Using Python to Run ns-3

19.1
19.2
19.3
19.4
19.5
19.6

20 Tests
20.1
20.2
20.3
20.4

Introduction
An Example Python Scriptthat Runsns-3o o
Running Python Scripts e
Cavealso e e e e e e e e e e e
Working with Python Bindings
More Information for Developers e e e e e

OVEIVIEW . . . o v i e
Background e e e e e e
Testing framework L. e e e e e e e e e
How to write tests o o i e e e e e e e e e e e

21 Support

21.1
21.2
21.3
21.4
21.5
21.6

Creatinganewns-3model L e
Adding aNew Module tons-3 L L e e e e e
Creating Documentation L e e e
Enabling Subsets of ns-3 Modules
Enabling/disabling ns-3 Tests and Examples e
Troubleshooting e e e e e e e e e e

Bibliography

Index

135
135
135
136

137

139
139
140

143
143
143
144
146
147

151
151
151
152
153
154
158

159
159
159
162
173

177
177
185
191
200
203
205

207

209

ns-3 Manual, Release ns-3-dev

This is the ns-3 Manual. Primary documentation for the ns-3 project is available in five forms:
* ns-3 Doxygen: Documentation of the public APIs of the simulator
* Tutorial, Manual (this document), and Model Library for the latest release and development tree
* ns-3 wiki

This document is written in reStructuredText for Sphinx and is maintained in the doc/manual directory of ns-3’s
source code.

CONTENTS 1

https://www.nsnam.org/doxygen/index.html
https://www.nsnam.org/documentation/latest/
https://www.nsnam.org/documentation/development-tree/
https://www.nsnam.org/wiki
http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org/

ns-3 Manual, Release ns-3-dev

2 CONTENTS

CHAPTER
ONE

ORGANIZATION

This chapter describes the overall ns-3 software organization and the corresponding organization of this manual.

ns-3 is a discrete-event network simulator in which the simulation core and models are implemented in C++. ns-3 is
built as a library which may be statically or dynamically linked to a C++ main program that defines the simulation
topology and starts the simulator. ns-3 also exports nearly all of its API to Python, allowing Python programs to import
an “ns3” module in much the same way as the ns-3 library is linked by executables in C++.

High-level wrappers
for everything else

ABC stands for "abstract base class"
Aimed at scripting

Z
Node class
test

NetDevice ABC /
Address types helper =
(IPv4, MAC, etc.) protocold applications | devices | propagation | Mobility models
Queues internet | mobility < S;?E'Cétrca)ndom
Socket ABC > network ’
IPv4/IPv6 ABCs \
Packet sockets / < K

Smart pointers Callbacks, Tracing Packets Events

Dynamic type system Logging Packet Tags Schedulers

Attributes Random Variables Packet Headers Time arithmetic

Pcap/Ascii file writing

Fig. 1: Software organization of ns-3

The source code for ns-3 is mostly organized in the src directory and can be described by the diagram in Software
organization of ns-3. We will work our way from the bottom up; in general, modules only have dependencies on
modules beneath them in the figure.

We first describe the core of the simulator; those components that are common across all protocol, hardware, and
environmental models. The simulation core is implemented in src/core. Packets are fundamental objects in a
network simulator and are implemented in src/network. These two simulation modules by themselves are intended
to comprise a generic simulation core that can be used by different kinds of networks, not just Internet-based networks.
The above modules of ns-3 are independent of specific network and device models, which are covered in subsequent
parts of this manual.

In addition to the above ns-3 core, we introduce, also in the initial portion of the manual, two other modules that
supplement the core C++-based API. ns-3 programs may access all of the API directly or may make use of a so-called
helper API that provides convenient wrappers or encapsulation of low-level API calls. The fact that ns-3 programs
can be written to two APIs (or a combination thereof) is a fundamental aspect of the simulator. We also describe how
Python is supported in ns-3 before moving onto specific models of relevance to network simulation.

The remainder of the manual is focused on documenting the models and supporting capabilities. The next part fo-
cuses on two fundamental objects in ns-3: the Node and NetDevice. Two special NetDevice types are designed to

ns-3 Manual, Release ns-3-dev

support network emulation use cases, and emulation is described next. The following chapter is devoted to Internet-
related models, including the sockets API used by Internet applications. The next chapter covers applications, and the
following chapter describes additional support for simulation, such as animators and statistics.

The project maintains a separate manual devoted to testing and validation of ns-3 code (see the ns-3 Testing and
Validation manual).

4 Chapter 1. Organization

http://www.nsnam.org/tutorials.html
http://www.nsnam.org/tutorials.html

CHAPTER
TWO

WORKING WITH GIT AS A USER

The ns-3 project used Mercurial in the past as its source code control system, but it has moved to Git in Decem-
ber 2018. Git is a VCS like Mercurial, Subversion or CVS, and it is used to maintain many open-source (and
closed-source) projects. While git and mercurial have a lot of common properties, if you are new to git you
should read first an introduction to it. The most up-to-date guide is the Git Book, at https://git-scm.com/book/en/
v2/Getting- Started- Git-Basics.

The ns-3 project is officially hosted on GitLab.com at https://gitlab.com/nsnam/. For convenience and historical rea-
sons, ns-3-dev mirrors are currently posted on Bitbucket.com and GitHub.com, and kept in sync with the official
repository periodically via cron jobs. We recommend that users who have been working from one of these mirrors
repoint their remotes so that they pull origin or upstream from GitLab.com (see below explanation about how to
configure remotes).

This section of the manual provides common tips for both users and maintainers. Since the first part is shared, in this
manual section we will start with a personal repository and then explain what to do in some typical cases. ns-3 users
often combine ns-3-dev with other repositories (pybindgen, netanim, apps from the app store). This manual chapter
does not cover this use case; it only focuses on the single ns-3-dev repository. See other project documentation such
as the ns-3 tutorial for descriptions on bundled releases distributed as source archives, or on the bake build tool for
managing multiple repositories. The guidelines listed below also largely pertain to the user who is using (and cloning)
bake from the GitLab.com repository.

2.1 ns-3’s Git workflow in a nutshell

Experienced git users will not necessarily need instruction on how to set up personal repositories (below). However,
they should be aware of the project’s workflow:

* The main repository’s master branch is the main development branch. The project maintains only this one
branch and strives to maintain a mostly linear history on it.

* Releases are made by creating a branch from the master branch and tagging the branch with the release number
when ready, and then merging the release branch back to the master branch. Releases can be identified by a
git tag, and a modified VERSION file in the branch. However, the modified VERSION file is not merged back to
master.

— If a hotfix release must be made to update a past release, a new hotfix support branch will be created by
branching from the tip of the last relevant release. Changesets from master branch (such as bug fixes)
may be cherry-picked to the hotfix branch. The hotfix release is tagged with the hotfix version number,
and merged back to the master branch.

* Merges to the ns-3 master branch are fast forwarded when possible, and commits can be squashed as appropri-
ate, to maintain a clean linear history. Merge commits can be avoided in simple cases.

— More complicated merges might not be able to be fast forwarded, with the result that there will be a merge
commit upon the merge.

https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://gitlab.com/nsnam/

ns-3 Manual, Release ns-3-dev

* Maintainers can commit obvious non-critical fixes (documentation improvements, typos etc.) directly into the
master branch. Users who are not maintainers can create GitLab.com Merge Requests for small items such as
these, for maintainers to review.

* Maintainers can directly commit bug fixes to their maintained modules without review/approval by other main-
tainers, although a review phase is recommended for non-trivial fixes. Larger commits that touch multiple
modules should be reviewed and approved by the set of affected maintainers.

* When proposing code (new features, bug fixes, etc.) for a module maintained by someone else, the typical
workflow will be to fork the nsnam/ns-3-dev.git repository, create a local feature branch on your fork, and
use GitLab.com to generate a Merge Request towards nsnam/ns-3-dev.git when ready. The Merge Request
will then be reviewed, and in response to changes requested or comments from maintainers, authors are are
asked to modify their feature branch and rebase to the tip of ns-3-dev.git as needed.

2.2 Setup of a personal repository

We will provide two ways, one anonymous (but will impede the creation of merge requests) and the other, preferred,
that include forking the repository through the GitLab.com web interface.

2.2.1 Directly cloning ns-3-dev

If you go to the official ns-3-dev page, hosted at https://gitlab.com/nsnam/ns-3-dev, you can find a button that says
Clone. If you are not logged in, then you will see only the option of cloning the repository through HTTPS, with this
command:

$ git clone https://gitlab.com/nsnam/ns-3-dev.git

If this command exits successfully, you will have a newly created ns-3-dev directory with all the source code.

2.2.2 Forking ns-3-dev on GitLab.com
Assume that you are the user john on GitLab.com and that you want to create a new repository that is synced with
nsnam/ns-3-dev.

1. Log into GitLab.com

2. Navigate to https://gitlab.com/nsnam/ns-3-dev

3. In the top-right corner of the page, click Fork.

Note that you may only do this once; if you try to fork again, Gitlab will take you to the page of the original fork.
So, if you are planning to maintain two or more separate forks (for example, one for your private work, another for
maintenance, etc.), you are doing a mistake. Instead, you should add these forks as a remote of your existing directory
(see below for adding remotes). Usually, it is a good thing to add the maintainer’s repository as remotes, because it
can happen that “bleeding edge” features will appear there before landing in ns-3-dev.

For more information on forking with Gilab, there is plenty of visual documentation (https://docs.gitlab.com/ee/
gitlab-basics/fork-project.html). To work with your forked repository, you have two ways: one is a clean clone while
the other is meant to re-use an existing ns-3 git repository.

Clone your forked repository on your machine

Git is a distributed versioning system. This means that nobody will touch your personal repository, until you do
something. Please note that every gitlab user has, at least, two repositories: the first is represented by the repository

6 Chapter 2. Working with git as a user

https://gitlab.com/nsnam/ns-3-dev
https://gitlab.com/nsnam/ns-3-dev
https://docs.gitlab.com/ee/gitlab-basics/fork-project.html
https://docs.gitlab.com/ee/gitlab-basics/fork-project.html

ns-3 Manual, Release ns-3-dev

hosted on gitlab servers, which will be called in the following origin. Then, you have your clone on your machine.
This means that you could have many clones, on different machines, which points to origin.

To clone the newly created fork to your system, go to the homepage of your fork (that should be in the form
https://gitlab.com/your-user-name/ns-3-dev) and click the Clone button. Then, go to your computer’s termi-
nal, and issue the command (please refer to https://docs.gitlab.com/ee/gitlab-basics/command-line-commands.html#
clone-your-project for more documentation):

$ git clone https://gitlab.com/your-user-name/ns—-3-dev
$ cd ns-3-dev

In this example we used the HTTPS address because in some place the git + ssh address is blocked by firewalls. If you
are not under this constraint, it is recommended to use the git + ssh address to avoid the username/password typing at
each request.

Naming conventions

Git is able to fetch and push changes to several repositories, each of them is called remote. With time, you probably
will have many remotes, each one with many branches. To avoid confusion, it is recommended to give meaningful
names to the remotes; in the following, we will use origin to indicate the ns-3-dev repository in your personal
namespace (your forked version, server-side) and nsnam to indicate the ns-3-dev repository in the nsnam namespace,
server-side.

2.3 Add the official ns-3 repository as remote upstream

You could have already used git in the past, and therefore already having a ns-3 git repository somewhere. Or, instead,
you could have it cloned for the first time in the step above. In both cases, when you fork/clone a repository, your
history is no more bound to the repository itself. At this point, it is your duty to sync your fork with the original
repository. The first remote repository we have encountered is origin; we must add the official ns-3 repo as another
remote repository:

$ git remote add nsnam https://gitlab.com/nsnam/ns-3-dev

With the command above, we added a remote repository, named nsnam, which links to the official ns-3 repo. To show
your remote repositories:

$ git remote show

To see to what origin is linking to:

$ git remote show origin

Many options are available; please refer to the git manual for more.

2.4 Add your forked repository as remote

If you were a user of the old github mirror, you probably have an existing git repository installed somewhere. In your
case, it is not necessary to clone your fork and to port all your work in the new directory; you can add the fork as new
remote:

$ git remote rename origin old-origin
$ git remote add origin https://gitlab.com/your—-user—name/ns—3-dev

2.3. Add the official ns-3 repository as remote upstream 7

https://docs.gitlab.com/ee/gitlab-basics/command-line-commands.html#clone-your-project
https://docs.gitlab.com/ee/gitlab-basics/command-line-commands.html#clone-your-project

ns-3 Manual, Release ns-3-dev

After these two commands, you will have a remote, named origin, that points to your forked repository on gitlab.

2.5 Keep in sync your repository with latest ns-3-dev updates

We assume, from now to the end of this document, that you will not make commits on top of the master branch. It
should be kept clean from any personal modifications: all the works must be done in branches. Therefore, to move the
current HEAD of the master branch to the latest commit in ns-3-dev, you should do:

$ git checkout master
$ git fetch nsnam
$ git pull nsnam master

If you tried a pull which resulted in a conflict and you would like to start over, you can recover with git reset (but this
never happens if you do not commit over master).

2.6 Start a new branch to do some work

Look at the available branches:

$ git branch -a

you should see something like:

* master
remotes/origin/master
remotes/nsnam/master

The branch master is your local master branch; remotes/origin/master point at the master branch on your repository
located in the Gitlab server, while remotes/nsnam/master points to the official master branch.

Before entering in details on how to create a new branch, we have to explain why it is recommended to do it. First of
all, if you put all your work in a separate branch, you can easily see the diff between ns-3 mainline and your feature
branch (with git diff master). Also, you can integrate more easily the upstream advancements in your work, and
when you wish, you can create a conflict-free merge request, that will ease the maintainer’s job in reviewing your
work.

To create a new branch, starting from master, the command is:

$ git checkout master
$ git checkout -b [name_of_your_new_branch]

To switch between branches, remove the -b option. You should now see:

$ git branch -a
* master
[name_of_your_new_branch]
remotes/origin/master
remotes/nsnam/master

8 Chapter 2. Working with git as a user

ns-3 Manual, Release ns-3-dev

2.7 Edit and commit the modifications

After you edit some file, you should commit the difference. As a policy, git users love small and incremental patches.
So, commit early, and commit often: you could rewrite your history later.

Suppose we edited src/internet /model/tcp-socket-base.cc. With git status, we can see the repository status:

$ git status
On branch tcp-next
Your branch is up-to-date with 'mirror/tcp-next'.
Changes not staged for commit:
modified: src/internet/model/tcp-socket-base.cc

and we can see the edits with git diff:
$ git diff

nat@miyamoto ~/Work/ns-3-dev-git (tcp-next)$ git diff
diff --git i/src/internet/model/tcp-socket-base.cc w/src/internet/model/tcp-socket-
—base.cc
index 1bf0£f69..e2298b0 100644
-—— 1i/src/internet/model/tcp-socket-base.cc
+++ w/src/internet/model/tcp-socket-base.cc
@@ -1439,6 +1439,10 @@ TcpSocketBase::ReceivedAck (Ptr<Packet> packet, const,,
—TcpHeader& tcpHeader)
// There is a DupAck
++m_dupAckCount;

// I'm introducing a subtle bug!

m_tcb->m_cWnd = m_tcb->m_ssThresh;

+ o+ o+ o+

if (m_tcb->m_congState == TcpSocketState::CA_OPEN)
{

// From Open we go Disorder

To create a commiit, select the file you want to add to the commit with git add:

$ git add src/internet/model/tcp-socket-base.cc

and then commit the result:

$ git commit -m "My new TCP broken"

Of course, it would be better to have some rules for the commit message: they will be reported in the next subsection.

2.7.1 Commit message guidelines
The commit title should not go over the 80 char limit. It should be prefixed by the name of the module you are working
on, and if it fixes a bug, it should reference it in the commit title. For instance, a good commit title would be:
tcp: My new TCP broken
Another example is:

tep: (fixes #2322) Corrected the uint32_t wraparound during recovery

2.7. Edit and commit the modifications 9

ns-3 Manual, Release ns-3-dev

In the body message, try to explain what the problem was, and how you resolved that. If it is a new feature, try to
describe it at a very high level, and highlight any modifications that changed the behaviour or the interface towards the
users or other modules.

2.7.2 Commit log

You can see the history of the commits with git log. To show a particular commit, copy the sha-id and use git show
<sha-id>. The ID is unique, so it can be referenced in emails or in issues. The next step is useful if you plan to
contribute back your changes, but also to keep your feature branch updated with the latest changes from ns-3-dev.

2.8 Rebase your branch on top of master

Meanwhile you were busy with your branch, the upstream master could have changed. To rebase your work with the
now new master, first of all sync your master branch (pulling the nsnam/master branch into your local master branch)
as explained before; then

$ git checkout [name_of_your_new_branch]
$ git rebase master

The last command will rewind your work, update the HEAD of your branch to the actual master, and then re-apply all
your work. If some of your work conflicts with the actual master, you will be asked to fix these conflicts if automatic
merge fails.

2.9 Pushing your changes to origin
After you have done some work on a branch, if you would like to share it with others, there is nothing better than
pushing your work to your origin repository, on Gitlab servers.

$ git checkout [name_of_your_new_branch]
$ git push origin [name_of_your_new_branch]

The git push command can be used every time you need to push something from your computer to a remote repos-
itory, except when you propose changes to the main ns-3-dev repository: your changes must pass a review stage.

Please note that for older git version, the push command looks like:

$ git push -u origin [name_of_your_new_branch]

2.10 Submit work for review

After you push your branch to origin, you can follow the instructions here https://docs.gitlab.com/ee/gitlab-basics/
add-merge-request.html to create a merge request. Please remember to add, as reviewer, at least one maintainer. To
get the information on who is maintaining what, please refer to the nsnam website.

2.11 Porting patches from mercurial repositories to git

Placeholder section; please improve it.

10 Chapter 2. Working with git as a user

https://docs.gitlab.com/ee/gitlab-basics/add-merge-request.html
https://docs.gitlab.com/ee/gitlab-basics/add-merge-request.html
https://www.nsnam.org/develop/maintainers/

CHAPTER
THREE

WORKING WITH GIT AS A MAINTAINER

As a maintainer, you are a person who has write access to the main nsnam repository. You could push your own work
(without passing from code review) or push someone else’s work. Let’s investigate the two cases.

3.1 Pushing your own work

Since you have been added to the Developer list on Gitlab (if not, please open an issue) you can use the git + ssh
address when adding nsnam as remote. Once you have done that, you can do your modifications to a local branch,
then update the master to point to the latest changes of the nsnam repo, and then:

$ git checkout master

$ git pull nsnam master

$ git merge [your_branch_name]
$ git push nsnam master

Please note that if you want to keep track of your branch, you can use as command git merge --no-ff
[your_branch_name]. It is always recommended to rebase your branch before merging, to have a clean history.
That is not a requirement, though: git perfectly handles a master with parallel merged branches.

3.2 Review and merge someone else’s work

Gitlab.com has a plenty of documentation on how to handle merge requests. Please take a look here: https://docs.
gitlab.com/ee/user/project/merge_requests/index.html.

If you are committing a patch from someone else, and it is not coming through a Merge Request process, you can use
the —author=" argument to ‘git commit’ to assign authorship to another email address (such as we have done in the
past with the Mercurial -u option).

3.3 Making a release

As stated above, the project has adopted a workflow to aim for a mostly linear history on a single master branch.
Releases are branches from this master branch but the branches themselves are not long-lived; the release branches
are merged back to master in a special way. However, the release branches can be checked out by using the git tag
facility; a named release such as ‘ns-3.30° can be checked out on a branch by specifying the release name ‘ns-3.30’
(or ‘ns-3.30.1° etc.).

To facilitate this, let’s look at a toy repository and the git commands involved. This repository is initialized with a
few files (a, b, c, and README .md) and a VERSION file. VERSION is always kept on the string 3-dev in the master
branch, but is changed to the release number in the release branches.

11

https://docs.gitlab.com/ee/user/project/merge_requests/index.html
https://docs.gitlab.com/ee/user/project/merge_requests/index.html

ns-3 Manual, Release ns-3-dev

$ 1s
a b ¢ README.md VERSION

The git log command can be appended with some arguments to display the branch history:

$ git log --graph --decorate --oneline --all
* d3e953b (HEAD -> master) Add VERSION file
* 62b05c5 Add three files a, b, and c

*+ 3el24c8 (origin/master, origin/HEAD) Initial commit

$ cat VERSION
3-dev

$ git branch -a

* master
remotes/origin/HEAD -> origin/master
remotes/origin/master

Now, let’s create a notional ns-3.1 release.

$ git checkout -b 'ns-3.l-release'
Switched to a new branch 'ns-3.l-release'

We change the VERSION field from ‘3-dev’ to ‘3.17:
$ sed -1 's/3-dev/3.1/g' VERSION
$ cat VERSION

3.1
$ git commit -m"Update VERSION to 3.1" VERSION

Let’s release this. Add a git annotated tag as follows:

$ git tag -a 'ns-3.1' -m"ns-3.1 release"

Now, let’s merge back to master. However, we want to avoid touching the VERSION file on master; we want all
other changes and tags but this one. We can accomplish this with a special merge as follows.

$ git checkout master
$ git merge —--no-commit --no-ff ns-3.l-release

Automatic merge went well; stopped before committing as requested

Now, we want to reset VERSION to the previous string, which existed before we branched. We can use git reset
on this file and then finish the merge. Recall its commit hash of d3e953b from above

$ git reset d3e953b VERSION
Unstaged changes after reset:

M VERSION

$ sed -i 's/3.1/3-dev/g' VERSION
$ cat VERSION

3-dev

Finally, commit the branch and delete our local release branch.

$ git commit -m"Merge ns-3.l-release branch"
$ git branch -d ns-3.l-release

The git history now looks like this:

12

Chapter 3. Working with git as a maintainer

ns-3 Manual, Release ns-3-dev

$ git log -—-graph --decorate --oneline --all
* 80de6c5 (HEAD —-> master) Merge ns—-3.l-release branch

I\

| = 5718d6l (tag: ns—-3.1, ns—-3.l-release) Update VERSION to 3.1
I/

* d3e953b Add VERSION file

* 62b05c5 Add three files a, b, and c

*+ 3el24c8 (origin/master, origin/HEAD) Initial commit

$ git tag

ns-3.1

This may now be pushed to nsnam/ns-3-dev.git and development can continue.

Note: When pushing to the remote, don’t forget to push the tags:

$ git push --follow-tags

Future users who want to check out the ns-3.1 release will do something like:

$ git checkout -b my-local-ns-3.1 ns-3.1
Switched to a new branch 'my-local-ns-3.1'
Note: It is a good idea to avoid naming the new branch the same as the tag name; in this case, ‘ns-3.1°.

Let’s assume now that master evolves with new features and bugfixes. They are committed to master on nsnam/
ns—-3-dev.git as usual:

$ git checkout master
(some changes)

$ git commit -m"make some changes" -a
$ echo 'd' >> d

$ git add d

$ git commit -m"Add new feature" d

(some more changes)
$ git commit -m"some more changes" -a
(now fix a really important bug)
$ echo 'abc' >> a
$ git commit —-m"Fix missing abc bug on file a" a

Now the tree looks like this:

$ git log --graph --decorate --oneline --all

+ ee37d41 (HEAD -> master) Fix missing abc bug on file a
* 9a3432a some more changes

* ba28d6d Add new feature

* e50015a make some changes

* 80de6c5 Merge ns-3.l-release branch

I\

| = 5718d6l (tag: ns—3.1) Update VERSION to 3.1

* d3e953b Add VERSION file
* 62b05c5 Add three files a, b, and c
*+ 3el24c8 (origin/master, origin/HEAD) Initial commit

Let’s assume that the changeset ee37d41 is considered important to fix in the ns-3.1 release, but we don’t want
the other changes introduced since then. The solution will be to create a new branch for a hotfix release, and follow
similar steps. The branch for the hotfix should come from commit 5718d61, and should cherry-pick commit ee37d41

3.3. Making a release 13

ns-3 Manual, Release ns-3-dev

(which may require merge if it doesn’t apply cleanly), and then the hotfix branch can be tagged and merged as was
done before.

$ git checkout -b ns-3.1.l1-release ns-3.1
$ git cherry-pick ee37d41
(resolve any conflicts)
git add a
git commit
sed -i 's/3.1/3.1.1/g' VERSION
cat VERSION
1.1
git commit -m"Update VERSION to 3.1.1" VERSION
git tag —a 'ns-3.1.1' —m"ns-3.1.1 release"

Uy W A W A e

Now the merge:

$ git checkout master
$ git merge —--no-commit --no-ff ns-3.1.l-release

This time we see:

Auto-merging a

CONFLICT (content): Merge conflict in a

Auto-merging VERSION

CONFLICT (content): Merge conflict in VERSION

Automatic merge failed; fix conflicts and then commit the result.

And we can then do:

$ git reset ee37d4l a
$ git reset ee37d41 VERSION

Which leaves us with:

Unstaged changes after reset:
M VERSION
M a

We can next hand-edit these files to restore them to original state, so that:

$ git status

On branch master

Your branch is ahead of 'origin/master' by 8 commits.
(use "git push" to publish your local commits)

All conflicts fixed but you are still merging.
(use "git commit" to conclude merge)

$ git commit
$ git branch -d ns-3.1l.l1-release

The new log should show:

$ git log --graph --decorate --oneline --all
* 815cebe (HEAD -> master) Merge branch 'ns-3.1.l-release'
I\
| » 12a29ca (tag: ns-3.1.1, ns-3.1l.l-release) Update VERSION to 3.1.1
| » 2lebdbf Fix missing abc bug on file a
(continues on next page)

14 Chapter 3. Working with git as a maintainer

ns-3 Manual, Release ns-3-dev

* | ee37d4l Fix missing abc bug on file a

* | 9a3432a some more changes

* | ba28d6d Add new feature

* | e50015a make some changes

* 80de6c5 Merge ns-3.l-release branch

N A

I 1/

| = 5718d61 (tag: ns—-3.1) Update VERSION to 3.1
I/

* d3e953b Add VERSION file
* 62b05c5 Add three files a, b, and c
* 3el24c8 (origin/master, origin/HEAD) Initial commit

And we can continue to commit on top of master going forward. The two tags are:

$ git tag
ns-3.1
ns-3.1.1

(continued from previous page)

3.3. Making a release

15

ns-3 Manual, Release ns-3-dev

16 Chapter 3. Working with git as a maintainer

CHAPTER
FOUR

RANDOM VARIABLES

ns-3 contains a built-in pseudo-random number generator (PRNG). It is important for serious users of the simulator to
understand the functionality, configuration, and usage of this PRNG, and to decide whether it is sufficient for his or
her research use.

4.1 Quick Overview

ns-3 random numbers are provided via instances of ns3: :RandomVariableStream.

* by default, ns-3 simulations use a fixed seed; if there is any randomness in the simulation, each run of the
program will yield identical results unless the seed and/or run number is changed.

¢ in ns-3.3 and earlier, ns-3 simulations used a random seed by default; this marks a change in policy starting with
ns-3.4.

* in ns-3.14 and earlier, ns-3 simulations used a different wrapper class called ns3: : RandomvVariable. As of ns-
3.15, this class has been replaced by ns3: :RandomVariableStream; the underlying pseudo-random number
generator has not changed.

* to obtain randomness across multiple simulation runs, you must either set the seed differently or set the run
number differently. To set a seed, call ns3: :RngSeedManager: : SetSeed () at the beginning of the program;
to set a run number with the same seed, call ns3: :RngSeedManager: :SetRun () at the beginning of the
program; see Creating random variables.

¢ each RandomVariableStream used in ns-3 has a virtual random number generator associated with it; all random
variables use either a fixed or random seed based on the use of the global seed (previous bullet);

* if you intend to perform multiple runs of the same scenario, with different random numbers, please be sure to
read the section on how to perform independent replications: Creating random variables.

Read further for more explanation about the random number facility for ns-3.

4.2 Background

Simulations use a lot of random numbers; one study found that most network simulations spend as much as 50% of
the CPU generating random numbers. Simulation users need to be concerned with the quality of the (pseudo) random
numbers and the independence between different streams of random numbers.

Users need to be concerned with a few issues, such as:
¢ the seeding of the random number generator and whether a simulation outcome is deterministic or not,

* how to acquire different streams of random numbers that are independent from one another, and

17

ns-3 Manual, Release ns-3-dev

* how long it takes for streams to cycle

We will introduce a few terms here: a RNG provides a long sequence of (pseudo) random numbers. The length
of this sequence is called the cycle length or period, after which the RNG will repeat itself. This sequence can be
partitioned into disjoint streams. A stream of a RNG is a contiguous subset or block of the RNG sequence. For
instance, if the RNG period is of length N, and two streams are provided from this RNG, then the first stream might
use the first N/2 values and the second stream might produce the second N/2 values. An important property here is that
the two streams are uncorrelated. Likewise, each stream can be partitioned disjointedly to a number of uncorrelated
substreams. The underlying RNG hopefully produces a pseudo-random sequence of numbers with a very long cycle
length, and partitions this into streams and substreams in an efficient manner.

ns-3 uses the same underlying random number generator as does ns-2: the MRG32k3a generator from Pierre
L’Ecuyer. A detailed description can be found in http://www.iro.umontreal.ca/~lecuyer/myftp/papers/streams00.pdf.
The MRG32k3a generator provides 1.8210'° independent streams of random numbers, each of which consists of
2.3210'® substreams. Each substream has a period (i.e., the number of random numbers before overlap) of 7.621022.
The period of the entire generator is 3.121057.

Class ns3::RandomVariableStream is the public interface to this underlying random number
generator. When users create new random variables (such as ns3::UniformRandomVariable,
ns3::ExponentialRandomVariable, etc.), they create an object that uses one of the distinct, independent
streams of the random number generator. Therefore, each object of type ns3::RandomvVariableStream has,
conceptually, its own “virtual” RNG. Furthermore, each ns3: :RandomVariableStream can be configured to use
one of the set of substreams drawn from the main stream.

An alternate implementation would be to allow each RandomVariable to have its own (differently seeded) RNG.
However, we cannot guarantee as strongly that the different sequences would be uncorrelated in such a case; hence,
we prefer to use a single RNG and streams and substreams from it.

4.3 Creating random variables

ns-3 supports a number of random variable objects from the base class RandomvariableStream. These objects
derive from ns3: :Object and are handled by smart pointers.

The correct way to create these objects is to use the templated CreateObject<> method, such as:

Ptr<UniformRandomVariable> x = CreateObject<UniformRandomVariable> ();

then you can access values by calling methods on the object such as:

myRandomNo = x—->GetInteger ();

If you try to instead do something like this:

myRandomNo = UniformRandomVariable () .GetInteger ();

your program will encounter a segmentation fault, because the implementation relies on some attribute construction
that occurs only when CreateObject is called.

Much of the rest of this chapter now discusses the properties of the stream of pseudo-random numbers generated from
such objects, and how to control the seeding of such objects.

4.4 Seeding and independent replications

ns-3 simulations can be configured to produce deterministic or random results. If the ns-3 simulation is configured to
use a fixed, deterministic seed with the same run number, it should give the same output each time it is run.

18 Chapter 4. Random Variables

http://www.iro.umontreal.ca/~lecuyer/myftp/papers/streams00.pdf

ns-3 Manual, Release ns-3-dev

By default, ns-3 simulations use a fixed seed and run number. These values are stored in two ns3: :GlobalValue
instances: g_rngSeed and g_rngRun.

A typical use case is to run a simulation as a sequence of independent trials, so as to compute statistics on a large
number of independent runs. The user can either change the global seed and rerun the simulation, or can advance the
substream state of the RNG, which is referred to as incrementing the run number.

A class ns3: :RngSeedManager provides an API to control the seeding and run number behavior. This seeding and
substream state setting must be called before any random variables are created; e.g:

RngSeedManager: :SetSeed (3); // Changes seed from default of 1 to 3
RngSeedManager: :SetRun (7); // Changes run number from default of 1 to 7

// Now, create random variables

Ptr<UniformRandomVariable> x CreateObject<UniformRandomVariable> ();
Ptr<ExponentialRandomVariable> y = CreateObject<ExponentialRandomVarlable> ();

Which is better, setting a new seed or advancing the substream state? There is no guarantee that the streams pro-
duced by two random seeds will not overlap. The only way to guarantee that two streams do not overlap is to use
the substream capability provided by the RNG implementation. Therefore, use the substream capability to produce
multiple independent runs of the same simulation. In other words, the more statistically rigorous way to configure
multiple independent replications is to use a fixed seed and to advance the run number. This implementation allows
for a maximum of 2.3210'® independent replications using the substreams.

For ease of use, it is not necessary to control the seed and run number from within the program; the user can set the
NS_GLOBAL_VALUE environment variable as follows:

$ NS_GLOBAL_ VALUE="RngRun=3" ./waf —--run program-name

Another way to control this is by passing a command-line argument; since this is an ns-3 Global Value instance, it is
equivalently done such as follows:

$./waf —-—-command-template="%s --RngRun=3" —--run program-name

or, if you are running programs directly outside of waf:

$./build/optimized/scratch/program—name --RngRun=3

The above command-line variants make it easy to run lots of different runs from a shell script by just passing a different
RngRun index.

4.5 Class RandomVariableStream

All random variables should derive from class RandomvVariable. This base class provides a few methods for globally
configuring the behavior of the random number generator. Derived classes provide API for drawing random variates
from the particular distribution being supported.

Each RandomVariableStream created in the simulation is given a generator that is a new RNGStream from the under-
lying PRNG. Used in this manner, the L’ Ecuyer implementation allows for a maximum of 1.8210'9 random variables.
Each random variable in a single replication can produce up to 7.6210%2 random numbers before overlapping.

4.5. Class RandomVariableStream 19

ns-3 Manual, Release ns-3-dev

4.6 Base class public API

Below are excerpted a few public methods of class RandomvVariableStream that access the next value in the sub-
stream.

J ok k
* \brief Returns a random double from the underlying distribution
* \return A floating point random value
*/

double GetValue (void) const;

Ve

* \brief Returns a random integer from the underlying distribution
+ \return Integer cast of ::GetValue/()

*/

uint32_t GetInteger (void) const;

We have already described the seeding configuration above. Different Random Variable subclasses may have additional
APL

4.7 Types of RandomVariables

The following types of random variables are provided, and are documented in the ns-3 Doxygen or by reading src/
core/model/random-variable-stream.h. Users can also create their own custom random variables by deriving
from class RandomvVariableStream.

e class UniformRandomVariable

e class ConstantRandomVariable

¢ class SequentialRandomVariable
¢ class ExponentialRandomVariable
e class ParetoRandomvVariable

e class WeibullRandomVariable

¢ class NormalRandomVariable

e class LogNormalRandomVariable

¢ class GammaRandomVariable

e class ErlangRandomVariable

e class TriangularRandomVariable
e class ZipfRandomVariable

* class ZetaRandomVariable

¢ class DeterministicRandomVariable

e class EmpiricalRandomVariable

4.8 Semantics of RandomVariableStream objects

RandomVariableStream objects derive from ns3: : Object and are handled by smart pointers.

20 Chapter 4. Random Variables

ns-3 Manual, Release ns-3-dev

RandomVariableStream instances can also be used in ns-3 attributes, which means that values can be set for them
through the ns-3 attribute system. An example is in the propagation models for WifiNetDevice:

Typeld
RandomPropagationDelayModel: :GetTypeld (wvoid)
{
static TypelId tid = Typeld ("ns3::RandomPropagationDelayModel")
.SetParent<PropagationDelayModel> ()
.SetGroupName ("Propagation™)
.AddConstructor<RandomPropagationDelayModel> ()
.AddAttribute ("Variable",
"The random variable which generates random delays (s).",
StringValue ("ns3::UniformRandomVariable"),
MakePointerAccessor (&RandomPropagationDelayModel::m_variable),
MakePointerChecker<RandomVariableStream> ())
2
return tid;

Here, the ns-3 user can change the default random variable for this delay model (which is a UniformRandomVariable
ranging from O to 1) through the attribute system.

4.9 Using other PRNG

There is presently no support for substituting a different underlying random number generator (e.g., the GNU Scientific
Library or the Akaroa package). Patches are welcome.

4.10 Setting the stream number

The underlying MRG32k3a generator provides 2764 independent streams. In ns-3, these are assigned sequentially
starting from the first stream as new RandomVariableStream instances make their first call to GetValue().

As aresult of how these Random VariableStream objects are assigned to underlying streams, the assignment is sensitive
to perturbations of the simulation configuration. The consequence is that if any aspect of the simulation configuration
is changed, the mapping of RandomVariables to streams may (or may not) change.

As a concrete example, a user running a comparative study between routing protocols may find that the act of changing
one routing protocol for another will notice that the underlying mobility pattern also changed.

Starting with ns-3.15, some control has been provided to users to allow users to optionally fix the assignment of
selected RandomVariableStream objects to underlying streams. This is the St ream attribute, part of the base class
RandomVariableStream.

By partitioning the existing sequence of streams from before:

stream O stream (2764 - 1)

into two equal-sized sets:

Dt >
| [\
stream 0 stream (2763 - 1) stream 2763 stream (2764 - 1)
<- automatically assigned —-—————————- ><- assigned by user -———————————————~ >

4.9. Using other PRNG 21

ns-3 Manual, Release ns-3-dev

The first 2763 streams continue to be automatically assigned, while the last 2263 are given stream indices starting with
zero up to 2763-1.

The assignment of streams to a fixed stream number is optional; instances of RandomVariableStream that do not have
a stream value assigned will be assigned the next one from the pool of automatic streams.

To fix a RandomVariableStream to a particular underlying stream, assign its St ream attribute to a non-negative integer
(the default value of -1 means that a value will be automatically allocated).

4.11 Publishing your results

When you publish simulation results, a key piece of configuration information that you should always state is how you
used the random number generator.

* what seeds you used,

» what RNG you used if not the default,

* how were independent runs performed,

* for large simulations, how did you check that you did not cycle.

It is incumbent on the researcher publishing results to include enough information to allow others to reproduce his or
her results. It is also incumbent on the researcher to convince oneself that the random numbers used were statistically
valid, and to state in the paper why such confidence is assumed.

4.12 Summary

Let’s review what things you should do when creating a simulation.
* Decide whether you are running with a fixed seed or random seed; a fixed seed is the default,
* Decide how you are going to manage independent replications, if applicable,

» Convince yourself that you are not drawing more random values than the cycle length, if you are running a very
long simulation, and

¢ When you publish, follow the guidelines above about documenting your use of the random number generator.

22 Chapter 4. Random Variables

CHAPTER
FIVE

HASH FUNCTIONS

ns-3 provides a generic interface to general purpose hash functions. In the simplest usage, the hash function returns
the 32-bit or 64-bit hash of a data buffer or string. The default underlying hash function is murmur3, chosen because
it has good hash function properties and offers a 64-bit version. The venerable FNV 1a hash is also available.

There is a straight-forward mechanism to add (or provide at run time) alternative hash function implementations.

5.1 Basic Usage

The simplest way to get a hash value of a data buffer or string is just:
#include "ns3/hash.h"
using namespace ns3;

char » buffer =
size t buffer_size =

uint32_t buffer_hash = Hash32 (buffer, buffer_size);

std::string s;
uint32_t string_hash = Hash32 (s);

Equivalent functions are defined for 64-bit hash values.

5.2 Incremental Hashing

In some situations it’s useful to compute the hash of multiple buffers, as if they had been joined together. (For example,
you might want the hash of a packet stream, but not want to assemble a single buffer with the combined contents of
all the packets.)

This is almost as straight-forward as the first example:

#include "ns3/hash.h"
using namespace ns3;

char » buffer;
size_t buffer_size;

Hasher hasher; // Use default hash function

(continues on next page)

23

http://code.google.com/p/smhasher/wiki/MurmurHash3
http://isthe.com/chongo/tech/comp/fnv/

ns-3 Manual, Release ns-3-dev

(continued from previous page)

for (<every buffer>)
{
buffer = get_next_buffer ();
hasher (buffer, buffer_ size);

}
uint32_t combined_hash = hasher.GetHash32 ();

By default Hasher preserves internal state to enable incremental hashing. If you want to reuse a Hasher object (for
example because it’s configured with a non-default hash function), but don’t want to add to the previously computed
hash, you need to clear () first:

hasher.clear ().GetHash32 (buffer, buffer_size);

This reinitializes the internal state before hashing the buffer.

5.3 Using an Alternative Hash Function

The default hash function is murmur3. FNVla is also available. To specify the hash function explicitly, use this
constructor:

Hasher hasher = Hasher (Create<Hash::Function::Fnvla> ());

5.4 Adding New Hash Function Implementations

To add the hash function foo, follow the hash-murmur3.h/. cc pattern:
* Create a class declaration (.h) and definition (. cc) inheriting from Hash: : Implementation.
* include the declaration in hash.h (at the point where hash-murmur3.h is included.

* In your own code, instantiate a Hasher object via the constructor Hasher (Ptr<Hash::Function::Foo>
0)

If your hash function is a single function, e.g. hashf, you don’t even need to create a new class derived from
HashImplementation:

Hasher hasher =
Hasher (Create<Hash::Function::Hash32> (&hashf));

For this to compile, your hashf has to match one of the function pointer signatures:

typedef uint32_t (*xHash32Function_ptr) (const char %, const size_t);
typedef uint64_t (+xHash64Function_ptr) (const char %, const size_t);

5.5 Sources for Hash Functions

Sources for other hash function implementations include:
 Peter Kankowski: http://www.strchr.com

* Arash Partow: http://www.partow.net/programming/hashfunctions/index.html

24 Chapter 5. Hash Functions

http://code.google.com/p/smhasher/wiki/MurmurHash3
http://isthe.com/chongo/tech/comp/fnv/
http://www.strchr.com
http://www.partow.net/programming/hashfunctions/index.html

ns-3 Manual, Release ns-3-dev

e SMHasher: http://code.google.com/p/smhasher/

e Sanmayce: http://www.sanmayce.com/Fastest_Hash/index.html

5.5. Sources for Hash Functions 25

http://code.google.com/p/smhasher/
http://www.sanmayce.com/Fastest_Hash/index.html

ns-3 Manual, Release ns-3-dev

26

Chapter 5. Hash Functions

CHAPTER
SIX

EVENTS AND SIMULATOR

ns-3 is a discrete-event network simulator. Conceptually, the simulator keeps track of a number of events that are
scheduled to execute at a specified simulation time. The job of the simulator is to execute the events in sequential time
order. Once the completion of an event occurs, the simulator will move to the next event (or will exit if there are no
more events in the event queue). If, for example, an event scheduled for simulation time “100 seconds” is executed,
and the next event is not scheduled until “200 seconds”, the simulator will immediately jump from 100 seconds to 200
seconds (of simulation time) to execute the next event. This is what is meant by “discrete-event” simulator.

To make this all happen, the simulator needs a few things:

1) a simulator object that can access an event queue where events are stored and that can manage the execution of
events

2) a scheduler responsible for inserting and removing events from the queue
3) a way to represent simulation time
4) the events themselves

This chapter of the manual describes these fundamental objects (simulator, scheduler, time, event) and how they are
used.

6.1 Event

To be completed

6.2 Simulator

The Simulator class is the public entry point to access event scheduling facilities. Once a couple of events have
been scheduled to start the simulation, the user can start to execute them by entering the simulator main loop (call
Simulator: :Run). Once the main loop starts running, it will sequentially execute all scheduled events in order from
oldest to most recent until there are either no more events left in the event queue or Simulator::Stop has been called.

To schedule events for execution by the simulator main loop, the Simulator class provides the Simulator::Schedule*
family of functions.

1) Handling event handlers with different signatures

These functions are declared and implemented as C++ templates to handle automatically the wide variety of C++ event
handler signatures used in the wild. For example, to schedule an event to execute 10 seconds in the future, and invoke
a C++ method or function with specific arguments, you might write this:

27

ns-3 Manual, Release ns-3-dev

void handler (int arg0, int argl)
{

std::cout << "handler called with argument arg0=" << arg0 << " and
argl=" << argl << std::endl;

Simulator: :Schedule (Seconds (10), &handler, 10, 5);

Which will output:

handler called with argument arg0=10 and argl=5

Of course, these C++ templates can also handle transparently member methods on C++ objects:
To be completed: member method example
Notes:

¢ the ns-3 Schedule methods recognize automatically functions and methods only if they take less than 5 argu-
ments. If you need them to support more arguments, please, file a bug report.

* Readers familiar with the term ‘fully-bound functors’ will recognize the Simulator::Schedule methods as a way
to automatically construct such objects.

2) Common scheduling operations

The Simulator API was designed to make it really simple to schedule most events. It provides three variants to do so
(ordered from most commonly used to least commonly used):

 Schedule methods which allow you to schedule an event in the future by providing the delay between the current
simulation time and the expiration date of the target event.

* ScheduleNow methods which allow you to schedule an event for the current simulation time: they will execute
after the current event is finished executing but _before_ the simulation time is changed for the next event.

* ScheduleDestroy methods which allow you to hook in the shutdown process of the Simulator to cleanup simu-
lation resources: every ‘destroy’ event is executed when the user calls the Simulator::Destroy method.

3) Maintaining the simulation context

There are two basic ways to schedule events, with and without context. What does this mean?

Simulator::Schedule (Time const &time, MEM mem_ptr, OBJ obj);

VS.

Simulator::ScheduleWithContext (uint32_t context, Time const &time, MEM mem_ptr, OBJ_,
—obij);

Readers who invest time and effort in developing or using a non-trivial simulation model will know the value of the
ns-3 logging framework to debug simple and complex simulations alike. One of the important features that is provided
by this logging framework is the automatic display of the network node id associated with the ‘currently’ running
event.

The node id of the currently executing network node is in fact tracked by the Simulator class. It can be accessed with
the Simulator::GetContext method which returns the ‘context’ (a 32-bit integer) associated and stored in the currently-
executing event. In some rare cases, when an event is not associated with a specific network node, its ‘context’ is set
to OxfTfftfe.

To associate a context to each event, the Schedule, and ScheduleNow methods automatically reuse the context of the
currently-executing event as the context of the event scheduled for execution later.

28 Chapter 6. Events and Simulator

ns-3 Manual, Release ns-3-dev

In some cases, most notably when simulating the transmission of a packet from a node to another, this behavior is
undesirable since the expected context of the reception event is that of the receiving node, not the sending node. To
avoid this problem, the Simulator class provides a specific schedule method: ScheduleWithContext which allows one
to provide explicitly the node id of the receiving node associated with the receive event.

