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ns-3 Model Library, Release ns-3-dev

This is the ns-3 Model Library documentation. Primary documentation for the ns-3 project is available in five forms:
* ns-3 Doxygen: Documentation of the public APIs of the simulator
* Tutorial, Manual, and Model Library (this document) for the latest release and development tree
* ns-3 wiki

This document is written in reStructuredText for Sphinx and is maintained in the doc/models directory of ns-3’s
source code.
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CHAPTER
ONE

ORGANIZATION

This manual compiles documentation for ns-3 models and supporting software that enable users to construct network
simulations. It is important to distinguish between modules and models:

* ns-3 software is organized into separate modules that are each built as a separate software library. Individual
ns-3 programs can link the modules (libraries) they need to conduct their simulation.

* ns-3 models are abstract representations of real-world objects, protocols, devices, etc.

An ns-3 module may consist of more than one model (for instance, the internet module contains models for both
TCP and UDP). In general, ns-3 models do not span multiple software modules, however.

This manual provides documentation about the models of ns-3. It complements two other sources of documentation
concerning models:

¢ the model APIs are documented, from a programming perspective, using Doxygen. Doxygen for ns-3 models is
available on the project web server.

¢ the ns-3 core is documented in the developer’s manual. ns-3 models make use of the facilities of the core, such
as attributes, default values, random numbers, test frameworks, etc. Consult the main web site to find copies of
the manual.

Finally, additional documentation about various aspects of ns-3 may exist on the project wiki.

A sample outline of how to write model library documentation can be found by executing the create-module.py
program and looking at the template created in the file new-module/doc/new-module.rst.

$ cd src
$ ./create-module.py new-module

The remainder of this document is organized alphabetically by module name.

If you are new to ns-3, you might first want to read below about the network module, which contains some fundamental
models for the simulator. The packet model, models for different address formats, and abstract base classes for objects
such as nodes, net devices, channels, sockets, and applications are discussed there.



http://www.doxygen.org
http://www.nsnam.org/docs/doxygen/index.html
http://www.nsnam.org
http://www.nsnam.org/wiki
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CHAPTER
TWO

ANIMATION

Animation is an important tool for network simulation. While ns-3 does not contain a default graphical animation
tool, we currently have two ways to provide animation, namely using the PyViz method or the NetAnim method. The
PyViz method is described in http://www.nsnam.org/wiki/PyViz.

We will describe the NetAnim method briefly here.

2.1 NetAnim

NetAnim is a standalone, Qt4-based software executable that uses a trace file generated during an ns-3 simulation to
display the topology and animate the packet flow between nodes.

(LULC ] Stats  Packets |

o P Pused 65535 fagl (o s0W S\ml\mﬂ\‘_‘)—m‘ {EEEHLH Dk w5 | \3\ Nodesze | 1 :\; P OMAC T

a
> [Node 4]
4

Database Server Server

E 4

Properly Value
Node Id 0

Node Dese... | 0
v Node Position
Node X | 10.00
NodeY | 0.00
v Node Color | [l [255,0,0]...
Red 255
Green |0
Blue 0
Alpha | 255
EEET
Mode Reso... | Usersfjohn/D...
‘ a Show Nod... False
. , |7 lpv4 Addresses
Firgwal 5 10144
v MacAddresses
00:00:0...

Access Point

Not Playing
Fig. 1: An example of packet animation on wired-links

In addition, NetAnim also provides useful features such as tables to display meta-data of packets like the image below
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Packet count 11208

Tx Time From Node Id | To Node Id Meta Info
From Node Id 1 1 0.0301008 1 0 TCP 50000 > 49153 SYN ACK Seq=0 Ack=1Win=65535
LOLE-OL ot 2 00711264 1 0 TCP 50000 > 49153 ACK Seq=1 Ack=537 Win=65535
Transmission time >= 0
—— 3 0112581 1 0 TCP 50000 > 49153 ACK Seq=1 Ack=1609 Win=65535
4 0154035 1 0 TCP 50000 > 49153 ACK Seq=1 Ack=2681 Win=65535
s;:;:yw s 0195027 1 0 TCP 50000 > 49153 ACK Seq=1 Ack=3753 Win=65535
All Packets 6 0195952 1 0 TCP 50000 > 49153 ACK Seq=1 Ack=4825 Win=65535
;’:’"“ 7 0236482 1 0 TCP 50000 > 49153 ACK Seq=1 Ack=5897 Win=65535
wifi 8 0237406 1 0 TCP 50000 > 49153 ACK Seq=1 Ack=6969 Win=65535
fm s 0238331 1 0 TCP 50000 > 49153 ACK Seq=1 Ack=8041 Win=65535
'J::,‘M 10 0277936 |1 0 TCP 50000 > 49153 ACK Seq=1 Ack=9113 Win=65535
MI;ZV 11 0278861 1 0 TCP 50000 > 49153 ACK Seq=1 Ack=10185 Win=65535
Olsr 12 0279786 1 0 TCP 50000 > 49153 ACK Seq=1 Ack=11257 Win=65535
- 13028071 1 0 TCP 50000 > 49153 ACK Seq=1 Ack=12329 Win=65535
14 0318028 1 0 TCP 50000 > 49153 ACK Seq=1 Ack=13401 Win=65535
15 0.319853 1 0 TCP 50000 > 49153 ACK Seq=1 Ack=14473 Win=65535
16 0320778 |1 0 TCP 50000 > 49153 ACK Seq=1 Ack=15545 Win=65535
17 0321702 1 0 TCP 50000 > 49153 ACK Seq=1 Ack=16617 Win=65535
18 0322627 |1 0 TCP 50000 > 49153 ACK Seq=1 Ack=17689 Win=65535
19 0.323552 1 0 TCP 50000 > 49153 ACK Seq=1 Ack=18761 Win=65535
20 035992 1 0 TCP 50000 > 49153 ACK Seq=1 Ack=19833 Win=65535
21 0360845 1 0 TCP 50000 > 49153 ACK Seq=1 Ack=20905 Win=65535
2 036177 |1 0 TCP 50000 > 49153 ACK Seq=1 Ack=21977 Win=65535
23 0362694 1 0 TCP 50000 > 49153 ACK Seq=1 Ack=23049 Win=65535

Fig. 2: An example of tables for packet meta-data with protocol filters

A way to visualize the trajectory of a mobile node
A way to display the routing-tables of multiple nodes at various points in time
A way to display counters associated with multiple nodes as a chart or a table

A way to view the timeline of packet transmit and receive events

2.1.1 Methodology

The class ns3::AnimationInterface is responsible for the creation the trace XML file. AnimationInterface uses the
tracing infrastructure to track packet flows between nodes. AnimationlInterface registers itself as a trace hook for tx and
rx events before the simulation begins. When a packet is scheduled for transmission or reception, the corresponding
tx and rx trace hooks in Animationlnterface are called. When the rx hooks are called, AnimationInterface will be
aware of the two endpoints between which a packet has flowed, and adds this information to the trace file, in XML
format along with the corresponding tx and rx timestamps. The XML format will be discussed in a later section. It is
important to note that AnimationInterface records a packet only if the rx trace hooks are called. Every tx event must
be matched by an rx event.

2.1.2 Downloading NetAnim

If NetAnim is not already available in the ns-3 package you downloaded, you can do the following:

Please ensure that you have installed mercurial. The latest version of NetAnim can be downloaded using mercurial
with the following command:

6 Chapter 2. Animation
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1.0416
1.04252

1.0436
1.04452

1.04652

1.04982
1.05084

1.05182

$ hg clone http://code.nsnam.org/netanim

2.1.3 Building NetAnim

Prerequisites
Qt5 (5.4 and over) is required to build NetAnim. This can be obtained using the following ways:
For Ubuntu Linux distributions:

$ apt—-get install gt5-default

For Red Hat/Fedora based distribution:

$ yum install gt5
$ yum install gt5-devel

For Mac/OSX, see http://qt.nokia.com/downloads/

Build steps

To build NetAnim use the following commands:

cd netanim

make clean

gmake NetAnim.pro
make

W

Note: gqmake could be “qmake-qt5” in some systems

This should create an executable named “NetAnim” in the same directory:

$ 1s -1 NetAnim
—rwxr-xr-x 1 john Jjohn 390395 2012-05-22 08:32 NetAnim

2.1. NetAnim 9
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2.1.4 Usage

Using NetAnim is a two-step process

Step 1:Generate the animation XML trace file during simulation using “ns3::Animationlnterface” in the ns-3 code
base.

Step 2:Load the XML trace file generated in Step 1 with the offline Qt4-based animator named NetAnim.

Step 1: Generate XML animation trace file

The class “AnimationInterface” under “src/netanim” uses underlying ns-3 trace sources to construct a timestamped
ASCII file in XML format.

Examples are found under src/netanim/examples Example:

$ ./waf -d debug configure --enable-examples
$ ./waf —-run "dumbbell-animation"

The above will create an XML file dumbbell-animation.xml

Mandatory

1. Ensure that your program’s wscript includes the “netanim” module. An example of such a wscript is at
src/netanim/examples/wscript.

2. Include the header [#include “ns3/netanim-module.h”] in your test program

3. Add the statement

AnimationInterface anim ("animation.xml"); // where "animation.xml" is any arbitrary,
—filename

[for versions before ns-3.13 you also have to use the line “anim.SetXMLOutput() to set the XML mode and also use
anim.StartAnimation();]

Optional

The following are optional but useful steps:

// Step 1
anim.SetMobilityPollInterval (Seconds (1));

AnimationInterface records the position of all nodes every 250 ms by default. The statement above sets the periodic
interval at which AnimationInterface records the position of all nodes. If the nodes are expected to move very little, it
is useful to set a high mobility poll interval to avoid large XML files.

// Step 2
anim.SetConstantPosition (Ptr< Node > n, double x, double vy);

AnimationInterface requires that the position of all nodes be set. In ns-3 this is done by setting an associated Mobili-
tyModel. “SetConstantPosition” is a quick way to set the x-y coordinates of a node which is stationary.

// Step 3
anim.SetStartTime (Seconds(150)); and anim.SetStopTime (Seconds (150));

10 Chapter 2. Animation
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AnimationInterface can generate large XML files. The above statements restricts the window between which Ani-
mationInterface does tracing. Restricting the window serves to focus only on relevant portions of the simulation and
creating manageably small XML files

// Step 4
AnimationInterface anim ("animation.xml", 50000);

Using the above constructor ensures that each animation XML trace file has only 50000 packets. For example, if
AnimationInterface captures 150000 packets, using the above constructor splits the capture into 3 files

* animation.xml - containing the packet range 1-50000

* animation.xml-1 - containing the packet range 50001-100000

 animation.xml-2 - containing the packet range 100001-150000

// Step 5
anim.EnablePacketMetadata (true);

With the above statement, AnimationInterface records the meta-data of each packet in the xml trace file. Metadata
can be used by NetAnim to provide better statistics and filter, along with providing some brief information about the
packet such as TCP sequence number or source & destination IP address during packet animation.

CAUTION: Enabling this feature will result in larger XML trace files. Please do NOT enable this feature when using
Wimax links.

// Step 6
anim.UpdateNodeDescription (5, "Access-point");

With the above statement, AnimationInterface assigns the text “Access-point” to node 5.

// Step 7
anim.UpdateNodeSize (6, 1.5, 1.5);

With the above statement, Animationlnterface sets the node size to scale by 1.5. NetAnim automatically scales the
graphics view to fit the oboundaries of the topology. This means that NetAnim, can abnormally scale a node’s size too
high or too low. Using AnimationInterface::UpdateNodeSize allows you to overwrite the default scaling in NetAnim
and use your own custom scale.

// Step 8
anim.UpdateNodeCounter (89, 7, 3.4);

With the above statement, AnimationInterface sets the counter with Id == 89, associated with Node 7 with the value
3.4. The counter with Id 89 is obtained using AnimationInterface:: AddNodeCounter. An example usage for this is in
src/netanim/examples/resource-counters.cc.

Step 2: Loading the XML in NetAnim
1. Assuming NetAnim was built, use the command “./NetAnim” to launch NetAnim. Please review the section
“Building NetAnim” if NetAnim is not available.

2. When NetAnim is opened, click on the File open button at the top-left corner, select the XML file generated
during Step 1.

3. Hit the green play button to begin animation.

Here is a video illustrating this http://www.youtube.com/watch?v=tz_hUuNwFDs

2.1. NetAnim 11
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2.1.5 Wiki

For detailed instructions on installing “NetAnim”, F.A.Qs and loading the XML trace file (mentioned earlier) using
NetAnim please refer: http://www.nsnam.org/wiki/NetAnim

12 Chapter 2. Animation
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CHAPTER
THREE

ANTENNA MODULE

3.1 Design documentation

3.1.1 Overview

The Antenna module provides:

1. aclass (Angles) and utility functions to deal with angles

2. abase class (AntennaModel) that provides an interface for the modeling of the radiation pattern of an antenna;
3. aset of classes derived from this base class that each models the radiation pattern of different types of antennas;
4

. a base class (PhasedArrayModel) that provides a flexible interface for modeling a number of Phase Antenna
Array (PAA) models

5. aclass (UniformPlanarArray) derived from this base class, implementing a Uniform Planar Array (UPA) sup-
porting both rectangular and linear lattices

3.1.2 Angles

The Angles class holds information about an angle in 3D space using spherical coordinates in radian units. Specifically,
it uses the azimuth-inclination convention, where

* Inclination is the angle between the zenith direction (positive z-axis) and the desired direction. It is included in
the range [0, pi] radians.

* Azimuth is the signed angle measured from the positive x-axis, where a positive direction goes towards the
positive y-axis. It is included in the range [-pi, pi) radians.

Multiple constructors are present, supporting the most common ways to encode information on a direction. A static
boolean variable allows the user to decide whether angles should be printed in radian or degree units.

A number of angle-related utilities are offered, such as radians/degree conversions, for both scalars and vectors, and
angle wrapping.

3.1.3 AntennaModel

The AntennaModel uses the coordinate system adopted in [Balanis] and depicted in Figure Coordinate system of the
AntennaModel. This system is obtained by translating the Cartesian coordinate system used by the ns-3 MobilityModel
into the new origin o which is the location of the antenna, and then transforming the coordinates of every generic
point p of the space from Cartesian coordinates (x,y, z) into spherical coordinates (r,6,¢). The antenna model
neglects the radial component 7, and only considers the angle components (6, ¢). An antenna radiation pattern is

13
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then expressed as a mathematical function g(6,$) — R that returns the gain (in dB) for each possible direction of
transmission/reception. All angles are expressed in radians.

Fig. 1: Coordinate system of the AntennaModel

3.1.4 Single antenna models

In this section we describe the antenna radiation pattern models that are included within the antenna module.

IsotropicAntennaModel

This antenna radiation pattern model provides a unitary gain (0 dB) for all direction.

CosineAntennaModel

This is the cosine model described in [Chunjian]: the antenna gain is determined as:

g(¢79) — cos™ (¢_ ¢0>

2
where ¢ is the azimuthal orientation of the antenna (i.e., its direction of maximum gain) and the exponential

3

n=—
201log;q (cos %)

determines the desired 3dB beamwidth ¢3,45. Note that this radiation pattern is independent of the inclination angle 6.

A major difference between the model of [Chunjian] and the one implemented in the class CosineAntennaModel is that
only the element factor (i.e., what described by the above formulas) is considered. In fact, [Chunjian] also considered
an additional antenna array factor. The reason why the latter is excluded is that we expect that the average user would
desire to specify a given beamwidth exactly, without adding an array factor at a latter stage which would in practice
alter the effective beamwidth of the resulting radiation pattern.

14 Chapter 3. Antenna Module
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ParabolicAntennaModel

This model is based on the parabolic approximation of the main lobe radiation pattern. It is often used in the context
of cellular system to model the radiation pattern of a cell sector, see for instance [R4-092042a] and [Calcev]. The
antenna gain in dB is determined as:

2
ga5(6,6) = —min <12 (¢ - ¢°> ,Am>
P3dB

where ¢ is the azimuthal orientation of the antenna (i.e., its direction of maximum gain), ¢s4p is its 3 dB beamwidth,
and A, is the maximum attenuation in dB of the antenna. Note that this radiation pattern is independent of the
inclination angle 6.

ThreeGppAntennaModel

This model implements the antenna element described in®*°°!. Parameters are fixed from the technical report, thus no
attributes nor setters are provided. The model is largely based on the ParabolicAntennaModel.

3.1.5 Phased Array Model

The class Phased ArrayModel has been created with flexibility in mind. It abstracts the basic idea of a Phased Antenna
Array (PAA) by removing any constraint on the position of each element, and instead generalizes the concept of
steering and beamforming vectors, solely based on the generalized location of the antenna elements. For details on
Phased Array Antennas see for instance [Mailloux].

Derived classes must implement the following functions:
* GetNumberOfElements: returns the number of antenna elements

* GetElementLocation: returns the location of the antenna element with the specified index, normalized with
respect to the wavelength

¢ GetElementFieldPattern: returns the horizontal and vertical components of the antenna element field pattern at
the specified direction. Same polarization (configurable) for all antenna elements of the array is considered.

The class PhasedArrayModel also assumes that all antenna elements are equal, a typical key assumption which allows
to model the PAA field pattern as the sum of the array factor, given by the geometry of the location of the antenna
elements, and the element field pattern. Any class derived from AntennaModel is a valid antenna element for the
PhasedArrayModel, allowing for a great flexibility of the framework.

UniformPlanarArray

The class UniformPlanarArray is a generic implementation of Uniform Planar Arrays (UPAs), supporting rectangular
and linear regular lattices. It loosely follows the implementation described in the 3GPP TR 38.9013%%°!, considering
only a single a single panel, i.e., Ny = M, = 1.

By default, the array is orthogonal to the x-axis, pointing towards the positive direction, but the orientation can be
changed through the attributes “BearingAngle”, which adjusts the azimuth angle, and “DowntiltAngle”, which adjusts
the elevation angle. The slant angle is instead fixed and assumed to be 0.

The number of antenna elements in the vertical and horizontal directions can be configured through the attributes
“NumRows” and “NumColumns”, while the spacing between the horizontal and vertical elements can be configured
through the attributes “AntennaHorizontalSpacing” and “AntennaVerticalSpacing”.

38901 3GPP. 2018. TR 38.901, Study on channel model for frequencies from 0.5 to 100 GHz, V15.0.0. (2018-06).

3.1. Design documentation 15
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The polarization of each antenna element in the array is determined by the polarization slant angle through the attribute
“PolSlantAngle”, as described in**°! (i.e., ¢).

3.2 User Documentation

The antenna modeled can be used with all the wireless technologies and physical layer models that support it. Cur-
rently, this includes the physical layer models based on the SpectrumPhy. Please refer to the documentation of each of
these models for details.

3.3 Testing Documentation

In this section we describe the test suites included with the antenna module that verify its correct functionality.

3.3.1 Angles

The unit test suite angles verifies that the Angles class is constructed properly by correct conversion from 3D Carte-
sian coordinates according to the available methods (construction from a single vector and from a pair of vectors). For
each method, several test cases are provided that compare the values (¢, 8) determined by the constructor to known
reference values. The test passes if for each case the values are equal to the reference up to a tolerance of 10~ which
accounts for numerical errors.

3.3.2 DegreesToRadians

The unit test suite degrees—radians verifies that the methods DegreesToRadians and RadiansToDegrees work
properly by comparing with known reference values in a number of test cases. Each test case passes if the comparison
is equal up to a tolerance of 10~ which accounts for numerical errors.

3.3.3 IsotropicAntennaModel

The unit test suite isotropic-antenna-model checks that the IsotropicAntennaModel class works properly,
i.e., returns always a OdB gain regardless of the direction.

3.3.4 CosineAntennaModel

The unit test suite cosine-antenna-model checks that the CosineAntennaModel class works properly. Several
test cases are provided that check for the antenna gain value calculated at different directions and for different values
of the orientation, the reference gain and the beamwidth. The reference gain is calculated by hand. Each test case
passes if the reference gain in dB is equal to the value returned by CosineAntennaModel within a tolerance of 0.001,
which accounts for the approximation done for the calculation of the reference values.

3.3.5 ParabolicAntennaModel

The unit test suite parabolic-antenna-model checks that the ParabolicAntennaModel class works properly.
Several test cases are provided that check for the antenna gain value calculated at different directions and for different
values of the orientation, the maximum attenuation and the beamwidth. The reference gain is calculated by hand.
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Each test case passes if the reference gain in dB is equal to the value returned by ParabolicAntennaModel within
a tolerance of 0.001, which accounts for the approximation done for the calculation of the reference values.
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CHAPTER
FOUR

AD HOC ON-DEMAND DISTANCE VECTOR (AODV)

This model implements the base specification of the Ad Hoc On-Demand Distance Vector (AODV) protocol. The
implementation is based on RFC 3561.

The model was written by Elena Buchatskaia and Pavel Boyko of ITTP RAS, and is based on the ns-2 AODV model
developed by the CMU/MONARCH group and optimized and tuned by Samir Das and Mahesh Marina, University of
Cincinnati, and also on the AODV-UU implementation by Erik Nordstrém of Uppsala University.

4.1 Model Description

The source code for the AODV model lives in the directory src/aodv.

4.1.1 Design

Class ns3::aodv: :RoutingProtocol implements all functionality of service packet exchange and inherits from
ns3::Ipv4RoutingProtocol. The base class defines two virtual functions for packet routing and forward-
ing. The first one, ns3::aodv::RouteOutput, is used for locally originated packets, and the second one,
ns3::aodv: :Routelnput, is used for forwarding and/or delivering received packets.

Protocol operation depends on many adjustable parameters. Parameters for this functionality are attributes
of ns3::aodv::RoutingProtocol. Parameter default values are drawn from the RFC and allow the en-
abling/disabling protocol features, such as broadcasting HELLO messages, broadcasting data packets and so on.

AODV discovers routes on demand. Therefore, the AODV model buffers all packets while
a route request packet (RREQ) is disseminated. A packet queue is implemented in aodv-
rqueue.cc. A smart pointer to the packet, ns3::Ipv4RoutingProtocol::ErrorCallback,

ns3::Ipv4RoutingProtocol: :UnicastForwardCallback, and the IP header are stored in this queue.
The packet queue implements garbage collection of old packets and a queue size limit.

The routing table implementation supports garbage collection of old entries and state machine, defined in the standard.
It is implemented as a STL map container. The key is a destination IP address.

Some elements of protocol operation aren’t described in the RFC. These elements generally concern cooperation of
different OSI model layers. The model uses the following heuristics:

* This AODV implementation can detect the presence of unidirectional links and avoid them if necessary. If the
node the model receives an RREQ for is a neighbor, the cause may be a unidirectional link. This heuristic is
taken from AODV-UU implementation and can be disabled.

* Protocol operation strongly depends on broken link detection mechanism. The model implements two such
heuristics. First, this implementation support HELLO messages. However HELLO messages are not a good
way to perform neighbor sensing in a wireless environment (at least not over 802.11). Therefore, one may ex-
perience bad performance when running over wireless. There are several reasons for this: 1) HELLO messages
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are broadcasted. In 802.11, broadcasting is often done at a lower bit rate than unicasting, thus HELLO messages
can travel further than unicast data. 2) HELLO messages are small, thus less prone to bit errors than data trans-
missions, and 3) Broadcast transmissions are not guaranteed to be bidirectional, unlike unicast transmissions.
Second, we use layer 2 feedback when possible. Link are considered to be broken if frame transmission results
in a transmission failure for all retries. This mechanism is meant for active links and works faster than the first
method.

The layer 2 feedback implementation relies on the TxErrHeader trace source, currently supported in AdhocWifiMac
only.

4.1.2 Scope and Limitations

The model is for IPv4 only. The following optional protocol optimizations are not implemented:
1. Local link repair.
2. RREP, RREQ and HELLO message extensions.

These techniques require direct access to IP header, which contradicts the assertion from the AODV RFC that AODV
works over UDP. This model uses UDP for simplicity, hindering the ability to implement certain protocol optimiza-
tions. The model doesn’t use low layer raw sockets because they are not portable.

4.1.3 Future Work

No announced plans.
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CHAPTER
FIVE

3GPP HTTP APPLICATIONS

5.1 Model Description

The model is a part of the applications library. The HTTP model is based on a commonly used 3GPP model in
standardization [4].

5.1.1 Design

This traffic generator simulates web browsing traffic using the Hypertext Transfer Protocol (HTTP). It consists of
one or more ThreeGppHttpClient applications which connect to a ThreeGppHttpServer application. The client
models a web browser which requests web pages to the server. The server is then responsible to serve the web pages as
requested. Please refer to ThreeGppHttpClientHelper and ThreeGppHttpServerHelper for usage instructions.

Technically speaking, the client transmits request objects to demand a service from the server. Depending on the type
of request received, the server transmits either:

* amain object, i.e., the HTML file of the web page; or
* an embedded object, e.g., an image referenced by the HTML file.

The main and embedded object sizes are illustrated in figures 3GPP HTTP main object size histogram and 3GPP
HTTP embedded object size histogram.

A major portion of the traffic pattern is reading time, which does not generate any traffic. Because of this, one may need
to simulate a good number of clients and/or sufficiently long simulation duration in order to generate any significant
traffic in the system. Reading time is illustrated in 3GPP HTTP reading time histogram.

3GPP HTTP server description

3GPP HTTP server is a model application which simulates the traffic of a web server. This application works in
conjunction with ThreeGppHttpClient applications.

The application works by responding to requests. Each request is a small packet of data which contains
ThreeGppHttpHeader. The value of the content type field of the header determines the type of object that the
client is requesting. The possible type is either a main object or an embedded object.

The application is responsible to generate the right type of object and send it back to the client. The size of each object
to be sent is randomly determined (see ThreeGppHttpVariables). Each object may be sent as multiple packets due
to limited socket buffer space.

To assist with the transmission, the application maintains several instances of ThreeGppHttpServerTxBuffer.
Each instance keeps track of the object type to be served and the number of bytes left to be sent.

The application accepts connection request from clients. Every connection is kept open until the client disconnects.
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Histogram of embedded object size in HTTP traffic model
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Maximum transmission unit (MTU) size is configurable in ThreeGppHttpServer orin ThreeGppHttpVariables.
By default, the low variant is 536 bytes and high variant is 1460 bytes. The default values are set with the intention of
having a TCP header (size of which is 40 bytes) added in the packet in such way that lower layers can avoid splitting
packets. The change of MTU sizes affects all TCP sockets after the server application has started. It is mainly visible
in sizes of packets received by ThreeGppHttpClient applications.

3GPP HTTP client description

3GPP HTTP client is a model application which simulates the traffic of a web browser. This application works in
conjunction with an ThreeGppHttpServer application.

In summary, the application works as follows.
1. Upon start, it opens a connection to the destination web server (ThreeGppHttpServer).

2. After the connection is established, the application immediately requests a main object from the server by
sending a request packet.

3. After receiving a main object (which can take some time if it consists of several packets), the application “parses”
the main object. Parsing time is illustrated in figure 3SGPP HTTP parsing time histogram.

4. The parsing takes a short time (randomly determined) to determine the number of embedded objects (also
randomly determined) in the web page. Number of embedded object is illustrated in 3SGPP HTTP number of
embedded objects histogram.

« If at least one embedded object is determined, the application requests the first embedded object
from the server. The request for the next embedded object follows after the previous embedded object
has been completely received.

« If there is no more embedded object to request, the application enters the reading time.

5. Reading time is a long delay (again, randomly determined) where the application does not induce any network
traffic, thus simulating the user reading the downloaded web page.

6. After the reading time is finished, the process repeats to step #2.

The client models HTTP persistent connection, i.e., HTTP 1.1, where the connection to the server is maintained and
used for transmitting and receiving all objects.

Each request by default has a constant size of 350 bytes. A ThreeGppHttpHeader is attached to each request packet.
The header contains information such as the content type requested (either main object or embedded object) and the
timestamp when the packet is transmitted (which will be used to compute the delay and RTT of the packet).

5.1.2 References

Many aspects of the traffic are randomly determined by ThreeGppHttpVariables. A separate instance of this object
is used by the HTTP server and client applications. These characteristics are based on a legacy 3GPP specification.
The description can be found in the following references:

[1] 3GPP TR 25.892, “Feasibility Study for Orthogonal Frequency Division Multiplexing (OFDM) for UTRAN en-
hancement”

[2] IEEE 802.16m, “Evaluation Methodology Document (EMD)”, IEEE 802.16m-08/004r5, July 2008.
[3] NGMN Alliance, “NGMN Radio Access Performance Evaluation Methodology”, v1.0, January 2008.
[4] 3GPP2-TSGCS, “HTTP, FTP and TCP models for 1XEV-DV simulations”, 2001.
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5.2 Usage

The three-gpp-http-example can be referenced to see basic usage of the HTTP applications. In summary,
using the ThreeGppHttpServerHelper and ThreeGppHttpClientHelper allow the user to easily install
ThreeGppHttpServer and ThreeGppHttpClient applications to nodes. The helper objects can be used to config-
ure attribute values for the client and server objects, but not for the ThreeGppHttpVariables object. Configuration
of variables is done by modifying attributes of ThreeGppHttpVariables, which should be done prior to helpers
installing applications to nodes.

The client and server provide a number of ns-3 trace sources such as “Tx”, “Rx”, “RxDelay”, and “State-
Transition” on the server side, and a large number on the client side (“ConnectionEstablished”, “Connection-
Closed”,”TxMainObjectRequest”, “TxEmbeddedObjectRequest”, “RxMainObjectPacket”, “RxMainObject”, “Rx-
EmbeddedObjectPacket”, “RxEmbeddedObject”, “Rx”, “RxDelay”, “RxRtt”, “StateTransition”).

5.2.1 Building the 3GPP HTTP applications

Building the applications does not require any special steps to be taken. It suffices to enable the applications module.

5.2.2 Examples

For an example demonstrating HTTP applications run:

$ ./waf —-run 'three-gpp-http-example'

By default, the example will print out the web page requests of the client and responses of the server and client
receiving content packets by using LOG_INFO of ThreeGppHttpServer and ThreeGppHttpClient.

5.2.3 Tests

For testing HTTP applications, three-gpp-http-client-server-test is provided. Run:

$ ./test.py —-s three-gpp-http-client-server-test

The test consists of simple Internet nodes having HTTP server and client applications installed. Multiple variant
scenarios are tested: delay is 3ms, 30ms or 300ms, bit error rate 0 or 5.0¥107(-6), MTU size 536 or 1460 bytes and
either IPV4 or IPV6 is used. A simulation with each combination of these parameters is run multiple times to verify
functionality with different random variables.

Test cases themselves are rather simple: test verifies that HT TP object packet bytes sent match total bytes received by
the client, and that ThreeGppHtt pHeader matches the expected packet.
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BRIDGE NETDEVICE

Placeholder chapter

Some examples of the use of Bridge NetDevice can be found in examples/csma/ directory.
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CHAPTER
SEVEN

BRITE INTEGRATION

This model implements an interface to BRITE, the Boston university Representative Internet Topology gEnerator'.
BRITE is a standard tool for generating realistic internet topologies. The ns-3 model, described herein, provides
a helper class to facilitate generating ns-3 specific topologies using BRITE configuration files. BRITE builds the
original graph which is stored as nodes and edges in the ns-3 BriteTopolgyHelper class. In the ns-3 integration of
BRITE, the generator generates a topology and then provides access to leaf nodes for each AS generated. ns-3 users
can than attach custom topologies to these leaf nodes either by creating them manually or using topology generators
provided in ns-3.

There are three major types of topologies available in BRITE: Router, AS, and Hierarchical which is a combination of
AS and Router. For the purposes of ns-3 simulation, the most useful are likely to be Router and Hierarchical. Router
level topologies be generated using either the Waxman model or the Barabasi-Albert model. Each model has different
parameters that effect topology creation. For flat router topologies, all nodes are considered to be in the same AS.

BRITE Hierarchical topologies contain two levels. The first is the AS level. This level can be also be created by
using either the Waxman model or the Barabasi-Albert model. Then for each node in the AS topology, a router
level topology is constructed. These router level topologies can again either use the Waxman model or the Barbasi-
Albert model. BRITE interconnects these separate router topologies as specified by the AS level topology. Once the
hierarchical topology is constructed, it is flattened into a large router level topology.

