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This is the ns-3 Contributing Guide. Primary documentation for the ns-3 project is organized as follows:

• Several guides that are version controlled for each release (the latest release) and development tree:

– Tutorial

– Installation Guide

– Manual

– Model Library

– Contributing Guide (this document)

• ns-3 Doxygen: Documentation of the public APIs of the simulator

• ns-3 wiki

This document is written in reStructuredText for Sphinx and is maintained in the doc/contributing directory of
ns-3’s source code. Source file column width is 100 columns.
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CHAPTER

ONE

INTRODUCTION

This document is a guide for those who wish to contribute code to ns-3 or its related projects in some way.

Changes to ns-3 software are made by or reviewed by maintainers. ns-3 has a small core team of maintainers, and
also some specialized maintainers who maintain a portion of the software. The source code branch that is centrally
maintained is sometimes called the mainline, a term used further herein. End users are encouraged to report issues
and bugs, or to propose software or documentation modifications, to be reviewed by and handled by maintainers. End
users can also help by reviewing code proposals made by others. Some end users who contribute high quality patches
or code reviews over time may ask or be invited to become a maintainer of software within their areas of expertise.
Finally, some end users wish to disseminate their ns-3 work to the community, through the addition of new features or
modules to ns-3.

A question often asked by newcomers is “How can I contribute to ns-3?” or “How do I get started?”. This document
summarizes the various ways and processes used to contribute to ns-3. Contribution by users is essential for a project
maintained largely by volunteers. However, one of the most scarce resources on an open source project is the available
time of maintainers, so we ask contributors to please become familiar with conventions and processes used by ns-3 so
as to smooth the contribution process.

The very first step is to become familiar with ns-3 by reading the tutorial, running some example programs, and then
reading some of the code and documentation to get a feel for things. From that point, there are a number of options to
contribute:

• Contributing a small documentation correction

• Reporting or discussing a bug in the software

• Fixing an already reported bug by submitting a patch

• Reviewing code contributed by others

• Submitting new code for inclusion in the mainline

• Alerting users to code that is maintained or archived elsewhere

• Submitting a module or fork for publishing in the ns-3 app store

• Becoming a maintainer of part of the simulator

ns-3 is mainly a C++ project, and this contribution guide focuses on how to contribute ns-3 code specifically, but
the overall open source project maintains various related codebases written in several other languages, so if you are
interested in contributing outside of ns-3 C++ code, there are several possibilities:

• ns-3 provides Python bindings to most of its API, and maintains an automated API scanning process that relies
on other tools. We can use maintenance help in the C++/Python bindings support.

• Another Python project is the bake build tool, which has a number of open issues.

• See also our Python-based PyViz visualizer; extensions and documentation would be welcome.

• The NetAnim animator is written in Qt and has lacked a maintainer for several years.
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• If you are interested in Linux kernel hacking, or use of applications in ns-3 such as open source routing daemons,
we maintain the Direct Code Execution project.

• If you are familiar with Django, we have work to do on our app store infrastructure.

• Our website is written in Jekyll and is in need of more work.

The remainder of this document is organized as follows.

• Chapter 2 covers general issues surrounding code and documentation contributions, including license and copy-
right;

• Chapter 3 describes approaches for contributing small enhancements to the ns-3 mainline, such as a documen-
tation or bug fix;

• Chapter 4 outlines the approach for proposing new models for the mainline;

• Chapter 5 describes how to contribute code that will be stored outside of the ns-3 mainline, with emphasis on
the ns-3 AppStore; and

• Chapter 6 provides the coding style guidelines that are mandatory for the ns-3 mainline and strongly suggested
for contributed modules.

4 Chapter 1. Introduction
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CHAPTER

TWO

GENERAL

This section pertains to general topics about licensing, coding style, and working with Git features, including patch
submission.

2.1 Licensing

All code submitted must conform to the project licensing framework, which is GNU GPLv2 compatibility. All new
source files should contain a license statement. In general, we ask that new source files be provided with a GNU GPLv2
license, but the author may select another GNU GPLv2-compatible license if necessary. GNU GPLv3 is not accepted
in the ns-3 mainline. Note that the Free Software Foundation maintains a list of GPLv2-compatible licenses.

There are two variants of GNU GPLv2: GNU GPLv2-only, and GNU GPLv2-or-later. Most of the ns-3 codebase is
licensed under GNU GPLv2-only; a few files are licensed as GNU GPLv2-or-later or other compatible licenses (see
the LICENSES directory for a listing of all licenses in the main tree). Strictly speaking, ns-3 as an aggregate is licensed
as GNU GPLv2-only and cannot be redistributed either as GNU GPLv2-or-later or as GNU GPLv3.

ns-3 cannot accept GNU GPLv3 or Apache licensed code into the mainline because those licenses are not compatible
with GNU GPLv2-only.

If a contribution is based upon or contains copied code that itself uses GNU GPLv2, then the author should in most
cases retain the GPLv2 and optionally extend the copyright and/or the author (or ‘Modified by’) statements.

If a contribution is borrowed from another project under different licensing, the borrowed code must have a compatible
license, and the license must be copied over as well as the code. The author may add the GNU GPLv2 if desired, but in
such a case, should clarify which aspects of the code (i.e., the modifications) are covered by the GPLv2 and not found
in the original. The Software Freedom Law Center has published guidance on handling this case.

Note that it is incumbent upon the submitter to make sure that the licensing attribution is correct and that the code is
suitable for ns-3 inclusion. Do not include code (even snippets) from sources that have incompatible licenses. Even if
the code licenses are compatible, do not copy someone else’s code without attribution.

2.1.1 Documentation Licensing

Licensing for documentation or for material found on ns-3 websites is covered by the Creative Commons CC-BY-SA 4.0
license, and documentation submissions should be submitted under that license. Please ensure that any documentation
submitted does not violate the terms of another copyright holder, and has correct attribution. In particular, copying of
substantial portions of an academic journal paper, or copying or redrawing of figures from such a paper, likely requires
explicit permission from the copyright holder.
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2.2 Copyright

Copyright is a statement of ownership of code, while licensing describes the terms by which the owners of the code
permit the reuse of the code.

The ns-3 project does not maintain copyright of contributed code. Copyright remains with the author(s) or their em-
ployer. Because multiple people or organizations work on the ns-3 code over time, one can think of the project and
even individual files as a “mixed copyright” work.

Copyright can be stated when originating files in ns-3 or when making “substantial” changes to such files; the definition
of substantial is open to interpretation. Copyright need not be claimed explicitly by adding a copyright statement;
according to copyright laws in many countries, copyright rights are automatic upon publishing a work. Copyright
should not be explicitly listed for all changes to a file; for instance, patches to fix small things or make small adjustments
or improvements are not considered to be subjected to copyright protection.

Use of copyright statements in open source projects, as a means of author attribution, can be controversial, be-
cause having a long list of copyright statements on every file impairs readability. Also, since copyright is auto-
matic, there is little formal legal requirement to add a copyright statement. The ns-3 project has decided to follow
the guidance provided by the Software Freedom Law Center in this regard: https://softwarefreedom.org/resources/
2012/ManagingCopyrightInformation.html

2.2.1 Copyright on new files

When originating a new file, the originating author should place his or her copyright statement at the top in the header,
preceding the copy of the license. An important exception to this is if the new file is copied from somewhere else and
modified to make the new file; please do not delete the previous copyrights from the copyright file! See below for this
case.

An example placement of a copyright statement can be found in the file src/network/model/packet.h:

/*
* Copyright (c) 2005,2006 INRIA
*
* SPDX-License-Identifier: GPL-2.0-only

2.2.2 Copyright on existing files

When providing a substantial feature (maintainers and contributors should mutually agree on this point) as a patch to
an existing file, the contributor may add a copyright statement that clarifies the new portion of code that is covered by
the new copyright. An example is the program src/lte/model/lte-ue-phy.h:

/*
* Copyright (c) 2010 TELEMATICS LAB, DEE - Politecnico di Bari
* Copyright (c) 2018 Fraunhofer ESK : RLF extensions
*
* SPDX-License-Identifier: GPL-2.0-only

Here, Fraunhofer ESK added extensions to support radio link failure (RLF), and the copyright statement clarifies the
extension (separated from the organization by a colon).

6 Chapter 2. General
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2.2.3 Copyright on external code copied from elsewhere

If a contributor borrows code from somewhere else (such as a snippet of code to implement an algorithm, or whole
files altogether), it is important to keep the original copyright (and license statement) in the new file. Contributors who
fail to do this may be accused of plagiarism.

Some existing examples of code copied from elsewhere are:

• src/network/utils/error-model.h

• src/core/model/valgrind.h

• src/core/model/math.h

If in doubt about how to handle a specific case, ask a maintainer.

2.3 Attribution

Besides copyright, authors also often seek to list attribution, or even credit for funding, in the headers. We request that
contributors refrain from aggressively inserting statements of attribution into the code such as:

// New Hello Timer implementation contributed by John Doe, 2014

especially for small touches to files, because, over time, it clutters the code. Git logs are used to track who contributed
what over time.

Likewise, if someone contributes a minor enhancement or a bug fix to an existing file, this is not typically justification
to insert an Authored by or Copyright statement at the top of the file. If everyone who touched a file did this, we
would end up with unwieldy lists of authors on many files. In general, we recommend to follow these guidelines:

• if you are authoring a new file or contributing a substantial portion of code (such as 30% or more new or changed
statements), you can list yourself as co-author or add a new copyright to the file header

• if you are modifying less than the above, please refrain from adding copyright or author statements as part of
your patch

• do not put your name or your organization’s name anywhere in the main body of the code, for attribution purposes

An example of a substantial modification that led to extension of the authors section of the header can be found in
src/lte/model/lte-ue-phy.h:

* Author: Giuseppe Piro <g.piro@poliba.it>
* Author: Marco Miozzo <mmiozzo@cttc.es>
* Modified by:
* Vignesh Babu <ns3-dev@esk.fraunhofer.de> (RLF extensions)
*/

Here, there were two original authors, and then a third added a substantial new feature (RLF extensions).

Please work with maintainers to balance the competing concerns of obtaining proper attribution and avoiding long
headers.

2.3. Attribution 7
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2.4 Coding style

We ask that all contributors make their code conform to the coding standard which is outlined in Coding style.

The project maintains a Python program called check-style-clang-format.py found in the utils/ directory.
This is a wrapper around the clang-format utility and can be used to quickly format new source code files proposed
for the mainline. The ns-3 coding style conventions are defined in the corresponding .clang-format file.

In addition to formatting source code files with clang-format, the Python program also checks trailing whitespace
in text files and converts tabs to spaces, in order to comply with the ns-3 coding style.

2.5 Creating a patch

Patches are preferably submitted as a GitLab.com Merge Request. Short patches can be attached to an issue report or
sent to the mailing-lists, but a Merge Request is the best way to submit.

The UNIX diff tool is the most common way of producing a patch: a patch is a text-based representation of the difference
between two text files or two directories with text files in them. If you have two files, original.cc, and, modified.
cc, you can generate a patch with the command diff -u original.cc modified.cc. If you wish to produce a
patch between two directories, use the command diff -uprN original modified.

Make sure you specify to the reviewer where the original files came from and make sure that the resulting patch file
does not contain unexpected content by performing a final inspection of the patch file yourself.

Patches such as this are sufficient for simple bug fixes or very simple small features.

Git can be used to create a patch of what parts differ from the last committed code; try:

$ git diff

The output of git diff can be redirected into a patch file:

$ git diff > proposal.patch

Keep in mind that git diff could include unrelated changes made locally to files in the repository (a common example
is .vscode/launch.json). In order to avoid cluttering, please amend your diff file using a normal text editor before
submitting it.

Likewise, if you submit a merge request using GitLab, please add only the changes to the relevant files to the branch
you’re using for the merge request.

2.6 Maintainers

Maintainers are the set of people who make decisions on code and documentation changes. Maintainers are contributors
who have demonstrated, over time, knowledge and good judgment as pertains to contributions to ns-3, and who have
expressed willingness to maintain some code. ns-3 is like other open source projects in terms of how people gradually
become maintainers as their involvement with the project deepens; maintainers are not newcomers to the project.

The list of maintainers for each module is found here: https://www.nsnam.org/developers/maintainers/

Maintainers review code (bug fixes, new models) within scope of their maintenance responsibility. A maintainer of a
module should “sign off” (or approve of) changes to an ns-3 module before it is committed to the main codebase. Note
that we typically do not formalize the signing off using Git’s sign off feature, but instead, maintainers will indicate their
approval of the merge request using GitLab.com.
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Note that some modules do not have active maintainers; these types of modules typically receive less maintenance
attention than those with active maintainers (and bugs may linger unattended).

