
ns-3 Installation Guide
Release ns-3-dev

ns-3 project

Feb 17, 2026

CONTENTS

1 Overview 3
1.1 Software organization . 3
1.2 Document organization . 4

2 Quick Start 5
2.1 Prerequisites . 5
2.2 Download . 6
2.3 Building and testing ns-3 . 6
2.4 Installing ns-3 . 8

3 System Prerequisites 9
3.1 Requirements . 9
3.2 Recommended . 10
3.3 Optional . 11

4 Linux 15
4.1 Requirements . 15
4.2 Recommended . 15
4.3 Optional . 16
4.4 Caveats and troubleshooting . 17

5 macOS 19
5.1 Requirements . 19
5.2 Recommended . 20
5.3 Optional . 21
5.4 Caveats and troubleshooting . 21

6 Windows 23
6.1 Windows Subsystem for Linux . 23
6.2 Windows 10 package prerequisites . 23
6.3 Windows 10 Docker container . 26
6.4 Windows 10 Vagrant . 28

7 Installing Bake 37

i

ii

ns-3 Installation Guide, Release ns-3-dev

This is the ns-3 Installation Guide. Primary documentation for the ns-3 project is organized as follows:

• Several guides that are version controlled for each release (the latest release) and development tree:

– Tutorial

– Installation Guide (this document)

– Manual

– Model Library

– Contributing Guide

• ns-3 Doxygen: Documentation of the public APIs of the simulator

• ns-3 wiki

This document is written in reStructuredText for Sphinx and is maintained in the doc/installation directory of
ns-3’s source code. Source file column width is 100 columns.

CONTENTS 1

https://www.nsnam.org/documentation/latest/
https://www.nsnam.org/documentation/development-tree/
https://www.nsnam.org/docs/doxygen/index.html
https://www.nsnam.org/wiki/Main_Page
http://docutils.sourceforge.net/rst.html
https://www.sphinx-doc.org/

ns-3 Installation Guide, Release ns-3-dev

2 CONTENTS

CHAPTER

ONE

OVERVIEW

This guide documents the different ways that users can download, build, and install ns-3 from source code. All of these
actions (download, build, install) have variations or options, and can be customized or extended by users; this document
attempts to inform readers about different possibilities.

Please note a few important details:

• ns-3 is supported for Linux, macOS, and Windows systems. Linux is the primary system supported, and (almost)
all ns-3 features are supported on Linux. However, most features can also be used on macOS and Windows.
Windows is probably the least used and least supported system.

• ns-3 has minimal prerequisites for its most basic installation; namely, a C++ compiler, Python3 support, the
CMake build system, and at least one of make, ninja, or Xcode build systems. However, some users will want
to install optional packages to make use of the many optional extensions.

• ns-3 installation requirements vary from release to release, and also as underlying operating systems evolve.
This document is version controlled, so if you are using the ns-3.X release, try to read the ns-3.X version of this
document. Even with this guidance, you may encounter issues if you are trying to use an old version of ns-3 on
a much newer system. For instance, ns-3 versions until around 2020 relied on Python2, which is now end-of-life
and not installed by default on many Linux distributions. Compilers also become more pedantic and issue more
warnings as they evolve. Solutions to some of these forward compatibility problems exist and are discussed
herein or might be found in the ns-3-users mailing list archives.

If you find any stale or inaccurate information in this document, please report it to maintainers, on our Zulip chat, in
the GitLab.com Issue tracker, (or better yet, a patch to fix in the Merge Request tracker), or on our developers mailing
list.

We also will accept patches to this document to provide installation guidance for the FreeBSD operating system and
other operating systems being used in practice.

1.1 Software organization

ns-3 is a set of C++ libraries (usually compiled as shared libraries) that can be used by C++ or Python programs to
construct simulation scenarios and execute simulations. Users can also write programs that link other C++ shared
libraries (or import other Python modules). Users can choose to use a subset of the available libraries; only the core
library is strictly required.

ns-3 uses the CMake build system (until release 3.36, the Waf build system was used). It can be built from command-
line or via a code editor program.

Most users write C++ ns-3 programs; Python support is less frequently used. As of ns-3.37, ns-3 uses cppyy to generate
runtime Python bindings, and ns-3 is available in the Pip repositories as of ns-3.39 release.

Many users may be familiar with how software is packaged and installed on Linux and other systems using package
managers. For example, to install a given Linux development library such as OpenSSL, a package manager is typically

3

https://ns-3.zulipchat.com
https://gitlab.com/nsnam/ns-3-dev/-/issues/
https://gitlab.com/nsnam/ns-3-dev/-/merge_requests

ns-3 Installation Guide, Release ns-3-dev

used (e.g., apt install openssl libssl-dev), which leads to shared libraries being installed under /usr/lib/,
development headers being installed under /usr/include/, etc. Programs that wish to use these libraries must link
the system libraries and include the development headers. ns-3 is capabile of being installed in exactly the same way,
and some downstream package maintainers have packaged ns-3 for some systems such as Ubuntu. However, as of this
writing, the ns-3 project has not prioritized or standardized such package distribution, favoring instead to recommend a
source download without a system-level install. This is mainly because most ns-3 users prefer to slightly or extensively
edit or extend the ns-3 libraries, or to build them in specific ways (for debugging, or optimized for large-scale simulation
campaign). Our build system provides an install command that can be used to install libraries and headers to system
locations (usually requiring administrator privileges), but usually the libraries are just built and used from within the
ns-3 build directory.

1.2 Document organization

The rest of this document is organized as follows:

• Quick Start (for any operating system)

• System Prerequisites of requirements, recommendations, and optional prerequisites

• Linux installation

• macOS installation

• Windows installation

• Installing Bake installation

4 Chapter 1. Overview

CHAPTER

TWO

QUICK START

This chapter summarizes the ns-3 installation process for C++ users interested in trying a generic install of the main
simulator. Python bindings installation is not covered.

Some of this chapter is redundant with the ns-3 tutorial, which also covers similar steps.

The steps are:

1. Download a source archive, or make a git clone, of ns-3 to a location on your file system (usually somewhere
under your home directory).

2. Use a C++ compiler to compile the software into a set of shared libraries, executable example programs, and
tests

ns-3 uses the CMake build system to manage the C++ compilation, and CMake itself calls on a lower-level build system
such as make to perform the actual compilation.

2.1 Prerequisites

Make sure that your system has these prerequisites. Download can be via either git or via source archive download
(via a web browser, wget, or curl).

Purpose Tool Minimum Version
Download git (for Git download)

or tar and bunzip2 (for Web download)
No minimum version
No minimum version

Compiler g++
or clang++

>= 10
>= 11

Configuration python3 >= 3.8
Build system cmake,

and at least one of: make, ninja, or Xcode
>= 3.13
No minimum version

Note: If you are using an older version of ns-3, other tools may be needed (such as python2 instead of python3 and
Waf instead of cmake). Check the file RELEASE_NOTES in the top-level directory for requirements for older releases.

From the command line, you can check the version of each of the above tools with version requirements as follows:

5

https://www.nsnam.org/docs/tutorial/html/

ns-3 Installation Guide, Release ns-3-dev

Tool Version check command
g++ $ g++ --version
clang++ $ clang++ --version
python3 $ python3 -V
cmake $ cmake --version

2.2 Download

There are two main options:

1. Download a release tarball. This will unpack to a directory such as ns-allinone-3.45 or ns-3.45. Below is
a command-line download using wget, but a browser download will also work:

$ wget https://www.nsnam.org/releases/ns-allinone-3.45.tar.bz2
$ tar xfj ns-allinone-3.45.tar.bz2
$ cd ns-3.45

2. Clone ns-3 from the ns-3-dev Git repository:

$ git clone https://gitlab.com/nsnam/ns-3-dev.git
$ cd ns-3-dev

Note that if you select option 1), your directory name will contain the release number. If you clone ns-3, your directory
will be named ns-3-dev. By default, Git will check out the ns-3 master branch, which is a development branch. All
ns-3 releases are tagged in Git, so if you would then like to check out a past release, you can do so as follows:

$ git checkout -b ns-3.45-release ns-3.45

In this quick-start, we are omitting download and build instructions for optional ns-3 modules, the NetAnim animator,
Python bindings, and NetSimulyzer. The ns-3 Tutorial has some instructions on optional components, or else the
documentation associated with the extension should be consulted.