Further information can be found in the BRITE user manual: http://www.cs.bu.edu/brite/publications/usermanual.pdf

7.1 Model Description

The model relies on building an external BRITE library, and then building some ns-3 helpers that call out to the library.
The source code for the ns-3 helpers lives in the directory src/brite/helper.

7.1.1 Design

To generate the BRITE topology, ns-3 helpers call out to the external BRITE library, and using a standard BRITE
configuration file, the BRITE code builds a graph with nodes and edges according to this configuration file. Please see
the BRITE documentation or the example configuration files in src/brite/examples/conf_files to get a better grasp of
BRITE configuration options. The graph built by BRITE is returned to ns-3, and a ns-3 implementation of the graph
is built. Leaf nodes for each AS are available for the user to either attach custom topologies or install ns-3 applications
directly.

! Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE: An Approach to Universal Topology Generation. In Proceedings
of the International Workshop on Modeling, Analysis and Simulation of Computer and Telecommunications Systems- MASCOTS ‘01, Cincinnati,
Ohio, August 2001.
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7.1.2 References

7.2 Usage

The brite-generic-example can be referenced to see basic usage of the BRITE interface. In summary, the BriteTopol-
ogyHelper is used as the interface point by passing in a BRITE configuration file. Along with the configuration file a
BRITE formatted random seed file can also be passed in. If a seed file is not passed in, the helper will create a seed
file using ns-3’s UniformRandomVariable. Once the topology has been generated by BRITE, BuildBriteTopology()
is called to create the ns-3 representation. Next IP Address can be assigned to the topology using either Assig-
nlpv4Addresses() or AssignlpvoAddresses(). It should be noted that each point-to-point link in the topology will
be treated as a new network therefore for IPV4 a /30 subnet should be used to avoid wasting a large amount of the
available address space.

Example BRITE configuration files can be found in /src/brite/examples/conf_files/. ASBarbasi and ASWaxman are
examples of AS only topologies. The RTBarabasi and RTWaxman files are examples of router only topologies. Finally
the TD_ASBarabasi_RTWaxman configuration file is an example of a Hierarchical topology that uses the Barabasi-
Albert model for the AS level and the Waxman model for each of the router level topologies. Information on the
BRITE parameters used in these files can be found in the BRITE user manual.

7.2.1 Building BRITE Integration

The first step is to download and build the ns-3 specific BRITE repository:

$ hg clone http://code.nsnam.org/BRITE
$ cd BRITE
$ make

This will build BRITE and create a library, libbrite.so, within the BRITE directory.

Once BRITE has been built successfully, we proceed to configure ns-3 with BRITE support. Change to your ns-3
directory:

$ ./waf configure --with-brite=/your/path/to/brite/source --enable-examples

Make sure it says ‘enabled’ beside ‘BRITE Integration’. If it does not, then something has gone wrong. Either you
have forgotten to build BRITE first following the steps above, or ns-3 could not find your BRITE directory.

Next, build ns-3:

S ./waf

7.2.2 Examples

For an example demonstrating BRITE integration run:

$ ./waf —--run 'brite-generic-example'

By enabling the verbose parameter, the example will print out the node and edge information in a similar format
to standard BRITE output. There are many other command-line parameters including confFile, tracing, and nix,
described below:

confFile A BRITE configuration file. Many different BRITE configuration file examples exist in
the src/brite/examples/conf_files directory, for example, RTBarabasi20.conf and RTWaxman.conf.
Please refer to the conf_files directory for more examples.
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tracing Enables ascii tracing.

nix Enables nix-vector routing. Global routing is used by default.
The generic BRITE example also support visualization using pyviz, assuming python bindings in ns-3 are enabled:
$ ./waf —--run brite-generic-example —--vis

Simulations involving BRITE can also be used with MPI. The total number of MPI instances is passed to the BRITE

topology helper where a modulo divide is used to assign the nodes for each AS to a MPI instance. An example can be
found in src/brite/examples:

$ mpirun -np 2 ./waf —--run brite-MPI-example

Please see the ns-3 MPI documentation for information on setting up MPI with ns-3.
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CHAPTER
EIGHT

BUILDINGS MODULE

cd .. include:: replace.txt

8.1 Design documentation

8.1.1 Overview

The Buildings module provides:
1. anew class (Building) that models the presence of a building in a simulation scenario;

2. anew class (MobilityBuildingInfo) that allows to specify the location, size and characteristics of buildings
present in the simulated area, and allows the placement of nodes inside those buildings;

3. a container class with the definition of the most useful pathloss models and the correspondent variables called
BuildingsPropagationLossModel.

4. a new propagation model (HybridBuildingsPropagationLossModel) working with the mobility model
just introduced, that allows to model the phenomenon of indoor/outdoor propagation in the presence of buildings.

5. a simplified model working only with Okumura Hata (OhBuildingsPropagationLossModel) considering
the phenomenon of indoor/outdoor propagation in the presence of buildings.

6. achannel condition model (BuildingsChannelConditionModel) which determined the LOS/NLOS channel
condition based on the Building objects deployed in the scenario.

7. hybrid channel condition models (ThreeGppV2vUrbanChannelConditionModel and
ThreeGppV2vHighwayChannelConditionModel) specifically designed to model vehicular environments
(more information can be found in the documentation of the propagation module)

The models have been designed with LTE in mind, though their implementation is in fact independent from any
LTE-specific code, and can be used with other ns-3 wireless technologies as well (e.g., wifi, wimax).

The HybridBuildingsPropagationLossModel pathloss model included is obtained through a combination of
several well known pathloss models in order to mimic different environmental scenarios such as urban, suburban and
open areas. Moreover, the model considers both outdoor and indoor indoor and outdoor communication has to be
included since HeNB might be installed either within building and either outside. In case of indoor communication,
the model has to consider also the type of building in outdoor <-> indoor communication according to some general
criteria such as the wall penetration losses of the common materials; moreover it includes some general configuration
for the internal walls in indoor communications.

The OhBuildingsPropagationLossModel pathloss model has been created for simplifying the previous one re-
moving the thresholds for switching from one model to other. For doing this it has been used only one propagation
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model from the one available (i.e., the Okumura Hata). The presence of building is still considered in the model; there-
fore all the considerations of above regarding the building type are still valid. The same consideration can be done for
what concern the environmental scenario and frequency since both of them are parameters of the model considered.

8.1.2 The Building class

The model includes a specific class called Building which contains a ns3 Box class for defining the dimension of the
building. In order to implements the characteristics of the pathloss models included, the Building class supports the
following attributes:

* building type:
— Residential (default value)
— Office
— Commercial

* external walls type

— Wood

ConcreteWithWindows (default value)

Concrete WithoutWindows

StoneBlocks

* number of floors (default value 1, which means only ground-floor)
e number of rooms in x-axis (default value 1)
* number of rooms in y-axis (default value 1)
The Building class is based on the following assumptions:
* abuildings is represented as a rectangular parallelepiped (i.e., a box)
* the walls are parallel to the X, y, and z axis
* abuilding is divided into a grid of rooms, identified by the following parameters:
— number of floors
— number of rooms along the x-axis
— number of rooms along the y-axis
* the z axis is the vertical axis, i.e., floor numbers increase for increasing z axis values
* the x and y room indices start from 1 and increase along the x and y axis respectively

¢ all rooms in a building have equal size

8.1.3 The MobilityBuildingInfo class

The MobilityBuildingInfo class, which inherits from the ns3 class Object, is in charge of maintaining informa-
tion about the position of a node with respect to building. The information managed by MobilityBuildingInfo
is:

¢ whether the node is indoor or outdoor
e if indoor:

— in which building the node is
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— in which room the node is positioned (x, y and floor room indices)

The class MobilityBuildingInfo is used by BuildingsPropagationLossModel class, which inherits from
the ns3 class PropagationLossModel and manages the pathloss computation of the single components and their
composition according to the nodes’ positions. Moreover, it implements also the shadowing, that is the loss due to
obstacles in the main path (i.e., vegetation, buildings, etc.).

It is to be noted that, MobilityBuildingInfo can be used by any other propagation model. However, based on the
information at the time of this writing, only the ones defined in the building module are designed for considering the
constraints introduced by the buildings.

8.1.4 ItuR1238PropagationLossModel

This class implements a building-dependent indoor propagation loss model based on the ITU P.1238 model, which
includes losses due to type of building (i.e., residential, office and commercial). The analytical expression is given in
the following.

Liotal = 20 1Og f + N log d+ Lf (’fl) — 28[dB]

where:

28 residential
N =< 30 office : power loss coefficient [dB]
22 commercial

4n residential
Ly=¢ 15+4(n—1) of fice
6+4+3(n—1) commercial

n : number of floors between base station and mobile (n > 1)
f : frequency [MHz]
d : distance (where d > 1) [m]

8.1.5 BuildingsPropagationLossModel

The BuildingsPropagationLossModel provides an additional set of building-dependent pathloss model elements that
are used to implement different pathloss logics. These pathloss model elements are described in the following subsec-
tions.

External Wall Loss (EWL)
This component models the penetration loss through walls for indoor to outdoor communications and vice-versa. The
values are taken from the [cost231] model.

* Wood ~ 4 dB

¢ Concrete with windows (not metallized) ~ 7 dB

* Concrete without windows ~ 15 dB (spans between 10 and 20 in COST231)

¢ Stone blocks ~ 12 dB

8.1. Design documentation 37



ns-3 Model Library, Release ns-3-dev

Internal Walls Loss (IWL)

This component models the penetration loss occurring in indoor-to-indoor communications within the same build-
ing. The total loss is calculated assuming that each single internal wall has a constant penetration loss Lg;,,, and
approximating the number of walls that are penetrated with the manhattan distance (in number of rooms) between the
transmitter and the receiver. In detail, let z;, y;1, x2, y2 denote the room number along the x and y axis respectively
for user 1 and 2; the total loss Ly, is calculated as

Liwr = Lsiw(|z1 — 22| + |y1 - 11/2\)

Height Gain Model (HG)

This component model the gain due to the fact that the transmitting device is on a floor above the ground. In the
literature [turkmani] this gain has been evaluated as about 2 dB per floor. This gain can be applied to all the indoor to
outdoor communications and vice-versa.

Shadowing Model

The shadowing is modeled according to a log-normal distribution with variable standard deviation as function of the
relative position (indoor or outdoor) of the MobilityModel instances involved. One random value is drawn for each
pair of MobilityModels, and stays constant for that pair during the whole simulation. Thus, the model is appropriate
for static nodes only.

The model considers that the mean of the shadowing loss in dB is always 0. For the variance, the model considers
three possible values of standard deviation, in detail:

* outdoor (m_shadowingSigmaOutdoor, defaul value of 7 dB) — Xo ~ N(uo, 0(2)).
* indoor (m_shadowingSigmaIndoor, defaul value of 10 dB) — X ~ N(ur, 012).
« external walls penetration (m_shadowingSigmaExtWalls, default value 5 dB) — Xw ~ N(uw,o%)

The simulator generates a shadowing value per each active link according to nodes’ position the first time the link
is used for transmitting. In case of transmissions from outdoor nodes to indoor ones, and vice-versa, the standard
deviation (010) has to be calculated as the square root of the sum of the quadratic values of the standard deviatio in
case of outdoor nodes and the one for the external walls penetration. This is due to the fact that that the components
producing the shadowing are independent of each other; therefore, the variance of a distribution resulting from the
sum of two independent normal ones is the sum of the variances.

X ~ N(p,0*)and Y ~ N(v,7%)
Z=X4+Y ~Z(p+v,0*+7%)

= 010 = \/U%—FCT%V

8.1.6 Pathloss logics

In the following we describe the different pathloss logic that are implemented by inheriting from BuildingsPropaga-
tionLossModel.

HybridBuildingsPropagationLossModel

The HybridBuildingsPropagationLossModel pathloss model included is obtained through a combination of
several well known pathloss models in order to mimic different outdoor and indoor scenarios, as well as indoor-to-
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outdoor and outdoor-to-indoor scenarios. In detail, the class HybridBuildingsPropagationLossModel integrates
the following pathloss models:

e OkumuraHataPropagationLossModel =~ (OH) (at  frequencies > 2.3 GHz  substituted by
Kun2600MhzPropagationLossModel)

* ItuR1411LosPropagationLossModel and ItuR1411NlosOverRooftopPropagationLossModel (I1411)
 TtuR1238PropagationLossModel (11238)
* the pathloss elements of the BuildingsPropagationL.ossModel (EWL, HG, IWL)

The following pseudo-code illustrates how the different pathloss model elements described above are integrated in
HybridBuildingsPropagationLossModel

if (txNode is outdoor)
then
if (rxNode is outdoor)
then
if (distance > 1 km)
then
if (rxNode or txNode is below the rooftop)
then
L = I1411
else
L = OH
else
L = I1411
else (rxNode is indoor)
if (distance > 1 km)
then
if (rxNode or txNode is below the rooftop)
L = I1411 + EWL + HG
else
L = OH + EWL + HG
else
L = I1411 + EWL + HG
else (txNode is indoor)
if (rxNode is indoor)

then
if (same building)
then
L = I1238 + IWL
else

L = I1411 + 2+EWL
else (rxNode is outdoor)
if (distance > 1 km)

then
if (rxNode or txNode is below the rooftop)
then
L = I1411 + EWL + HG
else
L = OH + EWL + HG
else

L = I1411 + EWL

We note that, for the case of communication between two nodes below rooftop level with distance is greater then 1
km, we still consider the 1411 model, since OH is specifically designed for macro cells and therefore for antennas
above the roof-top level.
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For the ITU-R P.1411 model we consider both the LOS and NLoS versions. In particular, we considers the LoS
propagation for distances that are shorted than a tunable threshold (m_itul411NlosThreshold). In case on NLoS
propagation, the over the roof-top model is taken in consideration for modeling both macro BS and SC. In case on
NLoS several parameters scenario dependent have been included, such as average street width, orientation, etc. The
values of such parameters have to be properly set according to the scenario implemented, the model does not calculate
natively their values. In case any values is provided, the standard ones are used, apart for the height of the mobile and
BS, which instead their integrity is tested directly in the code (i.e., they have to be greater then zero). In the following
we give the expressions of the components of the model.

We also note that the use of different propagation models (OH, 11411, 11238 with their variants) in HybridBuild-
ingsPropagationLossModel can result in discontinuities of the pathloss with respect to distance. A proper tuning of
the attributes (especially the distance threshold attributes) can avoid these discontinuities. However, since the behavior
of each model depends on several other parameters (frequency, node height, etc), there is no default value of these
thresholds that can avoid the discontinuities in all possible configurations. Hence, an appropriate tuning of these
parameters is left to the user.

OhBuildingsPropagationLossModel

The ohBuildingsPropagationLossModel class has been created as a simple means to solve the discontinuity
problems of HybridBuildingsPropagationLossModel without doing scenario-specific parameter tuning. The
solution is to use only one propagation loss model (i.e., Okumura Hata), while retaining the structure of the pathloss
logic for the calculation of other path loss components (such as wall penetration losses). The result is a model that is
free of discontinuities (except those due to walls), but that is less realistic overall for a generic scenario with buildings
and outdoor/indoor users, e.g., because Okumura Hata is not suitable neither for indoor communications nor for
outdoor communications below rooftop level.

In detail, the class OhBuildingsPropagationLossModel integrates the following pathloss models:
* OkumuraHataPropagationL.ossModel (OH)
* the pathloss elements of the BuildingsPropagationLLossModel (EWL, HG, IWL)

The following pseudo-code illustrates how the different pathloss model elements described above are integrated in
OhBuildingsPropagationLossModel:

if (txNode is outdoor)
then
if (rxNode is outdoor)
then
L = OH
else (rxNode is indoor)
L = OH + EWL
else (txNode is indoor)
if (rxNode is indoor)

then
if (same building)
then
L = OH + IWL
else

L = OH + 2+EWL
else (rxNode is outdoor)
L = OH + EWL

We note that OhBuildingsPropagationLossModel is a significant simplification with respect to HybridBuildingsProp-
agationLossModel, due to the fact that OH is used always. While this gives a less accurate model in some scenarios
(especially below rooftop and indoor), it effectively avoids the issue of pathloss discontinuities that affects Hybrid-
BuildingsPropagationLossModel.
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8.2 User Documentation

8.2.1 How to use buildings in a simulation

In this section we explain the basic usage of the buildings model within a simulation program.

Include the headers

Add this at the beginning of your simulation program:

#include <ns3/buildings-module.h>

Create a building

As an example, let’s create a residential 10 x 20 x 10 building:

double x_min = 0.0;

double x_max = 10.0;

double y_min = 0.0;

double y_max = 20.0;

double z_min = 0.0;

double z_max = 10.0;

Ptr<Building> b = CreateObject <Building> ();
b->SetBoundaries (Box (x_min, x_max, y_min, y_max, z_min, z_max));
b->SetBuildingType (Building::Residential);
b->SetExtWallsType (Building::ConcreteWithWindows) ;
b->SetNFloors (3);

b->SetNRoomsX (3);

b->SetNRoomsY (2);

This building has three floors and an internal 3 x 2 grid of rooms of equal size.

The helper class GridBuildingAllocator is also available to easily create a set of buildings with identical characteristics
placed on a rectangular grid. Here’s an example of how to use it:

Ptr<GridBuildingAllocator> gridBuildingAllocator;

gridBuildingAllocator = CreateObject<GridBuildingAllocator> ();
gridBuildingAllocator—->SetAttribute ("GridwWidth", UintegerValue (3));
gridBuildingAllocator->SetAttribute ("LengthX", DoubleValue (7));
gridBuildingAllocator—->SetAttribute ("LengthY", DoubleValue (13));
gridBuildingAllocator—->SetAttribute ("DeltaX", DoubleValue (3));
gridBuildingAllocator—->SetAttribute ("Delta¥Y", DoubleValue (3));
gridBuildingAllocator—->SetAttribute ("Height", DoubleValue (6));
gridBuildingAllocator—->SetBuildingAttribute ("NRoomsX", UintegerValue (2));
gridBuildingAllocator—>SetBuildingAttribute ("NRoomsY", UintegerValue (4));
gridBuildingAllocator—->SetBuildingAttribute ("NFloors", UintegerValue (2));
gridBuildingAllocator->SetAttribute ("MinX", DoubleValue (0));
gridBuildingAllocator—->SetAttribute ("MinY", DoubleValue (0));
gridBuildingAllocator—->Create (6);

This will create a 3x2 grid of 6 buildings, each 7 x 13 x 6 m with 2 x 4 rooms inside and 2 foors; the buildings are
spaced by 3 m on both the x and the y axis.
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Setup nodes and mobility models

Nodes and mobility models are configured as usual, however in order to use them with the buildings model you need
an additional call to BuildingsHelper::Install (), so as to let the mobility model include the information on
their position w.r.t. the buildings. Here is an example:

MobilityHelper mobility;

mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
ueNodes.Create (2);

mobility.Install (ueNodes);

BuildingsHelper::Install (ueNodes);

It is to be noted that any mobility model can be used. However, the user is advised to make sure that the behavior
of the mobility model being used is consistent with the presence of Buildings. For example, using a simple random
mobility over the whole simulation area in presence of buildings might easily results in node moving in and out of
buildings, regardless of the presence of walls.

One dedicated buildings-aware mobility model is the RandomWalk2dOutdoorMobilityModel. This class is similar
to the RandomWalk2dMobilityModel but avoids placing the trajectory on a path that would intersect a building wall.
If a boundary is encountered (either the bounding box or a building wall), the model rebounds with a random direction
and speed that ensures that the trajectory stays outside the buildings. An example program that demonstrates the use
of this model is the src/buildings/examples/outdoor-random-walk—example.cc which has an associated
shell script to plot the traces generated. Another example program demonstrates how this outdoor mobility model
can be used as the basis of a group mobility model, with the outdoor buildings-aware model serving as the parent
or reference mobility model, and with additional nodes defining a child mobility model providing the offset from
the reference mobility model. This example, src/buildings/example/outdoor—group-mobility—example.
cc, also has an associated shell script (outdoor-group-mobility-animate.sh) that can be used to generate an
animated GIF of the group’s movement.

Place some nodes

You can place nodes in your simulation using several methods, which are described in the following.

Legacy positioning methods

Any legacy ns-3 positioning method can be used to place node in the simulation. The important additional step is to
For example, you can place nodes manually like this:

Ptr<ConstantPositionMobilityModel> mmO = enbNodes.Get (0)->GetObject

—~<ConstantPositionMobilityModel> ();
Ptr<ConstantPositionMobilityModel> mml = enbNodes.Get (1)->GetObject
—<ConstantPositionMobilityModel> ();

mm0—->SetPosition (Vector (5.0, 5.0, 1.5));
mml->SetPosition (Vector (30.0, 40.0, 1.5));

MobilityHelper mobility;

mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
ueNodes.Create (2);

mobility.Install (ueNodes);

BuildingsHelper::Install (ueNodes);

mmO->SetPosition (Vector (5.0, 5.0, 1.5));

mml->SetPosition (Vector (30.0, 40.0, 1.5));

Alternatively, you could use any existing PositionAllocator class. The coordinates of the node will determine whether
it is placed outdoor or indoor and, if indoor, in which building and room it is placed.
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Building-specific positioning methods

The following position allocator classes are available to place node in special positions with respect to buildings:

* RandomBuildingPositionAllocator: Allocate each position by randomly choosing a building from the list
of all buildings, and then randomly choosing a position inside the building.

* RandomRoomPositionAllocator: Allocate each position by randomly choosing a room from the list of
rooms in all buildings, and then randomly choosing a position inside the room.

* SameRoomPositionAllocator: Walks a given NodeContainer sequentially, and for each node allocate a new
position randomly in the same room of that node.

* FixedRoomPositionAllocator: Generate a random position uniformly distributed in the volume of a chosen
room inside a chosen building.

Making the Mobility Model Consistent for a node

Initially, a mobility model of a node is made consistent when a node is initialized, which eventually trig-
gers a call to the DoInitialize method of the MobilityBuildinglnfo class. In particular, it calls the
MakeMobilityModelConsistent method, which goes through the lists of all buildings, determine if the node is
indoor or outdoor, and if indoor it also determines the building in which the node is located and the corresponding
floor number inside the building. Moreover, this method also caches the position of the node, which is used to make
the mobility model consistent for a moving node whenever the IsInside method of MobilityBuildingInfo class
is called.

Building-aware pathloss model

After you placed buildings and nodes in a simulation, you can use a building-aware pathloss model in a simulation
exactly in the same way you would use any regular path loss model. How to do this is specific for the wireless
module that you are considering (Ite, wifi, wimax, etc.), so please refer to the documentation of that model for specific
instructions.

Building-aware channel condition models
The class BuildingsChannelConditionModel implements a channel condition model which determines the LOS/NLOS
channel state based on the buildings deployed in the scenario.

The classes ThreeGppV2vUrbanChannelConditionModel and ThreeGppV2vHighwayChannelConditionModel
implement hybrid channel condition models, specifically designed to model vehicular environments. More informa-
tion can be found in the documentation of the propagation module.

8.2.2 Main configurable attributes

The Building class has the following configurable parameters:
* building type: Residential, Office and Commercial.
* external walls type: Wood, ConcreteWithWindows, Concrete WithoutWindows and StoneBlocks.
* building bounds: a Box class with the building bounds.
* number of floors.

* number of rooms in x-axis and y-axis (rooms can be placed only in a grid way).
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The BuildingMobilityLossModel parameter configurable with the ns3 attribute system is represented by the
bound (string Bounds) of the simulation area by providing a Box class with the area bounds. Moreover, by means of
its methods the following parameters can be configured:

* the number of floor the node is placed (default 0).
¢ the position in the rooms grid.

The BuildingPropagationLossModel class has the following configurable parameters configurable with the at-
tribute system:

* Frequency: reference frequency (default 2160 MHz), note that by setting the frequency the wavelength is set
accordingly automatically and viceversa).

* Lambda: the wavelength (0.139 meters, considering the above frequency).
* ShadowSigmaOutdoor: the standard deviation of the shadowing for outdoor nodes (defaul 7.0).
* ShadowSigmaIndoor: the standard deviation of the shadowing for indoor nodes (default 8.0).

* ShadowSigmaExtWalls: the standard deviation of the shadowing due to external walls penetration for outdoor
to indoor communications (default 5.0).

* RooftopLevel: the level of the rooftop of the building in meters (default 20 meters).

* Los2NlosThr: the value of distance of the switching point between line-of-sigth and non-line-of-sight propa-
gation model in meters (default 200 meters).

* ITUl411DistanceThr: the value of distance of the switching point between short range (ITU 1211) commu-
nications and long range (Okumura Hata) in meters (default 200 meters).

e MinDistance: the minimum distance in meters between two nodes for evaluating the pathloss (considered
neglictible before this threshold) (default 0.5 meters).

* Environment: the environment scenario among Urban, SubUrban and OpenAreas (default Urban).
* CitySize: the dimension of the city among Small, Medium, Large (default Large).

In order to use the hybrid mode, the class to be used is the HybridBuildingMobilityLossModel, which allows the
selection of the proper pathloss model according to the pathloss logic presented in the design chapter. However, this
solution has the problem that the pathloss model switching points might present discontinuities due to the different
characteristics of the model. This implies that according to the specific scenario, the threshold used for switching
have to be properly tuned. The simple OhBuildingMobilityLossModel overcome this problem by using only the
Okumura Hata model and the wall penetration losses.

8.3 Testing Documentation

8.3.1 Overview

To test and validate the ns-3 Building Pathloss module, some test suites is provided which are integrated with the ns-3
test framework. To run them, you need to have configured the build of the simulator in this way:

$ ./waf configure --enable-tests —--enable-modules=buildings
$ ./test.py

The above will run not only the test suites belonging to the buildings module, but also those belonging to all the other
ns-3 modules on which the buildings module depends. See the ns-3 manual for generic information on the testing
framework.

You can get a more detailed report in HTML format in this way:

44 Chapter 8. Buildings Module



ns-3 Model Library, Release ns-3-dev

$ ./test.py —-w results.html

After the above command has run, you can view the detailed result for each test by opening the file results.html
with a web browser.

You can run each test suite separately using this command:

$ ./test.py —-s test-suite-name

For more details about test .py and the ns-3 testing framework, please refer to the ns-3 manual.

8.3.2 Description of the test suites

BuildingsHelper test

The test suite buildings—helper checks that the method BuildingsHelper: :MakeAllInstancesConsistent

() works properly, i.e., that the BuildingsHelper is successful in locating if nodes are outdoor or indoor, and if indoor
that they are located in the correct building, room and floor. Several test cases are provided with different buildings
(having different size, position, rooms and floors) and different node positions. The test passes if each every node is
located correctly.

BuildingPositionAllocator test

The test suite building-position-allocator feature two test cases that check that respectively RandomRoom-
PositionAllocator and SameRoomPositionAllocator work properly. Each test cases involves a single 2x3x2 room
building (total 12 rooms) at known coordinates and respectively 24 and 48 nodes. Both tests check that the number of
nodes allocated in each room is the expected one and that the position of the nodes is also correct.

Buildings Pathloss tests

The test suite buildings-pathloss-model provides different unit tests that compare the expected results of the
buildings pathloss module in specific scenarios with pre calculated values obtained offline with an Octave script
(test/reference/buildings-pathloss.m). The tests are considered passed if the two values are equal up to a tolerance
of 0.1, which is deemed appropriate for the typical usage of pathloss values (which are in dB).

In the following we detailed the scenarios considered, their selection has been done for covering the wide set of
possible pathloss logic combinations. The pathloss logic results therefore implicitly tested.

Test #1 Okumura Hata

In this test we test the standard Okumura Hata model; therefore both eNB and UE are placed outside at a distance
of 2000 m. The frequency used is the E-UTRA band #5, which correspond to 869 MHz (see table 5.5-1 of 36.101).
The test includes also the validation of the areas extensions (i.e., urban, suburban and open-areas) and of the city size
(small, medium and large).

Test #2 COST231 Model

This test is aimed at validating the COST231 model. The test is similar to the Okumura Hata one, except that the
frequency used is the EUTRA band #1 (2140 MHz) and that the test can be performed only for large and small cities
in urban scenarios due to model limitations.
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Test #3 2.6 GHz model

This test validates the 2.6 GHz Kun model. The test is similar to Okumura Hata one except that the frequency is the
EUTRA band #7 (2620 MHz) and the test can be performed only in urban scenario.

Test #4 ITU1411 LoS model

This test is aimed at validating the ITU1411 model in case of line of sight within street canyons transmissions. In this
case the UE is placed at 100 meters far from the eNB, since the threshold for switching between LoS and NLoS is left
to default one (i.e., 200 m.).

Test #5 ITU1411 NLoS model

This test is aimed at validating the ITU1411 model in case of non line of sight over the rooftop transmissions. In this
case the UE is placed at 900 meters far from the eNB, in order to be above the threshold for switching between LoS
and NLoS is left to default one (i.e., 200 m.).

Test #6 ITUP1238 model

This test is aimed at validating the ITUP1238 model in case of indoor transmissions. In this case both the UE and the
eNB are placed in a residential building with walls made of concrete with windows. Ue is placed at the second floor
and distances 30 meters far from the eNB, which is placed at the first floor.

Test #7 Outdoor -> Indoor with Okumura Hata model

This test validates the outdoor to indoor transmissions for large distances. In this case the UE is placed in a residential
building with wall made of concrete with windows and distances 2000 meters from the outdoor eNB.

Test #8 Outdoor -> Indoor with ITU1411 model

This test validates the outdoor to indoor transmissions for short distances. In this case the UE is placed in a residential
building with walls made of concrete with windows and distances 100 meters from the outdoor eNB.

Test #9 Indoor -> Outdoor with ITU1411 model

This test validates the outdoor to indoor transmissions for very short distances. In this case the eNB is placed in the
second floor of a residential building with walls made of concrete with windows and distances 100 meters from the
outdoor UE (i.e., LoS communication). Therefore the height gain has to be included in the pathloss evaluation.

Test #10 Indoor -> Outdoor with ITU1411 model

This test validates the outdoor to indoor transmissions for short distances. In this case the eNB is placed in the second
floor of a residential building with walls made of concrete with windows and distances 500 meters from the outdoor
UE (i.e., NLoS communication). Therefore the height gain has to be included in the pathloss evaluation.
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Buildings Shadowing Test

The test suite buildings—shadowing-test is a unit test intended to verify the statistical distribution of the shad-
owing model implemented by BuildingsPathlossModel. The shadowing is modeled according to a normal
distribution with mean ;4 = 0 and variable standard deviation o, according to models commonly used in liter-
ature. Three test cases are provided, which cover the cases of indoor, outdoor and indoor-to-outdoor communi-
cations. Each test case generates 1000 different samples of shadowing for different pairs of MobilityModel in-
stances in a given scenario. Shadowing values are obtained by subtracting from the total loss value returned by
HybridBuildingsPathlossModel the path loss component which is constant and pre-determined for each test
case. The test verifies that the sample mean and sample variance of the shadowing values fall within the 99% confi-
dence interval of the sample mean and sample variance. The test also verifies that the shadowing values returned at
successive times for the same pair of MobilityModel instances is constant.

Buildings Channel Condition Model Test

The BuildingsChannelConditionModelTestSuite tests the class BuildingsChannelConditionModel. It checks if the
channel condition between two nodes is correctly determined when a building is deployed.
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CHAPTER
NINE

CLICK MODULAR ROUTER INTEGRATION

Click is a software architecture for building configurable routers. By using different combinations of packet processing
units called elements, a Click router can be made to perform a specific kind of functionality. This flexibility provides
a good platform for testing and experimenting with different protocols.

9.1 Model Description

The source code for the Click model lives in the directory src/click.

9.1.1 Design

ns-3’s design is well suited for an integration with Click due to the following reasons:

 Packets in ns-3 are serialised/deserialised as they move up/down the stack. This allows ns-3 packets to be passed
to and from Click as they are.

* This also means that any kind of ns-3 traffic generator and transport should work easily on top of Click.

* By striving to implement click as an Ipv4RoutingProtocol instance, we can avoid significant changes to the LL
and MAC layer of the ns-3 code.

