
ns-3 Reference Manual

ns-3 project
feedback: ns-developers@isi.edu
Simulator version: ns-3.6 13 November 2009

This is an ns-3 reference manual. Primary documentation for the ns-3 project is available
in five forms:
• ns-3 Tutorial
• ns-3 Doxygen: Documentation of the public APIs of the simulator
• Reference Manual (this document)
• ns-3 Testing and Validation manual
• ns-3 wiki

This document is written in GNU Texinfo and is to be maintained in revision control on
the ns-3 code server. Both PDF and HTML versions should be available on the server.
Changes to the document should be discussed on the ns-developers@isi.edu mailing list.
This software is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This software is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program.
If not, see http://www.gnu.org/licenses/.

http://www.nsnam.org/docs/tutorial/tutorial.html
http://www.nsnam.org/doxygen/index.html
http://www.nsnam.org/tutorials.html
http://www.nsnam.org/wiki/index.php
http://www.gnu.org/licenses/

This page is intentionally blank.

i

Short Contents

1 Organization . 1

Part 1: ns-3 core . 3

2 Random variables . 3

3 Callbacks . 9

4 Object model . 19

5 Attributes . 25

6 Object names . 39

7 Logging . 41

8 Tracing . 43

9 Real-Time Scheduler . 49

10 Packets . 51

11 Helpers . 65

12 Python . 67

Part 2: Nodes and NetDevices . 69

13 Node and NetDevices . 69

14 Simple NetDevice . 73

15 PointToPoint NetDevice . 75

16 CSMA NetDevice . 79

17 Wifi NetDevice . 85

18 Mesh NetDevice . 95

19 Bridge NetDevice . 97

Part 3: Emulation . 99

20 Emulation . 99

21 Emu NetDevice . 101

22 Tap NetDevice . 107

Part 4: Internet Models . 109

23 Sockets APIs . 109

24 Internet Stack . 113

25 IPv4 . 119

26 IPv6 . 121

27 Routing overview . 123

28 TCP models in ns-3 . 131

Part 5: Applications . 137

29 Applications . 137

Part 6: Support . 139

ii

30 Flow Monitor . 139

31 Animation . 141

32 Statistics . 143

33 Creating a new ns-3 model . 145

34 Troubleshooting . 155

Chapter 1: Organization ns-3 manual

1 Organization

This manual is organized into several parts with several chapters per part. This chap-
ter describes the overall software organization and the corresponding organization of this
manual.

ns-3 is a discrete-event network simulator in which the simulation core and models are
implemented in C++. ns-3 is built as a library which may be statically or dynamically linked
to a C++ main program that defines the simulation topology and starts the simulator. ns-3
also exports nearly all of its API to Python, allowing Python programs to import an "ns3"
module in much the same way as in C++.

Figure 1.1: Software organization of ns-3
The source code for ns-3 is mostly organized in the src/ directory and can be described

by the diagram in Figure 1.1. We will work our way from the bottom up; in general, modules
only have dependencies on modules beneath them in the figure.

We first describe Part 1 of the manual. The simulation core is implemented in src/core,
and the core is used to build the simulation engine src/simulator. Packets are fundamental
objects in a network simulator and are implemented in src/packet. These three simulation
modules by themselves are intended to comprise a generic simulation core that can be used
by different kinds of networks, not just Internet-based networks. The above modules of ns-3
are independent of specific network and device models, which are covered in later parts of
this manual.

In addition to the above ns-3 core, we describe also in Part 1 two other modules that
supplement the core C++-based API. ns-3 programs may access all of the API directly or may
make use of a so-called “helper API” that provides convenient wrappers or encapsulation
of low-level API calls. The fact that ns-3 programs can be written to two APIs (or a
combination thereof) is a fundamental aspect of the simulator and is also covered in Part
1. We also describe how Python is supported in ns-3 as the last chapter of Part 1.

The remainder of the manual is focused on documenting the models and supporting
capabilities. Part 2 focuses on two fundamental objects in ns-3: the Node and NetDevice.
Two special NetDevice types are designed to support network emulation use cases, and
emulation is described in Part 3. Part 4 is devoted to Internet-related models, including the

1ns-3.6 13 November 2009

Chapter 1: Organization ns-3 manual

sockets API used by Internet applications. Part 5 covers applications, and Part 6 describes
additional support for simulation, such as animators.

The project maintains a separate manual devoted to testing and validation of ns-3 code
(see the ns-3 Testing and Validation manual).

2ns-3.6 13 November 2009

http://www.nsnam.org/tutorials.html

Chapter 2: Random variables ns-3 manual

Part 1: ns-3 core

2 Random variables

ns-3 contains a built-in pseudo-random number generator (PRNG). It is important for
serious users of the simulator to understand the functionality, configuration, and usage of
this PRNG, and to decide whether it is sufficient for his or her research use.

2.1 Quick Overview

ns-3 random numbers are provided via instances of class RandomVariable.

• by default, ns-3 simulations use a fixed seed; if there is any randomness in the simu-
lation, each run of the program will yield identical results unless the seed and/or run
number is changed.

• in ns-3.3 and earlier, ns-3 simulations used a random seed by default; this marks
a change in policy starting with ns-3.4

• to obtain randomness across multiple simulation runs, you must either set the seed
differently or set the run number differently. To set a seed, call SeedManager::SetSeed
(uint32_t) at the beginning of the program; to set a run number with the same
seed, call SeedManager::SetRun (uint32_t) at the beginning of the program; See
Section 2.3 [Seeding and independent replications], page 4

• each RandomVariable used in ns-3 has a virtual random number generator associated
with it; all random variables use either a fixed or random seed based on the use of the
global seed (previous bullet);

• if you intend to perform multiple runs of the same scenario, with different random
numbers, please be sure to read the section on how to perform independent replications:
See Section 2.3 [Seeding and independent replications], page 4.

Read further for more explanation about the random number facility for ns-3.

2.2 Background

Simulations use a lot of random numbers; one study found that most network simulations
spend as much as 50% of the CPU generating random numbers. Simulation users need
to be concerned with the quality of the (pseudo) random numbers and the independence
between different streams of random numbers.

Users need to be concerned with a few issues, such as:

• the seeding of the random number generator and whether a simulation outcome is
deterministic or not,

• how to acquire different streams of random numbers that are independent from one
another, and

• how long it takes for streams to cycle

3ns-3.6 13 November 2009

Chapter 2: Random variables ns-3 manual

We will introduce a few terms here: a RNG provides a long sequence of (pseudo) random
numbers. The length of this sequence is called the cycle length or period, after which the
RNG will repeat itself. This sequence can be partitioned into disjoint streams. A stream of a
RNG is a contiguous subset or block of the RNG sequence. For instance, if the RNG period
is of length N, and two streams are provided from this RNG, then the first stream might
use the first N/2 values and the second stream might produce the second N/2 values. An
important property here is that the two streams are uncorrelated. Likewise, each stream can
be partitioned disjointedly to a number of uncorrelated substreams. The underlying RNG
hopefully produces a pseudo-random sequence of numbers with a very long cycle length,
and partitions this into streams and substreams in an efficient manner.

ns-3 uses the same underlying random number generator as does ns-2: the
MRG32k3a generator from Pierre L’Ecuyer. A detailed description can be found
in http://www.iro.umontreal.ca/~lecuyer/myftp/papers/streams00.pdf. The
MRG32k3a generator provides 1.8x10^19 independent streams of random numbers, each
of which consists of 2.3x10^15 substreams. Each substream has a period (i.e., the number
of random numbers before overlap) of 7.6x10^22. The period of the entire generator is
3.1x10^57.

Class ns3::RandomVariable is the public interface to this underlying random number
generator. When users create new RandomVariables (such as UniformVariable, Exponen-
tialVariable, etc.), they create an object that uses one of the distinct, independent streams
of the random number generator. Therefore, each object of type RandomVariable has, con-
ceptually, its own "virtual" RNG. Furthermore, each RandomVariable can be configured to
use one of the set of substreams drawn from the main stream.

An alternate implementation would be to allow each RandomVariable to have its own
(differently seeded) RNG. However, we cannot guarantee as strongly that the different
sequences would be uncorrelated in such a case; hence, we prefer to use a single RNG and
streams and substreams from it.

2.3 Seeding and independent replications

ns-3 simulations can be configured to produce deterministic or random results. If the ns-3
simulation is configured to use a fixed, deterministic seed with the same run number, it
should give the same output each time it is run.

By default, ns-3 simulations use a fixed seed and run number. These values are stored
in two ns3::GlobalValue instances: g_rngSeed and g_rngRun.

A typical use case is to run a simulation as a sequence of independent trials, so as to
compute statistics on a large number of independent runs. The user can either change the
global seed and rerun the simulation, or can advance the substream state of the RNG, which
is referred to as incrementing the run number.

A class ns3::SeedManager () provides an API to control the seeding and run number
behavior. This seeding and substream state setting must be called before any random
variables are created; e.g.
SeedManager::SetSeed (3); // Changes seed from default of 1 to 3
SeedManager::SetRun (7); // Changes run number from default of 1 to 7
// Now, create random variables

4ns-3.6 13 November 2009

http://www.iro.umontreal.ca/~lecuyer/myftp/papers/streams00.pdf

Chapter 2: Random variables ns-3 manual

UniformVariable x(0,10);
ExponentialVariable y(2902);
...

Which is better, setting a new seed or advancing the substream state? There is no
guarantee that the streams produced by two random seeds will not overlap. The only way
to guarantee that two streams do not overlap is to use the substream capability provided
by the RNG implementation. Therefore, use the substream capability to produce multiple
independent runs of the same simulation. In other words, the more statistically rigorous
way to configure multiple independent replications is to use a fixed seed and to advance
the run number. This implementation allows for a maximum of 2.3x10^15 independent
replications using the substreams.

For ease of use, it is not necessary to control the seed and run number from within the
program; the user can set the NS_GLOBAL_VALUE environment variable as follows:
NS_GLOBAL_VALUE="RngRun=3" ./waf --run program-name

Another way to control this is by passing a command-line argument; since this is an ns-3
GlobalValue instance, it is equivalently done such as follows:
./waf --command-template="%s --RngRun=3" --run program-name

or, if you are running programs directly outside of waf:
./build/optimized/scratch/program-name --RngRun=3

The above command-line variants make it easy to run lots of different runs from a shell
script by just passing a different RngRun index.

2.4 class RandomVariable

All random variables should derive from class RandomVariable. This base class provides
a few static methods for globally configuring the behavior of the random number generator.
Derived classes provide API for drawing random variates from the particular distribution
being supported.

Each RandomVariable created in the simulation is given a generator that is a new
RNGStream from the underlying PRNG. Used in this manner, the L’Ecuyer implemen-
tation allows for a maximum of 1.8x10^19 random variables. Each random variable in a
single replication can produce up to 7.6x10^22 random numbers before overlapping.

2.5 Base class public API

Below are excerpted a few public methods of class RandomVariable that access the next
value in the substream.

/**

* \brief Returns a random double from the underlying distribution

* \return A floating point random value

*/

double GetValue (void) const;

/**

* \brief Returns a random integer integer from the underlying distribution

* \return Integer cast of ::GetValue()

*/

5ns-3.6 13 November 2009

Chapter 2: Random variables ns-3 manual

uint32_t GetInteger (void) const;

We have already described the seeding configuration above. Different RandomVariable
subclasses may have additional API.

2.6 Types of RandomVariables

The following types of random variables are provided, and are documented in the ns-3
Doxygen or by reading src/core/random-variable.h. Users can also create their own
custom random variables by deriving from class RandomVariable.
• class UniformVariable

• class ConstantVariable

• class SequentialVariable

• class ExponentialVariable

• class ParetoVariable

• class WeibullVariable

• class NormalVariable

• class EmpiricalVariable

• class IntEmpiricalVariable

• class DeterministicVariable

• class LogNormalVariable

• class TriangularVariable

• class GammaVariable

• class ErlangVariable

• class ZipfVariable

2.7 Semantics of RandomVariable objects

RandomVariable objects have value semantics. This means that they can be passed by
value to functions. The can also be passed by reference to const. RandomVariables do not
derive from ns3::Object and we do not use smart pointers to manage them; they are either
allocated on the stack or else users explicitly manage any heap-allocated RandomVariables.

RandomVariable objects can also be used in ns-3 attributes, which means that values
can be set for them through the ns-3 attribute system. An example is in the propagation
models for WifiNetDevice:

TypeId

RandomPropagationDelayModel::GetTypeId (void)

static TypeId tid = TypeId ("ns3::RandomPropagationDelayModel")

.SetParent<PropagationDelayModel> ()

.AddConstructor<RandomPropagationDelayModel> ()

.AddAttribute ("Variable",

"The random variable which generates random delays (s).",

RandomVariableValue (UniformVariable (0.0, 1.0)),

MakeRandomVariableAccessor (&RandomPropagationDelayModel::m_variable),

MakeRandomVariableChecker ())

6ns-3.6 13 November 2009

Chapter 2: Random variables ns-3 manual

;

return tid;

Here, the ns-3 user can change the default random variable for this delay model (which
is a UniformVariable ranging from 0 to 1) through the attribute system.

2.8 Using other PRNG

There is presently no support for substituting a different underlying random number gen-
erator (e.g., the GNU Scientific Library or the Akaroa package). Patches are welcome.

2.9 More advanced usage

To be completed

2.10 Publishing your results

When you publish simulation results, a key piece of configuration information that you
should always state is how you used the the random number generator.
• what seeds you used,
• what RNG you used if not the default,
• how were independent runs performed,
• for large simulations, how did you check that you did not cycle.

It is incumbent on the researcher publishing results to include enough information to
allow others to reproduce his or her results. It is also incumbent on the researcher to
convince oneself that the random numbers used were statistically valid, and to state in the
paper why such confidence is assumed.

2.11 Summary

Let’s review what things you should do when creating a simulation.
• Decide whether you are running with a fixed seed or random seed; a fixed seed is the

default,
• Decide how you are going to manage independent replications, if applicable,
• Convince yourself that you are not drawing more random values than the cycle length,

if you are running a very long simulation, and
• When you publish, follow the guidelines above about documenting your use of the

random number generator.

7ns-3.6 13 November 2009

Chapter 3: Callbacks ns-3 manual

3 Callbacks

Some new users to ns-3 are unfamiliar with an extensively used programming idiom used
throughout the code: the “ns-3 callback”. This chapter provides some motivation on the
callback, guidance on how to use it, and details on its implementation.

3.1 Motivation

Consider that you have two simulation models A and B, and you wish to have them pass
information between them during the simulation. One way that you can do that is that you
can make A and B each explicitly knowledgeable about the other, so that they can invoke
methods on each other.

class A {
public:
void ReceiveInput (// parameters);
...

}

(in another source file:)

class B {
public:
void DoSomething (void);
...

private:
A* a_instance; // pointer to an A

}

void
B::DoSomething()
{
// Tell a_instance that something happened
a_instance->ReceiveInput (// parameters);
...

}

This certainly works, but it has the drawback that it introduces a dependency on A
and B to know about the other at compile time (this makes it harder to have independent
compilation units in the simulator) and is not generalized; if in a later usage scenario, B
needs to talk to a completely different C object, the source code for B needs to be changed
to add a “c instance” and so forth. It is easy to see that this is a brute force mechanism of
communication that can lead to programming cruft in the models.

This is not to say that objects should not know about one another if there is a hard
dependency between them, but that often the model can be made more flexible if its inter-
actions are less constrained at compile time.

9ns-3.6 13 November 2009

Chapter 3: Callbacks ns-3 manual

This is not an abstract problem for network simulation research, but rather it has been
a source of problems in previous simulators, when researchers want to extend or modify the
system to do different things (as they are apt to do in research). Consider, for example, a
user who wants to add an IPsec security protocol sublayer between TCP and IP:

------------ -----------
| TCP | | TCP |
------------ -----------

| becomes -> |
----------- -----------
| IP | | IPsec |
----------- -----------

|

IP

If the simulator has made assumptions, and hard coded into the code, that IP always
talks to a transport protocol above, the user may be forced to hack the system to get the
desired interconnections, This is clearly not an optimal way to design a generic simulator.