Moreover, in this guide we will assume that you are using ns-3.36 or later. Earlier versions had different configuration,
build, and run command and options.

2.3 Building and testing ns-3

Once you have obtained the source either by downloading a release or by cloning a Git repository, the next step is to
configure the build using the CMake build system. The below commands make use of a Python wrapper around CMake,
called ns3, that simplifies the command-line syntax, resembling Waf syntax. There are several options to control the
build, but enabling the example programs and the tests, for a default build profile (with asserts enabled and and support
for ns-3 logging) is what is usually done at first:

$./ns3 configure --enable-examples --enable-tests

Depending on how fast your CPU is, the configuration command can take anywhere from a few seconds to a minute.

You should see some output such as below, if successful:

Modules configured to be built:
antenna aodv applications

(continues on next page)

6 Chapter 2. Quick Start

https://www.nsnam.org/docs/tutorial/html/getting-started.html

ns-3 Installation Guide, Release ns-3-dev

(continued from previous page)

bridge buildings config-store
core csma csma-layout
dsdv dsr energy
fd-net-device flow-monitor internet
internet-apps lr-wpan lte
mesh mobility netanim
network nix-vector-routing olsr
point-to-point point-to-point-layout propagation
sixlowpan spectrum stats
tap-bridge test topology-read
traffic-control uan virtual-net-device
wifi

Modules that cannot be built:
brite click mpi
openflow visualizer

Do not be concerned about the list of modules that cannot be built; these modules are all optional and require some
extra dependencies, but are not needed for initial exploration of ns-3.

Then, use the ns3 program to build the ns-3 module libraries and executables:

$./ns3 build

Build times vary based on the number of CPU cores, the speed of the CPU and memory, and the mode of the build
(whether debug mode, which is faster, or the default or optimized modes, which are slower). Additional configuration
(not covered here) can be used to limit the scope of the build, and the ccache, if installed, can speed things up. In
general, plan on the build taking a few minutes on faster workstations.

At the end of the build, if successful, the output will report on the underlying cmake build command that was invoked
by the ns3 program. Once the build is complete, you can run the unit tests to check your build:

$./test.py

This command should run several hundred unit tests. If they pass, you have made a successful initial build of ns-3.
Read further in this manual for instructions about building optional components, or else consult the ns-3 Tutorial or
other documentation to get started with the base ns-3.

If you prefer to code with an code editor, consult the documentation in the ns-3 Manual on Working with CMake, since
CMake enables ns-3 integration with a variety of code editors, including:

• JetBrains’s CLion

• Microsoft Visual Studio and Visual Studio Code

• Apple’s XCode

• CodeBlocks

• Eclipse CDT4

2.3. Building and testing ns-3 7

https://www.nsnam.org/docs/manual/html/working-with-cmake.html

ns-3 Installation Guide, Release ns-3-dev

2.4 Installing ns-3

Most users do not install ns-3 libraries to typical system library directories; they instead just leave the libraries in the
build directory, and the ns3 Python program will find these libraries. However, it is possible to perform an installation
step– ns3 install– with the following caveats.

The location of the installed libraries is set by the --prefix option specified at the configure step. The prefix defaults
to /usr/local. For a given --prefix=$PREFIX, the installation step will install headers to a $PREFIX/include
directory, libraries and pkgconfig files to a $PREFIX/lib directory, and a few binaries to a $PREFIX/libexec direc-
tory. For example, ./ns3 configure --prefix=/tmp, followed by ./ns3 build and ./ns3 install, will lead
to files being installed in /tmp/include, /tmp/lib, and /tmp/libexec.

Note that the ns3 script prevents running the script as root (or as a sudo user). As a result, with the default prefix
of /usr/local, the installation will fail unless the user has write privileges in that directory. Attempts to force this
with sudo ./ns3 install will fail due to a check in the ns3 program that prevents running as root. This check was
installed by ns-3 maintainers for the safety of novice users who may run ./ns3 in a root shell and later in a normal shell,
and become confused about errors resulting in lack of privileges to modify files. For users who know what they are
doing and who want to install to a privileged directory, users can comment out the statement refuse_run_as_root()
in the ns3 program (around line 1400), and then run sudo ./ns3 install.

8 Chapter 2. Quick Start

CHAPTER

THREE

SYSTEM PREREQUISITES

This chapter describes the various required, recommended, and optional system prerequisites for installing and using
ns-3. Optional prerequisites depend on whether an optional feature of ns-3 is desired by the user. The chapter is written
to be generally applicable to all operating systems, and subsequent chapters describe the specific packages for different
operating systems.

The list of requirements depends on which version of ns-3 you are trying to build, and on which extensions you need.

Note: “Do I need to install all of these packages?”

Some users want to install everything so that their configuration output shows that every feature is enabled. However,
there is no real need to install prerequisites related to features you are not yet using; you can always come back later
and install more prerequisites as needed. The build system should warn you if you are missing a prerequisite.

In the following, we have classified the prerequisites as either being required, recommended for all users, or optional
depending on use cases.

Note: “Is there a maintained list of all prerequisites?”

We use GitLab.com’s continuous integration system for testing; the configuration YAML files for these jobs can be
found in the directory utils/tests/. So, for instance, if you want to look at what packages the CI is installing for
Alpine Linux, look at utils/tests/gitlab-ci-alpine.yml. The default CI (Arch Linux) pacman commands are
in utils/tests/gitlab-ci.yml.

3.1 Requirements

3.1.1 Minimal requirements for release 3.36 and later

A C++ compiler (g++ or clang++), Python 3, the CMake build system, and a separate C++ building tool such as make,
ninja-build, or Xcode are the minimal requirements for compiling the software.

The tar and bunzip2 utilities are needed to unpack source file archives. If you want to instead use Git to fetch code,
rather than downloading a source archive, then git is required instead.

9

https://cmake.org
https://git-scm.com/

ns-3 Installation Guide, Release ns-3-dev

3.1.2 Minimal requirements for release 3.30-3.35

If you are not using Python bindings, since the Waf build system is provided as part of ns-3, there are only two build
requirements (a C++ compiler, and Python3) for a minimal install of these older ns-3 releases.

The tar and bunzip2 utilities are needed to unpack source file archives. If you want to instead use Git to fetch code,
rather than downloading a source archive, then git is required instead.

3.1.3 Minimal requirements for release 3.29 and earlier

Similarly, only a C++ compiler and Python2 were strictly required for building the ns-3 releases 3.29 and earlier.

The tar and bunzip2 utilities are needed to unpack source file archives. If you want to instead use Git to fetch code,
rather than downloading a source archive, then git is required instead.

3.2 Recommended

The following are recommended for most users of ns-3.

3.2.1 Compiler cache optimization (for ns-3.37 and later)

Ccache is a compiler cache optimization that will speed up builds across multiple ns-3 directories, at the cost of up to
an extra 5 GB of disk space used in the cache.

3.2.2 Code linting

Since ns-3.37 release, Clang-Format and Clang-Tidy are used to enforce the coding-style adopted by ns-3.

Users can invoke these tools directly from the command-line or through the (utils/check-style-clang-format.
py) check program. Moreover, clang-tidy is integrated with CMake, enabling code scanning during the build phase.

Note: Check the list of supported versions of clang-format and clang-tidy in the RELEASE_NOTES.md document.

clang-format is strongly recommended to write code that follows the ns-3 code conventions, but might be skipped for
simpler tasks (e.g., writing a simple simulation script for yourself).

clang-tidy is recommended when writing a module, to both follow code conventions and to provide hints on possible
bugs in code. Note: when using CMake’s include_directories() to include a third-party dependency directory,
it is important to set the SYSTEM flag, to prevent clang-tidy from checking code that is not under our control (e.g.
include_directories(SYSTEM ${SQLite3_INCLUDE_DIRS})).

Both are used in the CI system, and a merge request will likely fail if you did not use them.