The design goal was to make the ns-3-click public API simple enough such that the user needs to merely add an
Ipv4ClickRouting instance to the node, and inform each Click node of the Click configuration file (.click file) that it is
to use.

This model implements the interface to the Click Modular Router and provides the Ipv4ClickRouting class to allow a
node to use Click for external routing. Unlike normal Ipv4RoutingProtocol sub types, Ipv4ClickRouting doesn’t use a
Routelnput() method, but instead, receives a packet on the appropriate interface and processes it accordingly. Note that
you need to have a routing table type element in your Click graph to use Click for external routing. This is needed by
the RouteOutput() function inherited from Ipv4RoutingProtocol. Furthermore, a Click based node uses a different kind
of L3 in the form of Ipv4L3ClickProtocol, which is a trimmed down version of Ipv4L3Protocol. Ipv4L3ClickProtocol
passes on packets passing through the stack to Ipv4ClickRouting for processing.

Developing a Simulator API to allow ns-3 to interact with Click

Much of the API is already well defined, which allows Click to probe for information from the simulator (like a Node’s
ID, an Interface ID and so forth). By retaining most of the methods, it should be possible to write new implementations
specific to ns-3 for the same functionality.

Hence, for the Click integration with ns-3, a class named Ipv4ClickRouting will handle the interaction with Click. The
code for the same can be found in src/click/model/ipv4-click-routing.{cc,h}.
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Packet hand off between ns-3 and Click

There are four kinds of packet hand-offs that can occur between ns-3 and Click.
* L4toL3
* L3toL4
e L3t0L2
e [2t0L3

To overcome this, we implement Ipv4L3ClickProtocol, a stripped down version of Ipv4L3Protocol.
Ipv4L3ClickProtocol passes packets to and from Ipv4ClickRouting appropriately to perform routing.

9.1.2 Scope and Limitations

* Inits current state, the NS-3 Click Integration is limited to use only with L3, leaving NS-3 to handle L2. We are
currently working on adding Click MAC support as well. See the usage section to make sure that you design
your Click graphs accordingly.

* Furthermore, ns-3-click will work only with userlevel elements. The complete list of elements are available at
http://read.cs.ucla.edu/click/elements. Elements that have ‘all’, ‘userlevel’ or ‘ns’ mentioned beside them may
be used.

¢ As of now, the ns-3 interface to Click is Ipv4 only. We will be adding Ipv6 support in the future.

9.1.3 References
» Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The click modular router.
ACM Transactions on Computer Systems 18(3), August 2000, pages 263-297.

 Lalith Suresh P., and Ruben Merz. Ns-3-click: click modular router integration for ns-3. In Proc. of 3rd
International ICST Workshop on NS-3 (WNS3), Barcelona, Spain. March, 2011.

* Michael Neufeld, Ashish Jain, and Dirk Grunwald. Nsclick: bridging network simulation and deployment.
MSWiM ‘02: Proceedings of the Sth ACM international workshop on Modeling analysis and simulation of
wireless and mobile systems, 2002, Atlanta, Georgia, USA. http://doi.acm.org/10.1145/570758.570772

9.2 Usage

9.2.1 Building Click

The first step is to clone Click from the github repository and build it:

$ git clone https://github.com/kohler/click

$ cd click/

$ ./configure --disable-linuxmodule --enable-nsclick --enable-wifi
$ make

The —enable-wifi flag may be skipped if you don’t intend on using Click with Wifi. * Note: You don’t need to do a
‘make install’.

Once Click has been built successfully, change into the ns-3 directory and configure ns-3 with Click Integration
support:
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$ ./waf configure -—-enable-examples -—-enable-tests --with-nsclick=/path/to/click/
<»source

Hint: If you have click installed one directory above ns-3 (such as in the ns-3-allinone directory), and the name of
the directory is ‘click’ (or a symbolic link to the directory is named ‘click’), then the —with-nsclick specifier is not
necessary; the ns-3 build system will successfully find the directory.

If it says ‘enabled’ beside ‘NS-3 Click Integration Support’, then you’re good to go. Note: If running modular ns-3,
the minimum set of modules required to run all ns-3-click examples is wifi, csma and config-store.

Next, try running one of the examples:

$ ./waf —-run nsclick-simple-lan

You may then view the resulting .pcap traces, which are named nsclick-simple-lan-0-0.pcap and nsclick-simple-lan-0-
1.pcap.

9.2.2 Click Graph Instructions

The following should be kept in mind when making your Click graph:
* Only userlevel elements can be used.
* You will need to replace FromDevice and ToDevice elements with FromSimDevice and ToSimDevice elements.
» Packets to the kernel are sent up using ToSimDevice(tap0,IP).

» For any node, the device which sends/receives packets to/from the kernel, is named ‘tap0’. The remaining
interfaces should be named eth0, ethl and so forth (even if you’re using wifi). Please note that the device
numbering should begin from 0. In future, this will be made flexible so that users can name devices in their
Click file as they wish.

* A routing table element is a mandatory. The OUTports of the routing table element should correspond to the
interface number of the device through which the packet will ultimately be sent out. Violating this rule will lead
to really weird packet traces. This routing table element’s name should then be passed to the Ipv4ClickRouting
protocol object as a simulation parameter. See the Click examples for details.

* The current implementation leaves Click with mainly L3 functionality, with ns-3 handling L2. We will soon
begin working to support the use of MAC protocols on Click as well. This means that as of now, Click’s Wifi
specific elements cannot be used with ns-3.

9.2.3 Debugging Packet Flows from Click

From any point within a Click graph, you may use the Print (http://read.cs.ucla.edu/click/elements/print) element and
its variants for pretty printing of packet contents. Furthermore, you may generate pcap traces of packets flowing
through a Click graph by using the ToDump (http://read.cs.ucla.edu/click/elements/todump) element as well. For
instance:

myarpquerier
—> Print (fromarpquery, 64)
—> ToDump (out_arpquery, PER_NODE 1)
-> ethout;

and ... will print the contents of packets that flow out of the ArpQuerier, then generate a pcap trace file which will
have a suffix ‘out_arpquery’, for each node using the Click file, before pushing packets onto ‘ethout’.
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9.2.4 Helper

To have a node run Click, the easiest way would be to use the ClickInternetStackHelper class in your simulation script.
For instance:

ClickInternetStackHelper click;

click.SetClickFile (myNodeContainer, "nsclick-simple-lan.click");
click.SetRoutingTableElement (myNodeContainer, "u/rt");
click.Install (myNodeContainer);

The example scripts inside src/click/examples/ demonstrate the use of Click based nodes in different scenarios.
The helper source can be found inside src/click/helper/click—internet-stack-helper. {h,cc}

9.2.5 Examples

The following examples have been written, which can be found in src/click/examples/:

¢ nsclick-simple-lan.cc and nsclick-raw-wlan.cc: A Click based node communicating with a normal ns-3 node
without Click, using Csma and Wifi respectively. It also demonstrates the use of TCP on top of Click, something
which the original nsclick implementation for NS-2 couldn’t achieve.

* nsclick-udp-client-server-csma.cc and nsclick-udp-client-server-wifi.cc: A 3 node LAN (Csma and Wifi respec-
tively) wherein 2 Click based nodes run a UDP client, that sends packets to a third Click based node running a
UDP server.

¢ nsclick-routing.cc: One Click based node communicates to another via a third node that acts as an IP router
(using the IP router Click configuration). This demonstrates routing using Click.

Scripts are available within <click-dir>/conf/ that allow you to generate Click files for some common scenarios.
The IP Router used in nsclick-routing.cc was generated from the make-ip-conf.pl file and slightly adapted to
work with ns-3-click.

9.3 Validation

This model has been tested as follows:

 Unit tests have been written to verify the internals of Ipv4ClickRouting. This can be found in src/click/
ipvd-click-routing-test.cc. These tests verify whether the methods inside Ipv4ClickRouting which
deal with Device name to ID, IP Address from device name and Mac Address from device name bindings work
as expected.

* The examples have been used to test Click with actual simulation scenarios. These can be found in src/click/
examples/. These tests cover the following: the use of different kinds of transports on top of Click, TCP/UDP,
whether Click nodes can communicate with non-Click based nodes, whether Click nodes can communicate with
each other, using Click to route packets using static routing.

¢ Click has been tested with Csma, Wifi and Point-to-Point devices. Usage instructions are available in the pre-
ceding section.
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CHAPTER
TEN

CSMA NETDEVICE

This is the introduction to CSMA NetDevice chapter, to complement the CSMA model doxygen.

10.1 Overview of the CSMA model

The ns-3 CSMA device models a simple bus network in the spirit of Ethernet. Although it does not model any real
physical network you could ever build or buy, it does provide some very useful functionality.

Typically when one thinks of a bus network Ethernet or IEEE 802.3 comes to mind. Ethernet uses CSMA/CD (Car-
rier Sense Multiple Access with Collision Detection with exponentially increasing backoff to contend for the shared
transmission medium. The ns-3 CSMA device models only a portion of this process, using the nature of the globally
available channel to provide instantaneous (faster than light) carrier sense and priority-based collision “avoidance.”
Collisions in the sense of Ethernet never happen and so the ns-3 CSMA device does not model collision detection, nor
will any transmission in progress be “jammed.”

10.1.1 CSMA Layer Model

There are a number of conventions in use for describing layered communications architectures in the literature and in
textbooks. The most common layering model is the ISO seven layer reference model. In this view the CsmaNetDevice
and CsmaChannel pair occupies the lowest two layers — at the physical (layer one), and data link (layer two) positions.
Another important reference model is that specified by RFC 1122, “Requirements for Internet Hosts — Communication
Layers.” In this view the CsmaNetDevice and CsmaChannel pair occupies the lowest layer — the link layer. There is
also a seemingly endless litany of alternative descriptions found in textbooks and in the literature. We adopt the naming
conventions used in the IEEE 802 standards which speak of LLC, MAC, MII and PHY layering. These acronyms are
defined as:

* LLC: Logical Link Control;

¢ MAC: Media Access Control;

* MII: Media Independent Interface;
* PHY: Physical Layer.

In this case the LLC and MAC are sublayers of the OSI data link layer and the MII and PHY are sublayers of the OSI
physical layer.

The “top” of the CSMA device defines the transition from the network layer to the data link layer. This transition is
performed by higher layers by calling either CsmaNetDevice::Send or CsmaNetDevice::SendFrom.

In contrast to the IEEE 802.3 standards, there is no precisely specified PHY in the CSMA model in the sense of wire
types, signals or pinouts. The “bottom” interface of the CsmaNetDevice can be thought of as as a kind of Media
Independent Interface (MII) as seen in the “Fast Ethernet” (IEEE 802.3u) specifications. This MII interface fits into a
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corresponding media independent interface on the CsmaChannel. You will not find the equivalent of a 10BASE-T or
a 1000BASE-LX PHY.

The CsmaNetDevice calls the CsmaChannel through a media independent interface. There is a method defined to tell
the channel when to start “wiggling the wires” using the method CsmaChannel:: TransmitStart, and a method to tell
the channel when the transmission process is done and the channel should begin propagating the last bit across the
“wire”: CsmaChannel::TransmitEnd.

When the TransmitEnd method is executed, the channel will model a single uniform signal propagation delay in the
medium and deliver copes of the packet to each of the devices attached to the packet via the CsmaNetDevice::Receive
method.

There is a “pin” in the device media independent interface corresponding to “COL” (collision). The state of the channel
may be sensed by calling CsmaChannel::GetState. Each device will look at this “pin” before starting a send and will
perform appropriate backoff operations if required.

Properly received packets are forwarded up to higher levels from the CsmaNetDevice via a callback mechanism.
The callback function is initialized by the higher layer (when the net device is attached) using CsmaNetDe-
vice::SetReceiveCallback and is invoked upon “proper” reception of a packet by the net device in order to forward
the packet up the protocol stack.

10.2 CSMA Channel Model

The class CsmaChannel models the actual transmission medium. There is no fixed limit for the number of devices
connected to the channel. The CsmaChannel models a data rate and a speed-of-light delay which can be accessed via
the attributes “DataRate” and “Delay” respectively. The data rate provided to the channel is used to set the data rates
used by the transmitter sections of the CSMA devices connected to the channel. There is no way to independently set
data rates in the devices. Since the data rate is only used to calculate a delay time, there is no limitation (other than
by the data type holding the value) on the speed at which CSMA channels and devices can operate; and no restriction
based on any kind of PHY characteristics.

The CsmaChannel has three states, IDLE, TRANSMITTING and PROPAGATING. These three states are “seen” instanta-
neously by all devices on the channel. By this we mean that if one device begins or ends a simulated transmission, all
devices on the channel are immediately aware of the change in state. There is no time during which one device may see
an IDLE channel while another device physically further away in the collision domain may have begun transmitting
with the associated signals not propagated down the channel to other devices. Thus there is no need for collision
detection in the CsmaChannel model and it is not implemented in any way.

We do, as the name indicates, have a Carrier Sense aspect to the model. Since the simulator is single threaded, access
to the common channel will be serialized by the simulator. This provides a deterministic mechanism for contending
for the channel. The channel is allocated (transitioned from state IDLE to state TRANSMITTING) on a first-come
first-served basis. The channel always goes through a three state process:

IDLE -> TRANSMITTING -> PROPAGATING -> IDLE

The TRANSMITTING state models the time during which the source net device is actually wiggling the signals on the
wire. The PROPAGATING state models the time after the last bit was sent, when the signal is propagating down the
wire to the “far end.”

The transition to the TRANSMITTING state is driven by a call to CsmaChannel::TransmitStart which is called by the
net device that transmits the packet. It is the responsibility of that device to end the transmission with a call to
CsmaChannel:: TransmitEnd at the appropriate simulation time that reflects the time elapsed to put all of the packet
bits on the wire. When TransmitEnd is called, the channel schedules an event corresponding to a single speed-of-
light delay. This delay applies to all net devices on the channel identically. You can think of a symmetrical hub in
which the packet bits propagate to a central location and then back out equal length cables to the other devices on the
channel. The single “speed of light” delay then corresponds to the time it takes for: 1) a signal to propagate from one
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CsmaNetDevice through its cable to the hub; plus 2) the time it takes for the hub to forward the packet out a port; plus
3) the time it takes for the signal in question to propagate to the destination net device.

The CsmaChannel models a broadcast medium so the packet is delivered to all of the devices on the channel (including
the source) at the end of the propagation time. It is the responsibility of the sending device to determine whether or
not it receives a packet broadcast over the channel.

The CsmaChannel provides following Attributes:
» DataRate: The bitrate for packet transmission on connected devices;

¢ Delay: The speed of light transmission delay for the channel.

10.3 CSMA Net Device Model

The CSMA network device appears somewhat like an Ethernet device. The CsmaNetDevice provides following At-
tributes:

* Address: The Mac48Address of the device;

» SendEnable: Enable packet transmission if true;

* ReceiveEnable: Enable packet reception if true;

* EncapsulationMode: Type of link layer encapsulation to use;
¢ RxErrorModel: The receive error model;

¢ TxQueue: The transmit queue used by the device;

¢ InterframeGap: The optional time to wait between “frames”;
* Rx: A trace source for received packets;

* Drop: A trace source for dropped packets.

The CsmaNetDevice supports the assignment of a “receive error model.” This is an ErrorModel object that is used to
simulate data corruption on the link.

Packets sent over the CsmaNetDevice are always routed through the transmit queue to provide a trace hook for packets
sent out over the network. This transmit queue can be set (via attribute) to model different queuing strategies.

Also configurable by attribute is the encapsulation method used by the device. Every packet gets an EthernetHeader
that includes the destination and source MAC addresses, and a length/type field. Every packet also gets an Ethernet-
Trailer which includes the FCS. Data in the packet may be encapsulated in different ways.

By default, or by setting the “EncapsulationMode” attribute to “Dix”, the encapsulation is according to the DEC,
Intel, Xerox standard. This is sometimes called Ethernetll framing and is the familiar destination MAC, source MAC,
EtherType, Data, CRC format.

If the “EncapsulationMode” attribute is set to “Llc”, the encapsulation is by LLC SNAP. In this case, a SNAP header
is added that contains the EtherType (IP or ARP).

The other implemented encapsulation modes are IP_ARP (set “EncapsulationMode” to “IpArp”) in which the length
type of the Ethernet header receives the protocol number of the packet; or ETHERNET_V1 (set “EncapsulationMode”
to “EthernetV1”) in which the length type of the Ethernet header receives the length of the packet. A “Raw” encapsu-
lation mode is defined but not implemented — use of the RAW mode results in an assertion.

Note that all net devices on a channel must be set to the same encapsulation mode for correct results. The encapsulation
mode is not sensed at the receiver.

The CsmaNetDevice implements a random exponential backoff algorithm that is executed if the channel is determined
to be busy (TRANSMITTING or PPROPAGATING) when the device wants to start propagating. This results in a random
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delay of up to pow (2, retries) - 1 microseconds before a retry is attempted. The default maximum number of retries is
1000.

10.4 Using the CsmaNetDevice

The CSMA net devices and channels are typically created and configured using the associated CsmaHelper object.
The various ns-3 device helpers generally work in a similar way, and their use is seen in many of our example programs.

The conceptual model of interest is that of a bare computer “husk’ into which you plug net devices. The bare computers
are created using a NodeContainer helper. You just ask this helper to create as many computers (we call them Nodes)
as you need on your network:

NodeContainer csmaNodes;
csmaNodes.Create (nCsmaNodes);

Once you have your nodes, you need to instantiate a CsmaHelper and set any attributes you may want to change.:

CsmaHelper csma;
csma.SetChannelAttribute ("DataRate", StringValue ("100Mbps"));
csma.SetChannelAttribute ("Delay", TimeValue (NanoSeconds (6560)));

csma.SetDeviceAttribute ("EncapsulationMode", StringValue ("Dix"));
csma.SetDeviceAttribute ("FrameSize", UintegerValue (2000));

Once the attributes are set, all that remains is to create the devices and install them on the required nodes, and to
connect the devices together using a CSMA channel. When we create the net devices, we add them to a container to
allow you to use them in the future. This all takes just one line of code.:

NetDeviceContainer csmaDevices = csma.Install (csmaNodes);

We recommend thinking carefully about changing these Attributes, since it can result in behavior that surprises users.
We allow this because we believe flexibility is important. As an example of a possibly surprising effect of changing
Attributes, consider the following:

The Mtu Attribute indicates the Maximum Transmission Unit to the device. This is the size of the largest Protocol Data
Unit (PDU) that the device can send. This Attribute defaults to 1500 bytes and corresponds to a number found in RFC
894, “A Standard for the Transmission of IP Datagrams over Ethernet Networks.” The number is actually derived from
the maximum packet size for 10Base5 (full-spec Ethernet) networks — 1518 bytes. If you subtract DIX encapsulation
overhead for Ethernet packets (18 bytes) you will end up with a maximum possible data size (MTU) of 1500 bytes.
One can also find that the MTU for IEEE 802.3 networks is 1492 bytes. This is because LLC/SNAP encapsulation
adds an extra eight bytes of overhead to the packet. In both cases, the underlying network hardware is limited to 1518
bytes, but the MTU is different because the encapsulation is different.

If one leaves the Mtu Attribute at 1500 bytes and changes the encapsulation mode Attribute to Llc, the result will be a
network that encapsulates 1500 byte PDUs with LLC/SNAP framing resulting in packets of 1526 bytes. This would
be illegal in many networks, but we allow you do do this. This results in a simulation that quite subtly does not reflect
what you might be expecting since a real device would balk at sending a 1526 byte packet.

There also exist jumbo frames (1500 < MTU <= 9000 bytes) and super-jumbo (MTU > 9000 bytes) frames that
are not officially sanctioned by IEEE but are available in some high-speed (Gigabit) networks and NICs. In the
CSMA model, one could leave the encapsulation mode set to Dix, and set the Mtu to 64000 bytes — even though an
associated CsmaChannel DataRate was left at 10 megabits per second (certainly not Gigabit Ethernet). This would
essentially model an Ethernet switch made out of vampire-tapped 1980s-style 10Base5 networks that support super-
jumbo datagrams, which is certainly not something that was ever made, nor is likely to ever be made; however it is
quite easy for you to configure.
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Be careful about assumptions regarding what CSMA is actually modelling and how configuration (Attributes) may
allow you to swerve considerably away from reality.

10.5 CSMA Tracing

Like all ns-3 devices, the CSMA Model provides a number of trace sources. These trace sources can be hooked using
your own custom trace code, or you can use our helper functions to arrange for tracing to be enabled on devices you
specify.

10.5.1 Upper-Level (MAC) Hooks

From the point of view of tracing in the net device, there are several interesting points to insert trace hooks. A con-
vention inherited from other simulators is that packets destined for transmission onto attached networks pass through
a single “transmit queue” in the net device. We provide trace hooks at this point in packet flow, which corresponds
(abstractly) only to a transition from the network to data link layer, and call them collectively the device MAC hooks.

When a packet is sent to the CSMA net device for transmission it always passes through the transmit queue. The
transmit queue in the CsmaNetDevice inherits from Queue, and therefore inherits three trace sources:

* An Enqueue operation source (see Queue::m_traceEnqueue);
* A Dequeue operation source (see Queue::m_traceDequeue);
* A Drop operation source (see Queue::m_traceDrop).

The upper-level (MAC) trace hooks for the CsmaNetDevice are, in fact, exactly these three trace sources on the single
transmit queue of the device.

The m_traceEnqueue event is triggered when a packet is placed on the transmit queue. This happens at the time that
CsmaNetDevice::Send or CsmaNetDevice::SendFrom is called by a higher layer to queue a packet for transmission.

The m_traceDequeue event is triggered when a packet is removed from the transmit queue. Dequeues from the trans-
mit queue can happen in three situations: 1) If the underlying channel is idle when the CsmaNetDevice::Send or
CsmaNetDevice::SendFrom is called, a packet is dequeued from the transmit queue and immediately transmitted; 2)
If the underlying channel is idle, a packet may be dequeued and immediately transmitted in an internal TransmitCom-
pleteEvent that functions much like a transmit complete interrupt service routine; or 3) from the random exponential
backoff handler if a timeout is detected.

Case (3) implies that a packet is dequeued from the transmit queue if it is unable to be transmitted according to the
backoff rules. It is important to understand that this will appear as a Dequeued packet and it is easy to incorrectly
assume that the packet was transmitted since it passed through the transmit queue. In fact, a packet is actually dropped
by the net device in this case. The reason for this behavior is due to the definition of the Queue Drop event. The
m_traceDrop event is, by definition, fired when a packet cannot be enqueued on the transmit queue because it is full.
This event only fires if the queue is full and we do not overload this event to indicate that the CsmaChannel is “full.”

10.5.2 Lower-Level (PHY) Hooks

Similar to the upper level trace hooks, there are trace hooks available at the lower levels of the net device. We call
these the PHY hooks. These events fire from the device methods that talk directly to the CsmaChannel.

The trace source m_dropTrace is called to indicate a packet that is dropped by the device. This happens in two cases:
First, if the receive side of the net device is not enabled (see CsmaNetDevice::m_receiveEnable and the associated
attribute “ReceiveEnable”).

The m_dropTrace is also used to indicate that a packet was discarded as corrupt if a receive error model is used (see
CsmaNetDevice::m_receiveErrorModel and the associated attribute “ReceiveErrorModel”).
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The other low-level trace source fires on reception of an accepted packet (see CsmaNetDevice::m_rxTrace). A packet
is accepted if it is destined for the broadcast address, a multicast address, or to the MAC address assigned to the net
device.

10.6 Summary

The ns3 CSMA model is a simplistic model of an Ethernet-like network. It supports a Carrier-Sense function and
allows for Multiple Access to a shared medium. It is not physical in the sense that the state of the medium is instan-
taneously shared among all devices. This means that there is no collision detection required in this model and none
is implemented. There will never be a “jam” of a packet already on the medium. Access to the shared channel is on
a first-come first-served basis as determined by the simulator scheduler. If the channel is determined to be busy by
looking at the global state, a random exponential backoff is performed and a retry is attempted.

Ns-3 Attributes provide a mechanism for setting various parameters in the device and channel such as addresses,
encapsulation modes and error model selection. Trace hooks are provided in the usual manner with a set of upper level
hooks corresponding to a transmit queue and used in ASCII tracing; and also a set of lower level hooks used in pcap
tracing.

Although the ns-3 CsmaChannel and CsmaNetDevice does not model any kind of network you could build or buy, it
does provide us with some useful functionality. You should, however, understand that it is explicitly not Ethernet or
any flavor of IEEE 802.3 but an interesting subset.
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CHAPTER
ELEVEN

DSDV ROUTING

Destination-Sequenced Distance Vector (DSDV) routing protocol is a pro-active, table-driven routing protocol for
MANETs developed by Charles E. Perkins and Pravin Bhagwat in 1994. It uses the hop count as metric in route
selection.

This model was developed by the ResiliNets research group at the University of Kansas. A paper on this model exists
at this URL.

11.1 DSDV Routing Overview

DSDV Routing Table: Every node will maintain a table listing all the other nodes it has known either directly or
through some neighbors. Every node has a single entry in the routing table. The entry will have information about
the node’s IP address, last known sequence number and the hop count to reach that node. Along with these details the
table also keeps track of the nexthop neighbor to reach the destination node, the timestamp of the last update received
for that node.

The DSDV update message consists of three fields, Destination Address, Sequence Number and Hop Count.
Each node uses 2 mechanisms to send out the DSDV updates. They are,

1. Periodic Updates Periodic updates are sent out after every m_periodicUpdateInterval(default:15s). In this up-
date the node broadcasts out its entire routing table.

2. Trigger Updates Trigger Updates are small updates in-between the periodic updates. These updates are sent
out whenever a node receives a DSDV packet that caused a change in its routing table. The original paper
did not clearly mention when for what change in the table should a DSDV update be sent out. The current
implementation sends out an update irrespective of the change in the routing table.

The updates are accepted based on the metric for a particular node. The first factor determining the acceptance of an
update is the sequence number. It has to accept the update if the sequence number of the update message is higher
irrespective of the metric. If the update with same sequence number is received, then the update with least metric
(hopCount) is given precedence.

In highly mobile scenarios, there is a high chance of route fluctuations, thus we have the concept of weighted settling
time where an update with change in metric will not be advertised to neighbors. The node waits for the settling time
to make sure that it did not receive the update from its old neighbor before sending out that update.

The current implementation covers all the above features of DSDV. The current implementation also has a request
queue to buffer packets that have no routes to destination. The default is set to buffer up to 5 packets per destination.

11.2 References

Link to the Paper: http://portal.acm.org/citation.cfm?doid=190314.190336

59


http://www.ittc.ku.edu/resilinets
https://wiki.ittc.ku.edu/resilinets/ResiliNets_Publications#.E2.80.9CDestination-Sequenced_Distance_Vector_.28DSDV.29_Routing_Protocol_Implementation_in_ns-3.E2.80.9D
http://portal.acm.org/citation.cfm?doid=190314.190336

ns-3 Model Library, Release ns-3-dev

60

Chapter 11. DSDV Routing



CHAPTER
TWELVE

DSR ROUTING

Dynamic Source Routing (DSR) protocol is a reactive routing protocol designed specifically for use in multi-hop
wireless ad hoc networks of mobile nodes.

This model was developed by the ResiliNets research group at the University of Kansas.

12.1 DSR Routing Overview

This model implements the base specification of the Dynamic Source Routing (DSR) protocol. Implementation is
based on RFC 4728, with some extensions and modifications to the RFC specifications.

DSR operates on a on-demand behavior. Therefore, our DSR model buffers all packets while a route request packet
(RREQ) is disseminated. We implement a packet buffer in dsr-rsendbuff.cc. The packet queue implements garbage
collection of old packets and a queue size limit. When the packet is sent out from the send buffer, it will be queued in
maintenance buffer for next hop acknowledgment.

The maintenance buffer then buffers the already sent out packets and waits for the notification of packet delivery.
Protocol operation strongly depends on broken link detection mechanism. We implement the three heuristics recom-
mended based the RFC as follows:

First, we use link layer feedback when possible, which is also the fastest mechanism of these three to detect link errors.
A link is considered to be broken if frame transmission results in a transmission failure for all retries. This mechanism
is meant for active links and works much faster than in its absence. DSR is able to detect the link layer transmission
failure and notify that as broken. Recalculation of routes will be triggered when needed. If user does not want to use
link layer acknowledgment, it can be tuned by setting “LinkAcknowledgment” attribute to false in “dsr-routing.cc”.

Second, passive acknowledgment should be used whenever possible. The node turns on “promiscuous” receive mode,
in which it can receive packets not destined for itself, and when the node assures the delivery of that data packet to its
destination, it cancels the passive acknowledgment timer.

Last, we use a network layer acknowledge scheme to notify the receipt of a packet. Route request packet will not be
acknowledged or retransmitted.

The Route Cache implementation support garbage collection of old entries and state machine, as defined in the stan-
dard. It implements as a STL map container. The key is the destination IP address.

DSR operates with direct access to IP header, and operates between network and transport layer. When packet is sent
out from transport layer, it passes itself to DSR and DSR header is appended.

We have two caching mechanisms: path cache and link cache. The path cache saves the whole path in the cache. The
paths are sorted based on the hop count, and whenever one path is not able to be used, we change to the next path.
The link cache is a slightly better design in the sense that it uses different subpaths and uses Implemented Link Cache
using Dijkstra algorithm, and this part is implemented by Song Luan <Isuper @mail.ustc.edu.cn>.

The following optional protocol optimizations aren’t implemented:
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* Flow state
* First Hop External (F), Last Hop External (L) flags
* Handling unknown DSR options
¢ Two types of error headers:
1. flow state not supported option

2. unsupported option (not going to happen in simulation)

12.1.1 DSR update in ns-3.17

We originally used “TxErrHeader” in Ptr<WifiMac> to indicate the transmission error of a specific packet in link layer,
however, it was not working quite correctly since even when the packet was dropped, this header was not recorded in
the trace file. We used to a different path on implementing the link layer notification mechanism. We look into the
trace file by finding packet receive event. If we find one receive event for the data packet, we count that as the indicator

for successful data delivery.

12.1.2 Useful parameters

R i e fom +
| Parameter | Description | Default |
f=========================cj========================———c=—====—cf=============1
| MaxSendBufflLen | Maximum number of packets that can | 64 |
| | be stored in send buffer | |
o et ittt fom +
| MaxSendBuffTime | Maximum time packets can be queued | Seconds (30)

| | in the send buffer | |
R R et fom +
| MaxMaintLen | Maximum number of packets that can | 50 |
| | be stored in maintenance buffer | |
o e fom +
| MaxMaintTime | Maximum time packets can be queued | Seconds (30)

| | in maintenance buffer | |
R e fom e +
| MaxCacheLen | Maximum number of route entries | 64 |
| | that can be stored in route cache | |
o e fom +
| RouteCacheTimeout | Maximum time the route cache can | Seconds (300)

| | be queued in route cache | |
e e fom e +
| RregRetries | Maximum number of retransmissions | 16 |
\ | for request discovery of a route | \
e o fom +
| CacheType | Use Link Cache or use Path Cache | "LinkCache"

\ \ |
o e fom +
| LinkAcknowledgment | Enable Link layer acknowledgment | True |
\ | mechanism |
o e fom e +
62 Chapter 12. DSR Routing



ns-3 Model Library, Release ns-3-dev

12.1.3 Implementation modification

¢ The DsrFsHeader has added 3 fields: message type, source id, destination id, and these changes only for post-processing

1. Message type is used to identify the data packet from control packet

2. source id is used to identify the real source of the data packet since we have to deliver the packet
hop-by-hop and the Ipv4Header is not carrying the real source and destination ip address as needed

3. destination id is for same reason of above
* Route Reply header is not word-aligned in DSR RFC, change it to word-aligned in implementation

* DSR works as a shim header between transport and network protocol, it needs its own forwarding mechanism,
we are changing the packet transmission to hop-by-hop delivery, so we added two fields in dsr fixed header to
notify packet delivery

12.1.4 Current Route Cache implementation

This implementation used “path cache”, which is simple to implement and ensures loop-free paths:
* the path cache has automatic expire policy
* the cache saves multiple route entries for a certain destination and sort the entries based on hop counts
* the MaxEntriesEachDst can be tuned to change the maximum entries saved for a single destination

» when adding multiple routes for one destination, the route is compared based on hop-count and expire time, the
one with less hop count or relatively new route is favored

* Future implementation may include “link cache” as another possibility

12.2 DSR Instructions

The following should be kept in mind when running DSR as routing protocol:

* NodeTraversalTime is the time it takes to traverse two neighboring nodes and should be chosen to fit the trans-
mission range

» PassiveAckTimeout is the time a packet in maintenance buffer wait for passive acknowledgment, normally set
as two times of NodeTraversalTime

* RouteCacheTimeout should be set smaller value when the nodes’ velocity become higher. The default value is
300s.

