A Discrete-Event Network Simulator
API
wifi-aggregation.cc
Go to the documentation of this file.
1/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2/*
3 * Copyright (c) 2016 Sébastien Deronne
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation;
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Sébastien Deronne <sebastien.deronne@gmail.com>
19 */
20
21#include "ns3/command-line.h"
22#include "ns3/config.h"
23#include "ns3/uinteger.h"
24#include "ns3/boolean.h"
25#include "ns3/string.h"
26#include "ns3/log.h"
27#include "ns3/yans-wifi-helper.h"
28#include "ns3/ssid.h"
29#include "ns3/mobility-helper.h"
30#include "ns3/internet-stack-helper.h"
31#include "ns3/ipv4-address-helper.h"
32#include "ns3/udp-client-server-helper.h"
33#include "ns3/packet-sink-helper.h"
34#include "ns3/yans-wifi-channel.h"
35#include "ns3/wifi-net-device.h"
36#include "ns3/wifi-mac.h"
37
38// This is an example that illustrates how 802.11n aggregation is configured.
39// It defines 4 independent Wi-Fi networks (working on different channels).
40// Each network contains one access point and one station. Each station
41// continuously transmits data packets to its respective AP.
42//
43// Network topology (numbers in parentheses are channel numbers):
44//
45// Network A (36) Network B (40) Network C (44) Network D (48)
46// * * * * * * * *
47// | | | | | | | |
48// AP A STA A AP B STA B AP C STA C AP D STA D
49//
50// The aggregation parameters are configured differently on the 4 stations:
51// - station A uses default aggregation parameter values (A-MSDU disabled, A-MPDU enabled with maximum size of 65 kB);
52// - station B doesn't use aggregation (both A-MPDU and A-MSDU are disabled);
53// - station C enables A-MSDU (with maximum size of 8 kB) but disables A-MPDU;
54// - station D uses two-level aggregation (A-MPDU with maximum size of 32 kB and A-MSDU with maximum size of 4 kB).
55//
56//Packets in this simulation belong to BestEffort Access Class (AC_BE).
57//
58// The user can select the distance between the stations and the APs and can enable/disable the RTS/CTS mechanism.
59// Example: ./ns3 run "wifi-aggregation --distance=10 --enableRts=0 --simulationTime=20"
60//
61// The output prints the throughput measured for the 4 cases/networks described above. When default aggregation parameters are enabled, the
62// maximum A-MPDU size is 65 kB and the throughput is maximal. When aggregation is disabled, the throughput is about the half of the physical
63// bitrate. When only A-MSDU is enabled, the throughput is increased but is not maximal, since the maximum A-MSDU size is limited to 7935 bytes
64// (whereas the maximum A-MPDU size is limited to 65535 bytes). When A-MSDU and A-MPDU are both enabled (= two-level aggregation),
65// the throughput is slightly smaller than the first scenario since we set a smaller maximum A-MPDU size.
66//
67// When the distance is increased, the frame error rate gets higher, and the output shows how it affects the throughput for the 4 networks.
68// Even through A-MSDU has less overheads than A-MPDU, A-MSDU is less robust against transmission errors than A-MPDU. When the distance is
69// augmented, the throughput for the third scenario is more affected than the throughput obtained in other networks.