10 Chapter 3. System Prerequisites

https://git-scm.com/
https://git-scm.com/
https://ccache.dev
https://clang.llvm.org/docs/ClangFormat.html
https://clang.llvm.org/extra/clang-tidy/
https://gitlab.com/nsnam/ns-3-dev/-/blob/master/RELEASE_NOTES.md

ns-3 Installation Guide, Release ns-3-dev

3.2.3 Debugging

GDB and Valgrind are useful for debugging and recommended if you are doing C++ development of new models or
scenarios. Both of the above tools are available for Linux and BSD systems; for macOS, LLDB is similar to GDB, but
Valgrind doesn’t appear to be available for M1 machines.

3.3 Optional

The remaining prerequisites listed below are only needed for optional ns-3 components.

Note: As of ns-3.30 release (August 2019), ns-3 uses Python 3 by default, but earlier releases depend on Python
2 packages, and at least a Python 2 interpreter is recommended. If installing the below prerequisites for an earlier
release, one may in general substitute ‘python’ where ‘python3’ is found in the below (e.g., install ‘python-dev’ instead
of ‘python3-dev’).

3.3.1 To read pcap packet traces

Many ns-3 examples generate pcap files that can be viewed by pcap analyzers such as Tcpdump and Wireshark.

3.3.2 Database support

SQLite is recommended if you are using the statistics framework or if you are running LTE or NR simulations (which
make use of SQLite databases):

3.3.3 Python bindings (ns-3.37 and newer)

ns-3 Python support now uses cppyy. Version 3.1.2 is the most recent supported cppyy release since ns-3.42.

Cppyy version 2.4.2 should be used from ns-3.37 up to 3.41.

Due to an upstream limitation with cppyy, Python bindings do not work on macOS machines with Apple silicon (M1
and M2 processors).

3.3.4 Using Python bindings (release 3.30 to ns-3.36)

This pertains to the use of existing Python bindings shipped with ns-3; for updating or generating new bindings, see
further below.

Python bindings used pybindgen in the past, which can usually be found in the ns-3-allinone directory. Python3
development packages, and setup tools, are typically needed.

3.3. Optional 11

https://www.sourceware.org/gdb/
https://valgrind.org
https://lldb.llvm.org
https://www.wireshark.org
https://www.sqlite.org
https://cppyy.readthedocs.io/en/latest/
https://github.com/wlav/cppyy/issues/150
https://github.com/gjcarneiro/pybindgen

ns-3 Installation Guide, Release ns-3-dev

3.3.5 NetAnim animator

The Qt5 or Qt6 development tools are needed for NetAnim animator.

3.3.6 PyViz visualizer

The PyViz visualizer uses a variety of Python packages supporting GraphViz. In general, to enable Python support in
ns-3, cppyy is required.

3.3.7 MPI-based distributed simulation

Open MPI support is needed if you intend to run large, parallel ns-3 simulations.

3.3.8 Doxygen

Doxygen is only needed if you intend to write new Doxygen documentation for header files.

3.3.9 Sphinx documentation

The ns-3 manual (doc/manual), tutorial (doc/tutorial) and others are written in reStructuredText for Sphinx, and
figures are typically in dia. To build PDF versions, texlive packages are needed.

3.3.10 Eigen3 support

Eigen3 is used to support more efficient calculations when using the 3GPP propagation loss models in LTE and NR
simulations.

3.3.11 GNU Scientific Library (GSL)

GNU Scientific Library (GSL) is is only used for more accurate 802.11b (legacy) WiFi error models (not needed for
more modern OFDM-based Wi-Fi).

3.3.12 XML-based version of the config store

Libxml2 is needed for the XML-based Config Store feature.

3.3.13 A GTK-based configuration system

GTK development libraries are also related to the (optional) config store, for graphical desktop support.

12 Chapter 3. System Prerequisites

https://www.qt.io
https://cppyy.readthedocs.io/en/latest/
https://www.open-mpi.org/
https://www.doxygen.nl
https://www.tug.org/texlive/
https://gitlab.com/libeigen/eigen
https://www.nsnam.org/docs//models/html/propagation.html#threegpppropagationlossmodel
https://gitlab.gnome.org/GNOME/libxml2
https://www.gtk.org

ns-3 Installation Guide, Release ns-3-dev

3.3.14 Generating modified python bindings (ns-3.36 and earlier)

To modify the Python bindings found in release 3.36 and earlier (not needed for modern releases, or if you do not use
Python, the LLVM toolchain and cxxfilt are needed.

You will also need to install castxml and pygccxml as per the instructions for Python bindings (or through the bake
build tool as described in the ns-3 tutorial). If you plan to work with bindings or rescan them for any ns-3 C++ changes
you might make, please read the chapter in the manual (corresponding to the release) on this topic.

3.3.15 To experiment with virtual machines and ns-3

Linux systems can use LXC and TUN/TAP device drivers for emulation support.

3.3.16 Support for openflow module

OpenFlow switch support requires XML and Boost development libraries.

3.3. Optional 13

https://llvm.org
https://pypi.org/project/cxxfilt/
https://github.com/CastXML/CastXML
https://github.com/CastXML/pygccxml
https://linuxcontainers.org
https://docs.kernel.org/networking/tuntap.html
https://www.nsnam.org/docs/models/html/openflow-switch.html
https://www.boost.org/

ns-3 Installation Guide, Release ns-3-dev

14 Chapter 3. System Prerequisites

CHAPTER

FOUR

LINUX

This chapter describes Linux-specific installation commands to install the options described in the previous chapter.
The chapter is written initially with Ubuntu (Debian-based) Linux examples (Ubuntu is the most frequently used Linux
distribution by ns-3 users) but should translate fairly well to derivatives (e.g. Linux Mint).

The list of packages depends on which version of ns-3 you are trying to build, and on which extensions you need; please
review the previous chapter if you need more information.

4.1 Requirements

The minimum supported version of Ubuntu is Ubuntu 22.04 LTS. Older versions may also be suitable as long as the
C++ compiler version is relatively recent. As of the ns-3.46 release, g++ version 11 or later is required (or clang++
version 17 or later). Older ns-3 releases may work with older versions of g++; check the RELEASE_NOTES.md file.

ns-3 Version apt Packages
3.36 and later g++ python3 cmake ninja-build git
3.30-3.35 g++ python3 git
3.29 and earlier g++ python2

4.2 Recommended

Feature apt Packages
Compiler cache optimization ccache
Code linting clang-format clang-tidy
Debugging gdb valgrind

Note: For Ubuntu 20.04 release and earlier, the version of ccache provided by apt (3.7.7 or earlier) may not provide
performance benefits, and users are recommended to install version 4 or later, possibly as a source install. For Ubuntu
22.04 and later, ccache can be installed using apt.

Note: Different versions of ns-3 use different versions of clang-format, resulting in slightly different formatting deci-
sions. The check-style-clang-format.py file enforces a minimum and maximum major version of clang-format
with which the current codebase is compatible. Since the ns-3.46 release, please consult the RELEASE_NOTES.md file

15

ns-3 Installation Guide, Release ns-3-dev

for the currently supported versions. For some additional information about installing and using clang-format, please
see the ns-3 coding style section on clang-format.

Note: Different versions of ns-3 use different versions of clang-tidy. Since the ns-3.46 release, see the
RELEASE_NOTES.md file for the currently supported versions.

4.3 Optional

Please see below subsections for Python-related package requirements.