3.2 Background� �
Readers familiar with programming callbacks may skip this tutorial section.
 	

The basic mechanism that allows one to address the problem above is known as a callback.
The ultimate goal is to allow one piece of code to call a function (or method in C++) without
any specific inter-module dependency.

This ultimately means you need some kind of indirection – you treat the address of
the called function as a variable. This variable is called a pointer-to-function variable. The
relationship between function and pointer-to-function pointer is really no different that that
of object and pointer-to-object.

In C the canonical example of a pointer-to-function is a pointer-to-function-returning-
integer (PFI). For a PFI taking one int parameter, this could be declared like,

int (*pfi)(int arg) = 0;

What you get from this is a variable named simply “pfi” that is initialized to the value 0.
If you want to initialize this pointer to something meaningful, you have to have a function
with a matching signature. In this case,

int MyFunction (int arg) {}

If you have this target, you can initialize the variable to point to your function like,

pfi = MyFunction;

You can then call MyFunction indirectly using the more suggestive form of the call,

int result = (*pfi) (1234);

10ns-3.6 13 November 2009

Chapter 3: Callbacks ns-3 manual

This is suggestive since it looks like you are dereferencing the function pointer just like
you would dereference any pointer. Typically, however, people take advantage of the fact
that the compiler knows what is going on and will just use a shorter form,
int result = pfi (1234);

Notice that the function pointer obeys value semantics, so you can pass it around like
any other value. Typically, when you use an asynchronous interface you will pass some
entity like this to a function which will perform an action and “call back” to let you know it
completed. It calls back by following the indirection and executing the provided function.

In C++ you have the added complexity of objects. The analogy with the PFI above
means you have a pointer to a member function returning an int (PMI) instead of the
pointer to function returning an int (PFI).

The declaration of the variable providing the indirection looks only slightly different,
int (MyClass::*pmi) (int arg) = 0;

This declares a variable named “pmi” just as the previous example declared a variable
named “pfi.” Since the will be to call a method of an instance of a particular class, one
must declare that method in a class.
class MyClass {
public:

int MyMethod (int arg);
};

Given this class declaration, one would then initialize that variable like this,
pmi = &MyClass::MyMethod;

This assigns the address of the code implementing the method to the variable, completing
the indirection. In order to call a method, the code needs a “this” pointer. This, in turn,
means there must be an object of MyClass to refer to. A simplistic example of this is just
calling a method indirectly (think virtual function).
int (MyClass::*pmi) (int arg) = 0; // Declare a PMI
pmi = &MyClass::MyMethod; // Point at the implementation code

MyClass myClass; // Need an instance of the class
(myClass.*pmi) (1234); // Call the method with an object ptr

Just like in the C example, you can use this in an asynchronous call to another module
which will “call back” using a method and an object pointer. The straightforward extension
one might consider is to pass a pointer to the object and the PMI variable. The module
would just do,
(*objectPtr.*pmi) (1234);

to execute the callback on the desired object.
One might ask at this time, “what’s the point”? The called module will have to under-

stand the concrete type of the calling object in order to properly make the callback. Why
not just accept this, pass the correctly typed object pointer and do object->Method(1234)
in the code instead of the callback? This is precisely the problem described above. What
is needed is a way to decouple the calling function from the called class completely. This
requirement led to the development of the Functor.

11ns-3.6 13 November 2009

Chapter 3: Callbacks ns-3 manual

A functor is the outgrowth of something invented in the 1960s called a closure. It is
basically just a packaged-up function call, possibly with some state.

A functor has two parts, a specific part and a generic part, related through inheritance.
The calling code (the code that executes the callback) will execute a generic overloaded
operator () of a generic functor to cause the callback to be called. The called code (the
code that wants to be called back) will have to provide a specialized implementation of the
operator () that performs the class-specific work that caused the close-coupling problem
above.

With the specific functor and its overloaded operator () created, the called code then
gives the specialized code to the module that will execute the callback (the calling code).

The calling code will take a generic functor as a parameter, so an implicit cast is done
in the function call to convert the specific functor to a generic functor. This means that
the calling module just needs to understand the generic functor type. It is decoupled from
the calling code completely.

The information one needs to make a specific functor is the object pointer and the
pointer-to-method address.

The essence of what needs to happen is that the system declares a generic part of the
functor,
template <typename T>
class Functor
{
public:

virtual void operator() (T arg) = 0;
};

The caller defines a specific part of the functor that really is just there to implement the
specific operator() method,
template <typname T, typename ARG>
class SpecificFunctor : public Functor
{
public:

SpecificFunctor(T* p, int (T::*_pmi)(ARG arg))
{

m_p = p;
m_pmi = pmi;

}

virtual int operator() (ARG arg)
{

(*m_p.*m_pmi)(arg);
}

private:
void (T::*m_pmi)(ARG arg);
T* m_p;

};

12ns-3.6 13 November 2009

Chapter 3: Callbacks ns-3 manual

N.B. The previous code is not real ns-3 code. It is simplistic example code used only to
illustrate the concepts involved and to help you understand the system more. Do not expect
to find this code anywhere in the ns-3 tree

Notice that there are two variables defined in the class above. The m p variable is the
object pointer and m pmi is the variable containing the address of the function to execute.

Notice that when operator() is called, it in turn calls the method provided with the
object pointer using the C++ PMI syntax.

To use this, one could then declare some model code that takes a generic functor as a
parameter

void LibraryFunction (Functor functor);

The code that will talk to the model would build a specific functor and pass it to
LibraryFunction,

MyClass myClass;
SpecificFunctor<MyClass, int> functor (&myclass, MyClass::MyMethod);

When LibraryFunction is done, it executes the callback using the operator() on the
generic functor it was passed, and in this particular case, provides the integer argument:

void
LibraryFunction (Functor functor)
{

// Ececute the library function
functor(1234);

}

Notice that LibraryFunction is completely decoupled from the specific type of the
client. The connection is made through the Functor polymorphism.

The Callback API in ns-3 implements object-oriented callbacks using the functor mech-
anism. This callback API, being based on C++ templates, is type-safe; that is, it performs
static type checks to enforce proper signature compatibility between callers and callees. It
is therefore more type-safe to use than traditional function pointers, but the syntax may
look imposing at first. This section is designed to walk you through the Callback system so
that you can be comfortable using it in ns-3.

3.3 Using the Callback API

The Callback API is fairly minimal, providing only two services:

• callback type declaration: a way to declare a type of callback with a given signature,
and,

• callback instantiation: a way to instantiate a template-generated forwarding callback
which can forward any calls to another C++ class member method or C++ function.

This is best observed via walking through an example, based on samples/main-
callback.cc.

13ns-3.6 13 November 2009

Chapter 3: Callbacks ns-3 manual

3.3.1 Using the Callback API with static functions

Consider a function:
static double
CbOne (double a, double b)
{

std::cout << "invoke cbOne a=" << a << ", b=" << b << std::endl;
return a;

}

Consider also the following main program snippet:
int main (int argc, char *argv[])
{

// return type: double
// first arg type: double
// second arg type: double
Callback<double, double, double> one;

}

This is an example of a C-style callback – one which does not include or need a this
pointer. The function template Callback is esentially the declaration of the variable con-
taining the pointer-to-function. In the example above, we explicitly showed a pointer to a
function that returned an integer and took a single integer as a parameter, The Callback
template function is a generic version of that – it is used to declare the type of a callback.

Note1: Readers unfamiliar with C++ templates may consult this reference.
The Callback template requires one mandatory argument (the return type of the func-

tion to be assigned to this callback) and up to five optional arguments, which each specify
the type of the arguments (if your particular callback function has more than five arguments,
then this can be handled by extending the callback implementation).

So in the above example, we have a declared a callback named "one" that will eventually
hold a function pointer. The signature of the function that it will hold must return double
and must support two double arguments. If one tries to pass a function whose signature
does not match the declared callback, the compilation will fail.

Now, we need to tie together this callback instance and the actual target function
(CbOne). Notice above that CbOne has the same function signature types as the callback–
this is important. We can pass in any such properly-typed function to this callback. Let’s
look at this more closely:
static double CbOne (double a, double b) {}

^ ^ ^
| ---| ------|
| | |

Callback<double, double, double> one;

You can only bind a function to a callback if they have the matching signature. The
first template argument is the return type, and the additional template arguments are the
types of the arguments of the function signature.

Now, let’s bind our callback "one" to the function that matches its signature:

14ns-3.6 13 November 2009

http://www.cplusplus.com/doc/tutorial/templates/

Chapter 3: Callbacks ns-3 manual

// build callback instance which points to cbOne function
one = MakeCallback (&CbOne);

This call to MakeCallback is, in essence, creating one of the specialized functors men-
tioned above. The variable declared using the Callback template function is going to be
playing the part of the generic functor. The assignment one = MakeCallback (&CbOne) is
the cast that converts the specialized functor known to the callee to a generic functor known
to the caller.

Then, later in the program, if the callback is needed, it can be used as follows:
NS_ASSERT (!one.IsNull ());

// invoke cbOne function through callback instance
double retOne;
retOne = one (10.0, 20.0);

The check for IsNull() ensures that the callback is not null – that there is a function
to call behind this callback. Then, one() executes the generic operator() which is really
overloaded with a specific implementation of operator() and returns the same result as if
CbOne() had been called directly.

3.3.2 Using the Callback API with member functions

Generally, you will not be calling static functions but instead public member functions of
an object. In this case, an extra argument is needed to the MakeCallback function, to tell
the system on which object the function should be invoked. Consider this example, also
from main-callback.cc:
class MyCb {
public:

int CbTwo (double a) {
std::cout << "invoke cbTwo a=" << a << std::endl;
return -5;

}
};

int main ()
{

...
// return type: int
// first arg type: double
Callback<int, double> two;
MyCb cb;
// build callback instance which points to MyCb::cbTwo
two = MakeCallback (&MyCb::CbTwo, &cb);
...

}

Here, we pass an additional object pointer to the MakeCallback<> function. Recall from
the background section above that Operator() will use the pointer to member syntax when
it executes on an object:

15ns-3.6 13 November 2009

Chapter 3: Callbacks ns-3 manual

virtual int operator() (ARG arg)
{
(*m_p.*m_pmi)(arg);

}

And so we needed to provide the two variables (m_p and m_pmi) when we made the
specific functor. The line,

two = MakeCallback (&MyCb::CbTwo, &cb);

does precisely that. In this case,

When two () is invoked,

int result = two (1.0);

I will result in a call the CbTwo member function (method) on the object pointed to by
&cb.

3.3.3 Building Null Callbacks

It is possible for callbacks to be null; hence it may be wise to check before using them.
There is a special construct for a null callback, which is preferable to simply passing "0" as
an argument; it is the MakeNullCallback<> construct:

two = MakeNullCallback<int, double> ();
NS_ASSERT (two.IsNull ());

Invoking a null callback is just like invoking a null function pointer: it will crash at
runtime.

3.4 Bound Callbacks

A very useful extension to the functor concept is that of a Bound Callback. Previously it
was mentioned that closures were originally function calls packaged up for later execution.
Notice that in all of the Callback descriptions above, there is no way to package up any pa-
rameters for use later – when the Callback is called via operator(). All of the parameters
are provided by the calling function.

What if it is desired to allow the client function (the one that provides the callback)
to provide some of the parameters? Alexandrescu calls the process of allowing a client
to specify one of the parameters binding. One of the parameters of operator() has been
bound (fixed) by the client.

Some of our pcap tracing code provides a nice example of this. There is a function that
needs to be called whenever a packet is received. This function calls an object that actually
writes the packet to disk in the pcap file format. The signature of one of these functions
will be,

static void SniffEvent (Ptr<PcapWriter> writer, Ptr<const Packet> packet);

The static keyword means this is a static function which does not need a this pointer,
so it will be using C-style callbacks. We don’t want the calling code to have to know about
anything but the Packet. What we want there is just a call that looks like,

m_promiscSnifferTrace (m_currentPkt);

16ns-3.6 13 November 2009

http://erdani.com/book/main.html

Chapter 3: Callbacks ns-3 manual

What we want to do is to bind the Ptr<PcapWriter> writer to the specific callback
implementation when it is created and arrange for the operator() of the Callback to provide
that parameter for free.

We provide the MakeBoundCallback template function for that purpose. It takes the
same parameters as the MakeCallback template function but also takes the parameters to
be bound. In the case of the example above,

MakeBoundCallback (&CsmaHelper::SniffEvent, pcap));

will create a specific callback implementation that knows to add in the extra bound
arguments. Conceptually, it extends the specific functor described above with one or more
bound arguments
template <typname T, typename ARG, typename BOUND_ARG>
class SpecificFunctor : public Functor
{
public:

SpecificFunctor(T* p, int (T::*_pmi)(ARG arg), BOUND_ARG boundArg)
{
m_p = p;
m_pmi = pmi;
m_boundArg = boundArg;

}

virtual int operator() (ARG arg)
{

(*m_p.*m_pmi)(m_boundArg, arg);
}

private:
void (T::*m_pmi)(ARG arg);
T* m_p;
BOUND_ARG m_boundArg;

};

You can see that when the specific functor is created, the bound argument is saved in the
functor / callback object itself. When the operator() is invoked with the single parameter,
as in
m_promiscSnifferTrace (m_currentPkt);

the imlpementation of operator() adds the bound parameter into the actual function
call:
(*m_p.*m_pmi)(m_boundArg, arg);

3.5 Traced Callbacks� �
Placeholder subsection
 	
3.6 Callback locations in ns-3

17ns-3.6 13 November 2009

Chapter 3: Callbacks ns-3 manual

3.7 Callback locations in ns-3

Where are callbacks frequently used in ns-3? Here are some of the more visible ones to
typical users:
• Socket API
• Layer-2/Layer-3 API
• Tracing subsystem
• API between IP and routing subsystems

3.8 Implementation details

The code snippets above are simplistic and only designed to illustrate the mechanism itself.
The actual Callback code is quite complicated and very template-intense and a deep un-
derstanding of the code is not required. If interested, expert users may find the following
useful:

The code was originally written based on the techniques described in
http://www.codeproject.com/cpp/TTLFunction.asp. It was subsequently rewrit-
ten to follow the architecture outlined in Modern C++ Design: Generic Programming and
Design Patterns Applied– Alexandrescu, chapter 5, "Generalized Functors".

This code uses:
• default template parameters to saves users from having to specify empty parameters

when the number of parameters is smaller than the maximum supported number
• the pimpl idiom: the Callback class is passed around by value and delegates the crux

of the work to its pimpl pointer.
• two pimpl implementations which derive from CallbackImpl FunctorCallbackImpl can

be used with any functor-type while MemPtrCallbackImpl can be used with pointers
to member functions.

• a reference list implementation to implement the Callback’s value semantics.

This code most notably departs from the Alexandrescu implementation in that it does
not use type lists to specify and pass around the types of the callback arguments. Of course,
it also does not use copy-destruction semantics and relies on a reference list rather than
autoPtr to hold the pointer.

18ns-3.6 13 November 2009

http://www.codeproject.com/cpp/TTLFunction.asp
http://www.amazon.com/Modern-C{�am =	tfam def rm{tt}	entt �ackslashcurfont }%2B{�am =	tfam def rm{tt}	entt �ackslashcurfont }%2B-Design-Programming-Patterns/dp/0201704315/ref=pd_bbs_sr_1/102-0157303-1900156?ie=UTF8{�am =	tfam def rm{tt}	entt �ackslashcurfont }&s=books{�am =	tfam def rm{tt}	entt �ackslashcurfont }&qid=1187982662{�am =	tfam def rm{tt}	entt �ackslashcurfont }&sr=1-1
http://www.amazon.com/Modern-C{�am =	tfam def rm{tt}	entt �ackslashcurfont }%2B{�am =	tfam def rm{tt}	entt �ackslashcurfont }%2B-Design-Programming-Patterns/dp/0201704315/ref=pd_bbs_sr_1/102-0157303-1900156?ie=UTF8{�am =	tfam def rm{tt}	entt �ackslashcurfont }&s=books{�am =	tfam def rm{tt}	entt �ackslashcurfont }&qid=1187982662{�am =	tfam def rm{tt}	entt �ackslashcurfont }&sr=1-1

Chapter 4: Object model ns-3 manual

4 Object model

ns-3 is fundamentally a C++ object system. Objects can be declared and instantiated as
usual, per C++ rules. ns-3 also adds some features to traditional C++ objects, as described
below, to provide greater functionality and features. This manual chapter is intended to
introduce the reader to the ns-3 object model.