The best way to become a maintainer is to start by submitting patches that fix open bugs or otherwise improve some
part of the simulator, and to join in on the technical discussions. People who submit quality patches will catch the
attention of the maintainers and may be asked to become one at some future date.

People who ask to upstream a new module or model so that it is part of the main ns-3 distribution will typically be
asked to maintain it going forward (or to find new maintainers for it).

2.6. Maintainers 9
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CHAPTER

THREE

SUBMITTING ENHANCEMENTS

This chapter covers how to submit fixes and small patches for the existing mainline code and its documentation.

Enhancements (new models) can be proposed for the mainline, and maintainers will make a decision on whether to
include it as mainline or recommend that it be supported in the ns-3 App Store. Documentation on hosting code in the
ns-3 App Store is provided in the next chapter (Submitting externally maintained code). This chapter provides guidance
on submitting code for inclusion in the mainline (and much of it applies also as best practice for app store code).

3.1 GitLab.com trackers

ns-3 uses two trackers to keep track of known issues or submitted code. Maintainers prefer to list everything on the
tracker so that issues do not slip through the cracks. Users are encouraged to use these to report or comment on issues
or merge requests; this requires users to obtain a GitLab.com account.

If a user wants to report an issue with ns-3, please first search the issue tracker for something that may be similar, and
if nothing is found, please report the new issue.

If a user wants to submit proposed new code for ns-3, please submit on the merge request tracker.

More details for each are provided below. Similarly, users who want to report issues on other related repositories under
the nsnam project (such as the Bake build system) should follow similar steps there.

3.2 Reporting issues

Issues can be reported against the code or the documentation, if you believe that something is incorrect or could be
improved. The key to reporting an issue with the code is to try to provide as much information as possible to allow
a maintainer to quickly reproduce the problem. After you’ve determined which module your bug is related to, if it is
inside the official distribution (mainline), then create an issue, label it with the name of the module, and provide as
much information as possible.

First, perform a cursory search on the open issue list to see if the problem has already been reported. If it has and the
issue is still open, add a comment to the existing issue instead of opening a new one.

If you are reporting an issue against an older version of ns-3, please scan the most recent Release Notes to see if it has
been fixed since that release.

If you then decide to list an issue, include details of your environment:

1. Which version of ns-3 are you using?

2. What’s the name and version of the OS you’re using?

3. Which modules do you have installed?
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4. Have you modified ns-3-dev in any way?

Here are some additional guidelines:

1. Use a clear and descriptive title for the issue to identify the problem.

2. Describe the exact steps which reproduce the problem in as many details as possible. For example, start by
explaining how you coded your script; e.g. which functions were called in what order, or else provide an example
program. If your program includes modifications to the ns-3 core or a module, please list them (or even better,
provide the diffs).

3. Provide specific examples to demonstrate the steps. Include links to files or projects, or copy/pasteable snippets,
which you use in those examples. If you’re providing snippets in the issue, use Markdown code block formatting.

4. Describe the behavior you observed after following the steps and point out what exactly is the problem with that
behavior. Explain which behavior you expected to see instead and why.

5. If you’re reporting that ns-3 crashed, include a crash report with a stack trace from the operating system. On
macOS, the crash report will be available in Console.app under “Diagnostic and usage information” > “User
diagnostic reports”. Include the crash report in the issue in a code block, or a file attachment.

6. If the problem is related to performance or memory, include a CPU profile capture with your report.

Some issues have suggested resolutions that are trivial and do not require submitting a merge request. For more com-
plicated resolutions, if you have a patch to propose, either attach it to the issue, or submit a merge request (described
next).

3.3 Submitting merge requests

To submit code proposed for ns-3 as one or more commits, use a merge request. The following steps are recommended
to smooth the process.

If you are new to public Git repositories, you may want to read this overview of merge requests. If you are familiar
with GitHub pull requests, the GitLab.com merge requests are very similar.

In brief, you will want to fork ns-3-dev into your own namespace (i.e., fork the repository into your personal GitLab.com
account, via the user interface on GitLab.com), clone your fork of ns-3-dev to your local machine, create a new feature
branch that is based on the current tip of ns-3-dev, push that new feature branch up to your fork, and then from the
GitLab.com user interface, generate a Merge Request back to the ns-3 mainline. You will want to monitor and respond
to any comments from reviewers, and try to resolve threads.

3.3.1 Remember the documentation

If you add or change API to the simulator, please include Doxygen changes as appropriate. Please scan the module
documentation (written in Restructured Text in the docs directory) to check if an update is needed to align with the
patch proposal.
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3.3.2 Commit message format

Commit messages should be written as follows. For examples, please look at the output of git log command.

1. The author string should be formatted such as “John Doe <john.doe@example.com>”. It is a good idea to run git
config on your machine, or hand-edit the .gitconfig file in your home directory, to ensure that your name and email are
how you want them to be displayed.

3.3. Submitting merge requests 13
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2. The first line of the commit message should be limited to 72 columns if possible. This is not a hard requirement but
a preference. If you prefer to add more detail, you can add subsequent message lines below the first one, separated by
a blank line. Example:

commit e6ca9be6fb5a0592a44967f7885545dce3a6da1a
Author: Rediet <getachew.redieteab@orange.com>
Date: Wed May 19 16:34:01 2021 +0200

lte: Assign default values

Fixes crashing optimized/release builds with 'may be used uninitialized' error

3. The first line of the commit message should include the relevant module name or names, separated by a colon.
Example:

commit 15ab50c03132a5f7686045014c6bedf10ac7d421
Author: Stefano Avallone <stavallo@unina.it>
Date: Wed Jan 27 14:58:54 2021 +0100

wifi,wave,mesh: Rescan python bindings

4. If the commit fixes an issue in the issue tracker, list it in parentheses after the colon (by saying ‘fixes #NNN’
where NNN is the issue number). This reference alerts future readers to an issue where more may be discussed
about the commit. Example:

commit 10ef08140ab2a9f2b550f24d1e881e76ea0873ff
Author: Tom Henderson <tomh@tomh.org>
Date: Fri May 21 11:11:33 2021 -0700

network: (fixes #404) Use Queue::Dispose() for SimpleNetDevice::DoDispose()

5. If the commit is from a merge request, that may also be added in a similar way the same by saying ‘merges !NNN’.
The exclamation point differentiates merge requests from issues (which use the number sign ‘#’) on GitLab.com.
Example:

commit d4258b2b32d6254b878eca9200271fa3f4ee7174
Author: Tom Henderson <tomh@tomh.org>
Date: Sat Mar 27 09:56:55 2021 -0700

build: (merges !584) Exit configuration if path whitespace detected

Here is an example making use of both:

commit a97574779b575af70d975f9e2ca899e2405cf497
Author: Federico Guerra <federico@guerra-tlc.com>
Date: Tue Jan 14 21:14:37 2020 +0100

uan: (fixes #129, merges !162) EndTx moved to PhyListener

6. Use the present tense (“Add feature”, not “Added feature”) and the imperative mood (“Move cursor to . . . ”, not
“Moves cursor to. . . ”).
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3.3.3 Code formatting

ns-3 uses a utility called clang-format to check and fix formatting issues with code. Please see the chapter on coding
style to learn more about how to use this tool. When submitting code to the project, it is a good idea to check the
formatting on your new files and modifications before submission.

3.3.4 Avoid unrelated changes

Do not make changes to unrelated parts of the code (unrelated to your merge request). If in the course of your work on
a given topic, you discover improvements to other things (like documentation improvements), please open a separate
merge request for separate topics.

3.3.5 Squashing your history

In the course of developing and responding to review comments, you may add more commits, so what started out as a
single commit might grow into several. Please consider to squash any such revisions if they do not need to be preserved
as separate commits in the mainline Git history.

If you squash commits, you must force-push your branch back to your fork. Do not worry about this; GitLab.com will
update the Merge Request automatically. This tutorial may be helpful to learn about Git rebase, force-push, and merge
conflicts.

Note that GitLab can squash the commits while merging. However, it is often preferred to keep multiple commit
messages, especially when the merge request contains multiple parts or multiple authors.

It is a good practice to NOT squash commits while the merge request is being reviewed and updated (this helps the
reviewers), and perform a selective squash before the merge.

3.3.6 Rebasing on ns-3-dev

It is also helpful to maintainers to keep your feature branch up to date so that the commits are appended to the tip of
the mainline code. This is not strictly required; maintainers may do such a rebase upon merging your finalized Merge
Request. This may help catch possible merge conflicts before the time to merge arrives.

Note that sometimes it is not possible to rebase a merge request through GitLab’s web interface. Hence, it is a good
practice to keep your merge request in line with the mainline (i.e., rebase it periodically and push the updated branch).

3.3.7 Resolving discussion threads

Any time someone opens a new comment thread on a Merge Request, a counter of ‘Unresolved threads’ is incremented
(near the top of the Merge Request). If you are able to successfully resolve the comment thread (either by changing
your code, or convincing the reviewer that no change is needed), then please mark the thread as resolved. Maintainers
will look at the count of unresolved threads and make decisions based on this count as to whether the Merge Request
is ready. Maintainers prefer that all threads are resolved successfully before moving forward with a merge.
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3.3.8 Adding a label

You can use labels to indicate whether the Merge Request is a bug, pertains to a specific module or modules, is docu-
mentation related, etc. This is not required; if you do not add a label, a maintainer probably will.

3.3.9 Other metadata

It is not necessary to set other metadata on the Merge Request such as milestone, reviewers, etc.

3.4 Feature requests

Feature requests are tracked as GitLab.com issues. If you want to suggest an enhancement, create an issue and provide
the following information:

1. Use a clear and descriptive title for the issue to identify the suggestion.

2. Provide a step-by-step description of the suggested enhancement in as many details as possible.

3. Provide specific examples to demonstrate the steps. Include copy/pasteable snippets which you use in those
examples.

4. Describe the current behavior and explain which behavior you expected to see instead and why.

5. Explain why this enhancement would be useful to most ns-3 users.

The ns-3 project does not have professional developers available to respond to feature requests, so your best bet is to
try to implement it yourself and work with maintainers to improve it, but the project does like to hear back from users
about what would be a useful improvement, and you may find like-minded collaborators in the community willing to
work on it with you.

Use the enhancement Label on your feature request.
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FOUR

SUBMITTING NEW MODELS

We actively encourage submission of new features to ns-3. Independent submissions are essential for open source
projects, and if accepted into the mainline, you will also be credited as an author of future versions of ns-3. However,
please keep in mind that there is already a large burden on the ns-3 maintainers to manage the flow of incoming
contributions and maintain new and existing code. The goal of this chapter is to outline the options for new models
in ns-3, and how you can help to minimize the burden on maintainers and thus minimize the average time-to-merge of
your code.

4.1 Options for new models

ns-3 is organized into modules, each of which is compiled and linked into a separate library. Users can selectively
enable and disable the inclusion of modules (via the –enable-modules argument to ns3 configure, or via the selective
inclusion of contributed modules).

When proposing new models to ns-3, please keep in mind that not all models will be accepted into the mainline.
However, we aim to provide at least one or more options for any code contribution.

Because of the long-term maintenance burden, ns-3 is no longer accepting all new proposals into the mainline. Features
that are of general interest are more likely to be approved for the mainline, but features that are more specialized may
be recommended for the ns-3 App Store. Some modules that have been in the mainline for a long time, but fall out of
use (or lose their maintainers) may also be moved out of the mainline into the App Store in the future.

The options for publishing new models are:

1. Propose a Merge Request for the ns-3 mainline and follow the guidelines below.

2. Organize your code as a “contributed module” or modules and maintain them in your own public Git repository.
A page on the App Store can be made to advertise this to users, and other tooling can be used to ensure that the
module stays compatible with the mainline.

3. Organize your code as a “public fork” that evolves separately from the ns-3 mainline. This option is sometimes
chosen for models that require significant intrusive changes to the ns-3 mainline to support. Some recent examples
include the Public Safety models and the millimeter-wave extensions to ns-3. This has the benefit of being self-
contained, but the drawback of losing compatibility with the mainline over time. A page on the App Store can
be made for these forks as well. For maintenance reasons and improved user experience, we prefer to upstream
mainline changes so that public forks can be avoided.

4. Archive your code somewhere, or publish in a Git repository, and link to it from the ns-3 Contributed Code wiki
page. This option requires the least amount of work from the contributor, but visibility of the code to new ns-3
users will likely be reduced. To follow this route, obtain a wiki account from the webmaster, and make edits as
appropriate to link your code.