Feature apt Packages
Reading pcap traces tcpdump wireshark
Database support sqlite sqlite3 libsqlite3-dev
NetAnim animator qtbase5-dev qtchooser qt5-qmake qtbase5-dev-tools
MPI-based distributed sim-
ulation

openmpi-bin openmpi-common openmpi-doc libopenmpi-dev

Building Doxygen doxygen graphviz imagemagick
Sphinx documentation python3-sphinx dia imagemagick texlive dvipng latexmk

texlive-extra-utils texlive-latex-extra texlive-font-utils
Eigen3 libeigen3-dev
GNU Scientific Library gsl-bin libgsl-dev libgslcblas0
XML config store libxml2 libxml2-dev
GTK-based config store libgtk-3-dev
Emulation with virtual ma-
chines and tap bridge

lxc-utils lxc-templates iproute2 iptables

Support for openflow libxml2 libxml2-dev libboost-all-dev

Note: For Ubuntu 20.10 and earlier, the single ‘qt5-default’ package suffices for NetAnim (apt install
qt5-default)

4.3.1 Python bindings

Python requires Cppyy, <https://cppyy.readthedocs.io/en/latest/installation.html> and specifically, version 3.5.0 is the
latest version known to work with ns-3 at this time.

ns-3.45 and newer:

python3 -m pip install --user cppyy==3.5.0

ns-3.42-3.44:

python3 -m pip install --user cppyy==3.1.2

ns-3.37-3.41:

python3 -m pip install --user cppyy==2.4.2

16 Chapter 4. Linux

https://www.nsnam.org/docs/contributing/html/coding-style.html#clang-format

ns-3 Installation Guide, Release ns-3-dev

ns-3.30-3.36 (also requires pybindgen, found in the allinone directory):

apt install python3-dev pkg-config python3-setuptools

4.3.2 PyViz visualizer

The PyViz visualizer uses a variety of Python packages supporting GraphViz.:

apt install gir1.2-goocanvas-2.0 python3-gi python3-gi-cairo python3-pygraphviz gir1.2-
↪→gtk-3.0 ipython3

For Ubuntu 18.04 and later, python-pygoocanvas is no longer provided. The ns-3.29 release and later upgrades the
support to GTK+ version 3, and requires these packages:

For ns-3.28 and earlier releases, PyViz is based on Python2, GTK+ 2, GooCanvas, and GraphViz:

apt install python-pygraphviz python-kiwi python-pygoocanvas libgoocanvas-dev ipython

4.3.3 Generating modified python bindings (ns-3.36 and earlier)

To modify the Python bindings found in release 3.36 and earlier (not needed for modern releases, or if you do not use
Python).:

apt install cmake libc6-dev libc6-dev-i386 libclang-dev llvm-dev automake python3-pip
python3 -m pip install --user cxxfilt

and you will want to install castxml and pygccxml as per the instructions for python bindings (or through the bake build
tool as described in the tutorial). The ‘castxml’ and ‘pygccxml’ packages provided by Ubuntu 18.04 and earlier are
not recommended; a source build (coordinated via bake) is recommended. If you plan to work with bindings or rescan
them for any ns-3 C++ changes you might make, please read the chapter in the manual on this topic.

4.4 Caveats and troubleshooting

When building documentation, if you get an error such as convert ... not authorized source-temp/
figures/lena-dual-stripe.eps, see this post about editing ImageMagick’s security policy configuration. In brief,
you will want to make this kind of change to ImageMagick security policy:

--- ImageMagick-6/policy.xml.bak 2020-04-28 21:10:08.564613444 -0700
+++ ImageMagick-6/policy.xml 2020-04-28 21:10:29.413438798 -0700
@@ -87,10 +87,10 @@

<policy domain="path" rights="none" pattern="@*"/>
- <policy domain="coder" rights="none" pattern="PS" />
+ <policy domain="coder" rights="read|write" pattern="PS" />

<policy domain="coder" rights="none" pattern="PS2" />
<policy domain="coder" rights="none" pattern="PS3" />
<policy domain="coder" rights="none" pattern="EPS" />

- <policy domain="coder" rights="none" pattern="PDF" />
+ <policy domain="coder" rights="read|write" pattern="PDF" />

<policy domain="coder" rights="none" pattern="XPS" />
</policymap>

4.4. Caveats and troubleshooting 17

https://cromwell-intl.com/open-source/pdf-not-authorized.html

ns-3 Installation Guide, Release ns-3-dev

If you install eigen3 via brew packaging for Linux (eigen@3), you need to add it to the CMake prefix path to be able
to locate it properly, since brew does not symlink it.:

./ns3 configure -- -DCMAKE_PREFIX_PATH="/home/linuxbrew/.linuxbrew/opt/eigen@3/"

18 Chapter 4. Linux

CHAPTER

FIVE

MACOS

This chapter describes installation steps specific to Apple macOS. macOS installation of ns-3 requires either the instal-
lation of the full Xcode IDE or a more minimal install of Xcode Command Line Tools).

The full Xcode IDE requires 40 GB of disk space. If you are just interested in getting ns-3 to run, the full Xcode is not
necessary; we recommend Command Line Tools instead.

In addition to Command Line Tools, some ns-3 extensions require third-party libraries; we recommend either Home-
brew or MacPorts. If you prefer, you can probably avoid installing Command Line Tools and install the compiler of
your choice and any other tools you may need using Homebrew or MacPorts.

In general, documentation on the web suggests to use either, but not both, Homebrew or MacPorts on a particular system.
It has been noted that Homebrew tends to install the GUI version of certain applications without easily supporting the
command-line equivalent, such as for the dia application; see ns-3 MR 1247 for discussion about this.

Finally, regarding Python, some ns-3 maintainers prefer to use a virtualenv to guard against incompatibilities that might
arise from the native macOS Python and versions that may be installed by Homebrew or Anaconda. Some ns-3 users
never use Python bindings or visualizer, but if your ns-3 workflow requires more heavy use of Python, please keep the
possibility of a virtualenv in mind if you run into Python difficulties. For a short guide on virtual environments, please
see this link.

Due to an upstream limitation with Cppyy, Python bindings did not work with ns-3 versions older than ns-3.42, but
they should work with more recent ns-3 releases.

5.1 Requirements

Installing ns-3 on macOS requires two fundamental things: 1) C++/Python development tools, and 2) CMake build
system with at least one underlying build tool. These can either be installed via binary package installation from the
macOS App Store (Xcode development tools) or the web (CMake binary package), or from Homebrew or MacPorts.

macOS Xcode uses the Clang/LLVM compiler toolchain. It is possible to install the GNU compiler gcc/g++ from
Homebrew and MacPorts, but macOS will not provide it due to licensing issues. If you do not install Xcode you will
have to install build tools via Homebrew or MacPorts. ns-3 works on recent versions of both clang++ and g++, so for
macOS, there is no need to install g++.

The following table provides package names for installing CMake and Ninja build system from Homebrew or MacPorts.

ns-3 Version Homebrew packages MacPorts packages
3.36 and later cmake ninja cmake ninja
3.35 and earlier None None

You will know you are done when you can successfully type clang++ -v at the command line, and when you type
cmake –help and it identifies that you have at least one installed generator (in the below example, Unix Makefiles):

19

https://developer.apple.com/xcode/features/
https://www.freecodecamp.org/news/install-xcode-command-line-tools/
https://brew.sh/
https://brew.sh/
https://www.macports.org/
https://gitlab.gnome.org/GNOME/dia/
https://gitlab.com/nsnam/ns-3-dev/-/merge_requests/1247
https://docs.python.org/3/library/venv.html
https://docs.anaconda.com/anaconda/install/mac-os/
https://www.dataquest.io/blog/a-complete-guide-to-python-virtual-environments/
https://github.com/wlav/cppyy/issues/150
https://cmake.org/download/

ns-3 Installation Guide, Release ns-3-dev

Generators
The following generators are available on this platform (* marks default):
* Unix Makefiles = Generates standard UNIX makefiles.
Ninja = Generates build.ninja files.
Ninja Multi-Config = Generates build-<Config>.ninja files.
Watcom WMake = Generates Watcom WMake makefiles.
Xcode = Generate Xcode project files.

5.2 Recommended

Feature Homebrew packages MacPorts packages
Compiler cache
optimization

ccache ccache

Code linting clang-format included with llvm, need to
select llvm@XX version

clang-format included with clang, need to select
clang-XX llvm-XX versions

Note: macOS development tools are based on clang, so installing llvm and clang using Homebrew or MacPorts is
typically unnecessary. However, clang-tidy might be missing, and the clang-format version might be not the
expected one. In these cases it is suggested to install the llvm package either though Homebrew or MacPorts.

Note: Homebrew provides a clang-format package, but its version might be incompatible with the one used by
ns-3.