This section describes the C++ class design for ns-3 objects. In brief, several design
patterns in use include classic object-oriented design (polymorphic interfaces and imple-
mentations), separation of interface and implementation, the non-virtual public interface
design pattern, an object aggregation facility, and reference counting for memory man-
agement. Those familiar with component models such as COM or Bonobo will recognize
elements of the design in the ns-3 object aggregation model, although the ns-3 design is not
strictly in accordance with either.

4.1 Object-oriented behavior

C++ objects, in general, provide common object-oriented capabilities (abstraction, encapsu-
lation, inheritance, and polymorphism) that are part of classic object-oriented design. ns-3
objects make use of these properties; for instance:
class Address
{
public:
Address ();
Address (uint8_t type, const uint8_t *buffer, uint8_t len);
Address (const Address & address);
Address &operator = (const Address &address);
...

private:
uint8_t m_type;
uint8_t m_len;
...

};

4.2 Object base classes

There are three special base classes used in ns-3. Classes that inherit from these base classes
can instantiate objects with special properties. These base classes are:
• class Object

• class ObjectBase

• class RefCountBase

It is not required that ns-3 objects inherit from these class, but those that do get special
properties. Classes deriving from class Object get the following properties.
• the ns-3 type and attribute system (see Chapter 5 [Attributes], page 25)
• an object aggregation system
• a smart-pointer reference counting system (class Ptr)

19ns-3.6 13 November 2009

Chapter 4: Object model ns-3 manual

Classes that derive from class ObjectBase get the first two properties above, but do
not get smart pointers. Classes that derive from class RefCountBase get only the smart-
pointer reference counting system.

In practice, class Object is the variant of the three above that the ns-3 developer will
most commonly encounter.

4.3 Memory management and class Ptr

Memory management in a C++ program is a complex process, and is often done incorrectly
or inconsistently. We have settled on a reference counting design described as follows.

All objects using reference counting maintain an internal reference count to determine
when an object can safely delete itself. Each time that a pointer is obtained to an interface,
the object’s reference count is incremented by calling Ref(). It is the obligation of the user
of the pointer to explicitly Unref() the pointer when done. When the reference count falls
to zero, the object is deleted.

• When the client code obtains a pointer from the object itself through object creation,
or via GetObject, it does not have to increment the reference count.

• When client code obtains a pointer from another source (e.g., copying a pointer) it
must call Ref() to increment the reference count.

• All users of the object pointer must call Unref() to release the reference.

The burden for calling Unref() is somewhat relieved by the use of the reference counting
smart pointer class described below.

Users using a low-level API who wish to explicitly allocate non-reference-counted objects
on the heap, using operator new, are responsible for deleting such objects.

4.3.1 Reference counting smart pointer (Ptr)

Calling Ref() and Unref() all the time would be cumbersome, so ns-3 provides a smart
pointer class Ptr similar to Boost::intrusive_ptr. This smart-pointer class assumes
that the underlying type provides a pair of Ref and Unref methods that are expected to
increment and decrement the internal refcount of the object instance.

This implementation allows you to manipulate the smart pointer as if it was a normal
pointer: you can compare it with zero, compare it against other pointers, assign zero to it,
etc.

It is possible to extract the raw pointer from this smart pointer with the GetPointer and
PeekPointer methods.

If you want to store a newed object into a smart pointer, we recommend you to use
the CreateObject template functions to create the object and store it in a smart pointer to
avoid memory leaks. These functions are really small convenience functions and their goal
is just is save you a small bit of typing.

4.3.2 CreateObject and Create

Objects in C++ may be statically, dynamically, or automatically created. This holds true
for ns-3 also, but some objects in the system have some additional frameworks available.

20ns-3.6 13 November 2009

Chapter 4: Object model ns-3 manual

Specifically, reference counted objects are usually allocated using a templated Create or
CreateObject method, as follows.

For objects deriving from class Object:
Ptr<WifiNetDevice> device = CreateObject<WifiNetDevice> ();

Please do not create such objects using operator new; create them using
CreateObject() instead.

For objects deriving from class RefCountBase, or other objects that support usage
of the smart pointer class (in particular, the ns-3 Packet class does not derive from Ref-
CountBase in order to avoid a vtable, but separately implements Ref () and Unref ()), a
templated helper function is available and recommended to be used:
Ptr b = Create ();

This is simply a wrapper around operator new that correctly handles the reference
counting system.

4.3.3 Aggregation

The ns-3 object aggregation system is motivated in strong part by a recognition that a
common use case for ns-2 has been the use of inheritance and polymorphism to extend
protocol models. For instance, specialized versions of TCP such as RenoTcpAgent derive
from (and override functions from) class TcpAgent.

However, two problems that have arisen in the ns-2 model are downcasts and “weak
base class.” Downcasting refers to the procedure of using a base class pointer to an object
and querying it at run time to find out type information, used to explicitly cast the pointer
to a subclass pointer so that the subclass API can be used. Weak base class refers to the
problems that arise when a class cannot be effectively reused (derived from) because it lacks
necessary functionality, leading the developer to have to modify the base class and causing
proliferation of base class API calls, some of which may not be semantically correct for all
subclasses.

ns-3 is using a version of the query interface design pattern to avoid these problems.
This design is based on elements of the Component Object Model and GNOME Bonobo
although full binary-level compatibility of replaceable components is not supported and we
have tried to simplify the syntax and impact on model developers.

4.3.3.1 Aggregation example

class Node is a good example of the use of aggregation in ns-3. Note that there are not
derived classes of Nodes in ns-3 such as class InternetNode. Instead, components (protocols)
are aggregated to a node. Let’s look at how some Ipv4 protocols are added to a node.
static void
AddIpv4Stack(Ptr<Node> node)
{
Ptr<Ipv4L3Protocol> ipv4 = CreateObject<Ipv4L3Protocol> ();
ipv4->SetNode (node);
node->AggregateObject (ipv4);
Ptr<Ipv4Impl> ipv4Impl = CreateObject<Ipv4Impl> ();
ipv4Impl->SetIpv4 (ipv4);

21ns-3.6 13 November 2009

http://en.wikipedia.org/wiki/Component_Object_Model
http://en.wikipedia.org/wiki/Bonobo_(component_model)

Chapter 4: Object model ns-3 manual

node->AggregateObject (ipv4Impl);
}

Note that the Ipv4 protocols are created using CreateObject(). Then, they are aggre-
gated to the node. In this manner, the Node base class does not need to be edited to allow
users with a base class Node pointer to access the Ipv4 interface; users may ask the node
for a pointer to its Ipv4 interface at runtime. How the user asks the node is described in
the next subsection.

Note that it is a programming error to aggregate more than one object of the same type
to an ns3::Object. So, for instance, aggregation is not an option for storing all of the active
sockets of a node.

4.3.3.2 GetObject example

GetObject is a type-safe way to achieve a safe downcasting and to allow interfaces to be
found on an object.

Consider a node pointer m_node that points to a Node object that has an implementation
of IPv4 previously aggregated to it. The client code wishes to configure a default route. To
do so, it must access an object within the node that has an interface to the IP forwarding
configuration. It performs the following:
Ptr<Ipv4> ipv4 = m_node->GetObject<Ipv4> ();

If the node in fact does not have an Ipv4 object aggregated to it, then the method will
return null. Therefore, it is good practice to check the return value from such a function
call. If successful, the user can now use the Ptr to the Ipv4 object that was previously
aggregated to the node.

Another example of how one might use aggregation is to add optional models to objects.
For instance, an existing Node object may have an “Energy Model” object aggregated to
it at run time (without modifying and recompiling the node class). An existing model
(such as a wireless net device) can then later "GetObject" for the energy model and act
appropriately if the interface has been either built in to the underlying Node object or
aggregated to it at run time. However, other nodes need not know anything about energy
models.

We hope that this mode of programming will require much less need for developers to
modify the base classes.

4.4 Downcasting

A question that has arisen several times is, "If I have a base class pointer (Ptr) to an object
and I want the derived class pointer, should I downcast (via C++ dynamic cast) to get the
derived pointer, or should I use the object aggregation system to GetObject<> () to find a
Ptr to the interface to the subclass API?"

The answer to this is that in many situations, both techniques will work. ns-3 provides
a templated function for making the syntax of Object dynamic casting much more user
friendly:
template <typename T1, typename T2>
Ptr<T1>

22ns-3.6 13 November 2009

Chapter 4: Object model ns-3 manual

DynamicCast (Ptr<T2> const&p)
{
return Ptr<T1> (dynamic_cast<T1 *> (PeekPointer (p)));

}

DynamicCast works when the programmer has a base type pointer and is testing against
a subclass pointer. GetObject works when looking for different objects aggregated, but also
works with subclasses, in the same way as DynamicCast. If unsure, the programmer should
use GetObject, as it works in all cases. If the programmer knows the class hierarchy of the
object under consideration, it is more direct to just use DynamicCast.

23ns-3.6 13 November 2009

Chapter 5: Attributes ns-3 manual

5 Attributes

In ns-3 simulations, there are two main aspects to configuration:
• the simulation topology and how objects are connected
• the values used by the models instantiated in the topology

This chapter focuses on the second item above: how the many values in use in ns-3 are
organized, documented, and modifiable by ns-3 users. The ns-3 attribute system is also the
underpinning of how traces and statistics are gathered in the simulator.

Before delving into details of the attribute value system, it will help to review some basic
properties of class ns3::Object.

5.1 Object Overview

ns-3 is fundamentally a C++ object-based system. By this we mean that new C++ classes
(types) can be declared, defined, and subclassed as usual.

Many ns-3 objects inherit from the ns3::Object base class. These objects have some
additional properties that we exploit for organizing the system and improving the memory
management of our objects:
• a "metadata" system that links the class name to a lot of meta-information about the

object, including the base class of the subclass, the set of accessible constructors in the
subclass, and the set of "attributes" of the subclass

• a reference counting smart pointer implementation, for memory management.

ns-3 objects that use the attribute system derive from either ns3::Object or
ns3::ObjectBase. Most ns-3 objects we will discuss derive from ns3::Object, but a
few that are outside the smart pointer memory management framework derive from
ns3::ObjectBase.

Let’s review a couple of properties of these objects.

5.1.1 Smart pointers

As introduced in the ns-3 tutorial, ns-3 objects are memory managed by a reference counting
smart pointer implementation, class ns3::Ptr.

Smart pointers are used extensively in the ns-3 APIs, to avoid passing references to
heap-allocated objects that may cause memory leaks. For most basic usage (syntax), treat
a smart pointer like a regular pointer:
Ptr<WifiNetDevice> nd = ...;
nd->CallSomeFunction ();
// etc.

5.1.2 CreateObject

As we discussed above in Section 4.3 [Memory management and class Ptr], page 20, at the
lowest-level API, objects of type ns3::Object are not instantiated using operator new as
usual but instead by a templated function called CreateObject().

A typical way to create such an object is as follows:

25ns-3.6 13 November 2009

http://en.wikipedia.org/wiki/Smart_pointer
http://en.wikipedia.org/wiki/Smart_pointer

Chapter 5: Attributes ns-3 manual

Ptr<WifiNetDevice> nd = CreateObject<WifiNetDevice> ();

You can think of this as being functionally equivalent to:
WifiNetDevice* nd = new WifiNetDevice ();

Objects that derive from ns3::Object must be allocated on the heap using CreateOb-
ject(). Those deriving from ns3::ObjectBase, such as ns-3 helper functions and packet
headers and trailers, can be allocated on the stack.

In some scripts, you may not see a lot of CreateObject() calls in the code; this is because
there are some helper objects in effect that are doing the CreateObject()s for you.

5.1.3 TypeId

ns-3 classes that derive from class ns3::Object can include a metadata class called TypeId
that records meta-information about the class, for use in the object aggregation and com-
ponent manager systems:
• a unique string identifying the class
• the base class of the subclass, within the metadata system
• the set of accessible constructors in the subclass

5.1.4 Object Summary

Putting all of these concepts together, let’s look at a specific example: class ns3::Node.
The public header file node.h has a declaration that includes a static GetTypeId function

call:
class Node : public Object
{
public:
static TypeId GetTypeId (void);
...

This is defined in the node.cc file as follows:
TypeId

Node::GetTypeId (void)

static TypeId tid = TypeId ("ns3::Node")

.SetParent<Object> ()

.AddConstructor<Node> ()

.AddAttribute ("DeviceList", "The list of devices associated to this Node.",

ObjectVectorValue (),

MakeObjectVectorAccessor (&Node::m_devices),

MakeObjectVectorChecker<NetDevice> ())

.AddAttribute ("ApplicationList", "The list of applications associated to this Node.",

ObjectVectorValue (),

MakeObjectVectorAccessor (&Node::m_applications),

MakeObjectVectorChecker<Application> ())

.AddAttribute ("Id", "The id (unique integer) of this Node.",

TypeId::ATTR_GET, // allow only getting it.

UintegerValue (0),

MakeUintegerAccessor (&Node::m_id),

MakeUintegerChecker<uint32_t> ())

;

26ns-3.6 13 November 2009

Chapter 5: Attributes ns-3 manual

return tid;

Consider the TypeId of an ns-3 Object class as an extended form of run time type
information (RTTI). The C++ language includes a simple kind of RTTI in order to support
dynamic_cast and typeid operators.

The “.SetParent<Object> ()” call in the declaration above is used in conjunction with
our object aggregation mechanisms to allow safe up- and down-casting in inheritance trees
during GetObject.

The “.AddConstructor<Node> ()” call is used in conjunction with our abstract object
factory mechanisms to allow us to construct C++ objects without forcing a user to know
the concrete class of the object she is building.

The three calls to “.AddAttribute” associate a given string with a strongly typed value
in the class. Notice that you must provide a help string which may be displayed, for example,
via command line processors. Each Attribute is associated with mechanisms for accessing
the underlying member variable in the object (for example, MakeUintegerAccessor tells
the generic Attribute code how to get to the node ID above). There are also “Checker”
methods which are used to validate values.

When users want to create Nodes, they will usually call some form of CreateObject,
Ptr<Node> n = CreateObject<Node> ();

or more abstractly, using an object factory, you can create a Node object without even
knowing the concrete C++ type
ObjectFactory factory;
const std::string typeId = "ns3::Node’’;
factory.SetTypeId (typeId);
Ptr<Object> node = factory.Create <Object> ();

Both of these methods result in fully initialized attributes being available in the resulting
Object instances.

We next discuss how attributes (values associated with member variables or functions
of the class) are plumbed into the above TypeId.

5.2 Attribute Overview

The goal of the attribute system is to organize the access of internal member objects of a
simulation. This goal arises because, typically in simulation, users will cut and paste/modify
existing simulation scripts, or will use higher-level simulation constructs, but often will be
interested in studying or tracing particular internal variables. For instance, use cases such
as:
• "I want to trace the packets on the wireless interface only on the first access point"
• "I want to trace the value of the TCP congestion window (every time it changes) on a

particular TCP socket"
• "I want a dump of all values that were used in my simulation."

Similarly, users may want fine-grained access to internal variables in the simulation, or
may want to broadly change the initial value used for a particular parameter in all subse-
quently created objects. Finally, users may wish to know what variables are settable and

27ns-3.6 13 November 2009

Chapter 5: Attributes ns-3 manual

retrievable in a simulation configuration. This is not just for direct simulation interaction
on the command line; consider also a (future) graphical user interface that would like to be
able to provide a feature whereby a user might right-click on an node on the canvas and see
a hierarchical, organized list of parameters that are settable on the node and its constituent
member objects, and help text and default values for each parameter.