70
71using namespace ns3;
72
73NS_LOG_COMPONENT_DEFINE ("SimpleMpduAggregation");
74
75int main (int argc, char *argv[])
76{
77 uint32_t payloadSize = 1472; //bytes
78 double simulationTime = 10; //seconds
79 double distance = 5; //meters
80 bool enableRts = 0;
81 bool enablePcap = 0;
82 bool verifyResults = 0; //used for regression
83
84 CommandLine cmd (__FILE__);
85 cmd.AddValue ("payloadSize", "Payload size in bytes", payloadSize);
86 cmd.AddValue ("enableRts", "Enable or disable RTS/CTS", enableRts);
87 cmd.AddValue ("simulationTime", "Simulation time in seconds", simulationTime);
88 cmd.AddValue ("distance", "Distance in meters between the station and the access point", distance);
89 cmd.AddValue ("enablePcap", "Enable/disable pcap file generation", enablePcap);
90 cmd.AddValue ("verifyResults", "Enable/disable results verification at the end of the simulation", verifyResults);
91 cmd.Parse (argc, argv);
92
93 Config::SetDefault ("ns3::WifiRemoteStationManager::RtsCtsThreshold", enableRts ? StringValue ("0") : StringValue ("999999"));
94
96 wifiStaNodes.Create (4);
97 NodeContainer wifiApNodes;
98 wifiApNodes.Create (4);
99
100 YansWifiChannelHelper channel = YansWifiChannelHelper::Default ();
102 phy.SetPcapDataLinkType (WifiPhyHelper::DLT_IEEE802_11_RADIO);
103 phy.SetChannel (channel.Create ());
104
106 wifi.SetStandard (WIFI_STANDARD_80211n);
107 wifi.SetRemoteStationManager ("ns3::ConstantRateWifiManager", "DataMode", StringValue ("HtMcs7"), "ControlMode", StringValue ("HtMcs0"));
109
110 NetDeviceContainer staDeviceA, staDeviceB, staDeviceC, staDeviceD, apDeviceA, apDeviceB, apDeviceC, apDeviceD;
111 Ssid ssid;
112
113 // Network A
114 ssid = Ssid ("network-A");
115 phy.Set ("ChannelSettings", StringValue ("{36, 0, BAND_5GHZ, 0}"));
116 mac.SetType ("ns3::StaWifiMac",
117 "Ssid", SsidValue (ssid));
118 staDeviceA = wifi.Install (phy, mac, wifiStaNodes.Get (0));
119
120 mac.SetType ("ns3::ApWifiMac",
121 "Ssid", SsidValue (ssid),
122 "EnableBeaconJitter", BooleanValue (false));
123 apDeviceA = wifi.Install (phy, mac, wifiApNodes.Get (0));
124
125 // Network B
126 ssid = Ssid ("network-B");
127 phy.Set ("ChannelSettings", StringValue ("{40, 0, BAND_5GHZ, 0}"));
128 mac.SetType ("ns3::StaWifiMac",
129 "Ssid", SsidValue (ssid));
130
131 staDeviceB = wifi.Install (phy, mac, wifiStaNodes.Get (1));
132
133 // Disable A-MPDU
134 Ptr<NetDevice> dev = wifiStaNodes.Get (1)->GetDevice (0);
135 Ptr<WifiNetDevice> wifi_dev = DynamicCast<WifiNetDevice> (dev);
136 wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmpduSize", UintegerValue (0));
137
138 mac.SetType ("ns3::ApWifiMac",
139 "Ssid", SsidValue (ssid),
140 "EnableBeaconJitter", BooleanValue (false));
141 apDeviceB = wifi.Install (phy, mac, wifiApNodes.Get (1));
142
143 // Disable A-MPDU
144 dev = wifiApNodes.Get (1)->GetDevice (0);
145 wifi_dev = DynamicCast<WifiNetDevice> (dev);
146 wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmpduSize", UintegerValue (0));
147
148 // Network C
149 ssid = Ssid ("network-C");
150 phy.Set ("ChannelSettings", StringValue ("{44, 0, BAND_5GHZ, 0}"));
151 mac.SetType ("ns3::StaWifiMac",
152 "Ssid", SsidValue (ssid));
153
154 staDeviceC = wifi.Install (phy, mac, wifiStaNodes.Get (2));
155
156 // Disable A-MPDU and enable A-MSDU with the highest maximum size allowed by the standard (7935 bytes)
157 dev = wifiStaNodes.Get (2)->GetDevice (0);
158 wifi_dev = DynamicCast<WifiNetDevice> (dev);
159 wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmpduSize", UintegerValue (0));
160 wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmsduSize", UintegerValue (7935));
161
162 mac.SetType ("ns3::ApWifiMac",
163 "Ssid", SsidValue (ssid),
164 "EnableBeaconJitter", BooleanValue (false));
165 apDeviceC = wifi.Install (phy, mac, wifiApNodes.Get (2));
166
167 // Disable A-MPDU and enable A-MSDU with the highest maximum size allowed by the standard (7935 bytes)