XXX: code example

In some very rare cases, developers might need to modify or understand how the context (node id) of the first event
is set to that of its associated node. This is accomplished by the NodeList class: whenever a new node is created,
the NodeList class uses ScheduleWithContext to schedule a ‘initialize’ event for this node. The ‘initialize’ event thus
executes with a context set to that of the node id and can use the normal variety of Schedule methods. It invokes
the Node::Initialize method which propagates the ‘initialize’ event by calling the Dolnitialize method for each object
associated with the node. The Dolnitialize method overridden in some of these objects (most notably in the Application
base class) will schedule some events (most notably Application::StartApplication) which will in turn scheduling
traffic generation events which will in turn schedule network-level events.

Notes:

* Users need to be careful to propagate Dolnitialize methods across objects by calling Initialize explicitly on their
member objects

* The context id associated with each ScheduleWithContext method has other uses beyond logging: it is used by
an experimental branch of ns-3 to perform parallel simulation on multicore systems using multithreading.

The Simulator::* functions do not know what the context is: they merely make sure that whatever context you specify
with ScheduleWithContext is available when the corresponding event executes with ::GetContext.

It is up to the models implemented on top of Simulator::* to interpret the context value. In ns-3, the network models
interpret the context as the node id of the node which generated an event. This is why it is important to call Sched-
uleWithContext in ns3::Channel subclasses because we are generating an event from node i to node j and we want to
make sure that the event which will run on node j has the right context.

6.3 Time

To be completed

6.4 Scheduler

To be completed

6.3. Time 29

ns-3 Manual, Release ns-3-dev

30

Chapter 6. Events and Simulator

CHAPTER
SEVEN

CALLBACKS

Some new users to ns-3 are unfamiliar with an extensively used programming idiom used throughout the code: the
ns-3 callback. This chapter provides some motivation on the callback, guidance on how to use it, and details on its
implementation.

7.1 Callbacks Motivation

Consider that you have two simulation models A and B, and you wish to have them pass information between them
during the simulation. One way that you can do that is that you can make A and B each explicitly knowledgeable
about the other, so that they can invoke methods on each other:

class A {
public:
void Receivelnput (// parameters);

(in another source file:)

class B {
public:
void DoSomething (wvoid);

private:
A+ a_instance; // pointer to an A

}

void
B: :DoSomething ()

{
// Tell a_instance that something happened
a_instance->Receivelnput (// parameters);

This certainly works, but it has the drawback that it introduces a dependency on A and B to know about the other at
compile time (this makes it harder to have independent compilation units in the simulator) and is not generalized; if in
a later usage scenario, B needs to talk to a completely different C object, the source code for B needs to be changed to
add a c_instance and so forth. It is easy to see that this is a brute force mechanism of communication that can lead
to programming cruft in the models.

31

ns-3 Manual, Release ns-3-dev

This is not to say that objects should not know about one another if there is a hard dependency between them, but that
often the model can be made more flexible if its interactions are less constrained at compile time.

This is not an abstract problem for network simulation research, but rather it has been a source of problems in previous
simulators, when researchers want to extend or modify the system to do different things (as they are apt to do in
research). Consider, for example, a user who wants to add an IPsec security protocol sublayer between TCP and IP:

| becomes —> |

If the simulator has made assumptions, and hard coded into the code, that IP always talks to a transport protocol above,
the user may be forced to hack the system to get the desired interconnections. This is clearly not an optimal way to
design a generic simulator.

7.2 Callbacks Background

Note: Readers familiar with programming callbacks may skip this tutorial section.

The basic mechanism that allows one to address the problem above is known as a callback. The ultimate goal is to
allow one piece of code to call a function (or method in C++) without any specific inter-module dependency.

This ultimately means you need some kind of indirection — you treat the address of the called function as a variable.
This variable is called a pointer-to-function variable. The relationship between function and pointer-to-function pointer
is really no different that that of object and pointer-to-object.

In C the canonical example of a pointer-to-function is a pointer-to-function-returning-integer (PFI). For a PFI taking
one int parameter, this could be declared like,:

int (*pfi) (int arg) = 0;

What you get from this is a variable named simply p£i that is initialized to the value 0. If you want to initialize this
pointer to something meaningful, you have to have a function with a matching signature. In this case:

int MyFunction (int arg) {}

If you have this target, you can initialize the variable to point to your function like:
pfi = MyFunction;

You can then call MyFunction indirectly using the more suggestive form of the call:

int result = (xpfi) (1234);

This is suggestive since it looks like you are dereferencing the function pointer just like you would dereference any
pointer. Typically, however, people take advantage of the fact that the compiler knows what is going on and will just
use a shorter form:

32 Chapter 7. Callbacks

ns-3 Manual, Release ns-3-dev

int result = pfi (1234);

Notice that the function pointer obeys value semantics, so you can pass it around like any other value. Typically, when
you use an asynchronous interface you will pass some entity like this to a function which will perform an action and
call back to let you know it completed. It calls back by following the indirection and executing the provided function.

In C++ you have the added complexity of objects. The analogy with the PFI above means you have a pointer to a
member function returning an int (PMI) instead of the pointer to function returning an int (PFI).

The declaration of the variable providing the indirection looks only slightly different:

int (MyClass::*pmi) (int arg) = 0;

This declares a variable named pmi just as the previous example declared a variable named p£i. Since the will be to
call a method of an instance of a particular class, one must declare that method in a class:

class MyClass {
public:

int MyMethod (int arg);
}i

Given this class declaration, one would then initialize that variable like this:

pmi = &MyClass: :MyMethod;

This assigns the address of the code implementing the method to the variable, completing the indirection. In order to
call a method, the code needs a this pointer. This, in turn, means there must be an object of MyClass to refer to. A
simplistic example of this is just calling a method indirectly (think virtual function):

int (MyClass::*pmi) (int arg) = 0; // Declare a PMI

pmi = &MyClass::MyMethod; // Point at the implementation code
MyClass myClass; // Need an instance of the class
(myClass.»pmi) (1234); // Call the method with an object ptr

Just like in the C example, you can use this in an asynchronous call to another module which will call back using a
method and an object pointer. The straightforward extension one might consider is to pass a pointer to the object and
the PMI variable. The module would just do:

(xobjectPtr.xpmi) (1234);

to execute the callback on the desired object.

One might ask at this time, what’s the point? The called module will have to understand the concrete type of the
calling object in order to properly make the callback. Why not just accept this, pass the correctly typed object pointer
and do object->Method (1234) in the code instead of the callback? This is precisely the problem described above.
What is needed is a way to decouple the calling function from the called class completely. This requirement led to the
development of the Functor.

A functor is the outgrowth of something invented in the 1960s called a closure. It is basically just a packaged-up
function call, possibly with some state.

A functor has two parts, a specific part and a generic part, related through inheritance. The calling code (the code that
executes the callback) will execute a generic overloaded operator () of a generic functor to cause the callback to
be called. The called code (the code that wants to be called back) will have to provide a specialized implementation
of the operator () that performs the class-specific work that caused the close-coupling problem above.

With the specific functor and its overloaded operator () created, the called code then gives the specialized code to
the module that will execute the callback (the calling code).

7.2. Callbacks Background 33

ns-3 Manual, Release ns-3-dev

The calling code will take a generic functor as a parameter, so an implicit cast is done in the function call to convert the
specific functor to a generic functor. This means that the calling module just needs to understand the generic functor
type. It is decoupled from the calling code completely.

The information one needs to make a specific functor is the object pointer and the pointer-to-method address.

The essence of what needs to happen is that the system declares a generic part of the functor:

template <typename T>
class Functor
{
public:
virtual int operator() (T arg) = 0;
}i

The caller defines a specific part of the functor that really is just there to implement the specific operator () method:

template <typename T, typename ARG>

class SpecificFunctor : public Functor<ARG>

{

public:
SpecificFunctor (T p, int (T::x_pmi) (ARG argqg))
{

mp = p;
m_pmi = _pmi;
}
virtual int operator () (ARG arg)

(*m_p.*m_pmi) (arg) ;

private:
int (T::*m_pmi) (ARG arqg);
T m_p;

}i

Here is an example of the usage:

class A
{
public:
A (int a0) : a (a0) {}
int Hello (int bO0)
{
std::cout << "Hello from A, a = " << a << " b0 = " << b0 << std::endl;
}
int a;

}i

int main ()

{
A a(10);
SpecificFunctor<A, int> sf(&a, &A::Hello);
st (5);

Note: The previous code is not real ns-3 code. It is simplistic example code used only to illustrate the concepts

34 Chapter 7. Callbacks

ns-3 Manual, Release ns-3-dev

involved and to help you understand the system more. Do not expect to find this code anywhere in the ns-3 tree.

Notice that there are two variables defined in the class above. The m_p variable is the object pointer and m_pmi is the
variable containing the address of the function to execute.

Notice that when operator () is called, it in turn calls the method provided with the object pointer using the C++
PMI syntax.

To use this, one could then declare some model code that takes a generic functor as a parameter:

void LibraryFunction (Functor functor);

The code that will talk to the model would build a specific functor and pass it to LibraryFunction:

MyClass myClass;
SpecificFunctor<MyClass, int> functor (&myclass, MyClass::MyMethod) ;

When LibraryFunction is done, it executes the callback using the operator () on the generic functor it was
passed, and in this particular case, provides the integer argument:

void
LibraryFunction (Functor functor)

{
// Execute the library function
functor (1234);

Notice that LibraryFunction is completely decoupled from the specific type of the client. The connection is made
through the Functor polymorphism.

The Callback API in ns-3 implements object-oriented callbacks using the functor mechanism. This callback API, being
based on C++ templates, is type-safe; that is, it performs static type checks to enforce proper signature compatibility
between callers and callees. It is therefore more type-safe to use than traditional function pointers, but the syntax may
look imposing at first. This section is designed to walk you through the Callback system so that you can be comfortable
using it in ns-3.

7.3 Using the Callback API

The Callback API is fairly minimal, providing only two services:
1. callback type declaration: a way to declare a type of callback with a given signature, and,

2. callback instantiation: a way to instantiate a template-generated forwarding callback which can forward any calls
to another C++ class member method or C++ function.

This is best observed via walking through an example, based on samples/main-callback.cc.

7.3.1 Using the Callback API with static functions

Consider a function:

static double
CbOne (double a, double Db)
{

std::cout << "invoke cbOne a=" << a << ", b=" << b << std::endl;

(continues on next page)

7.3. Using the Callback API 35

ns-3 Manual, Release ns-3-dev

(continued from previous page)

return a;

Consider also the following main program snippet:

int main (int argc, char xargv([])
{
// return type: double
// first arg type: double
// second arg type: double
Callback<double, double, double> one;

This is an example of a C-style callback — one which does not include or need a this pointer. The function template
Callback is essentially the declaration of the variable containing the pointer-to-function. In the example above,
we explicitly showed a pointer to a function that returned an integer and took a single integer as a parameter, The
Callback template function is a generic version of that — it is used to declare the type of a callback.

Note: Readers unfamiliar with C++ templates may consult http://www.cplusplus.com/doc/tutorial/templates/.

The callback template requires one mandatory argument (the return type of the function to be assigned to this
callback) and up to five optional arguments, which each specify the type of the arguments (if your particular callback
function has more than five arguments, then this can be handled by extending the callback implementation).

So in the above example, we have a declared a callback named “one” that will eventually hold a function pointer. The
signature of the function that it will hold must return double and must support two double arguments. If one tries to
pass a function whose signature does not match the declared callback, a compilation error will occur. Also, if one
tries to assign to a callback an incompatible one, compilation will succeed but a run-time NS_FATAL_ERROR will
be raised. The sample program src/core/examples/main-callback.cc demonstrates both of these error cases
at the end of the main () program.

Now, we need to tie together this callback instance and the actual target function (CbOne). Notice above that CbOne
has the same function signature types as the callback— this is important. We can pass in any such properly-typed
function to this callback. Let’s look at this more closely:

static double CbOne (double a, double b) {}

A A A

| \ |
\ \ \
Callback<double, double, double> one;

You can only bind a function to a callback if they have the matching signature. The first template argument is the
return type, and the additional template arguments are the types of the arguments of the function signature.

Now, let’s bind our callback “one” to the function that matches its signature:

// build callback instance which points to chOne function
one = MakeCallback (&CbOne);

This call to MakeCallback is, in essence, creating one of the specialized functors mentioned above. The variable
declared using the Callback template function is going to be playing the part of the generic functor. The assignment
one = MakeCallback (&CbOne) is the cast that converts the specialized functor known to the callee to a generic
functor known to the caller.

Then, later in the program, if the callback is needed, it can be used as follows:

36 Chapter 7. Callbacks

http://www.cplusplus.com/doc/tutorial/templates/

ns-3 Manual, Release ns-3-dev

NS_ASSERT (!one.IsNull ());

// invoke cbOne function through callback instance
double retOne;
retOne = one (10.0, 20.0);

The check for IsNull () ensures that the callback is not null — that there is a function to call behind this callback. Then,
one () executes the generic operator () which is really overloaded with a specific implementation of operator ()
and returns the same result as if Cbone () had been called directly.

7.3.2 Using the Callback APl with member functions

Generally, you will not be calling static functions but instead public member functions of an object. In this case, an
extra argument is needed to the MakeCallback function, to tell the system on which object the function should be
invoked. Consider this example, also from main-callback.cc:

class MyCb {
public:
int CbTwo (double a) {
std::cout << "invoke cbTwo a=" << a << std::endl;
return -5;
}
}i

int main ()
{
// return type: int
// first arg type: double
Callback<int, double> two;
MyCb cb;
// build callback instance which points to MyCb::cbTwo
two = MakeCallback (&MyCb::CbTwo, &cb);

Here, we pass an additional object pointer to the MakeCallback<> function. Recall from the background section
above that Operator () will use the pointer to member syntax when it executes on an object:

virtual int operator () (ARG arg)

{

(*m_p.*m_pmi) (arg) ;

And so we needed to provide the two variables (m_p and m_pmi) when we made the specific functor. The line:

two = MakeCallback (&MyCb::CbTwo, &cb);

does precisely that. In this case, when two () is invoked:

int result = two (1.0);

will result in a call to the CbTwo member function (method) on the object pointed to by &cb.

7.3. Using the Callback API 37

ns-3 Manual, Release ns-3-dev

7.3.3 Building Null Callbacks

It is possible for callbacks to be null; hence it may be wise to check before using them. There is a special construct for
a null callback, which is preferable to simply passing “0” as an argument; it is the MakeNullCallback<> construct:

two = MakeNullCallback<int, double> ();
NS_ASSERT (two.IsNull ());

Invoking a null callback is just like invoking a null function pointer: it will crash at runtime.

7.4 Bound Callbacks

A very useful extension to the functor concept is that of a Bound Callback. Previously it was mentioned that closures
were originally function calls packaged up for later execution. Notice that in all of the Callback descriptions above,
there is no way to package up any parameters for use later — when the Callback is called via operator (). All of
the parameters are provided by the calling function.

What if it is desired to allow the client function (the one that provides the callback) to provide some of the parameters?
Alexandrescu calls the process of allowing a client to specify one of the parameters “binding”. One of the parameters
of operator () has been bound (fixed) by the client.

Some of our pcap tracing code provides a nice example of this. There is a function that needs to be called whenever
a packet is received. This function calls an object that actually writes the packet to disk in the pcap file format. The
signature of one of these functions will be:

static void DefaultSink (Ptr<PcapFileWrapper> file, Ptr<const Packet> p);

The static keyword means this is a static function which does not need a this pointer, so it will be using C-style
callbacks. We don’t want the calling code to have to know about anything but the Packet. What we want in the calling
code is just a call that looks like:

m_promiscSnifferTrace (m_currentPkt);

What we want to do is to bind the Pt r<PcapFileWriter> file to the specific callback implementation when it is
created and arrange for the operator () of the Callback to provide that parameter for free.

We provide the MakeBoundCallback template function for that purpose. It takes the same parameters as the
MakeCallback template function but also takes the parameters to be bound. In the case of the example above:

MakeBoundCallback (&DefaultSink, file);

will create a specific callback implementation that knows to add in the extra bound arguments. Conceptually, it extends
the specific functor described above with one or more bound arguments:

template <typename T, typename ARG, typename BOUND_ARG>
class SpecificFunctor : public Functor
{
public:
SpecificFunctor (T p, int (T::»_pmi) (ARG arg), BOUND_ARG boundArg)
{
mp = p;
m_pmi = pmi;
m_boundArg = boundArg;

(continues on next page)

38 Chapter 7. Callbacks

http://erdani.com/book/main.html

ns-3 Manual, Release ns-3-dev

(continued from previous page)

virtual int operator () (ARG arg)

{
(*m_p.*m_pmi) (m_boundArg, arg);

}

private:
void (T::»m_pmi) (ARG arg);
T m_p;

BOUND_ARG m_boundArg;
bi

You can see that when the specific functor is created, the bound argument is saved in the functor / callback object
itself. When the operator () is invoked with the single parameter, as in:

m_promiscSnifferTrace (m_currentPkt);

the implementation of operator () adds the bound parameter into the actual function call:

(*m_p.*m_pmi) (m_boundArg, arg);

It’s possible to bind two or three arguments as well. Say we have a function with signature:

static void NotifyEvent (Ptr<A> a, Ptr b, MyEventType e);

One can create bound callback binding first two arguments like:

MakeBoundCallback (&NotifyEvent, al, bl);

assuming al and b/ are objects of type A and B respectively. Similarly for three arguments one would have function
with a signature:

static void NotifyEvent (Ptr<A> a, Ptr b, MyEventType e);

Binding three arguments in done with:

MakeBoundCallback (&NotifyEvent, al, bl, cl);

again assuming al, bl and c! are objects of type A, B and C respectively.

This kind of binding can be used for exchanging information between objects in simulation; specifically, bound call-
backs can be used as traced callbacks, which will be described in the next section.

7.5 Traced Callbacks

Placeholder subsection

7.6 Callback locations in ns-3

Where are callbacks frequently used in ns-3? Here are some of the more visible ones to typical users:
* Socket API
* Layer-2/Layer-3 API

* Tracing subsystem

7.5. Traced Callbacks 39

ns-3 Manual, Release ns-3-dev

* API between IP and routing subsystems

7.7 Implementation details

The code snippets above are simplistic and only designed to illustrate the mechanism itself. The actual Callback code
is quite complicated and very template-intense and a deep understanding of the code is not required. If interested,
expert users may find the following useful.

The code was originally written based on the techniques described in http://www.codeproject.com/cpp/TTLFunction.
asp. It was subsequently rewritten to follow the architecture outlined in Modern C++ Design, Generic Programming
and Design Patterns Applied, Alexandrescu, chapter 5, Generalized Functors.

This code uses:

¢ default template parameters to saves users from having to specify empty parameters when the number of param-
eters is smaller than the maximum supported number

¢ the pimpl idiom: the Callback class is passed around by value and delegates the crux of the work to its pimpl
pointer.

¢ two pimpl implementations which derive from CallbackImpl FunctorCallbackImpl can be used with any functor-
type while MemPtrCallbackImpl can be used with pointers to member functions.

* areference list implementation to implement the Callback’s value semantics.

This code most notably departs from the Alexandrescu implementation in that it does not use type lists to specify and
pass around the types of the callback arguments. Of course, it also does not use copy-destruction semantics and relies
on a reference list rather than autoPtr to hold the pointer.

40 Chapter 7. Callbacks

http://www.codeproject.com/cpp/TTLFunction.asp
http://www.codeproject.com/cpp/TTLFunction.asp
http://www.moderncppdesign.com/book/main.html
http://www.moderncppdesign.com/book/main.html

CHAPTER
EIGHT

OBJECT MODEL

ns-3 is fundamentally a C++ object system. Objects can be declared and instantiated as usual, per C++ rules. ns-3 also
adds some features to traditional C++ objects, as described below, to provide greater functionality and features. This
manual chapter is intended to introduce the reader to the ns-3 object model.

This section describes the C++ class design for ns-3 objects. In brief, several design patterns in use include classic
object-oriented design (polymorphic interfaces and implementations), separation of interface and implementation,
the non-virtual public interface design pattern, an object aggregation facility, and reference counting for memory
management. Those familiar with component models such as COM or Bonobo will recognize elements of the design
in the ns-3 object aggregation model, although the ns-3 design is not strictly in accordance with either.

8.1 Object-oriented behavior

C++ objects, in general, provide common object-oriented capabilities (abstraction, encapsulation, inheritance, and
polymorphism) that are part of classic object-oriented design. ns-3 objects make use of these properties; for instance:

class Address
{
public:
Address ();
Address (uint8_t type, const uint8_t +buffer, uint8_t len);
Address (const Address & address);
Address &operator = (const Address &address);

private:
uint8_t m_type;
uint8_t m_len;

}i

8.2 Object base classes

There are three special base classes used in ns-3. Classes that inherit from these base classes can instantiate objects
with special properties. These base classes are:

e class Object
e class ObjectBase

e class SimpleRefCount

41

ns-3 Manual, Release ns-3-dev

It is not required that ns-3 objects inherit from these class, but those that do get special properties. Classes deriving
from class Object get the following properties.

* the ns-3 type and attribute system (see Configuration and Attributes)
* an object aggregation system
* a smart-pointer reference counting system (class Ptr)

Classes that derive from class ObjectBase get the first two properties above, but do not get smart pointers. Classes
that derive from class simpleRefCount: get only the smart-pointer reference counting system.

In practice, class Object is the variant of the three above that the ns-3 developer will most commonly encounter.

8.3 Memory management and class Ptr

Memory management in a C++ program is a complex process, and is often done incorrectly or inconsistently. We have
settled on a reference counting design described as follows.

All objects using reference counting maintain an internal reference count to determine when an object can safely delete
itself. Each time that a pointer is obtained to an interface, the object’s reference count is incremented by calling Re £ () .
It is the obligation of the user of the pointer to explicitly Unref () the pointer when done. When the reference count
falls to zero, the object is deleted.

* When the client code obtains a pointer from the object itself through object creation, or via GetObject, it does
not have to increment the reference count.

¢ When client code obtains a pointer from another source (e.g., copying a pointer) it must call Ref () to increment
the reference count.

* All users of the object pointer must call Unref () to release the reference.

The burden for calling Unref () is somewhat relieved by the use of the reference counting smart pointer class described
below.

Users using a low-level API who wish to explicitly allocate non-reference-counted objects on the heap, using operator
new, are responsible for deleting such objects.

8.3.1 Reference counting smart pointer (Ptr)

Calling Ref () and Unref () all the time would be cumbersome, so ns-3 provides a smart pointer class Ptr similar
to Boost::intrusive_ptr. This smart-pointer class assumes that the underlying type provides a pair of Ref and
Unref methods that are expected to increment and decrement the internal refcount of the object instance.

This implementation allows you to manipulate the smart pointer as if it was a normal pointer: you can compare it with
zero, compare it against other pointers, assign zero to it, etc.

It is possible to extract the raw pointer from this smart pointer with the GetPointer () and PeekPointer () methods.

If you want to store a newed object into a smart pointer, we recommend you to use the CreateObject template functions
to create the object and store it in a smart pointer to avoid memory leaks. These functions are really small convenience
functions and their goal is just to save you a small bit of typing.

8.4 CreateObject and Create

Objects in C++ may be statically, dynamically, or automatically created. This holds true for ns-3 also, but some objects
in the system have some additional frameworks available. Specifically, reference counted objects are usually allocated

42 Chapter 8. Object model

ns-3 Manual, Release ns-3-dev

using a templated Create or CreateObject method, as follows.

For objects deriving from class Object:

Ptr<WifiNetDevice> device = CreateObject<WifiNetDevice> ();

Please do not create such objects using operator new; create them using CreateObject () instead.

For objects deriving from class SimpleRefCount, or other objects that support usage of the smart pointer class, a
templated helper function is available and recommended to be used:

Ptr b = Create ();

This is simply a wrapper around operator new that correctly handles the reference counting system.

In summary, use Create if B is not an object but just uses reference counting (e.g. Packet), and use
CreateObject if B derives from ns3: :Object.

8.5 Aggregation

The ns-3 object aggregation system is motivated in strong part by a recognition that a common use case for ns-2 has
been the use of inheritance and polymorphism to extend protocol models. For instance, specialized versions of TCP
such as RenoTcpAgent derive from (and override functions from) class TcpAgent.

However, two problems that have arisen in the ns-2 model are downcasts and “weak base class.” Downcasting refers
to the procedure of using a base class pointer to an object and querying it at run time to find out type information, used
to explicitly cast the pointer to a subclass pointer so that the subclass API can be used. Weak base class refers to the
problems that arise when a class cannot be effectively reused (derived from) because it lacks necessary functionality,
leading the developer to have to modify the base class and causing proliferation of base class API calls, some of which
may not be semantically correct for all subclasses.

ns-3 is using a version of the query interface design pattern to avoid these problems. This design is based on ele-
ments of the Component Object Model and GNOME Bonobo although full binary-level compatibility of replaceable
components is not supported and we have tried to simplify the syntax and impact on model developers.

8.6 Examples

8.6.1 Aggregation example

Node is a good example of the use of aggregation in ns-3. Note that there are not derived classes of Nodes in ns-3
such as class InternetNode. Instead, components (protocols) are aggregated to a node. Let’s look at how some Ipv4
protocols are added to a node.:

static void

AddIpv4Stack (Ptr<Node> node)

{
Ptr<Ipv4L3Protocol> ipv4 = CreateObject<Ipv4L3Protocol> ();
ipv4->SetNode (node);
node->AggregateObject (ipv4);
Ptr<Ipv4Impl> ipv4Impl = CreateObject<Ipv4Impl> ();
ipv4Impl->SetIpv4d (ipv4);
node->AggregateObject (ipv4Impl);

8.5. Aggregation 43

http://en.wikipedia.org/wiki/Component_Object_Model
http://en.wikipedia.org/wiki/Bonobo_(component_model)

ns-3 Manual, Release ns-3-dev

Note that the Ipv4 protocols are created using CreateObject (). Then, they are aggregated to the node. In this
manner, the Node base class does not need to be edited to allow users with a base class Node pointer to access the Ipv4
interface; users may ask the node for a pointer to its Ipv4 interface at runtime. How the user asks the node is described
in the next subsection.

Note that it is a programming error to aggregate more than one object of the same type to an ns3: :Object. So, for
instance, aggregation is not an option for storing all of the active sockets of a node.

8.6.2 GetObject example

GetObject is a type-safe way to achieve a safe downcasting and to allow interfaces to be found on an object.

Consider a node pointer m_node that points to a Node object that has an implementation of IPv4 previously aggregated
to it. The client code wishes to configure a default route. To do so, it must access an object within the node that has an
interface to the IP forwarding configuration. It performs the following:

Ptr<Ipv4> ipv4 = m_node->GetObject<Ipv4> ();

If the node in fact does not have an Ipv4 object aggregated to it, then the method will return null. Therefore, it is good
practice to check the return value from such a function call. If successful, the user can now use the Ptr to the Ipv4
object that was previously aggregated to the node.

Another example of how one might use aggregation is to add optional models to objects. For instance, an existing
Node object may have an “Energy Model” object aggregated to it at run time (without modifying and recompiling the
node class). An existing model (such as a wireless net device) can then later “GetObject” for the energy model and
act appropriately if the interface has been either built in to the underlying Node object or aggregated to it at run time.
However, other nodes need not know anything about energy models.

We hope that this mode of programming will require much less need for developers to modify the base classes.

8.7 Obiject factories

A common use case is to create lots of similarly configured objects. One can repeatedly call CreateObject () but
there is also a factory design pattern in use in the ns-3 system. It is heavily used in the “helper” APIL

Class ObjectFactory can be used to instantiate objects and to configure the attributes on those objects:

void SetTypeld (Typeld tid);
void Set (std::string name, const AttributeValue &value);
Ptr<T> Create (void) const;

The first method allows one to use the ns-3 Typeld system to specify the type of objects created. The second allows
one to set attributes on the objects to be created, and the third allows one to create the objects themselves.

For example:

ObjectFactory factory;

// Make this factory create objects of type FriisPropagationLossModel
factory.SetTypeld ("ns3::FriisPropagationLossModel™)

// Make this factory object change a default value of an attribute, for
// subsequently created objects

factory.Set ("SystemLoss", DoubleValue (2.0));

// Create one such object

Ptr<Object> object = factory.Create ();

factory.Set ("SystemLoss", DoubleValue (3.0));

(continues on next page)

44 Chapter 8. Object model

ns-3 Manual, Release ns-3-dev

(continued from previous page)

// Create another object with a different SystemLoss
Ptr<Object> object = factory.Create ();

8.8 Downcasting

A question that has arisen several times is, “If I have a base class pointer (Ptr) to an object and I want the derived class
pointer, should I downcast (via C++ dynamic cast) to get the derived pointer, or should I use the object aggregation
system to GetObject<> () to find a Ptr to the interface to the subclass API?”

The answer to this is that in many situations, both techniques will work. ns-3 provides a templated function for making
the syntax of Object dynamic casting much more user friendly:

template <typename T1l, typename T2>
Ptr<T1l>
DynamicCast (Ptr<T2> consté&p)

{
return Ptr<Tl> (dynamic_cast<Tl x> (PeekPointer (p)));

DynamicCast works when the programmer has a base type pointer and is testing against a subclass pointer. GetObject
works when looking for different objects aggregated, but also works with subclasses, in the same way as DynamicCast.
If unsure, the programmer should use GetObject, as it works in all cases. If the programmer knows the class hierarchy
of the object under consideration, it is more direct to just use DynamicCast.

8.8. Downcasting 45

ns-3 Manual, Release ns-3-dev

46

Chapter 8. Object model

CHAPTER
NINE

CONFIGURATION AND ATTRIBUTES

In ns-3 simulations, there are two main aspects to configuration:
* The simulation topology and how objects are connected.
* The values used by the models instantiated in the topology.

This chapter focuses on the second item above: how the many values in use in ns-3 are organized, documented, and
modifiable by ns-3 users. The ns-3 attribute system is also the underpinning of how traces and statistics are gathered
in the simulator.

In the course of this chapter we will discuss the various ways to set or modify the values used by ns-3 model objects.
In increasing order of specificity, these are:

Method Scope
Default Attribute values set when At- | Affect all instances of the class.
tributes are defined in Get TypeId ().

CommandLine Affect all future instances.
Config::SetDefault ()

ConfigStore

ObjectFactory Affects all instances created with the factory.

Helper methods with (string/ Attribute- | Affects all instances created by the helper.
Value) parameter pairs
MyClass::SetX () Alters this particular instance. Generally this is the only form which can
Object::SetAttribute () be scheduled to alter an instance once the simulation is running.

Config::Set ()

By “specificity” we mean that methods in later rows in the table override the values set by, and typically affect fewer
instances than, earlier methods.

Before delving into details of the attribute value system, it will help to review some basic properties of class Object.

9.1 Object Overview

ns-3 is fundamentally a C++ object-based system. By this we mean that new C++ classes (types) can be declared,
defined, and subclassed as usual.

Many ns-3 objects inherit from the Object base class. These objects have some additional properties that we exploit
for organizing the system and improving the memory management of our objects:

* “Metadata” system that links the class name to a lot of meta-information about the object, including:

— The base class of the subclass,

47

ns-3 Manual, Release ns-3-dev

The set of accessible constructors in the subclass,

The set of “attributes” of the subclass,

Whether each attribute can be set, or is read-only,

The allowed range of values for each attribute.
» Reference counting smart pointer implementation, for memory management.

ns-3 objects that use the attribute system derive from either Object or ObjectBase. Most ns-3 objects we will
discuss derive from Object, but a few that are outside the smart pointer memory management framework derive from
ObjectBase.

Let’s review a couple of properties of these objects.

9.1.1 Smart Pointers
As introduced in the ns-3 tutorial, ns-3 objects are memory managed by a reference counting smart pointer implemen-
tation, class Ptr.

Smart pointers are used extensively in the ns-3 APIs, to avoid passing references to heap-allocated objects that may
cause memory leaks. For most basic usage (syntax), treat a smart pointer like a regular pointer:

Ptr<WifiNetDevice> nd = ...;
nd->CallSomeFunction ();

// etc.

So how do you get a smart pointer to an object, as in the first line of this example?

CreateObject
As we discussed above in Memory management and class Ptr, at the lowest-level API, objects of type Object are not
instantiated using operator new as usual but instead by a templated function called CreateObject ().

A typical way to create such an object is as follows:

Ptr<WifiNetDevice> nd = CreateObject<WifiNetDevice> ();

You can think of this as being functionally equivalent to:

WifiNetDevicex nd = new WifiNetDevice ();

Objects that derive from Object must be allocated on the heap using CreateObject (). Those deriving from
ObjectBase, such as ns-3 helper functions and packet headers and trailers, can be allocated on the stack.

In some scripts, you may not see a lot of CreateObject () calls in the code; this is because there are some helper
objects in effect that are doing the CreateObject () calls for you.

9.1.2 Typeld

ns-3 classes that derive from class Object can include a metadata class called TypeId that records meta-information
about the class, for use in the object aggregation and component manager systems:

* A unique string identifying the class.
* The base class of the subclass, within the metadata system.

¢ The set of accessible constructors in the subclass.

48 Chapter 9. Configuration and Attributes

http://en.wikipedia.org/wiki/Smart_pointer
http://en.wikipedia.org/wiki/Smart_pointer

ns-3 Manual, Release ns-3-dev

* A list of publicly accessible properties (“attributes’) of the class.

9.1.3 Object Summary

Putting all of these concepts together, let’s look at a specific example: class Node.

The public header file node . h has a declaration that includes a static Get TypeId () function call:

class Node : public Object
{
public:
static TypeId GetTypelId (void);

This is defined in the node. cc file as follows:

Typeld
Node: :GetTypeld (wvoid)
{
static TypeId tid = Typeld ("ns3::Node")
.SetParent<Object> ()
.SetGroupName ("Network™)
.AddConstructor<Node> ()
.AddAttribute ("DevicelList",
"The list of devices associated to this Node.",
ObjectVectorValue (),
MakeObjectVectorAccessor (&Node::m_devices),
MakeObjectVectorChecker<NetDevice> ())
.AddAttribute ("ApplicationList",
"The list of applications associated to this Node.",
ObjectVectorvalue (),
MakeObjectVectorAccessor (&Node::m_applications),
MakeObjectVectorChecker<Application> ())
.AddAttribute ("Id",
"The id (unique integer) of this Node.",
TypelId::ATTR_GET, // allow only getting it.
UintegervValue (0),
MakeUintegerAccessor (&Node::m_id),
MakeUintegerChecker<uint32_t> ())

return tid;

Consider the TypeId of the ns-3 Object class as an extended form of run time type information (RTTI). The C++
language includes a simple kind of RTTI in order to support dynamic_cast and typeid operators.

The setParent<Object> () call in the definition above is used in conjunction with our object aggregation mech-
anisms to allow safe up- and down-casting in inheritance trees during GetObject (). It also enables subclasses to
inherit the Attributes of their parent class.

The AddConstructor<Node> () call is used in conjunction with our abstract object factory mechanisms to allow
us to construct C++ objects without forcing a user to know the concrete class of the object she is building.

The three calls to AddAttribute () associate a given string with a strongly typed value in the class. Notice
that you must provide a help string which may be displayed, for example, via command line processors. Each
Attribute is associated with mechanisms for accessing the underlying member variable in the object (for exam-
ple, MakeUintegerAccessor () tells the generic Attribute code how to get to the node ID above). There are

9.1. Object Overview 49

ns-3 Manual, Release ns-3-dev

also “Checker” methods which are used to validate values against range limitations, such as maximum and minimum
allowed values.

When users want to create Nodes, they will usually call some form of CreateObject (),:

Ptr<Node> n = CreateObject<Node> ();

or more abstractly, using an object factory, you can create a Node object without even knowing the concrete C++ type:

ObjectFactory factory;

const std::string typeld = "ns3::Node'';
factory.SetTypeId (typeld);

Ptr<Object> node = factory.Create <Object> ();

Both of these methods result in fully initialized attributes being available in the resulting Object instances.

We next discuss how attributes (values associated with member variables or functions of the class) are plumbed into
the above TypeId.

9.2 Attributes

The goal of the attribute system is to organize the access of internal member objects of a simulation. This goal arises
because, typically in simulation, users will cut and paste/modify existing simulation scripts, or will use higher-level
simulation constructs, but often will be interested in studying or tracing particular internal variables. For instance, use
cases such as:

e “I'want to trace the packets on the wireless interface only on the first access point.”
* “I'want to trace the value of the TCP congestion window (every time it changes) on a particular TCP socket.”
* “I'want a dump of all values that were used in my simulation.”

Similarly, users may want fine-grained access to internal variables in the simulation, or may want to broadly change the
initial value used for a particular parameter in all subsequently created objects. Finally, users may wish to know what
variables are settable and retrievable in a simulation configuration. This is not just for direct simulation interaction
on the command line; consider also a (future) graphical user interface that would like to be able to provide a feature
whereby a user might right-click on an node on the canvas and see a hierarchical, organized list of parameters that are
settable on the node and its constituent member objects, and help text and default values for each parameter.

9.2.1 Defining Attributes

We provide a way for users to access values deep in the system, without having to plumb accessors (pointers) through
the system and walk pointer chains to get to them. Consider a class QueueBase that has a member variable m_maxSize
controlling the depth of the queue.

If we look at the declaration of QueueBase, we see the following:
class QueueBase : public Object {

public:
static TypelId GetTypelId (wvoid);

private:

QueueSize m_maxSize; // 1< max queue size

(continues on next page)

50 Chapter 9. Configuration and Attributes

ns-3 Manual, Release ns-3-dev

(continued from previous page)

}i

QueuesSize is a special type in ns-3 that allows size to be represented in different units:

enum QueueSizeUnit

{
PACKETS, /**< Use number of packets for queue size */
BYTES, /+#+< Use number of bytes for queue size */

}i

class QueueSize

{
private:

QueueSizeUnit m_unit; //!/< unit
uint32_t m_value; //!< queue size [bytes or packets]

}i

Finally, the class DropTailQueue inherits from this base class and provides the semantics that packets that are
submitted to a full queue will be dropped from the back of the queue (“drop tail”).

J ok *
* \ingroup queue
*
+ \brief A FIFO packet queue that drops tail-end packets on overflow
*/
template <typename Item>
class DropTailQueue : public Queue<Item>

Let’s consider things that a user may want to do with the value of m_maxSize:

* Set a default value for the system, such that whenever a new DropTailQueue is created, this member is initial-
ized to that default.

 Set or get the value on an already instantiated queue.
The above things typically require providing Set () and Get () functions, and some type of global default value.

In the ns-3 attribute system, these value definitions and accessor function registrations are moved into the TypeId
class; e.g.:

NS_OBJECT_ENSURE_REGISTERED (QueueBase);

TypeIld
QueueBase: :GetTypeld (void)
{
static TypelId tid = Typeld ("ns3::DropTailQueue™)
.SetParent<Queue> ()
.SetGroupName ("Network")

.AddAttribute ("MaxSize",
"The max queue size",
QueueSizeValue (QueueSize ("100p")),
MakeQueueSizeAccessor (&QueueBase: :SetMaxSize,
&QueueBase: :GetMaxSize),
MakeQueueSizeChecker ())
(continues on next page)

9.2. Attributes 51

ns-3 Manual, Release ns-3-dev

(continued from previous page)

return tid;

The Addattribute () method is performing a number of things for the m_maxSize value:
* Binding the (usually private) member variable m_maxSize to a public string "MaxSize".
* Providing a default value (0 packets).
¢ Providing some help text defining the meaning of the value.
 Providing a “Checker” (not used in this example) that can be used to set bounds on the allowable range of values.

The key point is that now the value of this variable and its default value are accessible in the attribute namespace,
which is based on strings such as "MaxSize" and TypeId name strings. In the next section, we will provide an
example script that shows how users may manipulate these values.

Note that initialization of the attribute relies on the macro NS_OBJECT_ENSURE_REGISTERED (QueueBase) being
called; if you leave this out of your new class implementation, your attributes will not be initialized correctly.

While we have described how to create attributes, we still haven’t described how to access and manage these values.
For instance, there is no globals.h header file where these are stored; attributes are stored with their classes. Ques-
tions that naturally arise are how do users easily learn about all of the attributes of their models, and how does a user
access these attributes, or document their values as part of the record of their simulation?

Detailed documentation of the actual attributes defined for a type, and a global list of all defined attributes, are available
in the API documentation. For the rest of this document we are going to demonstrate the various ways of getting and
setting attribute values.

9.2.2 Setting Default Values

Config::SetDefault and CommandLine

Let’s look at how a user script might access a specific attribute value. We’re going to use the src/point-to-point/
examples/main-attribute-value.cc script for illustration, with some details stripped out. The main function
begins:

// This 1is a basic example of how to use the attribute system to

// set and get a value in the underlying system; namely, the maximum
// size of the FIFO queue in the PointToPointNetDevice

//

int
main (int argc, char xargv([])

{

// Queues in ns-3 are objects that hold items (other objects) 1in
// a queue structure. The C++ implementation uses templates to
// allow queues to hold various types of items, but the most
// common is a pointer to a packet (Ptr<Packet>).
//
// The maximum queue size can either be enforced in bytes ('b') or
// packets ('p'). A special type called the ns3::QueueSize can
// hold queue size values in either unit (bytes or packets). The
(continues on next page)

52 Chapter 9. Configuration and Attributes

ns-3 Manual, Release ns-3-dev

(continued from previous page)

// queue base class ns3::QueueBase has a MaxSize attribute that can
// be set to a QueueSize.

// By default, the MaxSize attribute has a value of 100 packets ('100p')

// (this default can be observed in the function QueueBase::GetTypeld)

//

// Here, we set it to 80 packets. We could use one of two value types:

// a string-based value or a QueueSizeValue value

Config::SetDefault ("ns3::QueueBase::MaxSize", StringValue ("80p"));

// The below function call is redundant

Config::SetDefault ("ns3::QueueBase::MaxSize", QueueSizeValue (QueueSize
— (QueueSizeUnit: :PACKETS, 80)));

The main thing to notice in the above are the two equivalent calls to Config: :SetDefault (). This is how we
set the default value for all subsequently instantiated DropTailQueues. We illustrate that two types of value
classes, a StringValue and a QueueSizeValue class, can be used to assign the value to the attribute named by
“ns3::QueueBase::MaxSize”.

It is also possible to manipulate Attributes using the CommandLine; we saw some examples early in the ns-3 Tutorial.
In particular, it is straightforward to add a shorthand argument name, such as ——maxSize, for an Attribute that is
particular relevant for your model, in this case "ns3: :QueueBase: :MaxSize". This has the additional feature that
the help string for the Attribute will be printed as part of the usage message for the script. For more information see
the CommandLine API documentation.

// Allow the user to override any of the defaults and the above
// SetDefaults () at run-time, via command-line arguments

// For example, via "
CommandLine cmd;

// This provides yet another way to set the value from the command line:
cmd.AddValue ("maxSize", "ns3::QueueBase::MaxSize");

cmd.Parse (argc, argv);

—--ns3::QueueBase: :MaxSize=80p"

Now, we will create a few objects using the low-level API. Our newly created queues will not have m_maxSize
initialized to O packets, as defined in the QueueBase: :GetTypeId () function, but to 80 packets, because of what
we did above with default values.:

Ptr<Node> n0O = CreateObject<Node> ();

Ptr<PointToPointNetDevice> net0 = CreateObject<PointToPointNetDevice> ();
n0->AddDevice (netO);

Ptr<Queue<Packet> > g = CreateObject<DropTailQueue<Packet> > ();
net0->AddQueue (q) ;

At this point, we have created a single Node (n0) and a single PointToPointNetDevice (net0), added a
DropTailQueue (q) to net0, which will be configured with a queue size limit of 80 packets.

As a final note, the Config::Set... () functions will throw an error if the targeted Attribute does not exist at the path
given. There are also “fail-safe” versions, Config::Set... FailSafe(), if you can’t be sure the Attribute exists. The
fail-safe versions return true if at least one instance could be set.

Constructors, Helpers and ObjectFactory

Arbitrary combinations of attributes can be set and fetched from the helper and low-level APIs; either from the con-
structors themselves:

9.2. Attributes 53

ns-3 Manual, Release ns-3-dev

Ptr<GridPositionAllocator> p =
CreateObjectWithAttributes<GridPositionAllocator>

("MinX", DoubleValue (-100.0),

"MinY", DoubleValue (-100.0),

"DeltaX", DoubleValue (5.0),

"DeltaY", DoubleValue (20.0),

"Gridwidth", UintegerValue (20),

"LayoutType", StringValue ("RowFirst"));

or from the higher-level helper APIs, such as:

mobility.SetPositionAllocator

("ns3::GridPositionAllocator",

"MinX", DoubleValue (-100.0),

"MinY", DoubleValue (-100.0),

"DeltaX", DoubleValue (5.0),

"DeltaY", DoubleValue (20.0),
"GridWidth", UintegerValue (20),
"LayoutType", StringValue ("RowEFirst"));

We don’t illustrate it here, but you can also configure an ObjectFactory with new values for specific attributes.
Instances created by the ObjectFactory will have those attributes set during construction. This is very similar to
using one of the helper APIs for the class.

To review, there are several ways to set values for attributes for class instances to be created in the future:
® Config::SetDefault ()
* CommandLine: :AddValue ()
® CreateObjectWithAttributes<> ()
* Various helper APIs

But what if you’ve already created an instance, and you want to change the value of the attribute? In this example,
how can we manipulate the m_maxSize value of the already instantiated DropTailQueue? Here are various ways to
do that.

9.2.3 Changing Values

SmartPointer

Assume that a smart pointer (Ptr) to a relevant network device is in hand; in the current example, it is the net0
pointer.

One way to change the value is to access a pointer to the underlying queue and modify its attribute.

First, we observe that we can get a pointer to the (base class) Queue via the PointToPointNetDevice attributes,
where it is called "TxQueue":

PointerValue ptr;
net0->GetAttribute ("TxQueue", ptr);
Ptr<Queue<Packet> > txQueue = ptr.Get<Queue<Packet> > ();

Using the GetObject () function, we can perform a safe downcast to a DropTailQueue. The NS_ASSERT checks
that the pointer is valid.