5.2.1 Functional overview

We provide a way for users to access values deep in the system, without having to plumb
accessors (pointers) through the system and walk pointer chains to get to them. Consider a
class DropTailQueue that has a member variable that is an unsigned integer m_maxPackets;
this member variable controls the depth of the queue.

If we look at the declaration of DropTailQueue, we see the following:
class DropTailQueue : public Queue {
public:
static TypeId GetTypeId (void);
...

private:
std::queue<Ptr<Packet> > m_packets;
uint32_t m_maxPackets;

};

Let’s consider things that a user may want to do with the value of m maxPackets:
• Set a default value for the system, such that whenever a new DropTailQueue is created,

this member is initialized to that default.
• Set or get the value on an already instantiated queue.

The above things typically require providing Set() and Get() functions, and some type
of global default value.

In the ns-3 attribute system, these value definitions and accessor functions are moved
into the TypeId class; e.g.:

NS_OBJECT_ENSURE_REGISTERED (DropTailQueue);

TypeId DropTailQueue::GetTypeId (void)

static TypeId tid = TypeId ("ns3::DropTailQueue")

.SetParent<Queue> ()

.AddConstructor<DropTailQueue> ()

.AddAttribute ("MaxPackets",

"The maximum number of packets accepted by this DropTailQueue.",

UintegerValue (100),

MakeUintegerAccessor (&DropTailQueue::m_maxPackets),

MakeUintegerChecker<uint32_t> ())

;

return tid;

The AddAttribute() method is performing a number of things with this value:
• Binding the variable m maxPackets to a string "MaxPackets"

28ns-3.6 13 November 2009

Chapter 5: Attributes ns-3 manual

• Providing a default value (100 packets)

• Providing some help text defining the value

• Providing a "checker" (not used in this example) that can be used to set bounds on
the allowable range of values

The key point is that now the value of this variable and its default value are accessible
in the attribute namespace, which is based on strings such as "MaxPackets" and TypeId
strings. In the next section, we will provide an example script that shows how users may
manipulate these values.

Note that initialization of the attribute relies on the macro NS_OBJECT_ENSURE_
REGISTERED (DropTailQueue) being called; if you leave this out of your new class
implementation, your attributes will not be initialized correctly.

While we have described how to create attributes, we still haven’t described how to
access and manage these values. For instance, there is no globals.h header file where
these are stored; attributes are stored with their classes. Questions that naturally arise are
how do users easily learn about all of the attributes of their models, and how does a user
access these attributes, or document their values as part of the record of their simulation?

5.2.2 Default values and command-line arguments

Let’s look at how a user script might access these values. This is based on the script found
at samples/main-attribute-value.cc, with some details stripped out.

//
// This is a basic example of how to use the attribute system to
// set and get a value in the underlying system; namely, an unsigned
// integer of the maximum number of packets in a queue
//

int
main (int argc, char *argv[])
{

// By default, the MaxPackets attribute has a value of 100 packets
// (this default can be observed in the function DropTailQueue::GetTypeId)
//
// Here, we set it to 80 packets. We could use one of two value types:
// a string-based value or a Uinteger value
Config::SetDefault ("ns3::DropTailQueue::MaxPackets", StringValue ("80"));
// The below function call is redundant
Config::SetDefault ("ns3::DropTailQueue::MaxPackets", UintegerValue (80));

// Allow the user to override any of the defaults and the above
// SetDefaults() at run-time, via command-line arguments
CommandLine cmd;
cmd.Parse (argc, argv);

29ns-3.6 13 November 2009

Chapter 5: Attributes ns-3 manual

The main thing to notice in the above are the two calls to Config::SetDefault. This is
how we set the default value for all subsequently instantiated DropTailQueues. We illustrate
that two types of Value classes, a StringValue and a UintegerValue class, can be used to
assign the value to the attribute named by "ns3::DropTailQueue::MaxPackets".

Now, we will create a few objects using the low-level API; here, our newly created queues
will not have a m maxPackets initialized to 100 packets but to 80 packets, because of what
we did above with default values.

Ptr<Node> n0 = CreateObject<Node> ();

Ptr<PointToPointNetDevice> net0 = CreateObject<PointToPointNetDevice> ();

n0->AddDevice (net0);

Ptr<Queue> q = CreateObject<DropTailQueue> ();

net0->AddQueue(q);

At this point, we have created a single node (Node 0) and a single PointToPointNetDevice
(NetDevice 0) and added a DropTailQueue to it.

Now, we can manipulate the MaxPackets value of the already instantiated
DropTailQueue. Here are various ways to do that.

5.2.3 Pointer-based access

We assume that a smart pointer (Ptr) to a relevant network device is in hand; in the current
example, it is the net0 pointer.

One way to change the value is to access a pointer to the underlying queue and modify
its attribute.

First, we observe that we can get a pointer to the (base class) queue via the PointTo-
PointNetDevice attributes, where it is called TxQueue

PointerValue tmp;
net0->GetAttribute ("TxQueue", tmp);
Ptr<Object> txQueue = tmp.GetObject ();

Using the GetObject function, we can perform a safe downcast to a DropTailQueue,
where MaxPackets is a member
Ptr<DropTailQueue> dtq = txQueue->GetObject <DropTailQueue> ();
NS_ASSERT (dtq != 0);

Next, we can get the value of an attribute on this queue. We have introduced wrapper
"Value" classes for the underlying data types, similar to Java wrappers around these types,
since the attribute system stores values and not disparate types. Here, the attribute value is
assigned to a UintegerValue, and the Get() method on this value produces the (unwrapped)
uint32 t.
UintegerValue limit;
dtq->GetAttribute ("MaxPackets", limit);
NS_LOG_INFO ("1. dtq limit: " << limit.Get () << " packets");

Note that the above downcast is not really needed; we could have done the same using
the Ptr<Queue> even though the attribute is a member of the subclass
txQueue->GetAttribute ("MaxPackets", limit);

30ns-3.6 13 November 2009

Chapter 5: Attributes ns-3 manual

NS_LOG_INFO ("2. txQueue limit: " << limit.Get () << " packets");

Now, let’s set it to another value (60 packets)
txQueue->SetAttribute("MaxPackets", UintegerValue (60));
txQueue->GetAttribute ("MaxPackets", limit);
NS_LOG_INFO ("3. txQueue limit changed: " << limit.Get () << " packets");

5.2.4 Namespace-based access

An alternative way to get at the attribute is to use the configuration namespace. Here, this
attribute resides on a known path in this namespace; this approach is useful if one doesn’t
have access to the underlying pointers and would like to configure a specific attribute with
a single statement.

Config::Set ("/NodeList/0/DeviceList/0/TxQueue/MaxPackets", UintegerValue (25));

txQueue->GetAttribute ("MaxPackets", limit);

NS_LOG_INFO ("4. txQueue limit changed through namespace: " <<

limit.Get () << " packets");

We could have also used wildcards to set this value for all nodes and all net devices
(which in this simple example has the same effect as the previous Set())

Config::Set ("/NodeList/*/DeviceList/*/TxQueue/MaxPackets", UintegerValue (15));

txQueue->GetAttribute ("MaxPackets", limit);

NS_LOG_INFO ("5. txQueue limit changed through wildcarded namespace: " <<

limit.Get () << " packets");

5.2.5 Object Name Service-based access

Another way to get at the attribute is to use the object name service facility. Here, this
attribute is found using a name string. This approach is useful if one doesn’t have access to
the underlying pointers and it is difficult to determine the required concrete configuration
namespaced path.

Names::Add ("server", serverNode);

Names::Add ("server/eth0", serverDevice);

...

Config::Set ("/Names/server/eth0/TxQueue/MaxPackets", UintegerValue (25));

See Chapter 6 [Object names], page 39 for a fuller treatment of the ns-3 configuration
namespace.

5.2.6 Setting through constructors helper classes

Arbitrary combinations of attributes can be set and fetched from the helper and low-level
APIs; either from the constructors themselves:
Ptr<Object> p = CreateObject<MyNewObject> ("n1", v1, "n2", v2, ...);

or from the higher-level helper APIs, such as:
mobility.SetPositionAllocator ("GridPositionAllocator",

"MinX", DoubleValue (-100.0),
"MinY", DoubleValue (-100.0),
"DeltaX", DoubleValue (5.0),
"DeltaY", DoubleValue (20.0),

31ns-3.6 13 November 2009

Chapter 5: Attributes ns-3 manual

"GridWidth", UintegerValue (20),
"LayoutType", StringValue ("RowFirst"));

5.2.7 Implementation details

5.2.7.1 Value classes

Readers will note the new FooValue classes which are subclasses of the AttributeValue base
class. These can be thought of as an intermediate class that can be used to convert from
raw types to the Values that are used by the attribute system. Recall that this database
is holding objects of many types with a single generic type. Conversions to this type can
either be done using an intermediate class (IntegerValue, DoubleValue for "floating point")
or via strings. Direct implicit conversion of types to Value is not really practical. So in the
above, users have a choice of using strings or values:
p->Set ("cwnd", StringValue ("100")); // string-based setter
p->Set ("cwnd", IntegerValue (100)); // integer-based setter

The system provides some macros that help users declare and define new AttributeValue
subclasses for new types that they want to introduce into the attribute system:
• ATTRIBUTE HELPER HEADER
• ATTRIBUTE HELPER CPP

5.2.7.2 Initialization order

In general, the attribute code to assign values to the underlying class member variables
is executed after an object is constructed. But what if you need the values assigned be-
fore the constructor body executes, because you need them in the logic of the construc-
tor? There is a way to do this, used for example in the class ns3::ConfigStore: call
ObjectBase::ConstructSelf () as follows:
ConfigStore::ConfigStore ()
{
ObjectBase::ConstructSelf (AttributeList ());
// continue on with constructor.

}

5.3 Extending attributes

The ns-3 system will place a number of internal values under the attribute system, but
undoubtedly users will want to extend this to pick up ones we have missed, or to add their
own classes to this.

5.3.1 Adding an existing internal variable to the metadata system

Consider this variable in class TcpSocket:
uint32_t m_cWnd; // Congestion window

Suppose that someone working with TCP wanted to get or set the value of that vari-
able using the metadata system. If it were not already provided by ns-3, the user could
declare the following addition in the runtime metadata system (to the TypeId declaration
for TcpSocket):

32ns-3.6 13 November 2009

Chapter 5: Attributes ns-3 manual

.AddAttribute ("Congestion window",
"Tcp congestion window (bytes)",
UintegerValue (1),
MakeUintegerAccessor (&TcpSocket::m_cWnd),
MakeUintegerChecker<uint16_t> ())

Now, the user with a pointer to the TcpSocket can perform operations such as setting
and getting the value, without having to add these functions explicitly. Furthermore, access
controls can be applied, such as allowing the parameter to be read and not written, or bounds
checking on the permissible values can be applied.

5.3.2 Adding a new TypeId

Here, we discuss the impact on a user who wants to add a new class to ns-3; what additional
things must be done to hook it into this system.

We’ve already introduced what a TypeId definition looks like:
TypeId

RandomWalk2dMobilityModel::GetTypeId (void)

static TypeId tid = TypeId ("ns3::RandomWalk2dMobilityModel")

.SetParent<MobilityModel> ()

.SetGroupName ("Mobility")

.AddConstructor<RandomWalk2dMobilityModel> ()

.AddAttribute ("Bounds",

"Bounds of the area to cruise.",

RectangleValue (Rectangle (0.0, 0.0, 100.0, 100.0)),

MakeRectangleAccessor (&RandomWalk2dMobilityModel::m_bounds),

MakeRectangleChecker ())

.AddAttribute ("Time",

"Change current direction and speed after moving for this delay.",

TimeValue (Seconds (1.0)),

MakeTimeAccessor (&RandomWalk2dMobilityModel::m_modeTime),

MakeTimeChecker ())

// etc (more parameters).

;

return tid;

The declaration for this in the class declaration is one-line public member method:

public:
static TypeId GetTypeId (void);

Typical mistakes here involve:

• Not calling the SetParent method or calling it with the wrong type
• Not calling the AddConstructor method of calling it with the wrong type
• Introducing a typographical error in the name of the TypeId in its constructor
• Not using the fully-qualified c++ typename of the enclosing c++ class as the name of

the TypeId

None of these mistakes can be detected by the ns-3 codebase so, users are advised to
check carefully multiple times that they got these right.

33ns-3.6 13 November 2009

Chapter 5: Attributes ns-3 manual

5.4 Adding new class type to the attribute system

From the perspective of the user who writes a new class in the system and wants to hook
it in to the attribute system, there is mainly the matter of writing the conversions to/from
strings and attribute values. Most of this can be copy/pasted with macro-ized code. For
instance, consider class declaration for Rectangle in the src/mobility/ directory:

5.4.1 Header file
/**

* \brief a 2d rectangle

*/

class Rectangle

...

double xMin;

double xMax;

double yMin;

double yMax;

;

One macro call and two operators, must be added below the class declaration in order
to turn a Rectangle into a value usable by the Attribute system:

std::ostream &operator << (std::ostream &os, const Rectangle &rectangle);

std::istream &operator >> (std::istream &is, Rectangle &rectangle);

ATTRIBUTE_HELPER_HEADER (Rectangle);

5.4.2 Implementation file

In the class definition (.cc file), the code looks like this:

ATTRIBUTE_HELPER_CPP (Rectangle);

std::ostream &

operator << (std::ostream &os, const Rectangle &rectangle)

os << rectangle.xMin << "|" << rectangle.xMax << "|" << rectangle.yMin << "|"

<< rectangle.yMax;

return os;

std::istream &

operator >> (std::istream &is, Rectangle &rectangle)

char c1, c2, c3;

is >> rectangle.xMin >> c1 >> rectangle.xMax >> c2 >> rectangle.yMin >> c3

>> rectangle.yMax;

if (c1 != ’|’ ||

c2 != ’|’ ||

c3 != ’|’)

is.setstate (std::ios_base::failbit);

return is;

34ns-3.6 13 November 2009

Chapter 5: Attributes ns-3 manual

These stream operators simply convert from a string representation of the Rectangle
("xMin|xMax|yMin|yMax") to the underlying Rectangle, and the modeler must specify
these operators and the string syntactical representation of an instance of the new class.

5.5 ConfigStore

Feedback requested: This is an experimental feature of ns-3. It is found in src/contrib
and not in the main tree. If you like this feature and would like to provide feedback on it,
please email us.

Values for ns-3 attributes can be stored in an ASCII or XML text file and loaded into a
future simulation. This feature is known as the ns-3 ConfigStore. The ConfigStore code is
in src/contrib/. It is not yet main-tree code, because we are seeking some user feedback
and experience with this.

We can explore this system by using an example. Copy the csma-bridge.cc file to the
scratch directory:
cp examples/csma-bridge.cc scratch/
./waf

Let’s edit it to add the ConfigStore feature. First, add an include statement to include
the contrib module, and then add these lines:

#include "contrib-module.h"

...

int main (...)

// setup topology

// Invoke just before entering Simulator::Run ()

ConfigStore config;

config.ConfigureDefaults ();

config.ConfigureAttributes ();

Simulator::Run ();

There are three attributes that govern the behavior of the ConfigStore: "Mode", "File-
name", and "FileFormat". The Mode (default "None") configures whether ns-3 should load
configuration from a previously saved file (specify "Mode=Load") or save it to a file (specify
"Mode=Save"). The Filename (default "") is where the ConfigStore should store its output
data. The FileFormat (default "RawText") governs whether the ConfigStore format is Xml
or RawText format.

So, using the above modified program, try executing the following waf command and
./waf --command-template="%s --ns3::ConfigStore::Filename=csma-bridge-config.xml

--ns3::ConfigStore::Mode=Save --ns3::ConfigStore::FileFormat=Xml" --run scratch/csma-bridge

After running, you can open the csma-bridge-config.xml file and it will display the con-
figuration that was applied to your simulation; e.g.