The llvmHomebrew package provides clang-tidy and clang-format, but the binary is placed at /opt/homebrew/
opt/llvm@XX/bin/clang-tidy (where XX is the installed version number such as 18), so you will need to add this
path to your $PATH variable.

Note: Likewise, when using MacPorts, the clang-tidy and clang-format binaries will be placed in /opt/local/
libexec/llvm-XX/bin (where XX is the installed version number such as 18), so you will need to add this to your
$PATH variable.

Note: For debugging, lldb is the default debugger for llvm. Memory checkers such as Memory Graph exist for
macOS, but the ns-3 team doesn’t have experience with it as a substitution for valgrind (which is reported to not
work on M1 Macs).

20 Chapter 5. macOS

ns-3 Installation Guide, Release ns-3-dev

5.3 Optional

Please see below subsections for Python-related package requirements.

Feature Homebrew
packages

MacPort packages

Reading pcap traces wireshark wireshark4
Database support sqlite sqlite3
NetAnim animator qt@5 qt59
MPI-based distributed
simulation

open-mpi openmpi

Building Doxygen doxygen
graphviz
imagemagick

doxygen graphviz ImageMagick

Sphinx documentation sphinx-doc
texlive

dia texlive texlive-fonts-extra
texlive-latex-extra py3XX-sphinx, with XX` the
Python minor version such as 12

Eigen3 eigen@3 eigen3
GNU Scientific Library gsl gsl
XML config store libxml2 libxml2
GTK-based config store gtk+3 gtk3 or gtk4
Emulation with virtual ma-
chines

Not available for
macOS

Not available for macOS

Support for openflow,
CircularApertureAnten-
naModel

boost boost

5.4 Caveats and troubleshooting

5.3. Optional 21

ns-3 Installation Guide, Release ns-3-dev

22 Chapter 5. macOS

CHAPTER

SIX

WINDOWS

This chapter describes installation steps specific to Microsoft Windows (version 10) and its derivatives (e.g. Home,
Pro, Enterprise) using the Msys2/MinGW64 toolchain.

There are two documented ways to use ns-3 on Windows: the Windows Subsystem for Linux (WSL) or via
the Msys2/MinGW64 toolchain. Both options are listed below; users may choose to install either WSL or the
Msys2/MinGW64 toolchain (installing both is not required).

Note: ns-3 is not fully compatible with Visual Studio IDE / MSVC compiler; only Visual Studio Code editor, the
Msys2/MinGW64 toolchain, and WSL, as explained below.

6.1 Windows Subsystem for Linux

Windows Subsystem for Linux (WSL), particularly WSL2, can be used on Windows for ns-3. WSL2 runs a real Linux
kernel on Windows’s Hyper-V hypervisor, providing 100% code compatibility with Linux and seamless integration
with Windows. VS Code has excellent support and integration with WSL, enabling Windows users to develop for ns-3
in a native environment. It is recommended to install the WSL extension in VS Code for this purpose.

Users starting with WSL2 can follow the Linux installation instructions to fill out other package prerequisites. Note
that ns-3 emulation features using WSL2 are not tested/supported.

For more information:

• WSL

• Developing in WSL with VS Code

• WSL tutorial

6.2 Windows 10 package prerequisites

The following instructions are relevant to the ns-3.37 release and Windows 10.

23

https://learn.microsoft.com/en-us/windows/wsl/
https://code.visualstudio.com/docs/remote/wsl
https://code.visualstudio.com/docs/remote/wsl-tutorial

ns-3 Installation Guide, Release ns-3-dev

6.2.1 Installation of the Msys2 environment

The Msys2 includes ports of Unix tools for Windows built with multiple toolchains, including: MinGW32, MinGW64,
Clang64, UCRT.

ns-3 has been tested with the MinGW64 (GCC) toolchain. MinGW32 is 32-bit, which ns-3 does not support. The
project’s Windows maintainer has tested Clang64 unsuccessfully, and has not tested the UCRT toolchain (which may
work).

The Msys2 installer can be found on their site. Msys2 will be installed by default in the C:\msys64 directory.

The next required step is adding the binaries directories from the MinGW64 toolchain and generic Msys2 tools to the
PATH environment variable. This can be accomplished via the GUI (search for system environment variable), or via
the following command (assuming it was installed to the default directory):

C:\> setx PATH "C:\msys64\mingw64\bin;C:\msys64\usr\bin;%PATH%;" /m

Note: if the MinGW64 binary directory doesn’t precede the Windows/System32 directory (already in %PATH%), the
documentation build will fail since Windows has a conflicting convert command (FAT-to-NTFS). Similarly, if the
Msys64 binary directory doesn’t precede the Windows/System2 directory, running the bash command will result in
Windows trying to run the Windows Subsystem for Linux (WSL) bash shell.

6.2.2 Accessing the MinGW64 shell

After installing Msys2 and adding the binary directories to the PATH, we can access the Unix-like MinGW64 shell and
use the Pacman package manager.

The Pacman package manager is similar to the one used by Arch Linux, and can be accessed via one of the Msys2
shells. In this case, we will be using the MinGW64 shell. We can take this opportunity to update the package cache
and packages.

C:\ns-3-dev\> set MSYSTEM MINGW64
C:\ns-3-dev\> bash
/c/ns-3-dev/ MINGW64$ pacman -Syu

Pacman will request you to close the shell and re-open it to proceed after the upgrade.

6.2.3 Minimal requirements for C++ (release)

This is the minimal set of packages needed to run ns-3 C++ programs from a released tarball.

/c/ns-3-dev/ MINGW64$ pacman -S \
mingw-w64-x86_64-toolchain \
mingw-w64-x86_64-cmake \
mingw-w64-x86_64-ninja \
mingw-w64-x86_64-grep \
mingw-w64-x86_64-sed \
mingw-w64-x86_64-python

24 Chapter 6. Windows

https://www.msys2.org/
https://www.msys2.org/

ns-3 Installation Guide, Release ns-3-dev

6.2.4 Netanim animator

Qt5 or Qt6 development tools are needed for Netanim animator.

/c/ns-3-dev/ MINGW64$ pacman -S mingw-w64-x86_64-qt5 git

6.2.5 Support for MPI-based distributed emulation

The MPI setup requires two parts.

The first part is the Microsoft MPI SDK required to build the MPI applications, which is distributed via Msys2.

/c/ns-3-dev/ MINGW64$ pacman -S mingw-w64-x86_64-msmpi

The second part is the Microsoft MPI executors (mpiexec, mpirun) package, which is distributed as an installable
(msmpisetup.exe).

After installing it, the path containing the executors also need to be included to PATH environment variable of the
Windows and/or the MinGW64 shell, depending on whether you want to run MPI programs in either shell or both of
them.

C:\ns-3-dev\> setx PATH "%PATH%;C:\Program Files\Microsoft MPI\Bin" /m
C:\ns-3-dev\> set MSYSTEM MINGW64
C:\ns-3-dev\> bash
/c/ns-3-dev/ MINGW64$ echo "export PATH=$PATH:/c/Program\ Files/Microsoft\ MPI/Bin" >> ~/
↪→.bashrc

6.2.6 Debugging

GDB is installed along with the mingw-w64-x86_64-toolchain package.

6.2.7 Doxygen and related inline documentation

To build the Doxygen-based documentation, we need doxygen and a Latex toolchain. Getting Doxygen from Msys2 is
straightforward.

/c/ns-3-dev/ MINGW64$ pacman -S mingw-w64-x86_64-imagemagick mingw-w64-x86_64-doxygen␣
↪→mingw-w64-x86_64-graphviz mingw-w64-x86_64-texlive-full

6.2.8 The ns-3 manual, models and tutorial

These documents are written in reStructuredText for Sphinx (doc/tutorial, doc/manual, doc/models). The figures are
typically written in Dia.

The documents can be generated into multiple formats, one of them being pdf, which requires the same Latex setup for
doxygen.