12.3 Helper

To have a node run DSR, the easiest way would be to use the DsrHelper and DsrMainHelpers in your simulation script.
For instance:

DsrHelper dsr;
DsrMainHelper dsrMain;
dsrMain.Install (dsr, adhocNodes);
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The example scripts inside src/dsr/examples/ demonstrate the use of DSR based nodes in different scenarios.
The helper source can be found inside src/dsr/helper/dsr-main-helper.{h,cc} and src/dsr/helper/
dsr-helper. {h,cc}

12.4 Examples

The example can be found in src/dsr/examples/:
¢ dsr.cc use DSR as routing protocol within a traditional MANETS environment[3].
DSR is also built in the routing comparison case in examples/routing/:

* manet-routing-compare.cc is a comparison case with built in MANET routing protocols and can generate
its own results.

12.5 Validation

This model has been tested as follows:

e Unit tests have been written to verify the internals of DSR. This can be found in src/dsr/test/
dsr-test-suite.cc. These tests verify whether the methods inside DSR module which deal with packet
buffer, headers work correctly.

» Simulation cases similar to [3] have been tested and have comparable results.
* manet-routing-compare.cc has been used to compare DSR with three of other routing protocols.

A paper was presented on these results at the Workshop on ns-3 in 2011.

12.6 Limitations

The model is not fully compliant with RFC 4728. As an example, Dsr fixed size header has been extended and it is
four octets longer then the RFC specification. As a consequence, the DSR headers can not be correctly decoded by
Wireshark.

The model full compliance with the RFC is planned for the future.

12.7 References

[1] Original paper: http://www.monarch.cs.rice.edu/monarch-papers/dsr-chapterO0.pdf
[2] RFC 4728 http://www6.ietf.org/rfc/rfc4728.txt

[3] Broch’s comparison paper: http://www.monarch.cs.rice.edu/monarch-papers/mobicom98.ps
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CHAPTER
THIRTEEN

EMULATION OVERVIEW

ns-3 has been designed for integration into testbed and virtual machine environments. We have addressed this need by
providing two kinds of net devices. The first kind of device is a file descriptor net device (FdNetDevice), which is
a generic device type that can read and write from a file descriptor. By associating this file descriptor with different
things on the host system, different capabilities can be provided. For instance, the FdNetDevice can be associated with
an underlying packet socket to provide emulation capabilities. This allows ns-3 simulations to send data on a “real”
network. The second kind, called a TapBridge NetDevice allows a “real” host to participate in an ns-3 simulation
as if it were one of the simulated nodes. An ns-3 simulation may be constructed with any combination of simulated or
emulated devices.

Note: Prior to ns-3.17, the emulation capability was provided by a special device called an Emu NetDevice; the Emu
NetDevice has been replaced by the FdNetDevice.

One of the use-cases we want to support is that of a testbed. A concrete example of an environment of this kind is
the ORBIT testbed. ORBIT is a laboratory emulator/field trial network arranged as a two dimensional grid of 400
802.11 radio nodes. We integrate with ORBIT by using their “imaging” process to load and run ns-3 simulations on
the ORBIT array. We can use our EmuFdNetDevice to drive the hardware in the testbed and we can accumulate
results either using the ns-3 tracing and logging functions, or the native ORBIT data gathering techniques. See http:
/lwww.orbit-lab.org/ for details on the ORBIT testbed.

A simulation of this kind is shown in the following figure:

You can see that there are separate hosts, each running a subset of a “global” simulation. Instead of an ns-3 channel
connecting the hosts, we use real hardware provided by the testbed. This allows ns-3 applications and protocol stacks
attached to a simulation node to communicate over real hardware.

We expect the primary use for this configuration will be to generate repeatable experimental results in a real-world
network environment that includes all of the ns-3 tracing, logging, visualization and statistics gathering tools.

In what can be viewed as essentially an inverse configuration, we allow “real” machines running native applications
and protocol stacks to integrate with an ns-3 simulation. This allows for the simulation of large networks connected to
a real machine, and also enables virtualization. A simulation of this kind is shown in the following figure:

Here, you will see that there is a single host with a number of virtual machines running on it. An ns-3 simulation is
shown running in the virtual machine shown in the center of the figure. This simulation has a number of nodes with
associated ns-3 applications and protocol stacks that are talking to an ns-3 channel through native simulated ns-3 net
devices.

There are also two virtual machines shown at the far left and far right of the figure. These VMs are running native
(Linux) applications and protocol stacks. The VM is connected into the simulation by a Linux Tap net device. The
user-mode handler for the Tap device is instantiated in the simulation and attached to a proxy node that represents the
native VM in the simulation. These handlers allow the Tap devices on the native VMs to behave as if they were ns-3
net devices in the simulation VM. This, in turn, allows the native software and protocol suites in the native VMs to
believe that they are connected to the simulated ns-3 channel.
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Fig. 1: Example Implementation of Testbed Emulation.
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Fig. 2: Implementation overview of emulated channel.
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We expect the typical use case for this environment will be to analyze the behavior of native applications and protocol
suites in the presence of large simulated ns-3 networks.

The basic testbed mode of emulation uses raw sockets. Two other variants (netmap-based and DPDK-based emulation)
have been recently added; these make use of more recent network interface cards that make use of directly-mapped
memory capabilities to improve packet processing efficiency.

For more details:

13.1 File Descriptor NetDevice

The src/fd-net-device module provides the FdNetDevice class, which is able to read and write traffic using a
file descriptor provided by the user. This file descriptor can be associated to a TAP device, to a raw socket, to a user
space process generating/consuming traffic, etc. The user has full freedom to define how external traffic is generated
and ns-3 traffic is consumed.

Different mechanisms to associate a simulation to external traffic can be provided through helper classes. Three
specific helpers are provided:

* EmuFdNetDeviceHelper (to associate the ns-3 device with a physical device in the host machine)

» TapFdNetDeviceHelper (to associate the ns-3 device with the file descriptor from a tap device in the host ma-
chine)

 PlanteLabFdNetDeviceHelper (to automate the creation of tap devices in PlanetLab nodes, enabling ns-3 simu-
lations that can send and receive traffic though the Internet using PlanetLab resource.

13.1.1 Model Description

The source code for this module lives in the directory src/fd-net-device.

The FdNetDevice is a special type of ns-3 NetDevice that reads traffic to and from a file descriptor. That is, unlike pure
simulation NetDevice objects that write frames to and from a simulated channel, this FdNetDevice directs frames out
of the simulation to a file descriptor. The file descriptor may be associated to a Linux TUN/TAP device, to a socket,
or to a user-space process.

It is up to the user of this device to provide a file descriptor. The type of file descriptor being provided determines
what is being modelled. For instance, if the file descriptor provides a raw socket to a WiFi card on the host machine,
the device being modelled is a WiFi device.

From the conceptual “top” of the device looking down, it looks to the simulated node like a device supporting a 48-bit
IEEE MAC address that can be bridged, supports broadcast, and uses IPv4 ARP or IPv6 Neighbor Discovery, although
these attributes can be tuned on a per-use-case basis.

Design

The FdNetDevice implementation makes use of a reader object, extended from the FdReader class in the ns-3 src/
core module, which manages a separate thread from the main ns-3 execution thread, in order to read traffic from the
file descriptor.

Upon invocation of the StartDevice method, the reader object is initialized and starts the reading thread. Before
device start, a file descriptor must be previously associated to the FdNetDevice with the SetFileDescriptor invo-
cation.
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The creation and configuration of the file descriptor can be left to a number of helpers, described in more detail below.
When this is done, the invocation of SetFileDescriptor is responsibility of the helper and must not be directly
invoked by the user.

Upon reading an incoming frame from the file descriptor, the reader will pass the frame to the ReceiveCallback
method, whose task it is to schedule the reception of the frame by the device as a ns-3 simulation event. Since the new
frame is passed from the reader thread to the main ns-3 simulation thread, thread-safety issues are avoided by using
the SchedulelithContext call instead of the regular Schedule call.

In order to avoid overwhelming the scheduler when the incoming data rate is too high, a counter is kept with the
number of frames that are currently scheduled to be received by the device. If this counter reaches the value given by
the RxQueuesize attribute in the device, then the new frame will be dropped silently.

The actual reception of the new frame by the device occurs when the scheduled FordwarUp method is invoked by
the simulator. This method acts as if a new frame had arrived from a channel attached to the device. The device
then decapsulates the frame, removing any layer 2 headers, and forwards it to upper network stack layers of the node.
The ForwardUp method will remove the frame headers, according to the frame encapsulation type defined by the
EncapsulationMode attribute, and invoke the receive callback passing an IP packet.

An extra header, the PI header, can be present when the file descriptor is associated to a TAP device that was created
without setting the IFF_NO_PI flag. This extra header is removed if EncapsulationMode is set to DIXPI value.

In the opposite direction, packets generated inside the simulation that are sent out through the device, will be passed
to the Send method, which will in turn invoke the SendFrom method. The latter method will add the necessary layer
2 headers, and simply write the newly created frame to the file descriptor.

Scope and Limitations

Users of this device are cautioned that there is no flow control across the file descriptor boundary, when using in
emulation mode. That is, in a Linux system, if the speed of writing network packets exceeds the ability of the
underlying physical device to buffer the packets, backpressure up to the writing application will be applied to avoid
local packet loss. No such flow control is provided across the file descriptor interface, so users must be aware of this
limitation.

As explained before, the RxQueueSize attribute limits the number of packets that can be pending to be received by the
device. Frames read from the file descriptor while the number of pending packets is in its maximum will be silently
dropped.

The mtu of the device defaults to the Ethernet I MTU value. However, helpers are supposed to set the mtu to the right
value to reflect the characteristics of the network interface associated to the file descriptor. If no helper is used, then
the responsibility of setting the correct mtu value for the device falls back to the user. The size of the read buffer on
the file descriptor reader is set to the mtu value in the StartDevice method.

The FdNetDevice class currently supports three encapsulation modes, DIX for Ethernet II frames, LLC for 802.2
LLC/SNAP frames, and DIXPI for Ethernet II frames with an additional TAP PI header. This means that traffic
traversing the file descriptor is expected to be Ethernet II compatible. IEEE 802.1q (VLAN) tagging is not supported.
Attaching an FdNetDevice to a wireless interface is possible as long as the driver provides Ethernet II frames to the
socket API. Note that to associate a FdNetDevice to a wireless card in ad-hoc mode, the MAC address of the device
must be set to the real card MAC address, else any incoming traffic a fake MAC address will be discarded by the
driver.

As mentioned before, three helpers are provided with the fd-net-device module. Each individual helper (file descriptor
type) may have platform limitations. For instance, threading, real-time simulation mode, and the ability to create
TUN/TAP devices are prerequisites to using the provided helpers. Support for these modes can be found in the output
of the waf configure step, e.g.:
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Threading Primitives : enabled
Real Time Simulator : enabled
Emulated Net Device : enabled
Tap Bridge : enabled

It is important to mention that while testing the FdNetDevice we have found an upper bound limit for TCP throughput
when using 1Gb Ethernet links of 60Mbps. This limit is most likely due to the processing power of the computers
involved in the tests.

13.1.2 Usage

The usage pattern for this type of device is similar to other net devices with helpers that install to node pointers or
node containers. When using the base FdNetDeviceHelper the user is responsible for creating and setting the file
descriptor by himself.

FdNetDeviceHelper fd;
NetDeviceContainer devices = fd.Install (nodes);

// file descriptor generation

device->SetFileDescriptor (£fd);

Most commonly a FdNetDevice will be used to interact with the host system. In these cases it is almost certain that
the user will want to run in real-time emulation mode, and to enable checksum computations. The typical program
statements are as follows:

GlobalValue: :Bind ("SimulatorImplementationType", StringValue (
—"ns3::RealtimeSimulatorImpl™));
GlobalValue: :Bind ("ChecksumEnabled", BooleanValue (true));

The easiest way to set up an experiment that interacts with a Linux host system is to user the Emu and Tap helpers.
Perhaps the most unusual part of these helper implementations relates to the requirement for executing some of the
code with super-user permissions. Rather than force the user to execute the entire simulation as root, we provide a
small “creator” program that runs as root and does any required high-permission sockets work. The easiest way to
set the right privileges for the “creator” programs, is by enabling the ——enable-sudo flag when performing waf
configure.

We do a similar thing for both the Emu and the Tap devices. The high-level view is that the CreateFileDescriptor
method creates a local interprocess (Unix) socket, forks, and executes the small creation program. The small program,
which runs as suid root, creates a raw socket and sends back the raw socket file descriptor over the Unix socket that
is passed to it as a parameter. The raw socket is passed as a control message (sometimes called ancillary data) of type
SCM_RIGHTS.

Helpers

EmuFdNetDeviceHelper

The EmuFdNetDeviceHelper creates a raw socket to an underlying physical device, and provides the socket descriptor
to the FdNetDevice. This allows the ns-3 simulation to read frames from and write frames to a network device on the
host.

The emulation helper permits to transparently integrate a simulated ns-3 node into a network composed of real nodes.
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R + o +
| host 1 | | host 2 |
o + o +
| ns—3 simulation | | |
Fo——— + | Linux |
| ns—3 Node | | Network Stack |
| A + [ o +
| | ns—-3 TCP | | | | TCP | |
| + | o +
| \ ns—-3 IP \ | | | IP | |
e + [ e +
| FdNetDevice | | | I .
| \ 10.1.1.1 \ | | | | |
| A + [ + ETHERNET +
[ raw socket [ | | .
[mm e R [ o +
| | ethO | | | | eth0 | |
fo———— +————— o + o +———— - +
10.1.1.11 10.1.1.12
| |
o +

This helper replaces the functionality of the EmuNetDevice found in ns-3 prior to ns-3.17, by bringing this type of
device into the common framework of the FdNetDevice. The EmuNetDevice was deprecated in favor of this new
helper.

The device is configured to perform MAC spoofing to separate simulation network traffic from other network traffic
that may be flowing to and from the host.

One can use this helper in a testbed situation where the host on which the simulation is running has a specific interface
of interest which drives the testbed hardware. You would also need to set this specific interface into promiscuous mode
and provide an appropriate device name to the ns-3 simulation. Additionally, hardware offloading of segmentation and
checksums should be disabled.

The helper only works if the underlying interface is up and in promiscuous mode. Packets will be sent out over the
device, but we use MAC spoofing. The MAC addresses will be generated (by default) using the Organizationally
Unique Identifier (OUI) 00:00:00 as a base. This vendor code is not assigned to any organization and so should not
conflict with any real hardware.

It is always up to the user to determine that using these MAC addresses is okay on your network and won’t conflict
with anything else (including another simulation using such devices) on your network. If you are using the emulated
FdNetDevice configuration in separate simulations, you must consider global MAC address assignment issues and
ensure that MAC addresses are unique across all simulations. The emulated net device respects the MAC address
provided in the Address attribute so you can do this manually. For larger simulations, you may want to set the OUI
in the MAC address allocation function.

Before invoking the Install method, the correct device name must be configured on the helper using the
SetDeviceName method. The device name is required to identify which physical device should be used to open
the raw socket.

EmuFdNetDeviceHelper emu;
emu.SetDeviceName (deviceName) ;

NetDeviceContainer devices = emu.Install (node);
Ptr<NetDevice> device = devices.Get (0);
device->SetAttribute ("Address", Mac48AddressValue (Mac48Address::Allocate ()));
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TapFdNetDeviceHelper

A Tap device is a special type of Linux device for which one end of the device appears to the kernel as a virtual
net_device, and the other end is provided as a file descriptor to user-space. This file descriptor can be passed to the
FdNetDevice. Packets forwarded to the TAP device by the kernel will show up in the FdNetDevice in ns-3.

Users should note that this usage of TAP devices is different than that provided by the TapBridge NetDevice found in
src/tap-bridge. The model in this helper is as follows:

R et +
| host |
e +
| ns—3 simulation | |
o + |
| ns—-3 Node | |
e + |
| | ns—-3 TCP | | |
e + |
| | ns-3 IP | | |
/- + |
| \ FdNetDevice | | |
| ————— +——+ - +
| | TAP | | ethO0 | |
| o + fo———— +
| 192.168.0.1 |

777777777777 (Internet) —-—-—-——-

In the above, the configuration requires that the host be able to forward traffic generated by the simulation to the
Internet.

The model in TapBridge (in another module) is as follows:

+—— +

| Linux |

|  host | Fo—m +

| === | \ ghost |

| apps | | node |

| == | | ——————— |

| stack | \ Ip | Fo—— +

J— | \ stack | | node ‘

| TAP | |==========| [ — ‘

| device | <-———-= IPC —————— > | tap | | IP |

o + | bridge | | stack |
| —————— | | - \
| ns—-3 | | ns—-3 |
\ net | | net \
| device | | device |
o + o +

I I

o +
| ns—-3 channel |
—————————— +

In the above, packets instead traverse ns-3 NetDevices and Channels.

The usage pattern for this example is that the user sets the MAC address and either (or both) the IPv4 and IPv6
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addresses and masks on the device, and the PI header if needed. For example:

TapFdNetDeviceHelper helper;
helper.SetDeviceName (deviceName) ;
helper.SetModePi (modePi);
helper.SetTapIpv4Address (taplp);
helper.SetTapIpv4Mask (tapMask);

helper.Install (node);

PlanetLabFdNetDeviceHelper

PlanetLab is a world wide distributed network testbed composed of nodes connected to the Internet. Running ns-3
simulations in PlanetLab nodes using the PlanetLabFdNetDeviceHelper allows to send simulated traffic generated by
ns-3 directly to the Internet. This setup can be useful to validate ns-3 Internet protocols or other future protocols
implemented in ns-3.

To run experiments using PlanetLab nodes it is required to have a PlanetLab account. Only members of PlanetLab
partner institutions can obtain such accounts ( for more information visit http://www.planet-lab.org/ or http://www.
planet-lab.eu ). Once the account is obtained, a PlanetLab slice must be requested in order to conduct experiments. A
slice represents an experiment unit related to a group of PlanetLab users, and can be associated to virtual machines in
different PlanetLab nodes. Slices can also be customized by adding configuration tags to it (this is done by PlanetLab
administrators).

The PlanetLabFdNetDeviceHelper creates TAP devices on PlanetLab nodes using specific PlanetLab mechanisms (i.e.
the vsys system), and associates the TAP device to a FdNetDevice in ns-3. The functionality provided by this helper
is similar to that provided by the FdTapNetDeviceHelper, except that the underlying mechanisms to create the TAP
device are different.

e +
| PlanetLab host |
e +
| ns—3 simulation | |
e + |
| ns—-3 Node | |
e + |
| | ns-3 TCP | | |
/- + |
(. ns-3 IP [ |
e + |
| \ FdNetDevice | | |
| == +—— fo———— +
| | TAP | | eth0 | |
| o + o +
| 192.168.0.1 |
] +

———————————— (Internet) ————-

In order to be able to assign private [Pv4 addresses to the TAP devices, account holders must request the vsys_vnet tag
to be added to their slice by PlanetLab administrators. The vsys_vnet tag is associated to private network segment and
only addresses from this segment can be used in experiments.

The syntax used to create a TAP device with this helper is similar to that used for the previously described helpers:

72 Chapter 13. Emulation Overview


http://www.planet-lab.org/
http://www.planet-lab.eu
http://www.planet-lab.eu

ns-3 Model Library, Release ns-3-dev

PlanetLabFdNetDeviceHelper helper;
helper.SetTapIpAddress (taplp);
helper.SetTapMask (tapMask);

helper.Install (node);

PlanetLab nodes have a Fedora based distribution, so ns-3 can be installed following the instructions for ns-3 Linux
installation.

Attributes

The FdNetDevice provides a number of attributes:
e Address: The MAC address of the device
e Start: The simulation start time to spin up the device thread
* Stop: The simulation start time to stop the device thread
* EncapsulationMode: Link-layer encapsulation format
* RxQueueSize: The buffer size of the read queue on the file descriptor thread (default of 1000 packets)

Start and stop do not normally need to be specified unless the user wants to limit the time during which this device
is active. Address needs to be set to some kind of unique MAC address if the simulation will be interacting with other
real devices somehow using real MAC addresses. Typical code:

device->SetAttribute ("Address", Mac48AddressValue (Mac48Address::Allocate ()));

Output

Ascii and PCAP tracing is provided similar to the other ns-3 NetDevice types, through the helpers, such as (e.g.):

:: EmuFdNetDeviceHelper emu; NetDeviceContainer devices = emu.Install (node); ... emu.EnablePcap (“emu-
ping”, device, true);

The standard set of Mac-level NetDevice trace sources is provided.
* MaxTx: Trace source triggered when ns-3 provides the device with a new frame to send
* MaxTxDrop: Trace source if write to file descriptor fails
* MaxPromiscRx: Whenever any valid Mac frame is received
* MaxRx: Whenever a valid Mac frame is received for this device
* Sniffer: Non-promiscuous packet sniffer

* PromiscSniffer: Promiscuous packet sniffer (for tcpdump-like traces)

Examples

Several examples are provided:

* dummy-network.cc: This simple example creates two nodes and interconnects them with a Unix pipe by
passing the file descriptors from the socketpair into the FdNetDevice objects of the respective nodes.

* realtime-dummy-network.cc: Same as dummy-network.cc but uses the real time simulator implementna-
tion instead of the default one.
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e fd2fd-onoff.cc: This example is aimed at measuring the throughput of the FdNetDevice in a pure simulation.
For this purpose two FdNetDevices, attached to different nodes but in a same simulation, are connected using a
socket pair. TCP traffic is sent at a saturating data rate.

e fd-emu-onoff.cc: This example is aimed at measuring the throughput of the FdNetDevice when using the
EmuFdNetDeviceHelper to attach the simulated device to a real device in the host machine. This is achieved by
saturating the channel with TCP traffic.

e fd-emu-ping.cc: This example uses the EmuFdNetDeviceHelper to send ICMP traffic over a real channel.

* fd-emu-udp-echo.cc: This example uses the EmuFdNetDeviceHelper to send UDP traffic over a real chan-
nel.

* fd-planetlab-ping.cc: This example shows how to set up an experiment to send ICMP traffic from a
PlanetLab node to the Internet.

* fd-tap-ping.cc: This example uses the TapFdNetDeviceHelper to send ICMP traffic over a real channel.

13.2 Netmap NetDevice

The £d-net-device module provides the NetmapNetDevice class, a class derived from the FdNetDevice which
is able to read and write traffic using a netmap file descriptor. This netmap file descriptor must be associated to
a real ethernet device in the host machine. The NetmapNetDeviceHelper class supports the configuration of a
NetmapNetDevice.

netmap is a fast packet processing capability that bypasses the host networking stack and gains direct access to network
device. netmap was developed by Luigi Rizzo [Rizzo2012] and is maintained as an open source project on GitHub at
https://github.com/luigirizzo/netmap.

The NetmapNetDevice for ns-3 [Imputato2019] was developed by Pasquale Imputato in the 2017-19 timeframe.
The use of NetmapNetDevice requires that the host system has netmap support (and for best performance, the drivers
must support netmap and must be using a netmap-enabled device driver). Users can expect that emulation support
using Netmap will support higher packets per second than emulation using FdNetDevice with raw sockets (which pass
through the Linux networking kernel).

13.2.1 Model Description
Design

Because netmap uses file descriptor based communication to interact with the real device, the straightforward approach
to design a new NetDevice around netmap is to have it inherit from the existing FdNetDevice and implement a
specialized version of the operations specific to netmap. The operations that require a specialized implementation are
the initialization, because the NIC has to be put in netmap mode, and the read/write methods, which have to make use
of the netmap API to coordinate the exchange of packets with the netmap rings.

In the initialization stage, the network device is switched to netmap mode, so that ns-3 is able to send/receive pack-
ets to/from the real network device by writing/reading them to/from the netmap rings. Following the design of the
FdNetDevice, a separate reading thread is started during the initialization. The task of the reading thread is to wait
for new incoming packets in the netmap receiver rings, in order to schedule the events of packet reception. In the
initialization of the NetmapNetDevice, an additional thread, the sync thread, is started. The sync thread is required
because, in order to reduce the cost of the system calls, netmap does not automatically transfer a packet written to a slot
of the netmap ring to the transmission ring or to the installed gdisc. It is up to the user process to periodically request
a synchronization of the netmap ring. Therefore, the purpose of the sync thread is to periodically make a TXSYNC
ioctl request, so that pending packets in the netmap ring are transferred to the transmission ring, if in native mode, or
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to the installed qdisc, if in generic mode. Also, as described further below, the sync thread is exploited to perform flow
control and notify the BQL library about the amount of bytes that have been transferred to the network device.

The read method is called by the reading thread to retrieve new incoming packets stored in the netmap receiver ring
and pass them to the appropriate ns-3 protocol handler for further processing within the simulator’s network stack.
After retrieving packets, the reading thread also synchronizes the netmap receiver ring, so that the retrieved packets
can be removed from the netmap receiver ring.

The NetmapNetDevice also specializes the write method, i.e., the method used to transmit a packet received from
the upper layer (the ns-3 traffic control layer). The write method uses the netmap API to write the packet to a free
slot in the netmap transmission ring. After writing a packet, the write method checks whether there is enough room in
the netmap transmission ring for another packet. If not, the NetmapNetDevice stops its queue so that the ns-3 traffic
control layer does not attempt to send a packet that could not be stored in the netmap transmission ring.

A stopped NetmapNetDevice queue needs to be restarted as soon as some room is made in the netmap transmission
ring. The sync thread can be exploited for this purpose, given that it periodically synchronizes the netmap transmission
ring. In particular, the sync thread also checks the number of free slots in the netmap transmission ring in case the
NetmapNetDevice queue is stopped. If the number of free slots exceeds a configurable value, the sync thread restarts
the NetmapNetDevice queue and wakes the associated ns-3 qdisc. The NetmapNetDevice also supports BQL: the
write method notifies the BQL library of the amount of bytes that have been written to the netmap transmission
ring, while the sync thread notifies the BQL library of the amount of bytes that have been removed from the netmap
transmission ring and transferred to the NIC since the previous notification.

Scope and Limitations

The main scope of NetmapNetDevice is to support the flow-control between the physical device and the upper layer
and using at best the computational resources to process packets. However, the (Linux) system and network device
must support netmap to make use of this feature.

13.2.2 Usage

The installation of netmap itself on a host machine is out of scope for this document. Refer to the netmap GitHub
README for instructions.

The ns-3 netmap code has only been tested on Linux; it is not clear whether other operating systems can be supported.

If ns-3 is able to detect the presence of netmap on the system, it will report that:

Netmap emulation FdNetDevice : not enabled

If not, it will report:

Netmap emulation FdNetDevice : not enabled (needs net/netmap_user.h)

To run FdNetDevice-enabled simulations, one must pass the ~—enable-sudo option to . /waf configure, or else
run the simulations with root privileges.

Helpers

ns-3 netmap support uses a NetMapNetDeviceHelper helper object to install the NetmapNetDevice. In other
respects, the API and use is similar to that of the EmuFdNetDeviceHelper.
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Attributes

There is one attribute specialized to NetmapNetDevice, named SyncAndNotifyQueuePeriod. This value takes an
integer number of microseconds, and is used as the period of time after which the device syncs the netmap ring and
notifies queue status. The value should be close to the interrupt coalescence period of the real device. Users may want
to tune this parameter for their own system; it should be a compromise between CPU usage and accuracy in the ring
sync (if it is too high, the device goes into starvation and lower throughput occurs).

Output

The NetmapNetDevice does not provide any specialized output, but supports the FdNetDevice output and traces
(such as a promiscuous sniffer trace).

Examples

Several examples are provided:

e fd-emu-onoff.cc: This example is aimed at measuring the throughput of the NetmapNetDevice when using
the NetmapNetDeviceHelper to attach the simulated device to a real device in the host machine. This is
achieved by saturating the channel with TCP or UDP traffic.

* fd-emu-ping.cc: This example uses the NetmapNetDevice to send ICMP traffic over a real device.

¢ fd-emu-tc.cc: This example configures a router on a machine with two interfaces in emulated mode
through netmap. The aim is to explore different qdiscs behaviours on the backlog of a device emulated
bottleneck side.

¢ fd-emu-send.cc: This example builds a node with a device in emulation mode through netmap. The aim is
to measure the maximum transmit rate in packets per second (pps) achievable with NetmapNetDevice on a
specific machine.

Note that all the examples run in emulation mode through netmap (with NetmapNetDevice) and raw socket (with
FdNetDevice).

13.3 DPDK NetDevice

Data Plane Development Kit (DPDK) is a library hosted by The Linux Foundation to accelerate packet processing
workloads (https://www.dpdk.org/).

The DpdkNetDevice class provides the implementation of a network device which uses DPDK’s fast packet
processing abilities and bypasses the kernel. This class is included in the src/fd-net-device model. The
DpdkNetDevice class inherits the FdNetDevice class and overrides the functions which are required by ns-3 to
interact with DPDK environment.

The DpdkNetDevice for ns-3 [Patel2019] was developed by Harsh Patel, Hrishikesh Hiraskar and Mohit P. Tahiliani.
They were supported by Intel Technology India Pvt. Ltd., Bangalore for this work.

13.3.1 Model Description

DpdkNetDevice is a network device which provides network emulation capabilities i.e. to allow simulated nodes to
interact with real hosts and vice versa. The main feature of the DpdkNetDevice is that is uses the Environment Ab-
straction Layer (EAL) provided by DPDK to perform fast packet processing. EAL hides the device specific attributes
from the applications and provides an interface via which the applications can interact directly with the Network In-
terface Card (NIC). This allows ns-3 to send/receive packets directly to/from the NIC without the kernel involvement.
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Design

DpdkNetDevice is designed to act as an interface between ns-3 and DPDK environment. There are 3 main phases in
the life cycle of DpdkNetDevice:

e Initialization
¢ Packet Transfer - Read and Write

¢ Termination

Initialization

DpdkNetDeviceHelper model is responsible for the initialization of DpdkNetDevice. After this, the EAL is ini-
tialized, a memory pool is allocated, access to the Ethernet port is obtained and it is initialized, reception (Rx) and
transmission (Tx) queues are set up on the port, Rx and Tx buffers are set up and LaunchCore method is called which
will launch the Hand1leRx method to handle reading of packets in burst.

Packet Transfer

DPDK interacts with packet in the form of mbuf, a data structure provided by it, while ns-3 interacts with packets
in the form of raw buffer. The packet transfer functions take care of converting DPDK mbufs to ns-3 buffers. The
functions are read and write.

¢ Read: HandleRx method takes care of reading the packets from NIC and transferring them to ns-3 Internet
Stack. This function is called by LaunchCore method which is launched during initialization. It continuously
polls the NIC using DPDK API for packets to read. It reads the mbuf packets in burst from NIC Rx ring, which
are placed into Rx buffer upon read. For each mbuf packet in Rx buffer, it then converts it to ns-3 raw buffer and
then forwards the packet to ns-3 Internet Stack.

e Write: Write method handles transmission of packets. ns-3 provides this packet in the form of a buffer, which
is converted to packet mbuf and then placed in the Tx buffer. These packets are then transferred to NIC Tx ring
when the Tx buffer is full, from where they will be transmitted by the NIC. However, there might be a scenario
where there are not enough packets to fill the Tx buffer. This will lead to stale packet mbufs in buffer. In such
cases, the write function schedules a manual flush of these stale packet mbufs to NIC Tx ring, which will occur
upon a certain timeout period. The default value of this timeout is set to 2 ms.

Termination

When ns-3 is done using DpdkNetDevice, the DpdkNetDevice will stop polling for Rx, free the allocated mbuf
packets and then the mbuf pool. Lastly, it will stop the Ethernet device and close the port.