<?xml version="1.0" encoding="UTF-8"?>

<ns3>

<default name="ns3::V4Ping::Remote" value="102.102.102.102"/>

<default name="ns3::MsduStandardAggregator::MaxAmsduSize" value="7935"/>

<default name="ns3::EdcaTxopN::MinCw" value="31"/>

35ns-3.6 13 November 2009

Chapter 5: Attributes ns-3 manual

<default name="ns3::EdcaTxopN::MaxCw" value="1023"/>

<default name="ns3::EdcaTxopN::Aifsn" value="3"/>

<default name="ns3::QstaWifiMac::ProbeRequestTimeout" value="50000000ns"/>

<default name="ns3::QstaWifiMac::AssocRequestTimeout" value="500000000ns"/>

<default name="ns3::QstaWifiMac::MaxMissedBeacons" value="10"/>

<default name="ns3::QstaWifiMac::ActiveProbing" value="false"/>

...

This file can be archived with your simulation script and output data.

While it is possible to generate a sample config file and lightly edit it to change a couple
of values, there are cases where this process will not work because the same value on the
same object can appear multiple times in the same automatically-generated configuration
file under different configuration paths.

As such, the best way to use this class is to use it to generate an initial configuration
file, extract from that configuration file only the strictly necessary elements, and move these
minimal elements to a new configuration file which can then safely be edited and loaded in
a subsequent simulation run.

When the ConfigStore object is instantiated, its attributes Filename, Mode, and File-
Format must be set, either via command-line or via program statements.

As a more complicated example, let’s assume that we want to read in a configuration
of defaults from an input file named "input-defaults.xml", and write out the resulting
attributes to a separate file called "output-attributes.xml". (Note– to get this input xml
file to begin with, it is sometimes helpful to run the program to generate an output xml file
first, then hand-edit that file and re-input it for the next simulation run).

#include "contrib-module.h"

...

int main (...)

Config::SetDefault ("ns3::ConfigStore::Filename", StringValue ("input-defaults.xml"));

Config::SetDefault ("ns3::ConfigStore::Mode", StringValue ("Load"));

Config::SetDefault ("ns3::ConfigStore::FileFormat", StringValue ("Xml"));

ConfigStore inputConfig;

inputConfig.ConfigureDefaults ();

//

// Allow the user to override any of the defaults and the above Bind() at

// run-time, via command-line arguments

//

CommandLine cmd;

cmd.Parse (argc, argv);

// setup topology

...

// Invoke just before entering Simulator::Run ()

Config::SetDefault ("ns3::ConfigStore::Filename", StringValue ("output-attributes.xml"));

Config::SetDefault ("ns3::ConfigStore::Mode", StringValue ("Save"));

ConfigStore outputConfig;

outputConfig.ConfigureAttributes ();

Simulator::Run ();

36ns-3.6 13 November 2009

Chapter 5: Attributes ns-3 manual

5.5.1 GTK-based ConfigStore

There is a GTK-based front end for the ConfigStore. This allows users to use a GUI to
access and change variables. Screenshots of this feature are available in the ns-3 Overview
presentation.

To use this feature, one must install libgtk and libgtk-dev; an example Ubuntu installa-
tion command is:
sudo apt-get install libgtk2.0-0 libgtk2.0-dev

To check whether it is configured or not, check the output of the ./waf configure step:
---- Summary of optional NS-3 features:

Threading Primitives : enabled

Real Time Simulator : enabled

GtkConfigStore : not enabled (library ’gtk+-2.0 >= 2.12’ not found)

In the above example, it was not enabled, so it cannot be used until a suitable version
is installed and ./waf configure; ./waf is rerun.

Usage is almost the same as the non-GTK-based version, but there are no ConfigStore
attributes involved:

// Invoke just before entering Simulator::Run ()

GtkConfigStore config;

config.ConfigureDefaults ();

config.ConfigureAttributes ();

Now, when you run the script, a GUI should pop up, allowing you to open menus of
attributes on different nodes/objects, and then launch the simulation execution when you
are done.

5.5.2 Future work

There are a couple of possible improvements:
• save a unique version number with date and time at start of file
• save rng initial seed somewhere.
• make each RandomVariable serialize its own initial seed and re-read it later
• add the default values

37ns-3.6 13 November 2009

http://www.nsnam.org/docs/ns-3-overview.pdf

Chapter 6: Object names ns-3 manual

6 Object names

� �
Placeholder chapter
 	

39ns-3.6 13 November 2009

Chapter 7: Logging ns-3 manual

7 Logging

� �
This chapter not yet written. For now, the ns-3 tutorial contains logging information.
 	

41ns-3.6 13 November 2009

Chapter 8: Tracing ns-3 manual

8 Tracing

The tracing subsystem is one of the most important mechanisms to understand in ns-3.
In most cases, ns-3 users will have a brilliant idea for some new and improved networking
feature. In order to verify that this idea works, the researcher will make changes to an
existing system and then run experiments to see how the new feature behaves by gathering
statistics that capture the behavior of the feature.

In other words, the whole point of running a simulation is to generate output for further
study. In ns-3, the subsystem that enables a researcher to do this is the tracing subsystem.

8.1 Motivation

There are many ways to get information out of a program. The most straightforward way
is to just directly print the information to the standard output, as in,
#include <iostream>
...
int main ()
{

...
std::cout << ‘‘The value of x is ‘‘ << x << std::endl;
...

}

This is workable in small environments, but as your simulations get more and more
complicated, you end up with more and more prints and the task of parsing and performing
computations on the output begins to get harder and harder.

Another thing to consider is that every time a new tidbit is needed, the software core
must be edited and another print introduced. There is no standardized way to control all
of this output, so the amount of output tends to grow without bounds. Eventually, the
bandwidth required for simply outputting this information begins to limit the running time
of the simulation. The output files grow to enormous sizes and parsing them becomes a
problem.

ns-3 provides a simple mechanism for logging and providing some control over output
via Log Components, but the level of control is not very fine grained at all. The logging
module is a relatively blunt instrument.

It is desirable to have a facility that allows one to reach into the core system and only get
the information required without having to change and recompile the core system. Even
better would be a system that notified the user when an item of interest changed or an
interesting event happened.

The ns-3 tracing system is designed to work along those lines and is well-integrated with
the Attribute and Config substems allowing for relatively simple use scenarios.

8.2 Overview

The tracing subsystem relies heavily on the ns-3 Callback and Attribute mechanisms. You
should read and understand the corresponding sections of the manual before attempting to
understand the tracing system.

43ns-3.6 13 November 2009

Chapter 8: Tracing ns-3 manual

The ns-3 tracing system is built on the concepts of independent tracing sources and
tracing sinks; along with a uniform mechanism for connecting sources to sinks.

Trace sources are entities that can signal events that happen in a simulation and provide
access to interesting underlying data. For example, a trace source could indicate when a
packet is received by a net device and provide access to the packet contents for interested
trace sinks. A trace source might also indicate when an interesting state change happens
in a model. For example, the congestion window of a TCP model is a prime candidate for
a trace source.

Trace sources are not useful by themselves; they must be connected to other pieces of
code that actually do something useful with the information provided by the source. The
entities that consume trace information are called trace sinks. Trace sources are generators
of events and trace sinks are consumers.

This explicit division allows for large numbers of trace sources to be scattered around
the system in places which model authors believe might be useful. Unless a user connects
a trace sink to one of these sources, nothing is output. This arrangement allows relatively
unsophisticated users to attach new types of sinks to existing tracing sources, without
requiring editing and recompiling the core or models of the simulator.

There can be zero or more consumers of trace events generated by a trace source. One
can think of a trace source as a kind of point-to-multipoint information link.

The “transport protocol” for this conceptual point-to-multipoint link is an ns-3
Callback.

Recall from the Callback Section that callback facility is a way to allow two modules in
the system to communicate via function calls while at the same time decoupling the calling
function from the called class completely. This is the same requirement as outlined above
for the tracing system.

Basically, a trace source is a callback to which multiple functions may be registered.
When a trace sink expresses interest in receiving trace events, it adds a callback to a list
of callbacks held by the trace source. When an interesting event happens, the trace source
invokes its operator() providing zero or more parameters. This tells the source to go
through its list of callbacks invoking each one in turn. In this way, the parameter(s) are
communicated to the trace sinks, which are just functions.

8.2.1 The Simplest Example

It will be useful to go walk a quick example just to reinforce what we’ve said.
#include ‘‘ns3/object.h’’

#include ‘‘ns3/uinteger.h’’

#include ‘‘ns3/traced-value.h’’

#include ‘‘ns3/trace-source-accessor.h’’

#include <iostream>

using namespace ns3;

The first thing to do is include the required files. As mentioned above, the trace system
makes heavy use of the Object and Attribute systems. The first two includes bring in the
declarations for those systems. The file, traced-value.h brings in the required declarations
for tracing data that obeys value semantics.

44ns-3.6 13 November 2009

Chapter 8: Tracing ns-3 manual

In general, value semantics just means that you can pass the object around, not an
address. In order to use value semantics at all you have to have an object with an associated
copy constructor and assignment operator available. We extend the requirements to talk
about the set of operators that are pre-defined for plain-old-data (POD) types. Operator=,
operator++, operator–, operator+, operator==, etc.

What this all means is that you will be able to trace changes to an object made using
those operators.

class MyObject : public Object

public:

static TypeId GetTypeId (void)

static TypeId tid = TypeId ("MyObject")

.SetParent (Object::GetTypeId ())

.AddConstructor<MyObject> ()

.AddTraceSource ("MyInteger",

"An integer value to trace.",

MakeTraceSourceAccessor (&MyObject::m_myInt))

;

return tid;

MyObject ()

TracedValue<uint32_t> m_myInt;

;

Since the tracing system is integrated with Attributes, and Attributes work with Objects,
there must be an ns-3 Object for the trace source to live in. The two important lines of
code are the .AddTraceSource and the TracedValue declaration.

The .AddTraceSource provides the “hooks” used for connecting the trace source to the
outside world. The TracedValue declaration provides the infrastructure that overloads the
operators mentioned above and drives the callback process.

void

IntTrace (Int oldValue, Int newValue)

std::cout << ‘‘Traced ‘‘ << oldValue << ‘‘ to ‘‘ << newValue << std::endl;

This is the definition of the trace sink. It corresponds directly to a callback function.
This function will be called whenever one of the operators of the TracedValue is executed.

int

main (int argc, char *argv[])

Ptr<MyObject> myObject = CreateObject<MyObject> ();

myObject->TraceConnectWithoutContext ("MyInteger", MakeCallback(&IntTrace));

myObject->m_myInt = 1234;

In this snippet, the first thing that needs to be done is to create the object in which the
trace source lives.

The next step, the TraceConnectWithoutContext, forms the connection between
the trace source and the trace sink. Notice the MakeCallback template function.

45ns-3.6 13 November 2009

Chapter 8: Tracing ns-3 manual

Recall from the Callback section that this creates the specialized functor responsible
for providing the overloaded operator() used to “fire” the callback. The overloaded
operators (++, –, etc.) will use this operator() to actually invoke the callback. The
TraceConnectWithoutContext, takes a string parameter that provides the name of the
Attribute assigned to the trace source. Let’s ignore the bit about context for now since it
is not important yet.

Finally, the line,

myObject->m_myInt = 1234;

should be interpreted as an invocation of operator= on the member variable m_myInt
with the integer 1234 passed as a parameter. It turns out that this operator is defined
(by TracedValue) to execute a callback that returns void and takes two integer values as
parameters – an old value and a new value for the integer in question. That is exactly the
function signature for the callback function we provided – IntTrace.

To summarize, a trace source is, in essence, a variable that holds a list of callbacks. A
trace sink is a function used as the target of a callback. The Attribute and object type
information systems are used to provide a way to connect trace sources to trace sinks. The
act of “hitting” a trace source is executing an operator on the trace source which fires
callbacks. This results in the trace sink callbacks registering interest in the source being
called with the parameters provided by the source.

8.2.2 Using the Config Subsystem to Connect to Trace Sources

The TraceConnectWithoutContext call shown above in the simple example is actually very
rarely used in the system. More typically, the Config subsystem is used to allow selecting
a trace source in the system using what is called a config path.

For example, one might find something that looks like the following in the system (taken
from examples/tcp-large-transfer.cc)

void CwndTracer (uint32_t oldval, uint32_t newval)

...

Config::ConnectWithoutContext (

"/NodeList/0/$ns3::TcpL4Protocol/SocketList/0/CongestionWindow",

MakeCallback (&CwndTracer));

This should look very familiar. It is the same thing as the previous example, except that
a static member function of class Config is being called instead of a method on Object;
and instead of an Attribute name, a path is being provided.

The first thing to do is to read the path backward. The last segment of the path must
be an Attribute of an Object. In fact, if you had a pointer to the Object that has the
“CongestionWindow” Attribute handy (call it theObject), you could write this just like
the previous example:

void CwndTracer (uint32_t oldval, uint32_t newval)

...

theObject->TraceConnectWithoutContext ("CongestionWindow", MakeCallback (&CwndTracer));

46ns-3.6 13 November 2009

Chapter 8: Tracing ns-3 manual

It turns out that the code for Config::ConnectWithoutContext does exactly that. This
function takes a path that represents a chain of Object pointers and follows them until it
gets to the end of the path and interprets the last segment as an Attribute on the last
object. Let’s walk through what happens.

The leading “/” character in the path refers to a so-called namespace. One of the
predefined namespaces in the config system is “NodeList” which is a list of all of the nodes
in the simulation. Items in the list are referred to by indices into the list, so “/NodeList/0”
refers to the zeroth node in the list of nodes created by the simulation. This node is actually
a Ptr<Node> and so is a subclass of an ns3::Object.

As described in the Object Model section, ns-3 supports an object aggregation model.
The next path segment begins with the “$” character which indicates a GetObject call
should be made looking for the type that follows. When a node is initialized by an
InternetStackHelper a number of interfaces are aggregated to the node. One of these is the
TCP level four protocol. The runtime type of this protocol object is “ns3::TcpL4Protocol”.
When the GetObject is executed, it returns a pointer to the object of this type.

The TcpL4Protocol class defines an Attribute called “SocketList” which is a list of
sockets. Each socket is actually an ns3::Object with its own Attributes. The items in
the list of sockets are referred to by index just as in the NodeList, so “SocketList/0” refers
to the zeroth socket in the list of sockets on the zeroth node in the NodeList – the first node
constructed in the simulation.

This socket, the type of which turns out to be an ns3::TcpSocketImpl defines
an attribute called “CongestionWindow” which is a TracedValue<uint32_t>. The
Config::ConnectWithoutContext now does a,

object->TraceConnectWithoutContext ("CongestionWindow", MakeCallback (&CwndTracer));

using the object pointer from “SocketList/0” which makes the connection between the
trace source defined in the socket to the callback – CwndTracer.

Now, whenever a change is made to the TracedValue<uint32_t> representing the con-
gestion window in the TCP socket, the registered callback will be executed and the function
CwndTracer will be called printing out the old and new values of the TCP congestion win-
dow.

8.3 Using the Tracing API

There are three levels of interaction with the tracing system:
• Beginning user can easily control which objects are participating in tracing;
• Intermediate users can extend the tracing system to modify the output format gener-

ated or use existing trace sources in different ways, without modifying the core of the
simulator;

• Advanced users can modify the simulator core to add new tracing sources and sinks.

8.4 Implementation details

47ns-3.6 13 November 2009

Chapter 9: Real-Time Scheduler ns-3 manual

9 Real-Time Scheduler

ns-3 has been designed for integration into testbed and virtual machine environments. To
integrate with real network stacks and emit/consume packets, a real-time scheduler is needed
to try to lock the simulation clock with the hardware clock. We describe here a component
of this: the RealTime scheduler.

The purpose of the realtime scheduler is to cause the progression of the simulation clock
to occur synchronously with respect to some external time base. Without the presence of
an external time base (wall clock), simulation time jumps instantly from one simulated time
to the next.