Sphinx and Dia can be installed via Msys2’s package manager:

/c/ns-3-dev/ MINGW64$ pacman -S mingw-w64-x86_64-python-sphinx mingw-w64-x86_64-dia␣
↪→mingw-w64-x86_64-texlive-full

6.2. Windows 10 package prerequisites 25

https://www.microsoft.com/en-us/download/details.aspx?id=100593

ns-3 Installation Guide, Release ns-3-dev

6.2.9 GNU Scientific Library (GSL)

GSL is used to provide more accurate WiFi error models and can be installed with:

/c/ns-3-dev/ MINGW64$ pacman -S mingw-w64-x86_64-gsl

6.2.10 Database support for statistics framework

SQLite3 is installed along with the mingw-w64-x86_64-toolchain package.

6.2.11 Xml-based version of the config store

Requires libxml2 >= version 2.7, which can be installed with the following.

/c/ns-3-dev/ MINGW64$ pacman -S mingw-w64-x86_64-libxml2

6.2.12 Support for openflow module

Requires some boost libraries that can be installed with the following.

/c/ns-3-dev/ MINGW64$ pacman -S mingw-w64-x86_64-boost

6.2.13 Support for click module

Requires autotools, which can be installed with the following.

/c/ns-3-dev/ MINGW64$ pacman -S mingw-w64-x86_64-autotools

6.3 Windows 10 Docker container

Docker containers are not as useful for Windows, since only Windows hosts can use them, however we add directions
on how to use the Windows container and how to update the Docker image for reference.

First, gather all dependencies previously mentioned to cover all supported features. Install them to a base directory for
the container (e.g. C:\tools).

Save the following Dockerfile to the base directory.

It is really unfortunate we need a 16 GB base image just to get the installers working,
↪→ but such is life
FROM mcr.microsoft.com/windows:20H2

Copy the current host directory to the container
COPY .\\ C:/tools
WORKDIR C:\\tools

Create temporary dir
RUN mkdir C:\\tools\\temp

(continues on next page)

26 Chapter 6. Windows

ns-3 Installation Guide, Release ns-3-dev

(continued from previous page)

Export environment variables
RUN setx PATH "C:\\tools\\msys64\\mingw64\\bin;C:\\tools\\msys64\\usr\\bin;%PATH%" /m
RUN setx PATH "%PATH%;C:\\Program Files\\Microsoft MPI\\bin;C:\\tools\\dia\bin;C:\tools\
↪→texlive\2022\bin\win32" /m
RUN setx MSYSTEM "MINGW64" /m

Install Msys2
RUN .\\msys2-x86_64-20220503.exe in --confirm-command --accept-messages --root C:\\tools\
↪→\msys64

Update base packages
RUN C:\\tools\\msys64\\usr\\bin\\pacman -Syyuu --noconfirm

Install base packages
RUN bash -c "echo export PATH=$PATH:/c/Program\ Files/Microsoft\ MPI/Bin >> /c/tools/
↪→msys64/home/$USER/.bashrc" && \

bash -c "echo export PATH=$PATH:/c/tools/dia/bin >> /c/tools/msys64/home/$USER/.
↪→bashrc" && \

bash -c "echo export PATH=$PATH:/c/tools/texlive/2022/bin/win32 >> /c/tools/msys64/
↪→home/$USER/.bashrc" && \

bash -c "pacman -S mingw-w64-x86_64-toolchain \
mingw-w64-x86_64-cmake \
mingw-w64-x86_64-ninja \
mingw-w64-x86_64-grep \
mingw-w64-x86_64-sed \
mingw-w64-x86_64-qt5 \
git \
mingw-w64-x86_64-msmpi \
mingw-w64-x86_64-imagemagick \
mingw-w64-x86_64-doxygen \
mingw-w64-x86_64-graphviz \
mingw-w64-x86_64-python-sphinx \
mingw-w64-x86_64-gsl \
mingw-w64-x86_64-libxml2 \
mingw-w64-x86_64-boost \
--noconfirm"

Install Microsoft MPI
RUN .\\msmpisetup.exe -unattend -force -full -verbose

Install TexLive
RUN .\\install-tl-20220526\\install-tl-windows.bat --no-gui --lang en -profile .\\
↪→texlive.profile

Move working directory to temp and start cmd
WORKDIR C:\\tools\\temp
ENTRYPOINT ["cmd"]

Now you should be able to run docker build -t username/image ..

After building the container image, you should be able to use it:

6.3. Windows 10 Docker container 27

ns-3 Installation Guide, Release ns-3-dev

$ docker run -it username/image
C:\tools\temp$ git clone https://gitlab.com/nsnam/ns-3-dev
C:\tools\temp$ cd ns-3-dev
C:\tools\temp\ns-3-dev$ python ns3 configure --enable-tests --enable-examples
C:\tools\temp\ns-3-dev$ python ns3 build
C:\tools\temp\ns-3-dev$ python test.py

If testing succeeds, the container image can then be pushed to the Docker Hub using docker push username/image.

6.4 Windows 10 Vagrant

As an alternative to manually setting up all dependencies required by ns-3, one can use a pre-packaged virtual machine.
There are many ways to do that, but for automation, the most used certainly is Vagrant.

Vagrant supports multiple virtual machine providers, is available in all platforms and is fairly straightforward to use
and configure.

There are many boxes available offering guests operating systems such as BSD, Mac, Linux and Windows.

6.4.1 Using the pre-packaged Vagrant box

The provider for the ns-3 Vagrant box is VirtualBox.

The reference Windows virtual machine can be downloaded via the following Vagrant command

~/mingw64_test $ vagrant init gabrielcarvfer/ns3_win10_mingw64

After that, a Vagrantfile will be created in the current directory (in this case, mingw64_test).

The file can be modified to adjust the number of processors and memory available to the virtual machine (VM).

~/mingw64_test $ cat Vagrantfile
-*- mode: ruby -*-
vi: set ft=ruby :

All Vagrant configuration is done below. The "2" in Vagrant.configure
configures the configuration version (we support older styles for
backwards compatibility). Please don't change it unless you know what
you're doing.
Vagrant.configure("2") do |config|
The most common configuration options are documented and commented below.
For a complete reference, please see the online documentation at
https://docs.vagrantup.com.

Every Vagrant development environment requires a box. You can search for
boxes at https://vagrantcloud.com/search.
config.vm.box = "gabrielcarvfer/ns3_win10_mingw64"

Disable automatic box update checking. If you disable this, then
boxes will only be checked for updates when the user runs
`vagrant box outdated`. This is not recommended.
config.vm.box_check_update = false

(continues on next page)

28 Chapter 6. Windows

https://www.redhat.com/en/topics/virtualization/what-is-a-virtual-machine
https://developer.hashicorp.com/vagrant/docs
https://vagrantcloud.com/boxes/search
https://www.virtualbox.org/

ns-3 Installation Guide, Release ns-3-dev

(continued from previous page)

Create a forwarded port mapping which allows access to a specific port
within the machine from a port on the host machine. In the example below,
accessing "localhost:8080" will access port 80 on the guest machine.
NOTE: This will enable public access to the opened port
config.vm.network "forwarded_port", guest: 80, host: 8080

Create a forwarded port mapping which allows access to a specific port
within the machine from a port on the host machine and only allow access
via 127.0.0.1 to disable public access
config.vm.network "forwarded_port", guest: 80, host: 8080, host_ip: "127.0.0.1"

Create a private network, which allows host-only access to the machine
using a specific IP.
config.vm.network "private_network", ip: "192.168.33.10"

Create a public network, which generally matched to bridged network.
Bridged networks make the machine appear as another physical device on
your network.
config.vm.network "public_network"

Share an additional folder to the guest VM. The first argument is
the path on the host to the actual folder. The second argument is
the path on the guest to mount the folder. And the optional third
argument is a set of non-required options.
config.vm.synced_folder "../data", "/vagrant_data"

Provider-specific configuration so you can fine-tune various
backing providers for Vagrant. These expose provider-specific options.
Example for VirtualBox:
#
config.vm.provider "virtualbox" do |vb|
Display the VirtualBox GUI when booting the machine
vb.gui = true
#
Customize the amount of memory on the VM:
vb.memory = "1024"
end
#
View the documentation for the provider you are using for more
information on available options.