The remainder of the chapter concerns option 1 (upstreaming to ns-3-dev); the other options are described in the next
chapter (Submitting externally maintained code).
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4.2 Upstreaming new models

The term “upstreaming” refers to the process whereby new code is contributed back to an upstream source (the main
open source project) whereby that project takes responsibility for further enhancement and maintenance.

Making sure that each code submission fulfills as many items as possible in the following checklist is the best way to
ensure quick merging of your code.

In brief, we can summarize the guidelines as follows:

1. Be licensed appropriately (see General)

2. Understand how and why ns-3 conducts code reviews before merging

3. Follow the ns-3 coding style (Coding style) and software engineering and consistency feedback that maintainers
may provide

4. Write associated documentation, tests, and example programs

If you do not have the time to follow through the process to include your code in the main tree, please see the next
chapter (Submitting externally maintained code) about contributing ns-3 code that is not maintained in the main tree.

The process can take a long time when submissions are large or when contributors skip some of these steps. Therefore,
best results are found when the following guidelines are followed:

• Ask for review of small chunks of code, rather than large patches. Split large submissions into several more
manageable pieces.

• Make sure that the code follows the guidelines (coding style, documentation, tests, examples) or you may be
asked to fix these things before maintainers look at it again.

4.3 Code reviews

Code submissions to ns-3-dev are expected to go through a review process where one or more maintainers comment
on the code. The basic purpose of the code reviews is to ensure the long-term maintenance and overall system integrity
of ns-3. Contributors may be asked to revise their code or rewrite portions during this process. New features are also
typically only merged during the early stages of a new release cycle, to avoid destabilizing code before release.

ns-3 code reviews are conducted using GitLab.com merge requests, possibly supported by discussion on the ns-
developers mailing list for reviews that involve code that cuts across maintainer boundaries or is otherwise controversial.
Many examples of ongoing reviews can be browsed on our GitLab.com site.

4.4 Submission structure

For each code submission, include a description of what your code is doing, and why. Ideally, you should be able to
provide a summary description in a short paragraph at the top of the Merge Request. If you want to flag to maintainers
that your submission is known to be incomplete (e.g., you are looking for early feedback), preface the title of the Merge
Request with Draft:.
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4.4.1 Coherent and multi-part submissions

Large code submissions should be split into smaller submissions where possible. The likelihood of getting maintainers
to review your submission is inversely proportional to its size, because large code reviews require a large block of time
for a maintainer. For instance, if you are submitting two routing protocol models and each protocol model can stand
on its own, submit two Merge Requests rather than a single one containing both models.

Each submission should be a coherent whole: if you need to edit ten files to get a feature to work, then, the submission
should contain all the changes for these ten files. Of course, if you can split the feature in sub-features, then, you should
do it to decrease the size of the submission as per the previous paragraph.

For example, if you have made changes to optimize one module, and in the course of doing so, you fixed a bug in
another module, make sure you separate these two sets of changes in two separate submissions.

When splitting a large submission into separate submissions, (ideally) these submissions should be prefaced (in the
Merge Request description) by a detailed explanation of the overall plan such that code reviewers can review each
submission separately but within a larger context. This kind of submission typically is split in multiple dependent steps
where each step depends on the previous one. If this is the case, make it very clear in your initial explanation. If you
can, minimize dependencies between each step such that reviewers can merge each step separately without having to
consider the impact of merging one submission on other submissions.

4.4.2 History rewriting

It is good practice to rebase your feature branch onto the tip of the (evolving) ns-3-dev, so that the commits appear on
top of a recent commit of ns-3-dev. For instance, you may have started with an initial Merge Request, and it has been
some time to gather feedback from maintainers, and now you want to update your Merge Request with that feedback.
A rebase onto the current ns-3-dev master branch is good practice for any Merge Request update.

In addition, in the course of your development, and in responding to reviewer comments, the git commit log will
accumulate lots of small commits that are not helpful to future maintainers: they make it more painful to use the
annotate and bisect commands. For this reason, it is good practice to “squash” and “rebase” commits into coherent
groups. For example, assume that the commit history, after you have responded to a reviewer’s comment, looks like
this (git log output):

commit 4938c01400fb961c37716c3f415f47ba2b04ab5f (HEAD -> master, origin/master, origin/
↪→HEAD)
Author: Some Contributor <some.contributor@example.com>
Date: Mon Jun 15 11:19:49 2020 -0700

Fix typo in Doxygen based on code review comment

commit 915cf65cb8f464d9398ddd8bea9af167ced64663
Author: Some Contributor <some.contributor@example.com>
Date: Thu Jun 11 16:44:46 2020 -0400

Add documentation, tests, and examples for clever protocol

commit a1d51db126fb3d1c7c76427473f02ee792fdfd53
Author: Some Contributor <some.contributor@example.com>
Date: Thu Jun 11 16:35:48 2020 -0400

Add new models for clever protocol

In the above case, it will be helpful to squash the top commit about the typo into the first commit where the Doxygen
was first written, leaving you again with two commits. Git interactive rebase is a good tool for this; ask a maintainer
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for help in doing this if you need some help to learn this process.

4.5 Documentation, tests, and examples

Often we have observed that contributors will provide nice new classes implementing a new model, but will fail to
include supporting test code, example scripts, and documentation. Therefore, we ask people submitting the code (who
are in the best position to do this type of work) to provide documentation, test code, and example scripts.

Note that you may want to go through multiple phases of code reviews, and all of this supporting material may not be
needed at the first stage (e.g. when you want some feedback on public API header declarations only, before starting the
implementation). However, when it times come to merge your code, you should be prepared to provide these things, as
fits your contribution (maintainers will provide some guidance here).

If you add a new features, or make changes to existing features, you need to update existing or write new documentation
and example code. Consider the following checklist:

• Doxygen should be added to header files for all public classes and methods, and should be checked for Doxygen
errors

• New features should be described in the RELEASE_NOTES.md

• Public API changes (if any) must be documented in CHANGES.md

• New API or changes to existing API must update the inline Doxygen documentation in header files

• Consider updating or adding a new section to the manual (doc/manual) or model library (doc/models) as
appropriate

• Update the AUTHORS file for any new authors

4.5.1 Guidelines to Write Sphinx Documentation

Here are some general guidelines when creating Sphinx documentation:

• When possible, avoid using more than 2 levels of hierarchy (i.e., create only sections and subsections).

• Avoid creating sections or subsections that only contain small paragraphs. If the content is too short, consider
combining the content of 2 sections/subsections into one (exceptions include the fixed sections and subsections).

• Include code snippets and/or images (figures or text-based) to better explain your content. This is particularly
recommended for the helpers subsection.

• Use references with numbers, rather than using names. Include the reference link when available (use the number
for the link).

• Follow the section hierarchy explained in this guide.

• Verify that there is a line between the header and the body of each section or subsection.

For a concrete example, see src/lr-wpan/doc/lr-wpan.rst.

Documentation should be created using the following heading hierarchy:

Model Name
==========

Section
-------

(continues on next page)
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(continued from previous page)

Subsection
~~~~~~~~~~

SubsubSection (Use only in extreme cases!)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In general, the number of sections or subsection is free, but there are a few sections and subsections that must be present.
The following is the general outline of a module documentation in ns-3:

My fantastic model name here
============================

This first part is for describing what the model is trying to accomplish.
General descriptions , design, overview of the project goes in this part without the␣
↪→need of any subsections.
An additional visual summary is also recommended.

Scope and Limitations
---------------------

A list of missing capabilities or things not considered in the model goes here.
This section is fixed and must be the first section in the model documentation.

Section A
---------

Free form sections and subsections goes here.

Section B
---------

Free form sections and subsections goes here.

Usage
-----

A brief description of the model usage goes here. This section must be present.

Helpers
~~~~~~~

A description of the helpers used by the model goes here. Snippets of code are
preferable when describing the helpers usage. This subsection must be present.
If the model CANNOT provide helpers write "Not applicable".

Attributes
~~~~~~~~~~

A list of attributes used by the model, each attribute should include a small
description. This subsection must be present.
If the model CANNOT provide attributes write "Not applicable".

(continues on next page)
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(continued from previous page)

Traces
~~~~~~

A list of the source traces used by the model, each trace should include a small
description. This subsection must be present.
If the model CANNOT provide traces write "Not applicable".

Examples and Tests
------------------

Do not forget to add a brief description of each example and test present in the model.
Example:
``my-example.cc : This example demonstrate the use of x in y situation.``
This section must be present.

Validation
----------

Descriptions of how the model was validated must be here. This section must be present.

References
----------

The reference material used in the construction of the model. This section must be␣
↪→present.

4.5.2 Examples

For many submissions, it will be important to include at least one example that exercises the new code, so the reviewer
understands how it is intended to be used. For final submission, please consider to add as many examples as you can
that will help new users of your code. The samples/ and examples/ directories are places for these files.

4.5.3 Tests

All new models should include automated tests. These should, where appropriate, be unit tests of model correctness,
validation tests of stochastic behavior, and overall system tests if the model’s interaction with other components must
be tested. The test code should try to cover as much model code as possible, and should be checked as much as possible
by regression tests.

The ns-3 manual provides documentation and suggestions for how to write tests.
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4.6 Module dependencies

Since ns-3 is a modular system, each module has (typically) dependencies on other modules. These must be kept to
the minimum necessary, and circular dependencies must be avoided (they will generate errors). As an example, the
lr-wpan module depends on core, network, mobility, spectrum, and propagation. Tests for your new module
must not add any other dependency (that was not needed for the model or helper code itself), but examples can use
other modules because their module dependencies are handled independently. As an example, the lr-wpan examples
also use the stats module.

This rule might pose limitations to the authoring of tests. In such a case, ask a maintainer for suggestions, or check
existing tests to find solutions. Sometimes tests that involve adding additional dependencies are placed into the src/
test subdirectory.
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FIVE

SUBMITTING EXTERNALLY MAINTAINED CODE

This chapter mainly pertains to code that will be maintained in external repositories (such as a personal or university
research group repository, possibly hosted on GitHub or GitLab.com), but for which the contributor wishes to keep
consistent and compatible with the ns-3 mainline.

If the contributor does not want to maintain the external code but wants to make the community aware that it is available
with no ongoing support, links to the code can be posted on the ns-3 wiki contributed code page. A typical example is
the graduating student who wishes to make his or her thesis-related code available but who does not plan to update it
further. See Unmaintained, contributed code below.

However, much of the emphasis of this chapter is on hosting ns-3 extensions in the ns-3 App Store.

5.1 Rationale for the app store

Historically, ns-3 tried to merge all code contributions (that met the contribution guidelines) to the mainline. However,
this approach has reached its limits in terms of scalability:

1. As ns-3 includes more lines of code, it takes longer to compile, while users typically only need a subset of the
available ns-3 model code.

2. Merging to the mainline requires maintainer participation for code reviews (which can be time consuming for
maintainers), resulting in some contributions not being merged due to lack of code reviews.

The app store federates the maintenance of ns-3 modules, and puts more control in the hands of the contributor to
maintain their code. The idea is to provide a central place where users can discover ns-3 extensions and add them
to their ns-3 installation. One of the drawbacks of this approach, however, is the potential for a lot of compatibility
headaches, such as a user trying to use two separately developed modules, but the modules are compatible with different
ns-3 mainline versions. Therefore, the app store is designed to assist in testing and clarifying which version of the
external module is compatible with which mainline version of ns-3.

In brief, what it means for ns-3 users is the following. There is an empty directory in the ns-3 source code tree called
contrib. This directory behaves the same way (with respect to the build system) as the src directory, but is the place in
which externally developed models can be downloaded and added to ns-3.

For contributors, the app store provides a means for module developers to make releases on their own schedule and
not be tied to the release schedule of the mainline, nor to be blocked by mainline code reviews or style requirements.
It is still possible (and recommended) to obtain code reviews and follow style guidelines for contributed modules, as
described below.
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5.1.1 Example app

For example, consider a user who wants to use a model of the LoRaWAN sensor networking protocol in ns-3. This
model is not available in the mainline ns-3 releases, but the user checks in the App Store. Sensor networking protocols
can be found by browsing the category Sensor Networks in the left-hand menu, upon which the LoRaWAN module is
displayed. This module is maintained by an external research group. Clicking on the app icon leads to a page in which
more details about this module are displayed, including Release History, Installation, and Maintenance.