54 Chapter 9. Configuration and Attributes

ns-3 Manual, Release ns-3-dev

Ptr<DropTailQueue<Packet> > dtg = txQueue->GetObject <DropTailQueue<Packet> > ();
NS_ASSERT (dtg != 0);

Next, we can get the value of an attribute on this queue. We have introduced wrapper Value classes for the underlying
data types, similar to Java wrappers around these types, since the attribute system stores values serialized to strings,
and not disparate types. Here, the attribute value is assigned to a QueueSizeValue, and the Get () method on this
value produces the (unwrapped) QueueSize. That is, the variable limit is written into by the GetAttribute method.:

QueueSizeValue limit;
dtg->GetAttribute ("MaxSize", limit);
NS_LOG_INFO ("1. dtg limit: " << limit.Get ());

Note that the above downcast is not really needed; we could have gotten the attribute value directly from t xQueue:

txQueue->GetAttribute ("MaxSize", limit);
NS_LOG_INFO ("2. +txQueue limit: " << limit.Get ());

Now, let’s set it to another value (60 packets). Let’s also make use of the StringValue shorthand notation to set the size
by passing in a string (the string must be a positive integer suffixed by either the p or b character).

txQueue->SetAttribute ("MaxSize", StringValue ("60p"));
txQueue->GetAttribute ("MaxSize", limit);
NS_LOG_INFO ("3. txQueue limit changed: " << limit.Get ());

Config Namespace Path

An alternative way to get at the attribute is to use the configuration namespace. Here, this attribute resides on a known
path in this namespace; this approach is useful if one doesn’t have access to the underlying pointers and would like to
configure a specific attribute with a single statement.

Config::Set ("/NodeList/0/DeviceList/0/TxQueue/MaxSize",
StringValue ("25p"));

txQueue->GetAttribute ("MaxSize", limit);

NS_LOG_INFO ("4. txQueue limit changed through namespace: "
<< limit.Get ());

The configuration path often has the form of ".../<container name>/<index>/.../<attribute>/
<attribute>" to refer to a specific instance by index of an object in the container. In this case the first container is
the list of all Nodes; the second container is the list of all NetDevices on the chosen Node. Finally, the configuration
path usually ends with a succession of member attributes, in this case the "MaxSize" attribute of the "TxQueue" of
the chosen NetDevice.

We could have also used wildcards to set this value for all nodes and all net devices (which in this simple example has
the same effect as the previous Config::Set ()):

Config::Set ("/Nodelist/*/DevicelList/*/TxQueue/MaxSize",
StringValue ("15p"));

txQueue—->GetAttribute ("MaxSize", limit);
NS_LOG_INFO ("5. txQueue limit changed through wildcarded namespace: "
<< limit.Get ());

If you run this program from the command line, you should see the following output corresponding to the steps we
took above:

9.2. Attributes 55

ns-3 Manual, Release ns-3-dev

./waf —-—-run main-attribute-value
dtg limit: 80p
txQueue limit: 80p
txQueue limit changed: 60p
txQueue limit changed through namespace: 25p
txQueue limit changed through wildcarded namespace: 15p

g W N

Object Name Service

Another way to get at the attribute is to use the object name service facility. The object name service allows us to
add items to the configuration namespace under the " /Names/" path with a user-defined name string. This approach
is useful if one doesn’t have access to the underlying pointers and it is difficult to determine the required concrete
configuration namespace path.

Names: :Add ("server", n0);
Names: :Add ("server/eth0", netO);

Config::Set ("/Names/server/eth(O/TxQueue/MaxPackets", UintegerValue (25));
Here we’ve added the path elements "server" and "eth0" under the " /Names/" namespace, then used the resulting
configuration path to set the attribute.

See Object names for a fuller treatment of the ns-3 configuration namespace.

9.3 Implementation Details

9.3.1 Value Classes

Readers will note the Typevalue classes which are subclasses of the Attributevalue base class. These can be
thought of as intermediate classes which are used to convert from raw types to the Attributevalues that are used
by the attribute system. Recall that this database is holding objects of many types serialized to strings. Conversions to
this type can either be done using an intermediate class (such as Integervalue, or DoubleValue for floating point
numbers) or via strings. Direct implicit conversion of types to AttributeValue is not really practical. So in the
above, users have a choice of using strings or values:

p—>Set ("cwnd", StringValue ("100")); // string-based setter
p—>Set ("cwnd", IntegerValue (100)); // integer—-based setter

The system provides some macros that help users declare and define new AttributeValue subclasses for new types that
they want to introduce into the attribute system:

¢ ATTRIBUTE_HELPER_HEADER

* ATTRIBUTE_HELPER_CPP

See the API documentation for these constructs for more information.

9.3.2 Initialization Order

Attributes in the system must not depend on the state of any other Attribute in this system. This is because an ordering
of Attribute initialization is not specified, nor enforced, by the system. A specific example of this can be seen in

56 Chapter 9. Configuration and Attributes

ns-3 Manual, Release ns-3-dev

automated configuration programs such as ConfigStore. Although a given model may arrange it so that Attributes
are initialized in a particular order, another automatic configurator may decide independently to change Attributes in,
for example, alphabetic order.

Because of this non-specific ordering, no Attribute in the system may have any dependence on any other Attribute. As
a corollary, Attribute setters must never fail due to the state of another Attribute. No Attribute setter may change (set)
any other Attribute value as a result of changing its value.

This is a very strong restriction and there are cases where Attributes must set consistently to allow correct operation.
To this end we do allow for consistency checking when the attribute is used (cf. NS_ASSERT_MSG or NS_ABORT_MSG).

In general, the attribute code to assign values to the underlying class member variables is executed after an object
is constructed. But what if you need the values assigned before the constructor body executes, because you need
them in the logic of the constructor? There is a way to do this, used for example in the class ConfigStore: call
ObjectBase: :ConstructSelf () as follows

ConfigStore::ConfigStore ()

{
ObjectBase: :ConstructSelf (AttributeConstructionList ());
// continue on with constructor.

Beware that the object and all its derived classes must also implement a Get InstanceTypeId () method. Otherwise
the ObjectBase: :ConstructSelf () will not be able to read the attributes.

9.3.3 Adding Attributes

The ns-3 system will place a number of internal values under the attribute system, but undoubtedly users will want to
extend this to pick up ones we have missed, or to add their own classes to the system.

There are three typical use cases:
* Making an existing class data member accessible as an Attribute, when it isn’t already.
* Making a new class able to expose some data members as Attributes by giving it a Typeld.

* Creating an AttributeValue subclass for a new class so that it can be accessed as an Attribute.

Existing Member Variable

Consider this variable in TcpSocket:

uint32_t m_cWnd; // Congestion window

Suppose that someone working with TCP wanted to get or set the value of that variable using the metadata system. If
it were not already provided by ns-3, the user could declare the following addition in the runtime metadata system (to
the Get TypeId () definition for TcpSocket):

.AddAttribute ("Congestion window",
"Tcp congestion window (bytes)",
Uintegervalue (1),
MakeUintegerAccessor (&TcpSocket::m_cWnd),
MakeUintegerChecker<uintlé_t> ())

Now, the user with a pointer to a TcpSocket instance can perform operations such as setting and getting the value,
without having to add these functions explicitly. Furthermore, access controls can be applied, such as allowing the
parameter to be read and not written, or bounds checking on the permissible values can be applied.

9.3. Implementation Details 57

ns-3 Manual, Release ns-3-dev

New Class Typeld

Here, we discuss the impact on a user who wants to add a new class to ns-3. What additional things must be done to
enable it to hold attributes?

Let’s assume our new class, called ns3: :MyMobility, is a type of mobility model. First, the class should inherit
from its parent class, ns3: :MobilityModel. In the my-mobility.h header file:

namespace ns3 {

class MyMobility : public MobilityModel
{

This requires we declare the Get TypeId () function. This is a one-line public function declaration:

public:
J ok k
* Register this type.
* \return The object TypeId.
*/
static TypeId GetTypeId (void);

We’ve already introduced what a TypeId definition will look like in the my-mobility.cc implementation file:

NS_OBJECT_ENSURE_REGISTERED (MyMobility);

TypeIld
MyMobility: :GetTypeld (wvoid)
{
static TypeId tid = TypelId ("ns3::MyMobility")
.SetParent<MobilityModel> ()
.SetGroupName ("Mobility")
.AddConstructor<MyMobility> ()
.AddAttribute ("Bounds",
"Bounds of the area to cruise.",
RectanglevValue (Rectangle (0.0, 0.0, 100.0, 100.0)),
MakeRectangleAccessor (&MyMobility::m_bounds),
MakeRectangleChecker ())
.AddAttribute ("Time",
"Change current direction and speed after moving for this delay.",
TimeValue (Seconds (1.0)),
MakeTimeAccessor (&MyMobility::m_modeTime),
MakeTimeChecker ())
// etc (more parameters) .
7
return tid;

If we don’t want to subclass from an existing class, in the header file we just inherit from ns3: :0bject, and in the
object file we set the parent class to ns3: :0bject with . SetParent<Object> ().

Typical mistakes here involve:
* Not calling NS_OBJECT_ENSURE_REGISTERED ()
* Not calling the setParent () method, or calling it with the wrong type.
¢ Not calling the AddConstructor () method, or calling it with the wrong type.

* Introducing a typographical error in the name of the TypeId in its constructor.

58 Chapter 9. Configuration and Attributes

ns-3 Manual, Release ns-3-dev

* Not using the fully-qualified C++ typename of the enclosing C++ class as the name of the Type1d. Note that
"ns3::" is required.

None of these mistakes can be detected by the ns-3 codebase, so users are advised to check carefully multiple times
that they got these right.

New AttributeValue Type

From the perspective of the user who writes a new class in the system and wants it to be accessible as an attribute, there
is mainly the matter of writing the conversions to/from strings and attribute values. Most of this can be copy/pasted
with macro-ized code. For instance, consider a class declaration for Rectangle in the src/mobility/model direc-
tory:

Header File

J ok k
* \brief a 2d rectangle
*/

class Rectangle

{

double xMin;

double xMax;

double yMin;

double yMax;
bi

One macro call and two operators, must be added below the class declaration in order to turn a Rectangle into a value
usable by the Attribute system:

std::ostream &operator << (std::ostream &os, const Rectangle &rectangle);
std::istream &operator >> (std::istream &is, Rectangle &rectangle);

ATTRIBUTE_HELPER_HEADER (Rectangle);

Implementation File

In the class definition (. cc file), the code looks like this:

ATTRIBUTE_HELPER_CPP (Rectangle);

std::ostream &
operator << (std::ostream &os, const Rectangle &rectangle)
{
os << rectangle.xMin << "|" << rectangle.xMax << "|" << rectangle.yMin << "|"
<< rectangle.yMax;
return os;
}
std::istream &
operator >> (std::istream &is, Rectangle &rectangle)
{
char cl, c2, c3;

(continues on next page)

9.3. Implementation Details 59

ns-3 Manual, Release ns-3-dev

(continued from previous page)
is >> rectangle.xMin >> cl >> rectangle.xMax >> c2 >> rectangle.yMin >> c3
>> rectangle.yMax;
if (cl !'= "|" ||
c2 = "|" |]
c3 = "]")

is.setstate (std::ios_base::failbit);

return is;

These stream operators simply convert from a string representation of the Rectangle ("xMin | xMax | yMin | yMax") to
the underlying Rectangle. The modeler must specify these operators and the string syntactical representation of an
instance of the new class.

9.4 ConfigStore

Values for ns-3 attributes can be stored in an ASCII or XML text file and loaded into a future simulation run. This
feature is known as the ns-3 ConfigStore. The ConfigStore is a specialized database for attribute values and default
values.

Although it is a separately maintained module in the src/config-store/ directory, we document it here because of
its sole dependency on ns-3 core module and attributes.

We can explore this system by using an example from src/config-store/examples/config-store-save.cc.

First, all users of the ConfigStore must include the following statement:

#include "ns3/config-store-module.h"

Next, this program adds a sample object ConfigExample to show how the system is extended:

class ConfigExample : public Object
{
public:
static TypeId GetTypeld (void) {
static Typeld tid = Typeld ("ns3::A")
.SetParent<Object> ()
.AddAttribute ("TestIntl6", "help text",
IntegerValue (-2),
MakeIntegerAccessor (&A::m_intl6),
MakeIntegerChecker<intl6_t> ())
2
return tid;
}
intl6_t m_intl6;
}i

NS_OBJECT_ENSURE_REGISTERED (ConfigExample);
Next, we use the Config subsystem to override the defaults in a couple of ways:
Config::SetDefault ("ns3::ConfigExample::TestIntl6", IntegerValue (-5));

Ptr<ConfigExample> a_obj = CreateObject<ConfigExample> ();
(continues on next page)

60 Chapter 9. Configuration and Attributes

ns-3 Manual, Release ns-3-dev

(continued from previous page)
NS_ABORT_MSG_UNLESS (a_obj->m_intl6 == -5,
"Cannot set ConfigExample's integer attribute via_
—~Config::SetDefault");

Ptr<ConfigExample> a2_obj = CreateObject<ConfigExample> ();
a2_obj->SetAttribute ("TestIntlé", IntegerValue (-3));
IntegerValue iv;
az_obj->GetAttribute ("TestIntle", iv);
NS_ABORT_MSG_UNLESS (iv.Get () == -3,
"Cannot set ConfigExample's integer attribute via SetAttribute");

The next statement is necessary to make sure that (one of) the objects created is rooted in the configuration namespace
as an object instance. This normally happens when you aggregate objects to ans3: : Node or ns3: : Channel instance,
but here, since we are working at the core level, we need to create a new root namespace object:

Config: :RegisterRootNamespaceObject (a2_obj);

9.4.1 Writing

Next, we want to output the configuration store. The examples show how to do it in two formats, XML and raw text.
In practice, one should perform this step just before calling Simulator::Run () to save the final configuration just
before running the simulation.

There are three Attributes that govern the behavior of the ConfigStore: "Mode", "Filename", and "FileFormat™".
The Mode (default "None") configures whether ns-3 should load configuration from a previously saved file (specify
"Mode=Load") or save it to a file (specify "Mode=Save"). The Filename (default " ") is where the ConfigStore should
read or write its data. The FileFormat (default "RawText ") governs whether the ConfigStore format is plain text or
Xml ("FileFormat=Xml")

The example shows:

Config::SetDefault ("ns3::ConfigStore::Filename", StringValue ("output-attributes.xml
~"));

Config::SetDefault ("ns3::ConfigStore::FileFormat", StringValue ("Xml"));
Config::SetDefault ("ns3::ConfigStore::Mode", StringValue ("Save"));

ConfigStore outputConfig;

outputConfig.ConfigureDefaults ();

outputConfig.ConfigureAttributes ();

// Output config store to txt format

Config::SetDefault ("ns3::ConfigStore::Filename", StringValue ("output-attributes.txt
="));

Config::SetDefault ("ns3::ConfigStore::FileFormat", StringValue ("RawText"));
Config::SetDefault ("ns3::ConfigStore::Mode", StringValue ("Save"));

ConfigStore outputConfig2;

outputConfig2.ConfigureDefaults ();

outputConfig2.ConfigureAttributes ();

Simulator::Run ();

Simulator: :Destroy ();

Note the placement of these statements just prior to the Simulator::Run () statement. This output logs all of the
values in place just prior to starting the simulation (i.e. after all of the configuration has taken place).

After running, you can open the output-attributes.txt file and see:

9.4. ConfigStore 61

ns-3 Manual, Release ns-3-dev

default ns3:
default ns3:
default ns3:
default ns3:
default ns3:
default ns3:
default ns3:
default ns3:
default ns3:
default ns3:
default ns3:
default ns3:
default ns3:
default ns3:
default ns3:
default ns3:
default ns3:
default ns3:
default ns3:
default ns3:
default ns3:

:ErrorModel: :IsEnabled "true"

:RateErrorModel: :ErrorUnit "ERROR_UNIT_BYTE"

:RateErrorModel: :ErrorRate "QO"

:RateErrorModel: :RanVar "ns3::UniformRandomVariable[Min=0.0|Max=1.0]"
:BurstErrorModel: :ErrorRate "0O"

:BurstErrorModel: :BurstStart "ns3::UniformRandomVariable[Min=0.0|Max=1.0]"
:BurstErrorModel: :BurstSize "ns3::UniformRandomVariable[Min=1|Max=4]"
:PacketSocket::RcvBufSize "131072"

:PcapFileWrapper: :CaptureSize "65535"

:PcapFileWrapper: :NanosecMode "false"

:SimpleNetDevice: :PointToPointMode "false"

:SimpleNetDevice: :TxQueue "ns3::DropTailQueue<Packet>"
:SimpleNetDevice: :DataRate "Obps"

:PacketSocketClient: :MaxPackets "100"

:PacketSocketClient::Interval "+1000000000.0ns"
:PacketSocketClient::PacketSize "1024"

:PacketSocketClient::Priority "0O"

:ConfigStore: :Mode "Save"

:ConfigStore::Filename "output-attributes.txt"
:ConfigStore::FileFormat "RawText"

:ConfigExample::TestIntl6 "-5"

global SimulatorImplementationType "ns3::DefaultSimulatorImpl"

global SchedulerType

global RngSeed "1"
global RngRun "1"
global ChecksumEnabled "false"

value /$ns3::ConfigExample/TestIntl6 "-3"

"ns3::MapScheduler"

In the above, several of the default values for attributes for the core and network modules are shown. Then, all the
values for the ns-3 global values are recorded. Finally, the value of the instance of ConfigExample that was rooted
in the configuration namespace is shown. In a real ns-3 program, many more models, attributes, and defaults would

be shown.

An XML version also exists in output-attributes.xml:

<?xml version="1.0" encoding="UTF-8"?>

<ns3>

<default name="ns3::ErrorModel: :IsEnabled" value="true"/>

<default name="ns3::RateErrorModel::ErrorUnit" value="ERROR_UNIT_BYTE"/>

<default name="ns3::RateErrorModel::ErrorRate" value="0"/>

<default name="ns3::RateErrorModel::RanVar" value="ns3::UniformRandomVariable[Min=0.
—0|Max=1.0]1"/>

<default name="ns3::BurstErrorModel::ErrorRate" value="0"/>

<default name="ns3::BurstErrorModel: :BurstStart" value=

—"ns3::UniformRandomVariable [Min=0.0|Max=1.0]"/>
<default name="ns3::BurstErrorModel::BurstSize" value=
—"ns3::UniformRandomVariable [Min=1|Max=4]1"/>

<default name="ns3::PacketSocket::RcvBufSize" value="131072"/>

<default name="ns3::PcapFileWrapper: :CaptureSize" value="65535"/>

<default name="ns3::PcapFileWrapper: :NanosecMode" value="false"/>

<default name="ns3::SimpleNetDevice::PointToPointMode" value="false"/>

<default name="ns3::SimpleNetDevice: :TxQueue" value="ns3::DropTailQueue<Packets>
/>

<default name="ns3::SimpleNetDevice::DataRate" value="0bps"/>

<default name="ns3::PacketSocketClient::MaxPackets" value="100"/>

<default name="ns3::PacketSocketClient::Interval" value="+1000000000.0ns"/>

(continues on next page)

62 Chapter 9. Configuration and Attributes

ns-3 Manual, Release ns-3-dev

(continued from previous page)

<default name="ns3::PacketSocketClient::PacketSize" value="1024"/>

<default name="ns3::PacketSocketClient::Priority" value="0"/>

<default name="ns3::ConfigStore::Mode" value="Save"/>

<default name="ns3::ConfigStore::Filename" value="output-attributes.xml"/>
<default name="ns3::ConfigStore::FileFormat" value="Xml"/>

<default name="ns3::ConfigExample::TestIntl6" value="-5"/>

<global name="SimulatorImplementationType" value="ns3::DefaultSimulatorImpl"/>
<global name="SchedulerType" value="ns3::MapScheduler"/>

<global name="RngSeed" value="1"/>

<global name="RngRun" value="1"/>

<global name="ChecksumEnabled" value="false"/>

<value path="/$ns3::ConfigExample/TestIntl6" value="-3"/>
</ns3>

This file can be archived with your simulation script and output data.

9.4.2 Reading

Next, we discuss configuring simulations via a stored input configuration file. There are a couple of key differences
compared to writing the final simulation configuration. First, we need to place statements such as these at the beginning
of the program, before simulation configuration statements are written (so the values are registered before being used
in object construction).

Config::SetDefault ("ns3::ConfigStore::Filename", StringValue ("input-defaults.xml"));
Config::SetDefault ("ns3::ConfigStore::Mode", StringValue ("Load"));
Config::SetDefault ("ns3::ConfigStore::FileFormat", StringValue ("Xml"));

ConfigStore inputConfig;

inputConfig.ConfigureDefaults ();

Next, note that loading of input configuration data is limited to Attribute default (i.e. not instance) values, and global
values. Attribute instance values are not supported because at this stage of the simulation, before any objects are
constructed, there are no such object instances around. (Note, future enhancements to the config store may change this
behavior).

Second, while the output of ConfigStore state will list everything in the database, the input file need only contain
the specific values to be overridden. So, one way to use this class for input file configuration is to generate an
initial configuration using the output ("Save™") "Mode" described above, extract from that configuration file only the
elements one wishes to change, and move these minimal elements to a new configuration file which can then safely be
edited and loaded in a subsequent simulation run.

When the ConfigStore object is instantiated, its attributes "Filename", "Mode", and "FileFormat" must be set,
either via command-line or via program statements.

9.4.3 Reading/Writing Example

As a more complicated example, let’s assume that we want to read in a configuration of defaults from an input file
named input-defaults.xml, and write out the resulting attributes to a separate file called output-attributes.
xml.:

#include "ns3/config-store-module.h"

int main (...)
{

(continues on next page)

9.4. ConfigStore 63

ns-3 Manual, Release ns-3-dev

(continued from previous page)

Config::SetDefault ("ns3::ConfigStore::Filename", StringValue ("input-defaults.xml
—"));

Config::SetDefault ("ns3::ConfigStore::Mode", StringValue ("Load"));

Config::SetDefault ("ns3::ConfigStore::FileFormat", StringValue ("Xml"));

ConfigStore inputConfig;

inputConfig.ConfigureDefaults ();

//
// Allow the user to override any of the defaults and the above Bind () at
// run-time, viacommand-line arguments

//
CommandLine cmd;
cmd.Parse (argc, argv);

// setup topology

// Invoke just before entering Simulator::Run ()

Config::SetDefault ("ns3::ConfigStore::Filename", StringValue ("output-attributes.
—xml"));

Config::SetDefault ("ns3::ConfigStore::Mode", StringValue ("Save"));

ConfigStore outputConfig;

outputConfig.ConfigureAttributes ();

Simulator::Run ();

9.4.4 ConfigStore use cases (pre- and post-simulation)
It is worth stressing that ConfigStore can be used for different purposes, and this is reflected in where in the script
ConfigStore is invoked.
The typical use-cases are:
e Change an Object default attributes
* Inspect/change a specific Object attributes
* Inspect the simulation Objects and their attributes

As a matter of fact, some Objects might be created when the simulation starts. Hence, ConfigStore will not “report”
their attributes if invoked earlier in the code.

A typical workflow might involve running the simulation, calling ConfigStore at the end of the simulation (after
Simulator::Run () and before Simulator::Destroy ()) This will show all the attributes in the Objects, both
those with default values, and those with values changed during the simulation execution.

To change these values, you’ll need to either change the default (class-wide) attribute values (in this case call Config-
Store before the Object creation), or specific object attribute (in this case call ConfigStore after the Object creation,
typically just before Simulator::Run ().

9.4.5 ConfigStore GUI

There is a GTK-based front end for the ConfigStore. This allows users to use a GUI to access and change variables.

Some screenshots are presented here. They are the result of using GtkConfig on src/lte/examples/
lena—dual—stripe.ccaﬂcrsimulator::Run ().

64 Chapter 9. Configuration and Attributes

ns-3 Manual, Release ns-3-dev

ns-3 Object attributes.

Object Attributes Attribute Value
w ns3:NodeListPriv
w NodelList

*0

w DeviceList
0
» LteEnbRrc
» LteHandoverAlgorithm
b LteAnr
» LteFfralgorithm
» LteEnbComponentCarrierManager

P ComponentCarrierMap

ulBandwidth 25
DIBandwidth 25
cellid 10
DlEarfcn 100
UlEarfcn 18100
Csgld 1
Csglindication true
MEu 30000
ns3::LteEnbNetDevice

P 1

b2

hk Armnlicakianl irk

| Run Simulation | | Load | | Save |

9.4. ConfigStore 65

ns-3 Manual, Release ns-3-dev

ns-3 Object attributes.

Object Attributes Attribute Value

» ns3:BuildingListPriv

¥ ns3::NodeListPriv
w NodelList

*0

w DeviceList
0
» LteEnbRrc
» LteHandoverAlgorithm
b LteAnr
» LteFfralgorithm
» LteEnbComponentCarrierManager

* ComponentCarrierMap
*0
w LteEnbPhy
TxPower 20

NoiseFigure

MacToChannelDelay

UeSinrSamplePeriod

e e L L

InterferenceSamplePeriod
» DISpectrumPhy
» UlSpectrumPhy
ns3::LteEnbPhy
P LteEnbMac

hk CFhA~~Crhadilar

| Run Simulation | | Load | | Save |

66 Chapter 9. Configuration and Attributes

ns-3 Manual, Release ns-3-dev

To use this feature, one must install 1ibgtk-3-dev; an example Ubuntu installation command is:

$ sudo apt-get install libgtk-3-dev

On a MacOS it is possible to install GTK-3 using Homebrew. The installation command is:
$ brew install gtk+3 adwaita-icon-theme

To check whether it is configured or not, check the output of the step:

$./waf configure --enable-examples --enable-tests

—-——— Summary of optional NS-3 features:

Python Bindings : enabled
Python API Scanning Support : enabled
NS—-3 Click Integration : enabled
GtkConfigStore : not enabled (library 'gtk+-3.0 >= 3.0' not found)

In the above example, it was not enabled, so it cannot be used until a suitable version is installed and:

$./waf configure --enable-examples --enable-tests
$./waf
is rerun.

Usage is almost the same as the non-GTK-based version, but there are no ConfigStore attributes involved:

// Invoke just before entering Simulator::Run ()
GtkConfigStore config;

config.ConfigureDefaults ();
config.ConfigureAttributes ();

Now, when you run the script, a GUI should pop up, allowing you to open menus of attributes on different
nodes/objects, and then launch the simulation execution when you are done.

Note that “launch the simulation” means to proceed with the simulation script. If GtkConfigStore has been called after
Simulator::Run () the simulation will not be started again - it will just end.

9.4. ConfigStore 67

https://brew.sh

ns-3 Manual, Release ns-3-dev

68

Chapter 9. Configuration and Attributes

CHAPTER
TEN

OBJECT NAMES

Placeholder chapter

69

ns-3 Manual, Release ns-3-dev

70

Chapter 10. Object names

CHAPTER
ELEVEN

LOGGING

The ns-3 logging facility can be used to monitor or debug the progress of simulation programs. Logging output can
be enabled by program statements in your main () program or by the use of the NS_LOG environment variable.

Logging statements are not compiled into optimized builds of ns-3. To use logging, one must build the (default) debug
build of ns-3.

The project makes no guarantee about whether logging output will remain the same over time. Users are cautioned
against building simulation output frameworks on top of logging code, as the output and the way the output is enabled
may change over time.

11.1 Overview

ns-3 logging statements are typically used to log various program execution events, such as the occurrence of simula-
tion events or the use of a particular function.

For example, this code snippet is from Ipv4L3Protocol: :IsDestinationAddress():

if (address == iaddr.GetBroadcast ())

{
NS_LOG_LOGIC ("For me (interface broadcast address)");
return true;

}

If logging has been enabled for the Ipv4L3Protocol component at a severity of LOGIC or above (see below about
log severity), the statement will be printed out; otherwise, it will be suppressed.

11.1.1 Enabling Output

There are two ways that users typically control log output. The first is by setting the NS_LOG environment variable;
e.g.:

S NS _LOG="«" .,/waf —--run first

will run the £irst tutorial program with all logging output. (The specifics of the NS_1.0G format will be discussed
below.)

This can be made more granular by selecting individual components:

$ NS_LOG="Ipv4L3Protocol" ./waf —--run first

71

ns-3 Manual, Release ns-3-dev

The output can be further tailored with prefix options.

The second way to enable logging is to use explicit statements in your program, such as in the first tutorial program:
int
main (int argc, char xargv([])

{
LogComponentEnable ("UdpEchoClientApplication”, LOG_LEVEL_INFO) ;

LogComponentEnable ("UdpEchoServerApplication”, LOG_LEVEL_INFO) ;

(The meaning of LOG_LEVEL_INFO, and other possible values, will be discussed below.)

11.1.2 ns_roc Syntax

The NS_L0G environment variable contains a list of log components and options. Log components are separated by “:’
characters:

$ NS_LOG="<log-component>:<log-component>. ..

Options for each log component are given as flags after each log component:

$ NS_LOG="<log-component>=<option>|<option>...:<log-component>..."

Options control the severity and level for that component, and whether optional information should be included, such
as the simulation time, simulation node, function name, and the symbolic severity.

11.1.3 Log Components

Generally a log component refers to a single source code . cc file, and encompasses the entire file.

Some helpers have special methods to enable the logging of all components in a module, spanning different compila-
tion units, but logically grouped together, such as the ns-3 wifi code:

WifiHelper wifiHelper;
wifiHelper.EnableLogComponents () ;

The NS_L0G log component wildcard “*’ will enable all components.

To see what log components are defined, any of these will work:
$ NS _LOG="print-list" ./waf —--run

$ NS_LOG="foo" # a token not matching any log-component

The first form will print the name and enabled flags for all log components which are linked in; try it with
scratch-simulator. The second form prints all registered log components, then exit with an error.

11.1.4 Severity and Level Options

Individual messages belong to a single “severity class,” set by the macro creating the message. In the example above,
NS_LOG_LOGIC (..) creates the message in the LOG_LOGIC severity class.

The following severity classes are defined as enum constants:

72 Chapter 11. Logging

ns-3 Manual, Release ns-3-dev

Severity Class | Meaning

LOG_NONE The default, no logging

LOG_ERROR Serious error messages only
LOG_WARN Warning messages

LOG_DEBUG For use in debugging

LOG_INFO Informational

LOG_FUNCTION | Function tracing

LOG_LOGIC Control flow tracing within functions

Typically one wants to see messages at a given severity class and higher. This is done by defining inclusive logging
“levels™:

Level Meaning

LOG_LEVEL_ERROR Only LOG_ERROR severity class messages.
LOG_LEVEL_WARN LOG_WARN and above.
LOG_LEVEL_DEBUG LOG_DEBUG and above.
LOG_LEVEL_INFO LOG_INFO and above.
LOG_LEVEL_FUNCTION | LOG_FUNCTION and above.
LOG_LEVEL_LOGIC LOG_LOGIC and above.

LOG_LEVEL_ALL All severity classes.

LOG_ALL Synonym for LOG_LEVEL_ALL

The severity class and level options can be given in the NS_L0OG environment variable by these tokens:

Class Level
error level_error
warn level_warn
debug level_debug
info level_info
function level_function
logic level_logic

level_all

all

*

Using a severity class token enables log messages at that severity only. For example, NS_LOG="+=warn" won’t output
messages with severity error. NS_LOG="+=1evel_debug" will output messages at severity levels debug and above.

Severity classes and levels can be combined with the ‘I’ operator: NS_LOG="x=level_warn|logic" will output
messages at severity levels error, warn and logic.

The NS_LOG severity level wildcard “*” and a11 are synonyms for level all.

For log components merely mentioned in NS_LOG

$ NS_LOG="<log-component>:..."

the default severity is LOG_LEVEL_ALL.

11.1. Overview 73

ns-3 Manual, Release ns-3-dev

11.1.5 Prefix Options

A number of prefixes can help identify where and when a message originated, and at what severity.

The available prefix options (as enum constants) are

Prefix Symbol Meaning

LOG_PREFIX_FUNC Prefix the name of the calling function.
LOG_PREFIX_TIME Prefix the simulation time.
LOG_PREFIX_NODE Prefix the node id.
LOG_PREFIX_LEVEL | Prefix the severity level.
LOG_PREFIX_ALL Enable all prefixes.

The prefix options are described briefly below.

The options can be given in the NS_L0OG environment variable by these tokens:

Token Alternate
prefix_func func
prefix_time time
prefix_node node
prefix_level level
prefix_all

all

*

For log components merely mentioned in NS_LOG

$ NS_LOG="<log-component>:..."

the default prefix options are LOG_PREFIX_ALL.

Severity Prefix

The severity class of a message can be included with the options prefix_level or level. For example, this value
of NS_LOG enables logging for all log components (‘*’) and all severity classes (=a11), and prefixes the message with
the severity class (Iprefix_level).

$ NS_LOG="%=all|prefix_level" ./waf —--run scratch-simulator
Scratch Simulator

[ERROR] error message

[WARN] warn message

[DEBUG] debug message

[INFO] info message

[FUNCT] function message

[LOGIC] logic message

Time Prefix

The simulation time can be included with the options prefix_time or time. This prints the simulation time in
seconds.

74 Chapter 11. Logging

ns-3 Manual, Release ns-3-dev

Node Prefix

The simulation node id can be included with the options prefix_node or node.

Function Prefix

The name of the calling function can be included with the options prefix_func or func.

Ns_LocG Wildcards

The log component wildcard “** will enable all components. To enable all components at a specific severity level use
*=<severity>.

The severity level option wildcard ‘*’ is a synonym for all. This must occur before any ‘I’ characters separating
options. To enable all severity classes, use <log—component>=+*, Or <log—component>=x | <options>.

sl’

The option wildcard ‘*’ or token all enables all prefix options, but must occur after a ‘I’ character. To enable a

specific severity class or level, and all prefixes, use <log-component>=<severity>] *.
The combined option wildcard » » enables all severities and all prefixes; for example, <log—component>=x+x*.

The uber-wildcard =+« enables all severities and all prefixes for all log components. These are all equivalent:

$ NS_LOG="+xx" ... $ NS_LOG="+=alll|x" ... $ NS_LOG="x=«|all"
S NS_LOG="#*=+x" .. $ NS_LOG="x=level_all|*" ... $ NS_LOG="x=x|prefix_all"

S NS_LOG="%=x|x"

Be advised: even the trivial scratch-simulator produces over 46K lines of output with NS_LOG="»»"!

11.2 How to add logging to your code

Adding logging to your code is very simple:
1. Invoke the NS_LOG_COMPONENT_DEFINE (...); macro inside of namespace ns3.

Create a unique string identifier (usually based on the name of the file and/or class defined within the file)
and register it with a macro call such as follows:

namespace ns3 {

NS_LOG_COMPONENT_DEFINE ("Ipv4L3Protocol™);

This registers Ipv4L3Protocol as a log component.

(The macro was carefully written to permit inclusion either within or outside of namespace ns3, and
usage will vary across the codebase, but the original intent was to register this outside of namespace ns3
at file global scope.)

2. Add logging statements (macro calls) to your functions and function bodies.
In case you want to add logging statements to the methods of your template class (which are defined in an header file):

1. Invoke the NS_LOG_TEMPLATE_DECLARE; macro in the private section of your class declaration. For instance:

11.2. How to add logging to your code 75

ns-3 Manual, Release ns-3-dev

template <typename Item>
class Queue : public QueueBase

{

private:

std::1list<Ptr<Item> > m_packets; //!< the items in the queue
NS_LOG_TEMPLATE_DECLARE; //!< the log component

}i

This requires you to perform these steps for all the subclasses of your class.

2. Invoke the NS_LOG_TEMPLATE_DEFINE (...); macro in the constructor of your class by providing the name
of a log component registered by calling the NS_LOG_COMPONENT_DEFINE (...); macro in some module.
For instance:

template <typename Item>
Queue<Item>: :Queue ()
NS_LOG_TEMPLATE_DEFINE ("Queue")

3. Add logging statements (macro calls) to the methods of your class.
In case you want to add logging statements to a static member template (which is defined in an header file):

1. Invoke the NS_LOG_STATIC_TEMPLATE_DEFINE (...); macro in your static method by providing the name
of a log component registered by calling the NS_LOG_COMPONENT_DEFINE (...); macro in some module.
For instance:

template <typename Item>
void
NetDeviceQueue: :PacketEnqueued (Ptr<Queue<Item> > queue,

Ptr<NetDeviceQueueInterface> ndqgi,
uint8_t txqg, Ptr<const Item> item)

NS_LOG_STATIC_TEMPLATE_DEFINE ("NetDeviceQueuelnterface");

2. Add logging statements (macro calls) to your static method.

11.3 Controlling timestamp precision

Timestamps are printed out in units of seconds. When used with the default ns-3 time resolution of nanoseconds, the
default timestamp precision is 9 digits, with fixed format, to allow for 9 digits to be consistently printed to the right of
the decimal point. Example:

+0.000123456s RandomVariableStream:SetAntithetic (0x805040, O0)

When the ns-3 simulation uses higher time resolution such as picoseconds or femtoseconds, the precision is expanded
accordingly; e.g. for picosecond:

+0.000123456789s RandomVariableStream:SetAntithetic (0x805040, 0)

When the ns-3 simulation uses a time resolution lower than microseconds, the default C++ precision is used.

76 Chapter 11. Logging

ns-3 Manual, Release ns-3-dev

An example program at src\core\examples\sample-log-time-format.cc demonstrates how to change the

timestamp formatting.

The maximum useful precision is 20 decimal digits, since Time is signed 64 bits.

11.3.1 Logging Macros

The logging macros and associated severity levels are

The macros function as output streamers, so anything you can send to std:

is allowed:

void MyClass: :Check

{
NS_LOG_FUNCTION
if (arg > 10)
{
NS_LOG_ERROR

Severity Class | Macro

LOG_NONE (none needed)

LOG_ERROR NS_LOG_ERROR (...);
LOG_WARN NS_TLOG_WARN (...);
LOG_DEBUG NS_LOG_DEBUG (...);
LOG_INFO NS_LOG_INFO (...);
LOG_FUNCTION | NS_LOG_FUNCTION (...);
LOG_LOGIC NS_LOG_LOGIC (...);

(int value, char » item)

("encountered bad value
" while checking " << name << "!");

(this << arg << item);

: cout, joined by << operators,

" << value <<

Note that NS_LOG_FUNCTION automatically inserts a *,’ (comma-space) separator between each of its
arguments. This simplifies logging of function arguments; just concatenate them with << as in the example

above.

11.3.2 Unconditional Logging

As a convenience, the NS_LOG_UNCOND (...); macro will always log its arguments, even if the associated log-
component is not enabled at any severity. This macro does not use any of the prefix options. Note that logging is only
enabled in debug builds; this macro won’t produce output in optimized builds.

11.3.3 Guidelines

 Start every class method with NS_LOG_FUNCTION (this << args...); This enables easy function call

tracing.

— Except: don’t log operators or explicit copy constructors, since these will cause infinite recursion and stack

overflow.

— For methods without arguments use the same form: NS_LOG_FUNCTION (this);

— For static functions:

11.3. Controlling timestamp precision

77

ns-3 Manual, Release ns-3-dev

* With arguments use NS_LOG_FUNCTION (...); as normal.
+ Without arguments use NS_LOG_FUNCTION_NOARGS () ;
» Use NS_LOG_ERROR for serious error conditions that probably invalidate the simulation execution.

* Use NS_LOG_WARN for unusual conditions that may be correctable. Please give some hints as to the nature of
the problem and how it might be corrected.

* NS_LOG_DEBUG is usually used in an ad hoc way to understand the execution of a model.

e Use Ns_L1.0G_INFO for additional information about the execution, such as the size of a data structure when
adding/removing from it.

» Use NS_LOG_LOGIC to trace important logic branches within a function.

* Test that your logging changes do not break the code. Run some example programs with all log components
turned on (e.g. NS_LOG="+xx").

 Use an explicit cast for any variable of type uint8_t or int8_t, e.g., NS_LOG_LOGIC ("Variable i is " <<
static_cast<int> (i));. Without the cast, the integer is interpreted as a char, and the result will be most
likely not in line with the expectations. This is a well documented C++ ‘feature’.

78 Chapter 11. Logging

CHAPTER
TWELVE

TRACING

The tracing subsystem is one of the most important mechanisms to understand in ns-3. In most cases, ns-3 users
will have a brilliant idea for some new and improved networking feature. In order to verify that this idea works, the
researcher will make changes to an existing system and then run experiments to see how the new feature behaves by
gathering statistics that capture the behavior of the feature.

In other words, the whole point of running a simulation is to generate output for further study. In ns-3, the subsystem
that enables a researcher to do this is the tracing subsystem.

12.1 Tracing Motivation

There are many ways to get information out of a program. The most straightforward way is to just directly print the
information to the standard output, as in,

#include <iostream>

int main ()

{

std::cout << "The value of x is " << x << std::endl;

This is workable in small environments, but as your simulations get more and more complicated, you end up with
more and more prints and the task of parsing and performing computations on the output begins to get harder and
harder.

Another thing to consider is that every time a new tidbit is needed, the software core must be edited and another print
introduced. There is no standardized way to control all of this output, so the amount of output tends to grow without
bounds. Eventually, the bandwidth required for simply outputting this information begins to limit the running time of
the simulation. The output files grow to enormous sizes and parsing them becomes a problem.

ns-3 provides a simple mechanism for logging and providing some control over output via Log Components, but the
level of control is not very fine grained at all. The logging module is a relatively blunt instrument.

It is desirable to have a facility that allows one to reach into the core system and only get the information required
without having to change and recompile the core system. Even better would be a system that notified the user when
an item of interest changed or an interesting event happened.

The ns-3 tracing system is designed to work along those lines and is well-integrated with the Attribute and Config
substems allowing for relatively simple use scenarios.

79

ns-3 Manual, Release ns-3-dev

12.2 Overview

The tracing subsystem relies heavily on the ns-3 Callback and Attribute mechanisms. You should read and understand
the corresponding sections of the manual before attempting to understand the tracing system.

The ns-3 tracing system is built on the concepts of independent tracing sources and tracing sinks; along with a uniform
mechanism for connecting sources to sinks.

Trace sources are entities that can signal events that happen in a simulation and provide access to interesting underlying
data. For example, a trace source could indicate when a packet is received by a net device and provide access to the
packet contents for interested trace sinks. A trace source might also indicate when an interesting state change happens
in a model. For example, the congestion window of a TCP model is a prime candidate for a trace source.

Trace sources are not useful by themselves; they must be connected to other pieces of code that actually do something
useful with the information provided by the source. The entities that consume trace information are called trace sinks.
Trace sources are generators of events and trace sinks are consumers.

This explicit division allows for large numbers of trace sources to be scattered around the system in places which model
authors believe might be useful. Unless a user connects a trace sink to one of these sources, nothing is output. This
arrangement allows relatively unsophisticated users to attach new types of sinks to existing tracing sources, without
requiring editing and recompiling the core or models of the simulator.

There can be zero or more consumers of trace events generated by a trace source. One can think of a trace source as a
kind of point-to-multipoint information link.

The “transport protocol” for this conceptual point-to-multipoint link is an ns-3 Callback.

Recall from the Callback Section that callback facility is a way to allow two modules in the system to communicate
via function calls while at the same time decoupling the calling function from the called class completely. This is the
same requirement as outlined above for the tracing system.

Basically, a trace source is a callback to which multiple functions may be registered. When a trace sink expresses
interest in receiving trace events, it adds a callback to a list of callbacks held by the trace source. When an interesting
event happens, the trace source invokes its operator () providing zero or more parameters. This tells the source to
go through its list of callbacks invoking each one in turn. In this way, the parameter(s) are communicated to the trace
sinks, which are just functions.

12.2.1 The Simplest Example

It will be useful to go walk a quick example just to reinforce what we’ve said.:

#include "ns3/object.h"

#include "ns3/uinteger.h"

#include "ns3/traced-value.h""
#include "ns3/trace-source-accessor.h"

#include <iostream>

using namespace ns3;

The first thing to do is include the required files. As mentioned above, the trace system makes heavy use of the Object
and Attribute systems. The first two includes bring in the declarations for those systems. The file, t raced-value.h
brings in the required declarations for tracing data that obeys value semantics.

In general, value semantics just means that you can pass the object around, not an address. In order to use value
semantics at all you have to have an object with an associated copy constructor and assignment operator available.
We extend the requirements to talk about the set of operators that are pre-defined for plain-old-data (POD) types.
Operator=, operator++, operator—, operator+, operator==, etc.

80 Chapter 12. Tracing

ns-3 Manual, Release ns-3-dev

What this all means is that you will be able to trace changes to an object made using those operators.:

class MyObject : public Object
{
public:
static TypelId GetTypelId (wvoid)
{
static TypeId tid = Typeld ("MyObject")
.SetParent (Object::GetTypelId ())
.AddConstructor<MyObject> ()
.AddTraceSource ("MyInteger",
"An integer value to trace.",
MakeTraceSourceAccessor (&MyObject::m_myInt))
12
return tid;

MyObject () {}
TracedValue<uint32_t> m_myInt;

}i

Since the tracing system is integrated with Attributes, and Attributes work with Objects, there must be an ns-3 Object
for the trace source to live in. The two important lines of code are the .AddTraceSource and the Tracedvalue
declaration.

The .AddTraceSource provides the “hooks” used for connecting the trace source to the outside world. The
TracedValue declaration provides the infrastructure that overloads the operators mentioned above and drives the
callback process.:

void
IntTrace (Int oldValue, Int newValue)
{

std::cout << "Traced " << oldValue << " to " << newValue << std::endl;

This is the definition of the trace sink. It corresponds directly to a callback function. This function will be called
whenever one of the operators of the Tracedvalue is executed.:

int
main (int argc, char xargv([])
{
Ptr<MyObject> myObject = CreateObject<MyObject> ();

myObject—->TraceConnectWithoutContext ("MyInteger", MakeCallback (&IntTrace));

myObject->m_myInt = 1234;

In this snippet, the first thing that needs to be done is to create the object in which the trace source lives.

The next step, the TraceConnectWithoutContext, forms the connection between the trace source and the trace
sink. Notice the MakeCallback template function. Recall from the Callback section that this creates the specialized
functor responsible for providing the overloaded operator () used to “fire” the callback. The overloaded operators
(++, —, etc.) will use this operator () to actually invoke the callback. The TraceConnectWithoutContext, takes
a string parameter that provides the name of the Attribute assigned to the trace source. Let’s ignore the bit about
context for now since it is not important yet.