9.1 Behavior

When using a non-realtime scheduler (the default in ns-3), the simulator advances the
simulation time to the next scheduled event. During event execution, simulation time
is frozen. With the realtime scheduler, the behavior is similar from the perspective of
simulation models (i.e., simulation time is frozen during event execution), but between
events, the simulator will attempt to keep the simulation clock aligned with the machine
clock.

When an event is finished executing, and the scheduler moves to the next event, the
scheduler compares the next event execution time with the machine clock. If the next event
is scheduled for a future time, the simulator sleeps until that realtime is reached and then
executes the next event.

It may happen that, due to the processing inherent in the execution of simulation events,
that the simulator cannot keep up with realtime. In such a case, it is up to the user
configuration what to do. There are two ns-3 attributes that govern the behavior. The
first is ns3::RealTimeSimulatorImpl::SynchronizationMode. The two entries possible
for this attribute are BestEffort (the default) or HardLimit. In "BestEffort" mode, the
simulator will just try to catch up to realtime by executing events until it reaches a point
where the next event is in the (realtime) future, or else the simulation ends. In BestEffort
mode, then, it is possible for the simulation to consume more time than the wall clock time.
The other option "HardLimit" will cause the simulation to abort if the tolerance threshold
is exceeded. This attribute is ns3::RealTimeSimulatorImpl::HardLimit and the default
is 0.1 seconds.

A different mode of operation is one in which simulated time is not frozen during an
event execution. This mode of realtime simulation was implemented but removed from the
ns-3 tree because of questions of whether it would be useful. If users are interested in a
realtime simulator for which simulation time does not freeze during event execution (i.e.,
every call to Simulator::Now() returns the current wall clock time, not the time at which
the event started executing), please contact the ns-developers mailing list.

9.2 Usage

The usage of the realtime simulator is straightforward, from a scripting perspective. Users
just need to set the attribute SimulatorImplementationType to the Realtime simulator,
such as follows:

49ns-3.6 13 November 2009

Chapter 9: Real-Time Scheduler ns-3 manual

GlobalValue::Bind ("SimulatorImplementationType",
StringValue ("ns3::RealtimeSimulatorImpl"));

There is a script in examples/realtime-udp-echo.cc that has an example of how to
configure the realtime behavior. Try:
./waf --run realtime-udp-echo

Whether the simulator will work in a best effort or hard limit policy fashion is governed
by the attributes explained in the previous section.

9.3 Implementation

The implementation is contained in the following files:
• src/simulator/realtime-simulator-impl.{cc,h}

• src/simulator/wall-clock-synchronizer.{cc,h}

In order to create a realtime scheduler, to a first approximation you just want to cause
simulation time jumps to consume real time. We propose doing this using a combination of
sleep- and busy- waits. Sleep-waits cause the calling process (thread) to yield the processor
for some amount of time. Even though this specified amount of time can be passed to
nanosecond resolution, it is actually converted to an OS-specific granularity. In Linux, the
granularity is called a Jiffy. Typically this resolution is insufficient for our needs (on the
order of a ten milliseconds), so we round down and sleep for some smaller number of Jiffies.
The process is then awakened after the specified number of Jiffies has passed. At this time,
we have some residual time to wait. This time is generally smaller than the minimum sleep
time, so we busy-wait for the remainder of the time. This means that the thread just sits in
a for loop consuming cycles until the desired time arrives. After the combination of sleep-
and busy-waits, the elapsed realtime (wall) clock should agree with the simulation time of
the next event and the simulation proceeds.

50ns-3.6 13 November 2009

Chapter 10: Packets ns-3 manual

10 Packets

The design of the Packet framework of ns was heavily guided by a few important use-cases:
• avoid changing the core of the simulator to introduce new types of packet headers or

trailers
• maximize the ease of integration with real-world code and systems
• make it easy to support fragmentation, defragmentation, and, concatenation which are

important, especially in wireless systems.
• make memory management of this object efficient
• allow actual application data or dummy application bytes for emulated applications

Each network packet contains a byte buffer, a set of byte tags, a set of packet tags, and
metadata.

The byte buffer stores the serialized content of the headers and trailers added to a
packet. The serialized representation of these headers is expected to match that of real
network packets bit for bit (although nothing forces you to do this) which means that the
content of a packet buffer is expected to be that of a real packet.

Fragmentation and defragmentation are quite natural to implement within this context:
since we have a buffer of real bytes, we can split it in multiple fragments and re-assemble
these fragments. We expect that this choice will make it really easy to wrap our Packet
data structure within Linux-style skb or BSD-style mbuf to integrate real-world kernel code
in the simulator. We also expect that performing a real-time plug of the simulator to a
real-world network will be easy.

One problem that this design choice raises is that it is difficult to pretty-print the packet
headers without context. The packet metadata describes the type of the headers and trailers
which were serialized in the byte buffer. The maintenance of metadata is optional and
disabled by default. To enable it, you must call Packet::EnableMetadata() and this will
allow you to get non-empty output from Packet::Print and Packet::Print.

Also, developers often want to store data in packet objects that is not found in the real
packets (such as timestamps or flow-ids). The Packet class deals with this requirement by
storing a set of tags (class Tag). We have found two classes of use cases for these tags,
which leads to two different types of tags. So-called ’byte’ tags are used to tag a subset of
the bytes in the packet byte buffer while ’packet’ tags are used to tag the packet itself. The
main difference between these two kinds of tags is what happens when packets are copied,
fragmented, and reassembled: ’byte’ tags follow bytes while ’packet’ tags follow packets.
Another important difference between these two kinds of tags is that byte tags cannot be
removed and are expected to be written once, and read many times, while packet tags are
expected to be written once, read many times, and removed exactly once. An example of a
’byte’ tag is a FlowIdTag which contains a flow id and is set by the application generating
traffic. An example of a ’packet’ tag is a cross-layer QoS class id set by an application and
processed by a lower-level MAC layer.

Memory management of Packet objects is entirely automatic and extremely efficient:
memory for the application-level payload can be modeled by a virtual buffer of zero-filled
bytes for which memory is never allocated unless explicitly requested by the user or unless

51ns-3.6 13 November 2009

Chapter 10: Packets ns-3 manual

the packet is fragmented or serialized out to a real network device. Furthermore, copying,
adding, and, removing headers or trailers to a packet has been optimized to be virtually
free through a technique known as Copy On Write.

Packets (messages) are fundamental objects in the simulator and their design is impor-
tant from a performance and resource management perspective. There are various ways to
design the simulation packet, and tradeoffs among the different approaches. In particular,
there is a tension between ease-of-use, performance, and safe interface design.

10.1 Packet design overview

Unlike ns-2, in which Packet objects contain a buffer of C++ structures corresponding to
protocol headers, each network packet in ns-3 contains a byte Buffer, a list of byte Tags, a
list of packet Tags, and a PacketMetadata object:

• The byte buffer stores the serialized content of the chunks added to a packet. The
serialized representation of these chunks is expected to match that of real network
packets bit for bit (although nothing forces you to do this) which means that the
content of a packet buffer is expected to be that of a real packet. Packets can also be
created with an arbitrary zero-filled payload for which no real memory is allocated.

• Each list of tags stores an arbitrarily large set of arbitrary user-provided data structures
in the packet. Each Tag is uniquely identified by its type; only one instance of each type
of data structure is allowed in a list of tags. These tags typically contain per-packet
cross-layer information or flow identifiers (i.e., things that you wouldn’t find in the bits
on the wire).

52ns-3.6 13 November 2009

Chapter 10: Packets ns-3 manual

Figure 10.1: Implementation overview of Packet class.

Figure Figure 10.1 is a high-level overview of the Packet implementation; more detail
on the byte Buffer implementation is provided later in Figure Figure 10.2. In \nsthree, the
Packet byte buffer is analogous to a Linux skbuff or BSD mbuf; it is a serialized represen-
tation of the actual data in the packet. The tag lists are containers for extra items useful
for simulation convenience; if a Packet is converted to an emulated packet and put over an
actual network, the tags are stripped off and the byte buffer is copied directly into a real
packet.

Packets are reference counted objects. They are handled with smart pointer (Ptr) objects
like many of the objects in the ns-3 system. One small difference you will see is that class
Packet does not inherit from class Object or class RefCountBase, and implements the Ref()
and Unref() methods directly. This was designed to avoid the overhead of a vtable in class
Packet.

The Packet class is designed to be copied cheaply; the overall design is based on Copy
on Write (COW). When there are multiple references to a packet object, and there is an
operation on one of them, only so-called "dirty" operations will trigger a deep copy of the
packet:
• ns3::Packet::AddHeader()

• ns3::Packet::AddTrailer()

• both versions of ns3::Packet::AddAtEnd()

53ns-3.6 13 November 2009

Chapter 10: Packets ns-3 manual

• Packet::RemovePacketTag()

The fundamental classes for adding to and removing from the byte buffer are class
Header and class Trailer. Headers are more common but the below discussion also
largely applies to protocols using trailers. Every protocol header that needs to be inserted
and removed from a Packet instance should derive from the abstract Header base class and
implement the private pure virtual methods listed below:
• ns3::Header::SerializeTo()

• ns3::Header::DeserializeFrom()

• ns3::Header::GetSerializedSize()

• ns3::Header::PrintTo()

Basically, the first three functions are used to serialize and deserialize protocol control
information to/from a Buffer. For example, one may define class TCPHeader : public
Header. The TCPHeader object will typically consist of some private data (like a sequence
number) and public interface access functions (such as checking the bounds of an input).
But the underlying representation of the TCPHeader in a Packet Buffer is 20 serialized bytes
(plus TCP options). The TCPHeader::SerializeTo() function would therefore be designed
to write these 20 bytes properly into the packet, in network byte order. The last function
is used to define how the Header object prints itself onto an output stream.

Similarly, user-defined Tags can be appended to the packet. Unlike Headers, Tags are
not serialized into a contiguous buffer but are stored in lists. Tags can be flexibly defined
to be any type, but there can only be one instance of any particular object type in the Tags
buffer at any time.

10.2 Using the packet interface

This section describes how to create and use the ns3::Packet object.

10.2.1 Creating a new packet

The following command will create a new packet with a new unique Id.
Ptr<Packet> pkt = Create<Packet> ();

What is the Uid (unique Id)? It is an internal id that the system uses to identify packets.
It can be fetched via the following method:
uint32_t uid = pkt->GetUid ();

But please note the following. This uid is an internal uid and cannot be counted on to
provide an accurate counter of how many "simulated packets" of a particular protocol are
in the system. It is not trivial to make this uid into such a counter, because of questions
such as what should the uid be when the packet is sent over broadcast media, or when
fragmentation occurs. If a user wants to trace actual packet counts, he or she should look
at e.g. the IP ID field or transport sequence numbers, or other packet or frame counters at
other protocol layers.

We mentioned above that it is possible to create packets with zero-filled payloads that
do not actually require a memory allocation (i.e., the packet may behave, when delays such
as serialization or transmission delays are computed, to have a certain number of payload

54ns-3.6 13 November 2009

Chapter 10: Packets ns-3 manual

bytes, but the bytes will only be allocated on-demand when needed). The command to do
this is, when the packet is created:
Ptr<Packet> pkt = Create<Packet> (N);

where N is a positive integer.
The packet now has a size of N bytes, which can be verified by the GetSize() method:
/**
* \returns the size in bytes of the packet (including the zero-filled
* initial payload)
*/

uint32_t GetSize (void) const;

You can also initialize a packet with a character buffer. The input data is copied and
the input buffer is untouched. The constructor applied is:
Packet (uint8_t const *buffer, uint32_t size);

Here is an example:
Ptr<Packet> pkt1 = Create<Packet> (reinterpret_cast<const uint8_t*> ("hello"), 5);

Packets are freed when there are no more references to them, as with all ns-3 objects
referenced by the Ptr class.

10.2.2 Adding and removing Buffer data

After the initial packet creation (which may possibly create some fake initial bytes of pay-
load), all subsequent buffer data is added by adding objects of class Header or class Trailer.
Note that, even if you are in the application layer, handling packets, and want to write
application data, you write it as an ns3::Header or ns3::Trailer. If you add a Header, it is
prepended to the packet, and if you add a Trailer, it is added to the end of the packet. If
you have no data in the packet, then it makes no difference whether you add a Header or
Trailer. Since the APIs and classes for header and trailer are pretty much identical, we’ll
just look at class Header here.

The first step is to create a new header class. All new Header classes must inherit from
class Header, and implement the following methods:
• Serialize ()

• Deserialize ()

• GetSerializedSize ()

• Print ()

To see a simple example of how these are done, look at the UdpHeader class headers
src/internet-stack/udp-header.cc. There are many other examples within the source code.

Once you have a header (or you have a preexisting header), the following Packet API
can be used to add or remove such headers.

/**

* Add header to this packet. This method invokes the

* Header::GetSerializedSize and Header::Serialize

* methods to reserve space in the buffer and request the

* header to serialize itself in the packet buffer.

*

55ns-3.6 13 November 2009

Chapter 10: Packets ns-3 manual

* \param header a reference to the header to add to this packet.

*/

void AddHeader (const Header & header);

/**

* Deserialize and remove the header from the internal buffer.

* This method invokes Header::Deserialize.

*

* \param header a reference to the header to remove from the internal buffer.

* \returns the number of bytes removed from the packet.

*/

uint32_t RemoveHeader (Header &header);

/**

* Deserialize but does _not_ remove the header from the internal buffer.

* This method invokes Header::Deserialize.

*

* \param header a reference to the header to read from the internal buffer.

* \returns the number of bytes read from the packet.

*/

uint32_t PeekHeader (Header &header) const;

For instance, here are the typical operations to add and remove a UDP header.
// add header

Ptr<Packet> packet = Create<Packet> ();

UdpHeader udpHeader;

// Fill out udpHeader fields appropriately

packet->AddHeader (udpHeader);

...

// remove header

UdpHeader udpHeader;

packet->RemoveHeader (udpHeader);

// Read udpHeader fields as needed

10.2.3 Adding and removing Tags

There is a single base class of Tag that all packet tags must derive from. They are used in
two different tag lists in the packet; the lists have different semantics and different expected
use cases.

As the names imply, ByteTags follow bytes and PacketTags follow packets. What this
means is that when operations are done on packets, such as fragmentation, concatenation,
and appending or removing headers, the byte tags keep track of which packet bytes they
cover. For instance, if a user creates a TCP segment, and applies a ByteTag to the segment,
each byte of the TCP segment will be tagged. However, if the next layer down inserts an
IPv4 header, this ByteTag will not cover those bytes. The converse is true for the PacketTag;
it covers a packet despite the operations on it.

PacketTags are limited in size to 20 bytes. This is a modifiable compile-time constant
in src/common/packet-tag-list.h. ByteTags have no such restriction.

Each tag type must subclass ns3::Tag, and only one instance of each Tag type may be
in each tag list. Here are a few differences in the behavior of packet tags and byte tags.

• Fragmentation: As mentioned above, when a packet is fragmented, each packet frag-
ment (which is a new packet) will get a copy of all packet tags, and byte tags will follow
the new packet boundaries (i.e. if the fragmented packets fragment across a buffer re-

56ns-3.6 13 November 2009

Chapter 10: Packets ns-3 manual

gion covered by the byte tag, both packet fragments will still have the appropriate
buffer regions byte tagged).

• Concatenation: When packets are combined, two different buffer regions will become
one. For byte tags, the byte tags simply follow the respective buffer regions. For packet
tags, only the tags on the first packet survive the merge.

• Finding and Printing: Both classes allow you to iterate over all of the tags and print
them.

• Removal: Users can add and remove the same packet tag multiple times on a single
packet (AddPacketTag () and RemovePacketTag ()). The packet However, once a
byte tag is added, it can only be removed by stripping all byte tags from the packet.
Removing one of possibly multiple byte tags is not supported by the current API.

As of ns-3.5, Tags are not serialized and deserialized to a buffer when
Packet::Serialize () and Packet::Deserialize () are called; this is an open bug.