The installation tab suggests two primary ways to add a lorawan module to an ns-3 installation:

1. Download a source archive from the link provided on the app store and unpack it in the contrib/ directory.

2. Perform a git clone operation from within the ns-3 contrib/ directory.

There is a third way in general, which is to use the Bake build system to add or remove modules. Most modules
have a bakeconf.xml file associated with them, which can be added to the contrib/ folder of Bake. This permits bake
configuration operations such as:

$ ./bake.py configure -e ns-3.34 -e lorawan-0.3.0
$ ./bake.py download
$ ./bake.py build

Users will be concerned about which version of the module applies to the version of ns-3. The Release History tab
describes the releases and the minimum (and, optionally, the maximum) ns-3 version that the release works with.

Finally, information about how the module will continue to be maintained, and how to submit issue reports or ask
questions about it, are typically posted in the optional Maintenance or Development tabs.

5.2 App types

Two types of “apps” are hosted on the app store: 1) contributed modules, and 2) forks of ns-3. It benefits users the
most when contributed code can be added as modules to the contrib directory, because this allows the modules to be
used with different versions of the ns-3 mainline and to combine multiple such modules. However, some authors have
chosen to create a full fork of ns-3, and to publish full ns-3 source trees. One reason for such forks is if the fork requires
intrusive changes to the ns-3 mainline code, in such a manner that the patch will likely not be accepted in the mainline.
For an example of a full fork in the app store, see the Public Safety Communications app page; this is a full fork because
of the intrusive changes to the mainline LTE module necessary to support the public safety extensions.

Sometimes a contributed module does require a very small patch to the mainline despite being largely implemented in
a modular way. In this case, the best strategy is to try to create a minimal patch to upstream to the mainline, and work
with maintainers to incorporate it. Even if this is not successful or not attempted, one can maintain a small patch file as
part of the module, and bake build instructions for the module can be extended to patch the mainline code as the first
step in the build process. Please consult the app store maintainers if guidance on this approach is needed.

5.3 Submitting to the app store

If you are interested in adding an app to the app store, contact webmaster@nsnam.org or one of the app store main-
tainers. Before getting started, browse through the existing apps so that you get a feel for what type of information will
be required.

The main requirements are:

1. Define a module name that will be the name of the subdirectory in the contrib folder. Use ns-3 naming conven-
tions for directory names; i.e., all lower case, with separate words separated by dashes.
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2. Ensure that your module can be successfully cloned into the contrib folder using the proposed module name, that
it builds successfully, and that all examples and tests run.

3. Make at least one release on your GitHub or GitLab.com, associated with the latest ns-3 release if possible. To do
this, you will need to decide on a numbering scheme, such as ‘v1.0’ or ‘0.1’, etc. Consult GitHub or GitLab.com
documentation on how to make a (tagged) release.

4. Come up with a small thumbnail icon for your app. A general guideline is a transparent PNG, size 100x100
pixels.

5. Provide names and email addresses of the person(s) who should have edit privileges (accounts) on the app store.

After providing this information, a skeleton page will be set up on the app store and will be initially invisible to users
who visit the front page. Contributors can then log in and work with the app store maintainer to finalize the page, and
then make it active (visible) to other users when ready.

5.4 Licensing for app store modules

The project recommends the use of GPLv2-compatible licenses for modules listed in the ns-3 app store. However,
this is not strictly required; it is possible for contributors to post and advertise modules that are licensed with a non-
GPLv2-compatible license, such as GPLv3. An example of an advertised extension with a non-compatible license is
the EMPIRE shim module. Please note, however, that the project can only distribute modules in its ns-allinone releases
that are GPLv2-compatible. A module licensed as GPLv2-or-later is compatible for inclusion with the ns-allinone
releases.

5.5 Code review for apps

Even though apps are not added to the ns-3 mainline, it is still possible to request code reviews for them (in order to
improve the code). There is a special repository set up for this purpose: ns-3-contrib-reviews. The purpose of this
repository is to provide a fork-able repository against which to generate Merge Requests, but no eventual merge ever
takes place.

The steps to request a code review are:

1. Fork ns-3-contrib-reviews into your own namespace

2. Clone the fork to your local machine

3. Create a new feature branch on what you just checked out for your new code

4. cd to ‘contrib’ and clone your extension module there

5. remove the .git directory of that module so that git does not treat it as a submodule; e.g., if your module name is
modulename:

$ rm -rf modulename/.git

6. Force an add of the module, overcoming the .gitignore file for contrib modules

$ git add -f modulename

7. Add your files:

$ git commit -m"Add modulename for review" -a

8. Push the feature branch to your remote repository
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$ git push -u origin

9. Navigate to your github.com page and generate a Merge Request towards the upstream ns-3-contrib-reviews

10. Announce on ns-developers mailing list that you would like a review.

5.6 Maintaining app store modules

A recent Google Summer of Code project worked on allowing integration of the app store with continuous integration
(CI) testing. This integration is ongoing, but the eventual goal is that regressions that are caused by upstream changes
to ns-3 will be quickly caught, and the app owner will be asked to fix the build of their app, possibly by issuing another
module release as well.

5.7 Links to related projects

Some projects choose to maintain their own version of ns-3, or maintain models outside of the main tree of the code.
In this case, the way to find out about these is to look at the Related Projects page on the ns-3 wiki.

If you know of externally maintained code that the project does not know about, please email webmaster@nsnam.org
to request that it be added to the list of external projects.

Going forward, we will tend to prefer to list related projects on the app store so that there is a single place to discover
them.

5.8 Unmaintained, contributed code

Anyone who wants to provide access to code that has been developed to extend ns-3 but that will not be further main-
tained may list its availability on our website. Furthermore, we can provide, in some circumstances, storage of a com-
pressed archive on a web server if needed. This type of code contribution will not be listed in the app store, although
popular extensions might be adopted by a future contributor.

We ask anyone who wishes to do this to provide at least this information on our wiki:

• Authors,

• Name and description of the extension,

• How it is distributed (as a patch or full tarball),

• Location,

• Status (how it is maintained)

Please also make clear in your code the applicable software license. The contribution will be stored on our wiki. If you
need web server space for your archive, please contact webmaster@nsnam.org.
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CHAPTER

SIX

CODING STYLE

When writing code to be contributed to the ns-3 open source project, we ask that you follow the coding standards,
guidelines, and recommendations found below.

6.1 Clang-format

The ns-3 project uses clang-format to define and enforce the C++ coding style. Clang-format can be easily integrated
with modern IDEs or run manually on the command-line.

Besides clang-format, ns-3 adopts other coding-style guidelines that are not covered by clang-format, which are ex-
plained in this document. Read the check-style-clang-format.py section below for information on how to use
this Python script to check and fix all formatting guidelines followed by ns-3.

6.1.1 Clang-format installation

Clang-format can be installed using one of two methods. Please note that you should install one of the supported
versions of clang-format, which are listed in the RELEASE_NOTES.md file.

The first method is to install clang-format using the package manager available in the Linux distribution (e.g., Ubuntu’s
apt). For example, in Ubuntu 24.04, clang-format 20 can be installed with the following command:

sudo apt install clang-format-20

If the package manager does not provide one of the clang-format versions supported by ns-3, users can install clang-
format using Python’s pip tool.

The following command will install the latest version of clang-format:

pip3 install clang-format

To install a specific version of clang-format, use the following command:

pip3 install clang-format==<version_number>

where <version_number> is something like 20.1.8 (MAJOR.MINOR.PATCH).

Starting with Python 3.11, pip requires users to either create a virtual environment (venv) or add the
--break-system-packages flag to the installation commands above.
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6.1.2 Supported versions of clang-format

Since each new major version of clang-format can add or modify properties, newer versions of clang-format might
produce different outputs compared to previous versions.

The list of clang-format versions that are verified to produce consistent output among themselves are listed in the
RELEASE_NOTES.md document.

6.1.3 Integration with IDEs

Clang-format can be integrated with modern IDEs (e.g., VS Code) that are able to read the .clang-format file and
automatically format the code on save or on typing.

Please refer to the documentation of your IDE for more information. Some examples of IDE integration are provided
in clang-format documentation.

As an example, VS Code’s C/C++ extension contains the latest clang-format binary. VS Code can be configured to
automatically format code on save, on paste and on type by enabling the following settings:

{
"editor.formatOnSave": true,
"editor.formatOnPaste": true,
"editor.formatOnType": true,

}

6.1.4 Clang-format usage in the terminal

In addition to IDE support, clang-format can be manually run on the terminal.

To format a file in-place, run the following command:

clang-format -i $FILE

To check that a file is well formatted, run the following command on the terminal. If the file is not well formatted,
clang-format indicates the lines that need to be formatted.

clang-format --dry-run $FILE

6.1.5 Clang-format Git integration

Clang-format integrates with Git to format Git commits or changes not yet committed, such as pending merge requests
on the GitLab repository. The full documentation is available on clang-format Git integration

To fix the formatting of files with Git, run the following commands in the ns-3 main directory. These commands do
not change past commits. Instead, the reformatted files are left in the workspace. These changes should be squashed
to the corresponding commits, in order to fix them.

# Fix all commits of the current branch, relative to the master branch
git clang-format master

# Fix all staged changes (i.e., changes that have been `git add`ed):
git clang-format

(continues on next page)
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# Fix all changes staged and unstaged:
git clang-format -f

# Fix specific files:
git clang-format path_to_file

# Check what formatting changes are needed (if no files provided, check all staged␣
↪→files):
git clang-format --diff

Note that this only fixes formatting issues related to clang-format. For other ns-3 coding style guidelines, read the
check-style-clang-format.py section below.

In addition to Git patches, clang-format-diff can also be used to reformat existing patches produced with the diff tool.

6.1.6 Disable formatting in specific files or lines

To disable formatting in specific lines, surround them with the following C++ comments:

// clang-format off
...
// clang-format on

To exclude an entire file from being formatted, surround the whole file with the special comments.

6.2 check-style-clang-format.py

To facilitate checking and fixing source code files according to the ns-3 coding style, ns-3 maintains the
check-style-clang-format.py Python script (located in utils/). This script is a wrapper to clang-format and
provides useful options to check and fix source code files. Additionally, it performs other manual checks and fixes in
text files (described below).

We recommend running this script over your newly introduced C++ files prior to submission as a Merge Request.

The script performs multiple style checks. It returns a zero exit code if all files adhere to these rules. If there are files
that do not comply with the rules, the process returns a non-zero exit code and lists the respective files. This mode is
useful for developers editing their code and for the GitLab CI/CD pipeline to check if the codebase is well formatted.

The script runs the checks explained in the following table. All checks are enabled by default. Users can disable specific
checks using the corresponding flags.
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Check Description Flag to Disable
Check

Formatting Check code formatting using clang-format. Respects clang-format guards. --no-formatting
#include “ns3/”
prefixes

Check if local #include headers do not use the “ns3/” prefix. Respects
clang-format guards.

--no-include-prefixes

#include quotes Check if ns-3 #include headers use quotes ("") instead of angle brackets
(<>). Respects clang-format guards.

--no-include-quotes

Doxygen tags Check if Doxygen tags use @ rather than \\. Respects clang-format guards. --no-doxygen-tags
SPDX Licenses Check if source code use SPDX licenses rather than GPL license text. Re-

spects clang-format guards.
--no-licenses

Emacs com-
ments

Check if source code does not have emacs file style comments. Respects
clang-format guards.

--no-emacs

Trailing whites-
pace

Check if there are no trailing whitespace. Always checked. --no-whitespace

Tabs Check if there are no tabs. Respects clang-format guards. --no-tabs
File encoding Check if files have the correct encoding (UTF-8). Always checked. --no-encoding

Additional information about the formatting issues detected by the script can be enabled by adding the -v, --verbose
flag.

In addition to checking the files, the script can automatically fix detected issues in-place. This mode is enabled by
adding the --fix flag.

The formatting and tabs checks respect clang-format guards, which mark code blocks that should not be checked.
Trailing whitespace is always checked regardless of clang-format guards.

The complete API of the check-style-clang-format.py script can be obtained with the following command:

./utils/check-style-clang-format.py --help

For quick-reference, the most used commands are listed below:

# Entire codebase (using paths relative to the ns-3 main directory)
./utils/check-style-clang-format.py --fix .

# Entire codebase (using absolute paths)
/path/to/utils/check-style-clang-format.py --fix /path/to/ns3

# Specific directory or file
/path/to/utils/check-style-clang-format.py --fix absolute_or_relative/path/to/directory_
↪→or_file

# Files modified by the current branch, relative to the master branch
git diff --name-only master | xargs ./utils/check-style-clang-format.py --fix
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6.3 Clang-tidy

The ns-3 project uses clang-tidy to statically analyze (lint) C++ code and help developers write better code. Clang-tidy
can be easily integrated with modern IDEs or run manually on the command-line.

The list of clang-tidy checks currently enabled in the ns-3 project is saved on the .clang-tidy file. The full list of
clang-tidy checks and their detailed explanations can be seen in Clang-tidy checks.