Finally, the line,:

12.2. Overview 81

ns-3 Manual, Release ns-3-dev

myObject->m_myInt = 1234;

should be interpreted as an invocation of operator= on the member variable m_myInt with the integer 1234 passed
as a parameter. It turns out that this operator is defined (by Tracedvalue) to execute a callback that returns void and
takes two integer values as parameters — an old value and a new value for the integer in question. That is exactly the
function signature for the callback function we provided — IntTrace.

To summarize, a trace source is, in essence, a variable that holds a list of callbacks. A trace sink is a function used
as the target of a callback. The Attribute and object type information systems are used to provide a way to connect
trace sources to trace sinks. The act of “hitting” a trace source is executing an operator on the trace source which fires
callbacks. This results in the trace sink callbacks registering interest in the source being called with the parameters
provided by the source.

12.2.2 Using the Config Subsystem to Connect to Trace Sources

The TraceConnectWithoutContext call shown above in the simple example is actually very rarely used in the
system. More typically, the Config subsystem is used to allow selecting a trace source in the system using what is
called a config path.

For example, one might find something that looks like the following in the system (taken from examples/
tcp-large—-transfer.cc):

void CwndTracer (uint32_t oldval, uint32_t newval) {}

Config::ConnectWithoutContext (
"/NodeList/0/$ns3::TcpL4Protocol/SocketList/0/CongestionWindow",
MakeCallback (&CwndTracer));

This should look very familiar. It is the same thing as the previous example, except that a static member function of
class config is being called instead of a method on Object; and instead of an Attribute name, a path is being
provided.

The first thing to do is to read the path backward. The last segment of the path must be an Attribute of an Object.
In fact, if you had a pointer to the Object that has the “CongestionWindow” Att ribute handy (call it theObject),
you could write this just like the previous example:

void CwndTracer (uint32_t oldval, uint32_t newval) {}

theObject->TraceConnectWithoutContext ("CongestionWindow", MakeCallback (&
—CwndTracer));

It turns out that the code for Config: : ConnectWithoutContext does exactly that. This function takes a path that
represents a chain of Object pointers and follows them until it gets to the end of the path and interprets the last
segment as an Attribute on the last object. Let’s walk through what happens.

The leading “/” character in the path refers to a so-called namespace. One of the predefined namespaces in the config
system is “NodeList” which is a list of all of the nodes in the simulation. Items in the list are referred to by indices into
the list, so “/NodeList/0” refers to the zeroth node in the list of nodes created by the simulation. This node is actually
a Ptr<Node> and so is a subclass of an ns3: :Object.

As described in the Object model section, ns-3 supports an object aggregation model. The next path segment begins
with the “$” character which indicates a GetObject call should be made looking for the type that follows. When a
node is initialized by an InternetStackHelper a number of interfaces are aggregated to the node. One of these

82 Chapter 12. Tracing

ns-3 Manual, Release ns-3-dev

is the TCP level four protocol. The runtime type of this protocol object is ns3: : TcpL4Protocol''. When the
' GetObject is executed, it returns a pointer to the object of this type.

The TcpL4Protocol class defines an Attribute called “SocketList” which is a list of sockets. Each socket is actually
an ns3::0bject with its own Attributes. The items in the list of sockets are referred to by index just as in the
NodelList, so “SocketList/0” refers to the zeroth socket in the list of sockets on the zeroth node in the NodeList — the
first node constructed in the simulation.

This socket, the type of which turns out to be an ns3: : TcpSocket Impl defines an attribute called “CongestionWin-
dow” which is a Tracedvalue<uint32_t>. The Config: :ConnectWithoutContext now does a,:

object->TraceConnectWithoutContext ("CongestionWindow", MakeCallback (&CwndTracer));

using the object pointer from “SocketList/0” which makes the connection between the trace source defined in the
socket to the callback — CwndTracer.

Now, whenever a change is made to the Tracedvalue<uint32_t> representing the congestion window in the TCP
socket, the registered callback will be executed and the function CwndTracer will be called printing out the old and
new values of the TCP congestion window.

As a final note, the Config::Connect... () functions will throw an error if the targeted TraceSource does not exist at
the path given. There are also “fail-safe” versions, Config::Connect. .. FailSafe(), if you can’t be sure the TraceSource
exists. The fail-safe versions return zrue if at least one connection could be made.

12.3 Using the Tracing API

There are three levels of interaction with the tracing system:
* Beginning user can easily control which objects are participating in tracing;

¢ Intermediate users can extend the tracing system to modify the output format generated or use existing trace
sources in different ways, without modifying the core of the simulator;

* Advanced users can modify the simulator core to add new tracing sources and sinks.

12.4 Using Trace Helpers

The ns-3 trace helpers provide a rich environment for configuring and selecting different trace events and writing
them to files. In previous sections, primarily “Building Topologies,” we have seen several varieties of the trace helper
methods designed for use inside other (device) helpers.

Perhaps you will recall seeing some of these variations:

pointToPoint .EnablePcapAll ("second");

pointToPoint.EnablePcap ("second", p2pNodes.Get (0)->GetId (), 0);
csma.EnablePcap ("third", csmaDevices.Get (0), true);

pointToPoint .EnableAsciiAll (ascii.CreateFileStream ("myfirst.tr"));

What may not be obvious, though, is that there is a consistent model for all of the trace-related methods found in the
system. We will now take a little time and take a look at the “big picture”.

There are currently two primary use cases of the tracing helpers in ns-3: Device helpers and protocol helpers. Device
helpers look at the problem of specifying which traces should be enabled through a node, device pair. For example,
you may want to specify that pcap tracing should be enabled on a particular device on a specific node. This follows
from the ns-3 device conceptual model, and also the conceptual models of the various device helpers. Following
naturally from this, the files created follow a <prefix>-<node>-<device> naming convention.

12.3. Using the Tracing API 83

ns-3 Manual, Release ns-3-dev

Protocol helpers look at the problem of specifying which traces should be enabled through a protocol and interface
pair. This follows from the ns-3 protocol stack conceptual model, and also the conceptual models of internet stack
helpers. Naturally, the trace files should follow a <prefix>-<protocol>-<interface> naming convention.

The trace helpers therefore fall naturally into a two-dimensional taxonomy. There are subtleties that prevent all four
classes from behaving identically, but we do strive to make them all work as similarly as possible; and whenever
possible there are analogs for all methods in all classes.

pcap | ascii
Device Helper v v
Protocol Helper | v/ v

We use an approach called a mixin to add tracing functionality to our helper classes. A mixin is a class that provides
functionality to that is inherited by a subclass. Inheriting from a mixin is not considered a form of specialization but
is really a way to collect functionality.

Let’s take a quick look at all four of these cases and their respective mixins.

12.4.1 Pcap Tracing Device Helpers

The goal of these helpers is to make it easy to add a consistent pcap trace facility to an ns-3 device. We want all of the
various flavors of pcap tracing to work the same across all devices, so the methods of these helpers are inherited by
device helpers. Take a look at src/network/helper/trace-helper.h if you want to follow the discussion while
looking at real code.

The class PcapHelperForDevice is a mixin provides the high level functionality for using pcap tracing in an ns-3
device. Every device must implement a single virtual method inherited from this class.:

virtual void EnablePcapInternal (std::string prefix, Ptr<NetDevice> nd, bool
—promiscuous) = 0;

The signature of this method reflects the device-centric view of the situation at this level. All of the public methods
inherited from class PcapUserHelperForDevice reduce to calling this single device-dependent implementation
method. For example, the lowest level pcap method,:

void EnablePcap (std::string prefix, Ptr<NetDevice> nd, bool promiscuous = false,
—bool explicitFilename = false);

will call the device implementation of EnablePcapInternal directly. All other public pcap tracing methods build
on this implementation to provide additional user-level functionality. What this means to the user is that all device

helpers in the system will have all of the pcap trace methods available; and these methods will all work in the same
way across devices if the device implements EnablePcapInternal correctly.

Pcap Tracing Device Helper Methods

void EnablePcap (std::string prefix, Ptr<NetDevice> nd,

bool promiscuous = false, bool explicitFilename = false);
void EnablePcap (std::string prefix, std::string ndName,

bool promiscuous = false, bool explicitFilename = false);
void EnablePcap (std::string prefix, NetDeviceContainer d,

bool promiscuous = false);
void EnablePcap (std::string prefix, NodeContainer n,

bool promiscuous = false);

void EnablePcap (std::string prefix, uint32_t nodeid, uint32_t deviceid,
(continues on next page)

84 Chapter 12. Tracing

ns-3 Manual, Release ns-3-dev

(continued from previous page)

bool promiscuous = false);
void EnablePcapAll (std::string prefix, bool promiscuous = false);

In each of the methods shown above, there is a default parameter called promiscuous that defaults to false. This
parameter indicates that the trace should not be gathered in promiscuous mode. If you do want your traces to include
all traffic seen by the device (and if the device supports a promiscuous mode) simply add a true parameter to any of
the calls above. For example,:

Ptr<NetDevice> nd;

helper.EnablePcap ("prefix", nd, true);

will enable promiscuous mode captures on the NetDevice specified by nd.
The first two methods also include a default parameter called explicitFilename that will be discussed below.

You are encouraged to peruse the Doxygen for class PcapHelperForDevice to find the details of these methods; but
to summarize . ..

You can enable pcap tracing on a particular node/net-device pair by providing a Pt r<NetDevice> to an EnablePcap
method. The Pt r<Node> is implicit since the net device must belong to exactly one Node. For example,:

Ptr<NetDevice> nd;

helper.EnablePcap ("prefix", nd);

You can enable pcap tracing on a particular node/net-device pair by providing a std: : st ring representing an object
name service string to an EnablePcap method. The Pt r<NetDevice> is looked up from the name string. Again, the
<Node> is implicit since the named net device must belong to exactly one Node. For example,:

Names: :Add ("server" ...);
Names: :Add ("server/eth0" ...);

helper.EnablePcap ("prefix", "server/ath0");

You can enable pcap tracing on a collection of node/net-device pairs by providing a NetDeviceContainer. For each
NetDevice in the container the type is checked. For each device of the proper type (the same type as is managed by
the device helper), tracing is enabled. Again, the <Node> is implicit since the found net device must belong to exactly
one Node. For example,:

NetDeviceContainer d = ...;

helper.EnablePcap ("prefix", d);

You can enable pcap tracing on a collection of node/net-device pairs by providing a NodeContainer. For each Node
in the NodeContainer its attached NetDevices are iterated. For each NetDevice attached to each node in the
container, the type of that device is checked. For each device of the proper type (the same type as is managed by the
device helper), tracing is enabled.:

NodeContainer nj;

helper.EnablePcap ("prefix", n);

You can enable pcap tracing on the basis of node ID and device ID as well as with explicit Ptr. Each Node in the
system has an integer node ID and each device connected to a node has an integer device ID.:

12.4. Using Trace Helpers 85

ns-3 Manual, Release ns-3-dev

helper.EnablePcap ("prefix", 21, 1);

Finally, you can enable pcap tracing for all devices in the system, with the same type as that managed by the device
helper.:

helper.EnablePcapAll ("prefix");

Pcap Tracing Device Helper Filename Selection

Implicit in the method descriptions above is the construction of a complete filename by the implementation method.
By convention, pcap traces in the ns-3 system are of the form <prefix>-<node id>-<device id>.pcap

As previously mentioned, every node in the system will have a system-assigned node id; and every device will have
an interface index (also called a device id) relative to its node. By default, then, a pcap trace file created as a result of
enabling tracing on the first device of node 21 using the prefix “prefix” would be prefix-21-1.pcap.

You can always use the ns-3 object name service to make this more clear. For example, if you use the object
name service to assign the name “server” to node 21, the resulting pcap trace file name will automatically become,
prefix-server-1.pcap and if you also assign the name “eth0” to the device, your pcap file name will automatically
pick this up and be called prefix-server-eth0.pcap.

Finally, two of the methods shown above,:

void EnablePcap (std::string prefix, Ptr<NetDevice> nd, bool promiscuous = false,
—bool explicitFilename = false);
void EnablePcap (std::string prefix, std::string ndName, bool promiscuous = false,
—bool explicitFilename = false);

have a default parameter called explicitFilename. When set to true, this parameter disables the automatic filename
completion mechanism and allows you to create an explicit filename. This option is only available in the methods
which enable pcap tracing on a single device.

For example, in order to arrange for a device helper to create a single promiscuous pcap capture file of a specific name
(my-pcap-file.pcap) on a given device, one could:

Ptr<NetDevice> nd;

helper.EnablePcap ("my-pcap-file.pcap", nd, true, true);

The first t rue parameter enables promiscuous mode traces and the second tells the helper to interpret the prefix
parameter as a complete filename.

12.4.2 Ascii Tracing Device Helpers
The behavior of the ASCII trace helper mixin is substantially similar to the pcap version. Take a look at src/
network/helper/trace-helper.h if you want to follow the discussion while looking at real code.

The class AsciiTraceHelperForDevice adds the high level functionality for using ASCII tracing to a device helper
class. As in the pcap case, every device must implement a single virtual method inherited from the ASCII trace mixin.:

virtual void EnableAsciiInternal (Ptr<OutputStreamWrapper> stream, std::string prefix,
— Ptr<NetDevice> nd) = 0;

The signature of this method reflects the device-centric view of the situation at this level; and also the fact that the
helper may be writing to a shared output stream. All of the public ASCII-trace-related methods inherited from class

86 Chapter 12. Tracing

ns-3 Manual, Release ns-3-dev

AsciiTraceHelperForDevice reduce to calling this single device- dependent implementation method. For exam-
ple, the lowest level ASCII trace methods,:

void EnableAscii (std::string prefix, Ptr<NetDevice> nd);
void EnableAscii (Ptr<OutputStreamWrapper> stream, Ptr<NetDevice> nd);

will call the device implementation of EnableAsciilInternal directly, providing either a valid prefix or stream. All
other public ASCII tracing methods will build on these low-level functions to provide additional user-level functional-
ity. What this means to the user is that all device helpers in the system will have all of the ASCII trace methods avail-
able; and these methods will all work in the same way across devices if the devices implement EnablAsciiInternal
correctly.

Ascii Tracing Device Helper Methods

void EnableAscii (std::string prefix, Ptr<NetDevice> nd);
void EnableAscii (Ptr<OutputStreamWrapper> stream, Ptr<NetDevice> nd);

void EnableAscii (std::string prefix, std::string ndName);
void EnableAscii (Ptr<OutputStreamWrapper> stream, std::string ndName) ;

void EnableAscii (std::string prefix, NetDeviceContainer d);
void EnableAscii (Ptr<OutputStreamWrapper> stream, NetDeviceContainer d);

void EnableAscii (std::string prefix, NodeContainer n);
void EnableAscii (Ptr<OutputStreamWrapper> stream, NodeContainer n);

void EnableAscii (std::string prefix, uint32_t nodeid, uint32_t deviceid);
void EnableAscii (Ptr<OutputStreamWrapper> stream, uint32_t nodeid, uint32_t
—deviceid);

void EnableAsciiAll (std::string prefix);
void EnableAsciiAll (Ptr<OutputStreamWrapper> stream);

You are encouraged to peruse the Doxygen for class TraceHelperForDevice to find the details of these methods;
but to summarize . ..

There are twice as many methods available for ASCII tracing as there were for pcap tracing. This is because, in
addition to the pcap-style model where traces from each unique node/device pair are written to a unique file, we
support a model in which trace information for many node/device pairs is written to a common file. This means that
the <prefix>-<node>-<device> file name generation mechanism is replaced by a mechanism to refer to a common file;
and the number of API methods is doubled to allow all combinations.

Just as in pcap tracing, you can enable ASCII tracing on a particular node/net-device pair by providing a
Ptr<NetDevice> to an EnableAscii method. The Ptr<Node> is implicit since the net device must belong to
exactly one Node. For example,:

Ptr<NetDevice> nd;

helper.EnableAscii ("prefix", nd);

In this case, no trace contexts are written to the ASCII trace file since they would be redundant. The system will pick
the file name to be created using the same rules as described in the pcap section, except that the file will have the suffix
“.tr” instead of “.pcap”.

If you want to enable ASCII tracing on more than one net device and have all traces sent to a single file, you can do
that as well by using an object to refer to a single file:

12.4. Using Trace Helpers 87

ns-3 Manual, Release ns-3-dev

Ptr<NetDevice> ndl;
Ptr<NetDevice> nd2;

Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("trace-file-name.
—tr");

helper.EnableAscii (stream, ndl);
helper.EnableAscii (stream, nd2);

In this case, trace contexts are written to the ASCII trace file since they are required to disambiguate traces from the
two devices. Note that since the user is completely specifying the file name, the string should include the “.tr” for
consistency.

You can enable ASCII tracing on a particular node/net-device pair by providing a std: : st ring representing an object
name service string to an EnablePcap method. The Pt r<NetDevice> is looked up from the name string. Again, the
<Node> is implicit since the named net device must belong to exactly one Node. For example,:

Names: :Add ("client" ...);
Names: :Add ("client/eth0" ...);
Names: :Add ("server" ...);
Names: :Add ("server/eth0" ...);

helper.EnableAscii ("prefix", "client/ethO0");
helper.EnableAscii ("prefix", "server/eth0");

This would result in two files named prefix—client-eth0.tr and prefix-server—eth0.tr with traces for each
device in the respective trace file. Since all of the EnableAscii functions are overloaded to take a stream wrapper, you
can use that form as well:

Names: :Add ("client" ...);
Names: :Add ("client/ethO0" ...);
Names: :Add ("server" ...);
Names: :Add ("server/eth0" ...);

Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("trace-file-name.
—tr");

helper.EnableAscii (stream, "client/eth0");
helper.EnableAscii (stream, "server/eth0");

This would result in a single trace file called trace-file-name.tr that contains all of the trace events for both
devices. The events would be disambiguated by trace context strings.

You can enable ASCII tracing on a collection of node/net-device pairs by providing a NetDeviceContainer. For
each NetDevice in the container the type is checked. For each device of the proper type (the same type as is managed
by the device helper), tracing is enabled. Again, the <Node> is implicit since the found net device must belong to
exactly one Node. For example,:

NetDeviceContainer d = ...;

helper.EnableAscii ("prefix", d);

This would result in a number of ASCII trace files being created, each of which follows the <prefix>-<node id>-
<device id>.tr convention. Combining all of the traces into a single file is accomplished similarly to the examples
above:

88 Chapter 12. Tracing

ns-3 Manual, Release ns-3-dev

NetDeviceContainer d = ...;

Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("trace-file-name.
—tr");

helper.EnableAscii (stream, d);

You can enable ascii tracing on a collection of node/net-device pairs by providing a NodeContainer. For each Node
in the NodeContainer its attached NetDevices are iterated. For each NetDevice attached to each node in the
container, the type of that device is checked. For each device of the proper type (the same type as is managed by the
device helper), tracing is enabled.:

NodeContainer nj;
helper.EnableAscii ("prefix", n);

This would result in a number of ASCII trace files being created, each of which follows the <prefix>-<node id>-
<device id>.tr convention. Combining all of the traces into a single file is accomplished similarly to the examples
above:

You can enable pcap tracing on the basis of node ID and device ID as well as with explicit Ptr. Each Node in the
system has an integer node ID and each device connected to a node has an integer device ID.:

helper.EnableAscii ("prefix", 21, 1);

Of course, the traces can be combined into a single file as shown above.

Finally, you can enable pcap tracing for all devices in the system, with the same type as that managed by the device
helper.:

helper.EnableAsciiAll ("prefix");

This would result in a number of ASCII trace files being created, one for every device in the system of the type
managed by the helper. All of these files will follow the <prefix>-<node id>-<device id>.tr convention. Combining
all of the traces into a single file is accomplished similarly to the examples above.

Ascii Tracing Device Helper Filename Selection

Implicit in the prefix-style method descriptions above is the construction of the complete filenames by the implemen-
tation method. By convention, ASCII traces in the ns-3 system are of the form <prefix>-<node id>-<device
id>.tr.

As previously mentioned, every node in the system will have a system-assigned node id; and every device will have
an interface index (also called a device id) relative to its node. By default, then, an ASCII trace file created as a result
of enabling tracing on the first device of node 21, using the prefix “prefix”, would be prefix-21-1.tr.

You can always use the ns-3 object name service to make this more clear. For example, if you use the object name
service to assign the name “server” to node 21, the resulting ASCII trace file name will automatically become,
prefix-server—1.tr and if you also assign the name “eth0” to the device, your ASCII trace file name will au-
tomatically pick this up and be called prefix-server-eth0.tr.

12.4.3 Pcap Tracing Protocol Helpers

The goal of these mixins is to make it easy to add a consistent pcap trace facility to protocols. We want all of the
various flavors of pcap tracing to work the same across all protocols, so the methods of these helpers are inherited by

12.4. Using Trace Helpers 89

ns-3 Manual, Release ns-3-dev

stack helpers. Take a look at src/network/helper/trace-helper.h if you want to follow the discussion while
looking at real code.

In this section we will be illustrating the methods as applied to the protocol Ipv4. To specify traces in similar
protocols, just substitute the appropriate type. For example, use a Ptr<Ipvé6> instead of a Ptr<Ipv4> and call
EnablePcapIpvé instead of EnablePcapIpvi.

The class PcapHelperForIpv4 provides the high level functionality for using pcap tracing in the Ipv4 protocol.
Each protocol helper enabling these methods must implement a single virtual method inherited from this class. There
will be a separate implementation for I1pvé, for example, but the only difference will be in the method names and
signatures. Different method names are required to disambiguate class Ipv4 from Ipvé which are both derived from
class Object, and methods that share the same signature.:

virtual void EnablePcaplIpv4Internal (std::string prefix, Ptr<Ipv4> ipv4, uint32_t
—interface) = 0;

The signature of this method reflects the protocol and interface-centric view of the situation at this level. All of the pub-
lic methods inherited from class PcapHelperForIpv4 reduce to calling this single device-dependent implementation
method. For example, the lowest level pcap method,:

void EnablePcapIpv4 (std::string prefix, Ptr<Ipv4> ipv4, uint32_t interface);
will call the device implementation of EnablePcapIpv4Internal directly. All other public pcap tracing methods
build on this implementation to provide additional user-level functionality. What this means to the user is that all

protocol helpers in the system will have all of the pcap trace methods available; and these methods will all work in the
same way across protocols if the helper implements EnablePcapIpv4Internal correctly.

Pcap Tracing Protocol Helper Methods

These methods are designed to be in one-to-one correspondence with the Node- and NetDevice- centric versions of
the device versions. Instead of Node and NetDevice pair constraints, we use protocol and interface constraints.

Note that just like in the device version, there are six methods:

void EnablePcaplpvi
void EnablePcapIpvé

std::string prefix, Ptr<Ipv4> ipv4, uint32_t interface);
std::string prefix, std::string ipv4Name, uint32_t interface);
void EnablePcapIpv4 (std::string prefix, Ipv4InterfaceContainer c);

void EnablePcaplIpv4 (std::string prefix, NodeContainer n);

void EnablePcaplIpv4 (std::string prefix, uint32_t nodeid, uint32_t interface);
void EnablePcapIpv4All (std::string prefix);

You are encouraged to peruse the Doxygen for class PcapHelperForIpv4 to find the details of these methods; but to
summarize . ..

You can enable pcap tracing on a particular protocol/interface pair by providing a Pt r<Ipv4> and interface to an
EnablePcap method. For example,:

Ptr<Ipv4> ipv4 = node->GetObject<Ipv4d> ();
helper.EnablePcaplIpv4d ("prefix", ipv4, 0);

You can enable pcap tracing on a particular node/net-device pair by providing a std: : string representing an object
name service string to an EnablePcap method. The Pt r<Ipv4> is looked up from the name string. For example,:

Names: :Add ("serverIPv4" ...);

helper.EnablePcaplpv4 ("prefix", "serverlIpv4d", 1);

90 Chapter 12. Tracing

ns-3 Manual, Release ns-3-dev

You can enable pcap tracing on a collection of protocol/interface pairs by providing an Ipv4InterfaceContainer.
For each 1pv4 / interface pair in the container the protocol type is checked. For each protocol of the proper type (the
same type as is managed by the device helper), tracing is enabled for the corresponding interface. For example,:

NodeContainer nodes;
NetDeviceContainer devices = deviceHelper.Install (nodes);

Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
Ipv4InterfaceContainer interfaces = ipv4.Assign (devices);

helper.EnablePcaplIpv4 ("prefix", interfaces);

You can enable pcap tracing on a collection of protocol/interface pairs by providing a NodeContainer. For each
Node in the NodeContainer the appropriate protocol is found. For each protocol, its interfaces are enumerated and
tracing is enabled on the resulting pairs. For example,:

NodeContainer nj;

helper.EnablePcapIpvd ("prefix", n);

You can enable pcap tracing on the basis of node ID and interface as well. In this case, the node-id is translated to
a Ptr<Node> and the appropriate protocol is looked up in the node. The resulting protocol and interface are used to
specify the resulting trace source.:

helper.EnablePcaplIpvd ("prefix", 21, 1);

Finally, you can enable pcap tracing for all interfaces in the system, with associated protocol being the same type as
that managed by the device helper.:

helper.EnablePcapIpv4All ("prefix");

Pcap Tracing Protocol Helper Filename Selection

Implicit in all of the method descriptions above is the construction of the complete filenames by the implementa-
tion method. By convention, pcap traces taken for devices in the ns-3 system are of the form <prefix>-<node
id>-<device id>.pcap. In the case of protocol traces, there is a one-to-one correspondence between protocols and
Nodes. This is because protocol Objects are aggregated to Node Objects. Since there is no global protocol id in
the system, we use the corresponding node id in file naming. Therefore there is a possibility for file name collisions in
automatically chosen trace file names. For this reason, the file name convention is changed for protocol traces.

As previously mentioned, every node in the system will have a system-assigned node id. Since there is a one-to-one
correspondence between protocol instances and node instances we use the node id. Each interface has an interface
id relative to its protocol. We use the convention “<prefix>-n<node id>-i<interface id>.pcap” for trace file naming in
protocol helpers.

Therefore, by default, a pcap trace file created as a result of enabling tracing on interface 1 of the Ipv4 protocol of
node 21 using the prefix “prefix” would be “prefix-n21-il.pcap”.

You can always use the ns-3 object name service to make this more clear. For example, if you use the object name ser-
vice to assign the name “serverlpv4” to the Ptr<Ipv4> on node 21, the resulting pcap trace file name will automatically
become, “prefix-nserverlpv4-il.pcap”.

12.4. Using Trace Helpers 91

ns-3 Manual, Release ns-3-dev

12.4.4 Ascii Tracing Protocol Helpers

The behavior of the ASCII trace helpers is substantially similar to the pcap case. Take a look at src/network/
helper/trace-helper.h if you want to follow the discussion while looking at real code.

In this section we will be illustrating the methods as applied to the protocol Ipv4. To specify traces in similar
protocols, just substitute the appropriate type. For example, use a Ptr<Ipvé6> instead of a Ptr<Ipv4> and call
EnableAsciiIpvé instead of EnableAsciiIpvi4.

The class AsciiTraceHelperForIpv4 adds the high level functionality for using ASCII tracing to a protocol helper.
Each protocol that enables these methods must implement a single virtual method inherited from this class.:

virtual void EnableAsciiIpvé4Internal (Ptr<OutputStreamWrapper> stream, std::string,
—prefix,
Ptr<Ipv4> ipv4, uint32_t interface) = 0;

The signature of this method reflects the protocol- and interface-centric view of the situation at this level; and also
the fact that the helper may be writing to a shared output stream. All of the public methods inherited from class
PcapAndAsciiTraceHelperForIpv4 reduce to calling this single device- dependent implementation method. For
example, the lowest level ascii trace methods,:

void EnableAsciilIpv4 (std::string prefix, Ptr<Ipv4> ipv4, uint32_t interface);
void EnableAsciilpv4 (Ptr<OutputStreamWrapper> stream, Ptr<Ipv4> ipv4, uint32_t |
—interface);

will call the device implementation of EnableAsciiIpv4Internal directly, providing either the prefix or the
stream. All other public ascii tracing methods will build on these low-level functions to provide additional user-
level functionality. What this means to the user is that all device helpers in the system will have all of the ascii
trace methods available; and these methods will all work in the same way across protocols if the protocols implement
EnablAsciilpv4Internal correctly.

Ascii Tracing Device Helper Methods

void EnableAsciilpv4 (std::string prefix, Ptr<Ipv4> ipv4, uint32_t interface);
void EnableAsciilIpv4 (Ptr<OutputStreamWrapper> stream, Ptr<Ipv4> ipv4, uint32_t
—interface);

void EnableAsciilpv4 (std::string prefix, std::string ipv4Name, uint32_t interface);
void EnableAsciilIpv4 (Ptr<OutputStreamWrapper> stream, std::string ipv4Name, uint32_t
—interface);

void EnableAsciilIpv4 (std::string prefix, Ipv4InterfaceContainer c);
void EnableAsciiIpv4 (Ptr<OutputStreamWrapper> stream, Ipv4InterfaceContainer c);

void EnableAsciilIpv4 (std::string prefix, NodeContainer n);
void EnableAsciilIpv4 (Ptr<OutputStreamWrapper> stream, NodeContainer n);

void EnableAsciilIpv4 (std::string prefix, uint32_t nodeid, uint32_t deviceid);
void EnableAsciilIpv4 (Ptr<OutputStreamWrapper> stream, uint32_t nodeid, uint32_t
—interface);

void EnableAsciiIpv4All (std::string prefix);
void EnableAsciilpv4All (Ptr<OutputStreamWrapper> stream);

You are encouraged to peruse the Doxygen for class PcapAndAsciiHelperForIpv4 to find the details of these
methods; but to summarize ...

92 Chapter 12. Tracing

ns-3 Manual, Release ns-3-dev

There are twice as many methods available for ASCII tracing as there were for pcap tracing. This is because, in
addition to the pcap-style model where traces from each unique protocol/interface pair are written to a unique file, we
support a model in which trace information for many protocol/interface pairs is written to a common file. This means
that the <prefix>-n<node id>-<interface> file name generation mechanism is replaced by a mechanism to refer to a
common file; and the number of API methods is doubled to allow all combinations.

Just as in pcap tracing, you can enable ASCII tracing on a particular protocol/interface pair by providing a Pt r<Ipv4>
and an interface to an EnableAscii method. For example,:

Ptr<Ipv4d> ipv4;

helper.EnableAsciiIpv4 ("prefix", ipv4, 1);

In this case, no trace contexts are written to the ASCII trace file since they would be redundant. The system will pick
the file name to be created using the same rules as described in the pcap section, except that the file will have the suffix
“.tr” instead of “.pcap”.

If you want to enable ASCII tracing on more than one interface and have all traces sent to a single file, you can do that
as well by using an object to refer to a single file. We have already something similar to this in the “cwnd” example
above:

Ptr<Ipv4> protocoll = nodel->GetObject<Ipv4d> ();
Ptr<Ipv4> protocol2 = node2—->GetObject<Ipv4> ();

Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("trace-file-name.
—tr");

helper.EnableAsciiIpv4 (stream, protocoll, 1);
helper.EnableAsciilpv4 (stream, protocol2, 1);

In this case, trace contexts are written to the ASCII trace file since they are required to disambiguate traces from the
two interfaces. Note that since the user is completely specifying the file name, the string should include the “.tr” for
consistency.

You can enable ASCII tracing on a particular protocol by providing a std: :string representing an object name
service string to an EnablePcap method. The Ptr<Ipv4> is looked up from the name string. The <Node> in the
resulting filenames is implicit since there is a one-to-one correspondence between protocol instances and nodes, For
example,:

Names: :Add ("nodelIpv4" ...);
Names: :Add ("node2Ipv4"™ ...);

helper.EnableAsciiIpv4 ("prefix", "nodellpv4d", 1);
helper.EnableAsciiIpv4 ("prefix", "node2Ipv4", 1);

This would result in two files named “prefix-nnodellpv4-il.tr” and “prefix-nnode2Ipv4-il.tr” with traces for each
interface in the respective trace file. Since all of the EnableAscii functions are overloaded to take a stream wrapper,
you can use that form as well:

Names: :Add ("nodelIpv4" ...);
Names: :Add ("node2Ipv4"™ ...);

Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("trace-file-name.
—tr");

helper.EnableAsciilpv4 (stream, "nodelIpv4", 1);
helper.EnableAsciiIpv4 (stream, "node2Ipv4", 1);

12.4. Using Trace Helpers 93

ns-3 Manual, Release ns-3-dev

This would result in a single trace file called “trace-file-name.tr” that contains all of the trace events for both interfaces.
The events would be disambiguated by trace context strings.

You can enable ASCII tracing on a collection of protocol/interface pairs by providing an Ipv4InterfaceContainer.
For each protocol of the proper type (the same type as is managed by the device helper), tracing is enabled for the
corresponding interface. Again, the <Node> is implicit since there is a one-to-one correspondence between each
protocol and its node. For example,:

NodeContainer nodes;
NetDeviceContainer devices = deviceHelper.Install (nodes);
Ipv4AddressHelper ipv4;

ipvé4.SetBase ("10.1.1.0", "255.255.255.0");
Ipv4InterfaceContainer interfaces = ipv4.Assign (devices);

helper.EnableAsciilIpv4 ("prefix", interfaces);

This would result in a number of ASCII trace files being created, each of which follows the <prefix>-n<node id>-
i<interface>.tr convention. Combining all of the traces into a single file is accomplished similarly to the examples
above:

NodeContainer nodes;
NetDeviceContainer devices = deviceHelper.Install (nodes);

Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");

Ipv4InterfaceContainer interfaces = ipv4.Assign (devices);
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("trace-file-name.
—tr");

helper.EnableAsciilpv4 (stream, interfaces);

You can enable ASCII tracing on a collection of protocol/interface pairs by providing a NodeContainer. For each
Node in the NodeContainer the appropriate protocol is found. For each protocol, its interfaces are enumerated and
tracing is enabled on the resulting pairs. For example,:

NodeContainer nj;
helper.EnableAsciilpv4 ("prefix", n);

This would result in a number of ASCII trace files being created, each of which follows the <prefix>-<node id>-
<device id>.tr convention. Combining all of the traces into a single file is accomplished similarly to the examples
above:

You can enable pcap tracing on the basis of node ID and device ID as well. In this case, the node-id is translated to
a Ptr<Node> and the appropriate protocol is looked up in the node. The resulting protocol and interface are used to
specify the resulting trace source.:

helper.EnableAsciilpv4 ("prefix", 21, 1);

Of course, the traces can be combined into a single file as shown above.

Finally, you can enable ASCII tracing for all interfaces in the system, with associated protocol being the same type as
that managed by the device helper.:

94 Chapter 12. Tracing

ns-3 Manual, Release ns-3-dev

helper.EnableAsciiIpv4All ("prefix");

This would result in a number of ASCII trace files being created, one for every interface in the system related to
a protocol of the type managed by the helper. All of these files will follow the <prefix>-n<node id>-i<interface.tr
convention. Combining all of the traces into a single file is accomplished similarly to the examples above.

Ascii Tracing Device Helper Filename Selection

Implicit in the prefix-style method descriptions above is the construction of the complete filenames by the implemen-
tation method. By convention, ASCII traces in the ns-3 system are of the form “<prefix>-<node id>-<device id>.tr.”

As previously mentioned, every node in the system will have a system-assigned node id. Since there is a one-to-one
correspondence between protocols and nodes we use to node-id to identify the protocol identity. Every interface on a
given protocol will have an interface index (also called simply an interface) relative to its protocol. By default, then, an
ASCII trace file created as a result of enabling tracing on the first device of node 21, using the prefix “prefix”, would
be “prefix-n21-il.tr”. Use the prefix to disambiguate multiple protocols per node.

You can always use the ns-3 object name service to make this more clear. For example, if you use the object name
service to assign the name “serverIpv4” to the protocol on node 21, and also specify interface one, the resulting ASCII
trace file name will automatically become, “prefix-nserverlpv4-1.tr”.

12.5 Tracing implementation details

12.5. Tracing implementation details 95

ns-3 Manual, Release ns-3-dev

96

Chapter 12. Tracing

CHAPTER
THIRTEEN

DATA COLLECTION

This chapter describes the ns-3 Data Collection Framework (DCF), which provides capabilities to obtain data gener-
ated by models in the simulator, to perform on-line reduction and data processing, and to marshal raw or transformed
data into various output formats.

The framework presently supports standalone ns-3 runs that don’t rely on any external program execution control. The
objects provided by the DCF may be hooked to ns-3 trace sources to enable data processing.

The source code for the classes lives in the directory src/stats.

This chapter is organized as follows. First, an overview of the architecture is presented. Next, the helpers for these
classes are presented; this initial treatment should allow basic use of the data collection framework for many use cases.
Users who wish to produce output outside of the scope of the current helpers, or who wish to create their own data
collection objects, should read the remainder of the chapter, which goes into detail about all of the basic DCF object
types and provides low-level coding examples.

13.1 Design

The DCF consists of three basic classes:

* Probe is a mechanism to instrument and control the output of simulation data that is used to monitor interesting
events. It produces output in the form of one or more ns-3 trace sources. Probe objects are hooked up to one or
more trace sinks (called Collectors), which process samples on-line and prepare them for output.

* Collector consumes the data generated by one or more Probe objects. It performs transformations on the data,
such as normalization, reduction, and the computation of basic statistics. Collector objects do not produce data
that is directly output by the ns-3 run; instead, they output data downstream to another type of object, called
Aggregator, which performs that function. Typically, Collectors output their data in the form of trace sources as
well, allowing collectors to be chained in series.

» Aggregator is the end point of the data collected by a network of Probes and Collectors. The main responsibility
of the Aggregator is to marshal data and their corresponding metadata, into different output formats such as
plain text files, spreadsheet files, or databases.

All three of these classes provide the capability to dynamically turn themselves on or off throughout a simulation.

Any standalone ns-3 simulation run that uses the DCF will typically create at least one instance of each of the three
classes above.

The overall flow of data processing is depicted in Data Collection Framework overview. On the left side, a running
ns-3 simulation is depicted. In the course of running the simulation, data is made available by models through trace
sources, or via other means. The diagram depicts that probes can be connected to these trace sources to receive data
asynchronously, or probes can poll for data. Data is then passed to a collector object that transforms the data. Finally,
an aggregator can be connected to the outputs of the collector, to generate plots, files, or databases.

97

ns-3 Manual, Release ns-3-dev

(asynchronous)
trace sources

>Probe > Collector >Aggregato >

h Get raw Transform data Marshal data AR
(sync ronous) data into output
polling formats

Fig. 1: Data Collection Framework overview
(asynchronous)
trace source<
""" Probe Collector

Probe Aggregator
4——

l
(synchronous) Get raw Transform data Marshal data
polling data into output
; formats

Fig. 2: Data Collection Framework aggregation

files

4

databases

98

Chapter 13.

Data Collection

ns-3 Manual, Release ns-3-dev

A variation on the above figure is provided in Data Collection Framework aggregation. This second figure illustrates
that the DCF objects may be chained together in a manner that downstream objects take inputs from multiple upstream
objects. The figure conceptually shows that multiple probes may generate output that is fed into a single collector; as
an example, a collector that outputs a ratio of two counters would typically acquire each counter data from separate
probes. Multiple collectors can also feed into a single aggregator, which (as its name implies) may collect a number
of data streams for inclusion into a single plot, file, or database.

13.2 Data Collection Helpers

The full flexibility of the data collection framework is provided by the interconnection of probes, collectors, and
aggregators. Performing all of these interconnections leads to many configuration statements in user programs. For
ease of use, some of the most common operations can be combined and encapsulated in helper functions. In addition,
some statements involving ns-3 trace sources do not have Python bindings, due to limitations in the bindings.

13.2.1 Data Collection Helpers Overview

In this section, we provide an overview of some helper classes that have been created to ease the configuration of the
data collection framework for some common use cases. The helpers allow users to form common operations with
only a few statements in their C++ or Python programs. But, this ease of use comes at the cost of significantly less
flexibility than low-level configuration can provide, and the need to explicitly code support for new Probe types into
the helpers (to work around an issue described below).

The emphasis on the current helpers is to marshal data out of ns-3 trace sources into gnuplot plots or text files, without
a high degree of output customization or statistical processing (initially). Also, the use is constrained to the available
probe types in ns-3. Later sections of this documentation will go into more detail about creating new Probe types, as
well as details about hooking together Probes, Collectors, and Aggregators in custom arrangements.

To date, two Data Collection helpers have been implemented:
* GnuplotHelper
* FileHelper

13.2.2 GnuplotHelper

The GnuplotHelper is a helper class for producing output files used to make gnuplots. The overall goal is to provide
the ability for users to quickly make plots from data exported in ns-3 trace sources. By default, a minimal amount of
data transformation is performed; the objective is to generate plots with as few (default) configuration statements as
possible.

GnuplotHelper Overview

The GnuplotHelper will create 3 different files at the end of the simulation:
* A space separated gnuplot data file
* A gnuplot control file
* A shell script to generate the gnuplot

There are two configuration statements that are needed to produce plots. The first statement configures the plot
(filename, title, legends, and output type, where the output type defaults to PNG if unspecified):

13.2. Data Collection Helpers 99

ns-3 Manual, Release ns-3-dev

void ConfigurePlot (const std::string &outputFileNameWithoutExtension,
const std::string &title,
const std::string &xLegend,
const std::string &yLegend,
const std::string &terminalType = ".png");

The second statement hooks the trace source of interest:

void PlotProbe (const std::string &typeld,
const std::string &path,
const std::string &probeTraceSource,
const std::string &title);

The arguments are as follows:
¢ typeld: The ns-3 Typeld of the Probe
* path: The path in the ns-3 configuration namespace to one or more trace sources
 probeTraceSource: Which output of the probe (itself a trace source) should be plotted
« title: The title to associate with the dataset(s) (in the gnuplot legend)

A variant on the PlotProbe above is to specify a fifth optional argument that controls where in the plot the key (legend)
is placed.

A fully worked example (from seventh. cc) is shown below:

// Create the gnuplot helper.
GnuplotHelper plotHelper;

// Configure the plot.
// Configure the plot. The first argument is the file name prefix
// for the output files generated. The second, third, and fourth
// arguments are, respectively, the plot title, x—-axis, and y-axis labels
plotHelper.ConfigurePlot ("seventh-packet-byte-count",
"Packet Byte Count vs. Time",
"Time (Seconds)",
"Packet Byte Count",
"png");

// Specify the probe type, trace source path (in configuration namespace), and
// probe output trace source ("OutputBytes") to plot. The fourth argument
// specifies the name of the data series label on the plot. The last
// argument formats the plot by specifying where the key should be placed.
plotHelper.PlotProbe (probeType,

tracePath,

"OutputBytes",

"Packet Byte Count",

GnuplotAggregator: :KEY_BELOW) ;

In this example, the probeType and tracePath are as follows (for IPv4):

probeType = "ns3::Ipv4PacketProbe";
tracePath = "/NodeList/*/$ns3::Ipv4L3Protocol/Tx";

The probeType is a key parameter for this helper to work. This Typeld must be registered in the system, and the
signature on the Probe’s trace sink must match that of the trace source it is being hooked to. Probe types are pre-
defined for a number of data types corresponding to ns-3 traced values, and for a few other trace source signatures
such as the “Tx’ trace source of ns3: : Ipv4L3Protocol class.

100 Chapter 13. Data Collection

ns-3 Manual, Release ns-3-dev

Note that the trace source path specified may contain wildcards. In this case, multiple datasets are plotted on one plot;
one for each matched path.

The main output produced will be three files:

seventh-packet-byte-count.dat
seventh-packet-byte—-count.plt
seventh-packet-byte-count.sh

At this point, users can either hand edit the .plt file for further customizations, or just run it through gnuplot. Running
sh seventh-packet-byte-count.sh simply runs the plot through gnuplot, as shown below.

Paclcet Byte Count vs, Time

Probe Path: /Modelist/*/$ns3:: lpv4L3Protocol /[Tx
6':”:' T T T T T T T T

500 F .

400 |]

300 .

200 ¢ 1

Paclet Byte Count

100 + 1

C' 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Time (Seconds)

Packet Byte Count-0 —+— Paclet Byte Count-1 ——«—

Fig. 3: 2-D Gnuplot Created by seventh.cc Example.

It can be seen that the key elements (legend, title, legend placement, xlabel, ylabel, and path for the data) are all placed
on the plot. Since there were two matches to the configuration path provided, the two data series are shown:

* Packet Byte Count-0 corresponds to /NodeList/0/$ns3::Ipv4L3Protocol/Tx
¢ Packet Byte Count-1 corresponds to /NodeList/1/$ns3::Ipv4L3Protocol/Tx

GnuplotHelper ConfigurePlot

The GnuplotHelper’s ConfigurePlot () function can be used to configure plots.

It has the following prototype:

13.2. Data Collection Helpers 101

ns-3 Manual, Release ns-3-dev

void ConfigurePlot (const std::string &outputFileNameWithoutExtension,
const std::string &title,
const std::string &xLegend,
const std::string &yLegend,
const std::string &terminalType = ".png");
It has the following arguments:
Argument Description
outputFileNameWithoutExten- | Name of gnuplot related files to write with no extension.
sion
title Plot title string to use for this plot.
xLegend The legend for the x horizontal axis.
yLegend The legend for the y vertical axis.
terminal Type Terminal type setting string for output. The default terminal type is
“png”

The GnuplotHelper’s ConfigurePlot () function configures plot related parameters for this gnuplot helper so that it
will create a space separated gnuplot data file named outputFileNameWithoutExtension + “.dat”, a gnuplot control file
named outputFileNameWithoutExtension + “.plt”, and a shell script to generate the gnuplot named outputFileName-
WithoutExtension + “.sh”.

An example of how to use this function can be seen in the seventh.cc code described above where it was used as
follows:

plotHelper.ConfigurePlot ("seventh-packet-byte-count",

"Packet Byte Count vs. Time",
"Time (Seconds)",
"Packet Byte Count",

"png");

GnuplotHelper PlotProbe

The GnuplotHelper’s P1lotProbe () function can be used to plot values generated by probes.

It has the following prototype:

void PlotProbe (const std::string &typeld,
const std::string &path,
const std::string &probeTraceSource,
const std::string &title,

enum GnuplotAggregator::KeyLocation keyLocation =
—GnuplotAggregator: :KEY_INSIDE) ;

It has the following arguments:

Argument Description

typeld The type ID for the probe created by this helper.

path Config path to access the trace source.

probeTraceSource | The probe trace source to access.

title The title to be associated to this dataset

keyLocation The location of the key in the plot. The default location is inside.