If a user wants to take an existing packet object and reuse it as a new packet, he
or she should remove all byte tags and packet tags before doing so. An example is the
UdpEchoServer class, which takes the received packet and "turns it around" to send back
to the echo client.

The Packet API for byte tags is given below.
/**

* \param tag the new tag to add to this packet

*

* Tag each byte included in this packet with the

* new tag.

*

* Note that adding a tag is a const operation which is pretty

* un-intuitive. The rationale is that the content and behavior of

* a packet is _not_ changed when a tag is added to a packet: any

* code which was not aware of the new tag is going to work just

* the same if the new tag is added. The real reason why adding a

* tag was made a const operation is to allow a trace sink which gets

* a packet to tag the packet, even if the packet is const (and most

* trace sources should use const packets because it would be

* totally evil to allow a trace sink to modify the content of a

* packet).

*/

void AddByteTag (const Tag &tag) const;

/**

* \returns an iterator over the set of byte tags included in this packet.

*/

ByteTagIterator GetByteTagIterator (void) const;

/**

* \param tag the tag to search in this packet

* \returns true if the requested tag type was found, false otherwise.

*

* If the requested tag type is found, it is copied in the user’s

* provided tag instance.

*/

bool FindFirstMatchingByteTag (Tag &tag) const;

/**

* Remove all the tags stored in this packet.

57ns-3.6 13 November 2009

Chapter 10: Packets ns-3 manual

*/

void RemoveAllByteTags (void);

/**

* \param os output stream in which the data should be printed.

*

* Iterate over the tags present in this packet, and

* invoke the Print method of each tag stored in the packet.

*/

void PrintByteTags (std::ostream &os) const;

The Packet API for packet tags is given below.
/**

* \param tag the tag to store in this packet

*

* Add a tag to this packet. This method calls the

* Tag::GetSerializedSize and, then, Tag::Serialize.

*

* Note that this method is const, that is, it does not

* modify the state of this packet, which is fairly

* un-intuitive.

*/

void AddPacketTag (const Tag &tag) const;

/**

* \param tag the tag to remove from this packet

* \returns true if the requested tag is found, false

* otherwise.

*

* Remove a tag from this packet. This method calls

* Tag::Deserialize if the tag is found.

*/

bool RemovePacketTag (Tag &tag);

/**

* \param tag the tag to search in this packet

* \returns true if the requested tag is found, false

* otherwise.

*

* Search a matching tag and call Tag::Deserialize if it is found.

*/

bool PeekPacketTag (Tag &tag) const;

/**

* Remove all packet tags.

*/

void RemoveAllPacketTags (void);

/**

* \param os the stream in which we want to print data.

*

* Print the list of ’packet’ tags.

*

* \sa Packet::AddPacketTag, Packet::RemovePacketTag, Packet::PeekPacketTag,

* Packet::RemoveAllPacketTags

*/

void PrintPacketTags (std::ostream &os) const;

/**

* \returns an object which can be used to iterate over the list of

* packet tags.

58ns-3.6 13 November 2009

Chapter 10: Packets ns-3 manual

*/

PacketTagIterator GetPacketTagIterator (void) const;

Here is a simple example illustrating the use of tags from the code in src/internet-
stack/udp-socket-impl.cc:
Ptr<Packet> p; // pointer to a pre-existing packet
SocketIpTtlTag tag
tag.SetTtl (m_ipMulticastTtl); // Convey the TTL from UDP layer to IP layer
p->AddPacketTag (tag);

This tag is read at the IP layer, then stripped (src/internet-stack/ipv4-l3-
protocol.cc:
uint8_t ttl = m_defaultTtl;
SocketIpTtlTag tag;
bool found = packet->RemovePacketTag (tag);
if (found)

{
ttl = tag.GetTtl ();

}

10.2.4 Fragmentation and concatenation

Packets may be fragmented or merged together. For example, to fragment a packet p of
90 bytes into two packets, one containing the first 10 bytes and the other containing the
remaining 80, one may call the following code:
Ptr<Packet> frag0 = p->CreateFragment (0, 10);
Ptr<Packet> frag1 = p->CreateFragment (10, 90);

As discussed above, the packet tags from p will follow to both packet fragments, and the
byte tags will follow the byte ranges as needed.

Now, to put them back together:
frag0->AddAtEnd (frag1);

Now frag0 should be equivalent to the original packet p. If, however, there were opera-
tions on the fragments before being reassembled (such as tag operations or header opera-
tions), the new packet will not be the same.

10.2.5 Enabling metadata

We mentioned above that packets, being on-the-wire representations of byte buffers, present
a problem to print out in a structured way unless the printing function has access to the
context of the header. For instance, consider a tcpdump-like printer that wants to pretty-
print the contents of a packet.

To enable this usage, packets may have metadata enabled (disabled by default for perfor-
mance reasons). This class is used by the Packet class to record every operation performed
on the packet’s buffer, and provides an implementation of Packet::Print () method that
uses the metadata to analyze the content of the packet’s buffer.

The metadata is also used to perform extensive sanity checks at runtime when performing
operations on a Packet. For example, this metadata is used to verify that when you remove

59ns-3.6 13 November 2009

Chapter 10: Packets ns-3 manual

a header from a packet, this same header was actually present at the front of the packet.
These errors will be detected and will abort the program.

To enable this operation, users will typically insert one or both of these statements at
the beginning of their programs:
Packet::EnablePrinting ();
Packet::EnableChecking ();

10.3 Sample programs

See samples/main-packet.cc and samples/main-packet-tag.cc.

10.4 Implementation details

10.4.1 Private member variables

A Packet object’s interface provides access to some private data:
Buffer m_buffer;
ByteTagList m_byteTagList;
PacketTagList m_packetTagList;
PacketMetadata m_metadata;
mutable uint32_t m_refCount;
static uint32_t m_globalUid;

Each Packet has a Buffer and two Tags lists, a PacketMetadata object, and a ref count.
A static member variable keeps track of the UIDs allocated. The actual uid of the packet
is stored in the PacketMetadata.

Note that real network packets do not have a UID; the UID is therefore an instance of
data that normally would be stored as a Tag in the packet. However, it was felt that a UID
is a special case that is so often used in simulations that it would be more convenient to
store it in a member variable.

10.4.2 Buffer implementation

Class Buffer represents a buffer of bytes. Its size is automatically adjusted to hold any
data prepended or appended by the user. Its implementation is optimized to ensure that
the number of buffer resizes is minimized, by creating new Buffers of the maximum size
ever used. The correct maximum size is learned at runtime during use by recording the
maximum size of each packet.

Authors of new Header or Trailer classes need to know the public API of the Buffer class.
(add summary here)

The byte buffer is implemented as follows:
struct BufferData {

uint32_t m_count;
uint32_t m_size;
uint32_t m_initialStart;
uint32_t m_dirtyStart;
uint32_t m_dirtySize;

60ns-3.6 13 November 2009

Chapter 10: Packets ns-3 manual

uint8_t m_data[1];
};
struct BufferData *m_data;
uint32_t m_zeroAreaSize;
uint32_t m_start;
uint32_t m_size;

• BufferData::m_count: reference count for BufferData structure

• BufferData::m_size: size of data buffer stored in BufferData structure

• BufferData::m_initialStart: offset from start of data buffer where data was first
inserted

• BufferData::m_dirtyStart: offset from start of buffer where every Buffer which holds
a reference to this BufferData instance have written data so far

• BufferData::m_dirtySize: size of area where data has been written so far

• BufferData::m_data: pointer to data buffer

• Buffer::m_zeroAreaSize: size of zero area which extends before m_initialStart

• Buffer::m_start: offset from start of buffer to area used by this buffer

• Buffer::m_size: size of area used by this Buffer in its BufferData structure

61ns-3.6 13 November 2009

Chapter 10: Packets ns-3 manual

Figure 10.2: Implementation overview of a packet’s byte Buffer.
This data structure is summarized in Figure Figure 10.2. Each Buffer holds a pointer

to an instance of a BufferData. Most Buffers should be able to share the same underlying
BufferData and thus simply increase the BufferData’s reference count. If they have to
change the content of a BufferData inside the Dirty Area, and if the reference count is
not one, they first create a copy of the BufferData and then complete their state-changing
operation.

10.4.3 Tags implementation

(XXX revise me)
Tags are implemented by a single pointer which points to the start of a linked list

ofTagData data structures. Each TagData structure points to the next TagData in the list
(its next pointer contains zero to indicate the end of the linked list). Each TagData contains
an integer unique id which identifies the type of the tag stored in the TagData.

62ns-3.6 13 November 2009

Chapter 10: Packets ns-3 manual

struct TagData {
struct TagData *m_next;
uint32_t m_id;
uint32_t m_count;
uint8_t m_data[Tags::SIZE];

};
class Tags {

struct TagData *m_next;
};

Adding a tag is a matter of inserting a new TagData at the head of the linked list.
Looking at a tag requires you to find the relevant TagData in the linked list and copy its
data into the user data structure. Removing a tag and updating the content of a tag requires
a deep copy of the linked list before performing this operation. On the other hand, copying
a Packet and its tags is a matter of copying the TagData head pointer and incrementing its
reference count.

Tags are found by the unique mapping between the Tag type and its underlying id. This
is why at most one instance of any Tag can be stored in a packet. The mapping between
Tag type and underlying id is performed by a registration as follows:

/* A sample Tag implementation
*/
struct MyTag {

uint16_t m_streamId;
};

10.4.4 Memory management

Describe dataless vs. data-full packets.

10.4.5 Copy-on-write semantics

The current implementation of the byte buffers and tag list is based on COW (Copy On
Write). An introduction to COW can be found in Scott Meyer’s "More Effective C++",
items 17 and 29). This design feature and aspects of the public interface borrows from the
packet design of the Georgia Tech Network Simulator. This implementation of COW uses
a customized reference counting smart pointer class.

What COW means is that copying packets without modifying them is very cheap (in
terms of CPU and memory usage) and modifying them can be also very cheap. What is key
for proper COW implementations is being able to detect when a given modification of the
state of a packet triggers a full copy of the data prior to the modification: COW systems
need to detect when an operation is “dirty” and must therefore invoke a true copy.

Dirty operations:

• ns3::Packet::AddHeader

• ns3::Packet::AddTrailer

• both versions of ns3::Packet::AddAtEnd

• ns3::Packet::RemovePacketTag

63ns-3.6 13 November 2009

Chapter 10: Packets ns-3 manual

Non-dirty operations:
• ns3::Packet::AddPacketTag
• ns3::Packet::PeekPacketTag
• ns3::Packet::RemoveAllPacketTags
• ns3::Packet::AddByteTag
• ns3::Packet::FindFirstMatchingByteTag
• ns3::Packet::RemoveAllByteTags
• ns3::Packet::RemoveHeader
• ns3::Packet::RemoveTrailer
• ns3::Packet::CreateFragment
• ns3::Packet::RemoveAtStart
• ns3::Packet::RemoveAtEnd
• ns3::Packet::CopyData

Dirty operations will always be slower than non-dirty operations, sometimes by several
orders of magnitude. However, even the dirty operations have been optimized for common
use-cases which means that most of the time, these operations will not trigger data copies
and will thus be still very fast.

64ns-3.6 13 November 2009

Chapter 11: Helpers ns-3 manual

11 Helpers

The above chapters introduced you to various ns-3 programming concepts such as smart
pointers for reference-counted memory management, attributes, namespaces, callbacks, etc.
Users who work at this low-level API can interconnect ns-3 objects with fine granulariy.
However, a simulation program written entirely using the low-level API would be quite long
and tedious to code. For this reason, a separate so-called “helper API” has been overlaid
on the core ns-3 API. If you have read the ns-3 tutorial, you will already be familiar with
the helper API, since it is the API that new users are typically introduced to first. In this
chapter, we introduce the design philosophy of the helper API and contrast it to the low-
level API. If you become a heavy user of ns-3, you will likely move back and forth between
these APIs even in the same program.

The helper API has a few goals:
1. the rest of src/ has no dependencies on the helper API; anything that can be done

with the helper API can be coded also at the low-level API
2. Containers: Often simulations will need to do a number of identical actions to groups

of objects. The helper API makes heavy use of containers of similar objects to which
similar or identical operations can be performed.

3. The helper API is not generic; it does not strive to maximize code reuse. So, program-
ming constructs such as polymorphism and templates that achieve code reuse are not
as prevalent. For instance, there are separate CsmaNetDevice helpers and PointTo-
PointNetDevice helpers but they do not derive from a common NetDevice base class.

4. The helper API typically works with stack-allocated (vs. heap-allocated) objects. For
some programs, ns-3 users may not need to worry about any low level Object Create or
Ptr handling; they can make do with containers of objects and stack-allocated helpers
that operate on them.

The helper API is really all about making ns-3 programs easier to write and read, without
taking away the power of the low-level interface. The rest of this chapter provides some
examples of the programming conventions of the helper API.

65ns-3.6 13 November 2009

Chapter 12: Python ns-3 manual

12 Python

� �
Placeholder chapter
 	

For now, please see the Python wiki page at
http://www.nsnam.org/wiki/index.php/NS-3 Python Bindings.

67ns-3.6 13 November 2009

http://www.nsnam.org/wiki/index.php/NS-3_Python_Bindings

Chapter 13: Node and NetDevices ns-3 manual

Part 2: Nodes and NetDevices

13 Node and NetDevices

This chapter describes how ns-3 nodes are put together, and provides a walk-through of
how packets traverse an internet-based Node.

Figure 13.1: High-level node architecture.

In ns-3, nodes are instances of class Node. This class may be subclassed, but instead, the
conceptual model is that we aggregate or insert objects to it rather than define subclasses.

One might think of a bare ns-3 node as a shell of a computer, to which one may add
NetDevices (cards) and other innards including the protocols and applications. Figure 13.1
illustrates that Node objects contain a list of Applications (initially, the list is empty), a
list of NetDevices (initially, the list is empty), a list of ProtocolHandlers, a unique integer
ID, and a system ID (for distributed simulation).

The design tries to avoid putting too many dependencies on the base class Node, Appli-
cation, or NetDevice for the following:

69ns-3.6 13 November 2009

Chapter 13: Node and NetDevices ns-3 manual

• IP version, or whether IP is at all even used in the Node.
• implementation details of the IP stack

From a software perspective, the lower interface of applications corresponds to the C-
based sockets API. The upper interface of NetDevice objects corresponds to the device
independent sublayer of the Linux stack. Everything in between can be aggregated and
plumbed together as needed.

Let’s look more closely at the protocol demultiplexer. We want incoming frames at
layer-2 to be delivered to the right layer-3 protocol such as Ipv4. The function of this
demultiplexer is to register callbacks for receiving packets. The callbacks are indexed based
on the EtherType in the layer-2 frame.

Many different types of higher-layer protocols may be connected to the NetDevice, such
as IPv4, IPv6, ARP, MPLS, IEEE 802.1x, and packet sockets. Therefore, the use of a
callback-based demultiplexer avoids the need to use a common base class for all of these
protocols, which is problematic because of the different types of objects (including packet
sockets) expected to be registered there.

Each NetDevice delivers packets to a callback with the following signature:
/**
* \param device a pointer to the net device which is calling this callback
* \param packet the packet received
* \param protocol the 16 bit protocol number associated with this packet.
* This protocol number is expected to be the same protocol number
* given to the Send method by the user on the sender side.
* \param address the address of the sender
* \returns true if the callback could handle the packet successfully,
* false otherwise.
*/

typedef Callback<bool, Ptr<NetDevice>, Ptr<Packet>, uint16_t,
const Address &> ReceiveCallback;

There is a function in class Node that matches that signature:
private:
bool ReceiveFromDevice (Ptr<NetDevice> device, Ptr<Packet>,

uint16_t protocol, const Address &from);

However, users do not need to access this function directly. Instead, when users call
uint32_t AddDevice (Ptr<NetDevice> device), the implementation of this function sets
the callback (and the function returns the ifIndex of the NetDevice on that Node).