6.3.1 Clang-tidy installation

Clang-format can be installed using your OS’s package manager. Please note that you should install one of the supported
versions of clang-format, which are listed in the following section.

6.3.2 Supported versions of clang-tidy

Since clang-tidy is a linter that analyzes code and outputs errors found during the analysis, developers can use different
versions of clang-tidy on the workflow. Newer versions of clang-tidy might produce better results than older versions.
Therefore, it is recommended to use the latest version available.

To ensure consistency among developers, ns-3 defines a minimum version of clang-tidy, whose warnings must not be
ignored. Therefore, developers should, at least, scan their code with the minimum version of clang-tidy. However,
more recent versions can be used, which will produce better warnings.

The supported versions of clang-tidy are listed in the RELEASE_NOTES.md document.

6.3.3 Integration with IDEs

Clang-tidy automatically integrates with modern IDEs (e.g., VS Code) that read the .clang-tidy file and automati-
cally checks the code of the currently open file.

Please refer to the documentation of your IDE for more information. Some examples of IDE integration are provided
in clang-tidy documentation

6.3.4 Clang-tidy usage

In order to use clang-tidy, ns-3 must first be configured with the flag --enable-clang-tidy. To configure ns-3 with
tests, examples and clang-tidy enabled, run the following command:

./ns3 configure --enable-examples --enable-tests --enable-clang-tidy

Due to the integration of clang-tidy with CMake, clang-tidy can be run while building ns-3. In this way, clang-tidy
errors will be shown alongside build errors on the terminal. To build ns-3 and run clang-tidy, run the the following
command:

./ns3 build

To run clang-tidy without building ns-3, use the following commands on the ns-3 main directory:

# Analyze (and fix) a single file with clang-tidy
clang-tidy -p cmake-cache/ [--fix] [--format-style=file] [--quiet] $FILE

# Analyze (and fix) multiple files in parallel
(continues on next page)
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run-clang-tidy -p cmake-cache/ [-fix] [-format] [-quiet] $FILE1 $FILE2 ...

# Analyze (and fix) the entire ns-3 codebase in parallel
run-clang-tidy -p cmake-cache/ [-fix] [-format] [-quiet]

When running clang-tidy, please note that:

• Clang-tidy only analyzes implementation files (i.e., *.cc files). Header files are analyzed when they are included
by implementation files, with the #include "..." directive.

• Not all clang-tidy checks provide automatic fixes. For those cases, a manual fix must be made by the developer.

• Enabling clang-tidy will add time to the build process (in the order of minutes).

6.3.5 Disable clang-tidy analysis in specific lines

To disable clang-tidy analysis of a particular rule in a specific function, specific clang-tidy comments have to be added
to the corresponding function. Please refer to the official clang-tidy documentation for more information.

To disable modernize-use-override checking on func() only, use one of the following two “special comment”
syntaxes:

//
// Syntax 1: Comment above the function
//

// NOLINTNEXTLINE(modernize-use-override)
void func();

//
// Syntax 2: Trailing comment
//

void func(); // NOLINT(modernize-use-override)

To disable a specific clang-tidy check on a block of code, for instance the modernize-use-override check, surround
the code block with the following “special comments”:

// NOLINTBEGIN(modernize-use-override)
void func1();
void func2();
// NOLINTEND(modernize-use-override)

To disable all clang-tidy checks on a block of code, surround it with the following “special comments”:

// NOLINTBEGIN
void func1();
void func2();
// NOLINTEND

To exclude an entire file from being checked, surround the whole file with the “special comments”.
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6.4 Source code formatting

The ns-3 coding style was changed between the ns-3.36 and ns-3.37 release. Prior to ns-3.37, ns-3 used a base GNU
coding style. Since ns-3.37, ns-3 changed the base coding style to what is known in the industry as Allman-style braces,
with four-space indentation. In clang-format, this is configured by selecting the Microsoft base style. The following
examples illustrate the style.

6.4.1 Indentation

Indent code with 4 spaces. When breaking statements into multiple lines, indent the following lines with 4 spaces.

void
Func()
{

int x = 1;
}

Indent constructor’s initialization list with 4 spaces.

MyClass::MyClass(int x, int y)
: m_x(x),
m_y(y)

{
}

Do not use tabs in source code. Always use spaces for indentation and alignment.

6.4.2 Line endings

Files use LF (\n) line endings.

6.4.3 Column limit

Code lines should not extend past 100 characters. This allows reading code in wide-screen monitors without having to
scroll horizontally, while also allowing editing two files side-by-side.

6.4.4 Braces style

Braces should be formatted according to the Allman style. Braces are always on a new line and aligned with the start
of the corresponding block. The main body is indented with 4 spaces.

Always surround conditional or loop blocks (e.g., if, for, while) with braces, and always add a space before the
condition’s opening parentheses.

void Foo()
{

if (condition)
{

// do stuff here
}

(continues on next page)
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else
{

// do other stuff here
}

for (int i = 0; i < 100; i++)
{

// do loop
}

while (condition)
{

// do while
}

do
{

// do stuff
} while (condition);

}

6.4.5 Spacing

To increase readability, functions, classes and namespaces are separated by one new line. This spacing is optional when
declaring variables or functions. Declare one variable per line. Do not mix multiple statements on the same line.

Do not add a space between the function name and the opening parentheses. This rule applies to both function (and
method) declarations and invocations.

void Func(const T&); // OK
void Func (const T&); // Not OK

6.4.6 Trailing whitespace

Source code and text files must not have trailing whitespace.

6.4.7 Code alignment

To improve code readability, trailing comments should be aligned.

int varOne; // Variable one
double varTwo; // Variable two

The trailing \ character of macros should be aligned to the far right (equal to the column limit). This increases the
readability of the macro’s body, without forcing unnecessary whitespace diffs on surrounding lines when only one line
is changed.

#define MY_MACRO(msg) \
do \

(continues on next page)
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{ \
std::cout << msg << std::endl; \

} while (false);

6.4.8 Class members

Definition blocks within a class should be organized in descending order of public exposure, that is: static > public
> protected > private. Separate each block with a new line.

class MyClass
{
public:

static int m_counter = 0;

MyClass(int x, int y);

private:
int x;
int y;

};

6.4.9 Function arguments bin packing

Function arguments should be declared in the same line as the function declaration. If the arguments list does not fit
the maximum column width, declare each one on a separate line and align them vertically.

void ShortFunction(int x, int y);

void VeryLongFunctionWithLongArgumentList(int x,
int y,
int z);

The constructor initializers are always declared one per line, with a trailing comma:

void
MyClass::MyClass(int x, int y)

: m_x(x),
m_y(y)

{
}
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6.4.10 Function return types

In function declarations, return types are declared on the same line. In function implementations, return types are
declared on a separate line.

// Function declaration
void Func(int x, int y);

// Function implementation
void
Func(int x, int y)
{

// (...)
}

6.4.11 Templates

Template definitions are always declared in a separate line from the main function declaration:

template <class T>
void Func(T t);

6.4.12 Naming

Name encoding

Function, method, and type names should follow the CamelCase convention: words are joined without spaces and are
capitalized. For example, “my computer” is transformed into MyComputer. Do not use all capital letters such as MAC or
PHY, but choose instead Mac or Phy. Do not use all capital letters, even for acronyms such as EDCA; use Edca instead.
This applies also to two-letter acronyms, such as IP (which becomes Ip). The goal of the CamelCase convention
is to ensure that the words which make up a name can be separated by the eye: the initial Caps fills that role. Use
PascalCasing (CamelCase with first letter capitalized) for function, property, event, and class names.

Variable names should follow a slight variation on the base CamelCase convention: camelBack. For example, the
variable user name would be named userName. This variation on the basic naming pattern is used to allow a reader
to distinguish a variable name from its type. For example, UserName userName would be used to declare a variable
named userName of type UserName.

Global variables should be prefixed with a g_ and member variables (including static member variables) should be
prefixed with a m_. The goal of that prefix is to give a reader a sense of where a variable of a given name is declared
to allow the reader to locate the variable declaration and infer the variable type from that declaration. Defined types
will start with an upper case letter, consist of upper and lower case letters, and may optionally end with a _t. Defined
constants (such as static const class members, or enum constants) will be all uppercase letters or numeric digits, with
an underscore character separating words. Otherwise, the underscore character should not be used in a variable name.
For example, you could declare in your class header my-class.h:

typedef int NewTypeOfInt_t;
constexpr uint8_t PORT_NUMBER = 17;

class MyClass
{

void MyMethod(int aVar);
(continues on next page)
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int m_aVar;
static int m_anotherVar;

};

and implement in your class file my-class.cc:

int MyClass::m_anotherVar = 10;
static int g_aStaticVar = 100;
int g_aGlobalVar = 1000;

void
MyClass::MyMethod(int aVar)
{

m_aVar = aVar;
}

As an exception to the above, the members of structures do not need to be prefixed with an m_.

Finally, do not use Hungarian notation, and do not prefix enums, classes, or delegates with any letter.

Choosing names

Variable, function, method, and type names should be based on the English language, American spelling. Furthermore,
always try to choose descriptive names for them. Types are often english names such as: Packet, Buffer, Mac, or Phy.
Functions and methods are often named based on verbs and adjectives: GetX, DoDispose, ClearArray, etc.

A long descriptive name which requires a lot of typing is always better than a short name which is hard to decipher. Do
not use abbreviations in names unless the abbreviation is really unambiguous and obvious to everyone (e.g., use size
over sz). Do not use short inappropriate names such as foo, bar, or baz. The name of an item should always match its
purpose. As such, names such as tmp to identify a temporary variable, or such as i to identify a loop index are OK.

If you use predicates (that is, functions, variables or methods which return a single boolean value), prefix the name
with “is” or “has”.

6.4.13 File layout and code organization

A class named MyClass should be declared in a header named my-class.h and implemented in a source file named
my-class.cc. The goal of this naming pattern is to allow a reader to quickly navigate through the ns-3 codebase to
locate the source file relevant to a specific type.

Each my-class.h header should start with the following comment to ensure that your code is licensed under the GPL,
that the copyright holders are properly identified (typically, you or your employer), and that the actual author of the
code is identified. The latter is purely informational and we use it to try to track the most appropriate person to review
a patch or fix a bug. Please do not add the “All Rights Reserved” phrase after the copyright statement.

/*
* Copyright (c) YEAR COPYRIGHTHOLDER
*
* SPDX-License-Identifier: GPL-2.0-only
*
* Author: MyName <myemail@example.com>
*/
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Below these C-style comments, always include the following which defines a set of header guards (MY_CLASS_H) used
to avoid multiple header includes, which ensures that your code is included in the ns-3 namespace and which provides
a set of Doxygen comments for the public part of your class API. Detailed information on the set of tags available for
doxygen documentation is described in the Doxygen website.

#ifndef MY_CLASS_H
#define MY_CLASS_H

namespace ns3
{

/**
* @brief short one-line description of the purpose of your class
*
* A longer description of the purpose of your class after a blank
* empty line.
*/
class MyClass
{
public:

MyClass();

/**
* A detailed description of the purpose of the method.
*
* @param firstParam a short description of the purpose of this parameter
* @return a short description of what is returned from this function.
*/
int DoSomething(int firstParam);

private:
/**
* Private method doxygen is also recommended
*/
void MyPrivateMethod();

int m_myPrivateMemberVariable; ///< Brief description of member variable
};

} // namespace ns3

#endif // MY_CLASS_H

The my-class.cc file is structured similarly:

/*
* Copyright (c) YEAR COPYRIGHTHOLDER
*
* SPDX-License-Identifier: GPL-2.0-only
*
* Author: MyName <myemail@foo.com>
*/

#include "my-class.h"
(continues on next page)
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namespace ns3
{

MyClass::MyClass()
{
}

...

} // namespace ns3

6.4.14 Header file includes

Included header files should be organized by source location. The sorting order is as follows:

// Header class (applicable for *.cc files)
#include "my-class.h"

// Includes from the same module
#include "header-from-same-module.h"

// Includes from other modules
#include "ns3/header-from-different-module.h"

// External headers (e.g., STL libraries)
#include <iostream>

Groups should be separated by a new line. Within each group, headers should be sorted alphabetically.

For standard headers, use the C++ style of inclusion:

#include <cstring> // OK
#include <string.h> // Avoid

• inside .h files, always use

#include "ns3/header.h"

• inside .cc files, use

#include "header.h"

if file is in same directory, otherwise use

#include "ns3/header.h"
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6.4.15 Variables and constants

Each variable declaration is on a separate line. Variables should be declared at the point in the code where they are
needed, and should be assigned an initial value at the time of declaration.