Enable provisioning with a shell script. Additional provisioners such as
Ansible, Chef, Docker, Puppet and Salt are also available. Please see the
documentation for more information about their specific syntax and use.
config.vm.provision "shell", inline: <<-SHELL
apt-get update
apt-get install -y apache2
SHELL
end

We can uncomment the virtualbox provider block and change vCPUs and RAM. It is recommended never to match the
number of vCPUs to the number of thread of the machine, or the host operating system can become unresponsive. For

6.4. Windows 10 Vagrant 29

ns-3 Installation Guide, Release ns-3-dev

compilation workloads, it is recommended to allocate 1-2 GB of RAM per vCPU.

~/mingw64_test/ $ cat Vagrantfile
-*- mode: ruby -*-
vi: set ft=ruby :
Vagrant.configure("2") do |config|
config.vm.box = "gabrielcarvfer/ns3_win10_mingw64"
config.vm.provider "virtualbox" do |vb|
vb.cpus = "8"
vb.memory = "8096" # 8GB of RAM

end
end

After changing the settings, we can start the VM and login via ssh. The default password is “vagrant”.

~/mingw64_test/ $ vagrant up
~/mingw64_test/ $ vagrant ssh
C:\Users\vagrant>

We are now logged into the machine and ready to work. If you prefer to update the tools, get into the MinGW64 shell
and run pacman.

C:\Users\vagrant\> set MSYSTEM MINGW64
C:\Users\vagrant\> bash
/c/Users/vagrant/ MINGW64$ pacman -Syu
/c/Users/vagrant/ MINGW64$ exit
C:\Users\vagrant\>

At this point, we can clone ns-3 locally:

C:\Users\vagrant> git clone `https://gitlab.com/nsnam/ns-3-dev`
C:\Users\vagrant> cd ns-3-dev
C:\Users\vagrant\ns-3-dev> python3 ns3 configure --enable-tests --enable-examples --
↪→enable-mpi
C:\Users\vagrant\ns-3-dev> python3 test.py

We can also access the ~/mingw64_test/ from the host machine, where the Vagrantfile resides, by accessing the syn-
chronized folder C:vagrant. If the Vagrantfile is in the host ns-3-dev directory, we can continue working on it.

C:\Users\vagrant> cd C:\vagrant
C:\vagrant\> python3 ns3 configure --enable-tests --enable-examples --enable-mpi
C:\vagrant\> python3 test.py

If all the PATH variables were set for the MinGW64 shell, we can also use it instead of the default CMD shell.

C:\vagrant\> set MSYSTEM=MINGW64
C:\vagrant\> bash
/c/vagrant/ MINGW64$./ns3 clean
/c/vagrant/ MINGW64$./ns3 configure --enable-tests --enable-examples --enable-mpi
/c/vagrant/ MINGW64$./test.py

To stop the Vagrant machine, we should close the SSH session then halt.

30 Chapter 6. Windows

ns-3 Installation Guide, Release ns-3-dev

/c/vagrant/ MINGW64$ exit
C:\vagrant\> exit
~/mingw64_test/ vagrant halt

To destroy the machine (e.g. to restore the default settings), use the following.

vagrant destroy

6.4.2 Packaging a new Vagrant box

BEWARE: DO NOT CHANGE THE SETTINGS MENTIONED ON A REAL MACHINE

THE SETTINGS ARE MEANT FOR A DISPOSABLE VIRTUAL MACHINE

Start by downloading the Windows 10 ISO.

Then install VirtualBox.

Configure a VirtualBox VM and use the Windows 10 ISO file as the install source.

During the installation, create a local user named “vagrant” and set its password to “vagrant”.

Check for any Windows updates and install them.

The following commands assume administrative permissions and a PowerShell shell.

Install the VirtualBox guest extensions

On the VirtualBox GUI, click on Devices->Insert Guest Additions CD Image... to download the VirtualBox
guest extensions ISO and mount it as a CD drive on the guest VM.

Run the installer to enable USB-passthrough, folder syncing and others.

After installing, unmount the drive by removing it from the VM. Click on Settings->Storage, select the guest drive
and remove it clicking the button with an red x.

Install the OpenSSH server

Open PowerShell and run the following to install OpenSSH server, then set it to start automatically and open the firewall
ports.

Add-WindowsCapability -Online -Name OpenSSH.Client~~~~0.0.1.0
Add-WindowsCapability -Online -Name OpenSSH.Server~~~~0.0.1.0
Start-Service sshd
Set-Service -Name sshd -StartupType 'Automatic'
if (!(Get-NetFirewallRule -Name "OpenSSH-Server-In-TCP" -ErrorAction SilentlyContinue |␣
↪→Select-Object Name, Enabled)) {

Write-Output "Firewall Rule 'OpenSSH-Server-In-TCP' does not exist, creating it..."
New-NetFirewallRule -Name 'OpenSSH-Server-In-TCP' -DisplayName 'OpenSSH Server (sshd)

↪→' -Enabled True -Direction Inbound -Protocol TCP -Action Allow -LocalPort 22
} else {

Write-Output "Firewall rule 'OpenSSH-Server-In-TCP' has been created and exists."
}

6.4. Windows 10 Vagrant 31

https://www.microsoft.com/pt-br/software-download/windows10ISO
https://www.virtualbox.org/

ns-3 Installation Guide, Release ns-3-dev

Enable essential services and disable unnecessary ones

Ensure the following services are set to automatic from the Services panel(services.msc):

• Base Filtering Engine

• Remote Procedure Call (RPC)

• DCOM Server Process Launcher

• RPC Endpoint Mapper

• Windows Firewall

Ensure the following services are set to disabled from the Services panel(services.msc):

• Windows Update

• Windows Update Remediation

• Windows Search

The same can be accomplished via the command-line with the following commands:

Set-Service -Name BFE -StartupType 'Automatic'
Set-Service -Name RpcSs -StartupType 'Automatic'
Set-Service -Name DcomLaunch -StartupType 'Automatic'
Set-Service -Name RpcEptMapper -StartupType 'Automatic'
Set-Service -Name mpssvc -StartupType 'Automatic'
Set-Service -Name wuauserv -StartupType 'Disabled'
Set-Service -Name WaaSMedicSvc -StartupType 'Disabled'
Set-Service -Name WSearch -StartupType 'Disabled'

Install the packages you need

In this step we install all the software required by ns-3, as listed in the Section Windows 10 package prerequisites.

Disable Windows Defender

After installing everything, it should be safe to disable the Windows security.

Enter in the Windows Security settings and disable “anti-tamper protection”. It rollbacks changes to security settings
periodically.

Enter in the Group Policy Editor (gpedit.msc) and disable:

• Realtime protection

• Behavior monitoring

• Scanning of archives, removable drives, network files, scripts

• Windows defender

The same can be accomplished with the following command-line commands.

Set-MpPreference -DisableArchiveScanning 1 -ErrorAction SilentlyContinue
Set-MpPreference -DisableBehaviorMonitoring 1 -ErrorAction SilentlyContinue
Set-MpPreference -DisableIntrusionPreventionSystem 1 -ErrorAction SilentlyContinue
Set-MpPreference -DisableIOAVProtection 1 -ErrorAction SilentlyContinue

(continues on next page)

32 Chapter 6. Windows

ns-3 Installation Guide, Release ns-3-dev

(continued from previous page)

Set-MpPreference -DisableRemovableDriveScanning 1 -ErrorAction SilentlyContinue
Set-MpPreference -DisableBlockAtFirstSeen 1 -ErrorAction SilentlyContinue
Set-MpPreference -DisableScanningMappedNetworkDrivesForFullScan 1 -ErrorAction␣
↪→SilentlyContinue
Set-MpPreference -DisableScanningNetworkFiles 1 -ErrorAction SilentlyContinue
Set-MpPreference -DisableScriptScanning 1 -ErrorAction SilentlyContinue
Set-MpPreference -DisableRealtimeMonitoring 1 -ErrorAction SilentlyContinue
Set-Service -Name WdNisSvc -StartupType 'Disabled'
Set-Service -Name WinDefend -StartupType 'Disabled'
Set-Service -Name Sense -StartupType 'Disabled'
Set-ItemProperty -Path "HKLM:\SOFTWARE\Microsoft\Windows Defender\Real-Time Protection" -
↪→Name SpyNetReporting -Value 0
Set-ItemProperty -Path "HKLM:\SOFTWARE\Microsoft\Windows Defender\Real-Time Protection" -
↪→Name SubmitSamplesConsent -Value 0
Set-ItemProperty -Path "HKLM:\SOFTWARE\Microsoft\Windows Defender\Features" -Name␣
↪→TamperProtection -Value 4
Set-ItemProperty -Path "HKLM:\SOFTWARE\Microsoft\Windows Defender" -Name␣
↪→DisableAntiSpyware -Value 1
Set-ItemProperty -Path "HKLM:\SOFTWARE\Policies\Microsoft\Windows Defender" -Name␣
↪→DisableAntiSpyware -Value 1