168 dev = wifiApNodes.Get (2)->GetDevice (0);
169 wifi_dev = DynamicCast<WifiNetDevice> (dev);
170 wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmpduSize", UintegerValue (0));
171 wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmsduSize", UintegerValue (7935));
172
173 // Network D
174 ssid = Ssid ("network-D");
175 phy.Set ("ChannelSettings", StringValue ("{48, 0, BAND_5GHZ, 0}"));
176 mac.SetType ("ns3::StaWifiMac",
177 "Ssid", SsidValue (ssid));
178
179 staDeviceD = wifi.Install (phy, mac, wifiStaNodes.Get (3));
180
181 // Enable A-MPDU with a smaller size than the default one and
182 // enable A-MSDU with the smallest maximum size allowed by the standard (3839 bytes)
183 dev = wifiStaNodes.Get (3)->GetDevice (0);
184 wifi_dev = DynamicCast<WifiNetDevice> (dev);
185 wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmpduSize", UintegerValue (32768));
186 wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmsduSize", UintegerValue (3839));
187
188 mac.SetType ("ns3::ApWifiMac",
189 "Ssid", SsidValue (ssid),
190 "EnableBeaconJitter", BooleanValue (false));
191 apDeviceD = wifi.Install (phy, mac, wifiApNodes.Get (3));
192
193 // Enable A-MPDU with a smaller size than the default one and
194 // enable A-MSDU with the smallest maximum size allowed by the standard (3839 bytes)
195 dev = wifiApNodes.Get (3)->GetDevice (0);
196 wifi_dev = DynamicCast<WifiNetDevice> (dev);
197 wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmpduSize", UintegerValue (32768));
198 wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmsduSize", UintegerValue (3839));
199
200 // Setting mobility model
202 Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator> ();
203 mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
204
205 // Set position for APs
206 positionAlloc->Add (Vector (0.0, 0.0, 0.0));
207 positionAlloc->Add (Vector (10.0, 0.0, 0.0));
208 positionAlloc->Add (Vector (20.0, 0.0, 0.0));
209 positionAlloc->Add (Vector (30.0, 0.0, 0.0));
210 // Set position for STAs
211 positionAlloc->Add (Vector (distance, 0.0, 0.0));
212 positionAlloc->Add (Vector (10 + distance, 0.0, 0.0));
213 positionAlloc->Add (Vector (20 + distance, 0.0, 0.0));
214 positionAlloc->Add (Vector (30 + distance, 0.0, 0.0));
215
216 mobility.SetPositionAllocator (positionAlloc);
217 mobility.Install (wifiApNodes);
218 mobility.Install (wifiStaNodes);
219
220 // Internet stack
222 stack.Install (wifiApNodes);
223 stack.Install (wifiStaNodes);
224
226 address.SetBase ("192.168.1.0", "255.255.255.0");
227 Ipv4InterfaceContainer StaInterfaceA;
228 StaInterfaceA = address.Assign (staDeviceA);
229 Ipv4InterfaceContainer ApInterfaceA;
230 ApInterfaceA = address.Assign (apDeviceA);
231
232 address.SetBase ("192.168.2.0", "255.255.255.0");
233 Ipv4InterfaceContainer StaInterfaceB;
234 StaInterfaceB = address.Assign (staDeviceB);
235 Ipv4InterfaceContainer ApInterfaceB;
236 ApInterfaceB = address.Assign (apDeviceB);
237
238 address.SetBase ("192.168.3.0", "255.255.255.0");
239 Ipv4InterfaceContainer StaInterfaceC;
240 StaInterfaceC = address.Assign (staDeviceC);
241 Ipv4InterfaceContainer ApInterfaceC;
242 ApInterfaceC = address.Assign (apDeviceC);
243
244 address.SetBase ("192.168.4.0", "255.255.255.0");
245 Ipv4InterfaceContainer StaInterfaceD;
246 StaInterfaceD = address.Assign (staDeviceD);
247 Ipv4InterfaceContainer ApInterfaceD;
248 ApInterfaceD = address.Assign (apDeviceD);
249
250 // Setting applications
251 uint16_t port = 9;
252 UdpServerHelper serverA (port);
253 ApplicationContainer serverAppA = serverA.Install (wifiStaNodes.Get (0));
254 serverAppA.Start (Seconds (0.0));
255 serverAppA.Stop (Seconds (simulationTime + 1));
256
257 UdpClientHelper clientA (StaInterfaceA.GetAddress (0), port);
258 clientA.SetAttribute ("MaxPackets", UintegerValue (4294967295u));
259 clientA.SetAttribute ("Interval", TimeValue (Time ("0.0001"))); //packets/s