102 Chapter 13. Data Collection

ns-3 Manual, Release ns-3-dev

The GnuplotHelper’s PlotProbe () function plots a dataset generated by hooking the ns-3 trace source with a probe
created by the helper, and then plotting the values from the probeTraceSource. The dataset will have the provided title,
and will consist of the ‘newValue’ at each timestamp.

If the config path has more than one match in the system because there is a wildcard, then one dataset for each match
will be plotted. The dataset titles will be suffixed with the matched characters for each of the wildcards in the config
path, separated by spaces. For example, if the proposed dataset title is the string “bytes”, and there are two wildcards
in the path, then dataset titles like “bytes-0 0 or “bytes-12 9” will be possible as labels for the datasets that are plotted.

An example of how to use this function can be seen in the seventh. cc code described above where it was used (with
variable substitution) as follows:

plotHelper.PlotProbe ("ns3::Ipv4PacketProbe",
"/NodeList/*/$ns3::Ipv4L3Protocol/Tx",
"OutputBytes",
"Packet Byte Count",
GnuplotAggregator: :KEY_BELOW) ;

Other Examples

Gnuplot Helper Example

A slightly simpler example than the seventh.cc example can be found in src/stats/examples/
gnuplot-helper—-example.cc. The following 2-D gnuplot was created using the example.

In this example, there is an Emitter object that increments its counter according to a Poisson process and then emits
the counter’s value as a trace source.

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names: :Add ("/Names/Emitter", emitter);

Note that because there are no wildcards in the path used below, only 1 datastream was drawn in the plot. This single
datastream in the plot is simply labeled “Emitter Count”, with no extra suffixes like one would see if there were
wildcards in the path.

// Create the gnuplot helper.
GnuplotHelper plotHelper;

// Configure the plot.

plotHelper.ConfigurePlot ("gnuplot-helper—-example",
"Emitter Counts vs. Time",
"Time (Seconds)",
"Emitter Count",

"png");

// Plot the values generated by the probe. The path that we provide
// helps to disambiguate the source of the trace.
plotHelper.PlotProbe ("ns3::Uinteger32Probe",

"/Names/Emitter/Counter",

"Output",

"Emitter Count",

GnuplotAggregator: :KEY_INSIDE) ;

13.2. Data Collection Helpers 103

ns-3 Manual, Release ns-3-dev

Emitter Count

Emitter Counts wvs. Time

Probe Path: /Mames/Probe/Output
12D T T T T T

" Emitter Count ———

100

80

60

40

20

|:| 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 B0 70 80 18] 100

Time (Seconds)

Fig. 4: 2-D Gnuplot Created by gnuplot-helper-example.cc Example.

104

Chapter 13. Data Collection

ns-3 Manual, Release ns-3-dev

13.2.3 FileHelper

The FileHelper is a helper class used to put data values into a file. The overall goal is to provide the ability for
users to quickly make formatted text files from data exported in ns-3 trace sources. By default, a minimal amount of
data transformation is performed; the objective is to generate files with as few (default) configuration statements as
possible.

FileHelper Overview

The FileHelper will create 1 or more text files at the end of the simulation.
The FileHelper can create 4 different types of text files:
» Formatted
* Space separated (the default)
* Comma separated
 Tab separated
Formatted files use C-style format strings and the sprintf() function to print their values in the file being written.

The following text file with 2 columns of formatted values named seventh-packet-byte-count-0.txt was cre-
ated using more new code that was added to the original ns-3 Tutorial example’s code. Only the first 10 lines of this
file are shown here for brevity.

Time (Seconds) = 1.000e+00 Packet Byte Count = 40

Time (Seconds) = 1.004e+00 Packet Byte Count = 40

Time (Seconds) = 1.004e+00 Packet Byte Count = 576
Time (Seconds) = 1.009e+00 Packet Byte Count = 576
Time (Seconds) = 1.009e+00 Packet Byte Count = 576
Time (Seconds) = 1.015e+00 Packet Byte Count = 512
Time (Seconds) = 1.017e+00 Packet Byte Count = 576
Time (Seconds) = 1.017e+00 Packet Byte Count = 544
Time (Seconds) = 1.025e+00 Packet Byte Count = 576
Time (Seconds) = 1.025e+00 Packet Byte Count = 544

The following different text file with 2 columns of formatted values named seventh-packet-byte-count-1.txt
was also created using the same new code that was added to the original ns-3 Tutorial example’s code. Only the first
10 lines of this file are shown here for brevity.

Time (Seconds) = 1.002e+00 Packet Byte Count = 40
Time (Seconds) = 1.007e+00 Packet Byte Count = 40
Time (Seconds) = 1.013e+00 Packet Byte Count = 40
Time (Seconds) = 1.020e+00 Packet Byte Count = 40
Time (Seconds) = 1.028e+00 Packet Byte Count = 40
Time (Seconds) = 1.036e+00 Packet Byte Count = 40
Time (Seconds) = 1.045e+00 Packet Byte Count = 40
Time (Seconds) = 1.053e+00 Packet Byte Count = 40
Time (Seconds) = 1.061e+00 Packet Byte Count = 40
Time (Seconds) = 1.069e+00 Packet Byte Count = 40

The new code that was added to produce the two text files is below. More details about this API will be covered in a
later section.

13.2. Data Collection Helpers 105

ns-3 Manual, Release ns-3-dev

Note that because there were 2 matches for the wildcard in the path, 2 separate text files were created. The first text
file, which is named “seventh-packet-byte-count-0.txt”, corresponds to the wildcard match with the “*” replaced with
“0”. The second text file, which is named “seventh-packet-byte-count-1.txt”, corresponds to the wildcard match with
the “*” replaced with “1”. Also, note that the function call to WriteProbe () will give an error message if there are
no matches for a path that contains wildcards.

// Create the file helper.
FileHelper fileHelper;

// Configure the file to be written.
fileHelper.ConfigureFile ("seventh-packet-byte-count",
FileAggregator: :FORMATTED) ;

// Set the labels for this formatted output file.
fileHelper.Set2dFormat ("Time (Seconds) = %.3e\tPacket Byte Count = %.0f");

// Write the values generated by the probe.

fileHelper.WriteProbe ("ns3::Ipv4PacketProbe",
"/NodeList/+/$ns3::Ipv4L3Protocol/Tx",
"OutputBytes") ;

FileHelper ConfigureFile

The FileHelper’s configureFile () function can be used to configure text files.

It has the following prototype:

void ConfigureFile (const std::string &outputFileNameWithoutExtension,
enum FileAggregator::FileType fileType = FileAggregator: :SPACE_
—SEPARATED) ;

It has the following arguments:

Argument Description
outputFileNameWithoutExtension | Name of output file to write with no extension.
fileType Type of file to write. The default type of file is space separated.

The FileHelper’s ConfigureFile () function configures text file related parameters for the file helper so that it will
create a file named outputFileNameWithoutExtension plus possible extra information from wildcard matches plus
“.txt” with values printed as specified by fileType. The default file type is space-separated.

An example of how to use this function can be seen in the seventh. cc code described above where it was used as
follows:

fileHelper.ConfigureFile ("seventh-packet-byte-count",
FileAggregator: :FORMATTED) ;
FileHelper WriteProbe

The FileHelper’s writeProbe () function can be used to write values generated by probes to text files.

It has the following prototype:

106 Chapter 13. Data Collection

ns-3 Manual, Release ns-3-dev

void WriteProbe (const std::string &typeld,
const std::string &path,
const std::string &probeTraceSource);

It has the following arguments:

Argument Description

typeld The type ID for the probe to be created.
path Config path to access the trace source.
probeTraceSource | The probe trace source to access.

The FileHelper’s WriteProbe () function creates output text files generated by hooking the ns-3 trace source with
a probe created by the helper, and then writing the values from the probeTraceSource. The output file names will
have the text stored in the member variable m_outputFileNameWithoutExtension plus “.txt”, and will consist of the
‘new Value’ at each timestamp.

If the config path has more than one match in the system because there is a wildcard, then one output file for each
match will be created. The output file names will contain the text in m_outputFileNameWithoutExtension plus the
matched characters for each of the wildcards in the config path, separated by dashes, plus “.txt”. For example, if
the value in m_outputFileNameWithoutExtension is the string “packet-byte-count”, and there are two wildcards in the
path, then output file names like “packet-byte-count-0-0.txt” or “packet-byte-count-12-9.txt” will be possible as names
for the files that will be created.

An example of how to use this function can be seen in the seventh.cc code described above where it was used as
follows:

fileHelper.WriteProbe ("ns3::Ipv4PacketProbe",
"/NodeList/*/$ns3::Ipv4L3Protocol/Tx",
"OutputBytes");

Other Examples

File Helper Example

A slightly simpler example than the seventh.cc example can be found in src/stats/examples/
file-helper-example.cc. This example only uses the FileHelper.

The following text file with 2 columns of formatted values named file-helper-example.txt was created using
the example. Only the first 10 lines of this file are shown here for brevity.

Time (Seconds) = 0.203 Count =1
Time (Seconds) = 0.702 Count = 2
Time (Seconds) = 1.404 Count = 3
Time (Seconds) = 2.368 Count = 4
Time (Seconds) = 3.364 Count = 5
Time (Seconds) = 3.579 Count = 6
Time (Seconds) = 5.873 Count = 7
Time (Seconds) = 6.410 Count = 8
Time (Seconds) = 6.472 Count = 9

In this example, there is an Emitter object that increments its counter according to a Poisson process and then emits
the counter’s value as a trace source.

13.2. Data Collection Helpers 107

ns-3 Manual, Release ns-3-dev

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names: :Add ("/Names/Emitter", emitter);

Note that because there are no wildcards in the path used below, only 1 text file was created. This single text file is
simply named “file-helper-example.txt”, with no extra suffixes like you would see if there were wildcards in the path.

// Create the file helper.
FileHelper fileHelper;

// Configure the file to be written.
fileHelper.ConfigureFile ("file-helper-example",
FileAggregator: :FORMATTED) ;

// Set the labels for this formatted output file.
fileHelper.Set2dFormat ("Time (Seconds) = %.3e\tCount = %.0f");

// Write the values generated by the probe. The path that we
// provide helps to disambiguate the source of the trace.
fileHelper.WriteProbe ("ns3::Uinteger32Probe",
"/Names/Emitter/Counter",
"Output");

13.2.4 Scope and Limitations

Currently, only these Probes have been implemented and connected to the GnuplotHelper and to the FileHelper:
* BooleanProbe
* DoubleProbe
 Uinteger8Probe
 Uinteger16Probe
* Uinteger32Probe
* TimeProbe
 PacketProbe
* ApplicationPacketProbe
¢ Ipv4PacketProbe
These Probes, therefore, are the only Typelds available to be used in P1lotProbe () and WriteProbe ().

In the next few sections, we cover each of the fundamental object types (Probe, Collector, and Aggregator) in more
detail, and show how they can be connected together using lower-level API.

13.3 Probes

This section details the functionalities provided by the Probe class to an ns-3 simulation, and gives examples on how
to code them in a program. This section is meant for users interested in developing simulations with the ns-3 tools and
using the Data Collection Framework, of which the Probe class is a part, to generate data output with their simulation’s
results.

108 Chapter 13. Data Collection

ns-3 Manual, Release ns-3-dev

13.3.1 Probe Overview

A Probe object is supposed to be connected to a variable from the simulation whose values throughout the experiment
are relevant to the user. The Probe will record what were values assumed by the variable throughout the simulation and
pass such data to another member of the Data Collection Framework. While it is out of this section’s scope to discuss
what happens after the Probe produces its output, it is sufficient to say that, by the end of the simulation, the user will
have detailed information about what values were stored inside the variable being probed during the simulation.

Typically, a Probe is connected to an ns-3 trace source. In this manner, whenever the trace source exports a new value,
the Probe consumes the value (and exports it downstream to another object via its own trace source).

The Probe can be thought of as kind of a filter on trace sources. The main reasons for possibly hooking to a Probe
rather than directly to a trace source are as follows:

* Probes may be dynamically turned on and off during the simulation with calls to Enable () and Disable ().
For example, the outputting of data may be turned off during the simulation warmup phase.

* Probes may perform operations on the data to extract values from more complicated structures; for instance,
outputting the packet size value from a received ns3::Packet.

* Probes register a name in the ns3::Config namespace (using Names: : Add ()) so that other objects may refer
to them.

* Probes provide a static method that allows one to manipulate a Probe by name, such as what is done in
ns2measure [Cic00]

Stat::put ("my_metric", ID, sample);

The ns-3 equivalent of the above ns2measure code is, e.g.

DoubleProbe: :SetValueByPath ("/path/to/probe", sample);

Creation

Note that a Probe base class object can not be created because it is an abstract base class, i.e. it has pure virtual
functions that have not been implemented. An object of type DoubleProbe, which is a subclass of the Probe class, will
be created here to show what needs to be done.

One declares a DoubleProbe in dynamic memory by using the smart pointer class (Ptr<T>). To create a DoubleProbe
in dynamic memory with smart pointers, one just needs to call the ns-3 method CreateObject ():

Ptr<DoubleProbe> myprobe = CreateObject<DoubleProbe> ();
The declaration above creates DoubleProbes using the default values for its attributes. There are four attributes in the
DoubleProbe class; two in the base class object DataCollectionObject, and two in the Probe base class:

* “Name” (DataCollectionObject), a StringValue

* “Enabled” (DataCollectionObject), a BooleanValue

e “Start” (Probe), a TimeValue

e “Stop” (Probe), a TimeValue

One can set such attributes at object creation by using the following method:

Ptr<DoubleProbe> myprobe = CreateObjectWithAttributes<DoubleProbe> (
"Name", StringValue ("myprobe"),
"Enabled", BooleanValue (false),
(continues on next page)

13.3. Probes 109

ns-3 Manual, Release ns-3-dev

(continued from previous page)

"Start", TimeValue (Seconds (100.0)),
"Stop", TimeValue (Seconds (1000.0)));

Start and Stop are Time variables which determine the interval of action of the Probe. The Probe will only output data
if the current time of the Simulation is inside of that interval. The special time value of 0 seconds for Stop will disable
this attribute (i.e. keep the Probe on for the whole simulation). Enabled is a flag that turns the Probe on or off, and
must be set to true for the Probe to export data. The Name is the object’s name in the DCF framework.

Importing and exporting data

ns-3 trace sources are strongly typed, so the mechanisms for hooking Probes to a trace source and for exporting data
belong to its subclasses. For instance, the default distribution of ns-3 provides a class DoubleProbe that is designed to
hook to a trace source exporting a double value. We’ll next detail the operation of the DoubleProbe, and then discuss
how other Probe classes may be defined by the user.

13.3.2 DoubleProbe Overview

The DoubleProbe connects to a double-valued #ns-3 trace source, and itself exports a different double-valued ns-3 trace
source.

The following code, drawn from src/stats/examples/double-probe—example.cc, shows the basic operations
of plumbing the DoubleProbe into a simulation, where it is probing a Counter exported by an emitter object (class
Emitter).

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names: :Add ("/Names/Emitter", emitter);

Ptr<DoubleProbe> probel = CreateObject<DoubleProbe> ();

// Connect the probe to the emitter's Counter
bool connected = probel->ConnectByObject ("Counter", emitter);

The following code is probing the same Counter exported by the same emitter object. This DoubleProbe, however,
is using a path in the configuration namespace to make the connection. Note that the emitter registered itself in the
configuration namespace after it was created; otherwise, the ConnectByPath would not work.

Ptr<DoubleProbe> probe2 = CreateObject<DoubleProbe> ();

// Note, no return value is checked here
probe2->ConnectByPath ("/Names/Emitter/Counter");

The next DoubleProbe shown that is shown below will have its value set using its path in the configuration namespace.
Note that this time the DoubleProbe registered itself in the configuration namespace after it was created.

Ptr<DoubleProbe> probe3 = CreateObject<DoubleProbe> ();
probe3->SetName ("StaticallyAccessedProbe");

// We must add it to the config database
Names: :Add ("/Names/Probes", probe3->GetName (), probe3);

The emitter’s Count() function is now able to set the value for this DoubleProbe as follows:

110 Chapter 13. Data Collection

ns-3 Manual, Release ns-3-dev

void
Emitter: :Count (void)

{

m_counter += 1.0;
DoubleProbe: :SetValueByPath ("/Names/StaticallyAccessedProbe", m_counter);

The above example shows how the code calling the Probe does not have to have an explicit reference to the Probe,
but can direct the value setting through the Config namespace. This is similar in functionality to the Stat::Put method
introduced by ns2measure paper [Cic06], and allows users to temporarily insert Probe statements like printf statements
within existing ns-3 models. Note that in order to be able to use the DoubleProbe in this example like this, 2 things
were necessary:

1. the stats module header file was included in the example .cc file
2. the example was made dependent on the stats module in its wscript file.
Analogous things need to be done in order to add other Probes in other places in the ns-3 code base.

The values for the DoubleProbe can also be set using the function DoubleProbe::SetValue(), while the values for the
DoubleProbe can be gotten using the function DoubleProbe::GetValue().

The DoubleProbe exports double values in its “Output” trace source; a downstream object can hook a trace sink
(NotifyViaProbe) to this as follows:

connected = probel->TraceConnect ("Output", probel->GetName (), MakeCallback (&
—NotifyViaProbe));

13.3.3 Other probes

Besides the DoubleProbe, the following Probes are also available:
 Uinteger8Probe connects to an ns-3 trace source exporting an uint8_t.
» Uinteger16Probe connects to an ns-3 trace source exporting an uint16_t.

* Uinteger32Probe connects to an ns-3 trace source exporting an uint32_t.

PacketProbe connects to an ns-3 trace source exporting a packet.
* ApplicationPacketProbe connects to an ns-3 trace source exporting a packet and a socket address.

* Ipv4PacketProbe connects to an ns-3 trace source exporting a packet, an IPv4 object, and an interface.

13.3.4 Creating new Probe types

To create a new Probe type, you need to perform the following steps:
* Be sure that your new Probe class is derived from the Probe base class.

* Be sure that the pure virtual functions that your new Probe class inherits from the Probe base class are imple-
mented.

* Find an existing Probe class that uses a trace source that is closest in type to the type of trace source your Probe
will be using.

* Copy that existing Probe class’s header file (.h) and implementation file (.cc) to two new files with names
matching your new Probe.

13.3. Probes 111

ns-3 Manual, Release ns-3-dev

* Replace the types, arguments, and variables in the copied files with the appropriate type for your Probe.

* Make necessary modifications to make the code compile and to make it behave as you would like.

13.3.5 Examples

Two examples will be discussed in detail here:
* Double Probe Example
» [Pv4 Packet Plot Example

Double Probe Example

The double probe example has been discussed previously. The example program can be found in src/stats/
examples/double-probe-example.cc. To summarize what occurs in this program, there is an emitter that exports
a counter that increments according to a Poisson process. In particular, two ways of emitting data are shown:

1. through a traced variable hooked to one Probe:

TracedValue<double> m_counter; // normally this would be integer type

2. through a counter whose value is posted to a second Probe, referenced by its name in the Config system:

void

Emitter::Count (void)

{
NS_LOG_FUNCTION (this);
NS_LOG_DEBUG ("Counting at " << Simulator::Now () .GetSeconds ());
m_counter += 1.0;
DoubleProbe: :SetValueByPath ("/Names/StaticallyAccessedProbe", m_counter);
Simulator::Schedule (Seconds (m_var->GetValue ()), &Emitter::Count, this);

Let’s look at the Probe more carefully. Probes can receive their values in a multiple ways:
1. by the Probe accessing the trace source directly and connecting a trace sink to it
2. by the Probe accessing the trace source through the config namespace and connecting a trace sink to it
3. by the calling code explicitly calling the Probe’s SetValue() method
4. by the calling code explicitly calling SetValueByPath (“/path/through/Config/namespace”’, ...)

The first two techniques are expected to be the most common. Also in the example, the hooking of a normal callback
function is shown, as is typically done in ns-3. This callback function is not associated with a Probe object. We’ll call
this case 0) below.

// This is a function to test hooking a raw function to the trace source
void
NotifyViaTraceSource (std::string context, double oldVal, double newVal)
{
NS_LOG_DEBUG ("context: " << context << " old " << oldVal << " new " << newVal);

First, the emitter needs to be setup:

112 Chapter 13. Data Collection

ns-3 Manual, Release ns-3-dev

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names: :Add ("/Names/Emitter", emitter);

// The Emitter object is not associated with an ns-3 node, so

// it won't get started automatically, so we need to do this ourselves

Simulator::Schedule (Seconds (0.0), &Emitter::Start, emitter);

The various DoubleProbes interact with the emitter in the example as shown below.
Case 0):

// The below shows typical functionality without a probe
// (connect a sink function to a trace source)

//

connected = emitter->TraceConnect ("Counter", "sample context",
— (&NotifyViaTraceSource));
NS_ASSERT_MSG (connected, "Trace source not connected");

case 1):

//

// Probel will be hooked directly to the Emitter trace source object

/7

// probel will be hooked to the Emitter trace source
Ptr<DoubleProbe> probel = CreateObject<DoubleProbe> ();

// the probe's name can serve as 1its context in the tracing
probel->SetName ("ObjectProbe™);

// Connect the probe to the emitter's Counter
connected = probel->ConnectByObject ("Counter", emitter);

NS_ASSERT_MSG (connected, "Trace source not connected to probel");

case 2):

/7
// Probe2 will be hooked to the Emitter trace source object by
// accessing it by path name in the Config database

//

// Create another similar probe; this will hook up via a Config path

Ptr<DoubleProbe> probe2 = CreateObject<DoubleProbe> ();
probe2->SetName ("PathProbe");

// Note, no return value 1is checked here
probe2->ConnectByPath ("/Names/Emitter/Counter");

case 4) (case 3 is not shown in this example):

//

// Probe3 will be called by the emitter directly through the
// static method SetValueByPath().

//

Ptr<DoubleProbe> probe3 = CreateObject<DoubleProbe> ();
probe3->SetName ("StaticallyAccessedProbe");

// We must add it to the config database

Names: :Add ("/Names/Probes", probe3->GetName (), probe3);

MakeCallback,

13.3. Probes

113

ns-3 Manual, Release ns-3-dev

And finally, the example shows how the probes can be hooked to generate output:

// The probe itself should generate output. The context that we provide
// to this probe (in this case, the probe name) will help to disambiguate
// the source of the trace
connected = probe3->TraceConnect ("Output",
"/Names/Probes/StaticallyAccessedProbe/
—Output",
MakeCallback (&NotifyViaProbe));
NS_ASSERT_MSG (connected, "Trace source not .. connected to probe3 Output");

The following callback is hooked to the Probe in this example for illustrative purposes; normally, the Probe would be
hooked to a Collector object.

// This 1is a function to test hooking it to the probe output

void

NotifyViaProbe (std::string context, double oldvVal, double newVal)
{

NS_LOG_DEBUG ("context: " << context << " old " << oldVal << " new " << newVal);

IPv4 Packet Plot Example

The IPv4 packet plot example is based on the fifth.cc example from the ns-3 Tutorial. It can be found in src/stats/
examples/ipvd-packet-plot—-example.cc

node 0 node 1
o + o —— +
| ns—-3 TCP | | ns—-3 TCP |
fom + o —— +
| 10.1.1.1 | \ 10.1.1.2 \
fom + o +
| point-to-point | | point-to-point |
o + o —— +

\ |
o +

We’ll just look at the Probe, as it illustrates that Probes may also unpack values from structures (in this case, packets)
and report those values as trace source outputs, rather than just passing through the same type of data.

There are other aspects of this example that will be explained later in the documentation. The two types of data that
are exported are the packet itself (Output) and a count of the number of bytes in the packet (OutputBytes).

TypeIld
Ipv4PacketProbe: :GetTypeld ()
{
static TypeId tid = TypelId ("ns3::Ipv4PacketProbe™)

.SetParent<Probe> ()
.AddConstructor<Ipv4PacketProbe> ()
.AddTraceSource ("Output",

"The packet plus its IPv4 object and interface that serve as,
—the output for this probe",
MakeTraceSourceAccessor (&Ipv4PacketProbe::m_output))
.AddTraceSource ("OutputBytes",
"The number of bytes in the packet",
MakeTraceSourceAccessor (&Ipv4PacketProbe::m_outputBytes))

(continues on next page)

114 Chapter 13. Data Collection

ns-3 Manual, Release ns-3-dev

(continued from previous page)

7
return tid;

When the Probe’s trace sink gets a packet, if the Probe is enabled, then it will output the packet on its Qutput trace
source, but it will also output the number of bytes on the OutputBytes trace source.

void
Ipv4PacketProbe: :TraceSink (Ptr<const Packet> packet, Ptr<Ipv4> ipv4, uint32_t_
—interface)
{
NS_LOG_FUNCTION (this << packet << ipv4 << interface);
if (IsEnabled ())
{

m_packet = packet;
m_ipv4 = ipv4;
m_interface = interface;

m_output (packet, ipv4, interface);

uint32_t packetSizeNew = packet->GetSize ();
m_outputBytes (m_packetSizeOld, packetSizeNew);
m_packetSizeOld = packetSizeNew;

13.3.6 References

13.4 Collectors

This section is a placeholder to detail the functionalities provided by the Collector class to an ns-3 simulation, and
gives examples on how to code them in a program.

Note: As of ns-3.18, Collectors are still under development and not yet provided as part of the framework.

13.5 Aggregators

This section details the functionalities provided by the Aggregator class to an ns-3 simulation. This section is meant
for users interested in developing simulations with the ns-3 tools and using the Data Collection Framework, of which
the Aggregator class is a part, to generate data output with their simulation’s results.

13.5.1 Aggregator Overview

An Aggregator object is supposed to be hooked to one or more trace sources in order to receive input. Aggregators are
the end point of the data collected by the network of Probes and Collectors during the simulation. It is the Aggregator’s
job to take these values and transform them into their final output format such as plain text files, spreadsheet files, plots,
or databases.

Typically, an aggregator is connected to one or more Collectors. In this manner, whenever the Collectors’ trace sources
export new values, the Aggregator can process the value so that it can be used in the final output format where the data
values will reside after the simulation.

13.4. Collectors 115

ns-3 Manual, Release ns-3-dev

Note the following about Aggregators:

* Aggregators may be dynamically turned on and off during the simulation with calls to Enable () and
Disable (). For example, the aggregating of data may be turned off during the simulation warmup phase,
which means those values won’t be included in the final output medium.

* Aggregators receive data from Collectors via callbacks. When a Collector is associated to an aggregator, a call
to TraceConnect is made to establish the Aggregator’s trace sink method as a callback.

To date, two Aggregators have been implemented:
* GnuplotAggregator
* FileAggregator

13.5.2 GnuplotAggregator

The GnuplotAggregator produces output files used to make gnuplots.

The GnuplotAggregator will create 3 different files at the end of the simulation:
* A space separated gnuplot data file
* A gnuplot control file

* A shell script to generate the gnuplot

Creation

An object of type GnuplotAggregator will be created here to show what needs to be done.

One declares a GnuplotAggregator in dynamic memory by using the smart pointer class (Ptr<T>). To create a Gnu-
plotAggregator in dynamic memory with smart pointers, one just needs to call the ns-3 method CreateObject ().
The following code from src/stats/examples/gnuplot-aggregator—example.cc shows how to do this:

string fileNameWithoutExtension = "gnuplot—-aggregator";

// Create an aggregator.
Ptr<GnuplotAggregator> aggregator =
CreateObject<GnuplotAggregator> (fileNameWithoutExtension);

The first argument for the constructor, fileNameWithoutExtension, is the name of the gnuplot related files to write with
no extension. This GnuplotAggregator will create a space separated gnuplot data file named “gnuplot-aggregator.dat”,
a gnuplot control file named “gnuplot-aggregator.plt”, and a shell script to generate the gnuplot named + “gnuplot-
aggregator.sh”.

The gnuplot that is created can have its key in 4 different locations:
* No key
» Key inside the plot (the default)
» Key above the plot
* Key below the plot

The following gnuplot key location enum values are allowed to specify the key’s position:

116 Chapter 13. Data Collection

ns-3 Manual, Release ns-3-dev

enum KeyLocation {
NO_KEY,
KEY_INSIDE,
KEY_ABOVE,
KEY_BELOW
i
If it was desired to have the key below rather than the default position of inside, then you could do the following.

aggregator->SetKeyLocation (GnuplotAggregator: :KEY_BELOW) ;

Examples

One example will be discussed in detail here:

¢ Gnuplot Aggregator Example

Gnuplot Aggregator Example

An example that exercises the GnuplotAggregator can be found in src/stats/examples/

gnuplot—-aggregator—-example.cc
The following 2-D gnuplot was created using the example.

This code from the example shows how to construct the GnuplotAggregator as was discussed above.

void Create2dPlot ()
{

using namespace std;

string fileNameWithoutExtension = "gnuplot-aggregator";
string plotTitle = "Gnuplot Aggregator Plot";
string plotXAxisHeading = "Time (seconds)";

string plotYAxisHeading = "Double Values";

string plotDatasetLabel = "Data Values";

string datasetContext = "Dataset/Context/String";

// Create an aggregator.
Ptr<GnuplotAggregator> aggregator =
CreateObject<GnuplotAggregator> (fileNameWithoutExtension);

Various GnuplotAggregator attributes are set including the 2-D dataset that will be plotted.

// Set the aggregator's properties.

aggregator->SetTerminal ("png");

aggregator->SetTitle (plotTitle);

aggregator->SetLegend (plotXAxisHeading, plotYAxisHeading);

// Add a data set to the aggregator.
aggregator->Add2dDataset (datasetContext, plotDatasetLabel);

// aggregator must be turned on
aggregator->Enable ();

Next, the 2-D values are calculated, and each one is individually written to the GnuplotAggregator using the

Write2d () function.

13.5. Aggregators

117

ns-3 Manual, Release ns-3-dev

Double Values

25

20

15

10

Gnuplot Aggregator Plot

I'jata ‘u’alue's

0

Time (seconds)

Fig. 5: 2-D Gnuplot Created by gnuplot-aggregator-example.cc Example.

118

Chapter 13. Data Collection

ns-3 Manual, Release ns-3-dev

double time;
double value;

// Create the 2-D dataset.
for (time = -5.0; time <= +5.0; time += 1.0)
{
// Calculate the 2-D curve

//

// 2
// value = time
//

value = time » time;

// Add this point to the plot.
aggregator—->Write2d (datasetContext, time, value);

// Disable logging of data for the aggregator.
aggregator—->Disable ();

13.5.3 FileAggregator

The FileAggregator sends the values it receives to a file.
The FileAggregator can create 4 different types of files:
* Formatted
* Space separated (the default)
* Comma separated
 Tab separated

Formatted files use C-style format strings and the sprintf() function to print their values in the file being written.

Creation

An object of type FileAggregator will be created here to show what needs to be done.

One declares a FileAggregator in dynamic memory by using the smart pointer class (Ptr<T>). To create a FileAggre-
gator in dynamic memory with smart pointers, one just needs to call the ns-3 method CreateObject. The following
code from src/stats/examples/file-aggregator—-example.cc shows how to do this:

string fileName = "file-aggregator-formatted-values.txt";

// Create an aggregator that will have formatted values.
Ptr<FileAggregator> aggregator =
CreateObject<FileAggregator> (fileName, FileAggregator::FORMATTED) ;

The first argument for the constructor, filename, is the name of the file to write; the second argument, fileType, is
type of file to write. This FileAggregator will create a file named “file-aggregator-formatted-values.txt” with its values
printed as specified by fileType, i.e., formatted in this case.

The following file type enum values are allowed:

13.5. Aggregators 119

ns-3 Manual, Release ns-3-dev

enum FileType {
FORMATTED,
SPACE_SEPARATED,
COMMA__SEPARATED,
TAB_SEPARATED

i

Examples

One example will be discussed in detail here:

* File Aggregator Example

File Aggregator Example
An example that exercises the FileAggregator can be found in src/stats/examples/

file-aggregator-example.cc.

The following text file with 2 columns of values separated by commas was created using the example.

This code from the example shows how to construct the FileAggregator as was discussed above.

void CreateCommaSeparatedFile ()

{

using namespace std;

string fileName = "file-aggregator—-comma-separated.txt";
string datasetContext = "Dataset/Context/String";

// Create an aggregator.
Ptr<FileAggregator> aggregator =
CreateObject<FileAggregator> (fileName, FileAggregator::COMMA_SEPARATED);

FileAggregator attributes are set.

// aggregator must be turned on
aggregator->Enable ();

Next, the 2-D values are calculated, and each one is individually written to the FileAggregator using the Write2d ()
function.

120 Chapter 13. Data Collection

ns-3 Manual, Release ns-3-dev

double time;
double value;

// Create the 2-D dataset.
for (time = -5.0; time <= +5.0; time += 1.0)
{
// Calculate the 2-D curve

//

// 2
// value = time
//

value = time » time;

// Add this point to the plot.
aggregator—->Write2d (datasetContext, time, value);

// Disable logging of data for the aggregator.
aggregator—->Disable ();

The following text file with 2 columns of formatted values was also created using the example.

Time = -5.000e+00 Value = 25
Time = -4.000e+00 Value = 16
Time = -3.000e+00 Value = 9
Time = -2.000e+00 Value = 4
Time = -1.000e+00 Value = 1
Time = 0.000e+00 Value = 0
Time = 1.000e+00 Value = 1
Time = 2.000e+00 Value = 4
Time = 3.000e+00 Value = 9
Time = 4.000e+00 Value = 16
Time = 5.000e+00 Value = 25

This code from the example shows how to construct the FileAggregator as was discussed above.

void CreateFormattedFile ()

{
using namespace std;

string fileName = "file-aggregator-formatted-values.txt";
string datasetContext = "Dataset/Context/String";

// Create an aggregator that will have formatted values.
Ptr<FileAggregator> aggregator =
CreateObject<FileAggregator> (fileName, FileAggregator::FORMATTED) ;

FileAggregator attributes are set, including the C-style format string to use.

// Set the format for the values.
aggregator—->Set2dFormat ("Time = %.3e\tValue = %.0f");

// aggregator must be turned on
aggregator—->Enable ();

Next, the 2-D values are calculated, and each one is individually written to the FileAggregator using the Write2d ()
function.

13.5. Aggregators 121

ns-3 Manual, Release ns-3-dev

double time;
double value;

// Create the 2-D dataset.
for (time = -5.0; time <= +5.0; time += 1.0)
{
// Calculate the 2-D curve

//

// 2
// value = time
//

value = time » time;

// Add this point to the plot.
aggregator—->Write2d (datasetContext, time, value);

}

// Disable logging of data for the aggregator.
aggregator—->Disable ();
}

13.6 Adaptors

This section details the functionalities provided by the Adaptor class to an ns-3 simulation. This section is meant for
users interested in developing simulations with the ns-3 tools and using the Data Collection Framework, of which the
Adaptor class is a part, to generate data output with their simulation’s results.

Note: the term ‘adaptor’ may also be spelled ‘adapter’; we chose the spelling aligned with the C++ standard.

13.6.1 Adaptor Overview

An Adaptor is used to make connections between different types of DCF objects.
To date, one Adaptor has been implemented:

* TimeSeriesAdaptor

13.6.2 Time Series Adaptor

The TimeSeriesAdaptor lets Probes connect directly to Aggregators without needing any Collector in between.

Both of the implemented DCF helpers utilize TimeSeriesAdaptors in order to take probed values of different types and
output the current time plus the value with both converted to doubles.

The role of the TimeSeriesAdaptor class is that of an adaptor, which takes raw-valued probe data of different types
and outputs a tuple of two double values. The first is a timestamp, which may be set to different resolutions (e.g.
Seconds, Milliseconds, etc.) in the future but which is presently hardcoded to Seconds. The second is the conversion
of a non-double value to a double value (possibly with loss of precision).

13.7 Scope/Limitations

This section discusses the scope and limitations of the Data Collection Framework.

122 Chapter 13. Data Collection

ns-3 Manual, Release ns-3-dev

Currently, only these Probes have been implemented in DCF:
* BooleanProbe
* DoubleProbe
 Uinteger8Probe
* Uinteger16Probe
* Uinteger32Probe
* TimeProbe
* PacketProbe
* ApplicationPacketProbe
* Ipv4PacketProbe
Currently, no Collectors are available in the DCEF, although a BasicStatsCollector is under development.
Currently, only these Aggregators have been implemented in DCF:
* GnuplotAggregator
 FileAggregator
Currently, only this Adaptor has been implemented in DCF:

Time-Series Adaptor.

13.7.1 Future Work

This section discusses the future work to be done on the Data Collection Framework.
Here are some things that still need to be done:
* Hook up more trace sources in ns-3 code to get more values out of the simulator.
* Implement more types of Probes than there currently are.
¢ Implement more than just the single current 2-D Collector, BasicStatsCollector.
* Implement more Aggregators.

e Implement more than just Adaptors.

13.7. Scope/Limitations 123

ns-3 Manual, Release ns-3-dev

124 Chapter 13. Data Collection

CHAPTER
FOURTEEN

STATISTICAL FRAMEWORK

This chapter outlines work on simulation data collection and the statistical framework for ns-3.

The source code for the statistical framework lives in the directory src/stats.

14.1 Goals

Primary objectives for this effort are the following:
* Provide functionality to record, calculate, and present data and statistics for analysis of network simulations.
* Boost simulation performance by reducing the need to generate extensive trace logs in order to collect data.
 Enable simulation control via online statistics, e.g. terminating simulations or repeating trials.

Derived sub-goals and other target features include the following:

* Integration with the existing ns-3 tracing system as the basic instrumentation framework of the internal simula-
tion engine, e.g. network stacks, net devices, and channels.

» Enabling users to utilize the statistics framework without requiring use of the tracing system.
» Helping users create, aggregate, and analyze data over multiple trials.

* Support for user created instrumentation, e.g. of application specific events and measures.

¢ Low memory and CPU overhead when the package is not in use.

» Leveraging existing analysis and output tools as much as possible. The framework may provide some basic
statistics, but the focus is on collecting data and making it accessible for manipulation in established tools.

» Eventual support for distributing independent replications is important but not included in the first round of
features.

14.2 Overview

The statistics framework includes the following features:
* The core framework and two basic data collectors: A counter, and a min/max/avg/total observer.
» Extensions of those to easily work with times and packets.
* Plaintext output formatted for OMNet++.
» Database output using SQL.ite, a standalone, lightweight, high performance SQL engine.

* Mandatory and open ended metadata for describing and working with runs.

125

http://www.omnetpp.org
http://www.sqlite.org

ns-3 Manual, Release ns-3-dev

* An example based on the notional experiment of examining the properties of NS-3’s default ad hoc WiFi per-
formance. It incorporates the following:

Constructs of a two node ad hoc WiFi network, with the nodes a parameterized distance apart.

UDP traffic source and sink applications with slightly different behavior and measurement hooks than the
stock classes.

Data collection from the NS-3 core via existing trace signals, in particular data on frames transmitted and
received by the WiFi MAC objects.

Instrumentation of custom applications by connecting new trace signals to the stat framework, as well as
via direct updates. Information is recorded about total packets sent and received, bytes transmitted, and
end-to-end delay.

An example of using packet tags to track end-to-end delay.

A simple control script which runs a number of trials of the experiment at varying distances and queries
the resulting database to produce a graph using GNUPlot.

14.3 To-Do

High priority items include:

* Inclusion of online statistics code, e.g. for memory efficient confidence intervals.

* Provisions in the data collectors for terminating runs, i.e. when a threshold or confidence is met.

* Data collectors for logging samples over time, and output to the various formats.

* Demonstrate writing simple cyclic event glue to regularly poll some value.

Each of those should prove straightforward to incorporate in the current framework.

14.4 Approach

The framework is based around the following core principles:

* One experiment trial is conducted by one instance of a simulation program, whether in parallel or serially.

* A control script executes instances of the simulation, varying parameters as necessary.

* Data is collected and stored for plotting and analysis using external scripts and existing tools.

* Measures within the ns-3 core are taken by connecting the stat framework to existing trace signals.

* Trace signals or direct manipulation of the framework may be used to instrument custom simulation code.

Those basic components of the framework and their interactions are depicted in the following figure.

126

Chapter 14. Statistical Framework

ns-3 Manual, Release ns-3-dev

| Simulation instance Grigl or nanl
Simulation Instance (trial or run)
ns-3 Traces
P
i Collected Analvsis Scriot
i Data nalysis Scripts,
Signals Y é * Graphing Toals, etc
(termination) Data
Collection Persistamt
User A Storage
Simulation — . —
Program Traces & -
Direct Calls -
Basic Statistics

Instance Spawning,
Distribution

Experiment Control

14.5 Example

This section goes through the process of constructing an experiment in the framework and producing data for analysis
(graphs) from it, demonstrating the structure and API along the way.

14.5.1 Question

“What is the (simulated) performance of ns-3’s WiFi NetDevices (using the default settings)? How far apart can
wireless nodes be in a simulation before they cannot communicate reliably?” ¢

* Hypothesis: Based on knowledge of real life performance, the nodes should communicate reasonably well to at
least 100m apart. Communication beyond 200m shouldn’t be feasible.

Although not a very common question in simulation contexts, this is an important property of which simulation
developers should have a basic understanding. It is also a common study done on live hardware.

14.5.2 Simulation Program

The first thing to do in implementing this experiment is developing the simulation program. The code for this example
can be found in examples/stats/wifi-example-sim.cc. It does the following main steps.

* Declaring parameters and parsing the command line using ns3: : CommandLine.

double distance = 50.0;

string format ("OMNet++");

string experiment ("wifi-distance-test");
string strategy ("wifi-default");

string runlID;

(continues on next page)

14.5. Example 127

ns-3 Manual, Release ns-3-dev

(continued from previous page)

CommandLine cmd (___FILE_);

cmd.AddValue ("distance", "Distance apart to place nodes (in meters).",
—~distance);
cmd.AddValue ("format", "Format to use for data output.", format) ;

[

cmd.AddValue ("experiment", "Identifier for experiment.",
—experiment) ;

cmd.AddValue ("strategy", "Identifier for strategy.", .
—strategy) ;
cmd.Addvalue ("run", "Identifier for run.", runlD) ;

cmd.Parse (argc, argv);

Creating nodes and network stacks using ns3::NodeContainer, ns3::WiFiHelper, and
ns3::InternetStackHelper.

NodeContainer nodes;
nodes.Create (2);

WifiHelper wifi;

wifi.SetMac ("ns3::AdhocWifiMac");

wifi.SetPhy ("ns3::WifiPhy");

NetDeviceContainer nodeDevices = wifi.Install (nodes);

InternetStackHelper internet;

internet.Install (nodes);

Ipv4AddressHelper ipAddrs;

ipAddrs.SetBase ("192.168.0.0", "255.255.255.0");
ipAddrs.Assign (nodeDevices) ;

Positioning the nodes using ns3: :MobilityHelper. By default the nodes have static mobility and won’t
move, but must be positioned the given distance apart. There are several ways to do this; it is done here using
ns3::ListPositionAllocator, which draws positions from a given list.

MobilityHelper mobility;
Ptr<ListPositionAllocator> positionAlloc =

CreateObject<ListPositionAllocator>();
positionAlloc—>Add (Vector (0.0, 0.0, 0.0));
positionAlloc->Add (Vector (0.0, distance, 0.0));
mobility.SetPositionAllocator (positionAlloc);
mobility.Install (nodes);

Installing a traffic generator and a traffic sink. The stock Applications could be used, but the example in-
cludes custom objects in src/test/test02-apps. (cc|h). These have a simple behavior, generating a given
number of packets spaced at a given interval. As there is only one of each they are installed manually; for a larger
set the ns3: :ApplicationHelper class could be used. The commented-out Config: : Set line changes the
destination of the packets, set to broadcast by default in this example. Note that in general WiFi may have
different performance for broadcast and unicast frames due to different rate control and MAC retransmission
policies.

Ptr<Node> appSource = NodeList::GetNode (0);
Ptr<Sender> sender = CreateObject<Sender>();
appSource—->AddApplication (sender) ;
sender—>Start (Seconds (1)) ;

Ptr<Node> appSink = NodeList::GetNode (1) ;
Ptr<Receiver> receiver = CreateObject<Receiver>();
(continues on next page)

128

Chapter 14. Statistical Framework

ns-3 Manual, Release ns-3-dev

(continued from previous page)

appSink->AddApplication (receiver);
receiver—->Start (Seconds (0)) ;

// Config::Set ("/NodeList/*/ApplicationList/+/S$Sender/Destination",
// Ipv4AddressValue ("192.168.0.2"));

 Configuring the data and statistics to be collected. The basic paradigm is that an ns3: :DataCollector object
is created to hold information about this particular run, to which observers and calculators are attached to actually
generate data. Importantly, run information includes labels for the “experiment’‘, “’strategy’‘, “’input’‘, and
“run’‘. These are used to later identify and easily group data from multiple trials.

— The experiment is the study of which this trial is a member. Here it is on WiFi performance and distance.

— The strategy is the code or parameters being examined in this trial. In this example it is fixed, but an
obvious extension would be to investigate different WiFi bit rates, each of which would be a different
strategy.

— The input is the particular problem given to this trial. Here it is simply the distance between the two nodes.

— The runlD is a unique identifier for this trial with which it’s information is tagged for identification in later
analysis. If no run ID is given the example program makes a (weak) run ID using the current time.

Those four pieces of metadata are required, but more may be desired. They may be added to the record using
the ns3::DataCollector: :AddMetadata () method.

DataCollector data;
data.DescribeRun (experiment, strategy, input, runID);
data.AddMetadata ("author", "tjkopena);

Actual observation and calculating is done by ns3: :DataCalculator objects, of which several different types
exist. These are created by the simulation program, attached to reporting or sampling code, and then registered
with the ns3: :DataCollector so they will be queried later for their output. One easy observation mechanism
is to use existing trace sources, for example to instrument objects in the ns-3 core without changing their code.
Here a counter is attached directly to a trace signal in the WiFi MAC layer on the target node.

Ptr<PacketCounterCalculator> totalRx = CreateObject<PacketCounterCalculator>();
totalRx—>SetKey ("wifi-rx—frames");
Config::Connect ("/NodelList/1/DevicelList/*/$ns3::WifiNetDevice/Rx",

MakeCallback (&PacketCounterCalculator: :FrameUpdate, totalRx));
data.AddDataCalculator (totalRx) ;

Calculators may also be manipulated directly. In this example, a counter is created and passed to the traffic sink
application to be updated when packets are received.