Note: the previous commands were an excerpt from the complete script in: https://github.com/jeremybeaume/tools/
blob/master/disable-defender.ps1

Turn off UAC notifications

The UAC notifications are the popups where you can give your OK to elevation to administrative privileges. It can be
disabled via User Account Control Settings, or via the following commands.

reg ADD HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System /v EnableLUA /t␣
↪→REG_DWORD /d 0 /f

Change the strong password security Policy

Open the Local Security Policy management window. Under Security Settings/Account Policy/Password Policy, dis-
able the option saying “Password must meet complexity requirements”.

Testing

After you reach this point, reboot your machine then log back in.

Test if all your packages are working as expected.

In the case of ns-3, try to enable all supported features, run the test.py and test-ns3.py suites.

If everything works, then try to log in via SSH.

If everything works, shut down the machine and prepare for packaging.

The network interface configured should be a NAT. Other interfaces won’t work correctly.

6.4. Windows 10 Vagrant 33

https://github.com/jeremybeaume/tools/blob/master/disable-defender.ps1
https://github.com/jeremybeaume/tools/blob/master/disable-defender.ps1

ns-3 Installation Guide, Release ns-3-dev

Default Vagrantfile

Vagrant can package VirtualBox VMs into Vagrant boxes without much more work. However, it still needs one more
file to do that: the default Vagrantfile.

This file will be used by Vagrant to configure the VM later on and how to connect to it.

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure("2") do |config|
config.vm.box = "BOX_FILE.box" # name of the box
config.vm.communicator = "winssh" # indicate that we are talking to a windows box via ssh
config.vm.guest = :windows # indicate that the guest is a windows machine
config.vm.network :forwarded_port, guest: 3389, host: 3389, id: "rdp", auto_correct: true
config.ssh.password = "vagrant" # give the default password, so that it stops trying to␣
↪→use a .ssh key-pair
config.ssh.insert_key = false # let the user use a written password
config.ssh.keys_only = false
config.winssh.shell = "cmd" # select the default shell (could be cmd or powershell)

config.vm.provider :virtualbox do |v, override|
#v.gui = true # do not show the VirtualBox GUI if unset or set to false
v.customize ["modifyvm", :id, "--memory", 8096] # the default settings for the VM␣

↪→are 8GB of RAM
v.customize ["modifyvm", :id, "--cpus", 8] # the default settings for the VM are 8␣

↪→vCPUs
v.customize ["modifyvm", :id, "--vram", 128] # 128 MB or vGPU RAM
v.customize ["modifyvm", :id, "--clipboard", "bidirectional"]
v.customize ["setextradata", "global", "GUI/SuppressMessages", "all"]

end
end

This Vagrantfile will be baked into the Vagrant box, and can be modified by the user Vagrantfile. After writing the
Vagrantfile, we can call the following command.

vagrant package --vagrantfile Vagrantfile --base VIRTUALBOX_VM_NAME --output BOX_FILE.box

It will take an awful long time depending on your drive.

After it finishes, we can add the box to test it.

vagrant box add BOX_NAME BOX_FILE
vagrant up BOX_NAME
vagrant ssh

If it can connect to the box, you are ready to upload it to the Vagrant servers.

34 Chapter 6. Windows

ns-3 Installation Guide, Release ns-3-dev

Publishing the Vagrant box

Create an account in https://app.vagrantup.com/ or log in with yours. In the dashboard, you can create a new box named
BOX_NAME or select an existing one to update.

After you select your box, click to add a provider. Pick Virtualbox. Calculate the MD5 hash of your BOX_FILE.box
and fill the field then click to proceed.

Upload the box.

Now you should be able to download your box from the Vagrant servers via the the following command.

vagrant init yourUserName/BOX_NAME
vagrant up
vagrant ssh

More information on Windows packaging to Vagrant boxes is available here:

• https://www.vagrantup.com/docs/boxes/base

• https://www.vagrantup.com/docs/vagrantfile/machine_settings

• https://www.vagrantup.com/docs/vagrantfile/ssh_settings

• https://www.vagrantup.com/docs/vagrantfile/winssh_settings

• https://github.com/pghalliday/windows-vagrant-boxes

6.4. Windows 10 Vagrant 35

https://app.vagrantup.com/
https://www.vagrantup.com/docs/boxes/base
https://www.vagrantup.com/docs/vagrantfile/machine_settings
https://www.vagrantup.com/docs/vagrantfile/ssh_settings
https://www.vagrantup.com/docs/vagrantfile/winssh_settings
https://github.com/pghalliday/windows-vagrant-boxes

ns-3 Installation Guide, Release ns-3-dev

36 Chapter 6. Windows

CHAPTER

SEVEN

INSTALLING BAKE

Bake is a build system orchestration tool that was primarily designed for installing ns-3 Direct Code Execution but can
be used more generally to install ns-3 third-party libraries and apps.

Bake is a Python 3 program that requires the distro and requests packages; to start using Bake, it is generally
sufficient to add those packages to your Python 3 installation using pip.

Bake is further documented elsewhere, including here and in the Getting Started chapter of the ns-3 tutorial.

37

https://ns-3-dce.readthedocs.io/en/latest/getting-started.html
https://www.nsnam.org/docs/bake/tutorial/html/index.html
https://www.nsnam.org/docs/tutorial/html/getting-started.html#downloading-ns-3-using-bake

	Overview
	Software organization
	Document organization

	Quick Start
	Prerequisites
	Download
	Building and testing ns-3
	Installing ns-3

	System Prerequisites
	Requirements
	Minimal requirements for release 3.36 and later
	Minimal requirements for release 3.30-3.35
	Minimal requirements for release 3.29 and earlier

	Recommended
	Compiler cache optimization (for ns-3.37 and later)
	Code linting
	Debugging

	Optional
	To read pcap packet traces
	Database support
	Python bindings (ns-3.37 and newer)
	Using Python bindings (release 3.30 to ns-3.36)
	NetAnim animator
	PyViz visualizer
	MPI-based distributed simulation
	Doxygen
	Sphinx documentation
	Eigen3 support
	GNU Scientific Library (GSL)
	XML-based version of the config store
	A GTK-based configuration system
	Generating modified python bindings (ns-3.36 and earlier)
	To experiment with virtual machines and ns-3
	Support for openflow module

	Linux
	Requirements
	Recommended
	Optional
	Python bindings
	PyViz visualizer
	Generating modified python bindings (ns-3.36 and earlier)

	Caveats and troubleshooting

	macOS
	Requirements
	Recommended
	Optional
	Caveats and troubleshooting

	Windows
	Windows Subsystem for Linux
	Windows 10 package prerequisites
	Installation of the Msys2 environment
	Accessing the MinGW64 shell
	Minimal requirements for C++ (release)
	Netanim animator
	Support for MPI-based distributed emulation
	Debugging
	Doxygen and related inline documentation
	The ns-3 manual, models and tutorial
	GNU Scientific Library (GSL)
	Database support for statistics framework
	Xml-based version of the config store
	Support for openflow module
	Support for click module

	Windows 10 Docker container
	Windows 10 Vagrant
	Using the pre-packaged Vagrant box
	Packaging a new Vagrant box
	Install the VirtualBox guest extensions
	Install the OpenSSH server
	Enable essential services and disable unnecessary ones
	Install the packages you need
	Disable Windows Defender
	Turn off UAC notifications
	Change the strong password security Policy
	Testing
	Default Vagrantfile
	Publishing the Vagrant box

	Installing Bake