// Do not declare multiple variables per line
int x, y;

// Declare one variable per line and assign an initial value
int x = 0;
int y = 0;

Named constants defined in classes should be declared as static constexpr instead of macros, const, or enums.
Use of static constexpr allows a single instance to be evaluated at compile-time. Declaring the constant in the
class enables it to share the scope of the class.

If the constant is only used in one file, consider declaring the constant in the implementation file (*.cc).

// Avoid declaring constants as enum
class LteRlcAmHeader : public Header
{

enum ControlPduType_t
{

STATUS_PDU = 000,
};

};

// Prefer to declare them as static constexpr (in class)
class LteRlcAmHeader : public Header
{

static constexpr uint8_t STATUS_PDU{0};
};

// Or as constexpr (in implementation files)
constexpr uint8_t STATUS_PDU{0};

When declaring variables that are easily deducible from context, prefer to declare them with auto instead of repeating
the type name. Not only does this improve code readability (by reducing redundancy), but it also facilitates future code
refactoring.

// Avoid repeating the type name when declaring variables if the type is obvious from␣
↪→the context
int* ptr = new int[10];
uint8_t m = static_cast<uint8_t>(97 + (i % 26));

// Prefer to declare them with auto
auto* ptr = new int[10];
auto m = static_cast<uint8_t>(97 + (i % 26));

Containers (maps, sets, vectors) and iterators require understanding how C++ type deduction works. Suppose that you
want a const iterator when using std::map::find(), matching the below declaration:

std::map<uint32_t, std::string>::const_iterator it = myMap.find(key);

If myMap has been declared as a non-const map (which is the typical case in ns-3), then the following will not result in
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a const_iterator because find() returns a non-const iterator on a non-const map:

auto it = myMap.find(key);

Instead, if you would like auto to deduce a const iterator from find(), you need to make myMap into a const lvalue
reference, such as:

auto it = std::as_const(myMap).find(key);

Note that std::map::begin() and std::map::end() have cbegin() and cend() variants that explicitly re-
turn const iterators, but std::map::find() and some other methods lack such variants, requiring use of
std::as_const() as shown above.

auto it = myMap.begin(); // declares a non-const iterator
auto cit = myMap.cbegin(); // declares a const iterator

If the iterator is a const iterator, prefixing the name it with c can improve readability.

6.4.16 Initialization

When declaring variables, prefer to use direct-initialization, to avoid repeating the type name.

// Avoid splitting the declaration and initialization of variables
Ipv4Address ipv4Address = Ipv4Address("192.168.0.1")

// Prefer to use direct-initialization
Ipv4Address ipv4Address("192.168.0.1")

Variables with no default constructor or of primitive types should be initialized when declared.

Variables with default constructors do not need to be explicitly initialized, since the compiler already does that. An
example of this is the ns3::Time class, which will initialize to zero.

Member variables of structs and classes should be initialized unless the member has a default constructor that guarantees
initialization. Preferably, variables should be initialized together with the declaration (in the header file). Alternatively,
they can be initialized in the default constructor (in the implementation file), and you may see instances of this in the
codebase, but direct initialization upon declaration is preferred going forward.

If all member variables of a class / struct are directly initialized (see above), they do not require explicit default ini-
tialization. But if not all variables are initialized, those non-initialized variables will contain garbage. Therefore,
initializing the class object with {} allows all member variables to always be initialized – either with the provided
default initialization or with the primitive type’s default value (typically 0).

C++ supports two syntax choices for direct initialization, either () or {}. There are various tradeoffs in the choices
for more complicated types (consult the C++ literature on brace vs. parentheses initialization), but for the fundamental
types like double, either is acceptable (please use consistently within files).

Regarding ns3::Time, do not initialize to non-zero integer values as follows, assuming that it will be converted to
nanoseconds:

Time t{1000000}; // This is disallowed

The value will be interpreted according to the current resolution, which is ambiguous. A user’s program may have
already changed the resolution from the default of nanoseconds to something else by the time of this initialization, and
it will be instead interpreted according to 10^6 * the new resolution unit.
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Time initialization to raw floating-point values is additionally fraught, because of rounding. Doing so with small values
has led to bugs in practice such as timer timeout values of zero time.

When declaring or manipulating Time objects with known values, prefer to use integer-based representations and
arguments over floating-point fractions, where possible, because integer-based is faster. This means preferring the use
of NanoSeconds, MicroSeconds, and MilliSeconds over Seconds. For example, to represent a tenth of a second,
prefer MilliSeconds(100) to Seconds(0.1).

To summarize Time declaration and initialization, consider the following examples and comments:

Time t; // OK, will be value-initialized to integer zero
Time t{MilliSeconds(100)}; // OK, fastest, no floating point involved
Time t{"100ms"}; // OK, will perform a string conversion; integer would be faster
Time t{Seconds(0.1)}; // OK, will invoke Seconds(double); integer would be faster
Time t{100000000}; // NOT OK, is interpreted differently when ``Time::SetResolution()``␣
↪→called
Time t{0.1}; // NOT OK, will round to zero; see above and also merge request !2007

A constant that cannot be declared as constexpr (such as an ns3::Time constant) and needs to be used in multiple
translation units (TUs) shall be declared as inline and initialized in a header file that is then included in all the TUs
in which the constant needs to be used:

inline const Time WIFI_TU = MicroSeconds(1024);

Indeed, since C++17, there may be more than one definition of a variable declared as inline in the program as long as
each definition appears in a different TU and all definitions are identical. See wifi-standard-constants.h for an example
of how to group such constants in a header file and declare them so that the values may be used in Attribute defaults.

This approach is to be preferred over declaring the constant as extern in a header file and initializing the constant
in a separate .cc file, because in such a case it would be dangerous to use the constant in the initialization of a static
variable (e.g., the tid static member in the static GetTypeId method of classes inheriting from the Object class) due
to the issue of static initialization order.

A constant that cannot be declared as constexpr (such as an ns3::Time constant) and needs to be used in a single
TU shall be declared and initialized in the .cc file before it is used:

// Example of declaring a Time constant locally
// If DEFAULT_BEACON_INTERVAL is declared with the class implementation such as
// below, and it is used as an an attribute default value, make sure that it
// is declared before the object TypeId is registered, such as below:
const Time DEFAULT_BEACON_INTERVAL = MicroSeconds(DEFAULT_BEACON_INTERVAL_USEC);

NS_OBJECT_ENSURE_REGISTERED(ApWifiMac);

Instead, constants that can be declared as constexpr (such as all the POD types) shall be initialized in an header file
by using the constexpr keyword only:

constexpr uint16_t MIN_AID{1};
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6.4.17 Comments

The project uses Doxygen to document the interfaces, and uses comments for improving the clarity of the code inter-
nally. All classes, methods, and members should have Doxygen comments. Doxygen comments should use the C-style
comment (also known as Javadoc) style. For comments that are intended to not be exposed publicly in the Doxygen
output, use the @internal and @endinternal tags. Please use the @see tag for cross-referencing. All parameters and
return values should be documented. The ns-3 codebase prefers the @ character for tag identification. This character
is recognized by clang-format as the start of Doxygen tags, which enables it to keep tags properly formatted; therefore
please don’t use \ as the delimiter.

/**
* MyClass description.
*/
class MyClass
{

/**
* Constructor.
*
* @param n Number of elements.
*/

MyClass(int n);
};

All the functions and variables must be documented, with the exception of member functions inherited from parent
classes (the documentation is copied automatically from the parent class), and default constructor/destructor.

It is strongly suggested to use grouping to bind together logically related classes (e.g., all the classes in a module). E.g.;

/**
* @defgroup mynewmodule This is a new module
*/

/**
* @ingroup mynewmodule
*
* MyClassOne description.
*/
class MyClassOne
{
};

/**
* @ingroup mynewmodule
*
* MyClassTwo description.
*/
class MyClassTwo
{
};

In the tests for the module, it is suggested to add an ancillary group:

/**
* @defgroup mynewmodule-test Tests for new module

(continues on next page)
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(continued from previous page)

* @ingroup mynewmodule
* @ingroup tests
*/

/**
* @ingroup mynewmodule-tests
* @brief MyNewModule Test
*/
class MyNewModuleTest : public TestCase
{
};

/**
* @ingroup mynewmodule-tests
* @brief MyNewModule TestSuite
*/
class MyNewModuleTestSuite : public TestSuite
{
public:

MyNewModuleTestSuite();
};

/**
* @ingroup mynewmodule-tests
* Static variable for test initialization
*/
static MyNewModuleTestSuite g_myNewModuleTestSuite;

As for comments within the code, comments should be used to describe intention or algorithmic overview where is
it not immediately obvious from reading the code alone. There are no minimum comment requirements and small
routines probably need no commenting at all, but it is hoped that many larger routines will have commenting to aid
future maintainers. Please write complete English sentences and capitalize the first word unless a lower-case identifier
begins the sentence. Two spaces after each sentence helps to make emacs sentence commands work. Sometimes
NS_LOG_DEBUG statements can be also used in place of comments.

Short one-line comments and long comments can use the C++ comment style; that is, //, but longer comments may
use C-style comments. Use one space after // or /*.

/*
* A longer comment,
* with multiple lines.
*/

Variable declaration should have a short, one or two line comment describing the purpose of the variable, unless it is
a local variable whose use is obvious from the context. The short comment should be on the same line as the variable
declaration, unless it is too long, in which case it should be on the preceding lines.

int nNodes = 3; // Number of nodes

/// Node container with the Wi-Fi stations
NodeContainer wifiStations(3);

Comments in closing braces are generally discouraged, to allow for consistent style formatting across recent versions
of clang-format (see MRs !1899 and !2070). This rule may be overridden in cases where the comment improves the
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code’s readability. For example, in class declarations in files with multiple classes, classes within parent classes, and
inline class functions. To ensure consistent style formatting, prefer placing the comment marking the end of the class
in a new line before the brace.

An exception to this rule are the comments in the closing brace of a namespace, which identifies the corresponding
namespace.

The following examples illustrate the above guidelines.

// File with only one class

namespace ns3
{

int
MyClass::Func(int x)
{

while (...)
{

if (...)
{
} // end if // Do not add this comment

} // end while // Do not add this comment
} // end Func // Do not add this comment

} // namespace ns3 // Keep this comment

// Example of file with multiple classes, and classes within classes

class MyClass
{

class InlineClass
{

...
int var; //!< Some variable

// end of class InlineClass // This comment is allowed
};

...

// end of class MyClass // This comment is allowed
};
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6.4.18 Casts

Where casts are necessary, use the Google C++ guidance: “Use C++-style casts like
static_cast<float>(double_value), or brace initialization for conversion of arithmetic types like int64
y = int64{1} << 42.” Do not use C-style casts, since they can be unsafe.

Try to avoid (and remove current instances of) casting of uint8_t type to larger integers in our logging output by
overriding these types within the logging system itself. Also, the unary + operator can be used to print the numeric
value of any variable, such as:

uint8_t flags = 5;
std::cout << "Flags numeric value: " << +flags << std::endl;

Avoid unnecessary casts if minor changes to variable declarations can solve the issue. In the following example, x can
be declared as float instead of int to avoid the cast, or write numbers in decimal format:

// Do not declare x as int, to avoid casting it to float
int x = 3;
float y = 1 / static_cast<float>(x);

// Prefer to declare x as float
float x = 3.0;
float y = 1 / x;

// Or use 1.0 instead of just 1
int x = 3;
float y = 1.0 / x;

6.4.19 Namespaces

ns-3 uses the ns3 namespace to separate ns-3 model library code from the C++ global namespace. The following
guidelines apply to the use of the ns3 namespace and additional namespaces. Note that these guidelines are applied in-
consistently within the ns-3 mainline because ns-3 historically had limited use of nested namespaces, and a widespread
change to use nested namespaces in all libraries would hinder backward compatibility of user programs. Therefore, the
migration to use the below guidelines is gradual, but they should apply to newly authored code.

• ns-3 model library code (code within the model and helper directories) should be included within the ns3
namespace.

• We recommend that new ns-3 modules, intended for the mainline, wrap their model code in a nested namespace.
The name of the namespace should be the module name in lowercase, without any hyphens. See the lr-wpan
module for an example (the nested namespace in that case is lrwpan). An example of a recently added module
following this guideline is the zigbee module.

• Tests should use the tests namespace outside of the ns3 namespace, and can import the ns3 namespace and
any nested namespaces with the using directive.

• Example program code should not be within the ns3 or nested namespaces, but can import those namespaces
with the using directive.

• In order to avoid exposing internal symbols, consider placing such code in an anonymous namespace, which can
only be accessed by functions in the same file.