Scope and Limitations

The current implementation supports only one NIC to be bound to DPDK with single Rx and Tx on the NIC. This can
be extended to support multiple NICs and multiple Rx/Tx queues simultaneously. Currently there is no support for
Jumbo frames, which can be added. Offloading, scheduling features can also be added. Flow control and support for
qdisc can be added to provide a more extensive model for network testing.
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13.3.2 DPDK Installation

This section contains information on downloading DPDK source code and setting up DPDK for bpdkNetDevice to
work.

Is my NIC supported by DPDK?

Check Supported Devices.

Not supported? Use Virtual Machine instead

Install Oracle VM VirtualBox. Create a new VM and install Ubuntu on it. Open settings, create a network adapter
with following configuration:
* Attached to: Bridged Adapter
e Name: The host network device you want to use
* In Advanced
— Adapter Type: Intel PRO/1000 MT Server (82545EM) or any other DPDK supported NIC
— Promiscuous Mode: Allow All
— Select Cable Connected
Then rest of the steps are same as follows.
DPDK can be installed in 2 ways:
¢ Install DPDK on Ubuntu
* Compile DPDK from source

Install DPDK on Ubuntu

To install DPDK on Ubuntu, run the following command:

apt-get install dpdk dpdk-dev libdpdk-dev dpdk-igb-uio-dkms

Ubuntu 20.04 has packaged DPDK v19.11 LTS which is tested with this module and DpdkNetDevice will only be
enabled if this version is available.

Compile from Source
To compile DPDK from source, you need to perform the following 4 steps:
1. Download the source

Visit the DPDK Downloads page to download the latest stable source. (This module has been tested with version
19.11 LTS and DpdkNetDevice will only be enabled if this version is available.)
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2. Configure DPDK as a shared library
In the DPDK directory, edit the config/common_base file to change the following line to compile DPDK as a shared
library:

# Compile to share library
CONFIG_RTE_BUILD_SHARED_LIB=y

3. Install the source

Refer to Installation for detailed instructions.

For a 64 bit linux machine with gcc, run:

make install T=x86_64-native-linuxapp-gcc DESTDIR=install

4. Export DPDK Environment variables

Export the following environment variables:
* RTE_SDK as the your DPDK source folder.
* RTE_TARGET as the build target directory.

For example:

export RTE_SDK=/home/username/dpdk/dpdk-stable-19.11.1
export RTE_TARGET=x86_64-native-linuxapp-gcc

(Note: In case DPDK is moved, ns-3 needs to be reconfigured using . /waf configure [options])

It is advisable that you export these variables in . bashrc or similar for reusability.

Load DPDK Drivers to kernel

Execute the following:

sudo modprobe uio_pci_generic

sudo modprobe uio

sudo modprobe vfio-pci

sudo modprobe igb_uio # for ubuntu package

# OR
sudo insmod $RTE_SDK/S$RTE_TARGET/kmod/igb_uio.ko # for dpdk source

These should be done every time you reboot your system.

Configure hugepages

Refer System Requirements for detailed instructions.

To allocate hugepages at runtime, write a value such as ‘256’ to the following:
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echo 256 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

To allocate hugepages at boot time, edit /etc/default/grub, and following to GRUB_CMDLINE_LINUX_DEFAULT:

hugepages=256

We suggest minimum of number of 256 to run our applications. (This is to test an application run at 1 Gbps on a 1
Gbps NIC.) You can use any number of hugepages based on your system capacity and application requirements.

Then update the grub configurations using:

sudo update—grub

OR

sudo update-grub2

You will need to reboot your system in order to see these changes.

To check allocation of hugepages, run:
cat /proc/meminfo | grep HugePages

You will see the number of hugepages allocated, they should be equal to the number you used above.

Once the hugepage memory is reserved (at either runtime or boot time), to make the memory available for DPDK use,
perform the following steps:

sudo mkdir /mnt/huge
sudo mount -t hugetlbfs nodev /mnt/huge

The mount point can be made permanent across reboots, by adding the following line to the /etc/fstab file:

nodev /mnt/huge hugetlbfs defaults 0 0

13.3.3 Usage

The status of DPDK support is shown in the output of . /waf configure. If it is found, a user should see:

DPDK NetDevice : enabled

DpdkNetDeviceHelper class supports the configuration of DpdkNetDevice.

| DpdkNetDevice |
\ 10.1.1.1 \

(continues on next page)
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(continued from previous page)

| e +
[ raw socket [
| m—tmmmm e |
| | ethO | |
fo——— do——— Fo——— +
10.1.1.11
|
- ( Internet ) --——-

Initialization of DPDK driver requires initialization of EAL. EAL requires PMD (Poll Mode Driver) Library for using
NIC. DPDK supports multiple Poll Mode Drivers and you can use one that works for your NIC. PMD Library can be
set via DpdkNetDeviceHelper: : SetPmdLibrary, as follows

DpdkNetDeviceHelperx dpdk = new DpdkNetDeviceHelper ();
dpdk->SetPmdLibrary ("librte_pmd_el000.so0o");

Also, NIC should be bound to DPDK Driver in order to be wused with EAL. The default
driver used is uio_pci_generic which supports most of the NICs. You can change it using
DpdkNetDeviceHelper: :SetDpdkDriver, as follows

DpdkNetDeviceHelperx dpdk = new DpdkNetDeviceHelper ();
dpdk->SetDpdkDriver ("igb_uio");

Attributes

The DpdkNetDevice provides a number of attributes:

e TxTimeout - The time to wait before transmitting burst from Tx Buffer (in us). (default - 2000) This attribute
is only used to flush out buffer in case it is not filled. This attribute can be decrease for low data rate traffic. For
high data rate traffic, this attribute needs no change.

* MaxRxBurst - Size of Rx Burst. (default - 64) This attribute can be increased for higher data rates.
* MaxTxBurst - Size of Tx Burst. (default - 64) This attribute can be increased for higher data rates.

* MempoolCacheSize - Size of mempool cache. (default - 256) This attribute can be increased for higher data
rates.

* NbRxDesc - Number of Rx descriptors. (default - 1024) This attribute can be increased for higher data rates.
* NbTxDesc - Number of Tx descriptors. (default - 1024) This attribute can be increased for higher data rates.

Note: Default values work well with 1Gbps traffic.

Output

As DpdkNetDevice is inherited from FdNetDevice, all the output methods provided by FdNetDevice can be used
directly.

Examples

The following examples are provided:
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e fd-emu-ping.cc: This example can be configured to use the DpdkNetDevice to send ICMP traffic bypassing
the kernel over a real channel.

* fd-emu-onoff.cc: This example can be configured to measure the throughput of the DpdkNetDevice by
sending traffic from the simulated node to a real device using the ns3: : OnOf fApplication while leveraging
DPDK’s fast packet processing abilities. This is achieved by saturating the channel with TCP/UDP traffic.

13.4 Tap NetDevice

The Tap NetDevice can be used to allow a host system or virtual machines to interact with a simulation.

13.4.1 TapBridge Model Overview

The Tap Bridge is designed to integrate “real” internet hosts (or more precisely, hosts that support Tun/Tap devices)
into ns-3 simulations. The goal is to make it appear to a “real” host node in that it has an ns-3 net device as a local
device. The concept of a “real host” is a bit slippery since the “real host” may actually be virtualized using readily
available technologies such as VMware, VirtualBox or OpenVZ.

Since we are, in essence, connecting the inputs and outputs of an ns-3 net device to the inputs and outputs of a Linux
Tap net device, we call this arrangement a Tap Bridge.

There are three basic operating modes of this device available to users. Basic functionality is essentially identical, but
the modes are different in details regarding how the arrangement is created and configured; and what devices can live
on which side of the bridge.

We call these three modes the ConfigureLocal, UseLocal and UseBridge modes. The first “word” in the camel case
mode identifier indicates who has the responsibility for creating and configuring the taps. For example, the “Configure”
in ConfigureLocal mode indicates that it is the TapBridge that has responsibility for configuring the tap. In UseLocal
mode and UseBridge modes, the “Use” prefix indicates that the TapBridge is asked to “Use” an existing configuration.

In other words, in ConfigureLocal mode, the TapBridge has the responsibility for creating and configuring the TAP
devices. In UseBridge or UseLocal modes, the user provides a configuration and the TapBridge adapts to that config-
uration.

TapBridge ConfigureLocal Mode

In the ConfigureL.ocal mode, the configuration of the tap device is ns-3 configuration-centric. Configuration informa-
tion is taken from a device in the ns-3 simulation and a tap device matching the ns-3 attributes is automatically created.
In this case, a Linux computer is made to appear as if it was directly connected to a simulated ns-3 network.

This is illustrated below:

fom— +

| Linux |

| host | fom +

| === | | ghost |

| apps | | node |

| === | | === |

| stack | \ IP | fommm +
| === | | stack | | node \
| TAP | [ —— | e |
| device | <-———- IPC —————— > tap | | Ip |
A + | bridge | | stack |

(continues on next page)
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(continued from previous page)

| ns—3 | | ns—3 |
\ net | | net \
| device | | device |
o ——— + o ——— +
I I
e +
| ns—3 channel |
e +

In this case, the “ns-3 net device” in the “ghost node” appears as if it were actually replacing the TAP device in the
Linux host. The ns-3 simulation creates the TAP device on the underlying Linux OS and configures the IP and MAC
addresses of the TAP device to match the values assigned to the simulated ns-3 net device. The “IPC” link shown
above is the network tap mechanism in the underlying OS. The whole arrangement acts as a conventional bridge; but
a bridge between devices that happen to have the same shared MAC and IP addresses.

Here, the user is not required to provide any configuration information specific to the tap. A tap device will be created
and configured by ns-3 according to its defaults, and the tap device will have its name assigned by the underlying
operating system according to its defaults.

If the user has a requirement to access the created tap device, he or she may optionally provide a “DeviceName”
attribute. In this case, the created OS tap device will be named accordingly.

The ConfigureLocal mode is the default operating mode of the Tap Bridge.

TapBridge UseLocal Mode

The UseLocal mode is quite similar to the ConfigureLocal mode. The significant difference is, as the mode name
implies, the TapBridge is going to “Use” an existing tap device previously created and configured by the user. This
mode is particularly useful when a virtualization scheme automatically creates tap devices and ns-3 is used to provide
simulated networks for those devices.

- +

| Linux |

| host | Fomm +

| == | \ ghost |

| apps | \ node |

| === | | === |

| stack | | IP | Fo——————— +

[ | [ stack | | node ‘

| TAP | | ==========| [ ‘

| device | <————- IPC —————— > | tap | | P |

| MAC X | | bridge | | stack |

tomm + | === | | === \
| ns-3 | | ns-3 |
\ net | | net \
| device | | device |
| MAC Y | | MAC Z \
o + o +

I I

o +
| ns—-3 channel |
—————————— +

In this case, the pre-configured MAC address of the “Tap device” (MAC X) will not be the same as that of the bridged
“ns-3 net device” (MAC Y) shown in the illustration above. In order to bridge to ns-3 net devices which do not support
SendFrom() (especially wireless STA nodes) we impose a requirement that only one Linux device (with one unique
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MAC address — here X) generates traffic that flows across the IPC link. This is because the MAC addresses of traffic
across the IPC link will be “spoofed” or changed to make it appear to Linux and ns-3 that they have the same address.
That is, traffic moving from the Linux host to the ns-3 ghost node will have its MAC address changed from X to Y
and traffic from the ghost node to the Linux host will have its MAC address changed from Y to X. Since there is a
one-to-one correspondence between devices, there may only be one MAC source flowing from the Linux side. This
means that Linux bridges with more than one net device added are incompatible with UseLocal mode.

In UseLocal mode, the user is expected to create and configure a tap device completely outside the scope of the ns-3
simulation using something like:

$ sudo tunctl -t tapO
$ sudo ifconfig tap0 hw ether 08:00:2e:00:00:01
$ sudo ifconfig tapO 10.1.1.1 netmask 255.255.255.0 up

To tell the TapBridge what is going on, the user will set either directly into the TapBridge or via the TapBridgeHelper,
the “DeviceName” attribute. In the case of the configuration above, the “DeviceName” attribute would be set to “tap0”
and the “Mode” attribute would be set to “UseLocal”.

One particular use case for this mode is in the OpenVZ environment. There it is possible to create a Tap device on the
“Hardware Node” and move it into a Virtual Private Server. If the TapBridge is able to use an existing tap device it is
then possible to avoid the overhead of an OS bridge in that environment.

TapBridge UseBridge Mode

The simplest mode for those familiar with Linux networking is the UseBridge mode. Again, the “Use” prefix indicates
that the TapBridge is going to Use an existing configuration. In this case, the TapBridge is going to logically extend a
Linux bridge into ns-3.

This is illustrated below:

o +
[ Linux | to—— +
| | | ghost |
| apps \ | node \
| === | | = |
| stack | | IpP \ to—— +
| === | +——————= + | stack | | node \
| Virtual | | TAP | | ==========| | ———————- ‘
| Device | | Device | <—-——- IPC —-———- > | tap | | P |
o + + |  bridge | | stack |
N N | == | | === |
- + | ns-3 \ | ns-3 \
| OS (brctl) Bridge | | net | | net |
- + | device | | device |
Fomm + Fom— +
[ [
o +
| ns—-3 channel |
o +

In this case, a computer running Linux applications, protocols, etc., is connected to a ns-3 simulated network in such
a way as to make it appear to the Linux host that the TAP device is a real network device participating in the Linux
bridge.

In the ns-3 simulation, a TapBridge is created to match each TAP Device. The name of the TAP Device is assigned to
the Tap Bridge using the “DeviceName” attribute. The TapBridge then logically extends the OS bridge to encompass
the ns-3 net device.

84 Chapter 13. Emulation Overview



ns-3 Model Library, Release ns-3-dev

Since this mode logically extends an OS bridge, there may be many Linux net devices on the non-ns-3 side of the
bridge. Therefore, like a net device on any bridge, the ns-3 net device must deal with the possibly of many source
addresses. Thus, ns-3 devices must support SendFrom() (NetDevice::SupportsSendFrom() must return true) in order
to be configured for use in UseBridge mode.

It is expected that the user will do something like the following to configure the bridge and tap completely outside
ns-3:

sudo brctl addbr mybridge

sudo tunctl -t mytap

sudo ifconfig mytap hw ether 00:00:00:00:00:01

sudo ifconfig mytap 0.0.0.0 up

sudo brctl addif mybridge mytap

sudo brctl addif mybridge ...

sudo ifconfig mybridge 10.1.1.1 netmask 255.255.255.0 up

v W

To tell the TapBridge what is going on, the user will set either directly into the TapBridge or via the TapBridgeHelper,
the “DeviceName” attribute. In the case of the configuration above, the “DeviceName” attribute would be set to
“mytap” and the “Mode” attribute would be set to “UseBridge”.

This mode is especially useful in the case of virtualization where the configuration of the virtual hosts may be dictated
by another system and not be changeable to suit ns-3. For example, a particular VM scheme may create virtual “vethx”
or “vmnetx” devices that appear local to virtual hosts. In order to connect to such systems, one would need to manually
create TAP devices on the host system and brigde these TAP devices to the existing (VM) virtual devices. The job of
the Tap Bridge in this case is to extend the bridge to join a ns-3 net device.

TapBridge ConfigureLocal Operation

In ConfigureLocal mode, the TapBridge and therefore its associated ns-3 net device appears to the Linux host computer
as a network device just like any arbitrary “ethO” or “ath0” might appear. The creation and configuration of the TAP
device is done by the ns-3 simulation and no manual configuration is required by the user. The IP addresses, MAC
addresses, gateways, etc., for created TAP devices are extracted from the simulation itself by querying the configuration
of the ns-3 device and the TapBridge Attributes.

Since the MAC addresses are identical on the Linux side and the ns-3 side, we can use Send() on the ns-3 device
which is available on all ns-3 net devices. Since the MAC addresses are identical there is no requirement to hook the
promiscuous callback on the receive side. Therefore there are no restrictions on the kinds of net device that are usable
in ConfigureLocal mode.

The TapBridge appears to an ns-3 simulation as a channel-less net device. This device must not have an IP address
associated with it, but the bridged (ns-3) net device must have an IP address. Be aware that this is the inverse of an
ns-3 BridgeNetDevice (or a conventional bridge in general) which demands that its bridge ports not have IP addresses,
but allows the bridge device itself to have an IP address.

The host computer will appear in a simulation as a “ghost” node that contains one TapBridge for each NetDevice
that is being bridged. From the perspective of a simulation, the only difference between a ghost node and any other
node will be the presence of the TapBridge devices. Note however, that the presence of the TapBridge does affect the
connectivity of the net device to the IP stack of the ghost node.

Configuration of address information and the ns-3 devices is not changed in any way if a TapBridge is present. A
TapBridge will pick up the addressing information from the ns-3 net device to which it is connected (its “bridged” net
device) and use that information to create and configure the TAP device on the real host.

The end result of this is a situation where one can, for example, use the standard ping utility on a real host to ping a
simulated ns-3 node. If correct routes are added to the internet host (this is expected to be done automatically in future
ns-3 releases), the routing systems in ns-3 will enable correct routing of the packets across simulated ns-3 networks.
For an example of this, see the example program, tap-wifi-dumbbell.cc in the ns-3 distribution.
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The Tap Bridge lives in a kind of a gray world somewhere between a Linux host and an ns-3 bridge device. From the
Linux perspective, this code appears as the user mode handler for a TAP net device. In ConfigureLocal mode, this Tap
device is automatically created by the ns-3 simulation. When the Linux host writes to one of these automatically cre-
ated /dev/tap devices, the write is redirected into the TapBridge that lives in the ns-3 world; and from this perspective,
the packet write on Linux becomes a packet read in the Tap Bridge. In other words, a Linux process writes a packet to
a tap device and this packet is redirected by the network tap mechanism toan ns-3 process where it is received by the
TapBridge as a result of a read operation there. The TapBridge then writes the packet to the ns-3 net device to which it
is bridged; and therefore it appears as if the Linux host sent a packet directly through an ns-3 net device onto an ns-3
network.

In the other direction, a packet received by the ns-3 net device connected to the Tap Bridge is sent via a receive callback
to the TapBridge. The TapBridge then takes that packet and writes it back to the host using the network tap mechanism.
This write to the device will appear to the Linux host as if a packet has arrived on a net device; and therefore as if a
packet received by the ns-3 net device during a simulation has appeared on a real Linux net device.

The upshot is that the Tap Bridge appears to bridge a tap device on a Linux host in the “real world” to an ns-3 net
device in the simulation. Because the TAP device and the bridged ns-3 net device have the same MAC address and the
network tap IPC link is not externalized, this particular kind of bridge makes it appear that a ns-3 net device is actually
installed in the Linux host.

In order to implement this on the ns-3 side, we need a “ghost node” in the simulation to hold the bridged ns-3 net
device and the TapBridge. This node should not actually do anything else in the simulation since its job is simply to
make the net device appear in Linux. This is not just arbitrary policy, it is because:

* Bits sent to the TapBridge from higher layers in the ghost node (using the TapBridge Send method) are com-
pletely ignored. The TapBridge is not, itself, connected to any network, neither in Linux nor in ns-3. You can
never send nor receive data over a TapBridge from the ghost node.

* The bridged ns-3 net device has its receive callback disconnected from the ns-3 node and reconnected to the Tap
Bridge. All data received by a bridged device will then be sent to the Linux host and will not be received by the
node. From the perspective of the ghost node, you can send over this device but you cannot ever receive.

Of course, if you understand all of the issues you can take control of your own destiny and do whatever you want —
we do not actively prevent you from using the ghost node for anything you decide. You will be able to perform typical
ns-3 operations on the ghost node if you so desire. The internet stack, for example, must be there and functional on
that node in order to participate in IP address assignment and global routing. However, as mentioned above, interfaces
talking to any TapBridge or associated bridged net devices will not work completely. If you understand exactly what
you are doing, you can set up other interfaces and devices on the ghost node and use them; or take advantage of the
operational send side of the bridged devices to create traffic generators. We generally recommend that you treat this
node as a ghost of the Linux host and leave it to itself, though.

TapBridge UselLocal Mode Operation

As described in above, the TapBridge acts like a bridge from the “real” world into the simulated ns-3 world. In the
case of the ConfigureLocal mode, life is easy since the IP address of the Tap device matches the IP address of the ns-3
device and the MAC address of the Tap device matches the MAC address of the ns-3 device; and there is a one-to-one
relationship between the devices.

Things are slightly complicated when a Tap device is externally configured with a different MAC address than the ns-3
net device. The conventional way to deal with this kind of difference is to use promiscuous mode in the bridged device
to receive packets destined for the different MAC address and forward them off to Linux. In order to move packets
the other way, the conventional solution is SendFrom() which allows a caller to “spoof” or change the source MAC
address to match the different Linux MAC address.

We do have a specific requirement to be able to bridge Linux Virtual Machines onto wireless STA nodes. Unfor-
tunately, the 802.11 spec doesn’t provide a good way to implement SendFrom(), so we have to work around that
problem.
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To this end, we provided the UseLocal mode of the Tap Bridge. This mode allows you approach the problem as if
you were creating a bridge with a single net device. A single allowed address on the Linux side is remembered in
the TapBridge, and all packets coming from the Linux side are repeated out the ns-3 side using the ns-3 device MAC
source address. All packets coming in from the ns-3 side are repeated out the Linux side using the remembered MAC
address. This allows us to use Send() on the ns-3 device side which is available on all ns-3 net devices.

UseLocal mode is identical to the ConfigureLocal mode except for the creation and configuration of the tap device and
the MAC address spoofing.

TapBridge UseBridge Operation

As described in the ConfigureLocal mode section, when the Linux host writes to one of the /dev/tap devices, the write
is redirected into the TapBridge that lives in the ns-3 world. In the case of the UseBridge mode, these packets will
need to be sent out on the ns-3 network as if they were sent on a device participating in the Linux bridge. This means
calling the SendFrom() method on the bridged device and providing the source MAC address found in the packet.

In the other direction, a packet received by an ns-3 net device is hooked via callback to the TapBridge. This must be
done in promiscuous mode since the goal is to bridge the ns-3 net device onto the OS (brctl) bridge of which the TAP
device is a part.

For these reasons, only ns-3 net devices that support SendFrom() and have a hookable promiscuous receive callback
are allowed to participate in UseBridge mode TapBridge configurations.

13.4.2 Tap Bridge Channel Model

There is no channel model associated with the Tap Bridge. In fact, the intention is make it appear that the real internet
host is connected to the channel of the bridged net device.

13.4.3 Tap Bridge Tracing Model
Unlike most ns-3 devices, the TapBridge does not provide any standard trace sources. This is because the bridge is an

intermediary that is essentially one function call away from the bridged device. We expect that the trace hooks in the
bridged device will be sufficient for most users,

13.4.4 Using the TapBridge

We expect that most users will interact with the TapBridge device through the TapBridgeHelper. Users of other helper
classes, such as CSMA or Wifi, should be comfortable with the idioms used there.
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CHAPTER
FOURTEEN

ENERGY FRAMEWORK

Energy consumption is a key issue for wireless devices, and wireless network researchers often need to investigate the
energy consumption at a node or in the overall network while running network simulations in ns-3. This requires ns-3
to support energy consumption modeling. Further, as concepts such as fuel cells and energy scavenging are becoming
viable for low power wireless devices, incorporating the effect of these emerging technologies into simulations requires
support for modeling diverse energy sources in ns-3. The ns-3 Energy Framework provides the basis for energy
consumption, energy source and energy harvesting modeling.

14.1 Model Description

The source code for the Energy Framework is currently at: src/energy.

14.1.1 Design

The ns-3 Energy Framework is composed of 3 parts: Energy Source, Device Energy Model and Energy Harvester.
The framework is implemented into the src/energy/models folder.

Energy Source

The Energy Source represents the power supply on each node. A node can have one or more energy sources, and
each energy source can be connected to multiple device energy models. Connecting an energy source to a device
energy model implies that the corresponding device draws power from the source. The basic functionality of the
Energy Source is to provide energy for devices on the node. When energy is completely drained from the Energy
Source, it notifies the devices on node such that each device can react to this event. Further, each node can access the
Energy Source Objects for information such as remaining energy or energy fraction (battery level). This enables the
implementation of energy aware protocols in ns-3.

In order to model a wide range of power supplies such as batteries, the Energy Source must be able to capture charac-
teristics of these supplies. There are 2 important characteristics or effects related to practical batteries:

Rate Capacity Effect Decrease of battery lifetime when the current draw is higher than the rated value of the battery.
Recovery Effect Increase of battery lifetime when the battery is alternating between discharge and idle states.

In order to incorporate the Rate Capacity Effect, the Energy Source uses current draw from all the devices on the same
node to calculate energy consumption. Moreover, multiple Energy Harvesters can be connected to the Energy Source
in order to replenish its energy. The Energy Source periodically polls all the devices and energy harvesters on the
same node to calculate the total current drain and hence the energy consumption. When a device changes state, its
corresponding Device Energy Model will notify the Energy Source of this change and new total current draw will be
calculated. Similarly, every Energy Harvester update triggers an update to the connected Energy Source.
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The Energy Source base class keeps a list of devices (Device Energy Model objects) and energy harvesters (Energy
Harvester objects) that are using the particular Energy Source as power supply. When energy is completely drained,
the Energy Source will notify all devices on this list. Each device can then handle this event independently, based on
the desired behavior that should be followed in case of power outage.

Device Energy Model

The Device Energy Model is the energy consumption model of a device installed on the node. It is designed to be a
state based model where each device is assumed to have a number of states, and each state is associated with a power
consumption value. Whenever the state of the device changes, the corresponding Device Energy Model will notify
the Energy Source of the new current draw of the device. The Energy Source will then calculate the new total current
draw and update the remaining energy.

The Device Energy Model can also be used for devices that do not have finite number of states. For example, in an
electric vehicle, the current draw of the motor is determined by its speed. Since the vehicle’s speed can take continuous
values within a certain range, it is infeasible to define a set of discrete states of operation. However, by converting the
speed value into current directly, the same set of Device Energy Model APIs can still be used.

Energy Harvester

The energy harvester represents the elements that harvest energy from the environment and recharge the Energy Source
to which it is connected. The energy harvester includes the complete implementation of the actual energy harvesting
device (e.g., a solar panel) and the environment (e.g., the solar radiation). This means that in implementing an energy
harvester, the energy contribution of the environment and the additional energy requirements of the energy harvesting
device such as the conversion efficiency and the internal power consumption of the device needs to be jointly modeled.

WiFi Radio Energy Model

The WiFi Radio Energy Model is the energy consumption model of a Wifi net device. It provides a state for each of the
available states of the PHY layer: Idle, CcaBusy, Tx, Rx, ChannelSwitch, Sleep, Off. Each of such states is associated
with a value (in Ampere) of the current draw (see below for the corresponding attribute names). A Wifi Radio Energy
Model PHY Listener is registered to the Wifi PHY in order to be notified of every Wifi PHY state transition. At every
transition, the energy consumed in the previous state is computed and the energy source is notified in order to update
its remaining energy.

The Wifi Tx Current Model gives the possibility to compute the current draw in the transmit state as a function
of the nominal tx power (in dBm), as observed in several experimental measurements. To this purpose, the Wifi
Radio Energy Model PHY Listener is notified of the nominal tx power used to transmit the current frame and passes
such a value to the Wifi Tx Current Model which takes care of updating the current draw in the Tx state. Hence,
the energy consumption is correctly computed even if the Wifi Remote Station Manager performs per-frame power
control. Currently, a Linear Wifi Tx Current Model is implemented which computes the tx current as a linear function
(according to parameters that can be specified by the user) of the nominal tx power in dBm.

The Wifi Radio Energy Model offers the possibility to specify a callback that is invoked when the energy source is
depleted. If such a callback is not specified when the Wifi Radio Energy Model Helper is used to install the model on
a device, a callback is implicitly made so that the Wifi PHY is put in the OFF mode (hence no frame is transmitted nor
received afterwards) when the energy source is depleted. Likewise, it is possible to specify a callback that is invoked
when the energy source is recharged (which might occur in case an energy harvester is connected to the energy source).
If such a callback is not specified when the Wifi Radio Energy Model Helper is used to install the model on a device, a
callback is implicitly made so that the Wifi PHY is resumed from the OFF mode when the energy source is recharged.
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14.1.2 Future Work

For Device Energy Models, we are planning to include support for other PHY layer models provided in ns-3 such as
WiMAX, and to model the energy consumptions of other non communicating devices, like a generic sensor and a CPU.
For Energy Sources, we are planning to included new types of Energy Sources such as Supercapacitor and Nickel-
Metal Hydride (Ni-MH) battery. For the Energy Harvesters, we are planning to implement an energy harvester that
recharges the energy sources according to the power levels defined in a user customizable dataset of real measurements.

14.1.3 References

14.2 Usage

The main way that ns-3 users will typically interact with the Energy Framework is through the helper API and through
the publicly visible attributes of the framework. The helper API is defined in src/energy/helper/«.h.

In order to use the energy framework, the user must install an Energy Source for the node of interest, the corresponding
Device Energy Model for the network devices and, if necessary, the one or more Energy Harvester. Energy Source
(objects) are aggregated onto each node by the Energy Source Helper. In order to allow multiple energy sources per
node, we aggregate an Energy Source Container rather than directly aggregating a source object.

The Energy Source object keeps a list of Device Energy Model and Energy Harvester objects using the source as
power supply. Device Energy Model objects are installed onto the Energy Source by the Device Energy Model Helper,
while Energy Harvester object are installed by the Energy Harvester Helper. User can access the Device Energy Model
objects through the Energy Source object to obtain energy consumption information of individual devices. Moreover,
the user can access to the Energy Harvester objects in order to gather information regarding the current harvestable
power and the total energy harvested by the harvester.

14.2.1 Examples

The example directories, src/examples/energy and examples/energy, contain some basic code that shows how
to set up the framework.

14.2.2 Helpers

Energy Source Helper

Base helper class for Energy Source objects, this helper Aggregates Energy Source object onto a node. Child imple-
mentation of this class creates the actual Energy Source object.

Device Energy Model Helper

Base helper class for Device Energy Model objects, this helper attaches Device Energy Model objects onto Energy
Source objects. Child implementation of this class creates the actual Device Energy Model object.

Energy Harvesting Helper

Base helper class for Energy Harvester objects, this helper attaches Energy Harvester objects onto Energy Source
objects. Child implementation of this class creates the actual Energy Harvester object.
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14.2.3 Attributes

Attributes differ between Energy Sources, Devices Energy Models and Energy Harvesters implementations, please
look at the specific child class for details.

Basic Energy Source

* BasicEnergySourceInitialEnergyd: Initial energy stored in basic energy source.
* BasicEnergySupplyVoltageV: Initial supply voltage for basic energy source.

* PeriodicEnergyUpdateInterval: Time between two consecutive periodic energy updates.

RV Battery Model

* RvBatteryModelPeriodicEnergyUpdateInterval: RV battery model sampling interval.
* RvBatteryModelOpenCircuitVoltage: RV battery model open circuit voltage.

* RvBatteryModelCutoffVoltage: RV battery model cutoff voltage.

* RvBatteryModelAlphaValue: RV battery model alpha value.

* RvBatteryModelBetaValue: RV battery model beta value.

* RvBatteryModelNumOfTerms: The number of terms of the infinite sum for estimating battery level.

WiFi Radio Energy Model

¢ IdleCurrentA: The default radio Idle current in Ampere.

* CcaBusyCurrentA: The default radio CCA Busy State current in Ampere.

e TxCurrentA: The radio Tx current in Ampere.

* RxCurrentA: The radio Rx current in Ampere.

* SwitchingCurrentA: The default radio Channel Switch current in Ampere.
* SleepCurrentA: The radio Sleep current in Ampere.

e TxCurrentModel: A pointer to the attached tx current model.

Basic Energy Harvester

* PeriodicHarvestedPowerUpdateInterval: Time between two consecutive periodic updates of the har-
vested power.

* HarvestablePower: Random variables that represents the amount of power that is provided by the energy
harvester.

14.2.4 Tracing

Traced values differ between Energy Sources, Devices Energy Models and Energy Harvesters implementations, please
look at the specific child class for details.
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Basic Energy Source

* RemainingEnergy: Remaining energy at BasicEnergySource.