Ptr<CounterCalculator<> > appRx = CreateObject<CounterCalculator<> >();
appRx->SetKey ("receiver-rx—packets");

receiver—->SetCounter (appRx) ;

data.AddDataCalculator (appRx) ;

To increment the count, the sink’s packet processing code then calls one of the calculator’s update methods.

m_calc—->Update () ;

The program includes several other examples as well, using both the primitive calculators such as
ns3::CounterCalculator and those adapted for observing packets and times. In src/test/
test02-apps. (cc|h) it also creates a simple custom tag which it uses to track end-to-end delay for generated
packets, reporting results to a ns3: : TimeMinMaxAvgTotalCalculator data calculator.

14.5. Example 129

ns-3 Manual, Release ns-3-dev

* Running the simulation, which is very straightforward once constructed.

Simulator::Run();

¢ Generating either OMNet++ or SQLite output, depending on the command line arguments. To do this a
ns3::DataOutputInterface object is created and configured. The specific type of this will determine the
output format. This object is then given the ns3: :DataCollector object which it interrogates to produce the
output.

Ptr<DataOutputInterface> output;
if (format == "OMNet++") {
NS_LOG_INFO ("Creating OMNet++ formatted data output.");
output = CreateObject<OmnetDataOutput>();
} else {
ifdef STAT USE_DB
NS_LOG_INFO("Creating SQLite formatted data output.");
output = CreateObject<SgliteDataOutput>();
endif

output->Output (data) ;

* Freeing any memory used by the simulation. This should come at the end of the main function for the example.

Simulator: :Destroy();

Logging

To see what the example program, applications, and stat framework are doing in detail, set the NS_LOG variable
appropriately. The following will provide copious output from all three.

$ export NS _LOG=WiFiDistanceExperiment:WiFiDistanceApps

Note that this slows down the simulation extraordinarily.

Sample Output

Compiling and simply running the test program will append OMNet++ formatted output such as the following to
data.sca.

run run-1212239121

attr experiment "wifi-distance-test"
attr strategy "wifi-default"

attr input "50"

attr description ""

attr "author" "tjkopena"

scalar wifi-tx—frames count 30
scalar wifi-rx-frames count 30
scalar sender-tx-packets count 30
scalar receiver-rx-packets count 30
scalar tx-pkt-size count 30

scalar tx-pkt-size total 1920

(continues on next page)

130 Chapter 14. Statistical Framework

http://www.omnetpp.org
http://www.sqlite.org
http://www.omnetpp.org

ns-3 Manual, Release ns-3-dev

(continued from previous page)

scalar tx-pkt-size average 64

scalar tx-pkt-size max 64

scalar tx-pkt-size min 64

scalar delay count 30

scalar delay total 5884980ns

scalar delay average 1961l66ns

scalar delay max 196l66ns

scalar delay min 196166ns

14.5.3 Control Script

In order to automate data collection at a variety of inputs (distances), a simple Bash script is used to execute a series
of simulations. It can be found at examples/stats/wifi-example-db.sh. The script is meant to be run from the
examples/stats/ directory.

The script runs through a set of distances, collecting the results into an SQLite database. At each distance five trials
are conducted to give a better picture of expected performance. The entire experiment takes only a few dozen seconds
to run on a low end machine as there is no output during the simulation and little traffic is generated.

#!/bin/sh
DISTANCES="25 50 75 100 125 145 147 150 152 155 157 160 162 165 167 170 172 175 177,
—1380"

TRIALS="1 2 3 4 5"

echo WiFi Experiment Example

if [-e data.db]
then
echo Kill data.db?
read ANS
if ["SANS" = "yes" -o "S$ANS" = "y"]
then
echo Deleting database
rm data.db
fi
fi

for trial in S$STRIALS

do
for distance in SDISTANCES
do
echo Trial S$trial, distance Sdistance
./bin/test02 —--format=db —--distance=S$distance —--run=run-Sdistance-Strial
done
done

14.5.4 Analysis and Conclusion

Once all trials have been conducted, the script executes a simple SQL query over the database using the SQLite
command line program. The query computes average packet loss in each set of trials associated with each distance.
It does not take into account different strategies, but the information is present in the database to make some simple
extensions and do so. The collected data is then passed to GNUPIlot for graphing.

14.5. Example 131

http://www.sqlite.org
http://www.sqlite.org

ns-3 Manual, Release ns-3-dev

CMD="select exp.input,avg(100-((rx.valuex100)/tx.value)) \
from Singletons rx, Singletons tx, Experiments exp \
where rx.run = tx.run AND \
rx.run = exp.run AND \
rx.name='receiver-rx-packets' AND \
tx.name="'sender-tx—-packets' \

group by exp.input \

order by abs(exp.input) ASC;"

sglite3 -noheader data.db "$SCMD" > wifi-default.data
sed -1 "s/|/ /" wifi-default.data
gnuplot wifi-example.gnuplot

The GNUPIot script found at examples/stats/wifi-example.gnuplot simply defines the output format and
some basic formatting for the graph.

set terminal postscript portrait enhanced 1w 2 "Helvetica" 14

set size 1.0, 0.66

set out "wifi-default.eps"

#set title "Packet Loss Over Distance"

set xlabel "Distance (m) —--- average of 5 trials per point"
set xrange [0:200]

set ylabel "% Packet Loss"

set yrange [0:110]

plot "wifi-default.data" with lines title "WiFi Defaults"

End Result

The resulting graph provides no evidence that the default WiFi model’s performance is necessarily unreasonable and
lends some confidence to an at least token faithfulness to reality. More importantly, this simple investigation has been
carried all the way through using the statistical framework. Success!

132 Chapter 14. Statistical Framework

ns-3 Manual, Release ns-3-dev

100 |

80 F

60

40 }

20

% Packet Loss —-- average of S trials per distance

WiFi Defaults

100
Distance (m)

150

200

14.5. Example

133

ns-3 Manual, Release ns-3-dev

134 Chapter 14. Statistical Framework

CHAPTER
FIFTEEN

REALTIME

ns-3 has been designed for integration into testbed and virtual machine environments. To integrate with real network
stacks and emit/consume packets, a real-time scheduler is needed to try to lock the simulation clock with the hardware
clock. We describe here a component of this: the RealTime scheduler.

The purpose of the realtime scheduler is to cause the progression of the simulation clock to occur synchronously with
respect to some external time base. Without the presence of an external time base (wall clock), simulation time jumps
instantly from one simulated time to the next.

15.1 Behavior

When using a non-realtime scheduler (the default in ns-3), the simulator advances the simulation time to the next
scheduled event. During event execution, simulation time is frozen. With the realtime scheduler, the behavior is
similar from the perspective of simulation models (i.e., simulation time is frozen during event execution), but between
events, the simulator will attempt to keep the simulation clock aligned with the machine clock.

When an event is finished executing, and the scheduler moves to the next event, the scheduler compares the next event
execution time with the machine clock. If the next event is scheduled for a future time, the simulator sleeps until that
realtime is reached and then executes the next event.

It may happen that, due to the processing inherent in the execution of simulation events, that the simulator cannot keep
up with realtime. In such a case, it is up to the user configuration what to do. There are two ns-3 attributes that govern
the behavior. The firstis ns3: :RealTimeSimulatorImpl: :SynchronizationMode. The two entries possible for
this attribute are BestEffort (the default) or HardLimit. In “BestEffort” mode, the simulator will just try to catch
up to realtime by executing events until it reaches a point where the next event is in the (realtime) future, or else the
simulation ends. In BestEffort mode, then, it is possible for the simulation to consume more time than the wall clock
time. The other option “HardLimit” will cause the simulation to abort if the tolerance threshold is exceeded. This
attribute is ns3: :RealTimeSimulatorImpl: :HardLimit and the default is 0.1 seconds.

A different mode of operation is one in which simulated time is not frozen during an event execution. This mode
of realtime simulation was implemented but removed from the ns-3 tree because of questions of whether it would be
useful. If users are interested in a realtime simulator for which simulation time does not freeze during event execution
(i.e., every call to Simulator: :Now () returns the current wall clock time, not the time at which the event started
executing), please contact the ns-developers mailing list.

15.2 Usage

The usage of the realtime simulator is straightforward, from a scripting perspective. Users just need to set the attribute
SimulatorImplementationType to the Realtime simulator, such as follows:

135

ns-3 Manual, Release ns-3-dev

GlobalValue: :Bind ("SimulatorImplementationType”,
StringValue ("ns3::RealtimeSimulatorImpl™));

There is a script in examples/realtime/realtime-udp-echo.cc that has an example of how to configure the
realtime behavior. Try:

$./waf —-—-run realtime-udp-echo

Whether the simulator will work in a best effort or hard limit policy fashion is governed by the attributes explained in
the previous section.

15.3 Implementation

The implementation is contained in the following files:
* src/core/model/realtime-simulator—-impl. {cc,h}
* src/core/model/wall-clock-synchronizer. {cc,h}

In order to create a realtime scheduler, to a first approximation you just want to cause simulation time jumps to
consume real time. We propose doing this using a combination of sleep- and busy- waits. Sleep-waits cause the
calling process (thread) to yield the processor for some amount of time. Even though this specified amount of time
can be passed to nanosecond resolution, it is actually converted to an OS-specific granularity. In Linux, the granularity
is called a Jiffy. Typically this resolution is insufficient for our needs (on the order of a ten milliseconds), so we round
down and sleep for some smaller number of Jiffies. The process is then awakened after the specified number of Jiffies
has passed. At this time, we have some residual time to wait. This time is generally smaller than the minimum sleep
time, so we busy-wait for the remainder of the time. This means that the thread just sits in a for loop consuming cycles
until the desired time arrives. After the combination of sleep- and busy-waits, the elapsed realtime (wall) clock should
agree with the simulation time of the next event and the simulation proceeds.

136 Chapter 15. RealTime

CHAPTER
SIXTEEN

HELPERS

The above chapters introduced you to various ns-3 programming concepts such as smart pointers for reference-counted
memory management, attributes, namespaces, callbacks, etc. Users who work at this low-level API can interconnect
ns-3 objects with fine granularity. However, a simulation program written entirely using the low-level API would
be quite long and tedious to code. For this reason, a separate so-called “helper API” has been overlaid on the core
ns-3 APL If you have read the ns-3 tutorial, you will already be familiar with the helper API, since it is the API that
new users are typically introduced to first. In this chapter, we introduce the design philosophy of the helper API and
contrast it to the low-level API. If you become a heavy user of ns-3, you will likely move back and forth between these
APIs even in the same program.

The helper API has a few goals:

1. the rest of src/ has no dependencies on the helper API; anything that can be done with the helper API can be
coded also at the low-level API

2. Containers: Often simulations will need to do a number of identical actions to groups of objects. The helper
API makes heavy use of containers of similar objects to which similar or identical operations can be performed.

3. The helper API is not generic; it does not strive to maximize code reuse. So, programming constructs such
as polymorphism and templates that achieve code reuse are not as prevalent. For instance, there are separate
CsmaNetDevice helpers and PointToPointNetDevice helpers but they do not derive from a common NetDevice
base class.

4. The helper API typically works with stack-allocated (vs. heap-allocated) objects. For some programs, ns-3 users
may not need to worry about any low level Object Create or Ptr handling; they can make do with containers of
objects and stack-allocated helpers that operate on them.

The helper API is really all about making ns-3 programs easier to write and read, without taking away the power of
the low-level interface. The rest of this chapter provides some examples of the programming conventions of the helper
APL

137

ns-3 Manual, Release ns-3-dev

138 Chapter 16. Helpers

CHAPTER
SEVENTEEN

UTILITIES

17.1 Print-introspected-doxygen

print-introspected-doxygen is used to generate doxygen documentation using various Typelds defined throughout the
ns-3 source code. The tool returns the various config paths, attributes, trace sources, etc. for the various files in ns-3.

17.1.1 Invocation
This tool is run automatically by the build system when generating the Doxygen API docs, so you don’t normally have
to run it by hand.

However, since it does give a fair bit of information about Typelds it can be useful to run from the command line and
search for specific information.

To run it, simply open terminal and type

$./waf —--run print-introspected-doxygen

This will give all the output, formatted for Doxygen, which can be viewed in a text editor.

One way to use this is to capture it to a file:

$./waf —-run print-introspected-doxygen > doc.html

Some users might prefer to use tools like grep to locate the required piece of information from the documentation
instead of using an editor. For such uses-cases and more, print-introspected-doxygen can return plain text:

$./waf —--run "print-introspected-doxygen --output-text"

(Note the quotes around the inner command and options.)
$./waf —run “print-introspected-doxygen —output-text” | grep “hello”
This will output the following:

* HelloInterval: HELLO messages emission interval.
+ DeletePeriod: DeletePeriod is intended to provide an upper bound on the time for
—which an upstream node A can have a neighbor B as an active next hop for
—~destination D, while B has invalidated the route to D. = 5 x max (HelloInterval,
—+ActiveRouteTimeout)
* AllowedHelloLoss: Number of hello messages which may be loss for valid link.
* EnableHello: Indicates whether a hello messages enable.
+ HelloInterval: HELLO messages emission interval.
* HelloInterval: HELLO messages emission interval.

(continues on next page)

139

ns-3 Manual, Release ns-3-dev

(continued from previous page)

+ DeletePeriod: DeletePeriod is intended to provide an upper bound on the time for
—which an upstream node A can have a neighbor B as an active next hop for
—~destination D, while B has invalidated the route to D. = 5 x max (HelloInterval,
—ActiveRouteTimeout)

* AllowedHelloLoss: Number of hello messages which may be loss for valid link.

+ EnableHello: Indicates whether a hello messages enable.

* HelloInterval: HELLO messages emission interval.

17.2 Bench-simulator

This tool is used to benchmark the scheduler algorithms used in ns-3.

17.2.1 Command-line Arguments

$./waf —--run "bench-simulator --help"

Program Options:

—-—cal: use CalendarSheduler [false]

——heap: use HeapScheduler [false]

——list: use ListSheduler [false]

——map: use MapScheduler (default) [true]

—-—debug: enable debugging output [false]

——pop: event population size (default 1E5) [100000]

——total: total number of events to run (default 1E6) [1000000]
——runs: number of runs (default 1) [1]

——file: file of relative event times []

—-—prec: printed output precision [6]

You can change the Scheduler being benchmarked by passing the appropriate flags, for example if you want to bench-
mark the CalendarScheduler pass —cal to the program.

The default total number of events, runs or population size can be overridden by passing —fotal=value, —runs=value
and —pop=value respectively.

If you want to use event distribution which is stored in a file, you can pass the file option by —file=FILE_NAME.

—prec can be used to change the output precision value and —debug as the name suggests enables debugging.

17.2.2 Invocation

To run it, simply open the terminal and type

$./waf —--run bench-simulator

It will show something like this depending upon the scheduler being benchmarked:

ns3-dev-bench-simulator-debug:
ns3-dev-bench-simulator-debug: scheduler: ns3::MapScheduler
ns3-dev-bench-simulator-debug: population: 100000
ns3-dev-bench-simulator-debug: total events: 1000000
ns3-dev-bench-simulator-debug: runs: 1
ns3-dev-bench-simulator-debug: using default exponential distribution
(continues on next page)

140 Chapter 17. Utilities

ns-3 Manual, Release ns-3-dev

(continued from previous page)

Run Inititialization: Simulation:

Time (s) Rate (ev/s) Per (s/ev) Time (s) Rate (ev/s) Per (s/ev)
(prime) 0.4 250000 4e-06 1.84 543478 1.84e-06
0 0.15 666667 1.5e-06 1.86 537634 1.86e-06

Suppose we had to benchmark CalendarScheduler instead, we would have written

$./waf —--run "bench-simulator —--cal"

And the output would look something like this:

ns3-dev-bench-simulator-debug:

ns3-dev-bench-simulator-debug: scheduler: ns3::CalendarScheduler
ns3-dev-bench-simulator-debug: population: 100000
ns3-dev-bench-simulator-debug: total events: 1000000
ns3-dev-bench-simulator-debug: runs: 1

ns3-dev-bench-simulator-debug: using default exponential distribution

Run Inititialization: Simulation:
Time (s) Rate (ev/s) Per (s/ev) Time (s) Rate (ev/s) Per (s/ev)
(prime) 1.19 84033.6 1.19e-05 32.03 31220.7 3.203e-05

0 0.99 101010 9.9%9e-06 31.22 32030.7 3.122e-05

17.2. Bench-simulator 141

ns-3 Manual, Release ns-3-dev

142 Chapter 17. Utilities

CHAPTER
EIGHTEEN

MAKING PLOTS USING THE GNUPLOT CLASS

There are 2 common methods to make a plot using ns-3 and gnuplot (http://www.gnuplot.info):
1. Create a gnuplot control file using ns-3’s Gnuplot class.

2. Create a gnuplot data file using values generated by ns-3.

This section is about method 1, i.e. it is about how to make a plot using ns-3’s Gnuplot class. If you are interested in

method 2, see the “A Real Example” subsection under the “Tracing” section in the ns-3 Tutorial.

18.1 Creating Plots Using the Gnuplot Class

The following steps must be taken in order to create a plot using ns-3’s Gnuplot class:
1. Modify your code so that is uses the Gnuplot class and its functions.
2. Run your code so that it creates a gnuplot control file.
3. Call gnuplot with the name of the gnuplot control file.
4. View the graphics file that was produced in your favorite graphics viewer.

See the code from the example plots that are discussed below for details on step 1.

18.2 An Example Program that Uses the Gnuplot Class

An example program that uses ns-3’s Gnuplot class can be found here:

src/stats/examples/gnuplot—-example.cc

In order to run this example, do the following:

$./waf —--run src/stats/examples/gnuplot-example

This should produce the following gnuplot control files:

plot-2d.plt
plot-2d-with-error-bars.plt
plot-3d.plt

In order to process these gnuplot control files, do the following:

143

http://www.gnuplot.info
http://www.nsnam.org/tutorials.html

ns-3 Manual, Release ns-3-dev

$ gnuplot plot-2d.plt

$ gnuplot plot-2d-with-error-bars.plt

$ gnuplot plot-3d.plt

This should produce the following graphics files:

plot-2d.png
plot-2d-with-error-bars.png
plot-3d.png

You can view these graphics files in your favorite graphics viewer. If you have gimp installed on your machine, for

example, you can do this:

$ gimp plot-2d.png

$ gimp plot-2d-with-error-bars.png

$ gimp plot-3d.png

18.3 An Example 2-Dimensional Plot

The following 2-Dimensional plot

Y VYalues

2-0 Plot

29

15

18

2-0 Data/—+—

Yalues

was created using the following code from gnuplot-example.cc:

144

Chapter 18.

Making Plots using the Gnuplot Class

ns-3 Manual, Release ns-3-dev

using namespace std;

string fileNameWithNoExtension = "plot-2d";
string graphicsFileName = fileNameWithNoExtension + ".png";
string plotFileName = fileNameWithNoExtension + ".plt";
string plotTitle = "2-D Plot";
string dataTitle = "2-D Data";

// Instantiate the plot and set its title.
Gnuplot plot (graphicsFileName) ;
plot.SetTitle (plotTitle);

// Make the graphics file, which the plot file will create when it
// is used with Gnuplot, be a PNG file.
plot.SetTerminal ("png");

// Set the labels for each axis.
plot.SetLegend ("X Values", "Y Values");

// Set the range for the x axis.
plot.AppendExtra ("set xrange [-6:+6]");

// Instantiate the dataset, set its title, and make the points be
// plotted along with connecting lines.

Gnuplot2dDataset dataset;

dataset.SetTitle (dataTitle);

dataset.SetStyle (Gnuplot2dDataset::LINES_POINTS) ;

double x;
double y;

// Create the 2-D dataset.
for (x = -5.0; x <= +5.0; x += 1.0)
{
// Calculate the 2-D curve
//
// 2
// y = x
//

Yy = X * X

// Add this point.
dataset.Add (x, Vy);

// Add the dataset to the plot.
plot.AddDataset (dataset);

// Open the plot file.
ofstream plotFile (plotFileName.c_str());

// Write the plot file.
plot.GenerateOutput (plotFile);

// Close the plot file.
plotFile.close ();

18.3. An Example 2-Dimensional Plot 145

ns-3 Manual, Release ns-3-dev

18.4 An Example 2-Dimensional Plot with Error Bars

The following 2-Dimensional plot with error bars in the x and y directions

2=-0 Plot Hith Error Bars
EB T T T

2-D Data Mith Error Bars —+—

28 A

Y Values
[
o
T
1

Yalues

was created using the following code from gnuplot-example.cc:

using namespace std;

string fileNameWithNoExtension = "plot-2d-with-error-bars";

string graphicsFileName = fileNameWithNoExtension + ".png";
string plotFileName = fileNameWithNoExtension + ".plt";
string plotTitle = "2-D Plot With Error Bars";
string dataTitle = "2-D Data With Error Bars";

// Instantiate the plot and set its title.
Gnuplot plot (graphicsFileName);
plot.SetTitle (plotTitle);

// Make the graphics file, which the plot file will create when it
// is used with Gnuplot, be a PNG file.
plot.SetTerminal ("png");

// Set the labels for each axis.
plot.SetLegend ("X Values", "Y Values");

(continues on next page)

146 Chapter 18. Making Plots using the Gnuplot Class

ns-3 Manual, Release ns-3-dev

// Set the range for the x axis.
plot.AppendExtra ("set xrange [-6:+6]");

// Instantiate the dataset, set its title, and make the points be
// plotted with no connecting lines.

Gnuplot2dDataset dataset;

dataset.SetTitle (dataTitle);

dataset.SetStyle (Gnuplot2dDataset::POINTS);

// Make the dataset have error bars in both the x and y directions.
dataset.SetErrorBars (Gnuplot2dDataset::XY);

double x;
double xErrorDelta;
double y;
double yErrorDelta;

// Create the 2-D dataset.
for (x = -5.0; x <= +5.0; x += 1.0)
{
// Calculate the 2-D curve
//
// 2
// y = x
//

Yy = X * X

// Make the uncertainty in the x direction be constant and make
// the uncertainty in the y direction be a constant fraction of
// y's value.

xErrorDelta = 0.25;

yErrorDelta = 0.1 % y;

// Add this point with uncertainties in both the x and y

// direction.
dataset.Add (x, y, xErrorDelta, yErrorDelta);

// Add the dataset to the plot.
plot.AddDataset (dataset);

// Open the plot file.
ofstream plotFile (plotFileName.c_str());

// Write the plot file.
plot.GenerateOutput (plotFile);

// Close the plot file.
plotFile.close ();

18.5 An Example 3-Dimensional Plot

The following 3-Dimensional plot

(continued from previous page)

18.5. An Example 3-Dimensional Plot

147

ns-3 Manual, Release ns-3-dev

Z Valud88 -
a

148 Chapter 18. Making Plots using the Gnuplot Class

ns-3 Manual, Release ns-3-dev

was created using the following code from gnuplot-example.cc:

using namespace std;

string fileNameWithNoExtension = "plot-3d";
string graphicsFileName = fileNameWithNoExtension + ".png";
string plotFileName = fileNameWithNoExtension + ".plt";
string plotTitle = "3-D Plot";
string dataTitle = "3-D Data";

// Instantiate the plot and set its title.
Gnuplot plot (graphicsFileName) ;
plot.SetTitle (plotTitle);

// Make the graphics file, which the plot file will create when it
// 1is used with Gnuplot, be a PNG file.
plot.SetTerminal ("png");

// Rotate the plot 30 degrees around the x axis and then rotate the
// plot 120 degrees around the new z axis.
plot.AppendExtra ("set view 30, 120, 1.0, 1.0");

// Make the zero for the z-axis be in the x—-axis and y-axis plane.
plot.AppendExtra ("set ticslevel 0");

// Set the labels for each axis.

plot.AppendExtra ("set xlabel 'X Values'");
plot.AppendExtra ("set ylabel 'Y Values'");
plot.AppendExtra ("set zlabel 'Z Values'");

// Set the ranges for the x and y axis.
plot.AppendExtra ("set xrange [-5:+5]");
plot.AppendExtra ("set yrange [-5:+5]");

// Instantiate the dataset, set its title, and make the points be
// connected by lines.

Gnuplot3dDataset dataset;

dataset.SetTitle (dataTitle);

dataset.SetStyle ("with lines");

double x;
double vy;
double z;

// Create the 3-D dataset.
for (x = -5.0; x <= +5.0; x += 1.0)
{
for (y = -5.0; y <= +5.0; y += 1.0)
{
// Calculate the 3-D surface

/7

// 2 2
// z = X Ay
//

Z = X % X %Y xY;

// Add this point.
dataset.Add (x, y, z);

(continues on next page)

18.5. An Example 3-Dimensional Plot

149

ns-3 Manual, Release ns-3-dev

(continued from previous page)

// The blank line is necessary at the end of each x value's data
// points for the 3-D surface grid to work.

dataset .AddEmptyLine ();

}

// Add the dataset to the plot.
plot.AddDataset (dataset);

// Open the plot file.
ofstream plotFile (plotFileName.c_str());

// Write the plot file.
plot.GenerateOutput (plotFile);

// Close the plot file.
plotFile.close ();

150 Chapter 18. Making Plots using the Gnuplot Class

CHAPTER
NINETEEN

USING PYTHON TO RUN NS-3

Python bindings allow the C++ code in ns-3 to be called from Python.

This chapter shows you how to create a Python script that can run ns-3 and also the process of creating Python bindings
for a C++ ns-3 module.

19.1 Introduction

Python bindings provide support for importing ns-3 model libraries as Python modules. Coverage of most of the ns-3
C++ API is provided. The intent has been to allow the programmer to write complete simulation scripts in Python,
to allow integration of ns-3 with other Python tools and workflows. The intent is not to provide a different language
choice to author new ns-3 models implemented in Python.

Python bindings for ns-3 use a tool called PyBindGen (https://github.com/gjcarneiro/pybindgen) to create Python
modules from the C++ libraries built by Waf. The Python bindings that PyBindGen uses are maintained in abindings
directory in each module, and must be maintained to match the C++ API of that ns-3 module. If the C++ API changes,
the Python bindings file must either be modified by hand accordingly, or the bindings must be regenerated by an
automated scanning process.

If a user is not interested in Python, he or she may disable the use of Python bindings at Waf configure time. In this
case, changes to the C++ API of a provided module will not cause the module to fail to compile.

The process for automatically generating Python bindings relies on a toolchain involving a development installation
of the Clang compiler, a program called CastXML (https://github.com/CastXML/CastXML), and a program called
pygeexml (https://github.com/gccxml/pygccxml). The toolchain can be installed using the ns-3 bake build tool.

19.2 An Example Python Script that Runs ns-3

Here is some example code that is written in Python and that runs ns-3, which is written in C++. This Python example
can be found in examples/tutorial/first.py

import ns.applications
import ns.core

import ns.internet
import ns.network

import ns.point_to_point

ns.core.LogComponentEnable ("UdpEchoClientApplication", ns.core.LOG_LEVEL_INFO)
ns.core.LogComponentEnable ("UdpEchoServerApplication", ns.core.LOG_LEVEL_INFO)

nodes = ns.network.NodeContainer ()

(continues on next page)

151

https://github.com/gjcarneiro/pybindgen
https://github.com/CastXML/CastXML
https://github.com/gccxml/pygccxml

ns-3 Manual, Release ns-3-dev

(continued from previous page)

nodes.Create (2)

pointToPoint =
pointToPoint.SetDeviceAttribute ("DataRate",
pointToPoint.SetChannelAttribute ("Delay",

devices =

stack =

ns.

ns.point_to_point.PointToPointHelper ()
ns.core.StringValue ("5Mbps"))
ns.core.StringValue ("2ms"))

pointToPoint.Install (nodes)

internet.InternetStackHelper ()

stack.Install (nodes)

address =

(‘)Yl))

ns.internet.Ipv4AddressHelper ()
address.SetBase (ns.network.Ipv4Address ("10.1.1.0"),

ns.network.Ipv4Mask ("255.255.255.0

interfaces = address.Assign (devices);

echoServer = ns.applications.UdpEchoServerHelper (9)

serverApps = echoServer.Install (nodes.Get (1))

serverApps.Start (ns.core.Seconds (1.0))

serverApps.Stop (ns.core.Seconds (10.0))

echoClient = ns.applications.UdpEchoClientHelper (interfaces.GetAddress (1), 9)
echoClient.SetAttribute ("MaxPackets", ns.core.UintegerValue(1l))
echoClient.SetAttribute ("Interval", ns.core.TimeValue (ns.core.Seconds (1.0)))
echoClient.SetAttribute ("PacketSize", ns.core.UintegerValue (1024))

clientApps = echoClient.Install (nodes.Get (0))

clientApps.Start (ns.core.Seconds (2.0))

clientApps.Stop(ns.core.Seconds (10.0))

ns.core.Simulator.Run ()
ns.core.Simulator.Destroy ()

19.3 Running Python Scripts

waf contains some options that automatically update the python path to find the ns3 module. To run example programs,
there are two ways to use waf to take care of this. One is to run a waf shell; e.g.:

$./waf shell
$ python examples/wireless/mixed-wireless.py

and the other is to use the —pyrun option to waf:

$./waf —--pyrun examples/wireless/mixed-wireless.py

As of ns-3.30, a —pyrun-no-build option was added to allow the running of a program without invoking a project
rebuild. This option may be useful to improve execution time when running the same program repeatedly but with
different arguments, such as from scripts. It can be used in place of —pyrun such as:

$./waf —--pyrun-no-build examples/wireless/mixed-wireless.py

To run a python script under the C debugger:

152 Chapter 19. Using Python to Run ns-3

ns-3 Manual, Release ns-3-dev

$./waf shell
$ gdb --args python examples/wireless/mixed-wireless.py

To run your own Python script that calls ns-3 and that has this path, /path/to/your/example/my-script.py, do
the following:

$./waf shell
$ python /path/to/your/example/my—-script.py

19.4 Caveats

Python bindings for ns-3 are a work in progress, and some limitations are known by developers. Some of these
limitations (not all) are listed here.

19.4.1 Incomplete Coverage

First of all, keep in mind that not 100% of the API is supported in Python. Some of the reasons are:

1. some of the APIs involve pointers, which require knowledge of what kind of memory passing semantics (who
owns what memory). Such knowledge is not part of the function signatures, and is either documented or some-
times not even documented. Annotations are needed to bind those functions;

2. Sometimes a unusual fundamental data type or C++ construct is used which is not yet supported by PyBindGen;

3. GCC-XML does not report template based classes unless they are instantiated. (Note: Need to confirm this
limitation still exists with CastXML)

Most of the missing APIs can be wrapped, given enough time, patience, and expertise, and will likely be wrapped if
bug reports are submitted. However, don’t file a bug report saying “bindings are incomplete”, because we do not have
manpower to complete 100% of the bindings.

19.4.2 Conversion Constructors

Conversion constructors are not fully supported yet by PyBindGen, and they always act as explicit constructors when
translating an API into Python. For example, in C++ you can do this:

Ipv4AddressHelper ipAddrs;
ipAddrs.SetBase ("192.168.0.0", "255.255.255.0");
ipAddrs.Assign (backboneDevices);

In Python, for the time being you have to do:

ipAddrs = ns.internet.Ipv4AddressHelper ()

ipAddrs.SetBase (ns.network.Ipv4Address ("192.168.0.0"), ns.network.Ipv4Mask ("255.255.
—255.0"))

ipAddrs.Assign (backboneDevices)

19.4.3 CommandLine

CommandLine: :Addvalue () works differently in Python than it does in ns-3. In Python, the first parameter is a
string that represents the command-line option name. When the option is set, an attribute with the same name as the
option name is set on the CommandLine () object. Example:

19.4. Caveats 153

http://publib.boulder.ibm.com/infocenter/compbgpl/v9v111/topic/com.ibm.xlcpp9.bg.doc/language_ref/cplr384.htm

ns-3 Manual, Release ns-3-dev

NUM_NODES_SIDE_DEFAULT = 3
cmd = ns3.CommandLine ()

cmd.NumNodesSide = None
cmd.AddValue ("NumNodesSide", "Grid side number of nodes (total number of nodes will,
—be this number squared)")

cmd.Parse (argv)

[...]

if cmd.NumNodesSide is None:

num_nodes_side = NUM_NODES_SIDE_DEFAULT
else:

num_nodes_side = int (cmd.NumNodesSide)

19.4.4 Tracing

Callback based tracing is not yet properly supported for Python, as new ns-3 API needs to be provided for this to be
supported.

Pcap file writing is supported via the normal API.

ASCII tracing is supported since ns-3.4 via the normal C++ API translated to Python. However, ASCII tracing requires
the creation of an ostream object to pass into the ASCII tracing methods. In Python, the C++ std::ofstream has been
minimally wrapped to allow this. For example:

ascii = ns3.ofstream("wifi-ap.tr") # create the file
ns3.YansWifiPhyHelper.EnableAsciiAll (ascii)
ns3.Simulator.Run ()

ns3.Simulator.Destroy ()

ascii.close() # close the file

There is one caveat: you must not allow the file object to be garbage collected while ns-3 is still using it. That means
that the ‘ascii’ variable above must not be allowed to go out of scope or else the program will crash.

19.5 Working with Python Bindings

Python bindings are built on a module-by-module basis, and can be found in each module’s bindings directory.

19.5.1 Overview

The python bindings are generated into an ‘ns’ namespace. Examples:

from ns.network import Node
nl = Node ()

or

import ns.network
nl = ns.network.Node ()

154 Chapter 19. Using Python to Run ns-3

ns-3 Manual, Release ns-3-dev

The best way to explore the bindings is to look at the various example programs provided in ns-3; some C++ examples
have a corresponding Python example. There is no structured documentation for the Python bindings like there is
Doxygen for the C++ API, but the Doxygen can be consulted to understand how the C++ API works.

19.5.2 Python Bindings Workflow

The process by which Python bindings are handled is the following:

1. Periodically a developer uses a CastXML (https://github.com/CastXML/CastXML) based API scanning script,
which saves the scanned API definition as bindings/python/ns3_module_«.py files or as Python files in
each modules’ bindings directory. These files are kept under version control in the main ns-3 repository;

2. Other developers clone the repository and use the already scanned API definitions;

3. When configuring ns-3, pybindgen will be automatically downloaded if not already installed. Released ns-3
tarballs will ship a copy of pybindgen.

If something goes wrong with compiling Python bindings and you just want to ignore them and move on with C++,
you can disable Python with:

$./waf configure —--disable-python ...

To add support for modular bindings to an existing or new ns-3 module, simply add the following line to its wscript
build() function:

bld.ns3_python_bindings ()

One must also provide the bindings files (usually by running the scanning framework).

19.5.3 Regenerating the Python bindings

ns-3 will fail to successfully compile the Python bindings if the C++ headers are changed and no longer align with the
stored Python bindings. In this case, the developer has two main choices: 1) disable Python as described above, or 2)
update the bindings to align with the new C++ APL.

Process Overview

ns-3 has an automated process to regenerate Python bindings from the C++ header files. The process is only supported
for Linux at the moment (ns-3.29) because we are in the midst of transition to new tools. The current process is
outlined below. In short, the process currently requires the following steps.

1. Prepare the system for scanning by installing the prerequisites, including a development version of clang, the
CastXML package, and pygccxml.

2. Perform a scan of the module of interest or all modules

Installing a clang development environment

Make sure you have a development version of the clang compiler installed on your system. This can take a long time
to build from source. Linux distributions provide binary library packages such as clang-dev or clang-devel. The
version should not be too important; version 3.8 is known to work. Note that there is a problem with the Ubuntu
package installation of c1ang-dev; see the Installation wiki page for details on how to fix using some symlinks.

19.5. Working with Python Bindings 155

https://github.com/CastXML/CastXML

ns-3 Manual, Release ns-3-dev

Installing other prerequisites

cxxfilt is a new requirement, typically installed using pip; e.g.

sudo pip install cxxfilt

See also the wiki for installation notes for your system.

Set up a bake build environment

Try the following commands:

cd bake

export BAKE_HOME="pwd’

export PATH=S$PATH:SBAKE_HOME/build/bin

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:S$BAKE_HOME/build/lib
export PYTHONPATH=SPYTHONPATH:S$BAKE_HOME/build/lib

mkdir -p build/lib

v v x4

Configure

Perform a configuration at the bake level:

$./bake.py configure -e ns-3-dev -e pygccxml-1.9.1

The output of bake show should show something like this:

$./bake.py show

Should say:

System Dependencies —--

clang-dev - OK
gt+ — OK
libxml2-dev - OK
pygoocanvas — OK

pygraphviz - OK
python-dev - OK
gt - OK

setuptools - OK

V V V V V V V V

Download

Try the following command:

$./bake.py download

>> Searching for system dependency python-dev - OK
>> Searching for system dependency clang-dev - OK
>> Searching for system dependency g++ - OK

>> Searching for system dependency setuptools - OK
>> Searching for system dependency pygoocanvas — OK
>> Searching for system dependency pygraphviz - OK
>> Searching for system dependency gt - OK

(continues on next page)

156 Chapter 19. Using Python to Run ns-3

ns-3 Manual, Release ns-3-dev

(continued from previous page)

>> Downloading castxml - OK

>> Downloading netanim - OK

>> Downloading pygccxml-1.9.1 - OK
>> Downloading pygccxml — OK

>> Downloading pybindgen - OK

>> Downloading ns-3-dev - OK

Build

Try the following commands:

$ mkdir -p build/lib
$./bake.py build

It should fail on the ns-3 bindings complilation.
The output of ‘./waf configure’ can be inspected to see if Python API scanning support is enabled:

Python API Scanning Support : enabled

It may say something like this, if the support is not active:

Python API Scanning Support : not enabled (Missing 'pygccxml' Python module)

In this case, the user must take steps to install castxml and pygccxml; castxml binary must be in the shell’s path, and
pygccexml must be in the Python path.

LP64 vs ILP32 bindings
Linux (64-bit, as most modern installations use) and MacOS use different data models, as explained here: https:
/Iwww.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.cbcpx01/datatypesize64.htm

Linux uses the LP64 model, and MacOS (as well as 32-bit Linux) use the ILP32 model. Users will note that there are
two versions of bindings files in each ns-3 module directory; one with an ILP32.py suffix and one with an LP64.py
suffix. Only one is used on any given platform. The main difference is in the representation of the 64 bit integer type
as either a ‘long’ (LP64) or ‘long long’ (ILP32).

The process (only supported on Linux at present) generates the LP64 bindings using the toolchain and then copies the
LP64 bindings to the ILP32 bindings with some type subsitutions automated by Waf scripts.

Rescanning a module

To re-scan a module:

$ cd source/ns—-3-dev
$./waf ——apiscan=wifi

To re-scan all modules:

$ cd source/ns-3-dev
$./waf —-—-apiscan=all

19.5. Working with Python Bindings 157

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.cbcpx01/datatypesize64.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.cbcpx01/datatypesize64.htm

ns-3 Manual, Release ns-3-dev

Generating bindings on MacOS

In principle, this should work (and should generate the 32-bit bindings). However, maintainers have not been able to
complete this port as of ns-3.29. We would welcome suggestions on how to enable scanning for MacOS.

19.5.4 Organization of the Modular Python Bindings

The src/<module>/bindings directory may contain the following files, some of them optional:

callbacks_list.py: this is a scanned file, DO NOT TOUCH. Contains a list of Callback<...> template
instances found in the scanned headers;

modulegen_ gcc_LP64.py: this is a scanned file, DO NOT TOUCH. Scanned API definitions for the GCC,
LP64 architecture (64-bit)

modulegen__gcc_ILP32.py: thisis a scanned file, DO NOT TOUCH. Scanned API definitions for the GCC,
ILP32 architecture (32-bit)

modulegen_customizations.py: you may optionally add this file in order to customize the pybindgen code
generation

scan—header.h: you may optionally add this file to customize what header file is scanned for the module.
Basically this file is scanned instead of ns3/<module>-module.h. Typically, the first statement is #include
“ns3/<module>-module.h”, plus some other stuff to force template instantiations;

module_helpers.cc: you may add additional files, such as this, to be linked to python extension module, but
they have to be registered in the wscript. Look at src/core/wscript for an example of how to do so;

<module>.py: if this file exists, it becomes the “frontend” python module for the ns3 module, and the extension
module (.so file) becomes _<module>.so instead of <module>.so. The <module>.py file has to import all
symbols from the module _<module> (this is more tricky than it sounds, see src/core/bindings/core.py for an
example), and then can add some additional pure-python definitions.

19.6 More Information for Developers

If you are a developer and need more information on ns-3’s Python bindings, please see the Python Bindings wiki

page.

158

Chapter 19. Using Python to Run ns-3

http://www.nsnam.org/wiki/NS-3_Python_Bindings
http://www.nsnam.org/wiki/NS-3_Python_Bindings

CHAPTER
TWENTY

TESTS

20.1 Overview

This chapter is concerned with the testing and validation of ns-3 software.
This chapter provides

* background about terminology and software testing

e adescription of the ns-3 testing framework

* a guide to model developers or new model contributors for how to write tests

20.2 Background

This chapter may be skipped by readers familiar with the basics of software testing.

Writing defect-free software is a difficult proposition. There are many dimensions to the problem and there is much
confusion regarding what is meant by different terms in different contexts. We have found it worthwhile to spend a
little time reviewing the subject and defining some terms.

Software testing may be loosely defined as the process of executing a program with the intent of finding errors. When
one enters a discussion regarding software testing, it quickly becomes apparent that there are many distinct mind-sets
with which one can approach the subject.

ELENE)

For example, one could break the process into broad functional categories like ‘’correctness testing,” *’performance
testing,” “’robustness testing” and “’security testing.” Another way to look at the problem is by life-cycle: ‘’require-
ments testing,” “’design testing,” ’acceptance testing,” and ‘’maintenance testing.” Yet another view is by the scope
of the tested system. In this case one may speak of “’unit testing,” “’component testing,” ‘’integration testing,” and
“’system testing.” These terms are also not standardized in any way, and so ‘’maintenance testing” and ‘’regression

testing” may be heard interchangeably. Additionally, these terms are often misused.

There are also a number of different philosophical approaches to software testing. For example, some organizations
advocate writing test programs before actually implementing the desired software, yielding *’test-driven development.”
Some organizations advocate testing from a customer perspective as soon as possible, following a parallel with the
agile development process: ‘’test early and test often.” This is sometimes called “’agile testing.” It seems that there is
at least one approach to testing for every development methodology.

The ns-3 project is not in the business of advocating for any one of these processes, but the project as a whole has
requirements that help inform the test process.

Like all major software products, ns-3 has a number of qualities that must be present for the product to succeed.

29 ¢

From a testing perspective, some of these qualities that must be addressed are that ns-3 must be “’correct,” “’robust,”

159

ns-3 Manual, Release ns-3-dev

“performant” and “’maintainable.” Ideally there should be metrics for each of these dimensions that are checked by
the tests to identify when the product fails to meet its expectations / requirements.

20.2.1 Correctness

The essential purpose of testing is to determine that a piece of software behaves “’correctly.” For ns-3 this means
that if we simulate something, the simulation should faithfully represent some physical entity or process to a specified
accuracy and precision.

It turns out that there are two perspectives from which one can view correctness. Verifying that a particular model is
implemented according to its specification is generically called verification. The process of deciding that the model is
correct for its intended use is generically called validation.

20.2.2 Validation and Verification

A computer model is a mathematical or logical representation of something. It can represent a vehicle, an elephant
(see David Harel’s talk about modeling an elephant at SIMUTools 2009, or a networking card. Models can also
represent processes such as global warming, freeway traffic flow or a specification of a networking protocol. Models
can be completely faithful representations of a logical process specification, but they necessarily can never completely
simulate a physical object or process. In most cases, a number of simplifications are made to the model to make
simulation computationally tractable.

Every model has a target system that it is attempting to simulate. The first step in creating a simulation model is to
identify this target system and the level of detail and accuracy that the simulation is desired to reproduce. In the case
of alogical process, the target system may be identified as ' TCP as defined by RFC 793.” In this case, it will probably
be desirable to create a model that completely and faithfully reproduces RFC 793. In the case of a physical process
this will not be possible. If, for example, you would like to simulate a wireless networking card, you may determine
that you need, ‘’an accurate MAC-level implementation of the 802.11 specification and [...] a not-so-slow PHY-level
model of the 802.11a specification.’

Once this is done, one can develop an abstract model of the target system. This is typically an exercise in managing
the tradeoffs between complexity, resource requirements and accuracy. The process of developing an abstract model
has been called model qualification in the literature. In the case of a TCP protocol, this process results in a design
for a collection of objects, interactions and behaviors that will fully implement RFC 793 in ns-3. In the case of the
wireless card, this process results in a number of tradeoffs to allow the physical layer to be simulated and the design
of a network device and channel for ns-3, along with the desired objects, interactions and behaviors.

This abstract model is then developed into an ns-3 model that implements the abstract model as a computer program.
The process of getting the implementation to agree with the abstract model is called model verification in the literature.

The process so far is open loop. What remains is to make a determination that a given ns-3 model has some connection
to some reality — that a model is an accurate representation of a real system, whether a logical process or a physical
entity.

If one is going to use a simulation model to try and predict how some real system is going to behave, there must be
some reason to believe your results —i.e., can one trust that an inference made from the model translates into a correct
prediction for the real system. The process of getting the ns-3 model behavior to agree with the desired target system
behavior as defined by the model qualification process is called model validation in the literature. In the case of a TCP
implementation, you may want to compare the behavior of your ns-3 TCP model to some reference implementation
in order to validate your model. In the case of a wireless physical layer simulation, you may want to compare the
behavior of your model to that of real hardware in a controlled setting,

The ns-3 testing environment provides tools to allow for both model validation and testing, and encourages the publi-
cation of validation results.

160 Chapter 20. Tests

http://simutools.org/2009/

ns-3 Manual, Release ns-3-dev

20.2.3 Robustness

Robustness is the quality of being able to withstand stresses, or changes in environments, inputs or calculations, etc.
A system or design is “’robust” if it can deal with such changes with minimal loss of functionality.

This kind of testing is usually done with a particular focus. For example, the system as a whole can be run on many
different system configurations to demonstrate that it can perform correctly in a large number of environments.