260 clientA.SetAttribute ("PacketSize", UintegerValue (payloadSize));
261
262 ApplicationContainer clientAppA = clientA.Install (wifiApNodes.Get (0));
263 clientAppA.Start (Seconds (1.0));
264 clientAppA.Stop (Seconds (simulationTime + 1));
265
266 UdpServerHelper serverB (port);
267 ApplicationContainer serverAppB = serverB.Install (wifiStaNodes.Get (1));
268 serverAppB.Start (Seconds (0.0));
269 serverAppB.Stop (Seconds (simulationTime + 1));
270
271 UdpClientHelper clientB (StaInterfaceB.GetAddress (0), port);
272 clientB.SetAttribute ("MaxPackets", UintegerValue (4294967295u));
273 clientB.SetAttribute ("Interval", TimeValue (Time ("0.0001"))); //packets/s
274 clientB.SetAttribute ("PacketSize", UintegerValue (payloadSize));
275
276 ApplicationContainer clientAppB = clientB.Install (wifiApNodes.Get (1));
277 clientAppB.Start (Seconds (1.0));
278 clientAppB.Stop (Seconds (simulationTime + 1));
279
280 UdpServerHelper serverC (port);
281 ApplicationContainer serverAppC = serverC.Install (wifiStaNodes.Get (2));
282 serverAppC.Start (Seconds (0.0));
283 serverAppC.Stop (Seconds (simulationTime + 1));
284
285 UdpClientHelper clientC (StaInterfaceC.GetAddress (0), port);
286 clientC.SetAttribute ("MaxPackets", UintegerValue (4294967295u));
287 clientC.SetAttribute ("Interval", TimeValue (Time ("0.0001"))); //packets/s
288 clientC.SetAttribute ("PacketSize", UintegerValue (payloadSize));
289
290 ApplicationContainer clientAppC = clientC.Install (wifiApNodes.Get (2));
291 clientAppC.Start (Seconds (1.0));
292 clientAppC.Stop (Seconds (simulationTime + 1));
293
294 UdpServerHelper serverD (port);
295 ApplicationContainer serverAppD = serverD.Install (wifiStaNodes.Get (3));
296 serverAppD.Start (Seconds (0.0));
297 serverAppD.Stop (Seconds (simulationTime + 1));
298
299 UdpClientHelper clientD (StaInterfaceD.GetAddress (0), port);
300 clientD.SetAttribute ("MaxPackets", UintegerValue (4294967295u));
301 clientD.SetAttribute ("Interval", TimeValue (Time ("0.0001"))); //packets/s
302 clientD.SetAttribute ("PacketSize", UintegerValue (payloadSize));
303
304 ApplicationContainer clientAppD = clientD.Install (wifiApNodes.Get (3));
305 clientAppD.Start (Seconds (1.0));
306 clientAppD.Stop (Seconds (simulationTime + 1));
307
308 if (enablePcap)
309 {
310 phy.EnablePcap ("AP_A", apDeviceA.Get (0));
311 phy.EnablePcap ("STA_A", staDeviceA.Get (0));
312 phy.EnablePcap ("AP_B", apDeviceB.Get (0));
313 phy.EnablePcap ("STA_B", staDeviceB.Get (0));
314 phy.EnablePcap ("AP_C", apDeviceC.Get (0));
315 phy.EnablePcap ("STA_C", staDeviceC.Get (0));
316 phy.EnablePcap ("AP_D", apDeviceD.Get (0));
317 phy.EnablePcap ("STA_D", staDeviceD.Get (0));
318 }
319
320 Simulator::Stop (Seconds (simulationTime + 1));
321 Simulator::Run ();
322
323 // Show results
324 uint64_t totalPacketsThroughA = DynamicCast<UdpServer> (serverAppA.Get (0))->GetReceived ();
325 uint64_t totalPacketsThroughB = DynamicCast<UdpServer> (serverAppB.Get (0))->GetReceived ();
326 uint64_t totalPacketsThroughC = DynamicCast<UdpServer> (serverAppC.Get (0))->GetReceived ();
327 uint64_t totalPacketsThroughD = DynamicCast<UdpServer> (serverAppD.Get (0))->GetReceived ();
328
329 Simulator::Destroy ();
330
331 double throughput = totalPacketsThroughA * payloadSize * 8 / (simulationTime * 1000000.0);
332 std::cout << "Throughput with default configuration (A-MPDU aggregation enabled, 65kB): " << throughput << " Mbit/s" << '\n';
333 if (verifyResults && (throughput < 58.5 || throughput > 59.5))
334 {
335 NS_LOG_ERROR ("Obtained throughput " << throughput << " is not in the expected boundaries!");
336 exit (1);
337 }
338
339 throughput = totalPacketsThroughB * payloadSize * 8 / (simulationTime * 1000000.0);
340 std::cout << "Throughput with aggregation disabled: " << throughput << " Mbit/s" << '\n';
341 if (verifyResults && (throughput < 30 || throughput > 31))
342 {