RV Battery Model

* RvBatteryModelBatteryLevel: RV battery model battery level.

* RvBatteryModelBatteryLifetime: RV battery model battery lifetime.
WiFi Radio Energy Model

* TotalEnergyConsumption: Total energy consumption of the radio device.

Basic Energy Harvester

* HarvestedPower: Current power provided by the BasicEnergyHarvester.

* TotalEnergyHarvested: Total energy harvested by the BasicEnergyHarvester.

14.2.5 Validation

Comparison of the Energy Framework against actual devices have not been performed. Current implementation of the
Energy Framework is checked numerically for computation errors. The RV battery model is validated by comparing
results with what was presented in the original RV battery model paper.
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CHAPTER
FIFTEEN

FLOW MONITOR

15.1 Model Description

The source code for the new module lives in the directory src/flow-monitor.

The Flow Monitor module goal is to provide a flexible system to measure the performance of network protocols. The
module uses probes, installed in network nodes, to track the packets exchanged by the nodes, and it will measure a
number of parameters. Packets are divided according to the flow they belong to, where each flow is defined according
to the probe’s characteristics (e.g., for IP, a flow is defined as the packets with the same {protocol, source (IP, port),
destination (IP, port)} tuple.

The statistics are collected for each flow can be exported in XML format. Moreover, the user can access the probes
directly to request specific stats about each flow.

15.1.1 Design

Flow Monitor module is designed in a modular way. It can be extended by subclassing ns3::FlowProbe and
ns3::FlowClassifier. Typically, a subclass of ns3::FlowProbe works by listening to the appropriate class
Traces, and then uses its own ns3: :FlowClassifier subclass to classify the packets passing though each node.

Each Probe can try to listen to other classes traces (e.g., ns3: : Ipv4FlowProbe will try to use any ns3: :NetDevice
trace named TxQueue/Drop) but this is something that the user should not rely into blindly, because the
trace is not guaranteed to be in every type of ns3::NetDevice. As an example, CsmaNetDevice and
PointToPointNetDevice have a TxQueue/Drop trace, while WiFiNetDevice does not.

The full module design is described in [FlowMonitor]

15.1.2 Scope and Limitations

At the moment, probes and classifiers are available only for IPv4 and IPv6.
IPv4 and IPv6 probes will classify packets in four points:

* When a packet is sent (SendOutgoing IPv[4,6] traces)

* When a packet is forwarded (UnicastForward IPv[4,6] traces)

* When a packet is received (LocalDeliver IPv[4,6] traces)

* When a packet is dropped (Drop IPv[4,6] traces)

Since the packets are tracked at IP level, any retransmission caused by L4 protocols (e.g., TCP) will be seen by the
probe as a new packet.

95



ns-3 Model Library, Release ns-3-dev

A Tag will be added to the packet (ns3::Ipv[4, 6]FlowProbeTag). The tag will carry basic packet’s data, useful
for the packet’s classification.

It must be underlined that only L4 (TCP, UDP) packets are, so far, classified. Moreover, only unicast packets will be
classified. These limitations may be removed in the future.

The data collected for each flow are:
* timeFirstTxPacket: when the first packet in the flow was transmitted;
» timeLastTxPacket: when the last packet in the flow was transmitted;
* timeFirstRxPacket: when the first packet in the flow was received by an end node;
« timeLastRxPacket: when the last packet in the flow was received;
e delaySum: the sum of all end-to-end delays for all received packets of the flow;

* jitterSum: the sum of all end-to-end delay jitter (delay variation) values for all received packets of the flow, as
defined in RFC 3393;

* txBytes, txPackets: total number of transmitted bytes / packets for the flow;

* rxBytes, rxPackets: total number of received bytes / packets for the flow;

* lostPackets: total number of packets that are assumed to be lost (not reported over 10 seconds);
* timesForwarded: the number of times a packet has been reportedly forwarded,;

* delayHistogram, jitterHistogram, packetSizeHistogram: histogram versions for the delay, jitter, and packet sizes,
respectively;

* packetsDropped, bytesDropped: the number of lost packets and bytes, divided according to the loss reason code
(defined in the probe).

It is worth pointing out that the probes measure the packet bytes including IP headers. The L2 headers are not included
in the measure.

These stats will be written in XML form upon request (see the Usage section).

The “lost” packets problem

At the end of a simulation, Flow Monitor could report about “lost” packets, i.e., packets that Flow Monitor have lost
track of.

It is important to keep in mind that Flow Monitor records the packets statistics by intercepting them at a given network
level - let’s say at IP level. When the simulation ends, any packet queued for transmission below the IP level will be
considered as lost.

It is strongly suggested to consider this point when using Flow Monitor. The user can choose to:
* Ignore the lost packets (if their number is a statistically irrelevant quantity), or

 Stop the Applications before the actual Simulation End time, leaving enough time between the two for the
queued packets to be processed.

The second method is the suggested one. Usually a few seconds are enough (the exact value depends on the network
type).
It is important to stress that “lost” packets could be anywhere in the network, and could count toward the received

packets or the dropped ones. Ideally, their number should be zero or a minimal fraction of the other ones, i.e., they
should be “statistically irrelevant”.
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15.1.3 References

15.2 Usage

The module usage is extremely simple. The helper will take care of about everything.

The typical use is:

// Flow monitor

Ptr<FlowMonitor> flowMonitor;
FlowMonitorHelper flowHelper;
flowMonitor = flowHelper.InstallAll();

—yourApplicationsContainer-.Stop (Seconds (stop_time));;
Simulator::Stop (Seconds (stop_time+cleanup_time));

Simulator::Run ();

flowMonitor—->SerializeToXmlFile ("NameOfFile.xml", true, true);

the SserializeToxmlFile () function 2nd and 3rd parameters are used respectively to activate/deactivate the his-
tograms and the per-probe detailed stats. Other possible alternatives can be found in the Doxygen documentation,

while cleanup_time is the time needed by in-flight packets to reach their destinations.

15.2.1 Helpers

The helper API follows the pattern usage of normal helpers. Through the helper you can install the monitor in the

nodes, set the monitor attributes, and print the statistics.

One important thing is: the ns3: :FlowMonitorHelper must be instantiated only once in the main.

15.2.2 Attributes

The module provides the following attributes in ns3: : FlowMonitor:

* MaxPerHopDelay (Time, default 10s): The maximum per-hop delay that should be considered;

e StartTime (Time, default Os): The time when the monitoring starts;
¢ DelayBinWidth (double, default 0.001): The width used in the delay histogram;
* JitterBinWidth (double, default 0.001): The width used in the jitter histogram;

* PacketSizeBinWidth (double, default 20.0): The width used in the packetSize histogram;

* FlowInterruptionsBinWidth (double, default 0.25): The width used in the flowInterruptions histogram;

* FlowInterruptionsMinTime (double, default 0.5): The minimum inter-arrival time that is considered a flow

interruption.

15.2.3 Output

The main model output is an XML formatted report about flow statistics. An example is:

15.2. Usage
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<?xml version="1.0" ?>
<FlowMonitor>
<FlowStats>
<Flow flowId="1" timeFirstTxPacket="+0.0ns" timeFirstRxPacket="+20067198.0ns"

—timeLastTxPacket="+2235764408.0ns"

timeLastRxPacket="+2255831606.0ns" delaySum=

—"+138731526300.0ns" jitterSum="+1849692150.0ns" lastDelay="+20067198.0ns" txBytes=

—"2149400" rxBytes="2149400" txPackets="3735" rxPackets="3735"
—timesForwarded="7466">

</Flow>

</FlowStats>

<Ipv4FlowClassifier>
<Flow flowId="1" sourceAddress="10.1.3.1" destinationAddress="10.1.2.2" protocol="6

n

sourcePort="49153" destinationPort="50000" />

lostPackets="0"_

-
</Ipv4FlowClassifier>
<Ipv6FlowClassifier>
</Ipv6FlowClassifier>
<FlowProbes>
<FlowProbe index="0">
<FlowStats flowId="1" packets="3735" bytes="2149400" delayFromFirstProbeSum="+0.
—0ns" >
</FlowStats>
</FlowProbe>

<FlowProbe index="2">
<FlowStats flowId="1" packets="7466" bytes="2224020" delayFromFirstProbeSum=
—"+199415389258.0ns" >

</FlowStats>

</FlowProbe>

<FlowProbe index="4">
<FlowStats flowId="1" packets="3735" bytes="2149400" delayFromFirstProbeSum=
—"+138731526300.0ns" >

</FlowStats>

</FlowProbe>
</FlowProbes>
</FlowMonitor>

The output was generated by a TCP flow from 10.1.3.1 to 10.1.2.2.

It is worth noticing that the index 2 probe is reporting more packets and more bytes than the other probes. That’s a
perfectly normal behaviour, as packets are fragmented at IP level in that node.

It should also be observed that the receiving node’s probe (index 4) doesn’t count the fragments, as the reassembly is

done

before the probing point.

15.2.4 Examples

The examples are located in src/flow-monitor/examples.

Moreover, the following examples use the flow-monitor module:

examples/matrix-topology/matrix-topology.cc
examples/routing/manet-routing-compare.cc
examples/routing/simple-global-routing.cc
examples/tcp/tcp-variants-comparison.cc
examples/wireless/multirate.cc

examples/wireless/wifi-hidden-terminal.cc
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15.2.5 Troubleshooting

Do not define more than one ns3: :FlowMonitorHelper in the simulation.

15.3 Validation

The paper in the references contains a full description of the module validation against a test network.

Tests are provided to ensure the Histogram correct functionality.
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CHAPTER
SIXTEEN

INTERNET MODELS (IP, TCP, ROUTING, UDP, INTERNET
APPLICATIONS)

16.1 Internet Stack

16.1.1 Internet stack aggregation

A bare class Node is not very useful as-is; other objects must be aggregated to it to provide useful node functionality.

The ns-3 source code directory src/internet provides implementation of TCP/IPv4- and IPv6-related components.
These include IPv4, ARP, UDP, TCP, IPv6, Neighbor Discovery, and other related protocols.

Internet Nodes are not subclasses of class Node; they are simply Nodes that have had a bunch of IP-related objects
aggregated to them. They can be put together by hand, or via a helper function InternetStackHelper::Install
() which does the following to all nodes passed in as arguments:

void
InternetStackHelper::Install (Ptr<Node> node) const
{
if (m_ipv4Enabled)
{
/+ IPv4 stack =/
if (node->GetObject<Ipv4> () != 0)
{
NS_FATAL_ERROR ("InternetStackHelper::Install (): Aggregating "
"an InternetStack to a node with an existing Ipv4 object");

return;

CreateAndAggregateObjectFromTypeId (node, "ns3::ArpL3Protocol");
CreateAndAggregateObjectFromTypeId (node, "ns3::Ipv4L3Protocol");
CreateAndAggregateObjectFromTypeId (node, "ns3::Icmpv4L4Protocol");
// Set routing

Ptr<Ipv4> ipv4 = node—>GetObject<Ipv4> ();

Ptr<Ipv4RoutingProtocol> ipv4Routing = m_routing->Create (node);
ipv4->SetRoutingProtocol (ipv4Routing);

if (m_ipv6Enabled)
{
/% IPv6 stack */
if (node->GetObject<Ipvée> () != 0)
{
NS_FATAL_ERROR ("InternetStackHelper::Install (): Aggregating "
(continues on next page)
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if

{

(continued from previous page)

"an InternetStack to a node with an existing Ipvé6 object");

return;

CreateAndAggregateObjectFromTypeId (node, "ns3::Ipv6L3Protocol");
CreateAndAggregateObjectFromTypeld (node, "ns3::Icmpv6olL4Protocol");
// Set routing

Ptr<Ipv6> ipv6 = node->GetObject<Ipv6> ();

Ptr<Ipv6RoutingProtocol> ipv6Routing = m_routingv6->Create (node);
ipv6->SetRoutingProtocol (ipv6Routing);

/* register IPvé extensions and options #*/
ipv6->RegisterExtensions ();
ipv6->RegisterOptions ();

m_ipv6Enabled)

(m_ipv4Enabled |
/+ UDP and TCP stacks =/

CreateAndAggregateObjectFromTypeId (node, "ns3::UdpL4Protocol");
node->AggregateObject (m_tcpFactory.Create<Object> ());
Ptr<PacketSocketFactory> factory = CreateObject<PacketSocketFactory> ();
node->AggregateObject (factory);

Where multiple implementations exist in ns-3 (TCP, IP routing), these objects are added by a factory object (TCP) or
by a routing helper (m_routing).

Note that the routing protocol is configured and set outside this function. By default, the following protocols are added:

void InternetStackHelper::Initialize ()

{

SetTcp ("ns3::TcpL4Protocol");
Ipv4StaticRoutingHelper staticRouting;
Ipv4GlobalRoutingHelper globalRouting;
Ipv4ListRoutingHelper listRouting;
Ipv6ListRoutingHelper listRoutingvé;
Ipv6StaticRoutingHelper staticRoutingv6;
listRouting.Add (staticRouting, O0);
listRouting.Add (globalRouting, -10);
listRoutingv6.Add (staticRoutingvé, 0);
SetRoutingHelper (listRouting);
SetRoutingHelper (listRoutingvé);

By default, IPv4 and IPv6 are enabled.

Internet Node structure

An IP-capable Node (an ns-3 Node augmented by aggregation to have one or more IP stacks) has the following internal
structure.
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Layer-3 protocols

At the lowest layer, sitting above the NetDevices, are the “layer 3” protocols, including IPv4, IPv6, ARP and so
on. The class Ipv4L3Protocol is an implementation class whose public interface is typically class Ipv4, but the
Ipv4L3Protocol public API is also used internally at present.

In class Ipv4L3Protocol, one method described below is Receive ():

J ok k
* Lower layer calls this method after calling L3Demux::Lookup
* The ARP subclass needs to know from which NetDevice this
* packet is coming to:

* - implement a per—-NetDevice ARP cache
* - send back arp replies on the right device
*/

void Receive ( Ptr<NetDevice> device, Ptr<const Packet> p, uintl6_t protocol,
const Address &from, const Address &to, NetDevice::PacketType packetType);

First, note that the Receive () function has a matching signature to the ReceiveCallback in the class Node. This
function pointer is inserted into the Node’s protocol handler when AddInterface () iscalled. The actual registration
is done with a statement such as follows:

RegisterProtocolHandler ( MakeCallback (&Ipv4Protocol::Receive, ipv4),
Ipv4L3Protocol: :PROT_NUMBER, O0);

The Ipv4L3Protocol object is aggregated to the Node; there is only one such Ipv4L3Protocol object. Higher-layer
protocols that have a packet to send down to the Ipv4L3Protocol object can call GetObject<Ipv4L3Protocol> ()
to obtain a pointer, as follows:

Ptr<Ipv4L3Protocol> ipv4d = m_node->GetObject<Ipv4L3Protocol> ();
if (ipv4 != 0)
{
ipv4->Send (packet, saddr, daddr, PROT_NUMBER) ;

This class nicely demonstrates two techniques we exploit in ns-3 to bind objects together: callbacks, and object
aggregation.

Once IPv4 routing has determined that a packet is for the local node, it forwards it up the stack. This is done with the
following function:

void
Ipv4L3Protocol::LocalDeliver (Ptr<const Packet> packet, Ipv4Header consté&ip, uint32_t
—1if)

The first step is to find the right Ipv4L4Protocol object, based on IP protocol number. For instance, TCP is reg-
istered in the demux as protocol number 6. Finally, the Receive () function on the Ipv4L4Protocol (such as
TcpL4Protocol: :Receive is called.

We have not yet introduced the class Ipv4Interface. Basically, each NetDevice is paired with an IPv4 representation of
such device. In Linux, this class Ipv4Interface roughly corresponds to the st ruct in_device; the main purpose
is to provide address-family specific information (addresses) about an interface.

All the classes have appropriate traces in order to track sent, received and lost packets. The users is encouraged to
use them so to find out if (and where) a packet is dropped. A common mistake is to forget the effects of local queues
when sending packets, e.g., the ARP queue. This can be particularly puzzling when sending jumbo packets or packet
bursts using UDP. The ARP cache pending queue is limited (3 datagrams) and IP packets might be fragmented, easily
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overfilling the ARP cache queue size. In those cases it is useful to increase the ARP cache pending size to a proper
value, e.g.:

Config: :SetDefault ("ns3::ArpCache::PendingQueueSize", UintegerValue (MAX_BURST_SIZE/
—L2MTU*3) ) ;

The IPv6 implementation follows a similar architecture. Dual-stacked nodes (one with support for both IPv4 and IPv6)
will allow an IPv6 socket to receive IPv4 connections as a standard dual-stacked system does. A socket bound and
listening to an IPv6 endpoint can receive an IPv4 connection and will return the remote address as an IPv4-mapped
address. Support for the IPV6_V60ONLY socket option does not currently exist.

Layer-4 protocols and sockets

We next describe how the transport protocols, sockets, and applications tie together. In summary, each transport
protocol implementation is a socket factory. An application that needs a new socket

For instance, to create a UDP socket, an application would use a code snippet such as the following:

Ptr<Udp> udpSocketFactory = GetNode ()->GetObject<Udp> ();
Ptr<Socket> m_socket = socketFactory->CreateSocket ();
m_socket->Bind (m_local_address);

The above will query the node to get a pointer to its UDP socket factory, will create one such socket, and will use the
socket with an API similar to the C-based sockets API, such as Connect () and Send (). The address passed to the
Bind (), Connect (), or Send () functions may be a Ipv4Address, Ipv6Address, or Address. If a Address
is passed in and contains anything other than a Tpv4Address or Ipv6Address, these functions will return an error.
The Bind (void) and Bind6 (void) functions bind to “0.0.0.0” and “::” respectively.

The socket can also be bound to a specific NetDevice though the BindToNetDevice (Ptr<NetDevice>
netdevice) function. BindToNetDevice (Ptr<NetDevice> netdevice) will bind the socket to “0.0.0.0” and
“::” (equivalent to calling Bind () and Bindé (), unless the socket has been already bound to a specific address.
Summarizing, the correct sequence is:

Ptr<Udp> udpSocketFactory = GetNode ()->GetObject<Udp> ();
Ptr<Socket> m_socket = socketFactory->CreateSocket ();
m_socket->BindToNetDevice (n_netDevice);

or:
Ptr<Udp> udpSocketFactory = GetNode ()->GetObject<Udp> ();
Ptr<Socket> m_socket = socketFactory->CreateSocket ();

m_socket->Bind (m_local_address);
m_socket->BindToNetDevice (n_netDevice);

The following raises an error:

Ptr<Udp> udpSocketFactory = GetNode ()->GetObject<Udp> ();
Ptr<Socket> m_socket = socketFactory->CreateSocket ();
m_socket->BindToNetDevice (n_netDevice);

m_socket->Bind (m_local_address);

See the chapter on ns-3 sockets for more information.
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We have described so far a socket factory (e.g. class Udp) and a socket, which may be specialized (e.g., class
UdpSocket). There are a few more key objects that relate to the specialized task of demultiplexing a packet to one or
more receiving sockets. The key object in this task is class Ipv4EndPointDemux. This demultiplexer stores objects of
class Ipv4EndPoint. This class holds the addressing/port tuple (local port, local address, destination port, destination
address) associated with the socket, and a receive callback. This receive callback has a receive function registered by
the socket. The Lookup () function to Ipv4EndPointDemux returns a list of Ipv4EndPoint objects (there may be a
list since more than one socket may match the packet). The layer-4 protocol copies the packet to each Ipv4EndPoint
and calls its ForwardUp () method, which then calls the Receive () function registered by the socket.

An issue that arises when working with the sockets API on real systems is the need to manage the reading from a
socket, using some type of I/O (e.g., blocking, non-blocking, asynchronous, ...). ns-3 implements an asynchronous
model for socket I/O; the application sets a callback to be notified of received data ready to be read, and the callback
is invoked by the transport protocol when data is available. This callback is specified as follows:

void Socket::SetRecvCallback (Callback<wvoid, Ptr<Socket>,
Ptr<Packet>,
const Address&> receivedData);

The data being received is conveyed in the Packet data buffer. An example usage is in class Packet Sink:

m_socket->SetRecvCallback (MakeCallback (&PacketSink::HandleRead, this));

To summarize, internally, the UDP implementation is organized as follows:
* aUdpImpl class that implements the UDP socket factory functionality
* aUdpL4Protocol class that implements the protocol logic that is socket-independent
* aUdpSocketImpl class that implements socket-specific aspects of UDP

e aclass called Ipv4EndPoint that stores the addressing tuple (local port, local address, destination port, desti-
nation address) associated with the socket, and a receive callback for the socket.

IP-capable node interfaces

Many of the implementation details, or internal objects themselves, of IP-capable Node objects are not exposed at the
simulator public API. This allows for different implementations; for instance, replacing the native ns-3 models with
ported TCP/IP stack code.

The C++ public APIs of all of these objects is found in the src/network directory, including principally:
® address.h
* socket.h
® node.h
e packet.h

These are typically base class objects that implement the default values used in the implementation, implement access
methods to get/set state variables, host attributes, and implement publicly-available methods exposed to clients such
as CreateSocket.

Example path of a packet

These two figures show an example stack trace of how packets flow through the Internet Node objects.
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In this example, the downtarget is Ipv4L3Protocol, but it could be some other shim layer in general.

4. Ipv4L3Protocol adds the IP header and sends the packet to an
appropriate Ipv4interface instance, based on the route that was passed
down from the UDP layer. In this example, the device is one that supports Arp.

5. Ipv4interface looks up the MAC address if Arp is supported on this
NetDevice technology, and if there is a cache hit, it sends the packet to the NetDevice, or
else it first initiates an Arp request and waits for a reply.
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Fig. 1: Send path of a packet.
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when data is ready to be read. The application can then call the socket
Recv() or RecvFrom() methods to read data (or dummy data) from the socket.

(m_rxCallback)->ForwardUp() 6. Ipv4EndPoint has a callback where a Socket object is able to register
a receive method. Here, this callback calls to UdpSocketimpl::ForwardUp()

Ipv4EndPoint
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UdpL4Protocol]”” dest addr, dest port). It then calls Ipv4EndPoint::ForwardUp() when done.
“iReceive () 4. Ipv4L3Protocol removes the IP header, checks checksum (if implemented),

and passes the packet to the Ipv4RoutingProtocol registered with Ipv4L3Protocol.
Ipv4RoutingProtgcol  The routing protocol in this case decides the packet is for the local host, so it
calls back to Ipv4L3Protocol::LocalDeliver(). This function looks up the protocol
(in this case UDP) and calls the Receive () method for that protocol.
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2. This is typically the Node::ReceiveFromDevice() function

_,,—':'n‘q_receiveCallback 1. NetDevice calls the function registered at Node::m_receiveCallback

NetDevice

Fig. 2: Receive path of a packet.
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16.2 IPv4

This chapter describes the ns-3 IPv4 address assignment and basic components tracking.

16.2.1 IPv4 addresses assighment

In order to use IPv4 on a network, the first thing to do is assigning IPv4 addresses.

Any IPv4-enabled ns-3 node will have at least one NetDevice: the ns3: : LoopbackNetDevice. The loopback device
address is 127.0.0. 1. All the other NetDevices will have one (or more) IPv4 addresses.

Note that, as today, ns-3 does not have a NAT module, and it does not follows the rules about filtering private addresses
(RFC 1918): 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16. These addresses are routed as any other address. This
behaviour could change in the future.

IPv4 global addresses can be:
* manually assigned
* assigned though DHCP

ns-3 can use both methods, and it’s quite important to understand the implications of both.

Manually assigned IPv4 addresses

This is probably the easiest and most used method. As an example:

Ptr<Node> n0 = CreateObject<Node> ();
Ptr<Node> nl = CreateObject<Node> ();
NodeContainer net (n0O, nl);

CsmaHelper csma;

NetDeviceContainer ndc = csma.Install (net);

NS_LOG_INFO ("Assign IPv4 Addresses.");

Ipv4AddressHelper ipv4;

ipv4d.SetBase (Ipv4Address ("192.168.1.0"), NetMask ("/24"));
Ipv4InterfaceContainer ic = ipv4.Assign (ndc);

This method will add two global IPv4 addresses to the nodes.

Note that the addresses are assigned in sequence. As a consequence, the first Node / NetDevice will have
“192.168.1.17, the second “192.168.1.2” and so on.

It is possible to repeat the above to assign more than one address to a node. However, due to the Ipv4AddressHelper
singleton nature, one should first assign all the addresses of a network, then change the network base (SetBase), then
do a new assignment.

Alternatively, it is possible to assign a specific address to a node:

Ptr<Node> nO = CreateObject<Node> ();
NodeContainer net (n0);

CsmaHelper csma;

NetDeviceContainer ndc = csma.Install (net);

NS_LOG_INFO ("Specifically Assign an IPv4 Address.");
Ipv4AddressHelper ipv4;
Ptr<NetDevice> device = ndc.Get (0);

(continues on next page)
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(continued from previous page)

Ptr<Node> node = device->GetNode ();

Ptr<Ipv4> ipvé4proto = node->GetObject<Ipv4> ();

int32_t ifIndex = 0;

ifIndex = ipv4proto->GetInterfaceForDevice (device);

Ipv4InterfaceAddress ipv4Addr = Ipvé4InterfaceAddress (Ipv4Address ("192.168.1.42")
—NetMask ("/24™));

ipvdproto->AddAddress (ifIndex, ipv4Addr);

o

DHCP assigned IPv4 addresses

DHCEP is available in the internet-apps module. In order to use DHCP you have to have a DhcpServer application in
a node (the DHC server node) and a DhcpClient application in each of the nodes. Note that it not necessary that all
the nodes in a subnet use DHCP. Some nodes can have static addresses.

All the DHCP setup is performed though the DhcpHelper class. A complete example is in src/internet-apps/

examples/dhcp-example.cc.

Further info about the DHCP functionalities can be found in the internet-apps model documentation.

16.2.2 Tracing in the IPv4 Stack

The internet stack provides a number of trace sources in its various protocol implementations. These trace sources can
be hooked using your own custom trace code, or you can use our helper functions in some cases to arrange for tracing
to be enabled.

Tracing in ARP

ARP provides two trace hooks, one in the cache, and one in the layer three protocol. The trace accessor in the cache
is given the name “Drop.” When a packet is transmitted over an interface that requires ARP, it is first queued for
transmission in the ARP cache until the required MAC address is resolved. There are a number of retries that may be
done trying to get the address, and if the maximum retry count is exceeded the packet in question is dropped by ARP.
The single trace hook in the ARP cache is called,

« If an outbound packet is placed in the ARP cache pending address resolution and no resolution can be made
within the maximum retry count, the outbound packet is dropped and this trace is fired;

A second trace hook lives in the ARP L3 protocol (also named “Drop”) and may be called for a number of reasons.

» If an ARP reply is received for an entry that is not waiting for a reply, the ARP reply packet is dropped and this
trace is fired;

 If an ARP reply is received for a non-existent entry, the ARP reply packet is dropped and this trace is fired;

 If an ARP cache entry is in the DEAD state (has timed out) and an ARP reply packet is received, the reply
packet is dropped and this trace is fired.

» Each ARP cache entry has a queue of pending packets. If the size of the queue is exceeded, the outbound packet
is dropped and this trace is fired.

Tracing in IPv4

The IPv4 layer three protocol provides three trace hooks. These are the “Tx” (ns3::Ipv4L3Protocol::m_txTrace), “Rx”
(ns3::Ipv4L3Protocol::m_rxTrace) and “Drop” (ns3::Ipv4L3Protocol::m_dropTrace) trace sources.
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The “Tx” trace is fired in a number of situations, all of which indicate that a given packet is about to be sent down to
a given ns3::Ipv4Interface.

In the case of a packet destined for the broadcast address, the Ipv4InterfaceList is iterated and for every interface
that is up and can fragment the packet or has a large enough MTU to transmit the packet, the trace is hit. See
ns3::Ipv4L3Protocol::Send.

In the case of a packet that needs routing, the “Tx” trace may be fired just before a packet is sent to the interface
appropriate to the default gateway. See ns3::Ipv4L3Protocol::SendRealOut.

Also in the case of a packet that needs routing, the “Tx” trace may be fired just before a packet is sent to the
outgoing interface appropriate to the discovered route. See ns3::Ipv4L3Protocol::SendRealOut.

The “Rx” trace is fired when a packet is passed from the device up to the ns3::Ipv4L3Protocol::Receive function.

In the receive function, the Ipv4InterfaceList is iterated, and if the Ipv4Interface corresponding to the receiving
device is fount to be in the UP state, the trace is fired.

The “Drop” trace is fired in any case where the packet is dropped (in both the transmit and receive paths).

In the ns3::Ipv4Interface::Receive function, the packet is dropped and the drop trace is hit if the interface corre-
sponding to the receiving device is in the DOWN state.

Also in the ns3::Ipv4Interface::Receive function, the packet is dropped and the drop trace is hit if the checksum
is found to be bad.

In ns3::Ipv4L3Protocol::Send, an outgoing packet bound for the broadcast address is dropped and the “Drop”
trace is fired if the “don’t fragment” bit is set and fragmentation is available and required.

Also in ns3::Ipv4L3Protocol::Send, an outgoing packet destined for the broadcast address is dropped and the
“Drop” trace is hit if fragmentation is not available and is required (MTU < packet size).

In the case of a broadcast address, an outgoing packet is cloned for each outgoing interface. If any of the
interfaces is in the DOWN state, the “Drop” trace event fires with a reference to the copied packet.

In the case of a packet requiring a route, an outgoing packet is dropped and the “Drop” trace event fires if no
route to the remote host is found.

In ns3::Ipv4L3Protocol::SendRealOut, an outgoing packet being routed is dropped and the “Drop” trace is fired
if the “don’t fragment” bit is set and fragmentation is available and required.

Also in ns3::Ipv4L3Protocol::SendRealOut, an outgoing packet being routed is dropped and the “Drop” trace is
hit if fragmentation is not available and is required (MTU < packet size).

An outgoing packet being routed is dropped and the “Drop” trace event fires if the required Ipv4Interface is in
the DOWN state.

If a packet is being forwarded, and the TTL is exceeded (see ns3::Ipv4L3Protocol::DoForward), the packet is
dropped and the “Drop” trace event is fired.

16.2.3 Explicit Congestion Notification (ECN) bits

In IPv4, ECN bits are the last 2 bits in TOS field and occupy 14th and 15th bits in the header.

The IPv4 header class defines an EcnType enum with all four ECN codepoints (ECN_NotECT, ECN_ECT]1,
ECN_ECTO0, ECN_CE) mentioned in RFC 3168, and also a setter and getter method to handle ECN values in
the TOS field.
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16.2.4 Ipv4QueueDiscltem

The traffic control sublayer in ns-3 handles objects of class QueueDiscItem which are used to hold an ns3::Packet and
an ns3::Header. This is done to facilitate the marking of packets for Explicit Congestion Notification. The Mark ()
method is implemented in Ipv4QueueDiscltem. It returns true if marking the packet is successful, i.e., it successfully
sets the CE bit in the IPv4 header. The Mark () method will return false, however, if the IPv4 header indicates the
ECN_NotECT codepoint.

16.2.5 RFC 6621 duplicate packet detection

To support mesh network protocols over broadcast-capable networks (e.g. Wi-Fi), it is useful to have support for
duplicate packet detection and filtering, since nodes in a network may receive multiple copies of flooded multicast
packets arriving on different paths. The Ipv4L3Protocol model in ns-3 has a model for hash-based duplicate packet
detection (DPD) based on Section 6.2.2 of (RFC 6621). The model, disabled by default, must be enabled by setting
EnableRFC6621 to true. A second attribute, DuplicateExpire, sets the expiration delay for erasing the cache entry
of a packet in the duplicate cache; the delay value defaults to Ims.

16.3 IPv6

This chapter describes the ns-3 IPv6 model capabilities and limitations along with its usage and examples.

16.3.1 IPv6 model description

The IPv6 model is loosely patterned after the Linux implementation; the implementation is not complete as some
features of IPv6 are not of much interest to simulation studies, and some features of IPv6 are simply not modeled yet
in ns-3.