The system can be also be stressed by operating close to or beyond capacity by generating or simulating resource
exhaustion of various kinds. This genre of testing is called ‘’stress testing.” ¢

The system and its components may be exposed to so-called “’clean tests” that demonstrate a positive result — that is
that the system operates correctly in response to a large variation of expected configurations.

The system and its components may also be exposed to “’dirty tests” which provide inputs outside the expected range.
For example, if a module expects a zero-terminated string representation of an integer, a dirty test might provide
an unterminated string of random characters to verify that the system does not crash as a result of this unexpected
input. Unfortunately, detecting such “dirty” input and taking preventive measures to ensure the system does not fail
catastrophically can require a huge amount of development overhead. In order to reduce development time, a decision
was taken early on in the project to minimize the amount of parameter validation and error handling in the ns-3
codebase. For this reason, we do not spend much time on dirty testing — it would just uncover the results of the design
decision we know we took.

We do want to demonstrate that ns-3 software does work across some set of conditions. We borrow a couple of
definitions to narrow this down a bit. The domain of applicability is a set of prescribed conditions for which the model
has been tested, compared against reality to the extent possible, and judged suitable for use. The range of accuracy is
an agreement between the computerized model and reality within a domain of applicability.

The ns-3 testing environment provides tools to allow for setting up and running test environments over multiple systems
(buildbot) and provides classes to encourage clean tests to verify the operation of the system over the expected “’domain
of applicability” and “’range of accuracy.’*

20.2.4 Performant

Okay, “performant” isn’t a real English word. It is, however, a very concise neologism that is quite often used to
describe what we want ns-3 to be: powerful and fast enough to get the job done.

This is really about the broad subject of software performance testing. One of the key things that is done is to compare
two systems to find which performs better (cf benchmarks). This is used to demonstrate that, for example, ns-3 can
perform a basic kind of simulation at least as fast as a competing tool, or can be used to identify parts of the system
that perform badly.

In the ns-3 test framework, we provide support for timing various kinds of tests.

20.2.5 Maintainability

A software product must be maintainable. This is, again, a very broad statement, but a testing framework can help
with the task. Once a model has been developed, validated and verified, we can repeatedly execute the suite of tests
for the entire system to ensure that it remains valid and verified over its lifetime.

When a feature stops functioning as intended after some kind of change to the system is integrated, it is called generi-
cally a regression. Originally the term regression referred to a change that caused a previously fixed bug to reappear,
but the term has evolved to describe any kind of change that breaks existing functionality. There are many kinds of
regressions that may occur in practice.

A local regression is one in which a change affects the changed component directly. For example, if a component is
modified to allocate and free memory but stale pointers are used, the component itself fails.

20.2. Background 161

ns-3 Manual, Release ns-3-dev

A remote regression is one in which a change to one component breaks functionality in another component. This
reflects violation of an implied but possibly unrecognized contract between components.

An unmasked regression is one that creates a situation where a previously existing bug that had no affect is suddenly
exposed in the system. This may be as simple as exercising a code path for the first time.

A performance regression is one that causes the performance requirements of the system to be violated. For example,
doing some work in a low level function that may be repeated large numbers of times may suddenly render the system
unusable from certain perspectives.

The ns-3 testing framework provides tools for automating the process used to validate and verify the code in nightly
test suites to help quickly identify possible regressions.

20.3 Testing framework

ns-3 consists of a simulation core engine, a set of models, example programs, and tests. Over time, new contributors
contribute models, tests, and examples. A Python test program test .py serves as the test execution manager; test.
py can run test code and examples to look for regressions, can output the results into a number of forms, and can
manage code coverage analysis tools. On top of this, we layer buildslaves that are automated build robots that perform
robustness testing by running the test framework on different systems and with different configuration options.

20.3.1 Buildslaves

At the highest level of ns-3 testing are the buildslaves (build robots). If you are unfamiliar with this system look
at https://ns-buildmaster.ee.washington.edu:8010/. This is an open-source automated system that allows ns-3 to be
rebuilt and tested daily. By running the buildbots on a number of different systems we can ensure that ns-3 builds and
executes properly on all of its supported systems.

Users (and developers) typically will not interact with the buildslave system other than to read its messages regarding
test results. If a failure is detected in one of the automated build and test jobs, the buildbot will send an email to the
ns-commits mailing list. This email will look something like

[Ns—commits] Build failed in Jenkins: daily-ubuntu-without-valgrind » Ubuntu-64-15.04
—~#926

281 of 285 tests passed (281 passed, 3 skipped, 1 failed, 0 crashed, 0 valgrind_
—»errors)
List of SKIPped tests:
ns3-tcp-cwnd
ns3-tcp-interoperability
nsc—tcp-loss
List of FAILed tests:
random-variable-stream-generators
+ exit 1
Build step 'Execute shell' marked build as failure

In the full details URL shown in the email, one can find links to the detailed test output.

The buildslave system will do its job quietly if there are no errors, and the system will undergo build and test cycles
every day to verify that all is well.

162 Chapter 20. Tests

https://ns-buildmaster.ee.washington.edu:8010/

ns-3 Manual, Release ns-3-dev

20.3.2 Test.py

The buildbots use a Python program, test.py, that is responsible for running all of the tests and collecting the
resulting reports into a human- readable form. This program is also available for use by users and developers as well.

test.py is very flexible in allowing the user to specify the number and kind of tests to run; and also the amount and
kind of output to generate.

Before running test . py, make sure that ns3’s examples and tests have been built by doing the following

$./waf configure --enable-examples --enable-tests
$./waf build

By default, test .py will run all available tests and report status back in a very concise form. Running the command

$./test.py

will result in a number of PASS, FAIL, CRASH or SKIP indications followed by the kind of test that was run and its
display name.

Waf: Entering directory ' /home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
Waf: Leaving directory " /home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
'build' finished successfully (0.939s)

FAIL: TestSuite propagation-loss-model

PASS: TestSuite object-name-service

PASS: TestSuite pcap-file-object

PASS: TestSuite ns3-tcp-cwnd

PASS: TestSuite ns3-tcp-interoperability
PASS: Example csma-broadcast
PASS: Example csma-multicast

This mode is intended to be used by users who are interested in determining if their distribution is working correctly,
and by developers who are interested in determining if changes they have made have caused any regressions.

There are a number of options available to control the behavior of test . py. if yourun test.py —--help you should
see a command summary like:

Usage: test.py [options]

Options:

-h, —--help show this help message and exit

-b BUILDPATH, --buildpath=BUILDPATH
specify the path where ns-3 was built (defaults to the
build directory for the current variant)

—-c KIND, —--constrain=KIND
constrain the test-runner by kind of test

—e EXAMPLE, --example=EXAMPLE
specify a single example to run (no relative path is
needed)

-d, --duration print the duration of each test suite and example

—e EXAMPLE, --example=EXAMPLE
specify a single example to run (no relative path is
needed)

-u, —-update-data If examples use reference data files, get them to re-
generate them

-f FULLNESS, --fullness=FULLNESS
choose the duration of tests to run: QUICK, EXTENSIVE,

(continues on next page)

20.3. Testing framework 163

ns-3 Manual, Release ns-3-dev

(continued from previous page)
or TAKES_FOREVER, where EXTENSIVE includes QUICK and

TAKES_FOREVER includes QUICK and EXTENSIVE (only QUICK
tests are run by default)

-g, ——-grind run the test suites and examples using valgrind

-k, ——kinds print the kinds of tests available

-1, --list print the list of known tests

-m, —--multiple report multiple failures from test suites and test
cases

-n, —-—nowaf do not run waf before starting testing

-p PYEXAMPLE, --pyexample=PYEXAMPLE
specify a single python example to run (with relative
path)
-r, —-retain retain all temporary files (which are normally
deleted)
-s TEST-SUITE, —--suite=TEST-SUITE
specify a single test suite to run
-t TEXT-FILE, —-—text=TEXT-FILE
write detailed test results into TEXT-FILE.txt
-v, ——-verbose print progress and informational messages
-w HTML-FILE, --web=HTML-FILE, —--html=HTML-FILE
write detailed test results into HTML-FILE.html
-x XML-FILE, -—--xml=XML-FILE
write detailed test results into XML-FILE.xml

If one specifies an optional output style, one can generate detailed descriptions of the tests and status. Available styles
are text and HTML. The buildbots will select the HTML option to generate HTML test reports for the nightly builds
using

$./test.py —--html=nightly.html

In this case, an HTML file named “’nightly.htm]” would be created with a pretty summary of the testing done. A
“human readable” format is available for users interested in the details.

$./test.py —-text=results.txt

In the example above, the test suite checking the ns-3 wireless device propagation loss models failed. By default no
further information is provided.

To further explore the failure, test .py allows a single test suite to be specified. Running the command

$./test.py —-suite=propagation-loss-model

or equivalently

$./test.py —-s propagation-loss-model

results in that single test suite being run.

FAIL: TestSuite propagation-loss-model

To find detailed information regarding the failure, one must specify the kind of output desired. For example, most
people will probably be interested in a text file:

$./test.py —-suite=propagation-loss-model --text=results.txt

This will result in that single test suite being run with the test status written to the file “’results.txt’*.

164 Chapter 20. Tests

ns-3 Manual, Release ns-3-dev

You should find something similar to the following in that file

FAIL: Test Suite ''propagation-loss-model'' (real 0.02 user 0.01 system 0.00)
PASS: Test Case "Check ... Friis ... model ..." (real 0.01 user 0.00 system 0.00)
FAIL: Test Case "Check ... Log Distance ... model" (real 0.01 user 0.01 system 0.00)
Details:

Message: Got unexpected SNR value

Condition: [long description of what actually failed]

Actual: 176.395

Limit: 176.407 +- 0.0005

File: ../src/test/ns3wifi/propagation-loss—-models—-test-suite.cc

Line: 360

Notice that the Test Suite is composed of two Test Cases. The first test case checked the Friis propagation loss model
and passed. The second test case failed checking the Log Distance propagation model. In this case, an SNR of 176.395
was found, and the test expected a value of 176.407 correct to three decimal places. The file which implemented the
failing test is listed as well as the line of code which triggered the failure.

If you desire, you could just as easily have written an HTML file using the ——html option as described above.

Typically a user will run all tests at least once after downloading ns-3 to ensure that his or her environment has been
built correctly and is generating correct results according to the test suites. Developers will typically run the test suites
before and after making a change to ensure that they have not introduced a regression with their changes. In this case,
developers may not want to run all tests, but only a subset. For example, the developer might only want to run the unit
tests periodically while making changes to a repository. In this case, test.py can be told to constrain the types of
tests being run to a particular class of tests. The following command will result in only the unit tests being run:

$./test.py —-constrain=unit

To see a quick list of the legal kinds of constraints, you can ask for them to be listed. The following command

$./test.py —-kinds

will result in the following list being displayed:

Waf: Entering directory ' /home/craigdo/repos/ns—-3-allinone-test/ns-3-dev/build’

Waf: Leaving directory ' /home/craigdo/repos/ns—3-allinone-test/ns-3-dev/build’

'build' finished successfully (0.939s)Waf: Entering directory " /home/craigdo/repos/ns—
—3-allinone-test/ns-3-dev/build’

core: Run all TestSuite-based tests (exclude examples)

example: Examples (to see if example programs run successfully)

performance: Performance Tests (check to see if the system is as fast as expected)
system: System Tests (spans modules to check integration of modules)

unit: Unit Tests (within modules to check basic functionality)

Any of these kinds of test can be provided as a constraint using the ——constraint option.

To see a quick list of all of the test suites available, you can ask for them to be listed. The following command,

$./test.py —-list

will result in a list of the test suite being displayed, similar to

Waf: Entering directory °/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
Waf: Leaving directory ' /home/craigdo/repos/ns—-3-allinone-test/ns-3-dev/build’
'build' finished successfully (0.939s)

Test Type Test Name

(continues on next page)

20.3. Testing framework 165

ns-3 Manual, Release ns-3-dev

performance
performance
performance
system
system
system
system
system

unit
unit
unit
unit
example
example
example
example

(continued from previous page)

many-uniform-random-variables-one-get-value-call
one-uniform-random-variable-many-get-value-calls
type-id-perf

buildings-pathloss-test

buildings-shadowing-test
devices-mesh-dotlls-regression
devices-mesh-flame-regression

epc—gtpu

wimax-phy-layer

wimax—-service-flow

wimax—-ss-mac-layer

wimax-tlv

adhoc-aloha-ideal-phy
adhoc-aloha-ideal-phy-matrix-propagation—-loss-model
adhoc-aloha-ideal-phy-with-microwave-oven

aodv

Any of these listed suites can be selected to be run by itself using the ——suite option as shown above.

To run multiple test suites at once it is possible to use a ‘Unix filename pattern matching’ style, e.g.,

S ../test.py —-s 'ipvb6#'

Note the use of quotes. The result is similar to

PASS: TestSuite ipvé6-protocol

PASS: TestSuite ipv6-packet-info-tag
PASS: TestSuite ipv6-list-routing
PASS: TestSuite ipvé6-extension-header
PASS: TestSuite ipv6-address—generator
PASS: TestSuite ipv6-raw

PASS: TestSuite ipvé6-dual-stack

PASS: TestSuite ipv6-fragmentation
PASS: TestSuite ipv6-address-helper
PASS: TestSuite ipvé6-address

PASS: TestSuite ipv6-forwarding

PASS: TestSuite ipvé6-ripng

Similarly to test suites, one can run a single C++ example program using the --example option. Note that the
relative path for the example does not need to be included and that the executables built for C++ examples do not have
extensions. Furthermore, the example must be registered as an example to the test framework; it is not sufficient to
create an example and run it through test.py; it must be added to the relevant examples-to—-run.py file, explained

below. Entering

$./test.py ——example=udp-echo

results in that single example being run.

PASS: Example examples/udp/udp-echo

You can specify the directory where ns-3 was built using the —-buildpath option as follows.

$./test.py —-buildpath=/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build/debug --
—example=wifi-simple-adhoc

166

Chapter 20. Tests

ns-3 Manual, Release ns-3-dev

One can run a single Python example program using the ——pyexample option. Note that the relative path for the
example must be included and that Python examples do need their extensions. Entering

$./test.py ——-pyexample=examples/tutorial/first.py

results in that single example being run.

PASS: Example examples/tutorial/first.py

Because Python examples are not built, you do not need to specify the directory where ns-3 was built to run them.

Normally when example programs are executed, they write a large amount of trace file data. This is normally saved
to the base directory of the distribution (e.g., /home/user/ns-3-dev). When test .py runs an example, it really is
completely unconcerned with the trace files. It just wants to to determine if the example can be built and run without
error. Since this is the case, the trace files are written into a /tmp/unchecked-traces directory. If you run the
above example, you should be able to find the associated udp—-echo.tr and udp-echo-n-1.pcap files there.

The list of available examples is defined by the contents of the “’examples” directory in the distribution. If you select
an example for execution using the ——example option, test .py will not make any attempt to decide if the example
has been configured or not, it will just try to run it and report the result of the attempt.

When test . py runs, by default it will first ensure that the system has been completely built. This can be defeated by
selecting the ——nowaf option.

$./test.py —--list —--nowaf

will result in a list of the currently built test suites being displayed, similar to:

propagation-loss-model
ns3-tcp-cwnd
ns3-tcp-interoperability
pcap-file

object-name-service
random-variable-stream-generators

Note the absence of the waf build messages.

test.py also supports running the test suites and examples under valgrind. Valgrind is a flexible program for de-
bugging and profiling Linux executables. By default, valgrind runs a tool called memcheck, which performs a range
of memory- checking functions, including detecting accesses to uninitialised memory, misuse of allocated memory
(double frees, access after free, etc.) and detecting memory leaks. This can be selected by using the ——grind option.

$./test.py —--grind

As it runs, test.py and the programs that it runs indirectly, generate large numbers of temporary files. Usually,
the content of these files is not interesting, however in some cases it can be useful (for debugging purposes) to view
these files. test.py provides a ——retain option which will cause these temporary files to be kept after the run is
completed. The files are saved in a directory named testpy-output under a subdirectory named according to the
current Coordinated Universal Time (also known as Greenwich Mean Time).

$./test.py —-retain

Finally, test .py provides a ——verbose option which will print large amounts of information about its progress. It
is not expected that this will be terribly useful unless there is an error. In this case, you can get access to the standard
output and standard error reported by running test suites and examples. Select verbose in the following way:

$./test.py —-verbose

20.3. Testing framework 167

ns-3 Manual, Release ns-3-dev

All of these options can be mixed and matched. For example, to run all of the ns-3 core test suites under valgrind, in
verbose mode, while generating an HTML output file, one would do:

$./test.py —--verbose --grind —--constrain=core --html=results.html

20.3.3 TestTaxonomy

As mentioned above, tests are grouped into a number of broadly defined classifications to allow users to selectively
run tests to address the different kinds of testing that need to be done.

 Build Verification Tests
¢ Unit Tests
* System Tests
* Examples
 Performance Tests
Moreover, each test is further classified according to the expected time needed to run it. Tests are classified as:
* QUICK
* EXTENSIVE
* TAKES_FOREVER

Note that specifying EXTENSIVE fullness will also run tests in QUICK category. Specifying TAKES_FOREVER
will run tests in EXTENSIVE and QUICK categories. By default, only QUICK tests are ran.

As a rule of thumb, tests that must be run to ensure ns-3 coherence should be QUICK (i.e., take a few seconds).
Tests that could be skipped, but are nice to do can be EXTENSIVE; these are tests that typically need minutes.
TAKES_FOREVER is left for tests that take a really long time, in the order of several minutes. The main classification
goal is to be able to run the buildbots in a reasonable time, and still be able to perform more extensive tests when
needed.

Unit Tests

Unit tests are more involved tests that go into detail to make sure that a piece of code works as advertised in isolation.
There is really no reason for this kind of test to be built into an ns-3 module. It turns out, for example, that the unit
tests for the object name service are about the same size as the object name service code itself. Unit tests are tests
that check a single bit of functionality that are not built into the ns-3 code, but live in the same directory as the code
it tests. It is possible that these tests check integration of multiple implementation files in a module as well. The file
src/core/test/names-test-suite.cc is an example of this kind of test. The file src/network/test/pcap-file-test-suite.cc is
another example that uses a known good pcap file as a test vector file. This file is stored locally in the src/network
directory.

System Tests

System tests are those that involve more than one module in the system. We have lots of this kind of test running in
our current regression framework, but they are typically overloaded examples. We provide a new place for this kind
of test in the directory src/test. The file src/test/ns3tcp/ns3-interop-test-suite.cc is an example of this kind of test.
It uses NSC TCP to test the ns-3 TCP implementation. Often there will be test vectors required for this kind of test,
and they are stored in the directory where the test lives. For example, ns3tcp-interop-response-vectors.pcap is a file
consisting of a number of TCP headers that are used as the expected responses of the ns-3 TCP under test to a stimulus
generated by the NSC TCP which is used as a “’known good” implementation.

168 Chapter 20. Tests

ns-3 Manual, Release ns-3-dev

Examples

The examples are tested by the framework to make sure they built and will run. Limited checking is done on examples;
currently the pcap files are just written off into /tmp to be discarded. If the example runs (don’t crash) and the exit
status is zero, the example will pass the smoke test.

Performance Tests

Performance tests are those which exercise a particular part of the system and determine if the tests have executed to
completion in a reasonable time.

20.3.4 Running Tests

Tests are typically run using the high level test . py program. To get a list of the available command-line options, run
test.py —-help

The test program test.py will run both tests and those examples that have been added to the list to check. The
difference between tests and examples is as follows. Tests generally check that specific simulation output or events
conforms to expected behavior. In contrast, the output of examples is not checked, and the test program merely checks
the exit status of the example program to make sure that it runs without error.

Briefly, to run all tests, first one must configure tests during configuration stage, and also (optionally) examples if
examples are to be checked:

$./waf —--configure —--enable-examples —--enable-tests
Then, build ns-3, and after it is built, just run test.py. test.py —h will show a number of configuration options
that modify the behavior of test.py.

The program test .py invokes, for C++ tests and examples, a lower-level C++ program called test-runner to
actually run the tests. As discussed below, this test-runner can be a helpful way to debug tests.

20.3.5 Debugging Tests

The debugging of the test programs is best performed running the low-level test-runner program. The test-runner is
the bridge from generic Python code to ns-3 code. It is written in C++ and uses the automatic test discovery process
in the ns-3 code to find and allow execution of all of the various tests.

The main reason why test . py is not suitable for debugging is that it is not allowed for logging to be turned on using
the NS_LOG environmental variable when test.py runs. This limitation does not apply to the test-runner executable.
Hence, if you want to see logging output from your tests, you have to run them using the test-runner directly.

In order to execute the test-runner, you run it like any other ns-3 executable — using waf. To get a list of available
options, you can type:

$./waf —--run "test-runner —-help"

You should see something like the following

Usage: /home/craigdo/repos/ns—3-allinone-test/ns-3-dev/build/utils/ns3-dev-test-
—runner—-debug [OPTIONS]

Options:
—--help : print these options

(continues on next page)

20.3. Testing framework 169

ns-3 Manual, Release ns-3-dev

——-print-test-name-list
--list
--print-test-types
—-—-print-test-type-list
——print-temp-dir

—-—test-type=TYPE
——test—-name=NAME
—-—-suite=NAME

—-—assert-on-failure

—-—-stop-on-failure
——fullness=FULLNESS

—-—verbose
——xml
—-—tempdir=DIR
—-—datadir=DIR
——out=FILE
——append=FILE

(continued from previous page)

print the list of names of tests available

an alias for —--print-test-name-list

print the type of tests along with their names
print the list of types of tests available

print name of temporary directory before running
the tests

process only tests of type TYPE

process only test whose name matches NAME

an alias (here for compatibility reasons only)
for —--test—-name=NAME

when a test fails, crash immediately
when running under a debugger

when a test fails, stop immediately
choose the duration of tests to run: QUICK,
EXTENSIVE, or TAKES_FOREVER, where EXTENSIVE

includes QUICK and TAKES_FOREVER includes

QUICK and EXTENSIVE (only QUICK tests are

run by default)

print details of test execution

format test run output as xml

set temp dir for tests to store output files

set data dir for tests to read reference files

send test result to FILE instead of standard output
append test result to FILE instead of standard output

(useful

There are a number of things available to you which will be familiar to you if you have looked at test . py. This should
be expected since the test- runner is just an interface between test . py and ns-3. You may notice that example-related
commands are missing here. That is because the examples are really not ns-3 tests. test.py runs them as if they
were to present a unified testing environment, but they are really completely different and not to be found here.

The first new option that appears here, but not in test.py is the ~—assert-on-failure option. This option is useful
when debugging a test case when running under a debugger like gdb. When selected, this option tells the underlying
test case to cause a segmentation violation if an error is detected. This has the nice side-effect of causing program
execution to stop (break into the debugger) when an error is detected. If you are using gdb, you could use this option
something like,

$./waf shell

$ cd build/utils

$ gdb ns3-dev-test-runner-debug

$ run --suite=global-value --assert-on-failure

If an error is then found in the global-value test suite, a segfault would be generated and the (source level) debugger
would stop at the NS_TEST_ASSERT_MSG that detected the error.

To run one of the tests directly from the test-runner using wa £, you will need to specify the test suite to run. So you
could use the shell and do:

$./waf —--run "test-runner --suite=pcap-file"

ns-3 logging is available when you run it this way, such as:

$ NS_LOG="Packet” ./waf —run “test-runner —suite=pcap-file”

170 Chapter 20. Tests

ns-3 Manual, Release ns-3-dev

Test output

Many test suites need to write temporary files (such as pcap files) in the process of running the tests. The tests then
need a temporary directory to write to. The Python test utility (test.py) will provide a temporary file automatically,
but if run stand-alone this temporary directory must be provided. It can be annoying to continually have to provide
a ——tempdir, so the test runner will figure one out for you if you don’t provide one. It first looks for environment
variables named TMP and TEMP and uses those. If neither TMP nor TEMP are defined it picks /tmp. The code then
tacks on an identifier indicating what created the directory (ns-3) then the time (hh.mm.ss) followed by a large random
number. The test runner creates a directory of that name to be used as the temporary directory. Temporary files then
go into a directory that will be named something like

/tmp/ns—3.10.25.37.61537845

The time is provided as a hint so that you can relatively easily reconstruct what directory was used if you need to go
back and look at the files that were placed in that directory.

Another class of output is test output like pcap traces that are generated to compare to reference output. The test
program will typically delete these after the test suites all run. To disable the deletion of test output, run test . py with
the “retain” option:

$./test.py -r

and test output can be found in the testpy-output/ directory.

Reporting of test failures

When you run a test suite using the test-runner it will run the test and report PASS or FAIL. To run more quietly, you
need to specify an output file to which the tests will write their status using the —-out option. Try,

$./waf —-run "test-runner —--suite=pcap-file —--out=myfile.txt"

Debugging test suite failures

To debug test crashes, such as

CRASH: TestSuite wifi-interference

You can access the underlying test-runner program via gdb as follows, and then pass the “~basedir=‘pwd*” argument
to run (you can also pass other arguments as needed, but basedir is the minimum needed):

$./waf —--command-template="gdb %s" --run "test-runner"

Waf: Entering directory " /home/tomh/hg/sep09/ns-3-allinone/ns-3-dev-678/build'’
Waf: Leaving directory " /home/tomh/hg/sep09/ns-3-allinone/ns-3-dev-678/build"’
'build' finished successfully (0.380s)

GNU gdb 6.8-debian

Copyright (C) 2008 Free Software Foundation, Inc.

L cense GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "x86_64-linux—-gnu"...

(gdb) r —--suite=

Starting program: <..>/build/utils/ns3-dev-test-runner-debug --suite=wifi-interference
[Thread debugging using libthread_db enabled]

(continues on next page)

20.3. Testing framework 171

ns-3 Manual, Release ns-3-dev

(continued from previous page)

assert failed. file=../src/core/model/type-id.cc, 1line=138, cond="uid <= m_
—information.size () && uid != 0"

Here is another example of how to use valgrind to debug a memory problem such as:

VALGR: TestSuite devices-mesh-dotlls-regression

$./waf —-command-template="valgrind %s —--suite=devices-mesh-dotlls-regression" —-run
—test-runner

20.3.6 Class TestRunner

The executables that run dedicated test programs use a TestRunner class. This class provides for automatic test regis-
tration and listing, as well as a way to execute the individual tests. Individual test suites use C++ global constructors
to add themselves to a collection of test suites managed by the test runner. The test runner is used to list all of the
available tests and to select a test to be run. This is a quite simple class that provides three static methods to provide
or Adding and Getting test suites to a collection of tests. See the doxygen for class ns3: : TestRunner for details.

20.3.7 Test Suite

All ns-3 tests are classified into Test Suites and Test Cases. A test suite is a collection of test cases that completely
exercise a given kind of functionality. As described above, test suites can be classified as,

* Build Verification Tests
¢ Unit Tests

* System Tests

* Examples
 Performance Tests

This classification is exported from the TestSuite class. This class is quite simple, existing only as a place to export
this type and to accumulate test cases. From a user perspective, in order to create a new TestSuite in the system one
only has to define a new class that inherits from class TestSuite and perform these two duties.

The following code will define a new class that can be run by test.py as a “unit” test with the display name,
my-test-suite-name

class MySuite : public TestSuite
{
public:
MyTestSuite ();
bi

MyTestSuite: :MyTestSuite ()
TestSuite ("my-test-suite-name", UNIT)

AddTestCase (new MyTestCase, TestCase::QUICK);

static MyTestSuite myTestSuite;

172 Chapter 20. Tests

ns-3 Manual, Release ns-3-dev

The base class takes care of all of the registration and reporting required to be a good citizen in the test framework.

Avoid putting initialization logic into the test suite or test case constructors. This is because an instance of the test
suite is created at run time (due to the static variable above) regardless of whether the test is being run or not. Instead,
the TestCase provides a virtual DoSetup method that can be specialized to perform setup before DoRun is called.

20.3.8 Test Case

Individual tests are created using a TestCase class. Common models for the use of a test case include “one test case
per feature”, and “one test case per method.” Mixtures of these models may be used.

In order to create a new test case in the system, all one has to do is to inherit from the TestCase base class, override
the constructor to give the test case a name and override the DoRun method to run the test. Optionally, override also
the DoSetup method.

class MyTestCase : public TestCase
{
MyTestCase ();
virtual void DoSetup (wvoid);
virtual void DoRun (void);

}i

MyTestCase: :MyTestCase ()
TestCase ("Check some bit of functionality")

void
MyTestCase: :DoRun (void)

{
NS_TEST_ASSERT_MSG_EQ (true, true, "Some failure message");

20.3.9 Utilities

There are a number of utilities of various kinds that are also part of the testing framework. Examples include a
generalized pcap file useful for storing test vectors; a generic container useful for transient storage of test vectors
during test execution; and tools for generating presentations based on validation and verification testing results.

These utilities are not documented here, but for example, please see how the TCP tests found in src/test/ns3tcp/
use pcap files and reference output.

20.4 How to write tests

A primary goal of the ns-3 project is to help users to improve the validity and credibility of their results. There are
many elements to obtaining valid models and simulations, and testing is a major component. If you contribute models
or examples to ns-3, you may be asked to contribute test code. Models that you contribute will be used for many years
by other people, who probably have no idea upon first glance whether the model is correct. The test code that you
write for your model will help to avoid future regressions in the output and will aid future users in understanding the
verification and bounds of applicability of your models.

There are many ways to verify the correctness of a model’s implementation. In this section, we hope to cover some
common cases that can be used as a guide to writing new tests.

20.4. How to write tests 173

ns-3 Manual, Release ns-3-dev

20.4.1 Sample TestSuite skeleton
When starting from scratch (i.e. not adding a TestCase to an existing TestSuite), these things need to be decided up
front:

¢ What the test suite will be called

* What type of test it will be (Build Verification Test, Unit Test, System Test, or Performance Test)

* Where the test code will live (either in an existing ns-3 module or separately in src/test/ directory). You will
have to edit the wscript file in that directory to compile your new code, if it is a new file.

A program called utils/create-module.py is a good starting point. This program can be invoked such as
create-module.py router for a hypothetical new module called router. Once you do this, you will see a
router directory, and a test/router-test-suite.cc test suite. This file can be a starting point for your ini-
tial test. This is a working test suite, although the actual tests performed are trivial. Copy it over to your module’s test
directory, and do a global substitution of “Router” in that file for something pertaining to the model that you want to
test. You can also edit things such as a more descriptive test case name.

You also need to add a block into your wscript to get this test to compile:

module_test.source = [
'test/router-test-suite.cc',

]

Before you actually start making this do useful things, it may help to try to run the skeleton. Make sure that ns-3 has
been configured with the “—enable-tests” option. Let’s assume that your new test suite is called “router” such as here:

RouterTestSuite: :RouterTestSuite ()
TestSuite ("router", UNIT)

Try this command:

$./test.py —-s router

Output such as below should be produced:

PASS: TestSuite router
1 of 1 tests passed (1 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

See src/lte/test/test-lte-antenna.cc for a worked example.

20.4.2 Test macros

There are a number of macros available for checking test program output with expected output. These macros are
defined in src/core/model/test.h.

The main set of macros that are used include the following:

NS_TEST_ASSERT_MSG_EQ (actual, limit, msg)
NS_TEST_ASSERT_MSG_NE (actual, limit, msg)
NS_TEST_ASSERT_MSG_LT (actual, limit, msqg)
NS_TEST_ASSERT_MSG_GT (actual, limit, msg)
NS_TEST_ASSERT_MSG_EQ_TOL (actual, limit, tol, msg)

The first argument actual is the value under test, the second value 1imit is the expected value (or the value to test
against), and the last argument msg is the error message to print out if the test fails.

174 Chapter 20. Tests

ns-3 Manual, Release ns-3-dev

The first four macros above test for equality, inequality, less than, or greater than, respectively. The fifth macro above
tests for equality, but within a certain tolerance. This variant is useful when testing floating point numbers for equality
against a limit, where you want to avoid a test failure due to rounding errors.

Finally, there are variants of the above where the keyword ASSERT is replaced by ExPECT. These variants are designed
specially for use in methods (especially callbacks) returning void. Reserve their use for callbacks that you use in your
test programs; otherwise, use the ASSERT variants.

20.4.3 How to add an example program to the test suite

There are two methods for adding an example program to the the test suite. Normally an example is added using only
one of these methods to avoid running the example twice.

First, you can “smoke test” that examples compile and run successfully to completion (without memory leaks) using
the examples-to-run.py script located in your module’s test directory. Briefly, by including an instance of this
file in your test directory, you can cause the test runner to execute the examples listed. It is usually best to make sure
that you select examples that have reasonably short run times so as to not bog down the tests. See the example in
src/lte/test/ directory. The exit status of the example will be checked when run and a non-zero exit status can be
used to indicate that the example has failed. This is the easiest way to add an example to the test suite but has limited
checks.

The second method you can use to add an example to the test suite is more complicated but enables checking of
the example output (std::out and std::err). This approach uses the test suite framework with a specialized
TestSuite or TestCase class designed to run an example and compare the output with a specified known “good”
reference file. To use an example program as a test you need to create a test suite file and add it to the appropriate list
in your module wscript file. The “good” output reference file needs to be generated for detecting regressions.

If you are thinking about using this class, strongly consider using a standard test instead. The TestSuite class has better
checking using the NS_TEST_x macros and in almost all cases is the better approach. If your test can be done with a
TestSuite class you will be asked by the reviewers to rewrite the test when you do a pull request.

Let’s assume your module is called mymodule, and the example program is mymodule/examples/mod-example.
cc. First you should create a test file mymodule/test/mymodule-examples—test-suite.cc which looks like
this:

#include "ns3/example-as—test.h"
static ns3::ExampleAsTestSuite g_modExampleOne ("mymodule-example-mod-example-one'",

—"mod-example", NS_TEST_SOURCEDIR, "-—-arg-one");
static ns3::ExampleAsTestSuite g_modExampleTwo ("mymodule-example-mod-example-two",
—"mod-example", NS_TEST_SOURCEDIR, "--arg-two");

The arguments to the constructor are the name of the test suite, the example to run, the directory that contains the
“good” reference file (the macro NS_TEST_SOURCEDIR is normally the correct directory), and command line argu-
ments for the example. In the preceding code the same example is run twice with different arguments.

You then need to add that newly created test suite file to the list of test sources in mymodule/wscript. Building of
examples is an option so you need to guard the inclusion of the test suite:

if (bld.env['ENABLE_EXAMPLES']) :
module.source.append ('model/mymodule-examples—test-suite.cc')

Since you modified a wscript file you need to reconfigure and rebuild everything.

You just added new tests so you will need to generate the “good” output reference files that will be used to verify the
example:

./test.py —-—-suite="mymodule-example-+" --update

20.4. How to write tests 175

ns-3 Manual, Release ns-3-dev

This will run all tests starting with “mymodule-example-" and save new “good” reference files. Updating the reference
files should be done when you create the test and whenever output changes. When updating the reference output you
should inspect it to ensure that it is valid. The reference files should be committed with the new test.

This completes the process of adding a new example.

You can now run the test with the standard test . py script. For example to run the suites you just added:

./test.py —-suite="mymodule-example—x*"

This will run all mymodule-example-. . . tests and report whether they produce output matching the reference files.

You can also add multiple examples as test cases to a TestSuite using ExampleAsTestCase. See src/core/
test/examples-as-tests—test-suite.cc for examples of setting examples as tests.

When setting up an example for use by this class you should be very careful about what output the example generates.
For example, writing output which includes simulation time (especially high resolution time) makes the test sensitive
to potentially minor changes in event times. This makes the reference output hard to verify and hard to keep up-to-date.
Output as little as needed for the example and include only behavioral state that is important for determining if the
example has run correctly.

20.4.4 Testing for boolean outcomes

20.4.5 Testing outcomes when randomness is involved
20.4.6 Testing output data against a known distribution
20.4.7 Providing non-trivial input vectors of data

20.4.8 Storing and referencing non-trivial output data

20.4.9 Presenting your output test data

176 Chapter 20. Tests

CHAPTER
TWENTYONE

SUPPORT

21.1 Creating a new ns-3 model

This chapter walks through the design process of an ns-3 model. In many research cases, users will not be satisfied
to merely adapt existing models, but may want to extend the core of the simulator in a novel way. We will use the
example of adding an ErrorModel to a simple ns-3 link as a motivating example of how one might approach this
problem and proceed through a design and implementation.

Note: Documentation

Here we focus on the process of creating new models and new modules, and some of the design choices involved. For
the sake of clarity, we defer discussion of the mechanics of documenting models and source code to the Documentation
chapter.

21.1.1 Design Approach

Consider how you want it to work; what should it do. Think about these things:
* functionality: What functionality should it have? What attributes or configuration is exposed to the user?

* reusability: How much should others be able to reuse my design? Can I reuse code from ns-2 to get started?
How does a user integrate the model with the rest of another simulation?

* dependencies: How can I reduce the introduction of outside dependencies on my new code as much as possible
(to make it more modular)? For instance, should I avoid any dependence on IPv4 if T want it to also be used by
IPv6? Should I avoid any dependency on IP at all?

Do not be hesitant to contact the ns-3-users or ns-developers list if you have questions. In particular, it is important to
think about the public API of your new model and ask for feedback. It also helps to let others know of your work in
case you are interested in collaborators.

Example: ErrorModel
An error model exists in ns-2. It allows packets to be passed to a stateful object that determines, based on a random
variable, whether the packet is corrupted. The caller can then decide what to do with the packet (drop it, etc.).

The main API of the error model is a function to pass a packet to, and the return value of this function is a boolean
that tells the caller whether any corruption occurred. Note that depending on the error model, the packet data buffer
may or may not be corrupted. Let’s call this function “IsCorrupt()”.

So far, in our design, we have:

177

ns-3 Manual, Release ns-3-dev

class ErrorModel
{
public:
VET:
* \returns true if the Packet is to be considered as errored/corrupted
* \param pkt Packet to apply error model to
*/
bool IsCorrupt (Ptr<Packet> pkt);
i

Note that we do not pass a const pointer, thereby allowing the function to modify the packet if IsCorrupt() returns
true. Not all error models will actually modify the packet; whether or not the packet data buffer is corrupted should be
documented.

We may also want specialized versions of this, such as in ns-2, so although it is not the only design choice for poly-
morphism, we assume that we will subclass a base class ErrorModel for specialized classes, such as RateErrorModel,
ListErrorModel, etc, such as is done in ns-2.

You may be thinking at this point, “Why not make IsCorrupt() a virtual method?”. That is one approach; the other is
to make the public non-virtual function indirect through a private virtual function (this in C++ is known as the non
virtual interface idiom and is adopted in the ns-3 ErrorModel class).

Next, should this device have any dependencies on IP or other protocols? We do not want to create dependencies on
Internet protocols (the error model should be applicable to non-Internet protocols too), so we’ll keep that in mind later.

Another consideration is how objects will include this error model. We envision putting an explicit setter in certain
NetDevice implementations, for example.:

J ok k

* Attach a receive ErrorModel to the PointToPointNetDevice.

+ The PointToPointNetDevice may optionally include an ErrorModel in
* the packet receive chain.

* @see ErrorModel
* @param em Ptr to the ErrorModel.
*/
void PointToPointNetDevice: :SetReceiveErrorModel (Ptr<ErrorModel> em) ;

Again, this is not the only choice we have (error models could be aggregated to lots of other objects), but it satisfies
our primary use case, which is to allow a user to force errors on otherwise successful packet transmissions, at the
NetDevice level.

After some thinking and looking at existing ns-2 code, here is a sample API of a base class and first subclass that could
be posted for initial review:

class ErrorModel

{

public:
ErrorModel ();
virtual ~ErrorModel ();

bool IsCorrupt (Ptr<Packet> pkt);
void Reset (void);
void Enable (void);
void Disable (void);
bool IsEnabled (void) const;
private:
virtual bool DoCorrupt (Ptr<Packet> pkt) = 0;

(continues on next page)

178 Chapter 21. Support

ns-3 Manual, Release ns-3-dev

(continued from previous page)

virtual void DoReset (void) = 0;
}i

enum ErrorUnit
{
EU_BIT,
EU_BYTE,
EU_PKT
bi

// Determine which packets are errored corresponding to an underlying
// random variable distribution, an error rate, and unit for the rate.
class RateErrorModel : public ErrorModel

{

public:
RateErrorModel ();
virtual ~RateErrorModel ();

enum ErrorUnit GetUnit (void) const;

void SetUnit (enum ErrorUnit error_unit);

double GetRate (void) const;

void SetRate (double rate);

void SetRandomVariable (const RandomVariable &ranvar);
private:

virtual bool DoCorrupt (Ptr<Packet> pkt);

virtual void DoReset (void);
}i

21.1.2 Scaffolding

Let’s say that you are ready to start implementing; you have a fairly clear picture of what you want to build, and you
may have solicited some initial review or suggestions from the list. One way to approach the next step (implementa-
tion) is to create scaffolding and fill in the details as the design matures.

This section walks through many of the steps you should consider to define scaffolding, or a non-functional skeleton
of what your model will eventually implement. It is usually good practice to not wait to get these details integrated at
the end, but instead to plumb a skeleton of your model into the system early and then add functions later once the API
and integration seems about right.

Note that you will want to modify a few things in the below presentation for your model since if you follow the error
model verbatim, the code you produce will collide with the existing error model. The below is just an outline of how
ErrorModel was built that you can adapt to other models.

Review the ns-3 Coding Style Document

At this point, you may want to pause and read the ns-3 coding style document, especially if you are considering to
contribute your code back to the project. The coding style document is linked off the main project page: ns-3 coding
style.

Decide Where in the Source Tree the Model Should Reside

All of the ns-3 model source code is in the directory src/. You will need to choose which subdirectory it resides in.
If it is new model code of some sort, it makes sense to put it into the src/ directory somewhere, particularly for ease
of integrating with the build system.

21.1. Creating a new ns-3 model 179

http://www.nsnam.org/developers/contributing-code/coding-style/
http://www.nsnam.org/developers/contributing-code/coding-style/

ns-3 Manual, Release ns-3-dev

In the case of the error model, it is very related to the packet class, so it makes sense to implement this in the src/
network/ module where ns-3 packets are implemented.

waf and wscript

ns-3 uses the Waf build system. You will want to integrate your new ns-3 uses the Waf build system. You will want
to integrate your new source files into this system. This requires that you add your files to the wscript file found in
each directory.

Let’s start with empty files error-model.h and error-model.cc, and add this to src/network/wscript. It is really
just a matter of adding the .cc file to the rest of the source files, and the .h file to the list of the header files.

Now, pop up to the top level directory and type “./test.py”. You shouldn’t have broken anything by this operation.

Include Guards

Next, let’s add some include guards in our header file.:

#ifndef ERROR_MODEL H
#define ERROR _MODEIL H

#endif

namespace ns3

ns-3 uses the ns-3 namespace to isolate its symbols from other namespaces. Typically, a user will next put an ns-3
namespace block in both the cc and h file.:

namespace ns3 {
}

At this point, we have some skeletal files in which we can start defining our new classes. The header file looks like
this:

#ifndef ERROR_MODEIL, H
#define ERROR_MODEIL H

namespace ns3 {

} // namespace ns3
#endif

while the error-model. cc file simply looks like this:
#include "error-model.h"
namespace ns3 {

} // namespace ns3

These files should compile since they don’t really have any contents. We’re now ready to start adding classes.

180 Chapter 21. Support

http://www.freehackers.org/~tnagy/waf.html
http://en.wikipedia.org/wiki/Include_guard
http://en.wikipedia.org/wiki/Namespace_(computer_science)#Use_in_common_languages

ns-3 Manual, Release ns-3-dev

21.1.3 Initial Implementation

At this point, we’re still working on some scaffolding, but we can begin to define our classes, with the functionality to
be added later.

Inherit from the Object Class?

This is an important design step; whether to use class Object as a base class for your new classes.

As described in the chapter on the ns-3 Object model, classes that inherit from class Ob ject get special properties:
* the ns-3 type and attribute system (see Configuration and Attributes)
* an object aggregation system
* a smart-pointer reference counting system (class Ptr)

Classes that derive from class ObjectBase} get the first two properties above, but do not get smart pointers. Classes
that derive from class RefCountBase get only the smart-pointer reference counting system.

In practice, class Object is the variant of the three above that the ns-3 developer will most commonly encounter.

In our case, we want to make use of the attribute system, and we will be passing instances of this object across the
ns-3 public API, so class Object is appropriate for us.

Initial Classes

One way to proceed is to start by defining the bare minimum functions and see if they will compile. Let’s review what
all is needed to implement when we derive from class Object.:

#ifndef ERROR_MODEIL H
#define ERROR_MODEIL H

#include "ns3/object.h"
namespace ns3 {

class ErrorModel : public Object

{
public:
static TypeId GetTypeId (wvoid);

ErrorModel ();
virtual ~ErrorModel ();
bi

class RateErrorModel : public ErrorModel

{
public:
static TypeId GetTypeId (wvoid);

RateErrorModel ();

virtual ~RateErrorModel ();
bi
#endif

A few things to note here. We need to include object . h. The convention in ns-3 is that if the header file is co-located
in the same directory, it may be included without any path prefix. Therefore, if we were implementing ErrorModel

21.1. Creating a new ns-3 model 181

ns-3 Manual, Release ns-3-dev

in src/core/model directory, we could have just said “#include "object.h"”. But we are in src/network/
model, so we must include it as “#include "ns3/object.h"”. Note also that this goes outside the namespace
declaration.

Second, each class must implement a static public member function called GetTypeId (void).

Third, it is a good idea to implement constructors and destructors rather than to let the compiler generate them, and to
make the destructor virtual. In C++, note also that copy assignment operator and copy constructors are auto-generated
if they are not defined, so if you do not want those, you should implement those as private members. This aspect of
C++ is discussed in Scott Meyers’ Effective C++ book. item 45.

Let’s now look at some corresponding skeletal implementation code in the .cc file.:

#include "error—-model.h"
namespace ns3 {
NS_OBJECT_ENSURE_REGISTERED (ErrorModel);

Typeld ErrorModel: :GetTypeId (void)
{
static TypelId tid = Typeld ("ns3::ErrorModel™)
.SetParent<Object> ()
.SetGroupName ("Network")
2
return tid;

ErrorModel: :ErrorModel ()
{
}

ErrorModel: :~ErrorModel ()
{
}

NS_OBJECT_ENSURE_REGISTERED (RateErrorModel);

Typeld RateErrorModel: :GetTypelId (wvoid)
{
static TypeId tid = Typeld ("ns3::RateErrorModel")
.SetParent<ErrorModel> ()
.SetGroupName ("Network™)
.AddConstructor<RateErrorModel> ()
2
return tid;

RateErrorModel: :RateErrorModel ()
{
}

RateErrorModel: : ~RateErrorModel ()
{
}

What is the Get TypeId (void) function? This function does a few things. It registers a unique string into the Typeld
system. It establishes the hierarchy of objects in the attribute system (via SetParent). It also declares that certain
objects can be created via the object creation framework (AddConstructor).