343 NS_LOG_ERROR ("Obtained throughput " << throughput << " is not in the expected boundaries!");
344 exit (1);
345 }
346
347 throughput = totalPacketsThroughC * payloadSize * 8 / (simulationTime * 1000000.0);
348 std::cout << "Throughput with A-MPDU disabled and A-MSDU enabled (8kB): " << throughput << " Mbit/s" << '\n';
349 if (verifyResults && (throughput < 51 || throughput > 52))
350 {
351 NS_LOG_ERROR ("Obtained throughput " << throughput << " is not in the expected boundaries!");
352 exit (1);
353 }
354
355 throughput = totalPacketsThroughD * payloadSize * 8 / (simulationTime * 1000000.0);
356 std::cout << "Throughput with A-MPDU enabled (32kB) and A-MSDU enabled (4kB): " << throughput << " Mbit/s" << '\n';
357 if (verifyResults && (throughput < 58 || throughput > 59))
358 {
359 NS_LOG_ERROR ("Obtained throughput " << throughput << " is not in the expected boundaries!");
360 exit (1);
361 }
362
363 return 0;
364}
holds a vector of ns3::Application pointers.
Ptr< Application > Get(uint32_t i) const
Get the Ptr<Application> stored in this container at a given index.
void Start(Time start)
Arrange for all of the Applications in this container to Start() at the Time given as a parameter.
void Stop(Time stop)
Arrange for all of the Applications in this container to Stop() at the Time given as a parameter.
AttributeValue implementation for Boolean.
Definition: boolean.h:37
Parse command-line arguments.
Definition: command-line.h:229
aggregate IP/TCP/UDP functionality to existing Nodes.
A helper class to make life easier while doing simple IPv4 address assignment in scripts.
holds a vector of std::pair of Ptr<Ipv4> and interface index.
Ipv4Address GetAddress(uint32_t i, uint32_t j=0) const
Helper class used to assign positions and mobility models to nodes.
holds a vector of ns3::NetDevice pointers
Ptr< NetDevice > Get(uint32_t i) const
Get the Ptr<NetDevice> stored in this container at a given index.
keep track of a set of node pointers.
void Create(uint32_t n)
Create n nodes and append pointers to them to the end of this NodeContainer.
Ptr< Node > Get(uint32_t i) const
Get the Ptr<Node> stored in this container at a given index.
Ptr< NetDevice > GetDevice(uint32_t index) const
Retrieve the index-th NetDevice associated to this node.
Definition: node.cc:144
The IEEE 802.11 SSID Information Element.
Definition: ssid.h:36
AttributeValue implementation for Ssid.
Hold variables of type string.
Definition: string.h:41
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:103
AttributeValue implementation for Time.
Definition: nstime.h:1308
Create a client application which sends UDP packets carrying a 32bit sequence number and a 64 bit tim...
Create a server application which waits for input UDP packets and uses the information carried into t...
Hold an unsigned integer type.
Definition: uinteger.h:44
Vector3D Vector
Vector alias typedef for compatibility with mobility models.
Definition: vector.h:324
helps to create WifiNetDevice objects
Definition: wifi-helper.h:323
create MAC layers for a ns3::WifiNetDevice.
Ptr< WifiMac > GetMac(void) const
manage and create wifi channel objects for the YANS model.
Make it easy to create and manage PHY objects for the YANS model.
uint16_t port
Definition: dsdv-manet.cc:45
void SetDefault(std::string name, const AttributeValue &value)
Definition: config.cc:849
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:257
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:205
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1244
@ WIFI_STANDARD_80211n
address
Definition: first.py:44
stack
Definition: first.py:41
Every class exported by the ns3 library is enclosed in the ns3 namespace.
cmd
Definition: second.py:35
ssid
Definition: third.py:97
channel
Definition: third.py:92
mac
Definition: third.py:96
wifi
Definition: third.py:99
mobility
Definition: third.py:107
wifiStaNodes
Definition: third.py:88
phy
Definition: third.py:93