The base class Ipvé6 defines a generic API, while the class Ipv6L3Protocol is the actual class implementing the
protocol. The actual classes used by the IPv6 stack are located mainly in the directory src/internet.

The implementation of IPv6 is contained in the following files:

src/internet/model/icmpv6-header. {cc,h}
src/internet/model/icmpv6-14-protocol.{cc,h}
src/internet/model/ipvé6. {cc, h}
src/internet/model/ipvé6—-address—generator.{cc, h}
src/internet/model/ipvé-autoconfigured-prefix.{cc,h}
src/internet/model/ipv6—end-point.{cc, h}
src/internet/model/ipv6—-end-point-demux. {cc,h}
src/internet/model/ipvé6—extension. {cc,h}
src/internet/model/ipvé6—extension—-demux. {cc, h}
src/internet/model/ipvé6-extension-header. {cc,h}
src/internet/model/ipv6-header.{cc,h}
src/internet/model/ipvé6—interface. {cc, h}
src/internet/model/ipvé6-interface-address. {cc, h}
src/internet/model/ipv6-13-protocol. {cc,h}
src/internet/model/ipvé-list—-routing.{cc,h}
src/internet/model/ipv6-option.{cc,h}
src/internet/model/ipv6-option-demux. {cc,h}
src/internet/model/ipv6-option—header. {cc,h}
src/internet/model/ipv6-packet—-info-tag.{cc,h}
src/internet/model/ipv6-pmtu-cache. {cc,h}
src/internet/model/ipv6-raw—-socket—-factory.{cc,h}

(continues on next page)
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(continued from previous page)
src/internet/model/ipvé-raw-socket-factory-impl. {cc,h}
src/internet/model/ipv6-raw—-socket—impl. {cc, h}
src/internet/model/ipvé6-route. {cc,h}
src/internet/model/ipvé-routing-protocol. {cc,h}
src/internet/model/ipvé6-routing-table—-entry.{cc,h}
src/internet/model/ipvé6-static-routing. {cc,h}
src/internet/model/ndisc—-cache. {cc,h}
src/network/utils/inet6-socket—-address. {cc, h}
src/network/utils/ipvé-address.{cc,h}

Also some helpers are involved with IPv6:

src/internet/helper/internet-stack-helper.{cc, h}
src/internet/helper/ipv6-address-helper.{cc,h}
src/internet/helper/ipv6-interface—-container. {cc,h}
src/internet/helper/ipv6-list-routing—helper.{cc,h}
src/internet/helper/ipv6-routing-helper.{cc,h}
src/internet/helper/ipv6-static-routing-helper. {cc,h}
The model files can be roughly divided into:
e protocol models (e.g., ipv6, ipv6-13-protocol, icmpv6-14-protocol, etc.)
* routing models (i.e., anything with ‘routing’ in its name)
* sockets and interfaces (e.g., ipv6-raw-socket, ipv6-interface, ipv6-end-point, etc.)
e address-related things

* headers, option headers, extension headers, etc.

* accessory classes (e.g., ndisc-cache)

16.3.2 Usage

The following description is based on using the typical helpers found in the example code.

IPv6 does not need to be activated in a node. it is automatically added to the available protocols once the Internet
Stack is installed.

In order to not install IPv6 along with IPv4, it is possible to use ns3::InternetStackHelper method
Setlpv6Stackinstall (bool enable) before installing the InternetStack in the nodes.

Note that to have an IPv6-only network (i.e., to not install the IPv4 stack in a node) one should use
ns3::InternetStackHelper method Setlpv4Stacklnstall (bool enable) before the stack installation.

As an example, in the following code node O will have both IPv4 and IPv6, node 1 only only IPv6 and node 2 only
IPv4:

NodeContainer nj;
n.Create (3);

InternetStackHelper internet;
InternetStackHelper internetV4donly;
InternetStackHelper internetVéonly;

internetV4only.SetIpv6StackInstall (false);
internetVéonly.SetIpv4StackInstall (false);

(continues on next page)
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(continued from previous page)

internet.Install (n.Get (0));
internetVéonly.Install (n.Get (1));
internetV4only.Install (n.Get (2));

IPv6 addresses assignment

In order to use IPv6 on a network, the first thing to do is assigning IPv6 addresses.

Any IPv6-enabled ns-3 node will have at least one NetDevice: the ns3: : LoopbackNetDevice. The loopback device
address is : : 1. All the other NetDevices will have one or more IPv6 addresses:

¢ One link-local address: fe80::interface ID, where interface ID is derived from the NetDevice MAC
address.

* Zero or more global addresses, e.g., 2001 :db8: : 1.

Typically the first address on an interface will be the link-local one, with the global address(es) being the following
ones.

IPv6 global addresses might be:
* manually assigned
* auto-generated

ns-3 can use both methods, and it’s quite important to understand the implications of both.

Manually assigned IPv6 addresses

This is probably the easiest and most used method. As an example:

Ptr<Node> n0 = CreateObject<Node> ();
Ptr<Node> nl = CreateObject<Node> ();
NodeContainer net (n0O, nl);

CsmaHelper csma;

NetDeviceContainer ndc = csma.Install (net);

NS_LOG_INFO ("Assign IPv6 Addresses.");

Ipv6AddressHelper ipv6;

ipv6.SetBase (Ipv6Address ("2001:db8::"), Ipv6Prefix (64));
Ipv6InterfaceContainer ic = ipv6.Assign (ndc);

This method will add two global IPv6 addresses to the nodes. Note that, as usual for IPv6, all the nodes will also have
a link-local address. Typically the first address on an interface will be the link-local one, with the global address(es)
being the following ones.

Note that the global addresses will be derived from the MAC address. As a consequence, expect to have addresses
similar to 2001 :db8::200: ff:fe00:1.

It is possible to repeat the above to assign more than one global address to a node. However, due to the
Ipvé6AddressHelper singleton nature, one should first assign all the addresses of a network, then change the network
base (SetBase), then do a new assignment.

Alternatively, it is possible to assign a specific address to a node:
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Ptr<Node> nO = CreateObject<Node> ();
NodeContainer net (n0);

CsmaHelper csma;

NetDeviceContainer ndc = csma.Install (net);

NS_LOG_INFO ("Specifically Assign an IPv6 Address.");
Ipv6AddressHelper ipv6;

Ptr<NetDevice> device = ndc.Get (0);

Ptr<Node> node = device->GetNode ();

Ptr<Ipv6> ipvéproto = node->GetObject<Ipvé> ();

int32_t ifIndex = 0;

ifIndex = ipvé6proto->GetInterfaceForDevice (device);
Ipv6eInterfaceAddress ipv6Addr = Ipv6InterfaceAddress (Ipv6Address (
—"2001:db8:f00d:cafe::42"), Ipv6Prefix (64));
ipvéproto—>AddAddress (ifIndex, ipv6Addr);

Auto-generated IPv6 addresses

This is accomplished by relying on the RADVD protocol, implemented by the class Radvd. A helper class is avail-
able, which can be used to ease the most common tasks, e.g., setting up a prefix on an interface, if it is announced
periodically, and if the router is the default router for that interface.

A fine grain configuration is possible though the RadvdInterface class, which allows to setup every parameter of
the announced router advertisement on a given interface.

It is worth mentioning that the configurations must be set up before installing the application in the node.

Upon using this method, the nodes will acquire dynamically (i.e., during the simulation) one (or more) global ad-
dress(es) according to the RADVD configuration. These addresses will be bases on the RADVD announced prefix and
the node’s EUI-64.

Examples of RADVD use are shown in examples/ipv6/radvd.cc and examples/ipv6/radvd-two-prefix.
cc.

Note that the router (i.e., the node with Radvd) will have to have a global address, while the nodes us-
ing the auto-generated addresses (SLAAC) will have to have a link-local address. This is accomplished using
IpvbAddressHelper: :AssignWithoutAddress, e.g.:

Ipv6AddressHelper ipv6;

NetDeviceContainer tmp;

tmp.Add (dl.Get (0)); /# n0 =/

IpveInterfaceContainer iicl = ipv6.AssignWithoutAddress (tmp); /* n0O interface */

Random-generated IPv6 addresses

While IPv6 real nodes will use randomly generated addresses to protect privacy, ns-3 does NOT have this capability.
This feature haven’t been so far considered as interesting for simulation.

Networks with and without the onlink property

IPv6 adds the concept of “on-link” for addresses and prefixes. Simplifying the concept, a network with the on-link
property behaves roughly as IPv4: a node will assume that any address belonging to the on-link prefix is reachable on
the link, so it uses Neighbor Discovery Protocol (NDP) to find the MAC address corresponding to the IPv6 address. If
the prefix is not marked as “on-link”, then any packet is sent to the default router.
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Radvd can announce prefixes that have the on-link flag not set. Moreover, it is possible to add an address
to a node without setting the on-link property for the prefix used in the address. The function to use is
Ipv6AddressHelper: :AssignWithoutOnLink.

Duplicate Address Detection (DAD)

Nodes will perform DAD (it can be disabled using an Icmpvé6L4Protocol attribute). Upon receiving a DAD, how-
ever, nodes will not react to it. As is: DAD reaction is incomplete so far. The main reason relies on the missing
random-generated address capability. Moreover, since ns-3 nodes will usually be well-behaving, there shouldn’t be
any Duplicate Address. This might be changed in the future, so as to avoid issues with real-world integrated simula-
tions.

Explicit Congestion Notification (ECN) bits in IPv6

 In IPv6, ECN bits are the last 2 bits of the Traffic class and occupy 10th and 11th bit in the header.

* The IPv6 header class defines an EcnType enum with all four ECN codepoints (ECN_NotECT, ECN_ECT]1,
ECN_ECTO0, ECN_CE) mentioned in RFC 3168, and also a setter and getter method to handle ECN values in
the Traffic Class field.

16.3.3 Ipv6QueueDiscltem

The traffic control sublayer in ns-3 handles objects of class QueueDiscItem which are used to hold an ns3::Packet and
an ns3::Header. This is done to facilitate the marking of packets for Explicit Congestion Notification. The Mark ()
method is implemented in [pv6QueueDiscltem. It returns true if marking the packet is successful, i.e., it successfully
sets the CE bit in the IPv6 header. The Mark () method will return false, however, if the IPv6 header indicates the
ECN_NotECT codepoint.

Host and Router behaviour in IPv6 and ns-3
In IPv6 there is a clear distinction between routers and hosts. As one might expect, routers can forward packets from
an interface to another interface, while hosts drop packets not directed to them.

Unfortunately, forwarding is not the only thing affected by this distinction, and forwarding itself might be fine-tuned,
e.g., to forward packets incoming from an interface and drop packets from another interface.

In ns-3 a node is configured to be an host by default. There are two main ways to change this behaviour:

e Using ns3::Ipvé6InterfaceContainer SetForwarding(uint32_t i, bool router) where i is the interface index
in the container.

* Changing the ns3: : Ipvé6 attribute IpForward.
Either one can be used during the simulation.

A fine-grained setup can be accomplished by using ns3::Ipvé6Interface SetForwarding (bool forward); which
allows to change the behaviour on a per-interface-basis.

Note that the node-wide configuration only serves as a convenient method to enable/disable the
ns3::Ipv6Interface specific setting. An Ipv6Interface added to a node with forwarding enabled will be
set to be forwarding as well. This is really important when a node has interfaces added during the simulation.

According to the ns3: : Ipv6Interface forwarding state, the following happens:

» Forwarding OFF
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* The node will NOT reply to Router Solicitation

* The node will react to Router Advertisement

* The node will periodically send Router Solicitation

* Routing protocols MUST DROP packets not directed to the node
* Forwarding ON

* The node will reply to Router Solicitation

¢ The node will NOT react to Router Advertisement

* The node will NOT send Router Solicitation

* Routing protocols MUST forward packets

The behaviour is matching ip-sysctl.txt (http://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt) with the
difference that it’s not possible to override the behaviour using esoteric settings (e.g., forwarding but accept router
advertisements, accept_ra=2, or forwarding but send router solicitations forwarding=2).

Consider carefully the implications of packet forwarding. As an example, a node will NOT send ICMPv6
PACKET_TOO_BIG messages from an interface with forwarding off. This is completely normal, as the Routing
protocol will drop the packet before attempting to forward it.

Helpers

Typically the helpers used in IPv6 setup are:
* ns3::InternetStackHelper
® ns3::Ipvb6AddressHelper
* ns3::IpveInterfaceContainer

The use is almost identical to the corresponding IPv4 case, e.g.:

NodeContainer nj;
n.Create (4);

NS_LOG_INFO ("Create IPv6 Internet Stack");
InternetStackHelper internetv6;
internetvé6.Install (n);

NS_LOG_INFO ("Create channels.");
CsmaHelper csma;
NetDeviceContainer d = csma.Install (n);

NS_LOG_INFO ("Create networks and assign IPv6 Addresses.");
Ipv6AddressHelper ipv6;

ipv6.SetBase (Ipv6Address ("2001:db8::"), IpvePrefix (64));
Ipvé6InterfaceContainer iic = ipv6.Assign (d);

Additionally, a common task is to enable forwarding on one of the nodes and to setup a default route toward it in the
other nodes, e.g.:

iic.SetForwarding (0, true);
iic.SetDefaultRouteInAllNodes (0);

This will enable forwarding on the node 0 and will setup a default route in ns3:: Ipv6StaticRouting on all the
other nodes. Note that this requires that Ipv6StaticRouting is present in the nodes.
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The IPv6 routing helpers enable the user to perform specific tasks on the particular routing algorithm and to print the
routing tables.

Attributes

Many classes in the ns-3 IPv6 implementation contain attributes. The most useful ones are:
* ns3::Ipvb

 IpForward, boolean, default false. Globally enable or disable IP forwarding for all current and future IPv6
devices.

* MtuDiscover, boolean, default true. If disabled, every interface will have its MTU set to 1280 bytes.

* ns3::Ipv6L3Protocol

* DefaultTtl, uint§_t, default 64. The TTL value set by default on all outgoing packets generated on this node.
* Sendlcmpv6Redirect, boolean, default true. Send the ICMPv6 Redirect when appropriate.

® ns3::Icmpv6L4Protocol

e DAD, boolean, default true. Always do DAD (Duplicate Address Detection) check.

®* ns3::NdiscCache

» UnresolvedQueueSize, uint32_t, default 3. Size of the queue for packets pending an NA reply.

Output

The IPv6 stack provides some useful trace sources:
® ns3::Ipv6L3Protocol
e Tx, Send IPv6 packet to outgoing interface.
* Rx, Receive IPv6 packet from incoming interface.
* Drop, Drop IPv6 packet.
® ns3::Ipv6Extension
* Drop, Drop IPv6 packet.
The latest trace source is generated when a packet contains an unknown option blocking its processing.

Mind that ns3: : NdiscCache could drop packets as well, and they are not logged in a trace source (yet). This might
generate some confusion in the sent/received packets counters.

Advanced Usage

IPv6 maximum transmission unit (MTU) and fragmentation

ns-3 NetDevices define the MTU according to the L2 simulated Device. IPv6 requires that the minimum MTU is 1280
bytes, so all NetDevices are required to support at least this MTU. This is the link-MTU.

In order to support different MTUs in a source-destination path, ns-3 IPv6 model can perform fragmentation. This
can be either triggered by receiving a packet bigger than the link-MTU from the L4 protocols (UDP, TCP, etc.), or
by receiving an ICMPv6 PACKET_TOO_BIG message. The model mimics RFC 1981, with the following notable
exceptions:
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* L4 protocols are not informed of the Path MTU change
e TCP can not change its Segment Size according to the Path-MTU.
Both limitations are going to be removed in due time.

The Path-MTU cache is currently based on the source-destination IPv6 addresses. Further classifications (e.g., flow
label) are possible but not yet implemented.

The Path-MTU default validity time is 10 minutes. After the cache entry expiration, the Path-MTU information is
removed and the next packet will (eventually) trigger a new ICMPv6 PACKET_TOO_BIG message. Note that 1) this
is consistent with the RFC specification and 2) L4 protocols are responsible for retransmitting the packets.

Examples

The examples for IPv6 are in the directory examples/ipv6. These examples focus on the most interesting IPv6
peculiarities, such as fragmentation, redirect and so on.

Moreover, most TCP and UDP examples located in examples/udp, examples/tcp, etc. have a command-line
option to use IPv6 instead of IPv4.

Troubleshooting
There are just a few pitfalls to avoid while using ns-3 IPv6.
Routing loops

Since the only (so far) routing scheme available for IPv6 is ns3:: Ipv6StaticRouting, default router have to be
setup manually. When there are two or more routers in a network (e.g., node A and node B), avoid using the helper
function SetDefaultRouteInAlINodes for more than one router.

The consequence would be to install a default route to B in A and a default route pointing to A in B, generating a loop.

Global address leakage

Remember that addresses in IPv6 are global by definition. When using IPv6 with an emulation ns-3 capability, avoid
at all costs address leakage toward the global Internet. It is advisable to setup an external firewall to prevent leakage.

2001:DB8::/32 addresses

IPv6 standard (RFC 3849) defines the 2001 :DB8: : /32 address class for the documentation. This manual uses this
convention. The addresses in this class are, however, only usable in a document, and routers should discard them.

16.3.4 Validation

The IPv6 protocols has not yet been extensively validated against real implementations. The actual tests involve mainly
performing checks of the .pcap trace files with Wireshark, and the results are positive.
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16.4 Routing overview

ns-3 is intended to support traditional routing approaches and protocols, support ports of open source routing imple-
mentations, and facilitate research into unorthodox routing techniques. The overall routing architecture is described
below in Routing architecture. Users who wish to just read about how to configure global routing for wired topologies
can read Global centralized routing. Unicast routing protocols are described in Unicast routing. Multicast routing is
documented in Multicast routing.

16.4.1 Routing architecture

Future work:
API corresponding
to IP unicast

Future work:
API corresponding
to IP multicast

"user-space" T Netlink sockets routing sockets sockets API for applications

"kernel-space"

ns3 raw sockets

Transport Ipv4RoutingProtocol::RouteOutputf)  Transport
protocol Lol protocol
(e.g. UDP) ‘V (e.g. UDP)
_,"'."' x Note: am not showing
) '3 ‘_/ Ptr<lpv4Route> ARP, Ipvéinterface
Ipv4RoutingProtocol returned
N
LocalDeliver() callba Unicast or \"‘::"

Multienst ..\:.\\ IlfvzltR(:)uttingfro ocol::
Forward hETORR N outeOutput()

callback Ptr<Ipv4Routes "~ :.. .(j?r raw socketq)

returned AR

Routelnput (Ptr<Packef>,

4 callbacks) \ 4 \"‘;\V
I SendOut()
Receive() IpForward()
Ipv4L3Protocol IpMulticastForward()
(incoming) (outgoir)g)
NetDevice NetDevice

Fig. 3: Overview of routing

Overview of routing shows the overall routing architecture for Ipv4. The key objects are Ipv4L3Protocol,
Ipv4RoutingProtocol(s) (a class to which all routing/forwarding has been delegated from Ipv4L3Protocol), and
Ipv4Route(s).

Ipv4L3Protocol must have at least one Ipv4RoutingProtocol added to it at simulation setup time. This is done explicitly
by calling Ipv4::SetRoutingProtocol ().

The abstract base class Ipv4RoutingProtocol () declares a minimal interface, consisting of two methods: RouteOutput
() and Routelnput (). For packets traveling outbound from a host, the transport protocol will query Ipv4 for the
Ipv4RoutingProtocol object interface, and will request a route via Ipv4RoutingProtocol::RouteOutput (). A Ptr to
Ipv4Route object is returned. This is analogous to a dst_cache entry in Linux. The Ipv4Route is carried down to the
Ipv4L3Protocol to avoid a second lookup there. However, some cases (e.g. Ipv4 raw sockets) will require a call to
RouteOutput() directly from Ipv4L3Protocol.

For packets received inbound for forwarding or delivery, the following steps occur. Ipv4L3Protocol::Receive() calls
Ipv4RoutingProtocol::RouteInput(). This passes the packet ownership to the Ipv4RoutingProtocol object. There are
four callbacks associated with this call:

¢ LocalDeliver

¢ UnicastForward
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e MulticastForward
¢ Error

The Ipv4RoutingProtocol must eventually call one of these callbacks for each packet that it takes responsibility for.
This is basically how the input routing process works in Linux.

Ipv4RoutingProtocol
abstract, in
src/internet

+Routelnput () Possible future protocols
+RouteOutput () (not implemented yet)

4 E ---------------------- E

[ I I I I H 1
Ipv4ListRouting | |Ipv4StaticRouting | |Ipv4GlobalRouting OLSR | [Ipv4ClickRouting || Ipv4LinuxRouting E

in src/internet in src/internet/ in src/internet in src/olsr/ e.g. wrap the H e.g. full-blown

Click Modular H Linux policy
Router H routing with

route cache

Fig. 4: Ipv4Routing specialization.

This overall architecture is designed to support different routing approaches, including (in the future) a Linux-like
policy-based routing implementation, proactive and on-demand routing protocols, and simple routing protocols for
when the simulation user does not really care about routing.

Ipv4Routing specialization. illustrates how multiple routing protocols derive from this base class. A class
Ipv4ListRouting (implementation class Ipv4ListRoutinglmpl) provides the existing list routing approach in ns-3.
Its API is the same as base class Ipv4Routing except for the ability to add multiple prioritized routing protocols
(Ipv4ListRouting:: AddRoutingProtocol(), Ipv4ListRouting::GetRoutingProtocol()).

The details of these routing protocols are described below in Unicast routing. For now, we will first start with a basic
unicast routing capability that is intended to globally build routing tables at simulation time t=0 for simulation users
who do not care about dynamic routing.

16.4.2 Unicast routing

The following unicast routing protocols are defined for IPv4 and IPv6:
¢ classes Ipv4ListRouting and Ipv6ListRouting (used to store a prioritized list of routing protocols)
* classes Ipv4StaticRouting and Ipv6StaticRouting (covering both unicast and multicast)
* class Ipv4GlobalRouting (used to store routes computed by the global route manager, if that is used)

* class Ipv4NixVectorRouting (a more efficient version of global routing that stores source routes in a packet
header field)

¢ class Rip - the IPv4 RIPv2 protocol (RFC 2453)

¢ class RipNg - the IPv6 RIPng protocol (RFC 2080)

* [Pv4 Optimized Link State Routing (OLSR) (a MANET protocol defined in RFC 3626)

* [Pv4 Ad Hoc On Demand Distance Vector (AODV) (a MANET protocol defined in RFC 3561)
 [Pv4 Destination Sequenced Distance Vector (DSDV) (a MANET protocol)

 [Pv4 Dynamic Source Routing (DSR) (a MANET protocol)

In the future, this architecture should also allow someone to implement a Linux-like implementation with routing
cache, or a Click modular router, but those are out of scope for now.
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Ipv[4,6]ListRouting

This section describes the current default ns-3 Ipv[4,6]RoutingProtocol. Typically, multiple routing protocols are sup-
ported in user space and coordinate to write a single forwarding table in the kernel. Presently in ns-3, the implementa-
tion instead allows for multiple routing protocols to build/keep their own routing state, and the IP implementation will
query each one of these routing protocols (in some order determined by the simulation author) until a route is found.

We chose this approach because it may better facilitate the integration of disparate routing approaches that may be
difficult to coordinate the writing to a single table, approaches where more information than destination IP address
(e.g., source routing) is used to determine the next hop, and on-demand routing approaches where packets must be
cached.

Ipv[4,6]ListRouting::AddRoutingProtocol

Classes Ipv4ListRouting and Ipv6ListRouting provides a pure virtual function declaration for the method that allows
one to add a routing protocol:

void AddRoutingProtocol (Ptr<Ipv4RoutingProtocol> routingProtocol,
intl6_t priority);

void AddRoutingProtocol (Ptr<Ipv6RoutingProtocol> routingProtocol,
intl6_t priority);

These methods are implemented respectively by class Ipv4ListRoutinglmpl and by class Ipv6ListRoutingImpl in the
internet module.

The priority variable above governs the priority in which the routing protocols are inserted. Notice that it is a
signed int. By default in ns-3, the helper classes will instantiate a Ipv[4,6]ListRoutinglmpl object, and add to it
an Ipv[4,6]StaticRoutingImpl object at priority zero. Internally, a list of Ipv[4,6]RoutingProtocols is stored, and and
the routing protocols are each consulted in decreasing order of priority to see whether a match is found. Therefore,
if you want your Ipv4RoutingProtocol to have priority lower than the static routing, insert it with priority less than 0;

e.g.:
Ptr<MyRoutingProtocol> myRoutingProto = CreateObject<MyRoutingProtocol> ();

listRoutingPtr->AddRoutingProtocol (myRoutingProto, -10);

Upon calls to RouteOutput() or Routelnput(), the list routing object will search the list of routing protocols, in priority
order, until a route is found. Such routing protocol will invoke the appropriate callback and no further routing protocols
will be searched.

Global centralized routing

Global centralized routing is sometimes called “God” routing; it is a special implementation that walks the simulation
topology and runs a shortest path algorithm, and populates each node’s routing tables. No actual protocol overhead
(on the simulated links) is incurred with this approach. It does have a few constraints:

* Wired only: It is not intended for use in wireless networks.
¢ Unicast only: It does not do multicast.

* Scalability: Some users of this on large topologies (e.g. 1000 nodes) have noticed that the current implemen-
tation is not very scalable. The global centralized routing will be modified in the future to reduce computations
and runtime performance.

Presently, global centralized IPv4 unicast routing over both point-to-point and shared (CSMA) links is supported.
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By default, when using the ns-3 helper API and the default InternetStackHelper, global routing capability will be added
to the node, and global routing will be inserted as a routing protocol with lower priority than the static routes (i.e.,
users can insert routes via Ipv4StaticRouting API and they will take precedence over routes found by global routing).

Global Unicast Routing API

The public API is very minimal. User scripts include the following:

#include "ns3/internet-module.h"

If the default InternetStackHelper is used, then an instance of global routing will be aggregated to each node. After IP
addresses are configured, the following function call will cause all of the nodes that have an Ipv4 interface to receive
forwarding tables entered automatically by the GlobalRouteManager:

Ipv4GlobalRoutingHelper: :PopulateRoutingTables ();

Note: A reminder that the wifi NetDevice will work but does not take any wireless effects into account. For wireless,
we recommend OLSR dynamic routing described below.

It is possible to call this function again in the midst of a simulation using the following additional public function:

Ipv4GlobalRoutingHelper: :RecomputeRoutingTables () ;

which flushes the old tables, queries the nodes for new interface information, and rebuilds the routes.

For instance, this scheduling call will cause the tables to be rebuilt at time 5 seconds:

Simulator: :Schedule (Seconds (5),
&Ipv4GlobalRoutingHelper: :RecomputeRoutingTables) ;

There are two attributes that govern the behavior. The first is Ipv4GlobalRouting::RandomEcmpRouting. If set to true,
packets are randomly routed across equal-cost multipath routes. If set to false (default), only one route is consistently
used. The second is Ipv4GlobalRouting::RespondToInterfaceEvents. If set to true, dynamically recompute the global
routes upon Interface notification events (up/down, or add/remove address). If set to false (default), routing may break
unless the user manually calls RecomputeRoutingTables() after such events. The default is set to false to preserve
legacy ns-3 program behavior.

Global Routing Implementation

This section is for those readers who care about how this is implemented. A singleton object (GlobalRouteManager)
is responsible for populating the static routes on each node, using the public Ipv4 API of that node. It queries each
node in the topology for a “globalRouter” interface. If found, it uses the API of that interface to obtain a “link
state advertisement (LSA)” for the router. Link State Advertisements are used in OSPF routing, and we follow their
formatting.

It is important to note that all of these computations are done before packets are flowing in the network. In particular,
there are no overhead or control packets being exchanged when using this implementation. Instead, this global route
manager just walks the list of nodes to build the necessary information and configure each node’s routing table.

The GlobalRouteManager populates a link state database with LSAs gathered from the entire topology. Then, for
each router in the topology, the GlobalRouteManager executes the OSPF shortest path first (SPF) computation on the
database, and populates the routing tables on each node.

The quagga (http://www.quagga.net) OSPF implementation was used as the basis for the routing computation logic.
One benefit of following an existing OSPF SPF implementation is that OSPF already has defined link state advertise-
ments for all common types of network links:
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* point-to-point (serial links)

e point-to-multipoint (Frame Relay, ad hoc wireless)
* non-broadcast multiple access (ATM)

¢ broadcast (Ethernet)

Therefore, we think that enabling these other link types will be more straightforward now that the underlying OSPF
SPF framework is in place.

Presently, we can handle IPv4 point-to-point, numbered links, as well as shared broadcast (CSMA) links. Equal-cost
multipath is also supported. Although wireless link types are supported by the implementation, note that due to the
nature of this implementation, any channel effects will not be considered and the routing tables will assume that every
node on the same shared channel is reachable from every other node (i.e. it will be treated like a broadcast CSMA
link).

The GlobalRouteManager first walks the list of nodes and aggregates a GlobalRouter interface to each one as follows:

typedef std::vector < Ptr<Node> >::iterator Iterator;
for (Iterator i = NodelList::Begin (); 1 != NodelList::End (); i++)
{
Ptr<Node> node = =*i;
Ptr<GlobalRouter> globalRouter = CreateObject<GlobalRouter> (node);
node->AggregateObject (globalRouter);
}

This interface is later queried and used to generate a Link State Advertisement for each router, and this link state
database is fed into the OSPF shortest path computation logic. The Ipv4 API is finally used to populate the routes
themselves.

RIP and RIPng

The RIPv2 protocol for IPv4 is described in the RFC 2453, and it consolidates a number of improvements over the
base protocol defined in RFC 1058.

This IPv6 routing protocol (RFC 2080) is the evolution of the well-known RIPv1 (see RFC 1058 and RFC 1723)
routing protocol for IPv4.

The protocols are very simple, and are normally suitable for flat, simple network topologies.

RIPv1, RIPv2, and RIPng have the very same goals and limitations. In particular, RIP considers any route with a
metric equal or greater than 16 as unreachable. As a consequence, the maximum number of hops is the network must
be less than 15 (the number of routers is not set). Users are encouraged to read RFC 2080 and RFC 1058 to fully
understand RIP behaviour and limitations.

Routing convergence

RIP uses a Distance-Vector algorithm, and routes are updated according to the Bellman-Ford algorithm (sometimes
known as Ford-Fulkerson algorithm). The algorithm has a convergence time of O(IVI*|El) where VI and IEl are the
number of vertices (routers) and edges (links) respectively. It should be stressed that the convergence time is the
number of steps in the algorithm, and each step is triggered by a message. Since Triggered Updates (i.e., when a route
is changed) have a 1-5 seconds cooldown, the topology can require some time to be stabilized.

Users should be aware that, during routing tables construction, the routers might drop packets. Data traffic should be
sent only after a time long enough to allow RIP to build the network topology. Usually 80 seconds should be enough
to have a suboptimal (but working) routing setup. This includes the time needed to propagate the routes to the most
distant router (16 hops) with Triggered Updates.
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If the network topology is changed (e.g., a link is broken), the recovery time might be quite high, and it might be
even higher than the initial setup time. Moreover, the network topology recovery is affected by the Split Horizoning
strategy.

The examples examples/routing/ripng-simple-network.cc and examples/routing/
rip-simple-network.cc shows both the network setup and network recovery phases.

Split Horizoning

Split Horizon is a strategy to prevent routing instability. Three options are possible:
* No Split Horizon
* Split Horizon
* Poison Reverse

In the first case, routes are advertised on all the router’s interfaces. In the second case, routers will not advertise a route
on the interface from which it was learned. Poison Reverse will advertise the route on the interface from which it was
learned, but with a metric of 16 (infinity). For a full analysis of the three techniques, see RFC 1058, section 2.2.

The examples are based on the network topology described in the RFC, but it does not show the effect described there.

The reason are the Triggered Updates, together with the fact that when a router invalidates a route, it will immediately
propagate the route unreachability, thus preventing most of the issues described in the RFC.

However, with complex topologies, it is still possible to have route instability phenomena similar to the one described
in the RFC after a link failure. As a consequence, all the considerations about Split Horizon remains valid.

Default routes

RIP protocol should be installed only on routers. As a consequence, nodes will not know what is the default router.