When using nested namespaces, a question arises as to the use of prefixes on types that are declared in the namespace.
For instance, consider the LrWpanNetDevice class, which is a derived class of NetDevice and which exists in the
ns3::lrwpan namespace. When using scope resolution to refer to these types, the prefix is repetitive with the names-
pace; e.g., ns3::lrwpan::LrWpanNetDevice, although ns3::lrwpan::NetDevice would be sufficient to avoid
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collisions and would be shorter. However, use of the shorter version can hinder regular expression searches through
the codebase for given types, and require more instances of scope resolution. This style guide leaves this decision of
whether to prefix type names with nested namespace hints (such as LrWpanNetDevice) or to shorten the type names
(such as NetDevice) for authors to decide, but in the case where a name may be the same as used in another module
(such as the NetDevice example herein), a prefix on the type name is recommended.

The following guidelines apply to the code syntax for namespace usage. Code within namespaces should not be in-
dented. To more easily identify the end of a namespace, add a trailing comment to its closing brace.

namespace ns3
{

// (...)

} // namespace ns3

6.4.20 Unused variables

Compilers will typically issue warnings on unused entities (e.g., variables, function parameters). Use the
[[maybe_unused]] attribute to suppress such warnings when the entity may be unused depending on how the code
is compiled (e.g., if the entity is only used in a logging statement or an assert statement).

The general guidelines are as follows:

• If a function’s or a method’s parameter is definitely unused, prefer to leave it unnamed. In the following example,
the second parameter is unnamed.

void
UanMacAloha::RxPacketGood(Ptr<Packet> pkt, double, UanTxMode txMode)
{

UanHeaderCommon header;
pkt->RemoveHeader(header);
...

}

In this case, the parameter is also not referenced by Doxygen; e.g.,:

/**
* Receive packet from lower layer (passed to PHY as callback).
*
* @param pkt Packet being received.
* @param txMode Mode of received packet.
*/
void RxPacketGood(Ptr<Packet> pkt, double, UanTxMode txMode);

The omission is preferred to commenting out unused parameters, such as:

void
UanMacAloha::RxPacketGood(Ptr<Packet> pkt, double /*sinr*/, UanTxMode txMode)
{

UanHeaderCommon header;
pkt->RemoveHeader(header);
...

}
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• If a function’s parameter is only used in certain cases (e.g., logging), or it is part of the function’s Doxygen, mark
it as [[maybe_unused]].

void
TcpSocketBase::CompleteFork(Ptr<Packet> p [[maybe_unused]],

const TcpHeader& h,
const Address& fromAddress,
const Address& toAddress)

{
NS_LOG_FUNCTION(this << p << h << fromAddress << toAddress);

// Remaining code that definitely uses 'h', 'fromAddress' and 'toAddress'
...

}

• If a local variable saves the result of a function that must always run, but whose value may not be used, declare
it [[maybe_unused]].

void
MyFunction()
{

int result [[maybe_unused]] = MandatoryFunction();
NS_LOG_DEBUG("result = " << result);

}

• If a local variable saves the result of a function that is only run in certain cases, prefer to not declare the variable
and use the function’s return value directly where needed. This avoids unnecessarily calling the function if its
result is not used.

void
MyFunction()
{

// Prefer to call GetDebugInfo() directly on the log statement
NS_LOG_DEBUG("Debug information: " << GetDebugInfo());

// Avoid declaring a local variable with the result of GetDebugInfo()
int debugInfo [[maybe_unused]] = GetDebugInfo();
NS_LOG_DEBUG("Debug information: " << debugInfo);

}

If the calculation of the maybe unused variable is complex, consider wrapping the calculation of its value in a
conditional block that is only run if the variable is used.

if (g_log.IsEnabled(ns3::LOG_DEBUG))
{

auto debugInfo = GetDebugInfo();
auto value = DoComplexCalculation(debugInfo);

NS_LOG_DEBUG("The value is " << value);
}
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6.4.21 Unnecessary else after return

In order to increase readability and avoid deep code nests, consider not adding an else block if the if block breaks
the control flow (i.e., when using return, break, continue, etc.).

For instance, the following code:

if (n < 0)
{

return false;
}
else
{

n += 3;
return n;

}

can be rewritten as:

if (n < 0)
{

return false;
}

n += 3;
return n;

6.4.22 Boolean Simplifications

In order to increase readability and performance, avoid unnecessarily complex boolean expressions in if statements and
variable declarations.

For instance, the following code:

bool IsPositive(int n)
{

if (n > 0)
{

return true;
}
else
{

return false;
}

}

void ProcessNumber(int n)
{

if (IsPositive(n) == true)
{

...
}

}
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can be rewritten as:

bool IsPositive(int n)
{

return n > 0;
}

void ProcessNumber(int n)
{

if (IsPositive(n))
{

...
}

}

6.4.23 Smart pointer boolean comparisons

As explained in this issue, the ns-3 smart pointer class Ptr should be used in boolean comparisons as follows:

for Ptr<> p, do not use: use instead:
======================== =================================
if (p != nullptr) {...} if (p) {...}
if (p != NULL) {...}
if (p != 0) {...} if (p) {...}

if (p == nullptr) {...} if (!p) {...}
if (p == NULL) {...}
if (p == 0) {...}

NS_ASSERT...(p != nullptr, ...) NS_ASSERT...(p, ...)
NS_ABORT... (p != nullptr, ...) NS_ABORT... (p, ...)

NS_ASSERT...(p == nullptr, ...) NS_ASSERT...(!p, ...)
NS_ABORT... (p == nullptr, ...) NS_ABORT... (!p, ...)

NS_TEST... (p, nullptr, ...) NS_TEST... (p, nullptr, ...)

6.4.24 Code performance tips

While developing code, consider the following tips to improve the code’s performance. Some tips are general recom-
mendations, but are not strictly enforced. Other tips are enforced by clang-tidy. Please refer to the clang-tidy section
below for more details.

• Prefer to use .emplace_back() over .push_back() to optimize performance.

• When initializing STL containers (e.g., std::vector) with known size, reserve memory to store all items,
before pushing them in a loop.

constexpr int N_ITEMS = 5;

std::vector<int> myVector;
myVector.reserve(N_ITEMS); // Reserve memory to store all items

(continues on next page)

52 Chapter 6. Coding style

https://gitlab.com/nsnam/ns-3-dev/-/merge_requests/732


Contributing to ns-3, Release ns-3-dev

(continued from previous page)

for (int i = 0; i < N_ITEMS; i++)
{

myVector.emplace_back(i);
}

• Prefer to initialize STL containers (e.g., std::vector, std::map, etc.) directly through the constructor or with
a braced-init-list, instead of pushing elements one-by-one.

// Prefer to initialize containers directly
std::vector<int> myVector1{1, 2, 3};
std::vector<int> myVector2(myVector1.begin(), myVector1.end());
std::vector<bool> myVector3(myVector2.size(), true);

// Avoid pushing elements one-by-one
std::vector<int> myVector1;
myVector1.reserve(3);
myVector1.emplace_back(1);
myVector1.emplace_back(2);
myVector1.emplace_back(3);

std::vector<int> myVector2;
myVector2.reserve(myVector1.size());
for (const auto& v : myVector1)
{

myVector2.emplace_back(v);
}

std::vector<bool> myVector3;
myVector3.reserve(myVector1.size());
for (std::size_t i = 0; i < myVector1.size(); i++)
{

myVector3.emplace_back(true);
}

• When looping through containers, prefer to use const-ref syntax over copying elements.

std::vector<int> myVector{1, 2, 3};

for (const auto& v : myVector) { ... } // OK
for (auto v : myVector) { ... } // Avoid

• Prefer to use the empty() function of STL containers (e.g., std::vector), instead of the condition size() >
0, to avoid unnecessarily calculating the size of the container.

• Avoid unnecessary calls to the functions .c_str() and .data() of std::string.

• Avoid unnecessarily dereferencing std smart pointers (std::shared_ptr, std::unique_ptr) with calls to
their member function .get(). Prefer to use the std smart pointer directly where needed.

auto ptr = std::make_shared<Node>();

// OK
if (ptr) { ... }

(continues on next page)
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// Avoid
if (ptr.get()) { ... }

• Consider caching frequently-used results (especially expensive calculations, such as mathematical functions) in
a temporary variable, instead of calculating them in every loop.

// Prefer to cache intermediate results
const double sinTheta = std::sin(theta);
const double cosTheta = std::cos(theta);

for (uint8_t i = 0; i < NUM_VALUES; i++)
{

double power = std::pow(2, i);

array1[i] = (power * sinTheta) + cosTheta;
array2[i] = (power * cosTheta) + sinTheta;

}

// Avoid repeating calculations
for (uint8_t i = 0; i < NUM_VALUES; i++)
{

array1[i] = (std::pow(2, i) * std::sin(theta)) + std::cos(theta);
array2[i] = (std::pow(2, i) * std::cos(theta)) + std::sin(theta);

}

• Do not include inline implementations in header files; put all implementation in a .cc file (unless implementation
in the header file brings demonstrable and significant performance improvement).

• Avoid declaring trivial destructors, to optimize performance.

• When declaring default destructors with ~Class() = default;, be aware that classes derived from
SimpleRefCount<T> must have this declaration on the source file (.cc). The header file (.h) should con-
tain the plain destructor declaration ~Class();. This is due to PIMPL’s opaque pointer, as explained in Andrea
Fertig’s blog post When an empty destructor is required. See class WifiPpdu’s destructor for an example.

6.4.25 C++ standard

As of ns-3.36, ns-3 permits the use of C++-17 (or earlier) features in the implementation files.

If a developer would like to propose to raise this bar to include more features than this, please email the developers list.
We will move this language support forward as our minimally supported compiler moves forward.
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6.4.26 Guidelines for using maps

Maps (associative containers) are used heavily in ns-3 models to store key/value pairs. The C++ standard, over time,
has added various methods to insert elements to maps, and the ns-3 codebase has made use of most or all of these
constructs. For the sake of uniformity and readability, the following guidelines are recommended for any new code.

Prefer the use of std::map to std::unordered_map unless there is a measurable performance advantage. Use
std::unordered_map only for use cases in which the map does not need to be iterated or the iteration order does
not affect the results of the operation (because different implementations of the hash function may lead to different
iteration orders on different systems).

Keep in mind that C++ now allows several methods to insert values into maps, and the behavior can be different
when a value already exists for a key. If the intended behavior is that the insertion should not overwrite an ex-
isting value for the key, try_emplace() can be a good choice. If the intention is to allow the overwriting of a
key/value pair, insert_or_assign() can be a good choice. Both of the above methods provide return values that
can be checked– in the case of try_emplace(), whether the insertion succeeded or did not occur, and in the case of
insert_or_assign(), whether an insertion or assignment occurred.

6.4.27 Miscellaneous items

• NS_LOG_COMPONENT_DEFINE("log-component-name"); statements should be placed within
namespace ns3 (for module code) and after the using namespace ns3;. In examples,
NS_OBJECT_ENSURE_REGISTERED() should also be placed within namespace ns3.

• Pointers and references are left-aligned:

int x = 1;
int* ptr = &x;
int& ref = x;

• Use a trailing comma in braced-init-lists, so that each item is positioned in a new line.

const std::vector<std::string> myVector{
"string-1",
"string-2",
"string-3",

};

const std::map<int, std::string> myMap{
{1, "string-1"},
{2, "string-2"},
{3, "string-3"},

};

• Const reference syntax:

void MySub(const T& t); // OK
void MySub(T const& t); // Not OK

• Do not use NULL, nil or 0 constants; use nullptr (improves portability)

• Consider whether you want the default constructor, copy constructor, or assignment operator in your class. If
not, explicitly mark them as deleted and make the declaration public:
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class MyClass
{
public:
// Allowed constructors
MyClass(int i);

// Deleted constructors.
// Explain why they are not supported.
MyClass() = delete;
MyClass(const MyClass&) = delete;
MyClass& operator=(const MyClass&) = delete;

};

• Avoid returning a reference to an internal or local member of an object:

MyType& foo(); // Avoid. Prefer to return a pointer or an object.
const MyType& foo(); // Same as above.

This guidance does not apply to the use of references to implement operators.

• Expose class members through access functions, rather than direct access to a public object. The access functions
are typically named Get and Set followed by the member’s name. For example, a member m_delayTime might
have accessor functions GetDelayTime() and SetDelayTime().

• Do not bring the C++ standard library namespace into ns-3 source files by using the using namespace std;
directive.

• Do not use the C++ goto statement.

• Do not add the enum or struct specifiers when declaring the variable’s type.

• Do not unnecessarily add typedef to struct or enum.