182 Chapter 21. Support

ns-3 Manual, Release ns-3-dev

The macro NS_OBJECT_ENSURE_REGISTERED (classname) is needed also once for every class that defines a new
GetTypeld method, and it does the actual registration of the class into the system. The Object model chapter discusses
this in more detail.

Including External Files
Logging Support

Here, write a bit about adding \ns3| logging macros. Note that LOG_COMPONENT_DEFINE is done outside the
namespace ns3

Constructor, Empty Function Prototypes
Key Variables (Default Values, Attributes)
Test Program 1

Object Framework

21.1.4 Adding a Sample Script

At this point, one may want to try to take the basic scaffolding defined above and add it into the system. Performing
this step now allows one to use a simpler model when plumbing into the system and may also reveal whether any
design or API modifications need to be made. Once this is done, we will return to building out the functionality of the
ErrorModels themselves.

Add Basic Support in the Class

/* point-to-point-net-device.h #*/
class ErrorModel;

VR
* Error model for receive packet events
*/

Ptr<ErrorModel> m_receiveErrorModel;

Add Accessor

void
PointToPointNetDevice: :SetReceiveErrorModel (Ptr<ErrorModel> em)
{

NS_LOG_FUNCTION (this << em);

m_receiveErrorModel = em;

.AddAttribute ("ReceiveErrorModel",
"The receiver error model used to simulate packet loss",
PointerValue (),
MakePointerAccessor (&PointToPointNetDevice::m_receiveErrorModel),
MakePointerChecker<ErrorModel> ())

21.1. Creating a new ns-3 model 183

ns-3 Manual, Release ns-3-dev

Plumb Into the System

void PointToPointNetDevice: :Receive (Ptr<Packet> packet)
{

NS_LOG_FUNCTION (this << packet);

uintl6_t protocol = 0;

if (m_receiveErrorModel && m_receiveErrorModel->IsCorrupt (packet))
{
//
// If we have an error model and it indicates that it 1is time to lose a
// corrupted packet, don't forward this packet up, let it go.
//
m_dropTrace (packet);
}
else
{
//
// Hit the receive trace hook, strip off the point-to-point protocol header
// and forward this packet up the protocol stack.
//
m_rxTrace (packet);
ProcessHeader (packet, protocol);
m_rxCallback (this, packet, protocol, GetRemote ());
if (!m_promiscCallback.IsNull ())
{ m_promiscCallback (this, packet, protocol, GetRemote (),
GetAddress (), NetDevice::PACKET_HOST) ;

Create Null Functional Script

/+ simple—error—-model.cc =*/

// Error model

// We want to add an error model to node 3's NetDevice

// We can obtain a handle to the NetDevice via the channel and node

// pointers

Ptr<PointToPointNetDevice> nd3 = PointToPointTopology: :GetNetDevice
(n3, channel2);

Ptr<ErrorModel> em = Create<ErrorModel> ();

nd3->SetReceiveErrorModel (em);

bool
ErrorModel: :DoCorrupt (Packeté& p)
{
NS_LOG_FUNCTION;
NS_LOG_UNCOND ("Corrupt!");
return false;

At this point, we can run the program with our trivial ErrorModel plumbed into the receive path of the PointToPoint-
NetDevice. It prints out the string “Corrupt!” for each packet received at node n3. Next, we return to the error model
to add in a subclass that performs more interesting error modeling.

184 Chapter 21. Support

ns-3 Manual, Release ns-3-dev

21.1.5 Add a Subclass

The trivial base class ErrorModel does not do anything interesting, but it provides a useful base class interface (Corrupt
() and Reset ()), forwarded to virtual functions that can be subclassed. Let’s next consider what we call a BasicError-
Model which is based on the ns-2 ErrorModel class (in ns-2/queue/errmodel. {cc, h}).

What properties do we want this to have, from a user interface perspective? We would like for the user to be able to
trivially swap out the type of ErrorModel used in the NetDevice. We would also like the capability to set configurable
parameters.

Here are a few simple requirements we will consider:
* Ability to set the random variable that governs the losses (default is UniformVariable)
* Ability to set the unit (bit, byte, packet, time) of granularity over which errors are applied.
* Ability to set the rate of errors (e.g. 10-3) corresponding to the above unit of granularity.

* Ability to enable/disable (default is enabled)

How to Subclass

We declare BasicErrorModel to be a subclass of ErrorModel as follows,:

class BasicErrorModel : public ErrorModel

{
public:
static TypeId GetTypeId (void);

private:
// Implement base class pure virtual functions
virtual bool DoCorrupt (Ptr<Packet> p);
virtual bool DoReset (void);

and configure the subclass GetTypeld function by setting a unique Typeld string and setting the Parent to ErrorModel:

Typeld RateErrorModel: :GetTypeId (wvoid)

{
static TypeId tid = Typeld ("ns3::RateErrorModel")
.SetParent<ErrorModel> ()
.SetGroupName ("Network™)
.AddConstructor<RateErrorModel> ()

21.1.6 Build Core Functions and Unit Tests

Assert Macros

Writing Unit Tests
21.2 Adding a New Module to ns-3

When you have created a group of related classes, examples, and tests, they can be combined together into an ns-3
module so that they can be used with existing ns-3 modules and by other researchers.

21.2. Adding a New Module to ns-3 185

ns-3 Manual, Release ns-3-dev

This chapter walks you through the steps necessary to add a new module to ns-3.

21.2.1 Step 0 - Module Layout

All modules can be found in the src directory. Each module can be found in a directory that has the same name
as the module. For example, the spect rum module can be found here: src/spectrum. We’ll be quoting from the
spect rum module for illustration.

A prototypical module has the following directory structure and required files:

src/
module-name/
bindings/
doc/
examples/
wscript
helper/
model/
test/
examples—to-run.py
wscript

Not all directories will be present in each module.

21.2.2 Step 1 - Create a Module Skeleton

A python program is provided in the ut i1s directory that will create a skeleton for a new module. For the purposes of
this discussion we will assume that your new module is called new-module. From the top directory, do the following
to create the new module:

$./utils/create-module.py new-module

By default create-module. py creates the module skeleton in the src directory. However, it can also create modules
in contrib:

$./utils/create-module.py contrib/new-contrib

Let’s assume we’ve created our new module in src. cd into src/new-module; you will find this directory layout:

$ cd new-module
$ 1s
doc examples helper model test wscript

In more detail, the create-module.py script will create the directories as well as initial skeleton wscript, .h, .cc
and . rst files. The complete module with skeleton files looks like this:

src/
new-module/

doc/
new-module.rst

examples/
new-module-example.cc
wscript

helper/
new-module-helper.cc

(continues on next page)

186 Chapter 21. Support

ns-3 Manual, Release ns-3-dev

(continued from previous page)
new-module-helper.h
model/
new-module.cc
new-module.h
test/
new-module-test-suite.cc
wscript

(If required the bindings/ directory listed in Step-0 will be created automatically during the build.)

We next walk through how to customize this module. Informing waf about the files which make up your module is
done by editing the two wscript files. We will walk through the main steps in this chapter.

All ns-3 modules depend on the core module and usually on other modules. This dependency is specified in the
wscript file (at the top level of the module, not the separate wscript file in the examples directory!). In the
skeleton wscript the call that will declare your new module to wa £ will look like this (before editing):

def build(bld):
module = bld.create_ns3_module ('new-module', ['core'])

Let’s assume that new-module depends on the internet, mobility, and aodv modules. After editing it the
wscript file should look like:

def build(bld):
module = bld.create_ns3_module ('new-module', ['internet', 'mobility', 'aodv'])

Note that only first level module dependencies should be listed, which is why we removed core; the internet
module in turn depends on core.

Your module will most likely have model source files. Initial skeletons (which will compile successfully) are created
in model/new-module.cc and model/new-module.h

If your module will have helper source files, then they will go into the helper/ directory; again, initial skeletons are
created in that directory.

Finally, it is good practice to write tests and examples. These will almost certainly be required for new modules to
be accepted into the official ns-3 source tree. A skeleton test suite and test case is created in the test/ directory.
The skeleton test suite will contain the below constructor, which declares a new unit test named new-module, with a
single test case consisting of the class NewModuleTestCasel:

NewModuleTestSuite: :NewModuleTestSuite ()
TestSuite ("new-module", UNIT)

AddTestCase (new NewModuleTestCasel) ;

21.2.3 Step 3 - Declare Source Files
The public header and source code files for your new module should be specified in the wscript file by modifying it
with your text editor.

As an example, after declaring the spect rum module, the src/spectrum/wscript specifies the source code files
with the following list:

21.2. Adding a New Module to ns-3 187

ns-3 Manual, Release ns-3-dev

def build(bld):

module = bld.create_ns3_module ('spectrum', ['internet', 'propagation', 'antenna',
—'applications'])

module.source [

'model/spectrum-model.cc',
'model/spectrum-value.cc',

'model/microwave-oven-spectrum-value-helper.cc',
'helper/spectrum—helper.cc',
'helper/adhoc-aloha-noack—-ideal-phy-helper.cc',
'helper/waveform-generator-helper.cc',
'helper/spectrum—analyzer—helper.cc',

]

The objects resulting from compiling these sources will be assembled into a link library, which will be linked to any
programs relying on this module.

But how do such programs learn the public API of our new module? Read on!

21.2.4 Step 4 - Declare Public Header Files

The header files defining the public API of your model and helpers also should be specified in the wscript file.

Continuing with the spect rum model illustration, the public header files are specified with the following stanza. (Note
that the argument to the b1d function tells waf to install this module’s headers with the other ns-3 headers):

headers = bld(features='ns3header')
headers.module = 'spectrum'

headers.source = [
'model/spectrum-model.h',
'model/spectrum-value.h',

'model/microwave-oven—-spectrum-value—helper.h',
'helper/spectrum-helper.h',
'helper/adhoc—-aloha-noack-ideal-phy-helper.h',
'helper/waveform-generator-helper.h',
'helper/spectrum—-analyzer—-helper.h',

]

Headers made public in this way will be accessible to users of your model with include statements like

#include "ns3/spectrum-model.h"

Headers used strictly internally in your implementation should not be included here. They are still accessible to your
implementation by include statements like

#include "my-module-implementation.h"

188 Chapter 21. Support

ns-3 Manual, Release ns-3-dev

21.2.5 Step 5 - Declare Tests

If your new module has tests, then they must be specified in your wscript file by modifying it with your text editor.

The spectrum model tests are specified with the following stanza:

module_test = bld.create_ns3_module_test_library('spectrum')

module_test.source = |
'test/spectrum-interference-test.cc’',
'test/spectrum-value-test.cc',

]

See Tests for more information on how to write test cases.

21.2.6 Step 6 - Declare Examples
If your new module has examples, then they must be specified in your examples/wscript file. (The skeleton top-
level wscript will recursively include examples/wscript only if the examples were enabled at configure time.)

The spectrum model defines it’s first example in src/spectrum/examples/wscript with

def build(bld):
obj = bld.create_ns3_program('adhoc-aloha-ideal-phy"',
["spectrum', 'mobility'])
obj.source = 'adhoc-aloha-ideal-phy.cc'

Note that the second argument to the function create_ns3_program() is the list of modules that the program being
created depends on; again, don’t forget to include new-module in the list. It’s best practice to list only the direct
module dependencies, and let waf deduce the full dependency tree.

Occasionally, for clarity, you may want to split the implementation for your example among several source files. In
this case, just include those files as additional explicit sources of the example:

obj = bld.create_ns3_program('new-module-example', [new-module])
obj.source = ['new-module-example.cc', 'new-module-example-part.cc']

Python examples are specified using the following function call. Note that the second argument for the function
register_ns3_script () is the list of modules that the Python example depends on:

bld.register_ns3_script ('new-module-example.py', ['new-module'])

21.2.7 Step 7 - Examples Run as Tests

In addition to running explicit test code, the test framework can also be instrumented to run full example programs
to try to catch regressions in the examples. However, not all examples are suitable for regression tests. The file
test/examples—to-run.py controls the invocation of the examples when the test framework runs.

The spectrum model examples run by test.py are specified in src/spectrum/test/examples—to-run.py
using the following two lists of C++ and Python examples:

A list of C++ examples to run in order to ensure that they remain

buildable and runnable over time. Each tuple in the list contains
#
(example name, do_run, do_valgrind run).

(continues on next page)

21.2. Adding a New Module to ns-3 189

ns-3 Manual, Release ns-3-dev

(continued from previous page)

#

See test.py for more information.

cpp_examples = [
("adhoc-aloha-ideal-phy", "True", "True"),
("adhoc-aloha-ideal-phy-with-microwave-oven", "True", "True"),
("adhoc—-aloha-ideal-phy-matrix-propagation-loss-model", "True", "True"),

A list of Python examples to run in order to ensure that they remain

runnable over time. FEach tuple in the list contains
#

(example_name, do_run).

#

See test.py for more information.
python_examples = [
("sample-simulator.py", "True"),

As indicated in the comment, each entry in the C++ list of examples to run contains the tuple (example_name,
do_run, do_valgrind_run), where

e example_name is the executable to be run,
* do_run is a condition under which to run the example, and

* do_valgrind_run is a condition under which to run the example under valgrind. (This is needed because NSC
causes illegal instruction crashes with some tests when they are run under valgrind.)

Note that the two conditions are Python statements that can depend on wa £ configuration variables. For example,
("tcp—nsc-1fn", "NSC_ENABLED == True", "NSC_ENABLED == False"),
Each entry in the Python list of examples to run contains the tuple (example_name, do_run), where, as for the
C++ examples,

* example_name is the Python script to be run, and

* do_run is a condition under which to run the example.
Again, the condition is a Python statement that can depend on waf configuration variables. For example,

("realtime-udp-echo.py", "ENABLE_REAL_TIME == False"),

21.2.8 Step 8 - Configure and Build

You can now configure, build and test your module as normal. You must reconfigure the project as a first step so that
waf caches the new information in your wscript files, or else your new module will not be included in the build.

$./waf configure —--enable-examples —-—-enable-tests
$./waf build
$./test.py

Look for your new module’s test suite (and example programs, if your module has any enabled) in the test output.

190 Chapter 21. Support

ns-3 Manual, Release ns-3-dev

21.2.9 Step 9 - Python Bindings

Adding Python bindings to your module is optional, and the step is commented out by default in the create-module.
py script.

bld.ns3 _python_bindings ()
If you want to include Python bindings (needed only if you want to write Python ns-3 programs instead of C++ ns-3

programs), you should uncomment the above and install the Python API scanning system (covered elsewhere in this
manual) and scan your module to generate new bindings.

21.3 Creating Documentation

ns-3 supplies two kinds of documentation: expository “user-guide’-style chapters, and source code API documenta-
tion.

The “user-guide” chapters are written by hand in reStructuredText format (. rst), which is processed by the Python
documentation system Sphinx to generate web pages and pdf files. The API documentation is generated from the
source code itself, using Doxygen, to generate cross-linked web pages. Both of these are important: the Sphinx
chapters explain the why and overview of using a model; the API documentation explains the how details.

This chapter gives a quick overview of these tools, emphasizing preferred usage and customizations for ns-3.

To build all the standard documentation:

$./waf docs

For more specialized options, read on.

21.3.1 Documenting with Sphinx

We use Sphinx to generate expository chapters describing the design and usage of each module. Right now you are
reading the Documentation Chapter. If you are reading the html version, the Show Source link in the sidebar will show
you the reStructuredText source for this chapter.

Adding New Chapters

Adding a new chapter takes three steps (described in more detail below):
1. Choose Where? the documentation file(s) will live.
2. Link from an existing page to the new documentation.

3. Add the new file to the Makefile.

Where?

Documentation for a specific module, foo, should normally go in src/foo/doc/. For example src/foo/doc/foo.
rst would be the top-level document for the module. The utils/create-module.py script will create this file for
you.

Some models require several . rst files, and figures; these should all go in the src/foo/doc/ directory. The docs
are actually built by a Sphinx Makefile. For especially involved documentation, it may be helpful to have a local

21.3. Creating Documentation 191

http://sphinx-doc.org/rest.html
http://sphinx-doc.org/
http://www.doxygen.org/
http://sphinx-doc.org/
_sources/documentation.txt

ns-3 Manual, Release ns-3-dev

Makefile in the src/foo/doc/ directory to simplify building the documentation for this module (Antenna is an
example). Setting this up is not particularly hard, but is beyond the scope of this chapter.

In some cases, documentation spans multiple models; the Network chapter is an example. In these cases adding the
.rst files directly to doc/models/source/ might be appropriate.

Link
Sphinx has to know where your new chapter should appear. In most cases, a new model chapter should appear the in

Models book. To add your chapter there, edit doc/models/source/index.rst

toctree::
:maxdepth: 1

organization
animation
antenna

aodv
applications

Add the name of your document (without the . rst extension) to this list. Please keep the Model chapters in alphabet-
ical order, to ease visual scanning for specific chapters.

Makefile
You also have to add your document to the appropriate Makefile, so make knows to check it for updates. The Models
book Makefile is doc/models/Makefile, the Manual book Makefile is doc/manual/Makefile.
list all model library .rst files that need to be copied to S$SOURCETEMP
SOURCES = \
source/conf.py \
source/_static \
source/index.rst \

source/replace.txt \
source/organization.rst \

$ (SRC) /antenna/doc/source/antenna.rst \

You add your . rst files to the SOURCES variable. To add figures, read the comments in the Makefile to see which
variable should contain your image files. Again, please keep these in alphabetical order.

Building Sphinx Docs

Building the Sphinx documentation is pretty simple. To build all the Sphinx documentation:

$./waf sphinx

To build just the Models documentation:

$ make -C doc/models html

192 Chapter 21. Support

http://www.nsnam.org/docs/models/html/antenna.html
http://www.nsnam.org/docs/models/html/network.html

ns-3 Manual, Release ns-3-dev

To see the generated documentation point your browser at doc/models/build/html.

As you can see, Sphinx uses Make to guide the process. The default target builds all enabled output forms, which in
ns-3 are the multi-page html, single-page singlehtml, and pdf (1atex). To build just the multi-page html, you add
the html target:

$ make -C doc/models html

This can be helpful to reduce the build time (and the size of the build chatter) as you are writing your chapter.

Before committing your documentation to the repo, please check that it builds without errors or warnings. The build
process generates lots of output (mostly normal chatter from LaTeX), which can make it difficult to see if there are any
Sphinx warnings or errors. To find important warnings and errors build just the html version, then search the build
log for warning or error

ns-3 Specifics
The Sphinx documentation and tutorial are pretty good. We won’t duplicate the basics here, instead focusing on
preferred usage for ns-3.

¢ Start documents with these two lines:

include:: replace.txt
. highlight:: cpp

The first line enables some simple replacements. For example, typing |ns3| renders as ns-3. The second sets
the default source code highlighting language explicitly for the file, since the parser guess isn’t always accurate.
(It’s also possible to set the language explicitly for a single code block, see below.)

¢ Sections:

Sphinx is pretty liberal about marking section headings. By convention, we prefer this hierarchy:

heading hierarchy:

************* Chapter

kk Ak kA Ak kA AA* Section (#.#)
============= Subsection (#.#.#)
#H#########A## Sub—subsection

» Syntax Highlighting:

To use the default syntax highlighter, simply start a sourcecode block:

Sphinx Source Rendered Output
The Frobnitz is accessed by:

The "~ Frobnitz = is accessed by:: Foo: :Frobnitz frob:
.. r

frob.Set (...);
Foo::Frobnitz frob;

frob.Set (...);

To use a specific syntax highlighter, for example, bash shell commands:

21.3. Creating Documentation 193

http://sphinx-doc.org/contents.html
http://sphinx-doc.org/tutorial.html

ns-3 Manual, Release ns-3-dev

Sphinx Source Rendered Output
. sourcecode:: bash $ 1s
$ 1s

¢ Shorthand Notations:

These shorthands are defined:

Sphinx Source Rendered Output
ns-3

Ins3|
ns-2

Ins2 |
v

| check|

Cran RFC 6282
:rfc: 6282

21.3.2 Documenting with Doxygen

We use Doxygen to generate browsable API documentation. Doxygen provides a number of useful features:
e Summary table of all class members.
* Graphs of inheritance and collaboration for all classes.
* Links to the source code implementing each function.
* Links to every place a member is used.
* Links to every object used in implementing a function.
» Grouping of related classes, such as all the classes related to a specific protocol.
In addition, we use the TypeId system to add to the documentation for every class
* The config paths by which such objects can be reached.
* Documentation for any Attributes, including Attributes defined in parent classes.
* Documentation for any Trace sources defined by the class.
* The memory footprint for each class.

Doxygen operates by scanning the source code, looking for specially marked comments. It also creates a cross refer-
ence, indicating where each file, class, method, and variable is used.

Preferred Style

The preferred style for Doxygen comments is the JavaDoc style:

194 Chapter 21. Support

https://tools.ietf.org/html/rfc6282.html
http://www.doxygen.org/
https://www.nsnam.org/docs/doxygen

ns-3 Manual, Release ns-3-dev

* Brief description of this class or method.
* Adjacent lines become a single paragraph.

* Longer description, with lots of details.
* Blank lines separate paragraphs.

* Explain what the class or method does, using what algorithm.
* Explain the units of arguments and return values.

* \note Note any limitations or gotchas.

* (For functions with arguments or return valued:)

* \param [in] foo Brief noun phrase describing this argument. Note
* that we indicate if the argument 1is input,

* output, or both.

* \param [in,out] bar Note Sentence case, and terminating period.

* \param [in] baz Indicate boolean values with \c true or \c false.
* \return Brief noun phrase describing the value.

* \internal

* You can also discuss internal implementation details.

* Understanding this material shouldn't be necessary to using
* the class or method.

*/

void ExampleFunction (const int foo, double & bar, const bool baz);
In this style the Doxygen comment block begins with two ‘*’ characters: /xx, and precedes the item being docu-
mented.

For items needing only a brief description, either of these short forms is appropriate:

/++ Destructor implementation. */
void DoDispose ();

int m_count; //!< Count of

Note the special form of the end of line comment, // ! <, indicating that it refers to the preceding item.
Some items to note:

» Use sentence case, including the initial capital.

 Use punctuation, especially ‘.’s at the end of sentences or phrases.

* The \brief tag is not needed; the first sentence will be used as the brief description.

Every class, method, typedef, member variable, function argument and return value should be documented in all
source code files which form the formal API and implementation for ns-3, such as src/<module>/model/*, src/
<module>/helper/x and src/<module>/utils/*. Documentation for items in src/<module>/test/* and
src/<module>/examples/* is preferred, but not required.

Useful Features

* Inherited members will automatically inherit docs from the parent, (but can be replaced by local documentation).

1. Document the base class.

21.3. Creating Documentation 195

ns-3 Manual, Release ns-3-dev

2. In the sub class mark inherited functions with an ordinary comment:

// Inherited methods
virtual void FooBar (void);
virtual int BarFoo (double baz);

Note that the signatures have to match exactly, so include the formal argument (void)

This doesn’t work for static functions; see Get TypeId, below, for an example.

Building Doxygen Docs

Building the Doxygen documentation is pretty simple:

$./waf doxygen

This builds using the default configuration, which generates documentation sections for all items, even if they do not
have explicit comment documentation blocks. This has the effect of suppressing warnings for undocumented items,
but makes sure everything appears in the generated output, which is usually what you want for general use. Note that
we generate documentation even for modules which are disabled, to make it easier to see all the features available in
ns-3.

When writing documentation, it’s often more useful to see which items are generating warnings, typically about
missing documentation. To see the full warnings list, use the doc/doxygen.warnings.report.sh script:

$ doc/doxygen.warnings.report.sh

doxygen.warnings.report.sh:
Building and running print-introspected-doxygen...done.
Rebuilding doxygen (v1.8.10) docs with full errors...done.

Report of Doxygen warnings

(A1l counts are lower bounds.)
Warnings by module/directory:

Count Directory

3414 src/lte/model
1532 src/wimax/model
825 src/lte/test

1 src/applications/test
97 additional undocumented parameters.

12460 total warnings
100 directories with warnings

Warnings by file (alphabetical)

Count File

15 examples/routing/manet-routing—-compare.cc

(continues on next page)

196 Chapter 21. Support

ns-3 Manual, Release ns-3-dev

(continued from previous page)

26 examples/stats/wifi-example-apps.h
12 examples/tutorial/fifth.cc

17 utils/python-unit-tests.py

771 files with warnings

Warnings by file (numerical)

Count File

273 src/lte/model/lte-rrc-sap.h
272 src/core/model/simulator.h
221 src/netanim/model/animation-interface.h

1 src/wimax/model/ul-job.cc

771 files with warnings

Doxygen Warnings Summary

100 directories
771 files
12460 warnings

(This snippet has a lot of lines suppressed!)

The script modifies the configuration to show all warnings, and to shorten the run time. (It shortens the run time
primarily by disabling creation of diagrams, such as call trees, and doesn’t generate documentation for undocumented
items, in order to trigger the warnings.) As you can see, at this writing we have a lot of undocumented items. The
report summarizes warnings by module src/«/ x, and by file, in alphabetically and numerical order.

The script has a few options to pare things down and make the output more manageable. For help, use the -h option.
Having run it once to do the Doxygen build and generate the full warnings log, you can reprocess the log file with
various “filters,” without having to do the full Doxygen build again by using the —s option. You can exclude warnings
from »/examples/~* files (—e option), and/or /test/« files (-t). Just to be clear, all of the filter options do the
complete fast doxygen build; they just filter doxygen log and warnings output.

Perhaps the most useful option when writing documentation comments is -m <module>, which will limit the report
to just files matching src/<module>/~*, and follow the report with the actual warning lines. Combine with —et and
you can focus on the warnings that are most urgent in a single module:

$ doc/doxygen.warnings.report.sh -m mesh/helper

Doxygen Warnings Summary

1 directories
3 files
149 warnings

Filtered W

src/mesh/helper/dotlls/dotlls-installer.h:72: warning: Member m_root (variable) of
—class ns3::DotllsStack is not documented.
(continues on next page)

21.3. Creating Documentation 197

ns-3 Manual, Release ns-3-dev

(continued from previous page)

src/mesh/helper/dotlls/dotlls-installer.h:35: warning: return type of member
—ns3::DotllsStack: :GetTypeld is not documented
src/mesh/helper/dotlls/dotlls-installer.h:56: warning: return type of member
—ns3::DotllsStack::InstallStack is not documented
src/mesh/helper/flame/lfame-installer.h:40: warning: Member GetTypeId() (function) of
—class ns3::FlameStack is not documented.

src/mesh/helper/flame/flame-installer.h:60: warning: return type of member
—ns3::FlameStack::InstallStack is not documented

src/mesh/helper/mesh-helper.h:213: warning: Member m_nInterfaces (variable) of class_
—ns3::MeshHelper is not documented.

src/mesh/helper/mesh-helper.h:214: warning: Member m_spreadChannelPolicy (variable)
—of class ns3::MeshHelper is not documented.

src/mesh/helper/mesh-helper.h:215: warning: Member m_stack (variable) of class_
—ns3::MeshHelper is not documented.

src/mesh/helper/mesh-helper.h:216: warning: Member m_stackFactory (variable) of class,,
—ns3::MeshHelper is not documented.

src/mesh/helper/mesh-helper.h:209: warning: parameters of member
—ns3::MeshHelper::CreateInterface are not (all) documented
src/mesh/helper/mesh-helper.h:119: warning: parameters of member
—ns3::MeshHelper::SetStandard are not (all) documented

Finally, note that undocumented items (classes, methods, functions, typedefs, etc. won’t produce documentation when
you build with doxygen.warnings.report.sh, and only the outermost item will produce a warning. As a result,
if you don’t see documentation for a class method in the generated documentation, the class itself probably needs
documentation.

Now it’s just a matter of understanding the code, and writing some docs!

ns-3 Specifics

As for Sphinx, the Doxygen docs and reference are pretty good. We won’t duplicate the basics here, instead focusing
on preferred usage for ns-3.

* Use Doxygen Modules to group related items.

In the main header for a module, create a Doxgyen group:

J x*
* \defgroup foo Foo protocol.
* Implementation of the Foo protocol.
*/

The symbol foo is how other items can add themselves to this group. The string following that will be the title
for the group. Any further text will be the detailed description for the group page.

¢ Document each file, assigning it to the relevant group. In a header file:

VE
* \file
* \ingroup foo
* (Class Foo declaration.
*/

or in the corresponding . cc file:

198 Chapter 21. Support

http://www.stack.nl/~dimitri/doxygen/index.html
http://www.stack.nl/~dimitri/doxygen/manual/commands.html

ns-3 Manual, Release ns-3-dev

J x*
* \file
* \ingroup foo
* Class FooBar implementation.

*/

» Mark each associated class as belonging to the group:

/o k

* \ingroup foo

*

* FooBar packet type.
*/

class FooBar

* Did you know typedefs can have formal arguments? This enables documentation of function pointer signa-
tures:

/o k
* Bar callback function signature.
*
* \param ale The size of a pint of ale, in Imperial ounces.
*/
typedef void (* BarCallback) (const int ale);

* Copy the Attribute help strings from the Get TypeId method to use as the brief descriptions of associated
members.
* \bugid{298} will create a link to bug 298 in our Bugzilla.

* \p foo in a description will format foo the same as the \param foo parameter, making it clear that you are
referring to an actual argument.

e \RFC{301} will create a link to RFC 301.

e Document the direction of function arguments with \param [in], efc. The allowed values of the direction
token are [in], [out], and [in, out] (note the explicit square brackets), as discussed in the Doxygen docs
for \param.

* Document template arguments with \tparam, just as you use \param for function arguments.

For template arguments, indicate if they will be deduced or must be given explicitly:

VAT
* A templated function.
* \tparam T \explicit The return type.
* \tparam U \deduced The argument type.
* \param [in] a The argument.
*/
template <typename T, typename U> T Function (U a);

— Use \tparam U \deduced because the type U can be deduced at the site where the template is invoked.
Basically deduction can only be done for function arguments.

— Use \tparam T \explicit because the type T can’t be deduced; it must be given explicitly at the
invocation site, as in Create<MyObJject> (...)

* \internal should be used only to set off a discussion of implementation details, not to mark private func-
tions (they are already marked, as private!)

21.3. Creating Documentation 199

ns-3 Manual, Release ns-3-dev

¢ Don’t create classes with trivial names, such as class A, even in test suites. These cause all instances of the
class name literal ‘A’ to be rendered as links.

As noted above, static functions don’t inherit the documentation of the same functions in the parent class. ns-3 uses a
few static functions ubiquitously; the suggested documentation block for these cases is:

¢ Default constructor/destructor:

MyClass (); //!< Default constructor
~MyClass (); //!< Destructor

* Dummy destructor and DoDispose:

/#*+ Dummy destructor, see DoDispose. *x/
~MyClass ();

/*+ Destructor implementation */
virtual void DoDispose ();

* GetTypeld:

VAT
* Register this type.
* \return The object TypeId.
*/

static TypelId GetTypelId (woid);

21.4 Enabling Subsets of ns-3 Modules

As with most software projects, ns-3 is ever growing larger in terms of number of modules, lines of code, and memory
footprint. Users, however, may only use a few of those modules at a time. For this reason, users may want to explicitly
enable only the subset of the possible ns-3 modules that they actually need for their research.

This chapter discusses how to enable only the ns-3 modules that you are interested in using.

21.4.1 How to enable a subset of ns-3’s modules

If shared libraries are being built, then enabling a module will cause at least one library to be built:

libns3-modulename. so

If the module has a test library and test libraries are being built, then

libns3-modulename-test.so

will be built, too. Other modules that the module depends on and their test libraries will also be built.
By default, all modules are built in ns-3. There are two ways to enable a subset of these modules:
1. Using waf’s —enable-modules option

2. Using the ns-3 configuration file

200 Chapter 21. Support

ns-3 Manual, Release ns-3-dev

Enable modules using waf’s —enable-modules option

To enable only the core module with example and tests, for example, try these commands:

./waf clean

./waf configure —--enable-examples —-enable-tests -—-enable-modules=core
./waf build

cd build/debug/

1s

v U r

and the following libraries should be present:

bindings 1libns3-core.so ns3 scratch utils
examples libns3-core-test.so samples src

Note the . /waf clean step is done here only to make it more obvious which module libraries were built. You don’t
have todo . /waf clean in order to enable subsets of modules.

Running test.py will cause only those tests that depend on module core to be run:

24 of 24 tests passed (24 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

Repeat the above steps for the “network” module instead of the “core” module, and the following will be built, since
network depends on core:

bindings 1libns3-core.so libns3-network.so ns3 scratch utils
examples libns3-core-test.so libns3-network-test.so samples src

Running test.py will cause those tests that depend on only the core and network modules to be run:

31 of 31 tests passed (31 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

Enable modules using the ns-3 configuration file
A configuration file, .ns3rc, has been added to ns-3 that allows users to specify which modules are to be included in
the build.
When enabling a subset of ns-3 modules, the precedence rules are as follows:
1. the —enable-modules configure string overrides any .ns3rc file
2. the .ns3rc file in the top level ns-3 directory is next consulted, if present
3. the system searches for ~/.ns3rc if the above two are unspecified
If none of the above limits the modules to be built, all modules that waf knows about will be built.

The maintained version of the .ns3rc file in the ns-3 source code repository resides in the utils directory. The
reason for this is if it were in the top-level directory of the repository, it would be prone to accidental checkins from
maintainers that enable the modules they want to use. Therefore, users need to manually copy the .ns3rc from the
utils directory to their preferred place (top level directory or their home directory) to enable persistent modular
build configuration.

Assuming that you are in the top level ns-3 directory, you can get a copy of the .ns3rc file that is in the ut i 1s directory
as follows:

$ cp utils/.ns3rc

The .ns3rc file should now be in your top level ns-3 directory, and it contains the following:

21.4. Enabling Subsets of ns-3 Modules 201

ns-3 Manual, Release ns-3-dev

#! /usr/bin/env python

A list of the modules that will be enabled when ns-3 is run.
Modules that depend on the listed modules will be enabled also.

#
All modules can be enabled by choosing 'all _modules'.
modules_enabled = ['all modules']

Set this equal to true if you want examples to be run.
examples_enabled = False

Set this equal to true if you want tests to be run.
tests_enabled = False

Use your favorite editor to modify the .ns3rc file to only enable the core module with examples and tests like this:
#! /usr/bin/env python

A list of the modules that will be enabled when ns-3 is run.

Modules that depend on the listed modules will be enabled also.
#

All modules can be enabled by choosing 'all _modules'.
modules_enabled = ['core']

Set this equal to true if you want examples to be run.
examples_enabled = True

Set this equal to true if you want tests to be run.
tests_enabled = True

Only the core module will be enabled now if you try these commands:

./waf clean
./waf configure
./waf build

cd build/debug/
1ls

Ly W r Uy

and the following libraries should be present:

bindings 1libns3-core.so ns3 scratch utils
examples libns3-core-test.so samples src

Note the . /waf clean step is done here only to make it more obvious which module libraries were built. You don’t
have todo . /waf clean in order to enable subsets of modules.

Running test.py will cause only those tests that depend on module core to be run:

24 of 24 tests passed (24 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

Repeat the above steps for the “network” module instead of the “core” module, and the following will be built, since
network depends on core:

bindings 1libns3-core.so libns3-network.so ns3 scratch utils
examples libns3-core-test.so libns3-network-test.so samples src

Running test.py will cause those tests that depend on only the core and network modules to be run:

202 Chapter 21. Support

ns-3 Manual, Release ns-3-dev

31 of 31 tests passed (31 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

21.5 Enabling/disabling ns-3 Tests and Examples

The ns-3 distribution includes many examples and tests that are used to validate the ns-3 system. Users, however, may
not always want these examples and tests to be run for their installation of ns-3.

This chapter discusses how to build ns-3 with or without its examples and tests.

21.5.1 How to enable/disable examples and tests in ns-3

There are 3 ways to enable/disable examples and tests in ns-3:
1. Using build.py when ns-3 is built for the first time
2. Using waf once ns-3 has been built

3. Using the ns-3 configuration file once ns-3 has been built

Enable/disable examples and tests using build.py

You can use build.py to enable/disable examples and tests when ns-3 is built for the first time.
By default, examples and tests are not built in ns-3.

From the ns-3-allinone directory, you can build ns-3 without any examples or tests simply by doing:

$./build.py

Running test.py in the top level ns-3 directory now will cause no examples or tests to be run:

0 of 0 tests passed (0 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

If you would like build ns-3 with examples and tests, then do the following from the ns-3-allinone directory:

$./build.py —--enable-examples —--enable-tests

Running test.py in the top level ns-3 directory will cause all of the examples and tests to be run:

170 of 170 tests passed (170 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind
—errors)

Enable/disable examples and tests using waf

You can use waf to enable/disable examples and tests once ns-3 has been built.
By default, examples and tests are not built in ns-3.

From the top level ns-3 directory, you can build ns-3 without any examples or tests simply by doing:

$./waf configure
$./waf build

Running test.py now will cause no examples or tests to be run:

21.5. Enabling/disabling ns-3 Tests and Examples 203

ns-3 Manual, Release ns-3-dev

0 of 0 tests passed (0 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

If you would like build ns-3 with examples and tests, then do the following from the top level ns-3 directory:

$./waf configure -—-enable-examples -—-enable-tests
$./waf build

Running test.py will cause all of the examples and tests to be run:

170 of 170 tests passed (170 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind_
—errors)

Enable/disable examples and tests using the ns-3 configuration file
A configuration file, .ns3rc, has been added to ns-3 that allows users to specify whether examples and tests should be
built or not. You can use this file to enable/disable examples and tests once ns-3 has been built.
When enabling disabling examples and tests, the precedence rules are as follows:
1. the —enable-examples/—disable-examples configure strings override any .ns3rc file
2. the —enable-tests/—disable-tests configure strings override any .ns3rc file
3. the .ns3rc file in the top level ns-3 directory is next consulted, if present
4. the system searches for ~/.ns3rc if the .ns3rc file was not found in the previous step
If none of the above exists, then examples and tests will not be built.

The maintained version of the .ns3rc file in the ns-3 source code repository resides in the utils directory. The
reason for this is if it were in the top-level directory of the repository, it would be prone to accidental checkins from
maintainers that enable the modules they want to use. Therefore, users need to manually copy the .ns3rc from the
utils directory to their preferred place (top level directory or their home directory) to enable persistent enabling of
examples and tests.

Assuming that you are in the top level ns-3 directory, you can get a copy of the .ns3rc file that is in the ut i 1s directory
as follows:

$ cp utils/.ns3rc
The .ns3rc file should now be in your top level ns-3 directory, and it contains the following:
#! /usr/bin/env python

A list of the modules that will be enabled when ns-3 is run.
Modules that depend on the listed modules will be enabled also.

#
All modules can be enabled by choosing 'all _modules’'.
modules_enabled = ['all _modules']

Set this equal to true if you want examples to be run.
examples_enabled = False

Set this equal to true if you want tests to be run.
tests_enabled = False

From the top level ns-3 directory, you can build ns-3 without any examples or tests simply by doing:

204 Chapter 21. Support

ns-3 Manual, Release ns-3-dev

$./waf configure
$./waf build

Running test.py now will cause no examples or tests to be run:

0 of 0 tests passed (0 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind errors)

If you would like build ns-3 with examples and tests, use your favorite editor to change the values in the .ns3rc file for
examples_enabled and tests_enabled file to be True:

#! /usr/bin/env python

A list of the modules that will be enabled when ns-3 is run.
Modules that depend on the listed modules will be enabled also.

#
All modules can be enabled by choosing 'all_modules’'.
modules_enabled = ['all _modules']

Set this equal to true if you want examples to be run.
examples_enabled = True

Set this equal to true if you want tests to be run.
tests_enabled = True

From the top level ns-3 directory, you can build ns-3 with examples and tests simply by doing:

$./waf configure
$./waf build

Running test.py will cause all of the examples and tests to be run:

170 of 170 tests passed (170 passed, 0 skipped, 0 failed, 0 crashed, 0 valgrind
—errors)

21.6 Troubleshooting

This chapter posts some information about possibly common errors in building or running ns-3 programs.

Please note that the wiki (http://www.nsnam.org/wiki/Troubleshooting) may have contributed items.

21.6.1 Build errors

21.6.2 Run-time errors

Sometimes, errors can occur with a program after a successful build. These are run-time errors, and can commonly
occur when memory is corrupted or pointer values are unexpectedly null.

Here is an example of what might occur:

$./waf —--run tcp-point-to-point

Entering directory '/home/tomh/ns-3-nsc/build’

Compilation finished successfully

Command ['/home/tomh/ns-3-nsc/build/debug/examples/tcp-point-to-point'] exited with
—code -11

21.6. Troubleshooting 205

http://www.nsnam.org/wiki/Troubleshooting

ns-3 Manual, Release ns-3-dev

The error message says that the program terminated unsuccessfully, but it is not clear from this information what might
be wrong. To examine more closely, try running it under the gdb debugger:

$./waf —--run tcp-point-to-point --gdb

Entering directory '/home/tomh/ns-3-nsc/build’

Compilation finished successfully

GNU gdb Red Hat Linux (6.3.0.0-1.134.fcb5rh)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux—-gnu"...Using host libthread_db
library "/lib/libthread_db.so.1".

(gdb) run

Starting program: /home/tomh/ns-3-nsc/build/debug/examples/tcp-point-to-point
Reading symbols from shared object read from target memory...done.

Loaded system supplied DSO at 0xf5c000

Program received signal SIGSEGV, Segmentation fault.

0x0804aal2 in main (argc=1, argv=0xbfdfefad)
at ../examples/tcp-point-to-point.cc:136
136 Ptr<Socket> localSocket = socketFactory->CreateSocket ();

(gdb) p localSocket
51 = {m_ptr = 0x3c5d65}
gdb) p socketFactory

(

$S2 = {m_ptr = 0x0}

(gdb) quit

The program is running. Exit anyway? (y or n) y

Note first the way the program was invoked— pass the command to run as an argument to the command template “gdb
%os”.

This tells us that there was an attempt to dereference a null pointer socketFactory.

Let’s look around line 136 of tcp-point-to-point, as gdb suggests:

Ptr<SocketFactory> socketFactory = n2->GetObject<SocketFactory> (Tcp::1id);
Ptr<Socket> localSocket = socketFactory->CreateSocket ();
localSocket->Bind ();

The culprit here is that the return value of GetObject is not being checked and may be null.

Sometimes you may need to use the valgrind memory checker for more subtle errors. Again, you invoke the use of
valgrind similarly:

$./waf —--run tcp-point-to-point --valgrind

206 Chapter 21. Support

http://sources.redhat.com/gdb/
http://valgrind.org

BIBLIOGRAPHY

[Cic06] Claudio Cicconetti, Enzo Mingozzi, Giovanni Stea, “An Integrated Framework for Enabling Effective Data
Collection and Statistical Analysis with ns2, Workshop on ns-2 (WNS2), Pisa, Italy, October 2006.

207

ns-3 Manual, Release ns-3-dev

208 Bibliography

INDEX

R

RFC
RFC 6282, 194

209

	Organization
	Working with git as a user
	ns-3’s Git workflow in a nutshell
	Setup of a personal repository
	Add the official ns-3 repository as remote upstream
	Add your forked repository as remote
	Keep in sync your repository with latest ns-3-dev updates
	Start a new branch to do some work
	Edit and commit the modifications
	Rebase your branch on top of master
	Pushing your changes to origin
	Submit work for review
	Porting patches from mercurial repositories to git

	Working with git as a maintainer
	Pushing your own work
	Review and merge someone else’s work
	Making a release

	Random Variables
	Quick Overview
	Background
	Creating random variables
	Seeding and independent replications
	Class RandomVariableStream
	Base class public API
	Types of RandomVariables
	Semantics of RandomVariableStream objects
	Using other PRNG
	Setting the stream number
	Publishing your results
	Summary

	Hash Functions
	Basic Usage
	Incremental Hashing
	Using an Alternative Hash Function
	Adding New Hash Function Implementations
	Sources for Hash Functions

	Events and Simulator
	Event
	Simulator
	Time
	Scheduler

	Callbacks
	Callbacks Motivation
	Callbacks Background
	Using the Callback API
	Bound Callbacks
	Traced Callbacks
	Callback locations in ns-3
	Implementation details

	Object model
	Object-oriented behavior
	Object base classes
	Memory management and class Ptr
	CreateObject and Create
	Aggregation
	Examples
	Object factories
	Downcasting

	Configuration and Attributes
	Object Overview
	Attributes
	Implementation Details
	ConfigStore

	Object names
	Logging
	Overview
	How to add logging to your code
	Controlling timestamp precision

	Tracing
	Tracing Motivation
	Overview
	Using the Tracing API
	Using Trace Helpers
	Tracing implementation details

	Data Collection
	Design
	Data Collection Helpers
	Probes
	Collectors
	Aggregators
	Adaptors
	Scope/Limitations

	Statistical Framework
	Goals
	Overview
	To-Do
	Approach
	Example

	RealTime
	Behavior
	Usage
	Implementation

	Helpers
	Utilities
	Print-introspected-doxygen
	Bench-simulator

	Making Plots using the Gnuplot Class
	Creating Plots Using the Gnuplot Class
	An Example Program that Uses the Gnuplot Class
	An Example 2-Dimensional Plot
	An Example 2-Dimensional Plot with Error Bars
	An Example 3-Dimensional Plot

	Using Python to Run ns-3
	Introduction
	An Example Python Script that Runs ns-3
	Running Python Scripts
	Caveats
	Working with Python Bindings
	More Information for Developers

	Tests
	Overview
	Background
	Testing framework
	How to write tests

	Support
	Creating a new ns-3 model
	Adding a New Module to ns-3
	Creating Documentation
	Enabling Subsets of ns-3 Modules
	Enabling/disabling ns-3 Tests and Examples
	Troubleshooting

	Bibliography
	Index