To overcome this limitation, users should either install the default route manually (e.g., by resorting to
Ipv4StaticRouting or Ipv6StaticRouting), or by using RADVd (in case of IPv6). RADVA is available in ns-3 in
the Applications module, and it is strongly suggested.

Protocol parameters and options

The RIP ns-3 implementations allow to change all the timers associated with route updates and routes lifetime.
Moreover, users can change the interface metrics on a per-node basis.

The type of Split Horizoning (to avoid routes back-propagation) can be selected on a per-node basis, with the choices
being “no split horizon”, “split horizon” and “poison reverse”. See RFC 2080 for further details, and RFC 1058 for a
complete discussion on the split horizoning strategies.

Moreover, it is possible to use a non-standard value for Link Down Value (i.e., the value after which a link is considered
down). The default is value is 16.

Limitations

There is no support for the Next Hop option (RFC 2080, Section 2.1.1). The Next Hop option is useful when RIP is
not being run on all of the routers on a network. Support for this option may be considered in the future.

There is no support for CIDR prefix aggregation. As a result, both routing tables and route advertisements may be
larger than necessary. Prefix aggregation may be added in the future.
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Other routing protocols

Other routing protocols documentation can be found under the respective modules sections, e.g.:
« AODV
* Click
* DSDV
 DSR
* NixVectorRouting
* OLSR

e etc.

16.4.3 Multicast routing

The following function is used to add a static multicast route to a node:

void

Ipv4StaticRouting: :AddMulticastRoute (Ipv4Address origin,
Ipv4Address group,
uint32_t inputInterface,
std::vector<uint32_t> outputlInterfaces);

A multicast route must specify an origin IP address, a multicast group and an input network interface index as condi-
tions and provide a vector of output network interface indices over which packets matching the conditions are sent.
Typically there are two main types of multicast routes:

* Routes used during forwarding, and

* Routes used in the originator node.
In the first case all the conditions must be explicitly provided.

In the second case, the route is equivalent to a unicast route, and must be added through
Ipv4StaticRouting: :AddHostRouteTo.

Another command sets the default multicast route:

void
Ipv4StaticRouting: :SetDefaultMulticastRoute (uint32_t outputlInterface);

This is the multicast equivalent of the unicast version SetDefaultRoute. We tell the routing system what to do in the
case where a specific route to a destination multicast group is not found. The system forwards packets out the specified
interface in the hope that “something out there” knows better how to route the packet. This method is only used in
initially sending packets off of a host. The default multicast route is not consulted during forwarding — exact routes
must be specified using AddMulticastRoute for that case.

Since we’re basically sending packets to some entity we think may know better what to do, we don’t pay attention
to “subtleties” like origin address, nor do we worry about forwarding out multiple interfaces. If the default multicast
route is set, it is returned as the selected route from LookupStatic irrespective of origin or multicast group if another
specific route is not found.

Finally, a number of additional functions are provided to fetch and remove multicast routes:
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uint32_t GetNMulticastRoutes (void) const;
Ipv4MulticastRoute *GetMulticastRoute (uint32_t i) const;
Ipv4MulticastRoute *GetDefaultMulticastRoute (void) const;

bool RemoveMulticastRoute (Ipv4Address origin,
Ipv4Address group,
uint32_t inputlInterface);

void RemoveMulticastRoute (uint32_t index);

16.5 TCP models in ns-3

This chapter describes the TCP models available in ns-3.

16.5.1 Overview of support for TCP

ns-3 was written to support multiple TCP implementations. The implementations inherit from a few common header
classes in the src/network directory, so that user code can swap out implementations with minimal changes to the
scripts.

There are three important abstract base classes:

¢ class TcpSocket: This is defined in src/internet/model/tcp-socket. {cc,h}. This class exists for
hosting TcpSocket attributes that can be reused across different implementations. For instance, the attribute
InitialCwnd can be used for any of the implementations that derive from class TcpSocket.

* class TcpSocketFactory: This is used by the layer-4 protocol instance to create TCP sockets of the right type.

¢ class TcpCongestionOps: This supports different variants of congestion control— a key topic of simulation-
based TCP research.

There are presently two active and one legacy implementations of TCP available for ns-3.
* anatively implemented TCP for ns-3
* support for kernel implementations via Direct Code Execution (DCE)
* (legacy) support for kernel implementations for the Network Simulation Cradle (NSC)

NSC is no longer actively supported; it requires use of gcc-5 or gcc-4.9, and only covers up to Linux kernel version
2.6.29.

Direct Code Execution is also limited in its support for newer kernels; at present, only Linux kernel 4.4 is supported.
However, the TCP implementations in kernel 4.4 can still be used for ns-3 validation or for specialized simulation use
cases.

It should also be mentioned that various ways of combining virtual machines with ns-3 makes available also some
additional TCP implementations, but those are out of scope for this chapter.

16.5.2 ns-3 TCP

In brief, the native ns-3 TCP model supports a full bidirectional TCP with connection setup and close logic. Several
congestion control algorithms are supported, with CUBIC the default, and NewReno, Westwood, Hybla, HighSpeed,
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Vegas, Scalable, Veno, Binary Increase Congestion Control (BIC), Yet Another HighSpeed TCP (YeAH), Illinois, H-
TCP, Low Extra Delay Background Transport (LEDBAT), TCP Low Priority (TCP-LP), Data Center TCP (DCTCP)
and Bottleneck Bandwidth and RTT (BBR) also supported. The model also supports Selective Acknowledgements
(SACK), Proportional Rate Reduction (PRR) and Explicit Congestion Notification (ECN). Multipath-TCP is not yet
supported in the ns-3 releases.

Model history

Until the ns-3.10 release, ns-3 contained a port of the TCP model from GTNetS, developed initially by George Riley
and ported to ns-3 by Raj Bhattacharjea. This implementation was substantially rewritten by Adriam Tam for ns-
3.10. In 2015, the TCP module was redesigned in order to create a better environment for creating and carrying out
automated tests. One of the main changes involves congestion control algorithms, and how they are implemented.

Before the ns-3.25 release, a congestion control was considered as a stand-alone TCP through an inheritance rela-
tion: each congestion control (e.g. TcpNewReno) was a subclass of TcpSocketBase, reimplementing some inherited
methods. The architecture was redone to avoid this inheritance, by making each congestion control a separate class,
and defining an interface to exchange important data between TcpSocketBase and the congestion modules. The Linux
tcp_congestion_ops interface was used as the design reference.

Along with congestion control, Fast Retransmit and Fast Recovery algorithms have been modified; in previous re-
leases, these algorithms were delegated to TcpSocketBase subclasses. Starting from ns-3.25, they have been merged
inside TcpSocketBase. In future releases, they can be extracted as separate modules, following the congestion control
design.

As of the ns-3.31 release, the default initial window was set to 10 segments (in previous releases, it was set to 1
segment). This aligns with current Linux default, and is discussed further in RFC 6928.

In the ns-3.32 release, the default recovery algorithm was set to Proportional Rate Reduction (PRR) from the classic
ack-clocked Fast Recovery algorithm.

In the ns-3.34 release, the default congestion control algorithm was set to CUBIC from NewReno.

Acknowledgments

As mentioned above, ns-3 TCP has had multiple authors and maintainers over the years. Several publications exist on
aspects of ns-3 TCP, and users of ns-3 TCP are requested to cite one of the applicable papers when publishing new
work.

A general reference on the current architecture is found in the following paper:

e Maurizio Casoni, Natale Patriciello, Next-generation TCP for ns-3 simulator, Simulation Modelling
Practice and Theory, Volume 66, 2016, Pages 81-93. (http://www.sciencedirect.com/science/article/pii/
S1569190X15300939)

For an academic peer-reviewed paper on the SACK implementation in ns-3, please refer to:

* Natale Patriciello. 2017. A SACK-based Conservative Loss Recovery Algorithm for ns-3 TCP: a Linux-inspired
Proposal. In Proceedings of the Workshop on ns-3 (WNS3 ‘17). ACM, New York, NY, USA, 1-8. (https:
//dl.acm.org/citation.cfm?id=3067666)

Usage
In many cases, usage of TCP is set at the application layer by telling the ns-3 application which kind of socket factory
to use.

Using the helper functions defined in src/applications/helper and src/network/helper, here is how one
would create a TCP receiver:
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// Create a packet sink on the star "hub" to receive these packets
uintl6_t port = 50000;

Address sinkLocalAddress (InetSocketAddress (Ipv4Address::GetAny (), port));
PacketSinkHelper sinkHelper ("ns3::TcpSocketFactory", sinkLocalAddress);
ApplicationContainer sinkApp = sinkHelper.Install (serverNode);
sinkApp.Start (Seconds (1.0));

sinkApp.Stop (Seconds (10.0));

Similarly, the below snippet configures OnOffApplication traffic source to use TCP:

// Create the OnOff applications to send TCP to the server
OnOffHelper clientHelper ("ns3::TcpSocketFactory", Address ());

The careful reader will note above that we have specified the Typeld of an abstract base class TcpSocketFactory.
How does the script tell ns-3 that it wants the native ns-3 TCP vs. some other one? Well, when internet stacks are added
to the node, the default TCP implementation that is aggregated to the node is the ns-3 TCP. This can be overridden as
we show below when using Network Simulation Cradle. So, by default, when using the ns-3 helper API, the TCP that
is aggregated to nodes with an Internet stack is the native ns-3 TCP.

To configure behavior of TCP, a number of parameters are exported through the ns-3 attribute system. These are
documented in the Doxygen for class TcpSocket. For example, the maximum segment size is a settable attribute.

To set the default socket type before any internet stack-related objects are created, one may put the following statement
at the top of the simulation program:

Config::SetDefault ("ns3::TcplL4Protocol::SocketType", StringValue ("ns3::TcpNewReno

="

For users who wish to have a pointer to the actual socket (so that socket operations like Bind(), setting socket options,
etc. can be done on a per-socket basis), Tcp sockets can be created by using the Socket : : CreateSocket () method.
The Typeld passed to CreateSocket() must be of type ns3: : SocketFactory, so configuring the underlying socket
type must be done by twiddling the attribute associated with the underlying TcpL4Protocol object. The easiest way to
get at this would be through the attribute configuration system. In the below example, the Node container “nOn1” is
accessed to get the zeroth element, and a socket is created on this node:

// Create and bind the socket...
Typeld tid = Typeld::LookupByName ("ns3::TcpNewReno");
Config::Set ("/NodelList/«/$ns3::TcpL4Protocol/SocketType", TypeldValue (tid));
Ptr<Socket> localSocket =
Socket::CreateSocket (nOnl.Get (0), TcpSocketFactory::GetTypeId ());

Above, the “*” wild card for node number is passed to the attribute configuration system, so that all future sockets on
all nodes are set to NewReno, not just on node ‘nOnl.Get (0)’. If one wants to limit it to just the specified node, one
would have to do something like:

// Create and bind the socket...
Typeld tid = Typeld::LookupByName ("ns3::TcpNewReno");
std::stringstream nodelId;
nodeId << nOnl.Get (0)->GetId ();
std: :string specificNode = "/NodeList/" + nodeld.str () + "/S$ns3::TcpL4Protocol/
—SocketType";
Config::Set (specificNode, TypelIdvalue (tid));
Ptr<Socket> localSocket =
Socket::CreateSocket (nOnl.Get (0), TcpSocketFactory::GetTypeId ());

Once a TCP socket is created, one will want to follow conventional socket logic and either connect() and send() (for a
TCP client) or bind(), listen(), and accept() (for a TCP server). Please note that applications usually create the sockets
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they use automatically, and so is not straightforward to connect directly to them using pointers. Please refer to the
source code of your preferred application to discover how and when it creates the socket.

TCP Socket interaction and interface with Application layer

In the following there is an analysis on the public interface of the TCP socket, and how it can be used to interact
with the socket itself. An analysis of the callback fired by the socket is also carried out. Please note that, for the
sake of clarity, we will use the terminology “Sender” and “Receiver” to clearly divide the functionality of the socket.
However, in TCP these two roles can be applied at the same time (i.e. a socket could be a sender and a receiver at the
same time): our distinction does not lose generality, since the following definition can be applied to both sockets in
case of full-duplex mode.

TCP state machine (for commodity use)

In ns-3 we are fully compliant with the state machine depicted in Figure TCP State machine.

Public interface for receivers (e.g. servers receiving data)

Bind() Bind the socket to an address, or to a general endpoint. A general endpoint is an endpoint with an ephemeral
port allocation (that is, a random port allocation) on the 0.0.0.0 IP address. For instance, in current applications,
data senders usually binds automatically after a Connect() over a random port. Consequently, the connection
will start from this random port towards the well-defined port of the receiver. The IP 0.0.0.0 is then translated
by lower layers into the real IP of the device.

Bind6() Same as Bind(), but for IPv6.
BindToNetDevice() Bind the socket to the specified NetDevice, creating a general endpoint.

Listen() Listen on the endpoint for an incoming connection. Please note that this function can be called only in the
TCP CLOSED state, and transit in the LISTEN state. When an incoming request for connection is detected
(i.e. the other peer invoked Connect()) the application will be signaled with the callback NotifyConnectionRe-
quest (set in SetAcceptCallback() beforehand). If the connection is accepted (the default behavior, when the
associated callback is a null one) the Socket will fork itself, i.e. a new socket is created to handle the incoming
data/connection, in the state SYN_RCVD. Please note that this newly created socket is not connected anymore
to the callbacks on the “father” socket (e.g. DataSent, Recv); the pointer of the newly created socket is provided
in the Callback NotifyNewConnectionCreated (set beforehand in SetAcceptCallback), and should be used to
connect new callbacks to interesting events (e.g. Recv callback). After receiving the ACK of the SYN-ACK,
the socket will set the congestion control, move into ESTABLISHED state, and then notify the application with
NotifyNewConnectionCreated.

ShutdownSend() Signal a termination of send, or in other words prevents data from being added to the buffer. After
this call, if buffer is already empty, the socket will send a FIN, otherwise FIN will go when buffer empties.
Please note that this is useful only for modeling “Sink” applications. If you have data to transmit, please refer
to the Send() / Close() combination of API.

GetRxAvailable() Get the amount of data that could be returned by the Socket in one or multiple call to Recv or
RecvFrom. Please use the Attribute system to configure the maximum available space on the receiver buffer
(property “RcvBufSize”).

Recv() Grab data from the TCP socket. Please remember that TCP is a stream socket, and it is allowed to concatenate
multiple packets into bigger ones. If no data is present (i.e. GetRxAvailable returns 0) an empty packet is re-
turned. Set the callback RecvCallback through SetRecvCallback() in order to have the application automatically
notified when some data is ready to be read. It’s important to connect that callback to the newly created socket
in case of forks.
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RecvFrom() Same as Recv, but with the source address as parameter.

Public interface for senders (e.g. clients uploading data)

Connect() Set the remote endpoint, and try to connect to it. The local endpoint should be set before this call, or
otherwise an ephemeral one will be created. The TCP then will be in the SYN_SENT state. If a SYN-ACK is
received, the TCP will setup the congestion control, and then call the callback ConnectionSucceeded.

GetTxAvailable() Return the amount of data that can be stored in the TCP Tx buffer. Set this property through the
Attribute system (“SndBufSize”).

Send() Send the data into the TCP Tx buffer. From there, the TCP rules will decide if, and when, this data will be
transmitted. Please note that, if the tx buffer has enough data to fill the congestion (or the receiver) window,
dynamically varying the rate at which data is injected in the TCP buffer does not have any noticeable effect on
the amount of data transmitted on the wire, that will continue to be decided by the TCP rules.

SendTo() Same as Send().

Close() Terminate the local side of the connection, by sending a FIN (after all data in the tx buffer has been trans-
mitted). This does not prevent the socket in receiving data, and employing retransmit mechanism if losses are
detected. If the application calls Close() with unread data in its rx buffer, the socket will send a reset. If the socket
is in the state SYN_SENT, CLOSING, LISTEN, FIN_WAIT_2, or LAST_ACK, after that call the application
will be notified with NotifyNormalClose(). In other cases, the notification is delayed (see NotifyNormalClose()).

Public callbacks

These callbacks are called by the TCP socket to notify the application of interesting events. We will refer to these with
the protected name used in socket.h, but we will provide the API function to set the pointers to these callback as well.

NotifyConnectionSucceeded: SetConnectCallback, 1st argument Called in the SYN_SENT state, before moving to
ESTABLISHED. In other words, we have sent the SYN, and we received the SYN-ACK: the socket prepares
the sequence numbers, sends the ACK for the SYN-ACK, tries to send out more data (in another segment) and
then invokes this callback. After this callback, it invokes the NotifySend callback.

NotifyConnectionFailed: SetConnectCallback, 2nd argument Called after the SYN retransmission count goes to 0.
SYN packet is lost multiple times, and the socket gives up.

NotifyNormalClose: SetCloseCallbacks, 1st argument A normal close is invoked. A rare case is when we receive
an RST segment (or a segment with bad flags) in normal states. All other cases are: - The application tries to
Connect() over an already connected socket - Received an ACK for the FIN sent, with or without the FIN bit
set (we are in LAST_ACK) - The socket reaches the maximum amount of retries in retransmitting the SYN
(*) - We receive a timeout in the LAST_ACK state - Upon entering the TIME_WAIT state, before waiting the
2*Maximum Segment Lifetime seconds to finally deallocate the socket.

NotifyErrorClose: SetCloseCallbacks, 2nd argument Invoked when we send an RST segment (for whatever reason)
or we reached the maximum amount of data retries.

NotifyConnectionRequest: SetAcceptCallback, 1st argument Invoked in the LISTEN state, when we receive a SYN.
The return value indicates if the socket should accept the connection (return true) or should ignore it (return
false).

NotifyNewConnectionCreated: SetAcceptCallback, 2nd argument Invoked when from SYN_RCVD the socket
passes to ESTABLISHED, and after setting up the congestion control, the sequence numbers, and process-
ing the incoming ACK. If there is some space in the buffer, NotifySend is called shortly after this callback. The
Socket pointer, passed with this callback, is the newly created socket, after a Fork().

NotifyDataSent: SetDataSentCallback The Socket notifies the application that some bytes have been transmitted on
the IP level. These bytes could still be lost in the node (traffic control layer) or in the network.
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NotifySend: SetSendCallback Invoked if there is some space in the tx buffer when entering the ESTABLISHED state
(e.g. after the ACK for SYN-ACK is received), after the connection succeeds (e.g. after the SYN-ACK is
received) and after each new ACK (i.e. that advances SND.UNA).

NotifyDataRecv: SetRecvCallback Called when in the receiver buffer there are in-order bytes, and when in
FIN_WAIT_1 or FIN_WAIT_2 the socket receive a in-sequence FIN (that can carry data).

Congestion Control Algorithms

Here follows a list of supported TCP congestion control algorithms. For an academic paper on many of these conges-
tion control algorithms, see http://dl.acm.org/citation.cfm?id=2756518 .

NewReno

NewReno algorithm introduces partial ACKs inside the well-established Reno algorithm. This and other modifications
are described in RFC 6582. We have two possible congestion window increment strategy: slow start and congestion
avoidance. Taken from RFC 5681:

During slow start, a TCP increments cwnd by at most SMSS bytes for each ACK received that cumu-
latively acknowledges new data. Slow start ends when cwnd exceeds ssthresh (or, optionally, when it
reaches it, as noted above) or when congestion is observed. While traditionally TCP implementations
have increased cwnd by precisely SMSS bytes upon receipt of an ACK covering new data, we REC-
OMMEND that TCP implementations increase cwnd, per Equation (16.1), where N is the number of
previously unacknowledged bytes acknowledged in the incoming ACK.

cwnd+ = min(N,SMSS) (16.1)

During congestion avoidance, cwnd is incremented by roughly 1 full-sized segment per round-trip time (RTT), and for
each congestion event, the slow start threshold is halved.

cuBIC

CUBIC (class TcpCubic) is the default TCP congestion control in Linux, macOS (since 2014), and Microsoft Win-
dows (since 2017). CUBIC has two main differences with respect to a more classic TCP congestion control such as
NewReno. First, during the congestion avoidance phase, the window size grows according to a cubic function (con-
cave, then convex) with the latter convex portion designed to allow for bandwidth probing. Second, a hybrid slow start
(HyStart) algorithm uses observations of delay increases in the slow start phase of window growth to try to exit slow
start before window growth causes queue overflow.

CUBIC is documented in RFC 8312, and the ns-3 implementation is based on the RFC more so than the Linux
implementation, although the Linux 4.4 kernel implementation (through the Direct Code Execution environment) has
been used to validate the behavior and is fairly well aligned (see below section on validation).

Linux Reno

TCP Linux Reno (class TcpLinuxReno) is designed to provide a Linux-like implementation of TCP NewReno. The
implementation of class TcpNewReno in ns-3 follows RFC standards, and increases cwnd more conservatively than
does Linux Reno. Linux Reno modifies slow start and congestion avoidance algorithms to increase cwnd based on the
number of bytes being acknowledged by each arriving ACK, rather than by the number of ACKSs that arrive. Another
major difference in implementation is that Linux maintains the congestion window in units of segments, while the
RFCs define the congestion window in units of bytes.

16.5. TCP models in ns-3 131


http://dl.acm.org/citation.cfm?id=2756518
https://tools.ietf.org/html/rfc8312.html

ns-3 Model Library, Release ns-3-dev

In slow start phase, on each incoming ACK at the TCP sender side cwnd is increased by the number of previously
unacknowledged bytes ACKed by the incoming acknowledgment. In contrast, in ns-3 NewReno, cwnd is increased
by one segment per acknowledgment. In standards terminology, this difference is referred to as Appropriate Byte
Counting (RFC 3465); Linux follows Appropriate Byte Counting while ns-3 NewReno does not.

cwnd+ = segAcked x segmentSize (16.2)

cwnd+ = segmentSize (16.3)

In congestion avoidance phase, the number of bytes that have been ACKed at the TCP sender side are stored in a
‘bytes_acked’ variable in the TCP control block. When ‘bytes_acked’ becomes greater than or equal to the value of
the cwnd, ‘bytes_acked’ is reduced by the value of cwnd. Next, cwnd is incremented by a full-sized segment (SMSS).
In contrast, in ns-3 NewReno, cwnd is increased by (1/cwnd) with a rounding off due to type casting into int.

if (m_cWndCnt >= w)

{
uint32_t delta = m_cWndCnt / w;

m_cWndCnt —-= delta * w;

tcb->m_cWnd += delta » tcb->m_segmentSize;

NS_LOG_DEBUG ("Subtracting delta * w from m_cWndCnt " << delta * w);
}

:label: linuxrenocongavoid

if (segmentsAcked > 0)
{

double adder = static_cast<double> (tcb->m_segmentSize x tcb->m_segmentSize) / tcb-
—>m_cWnd.Get ();
adder = std::max (1.0, adder);
tcbhb->m_cWnd += static_cast<uint32_t> (adder);
NS_LOG_INFO ("In CongAvoid, updated to cwnd " << tcb->m_cWnd <<
" ssthresh " << tcb->m_ssThresh);

}

:label: newrenocongavoid

So, there are two main difference between the TCP Linux Reno and TCP NewReno in ns-3: 1) In TCP Linux Reno,
delayed acknowledgement configuration does not affect congestion window growth, while in TCP NewReno, delayed
acknowledgments cause a slower congestion window growth. 2) In congestion avoidance phase, the arithmetic for
counting the number of segments acked and deciding when to increment the cwnd is different for TCP Linux Reno
and TCP NewReno.

Following graphs shows the behavior of window growth in TCP Linux Reno and TCP NewReno with delayed ac-
knowledgement of 2 segments:

HighSpeed

TCP HighSpeed is designed for high-capacity channels or, in general, for TCP connections with large congestion
windows. Conceptually, with respect to the standard TCP, HighSpeed makes the cWnd grow faster during the probing
phases and accelerates the cWnd recovery from losses. This behavior is executed only when the window grows
beyond a certain threshold, which allows TCP HighSpeed to be friendly with standard TCP in environments with
heavy congestion, without introducing new dangers of congestion collapse.

Mathematically:

a(cWnd)

16.4
cWnd ( )

cWnd = cWnd +
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The function a() is calculated using a fixed RTT the value 100 ms (the lookup table for this function is taken from RFC
3649). For each congestion event, the slow start threshold is decreased by a value that depends on the size of the slow
start threshold itself. Then, the congestion window is set to such value.

cWnd = (1 —b(cWnd)) - cWnd (16.5)

The lookup table for the function b() is taken from the same RFC. More information at: http://dl.acm.org/citation.cfm?
id=2756518

Hybla

The key idea behind TCP Hybla is to obtain for long RTT connections the same instantaneous transmission rate of
a reference TCP connection with lower RTT. With analytical steps, it is shown that this goal can be achieved by
modifying the time scale, in order for the throughput to be independent from the RTT. This independence is obtained
through the use of a coefficient rho.

This coefficient is used to calculate both the slow start threshold and the congestion window when in slow start and in
congestion avoidance, respectively.

More information at: http://dl.acm.org/citation.cfm?id=2756518

Westwood

Westwood and Westwood+ employ the AIAD (Additive Increase/Adaptive Decrease)- congestion control paradigm.
When a congestion episode happens,- instead of halving the cwnd, these protocols try to estimate the network’s band-
width and use the estimated value to adjust the cwnd.- While Westwood performs the bandwidth sampling every ACK
reception,- Westwood+ samples the bandwidth every RTT.

More information at: http://dl.acm.org/citation.cfm?id=381704 and http://dl.acm.org/citation.cfm?id=2512757

Vegas

TCP Vegas is a pure delay-based congestion control algorithm implementing a proactive scheme that tries to prevent
packet drops by maintaining a small backlog at the bottleneck queue. Vegas continuously samples the RTT and com-
putes the actual throughput a connection achieves using Equation (16.6) and compares it with the expected throughput
calculated in Equation (16.7). The difference between these 2 sending rates in Equation (16.8) reflects the amount of
extra packets being queued at the bottleneck.

cWnd
_ 16.6
actual RTT (16.6)
cWnd
= 16.7
expected BascRTT ( )
dif f = expected — actual (16.8)

To avoid congestion, Vegas linearly increases/decreases its congestion window to ensure the diff value falls between
the two predefined thresholds, alpha and beta. diff and another threshold, gamma, are used to determine when Vegas
should change from its slow-start mode to linear increase/decrease mode. Following the implementation of Vegas in
Linux, we use 2, 4, and 1 as the default values of alpha, beta, and gamma, respectively, but they can be modified
through the Attribute system.

More information at: http://dx.doi.org/10.1109/49.464716
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Scalable

Scalable improves TCP performance to better utilize the available bandwidth of a highspeed wide area network by
altering NewReno congestion window adjustment algorithm. When congestion has not been detected, for each ACK
received in an RTT, Scalable increases its cwnd per:

cwnd = cwnd + 0.01 (16.9)

Following Linux implementation of Scalable, we use 50 instead of 100 to account for delayed ACK.

On the first detection of congestion in a given RTT, cwnd is reduced based on the following equation:
cwnd = cwnd — ceil(0.125 - cwnd) (16.10)

More information at: http://dl.acm.org/citation.cfm?id=956989

Veno

TCP Veno enhances Reno algorithm for more effectively dealing with random packet loss in wireless access networks
by employing Vegas’s method in estimating the backlog at the bottleneck queue to distinguish between congestive and
non-congestive states.

The backlog (the number of packets accumulated at the bottleneck queue) is calculated using Equation (16.11):

N = Actual - (RTT — BaseRTT)

. (16.11)
=Diff - BaseRTT

where:

Diff = Expected — Actual
__cWnd  Wnd (16.12)
~ BaseRTT  RTT

Veno makes decision on cwnd modification based on the calculated N and its predefined threshold beta.

Specifically, it refines the additive increase algorithm of Reno so that the connection can stay longer in the stable
state by incrementing cwnd by 1/cwnd for every other new ACK received after the available bandwidth has been fully
utilized, i.e. when N exceeds beta. Otherwise, Veno increases its cwnd by 1/cwnd upon every new ACK receipt as in
Reno.

In the multiplicative decrease algorithm, when Veno is in the non-congestive state, i.e. when N is less than beta,
Veno decrements its cwnd by only 1/5 because the loss encountered is more likely a corruption-based loss than a
congestion-based. Only when N is greater than beta, Veno halves its sending rate as in Reno.

More information at: http://dx.doi.org/10.1109/JSAC.2002.807336

BIC

BIC (class TcpBic) is a predecessor of TCP CUBIC. In TCP BIC the congestion control problem is viewed as a search
problem. Taking as a starting point the current window value and as a target point the last maximum window value
(i.e. the cWnd value just before the loss event) a binary search technique can be used to update the cWnd value at the
midpoint between the two, directly or using an additive increase strategy if the distance from the current window is
too large.

This way, assuming a no-loss period, the congestion window logarithmically approaches the maximum value of cWnd
until the difference between it and cWnd falls below a preset threshold. After reaching such a value (or the maximum
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window is unknown, i.e. the binary search does not start at all) the algorithm switches to probing the new maximum
window with a ‘slow start’ strategy.

If a loss occur in either these phases, the current window (before the loss) can be treated as the new maximum, and the
reduced (with a multiplicative decrease factor Beta) window size can be used as the new minimum.

More information at: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1354672

YeAH

YeAH-TCP (Yet Another HighSpeed TCP) is a heuristic designed to balance various requirements of a state-of-the-art
congestion control algorithm:

1. fully exploit the link capacity of high BDP networks while inducing a small number of congestion events
2. compete friendly with Reno flows

3. achieve intra and RTT fairness

4. robust to random losses

5. achieve high performance regardless of buffer size

YeAH operates between 2 modes: Fast and Slow mode. In the Fast mode when the queue occupancy is small and the
network congestion level is low, YeAH increments its congestion window according to the aggressive HSTCP rule.
When the number of packets in the queue grows beyond a threshold and the network congestion level is high, YeAH
enters its Slow mode, acting as Reno with a decongestion algorithm. YeAH employs Vegas’ mechanism for calculating
the backlog as in Equation (16.13). The estimation of the network congestion level is shown in Equation (16.14).

cWnd
RTT

I_ RTT — BaseRTT
o BaseRTT

To ensure TCP friendliness, YeAH also implements an algorithm to detect the presence of legacy Reno flows. Upon
the receipt of 3 duplicate ACKs, YeAH decreases its slow start threshold according to Equation (16.15) if it’s not
competing with Reno flows. Otherwise, the ssthresh is halved as in Reno:

Q = (RTT — BaseRTT) - (16.13)

(16.14)

cWnd cWnd
8 9 Q) ) 2

More information: http://www.csc.Isu.edu/~sjpark/cs7601/4-YeAH_TCP.pdf

) (16.15)

ssthresh = min(max(

Illinois

TCP Illinois is a hybrid congestion control algorithm designed for high-speed networks. Illinois implements a
Concave-AIMD (or C-AIMD) algorithm that uses packet loss as the primary congestion signal to determine the direc-
tion of window update and queueing delay as the secondary congestion signal to determine the amount of change.

The additive increase and multiplicative decrease factors (denoted as alpha and beta, respectively) are functions of the
current average queueing delay da as shown in Equations (16.16) and (16.17). To improve the protocol robustness
against sudden fluctuations in its delay sampling, Illinois allows the increment of alpha to alphaMax only if da stays
below d1 for a some (theta) amount of time.

IphaM if da <= d1
alpha—{ aiphaliiax fhaa < (16.16)

k1/(k2 + da) otherwise
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betaMin if da <= d2
beta = k3 + kdda ifd2 < da < d3 (16.17)
betaMax otherwise

where the calculations of k1, k2, k3, and k4 are shown in the following:

dm — d1) - alphaMin - alphaMazx

k1= (
alphaMax — alphaMin

(16.18)

(dm —d1) - alphaMin
92 = —dl 16.19
b alphaMax — alphaMin d ( )

alphaMin - d3 — alphaMax - d2

13 — 16.20
3 d3 — d2 Hes
A — alphaMax — alphaMin (16.21)

d3 —d2

Other parameters include da (the current average queueing delay), and Ta (the average RTT, calculated as sumRtt /
cntRtt in the implementation) and Tmin (baseRtt in the implementation) which is the minimum RTT ever seen. dm is
the maximum (average) queueing