// Avoid
typedef struct
{

...
} MyStruct;

// Prefer
struct MyStruct
{

...
};

• When checking whether a Time value is zero, use Time::IsZero() rather than comparing it to a zero-
valued time object with operator==, to avoid construction of a temporary. Similar guidance applies to
the related functions Time::IsPositive(), Time::IsNegative(), Time::IsStrictlyPositive, and
Time::IsStrictlyNegative().

Time t = ...;
// prefer the below:
if (t.IsStrictlyPositive())
{...}
// to this alternative:

(continues on next page)
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(continued from previous page)

if (t > Seconds(0))
{...}

• Use std::array instead of C-style arrays, e.g.:

// Avoid
uint8_t myArray[16];

// Prefer
std::array<uint8_t, 16> myArray;

This enables many useful operations without writing extra code, such as copy constructors, default comparison
operators, etc.

• In C++ 20, a new comparison operator <=> . . . was added, and a new pattern started to become a C++ best
practice: to avoid defining operators separately but to make use of a member declaration such as:

#include <compare>
struct IntWrapper
{
int value{0};
constexpr IntWrapper(int value): value{value} { }
auto operator<=>(const IntWrapper&) const = default;
bool operator==(const IntWrapper&) const = default; // Unnecessary, derived from

↪→<=>
bool operator!=(const IntWrapper&) const = default; // Unnecessary, derived from␣

↪→==
};

For new ns-3 code, we recommend using this operator where possible. There are cases in which the default does
not apply, and you can read about some of them here and here. You may notice in the ns-3 codebase that most
code defines operators separately, because the code predates C++20. Some of this code may be changed to use
<=> over time.

Two examples are in ns3::LollipopCounter, and ns3::SequenceNumber.

6.4.28 Clang-tidy rules

Please refer to the .clang-tidy file in the ns-3 main directory for the full list of rules that should be observed while
developing code.

Some rules are explained in the corresponding sections above. The remaining rules are explained here.

• Explicitly mark inherited functions with the override specifier.

• When creating STL smart pointers, prefer to use std::make_shared or std::make_unique, instead of creat-
ing the smart pointer with new.

auto node = std::make_shared<Node>(); // OK
auto node = std::shared_ptr<Node>(new Node()); // Avoid

• When looping through containers, prefer to use range-based for loops rather than index-based loops.
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std::vector<int> myVector{1, 2, 3};

for (const auto& v : myVector) { ... } // Prefer
for (int i = 0; i < myVector.size(); i++) { ... } // Avoid

• Avoid accessing class static functions and members through objects. Instead, prefer to access them through the
class.

// OK
MyClass::StaticFunction();

// Avoid
MyClass myClass;
MyClass.StaticFunction();

• Prefer using type traits in short form traits_t<...> and traits_v<...>, instead of the long form traits<.
..>::type and traits<...>::value, respectively.

// Prefer using the shorter version of type traits
std::is_same_v<int, float>
std::is_integral_v<T>
std::enable_if_t<std::is_integral_v<T>, Time>

// Avoid the longer form of type traits
std::is_same<int, float>::value
std::is_integral<T>::value
std::enable_if<std::is_integral<T>::value, Time>::type

• Avoid using integer values (1 or 0) to represent boolean variables (true or false), to improve code readability
and avoid implicit conversions.

• Prefer to use static_assert() over NS_ASSERT() when conditions can be evaluated at compile-time.

• Prefer using transparent functors to non-transparent ones, to avoid repeating the type name. This improves
readability and avoids errors when refactoring code.

// Prefer using transparent functors
std::map<MyClass, int, std::less<>> myMap;

// Avoid repeating the type name "MyClass" in std::less<>
std::map<MyClass, int, std::less<MyClass>> myMap;

• In conditional control blocks (i.e., if-else and switch-case), avoid declaring multiple branch conditions with the
same content to avoid duplicating code.

In if-else blocks, prefer grouping the identical bodies in a single if condition with a disjunction of the multiple
conditions.

if (condition1)
{

Foo();
}
else if (condition2)
{

// Same body as condition 1
(continues on next page)
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(continued from previous page)

Foo();
}
else
{

Bar();
}

// Prefer grouping the two conditions
if (condition1 || condition2)
{

Foo();
}
else
{

Bar();
}

In switch-case blocks, prefer grouping identical case labels by removing the duplicate bodies of the former case
labels.

switch (condition)
{
case 1:

Foo();
break;

case 2: // case 2 has the same body as case 1
Foo();
break;

case 3:
Bar();
break;

}

switch (condition)
{
// Group identical cases by removing the content of case 1 and letting it␣
↪→fallthrough to case 2
case 1:
case 2:

Foo();
break;

case 3:
Bar();
break;

}
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6.5 CMake file formatting

The CMakeLists.txt and other *.cmake files follow the formatting rules defined in build-support/
cmake-format.yaml and build-support/cmake-format-modules.yaml.

The first set of rules applies to CMake files in all directories that are not modules, while the second one applies to files
within modules.

Those rules are enforced via the cmake-format tool, that can be installed via Pip.

pip install cmake-format pyyaml

After installing cmake-format, it can be called to fix the formatting of a CMake file with the following command:

cmake-format -c ./build-support/cmake-format.yaml CMakeLists.txt

To check the formatting, add the –check option to the command, before specifying the list of CMake files.

Instead of calling this command for every single CMake file, it is recommended to use the ns3 script to run the custom
targets that do that automatically.

# Check CMake formatting
./ns3 build cmake-format-check

# Check and fix CMake formatting
./ns3 build cmake-format

Custom functions and macros need to be explicitly configured in the cmake-format.yaml files, otherwise their for-
matting will be broken.

6.6 Python file formatting

Python format style and rule enforcement is based on the default settings for the Black formatter tool and Isort import
sorter tool. Black default format is detailed in Black current style.

The custom settings for both tools are set in the pyproject.toml file.

These tools that can be installed via Pip, using the following command:

pip install black isort

To check the formatting, add the –check option to the command:

black --check .
isort --check .

To check and fix the formatting, run the commands as follows:

black .
isort .

For VS Code users, MS Black formatter and MS Isort extensions, which repackage Black and Isort for VS Code, can be
installed to apply fixes regularly. To configure VS Code to automatically format code when saving, editing or pasting
code, add the following configuration to .vscode/settings.json:
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{
"editor.formatOnPaste": true,
"editor.formatOnSave": true,
"editor.formatOnType": true,
"[python]": {
"editor.defaultFormatter": "ms-python.black-formatter",
"editor.codeActionsOnSave": {

"source.organizeImports": "explicit",
},

},
"black-formatter.args": [
"--config",
"pyproject.toml",

],
"isort.check": true,
"isort.args": [

"--sp",
"pyproject.toml",

],
}

6.7 Markdown Lint

ns-3 uses MarkdownLint as a linter of Markdown files. This linter checks if Markdown files follow a set of defined
rules, in order to encourage standardization and consistency of Markdown files across parsers. It also ensures that
Markdown files are correctly interpreted and rendered.

MarkdownLint detects linting issues and can fix most of them automatically. Some issues may need to be manually
fixed.

6.7.1 MarkdownLint configuration

MarkdownLint’s settings are saved in the file .markdownlint.yml. This schema of this file is defined in Markdown-
Lint Configuration File, which explains how to customize the tool to enable / disable rules or customize its parameters.

The list of Markdown rules supported by MarkdownLint is available in MarkdownLint Rules.

6.7.2 Install and Run MarkdownLint

MarkdownLint is written in NodeJS. To run MarkdownLint, either use the official MarkdownLint Docker image, install
it natively in macOS via Homebrew, or install MarkdownLint with NodeJS / npm.
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Run MarkdownLint with Docker image

MarkdownLint has an official Docker image in MarkdownLint Docker with the tool and all dependencies installed.

To run MarkdownLint in a Docker container, use the following command:

# Check all Markdown files in the current directory and subdirectories
docker run --rm -v $PWD:/workdir ghcr.io/igorshubovych/markdownlint-cli:latest . [--fix]

# Check specific Markdown file
docker run --rm -v $PWD:/workdir ghcr.io/igorshubovych/markdownlint-cli:latest PATH_TO_
↪→FILE [--fix]

If the fix flag is used, the tool tries to automatically fix the detected issues. Otherwise, it only reports the issues found.

Install and Run MarkdownLint natively

To install MarkdownLint natively, either on macOS via Homebrew or using NodeJS / npm, follow the instructions
available in MarkdownLint Installation.

To run MarkdownLint, use the following command:

# Check all Markdown files in the current directory and subdirectories
markdownlint-cli . [--fix]

# Check specific Markdown file
markdownlint-cli PATH_TO_FILE [--fix]

6.7.3 VS Code Extension

For VS Code users, the MarkdownLint VS Code Extension extension is available in the marketplace. This extension
uses the same engine and respects the configuration file.

The MarkdownLint extension automatically analyzes files open in the editor and provides inline hints when issues are
detected. It can automatically fix most issues related with formatting. As explained in the “Integration with IDEs”
section, VS Code can be configured to automatically format code when saving, editing or pasting code.
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SEVEN

BEST PRACTICES

When writing code to be contributed to the ns-3 open source project, we recommend following the best practices listed
below. These practices apply to different phases of software development and testing, and are organized according to
the typical application lifecycle.

7.1 Development phase

7.1.1 Refactor-or-die: Preliminary refactoring before introducing functional
changes

As presented in Mikhail Matrosov’s “Refactor or die” talk in CppCon 2017 [1], mixing refactoring and functional
changes is a bad practice.

It is considered a bad practice because refactoring may involve a lot of different files, classes, API changes to ac-
commodate new parameters, for example. If a functional change is mixed in between, there is a higher probability
of introducing a bug. This results in more code to inspect and debug to isolate and fix the bug. Which translates to
unproductive work to isolate and fix the bug, which results in extra hours, working on weekends, etc, etc.

The figure below depicts the scope differences in refactoring and functional changes.

This is why refactoring should be done as a preliminary step, before functional changes. This will drastically reduce
the number of lines of code which may have introduced a potential bug, saving development/maintenance time in the
long run.

The figure below depicts the effects of mixed refactoring AND functional changes (left orange rectangle), versus the
preliminary refactoring (right green rectangle) PLUS functional changes (right orange rectangle).

Compile-or-die: Individual commit compilation and testing

Since preliminary refactoring is not always trivial, due to the potentially unknown requirements, it is very unlikely
to completely avoid mixing refactoring and functional changes. However, these changes can and should be separated
before merging them upstream.

This can be achieved through commit history rewriting, which can also introduce new bugs, if commits are not properly
rewritten.

A suggested practice is to at least compile and run tests for every single commit in the branch before merging it. This
can be accomplished by checking out each commit, hard-resetting to that commit, reconfiguring the project and running
test.py.

This can be done automatically using ./ns3 –compile-or-die base_commit head_commit.

Note: ALWAYS back up your ns-3 directory and sync your local branches with the remote server.

63



Contributing to ns-3, Release ns-3-dev

Fig. 1: Impact of different scope changes (inverted triangle), and scopes affected by refactoring and functional changes.
[1]

Fig. 2: Assume the existence of a bug kills you. If you mix functional and refactoring changes, the number of lines
potentially containing a bug increases. As such, the probability of dying is unnecessarily augmented. If you do not
mix these changes, the probability of dying is significantly reduced. [1]
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~ns-3-dev/$ ./ns3 --compile-or-die 757a2bfc2abb5f3584593609434c40e5ac678e8e␣
↪→5a30398332d70646279285a2ef8997cea0ed9e43
Compile-or-die with commits: ['757a2bfc2abb5f3584593609434c40e5ac678e8e',
↪→'5a30398332d70646279285a2ef8997cea0ed9e43']

Testing commit 757a2bfc2abb5f3584593609434c40e5ac678e8e
Testing commit 5a30398332d70646279285a2ef8997cea0ed9e43

In case there are uncommitted changes, the script won’t continue to prevent potential data loss. In case there is no
associated branch with the current git head, a backup branch will be created to prevent data loss. Then it will create a
new temporary test branch, that will be used to checkout and test each commit between base and head commits.

If there is no error message, all commits succeed. Which only means there is no issue preventing compilation or causing
one of the existing tests to fail. That is, we have anecdotal evidence that refactoring was done correctly.

Two branches are created automatically: the current HEAD is tagged as compileOrDieBackup if not currently tagged,
and the commit being currently tested is tagged as compileOrDieTest. These won’t be cleaned automatically to
prevent potential data loss. So users should verify and delete tags manually.

[1] Mikhail Matrosov. Refactor or die. CppCon 2017. Available in YouTube.
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