But what does the ReceiveFromDevice function do? Here, it looks up another callback,
in its list of callbacks, corresponding to the matching EtherType. This callback is called a
ProtocolHandler, and is specified as follows:
typedef Callback<void, Ptr<NetDevice>, Ptr<Packet>, uint16_t,

const Address &> ProtocolHandler;

Upper-layer protocols or objects are expected to provide such a function. and register
it with the list of ProtocolHandlers by calling Node::RegisterProtocolHandler (); For
instance, if Ipv4 is aggregated to a Node, then the Ipv4 receive function can be registered
with the protocol handler by calling:

70ns-3.6 13 November 2009

http://en.wikipedia.org/wiki/EtherType

Chapter 13: Node and NetDevices ns-3 manual

RegisterProtocolHandler (
MakeCallback (&Ipv4L3Protocol::Receive, ipv4),
Ipv4L3Protocol::PROT_NUMBER, 0);

and likewise for Ipv6, ARP, etc.

13.1 NodeList

Every Node created is automatically added to the ns-3 NodeList. The NodeList class
provides an Add() method and C++ iterators to allow one to walk the node list or fetch a
Node pointer by its integer identifier.

The following chapters provide reference information on the available NetDevices in ns-3.

71ns-3.6 13 November 2009

Chapter 14: Simple NetDevice ns-3 manual

14 Simple NetDevice

� �
Placeholder chapter
 	

73ns-3.6 13 November 2009

Chapter 15: PointToPoint NetDevice ns-3 manual

15 PointToPoint NetDevice

This is the introduction to PointToPoint NetDevice chapter, to complement the PointTo-
Point model doxygen.

15.1 Overview of the PointToPoint model

The ns-3 point-to-point model is of a very simple point to point data link connecting exactly
two PointToPointNetDevice devices over an PointToPointChannel. This can be viewed as
equivalent to a full duplex RS-232 or RS-422 link with null modem and no handshaking.

Data is encapsulated in the Point-to-Point Protocol (PPP – RFC 1661), however the
Link Control Protocol (LCP) and associated state machine is not implemented. The PPP
link is assumed to be established and authenticated at all times.

Data is not framed, therefore Address and Control fields will not be found. Since the
data is not framed, there is no need to provide Flag Sequence and Control Escape octets, nor
is a Frame Check Sequence appended. All that is required to implement non-framed PPP
is to prepend the PPP protocol number for IP Version 4 which is the sixteen-bit number
0x21 (see http://www.iana.org/assignments/ppp-numbers).

The PointToPointNetDevice provides following Attributes:
• Address: The ns3::Mac48Address of the device (if desired);
• DataRate: The data rate (ns3::DataRate) of the device;
• TxQueue: The transmit queue (ns3::Queue) used by the device;
• InterframeGap: The optional ns3::Time to wait between "frames";
• Rx: A trace source for received packets;
• Drop: A trace source for dropped packets.

The PointToPointNetDevice models a transmitter section that puts bits on a corre-
sponding channel "wire." ‘The DataRate attribute specifies the number of bits per second
that the device will simulate sending over the channel. In reality no bits are sent, but an
event is scheduled for an elapsed time consistent with the number of bits in each packet
and the specified DataRate. The implication here is that the receiving device models a
receiver section that can receive any any data rate. Therefore there is no need, nor way to
set a receive data rate in this model. By setting the DataRate on the transmitter of both
devices connected to a given PointToPointChannel one can model a symmetric channel; or
by setting different DataRates one can model an asymmetric channel (e.g., ADSL).

The PointToPointNetDevice supports the assignment of a "receive error model." This is
an ErrorModel object that is used to simulate data corruption on the link.

15.2 Point-to-Point Channel Model

The point to point net devices are connected via an PointToPointChannel. This channel
models two wires transmitting bits at the data rate specified by the source net device. There
is no overhead beyond the eight bits per byte of the packet sent. That is, we do not model
Flag Sequences, Frame Check Sequences nor do we "escape" any data.

The PointToPointChannel provides following Attributes:
• Delay: An ns3::Time specifying the speed of light transmission delay for the channel.

75ns-3.6 13 November 2009

Chapter 15: PointToPoint NetDevice ns-3 manual

15.3 Using the PointToPointNetDevice

The PointToPoint net devices and channels are typically created and configured using the
associated PointToPointHelper object. The various ns3 device helpers generally work in
a similar way, and their use is seen in many of our example programs and is also covered in
the ns-3 tutorial.

The conceptual model of interest is that of a bare computer “husk” into which you plug
net devices. The bare computers are created using a NodeContainer helper. You just ask
this helper to create as many computers (we call them Nodes) as you need on your network:

NodeContainer nodes;
nodes.Create (2);

Once you have your nodes, you need to instantiate a PointToPointHelper and set any
attributes you may want to change. Note that since this is a point-to-point (as compared to
a point-to-multipoint) there may only be two nodes with associated net devices connected
by a PointToPointChannel.

PointToPointHelper pointToPoint;
pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

Once the attributes are set, all that remains is to create the devices and install them
on the required nodes, and to connect the devices together using a PointToPoint channel.
When we create the net devices, we add them to a container to allow you to use them in
the future. This all takes just one line of code.

NetDeviceContainer devices = pointToPoint.Install (nodes);

15.4 PointToPoint Tracing

Like all ns-3 devices, the Point-to-Point Model provides a number of trace sources. These
trace sources can be hooked using your own custom trace code, or you can use our helper
functions to arrange for tracing to be enabled on devices you specify.

15.4.1 Upper-Level (MAC) Hooks

From the point of view of tracing in the net device, there are several interesting points to
insert trace hooks. A convention inherited from other simulators is that packets destined
for transmission onto attached networks pass through a single "transmit queue" in the net
device. We provide trace hooks at this point in packet flow, which corresponds (abstractly)
only to a transition from the network to data link layer, and call them collectively the device
MAC hooks.

When a packet is sent to the Point-to-Point net device for transmission it always passes
through the transmit queue. The transmit queue in the PointToPointNetDevice inherits
from Queue, and therefore inherits three trace sources:

• An Enqueue operation source (see ns3::Queue::m traceEnqueue);
• A Dequeue operation source (see ns3::Queue::m traceDequeue);
• A Drop operation source (see ns3::Queue::m traceDrop).

76ns-3.6 13 November 2009

Chapter 15: PointToPoint NetDevice ns-3 manual

The upper-level (MAC) trace hooks for the PointToPointNetDevice are, in fact, exactly
these three trace sources on the single transmit queue of the device.

The m traceEnqueue event is triggered when a packet is placed on the trans-
mit queue. This happens at the time that ns3::PointtoPointNetDevice::Send or
ns3::PointToPointNetDevice::SendFrom is called by a higher layer to queue a packet for
transmission. An Enqueue trace event firing should be interpreted as only indicating that
a higher level protocol has sent a packet to the device.

The m traceDequeue event is triggered when a packet is removed from the transmit
queue. Dequeues from the transmit queue can happen in two situations: 1) If the un-
derlying channel is idle when PointToPointNetDevice::Send is called, a packet is dequeued
from the transmit queue and immediately transmitted; 2) a packet may be dequeued and
immediately transmitted in an internal TransmitCompleteEvent that functions much like a
transmit complete interrupt service routine. An Dequeue trace event firing may be viewed
as indicating that the PointToPointNetDevice has begun transmitting a packet.

15.4.2 Lower-Level (PHY) Hooks

Similar to the upper level trace hooks, there are trace hooks available at the lower levels of
the net device. We call these the PHY hooks. These events fire from the device methods
that talk directly to the PointToPointChannel.

The trace source m dropTrace is called to indicate a packet that is dropped by the
device. This happens when a packet is discarded as corrupt due to a receive error model
indication (see ns3::ErrorModel and the associated attribute "ReceiveErrorModel").

The other low-level trace source fires on reception of a packet (see
ns3::PointToPointNetDevice::m rxTrace) from the PointToPointChannel.

77ns-3.6 13 November 2009

Chapter 16: CSMA NetDevice ns-3 manual

16 CSMA NetDevice

This is the introduction to CSMA NetDevice chapter, to complement the Csma model
doxygen.

16.1 Overview of the CSMA model

The ns-3 CSMA device models a simple bus network in the spirit of Ethernet. Although it
does not model any real physical network you could ever build or buy, it does provide some
very useful functionality.

Typically when one thinks of a bus network Ethernet or IEEE 802.3 comes to mind.
Ethernet uses CSMA/CD (Carrier Sense Multiple Access with Collision Detection with
exponentially increasing backoff to contend for the shared transmission medium. The ns-3
CSMA device models only a portion of this process, using the nature of the globally available
channel to provide instantaneous (faster than light) carrier sense and priority-based collision
"avoidance." Collisions in the sense of Ethernet never happen and so the ns-3 CSMA device
does not model collision detection, nor will any transmission in progress be "jammed."

16.1.1 CSMA Layer Model

There are a number of conventions in use for describing layered communications architec-
tures in the literature and in textbooks. The most common layering model is the ISO seven
layer reference model. In this view the CsmaNetDevice and CsmaChannel pair occupies the
lowest two layers – at the physical (layer one), and data link (layer two) positions. Another
important reference model is that specified by RFC 1122, "Requirements for Internet Hosts
– Communication Layers." In this view the CsmaNetDevice and CsmaChannel pair occu-
pies the lowest layer – the link layer. There is also a seemingly endless litany of alternative
descriptions found in textbooks and in the literature. We adopt the naming conventions
used in the IEEE 802 standards which speak of LLC, MAC, MII and PHY layering. These
acronyms are defined as:
• LLC: Logical Link Control;
• MAC: Media Access Control;
• MII: Media Independent Interface;
• PHY: Physical Layer.

In this case the LLC and MAC are sublayers of the OSI data link layer and the MII and
PHY are sublayers of the OSI physical layer.

The "top" of the CSMA device defines the transition from the network layer to the
data link layer. This transition is performed by higher layers by calling either CsmaNetDe-
vice::Send or CsmaNetDevice::SendFrom.

In contrast to the IEEE 802.3 standards, there is no precisely specified PHY in the
CSMA model in the sense of wire types, signals or pinouts. The "bottom" interface of
the CsmaNetDevice can be thought of as as a kind of Media Independent Interface (MII)
as seen in the "Fast Ethernet" (IEEE 802.3u) specifications. This MII interface fits into
a corresponding media independent interface on the CsmaChannel. You will not find the
equivalent of a 10BASE-T or a 1000BASE-LX PHY.

79ns-3.6 13 November 2009

Chapter 16: CSMA NetDevice ns-3 manual

The CsmaNetDevice calls the CsmaChannel through a media independent interface.
There is a method defined to tell the channel when to start "wiggling the wires" using the
method CsmaChannel::TransmitStart, and a method to tell the channel when the trans-
mission process is done and the channel should begin propagating the last bit across the
"wire": CsmaChannel::TransmitEnd.

When the TransmitEnd method is executed, the channel will model a single uniform
signal propagation delay in the medium and deliver copes of the packet to each of the
devices attached to the packet via the CsmaNetDevice::Receive method.

There is a "pin" in the device media independent interface corresponding to "COL"
(collision). The state of the channel may be sensed by calling CsmaChannel::GetState.
Each device will look at this "pin" before starting a send and will perform appropriate
backoff operations if required.

Properly received packets are forwarded up to higher levels from the CsmaNetDevice
via a callback mechanism. The callback function is initialized by the higher layer (when
the net device is attached) using CsmaNetDevice::SetReceiveCallback and is invoked upon
"proper" reception of a packet by the net device in order to forward the packet up the
protocol stack.

16.2 CSMA Channel Model

The class CsmaChannel models the actual transmission medium. There is no fixed limit for
the number of devices connected to the channel. The CsmaChannel models a data rate and
a speed-of-light delay which can be accessed via the attributes "DataRate" and "Delay"
respectively. The data rate provided to the channel is used to set the data rates used by
the transmitter sections of the CSMA devices connected to the channel. There is no way
to independently set data rates in the devices. Since the data rate is only used to calculate
a delay time, there is no limitation (other than by the data type holding the value) on the
speed at which CSMA channels and devices can operate; and no restriction based on any
kind of PHY characteristics.

The CsmaChannel has three states, IDLE, TRANSMITTING and PROPAGATING. These three
states are "seen" instantaneously by all devices on the channel. By this we mean that if one
device begins or ends a simulated transmission, all devices on the channel are immediately
aware of the change in state. There is no time during which one device may see an IDLE
channel while another device physically further away in the collision domain may have
begun transmitting with the associated signals not propagated down the channel to other
devices. Thus there is no need for collision detection in the CsmaChannel model and it is
not implemented in any way.

We do, as the name indicates, have a Carrier Sense aspect to the model. Since the sim-
ulator is single threaded, access to the common channel will be serialized by the simulator.
This provides a deterministic mechanism for contending for the channel. The channel is
allocated (transitioned from state IDLE to state TRANSMITTING) on a first-come first-served
basis. The channel always goes through a three state process:

IDLE -> TRANSMITTING -> PROPAGATING -> IDLE

80ns-3.6 13 November 2009

Chapter 16: CSMA NetDevice ns-3 manual

The TRANSMITTING state models the time during which the source net device is actually
wiggling the signals on the wire. The PROPAGATING state models the time after the last bit
was sent, when the signal is propagating down the wire to the "far end."

The transition to the TRANSMITTING state is driven by a call to CsmaChan-
nel::TransmitStart which is called by the net device that transmits the packet. It is
the responsibility of that device to end the transmission with a call to CsmaChan-
nel::TransmitEnd at the appropriate simulation time that reflects the time elapsed to put
all of the packet bits on the wire. When TransmitEnd is called, the channel schedules an
event corresponding to a single speed-of-light delay. This delay applies to all net devices
on the channel identically. You can think of a symmetrical hub in which the packet bits
propagate to a central location and then back out equal length cables to the other devices
on the channel. The single “speed of light” delay then corresponds to the time it takes for:
1) a signal to propagate from one CsmaNetDevice through its cable to the hub; plus 2)
the time it takes for the hub to forward the packet out a port; plus 3) the time it takes for
the signal in question to propagate to the destination net device.

The CsmaChannel models a broadcast medium so the packet is delivered to all of the
devices on the channel (including the source) at the end of the propagation time. It is
the responsibility of the sending device to determine whether or not it receives a packet
broadcast over the channel.

The CsmaChannel provides following Attributes:
• DataRate: The bitrate for packet transmission on connected devices;
• Delay: The speed of light transmission delay for the channel.

16.3 CSMA Net Device Model

The CSMA network device appears somewhat like an Ethernet device. The CsmaNetDevice
provides following Attributes:
• Address: The Mac48Address of the device;
• SendEnable: Enable packet transmission if true;
• ReceiveEnable: Enable packet reception if true;
• EncapsulationMode: Type of link layer encapsulation to use;
• RxErrorModel: The receive error model;
• TxQueue: The transmit queue used by the device;
• InterframeGap: The optional time to wait between "frames";
• Rx: A trace source for received packets;
• Drop: A trace source for dropped packets.

The CsmaNetDevice supports the assignment of a "receive error model." This is an
ErrorModel object that is used to simulate data corruption on the link.

Packets sent over the CsmaNetDevice are always routed through the transmit queue to
provide a trace hook for packets sent out over the network. This transmit queue can be set
(via attribute) to model different queuing strategies.

Also configurable by attribute is the encapsulation method used by the device. Every
packet gets an EthernetHeader that includes the destination and source MAC addresses,

81ns-3.6 13 November 2009

Chapter 16: CSMA NetDevice ns-3 manual

and a length/type field. Every packet also gets an EthernetTrailer which includes the FCS.
Data in the packet may be encapsulated in different ways.

By default, or by setting the "EncapsulationMode" attribute to "Dix", the encapsulation
is according to the DEC, Intel, Xerox standard. This is sometimes called EthernetII framing
and is the familiar destination MAC, source MAC, EtherType, Data, CRC format.

If the "EncapsulationMode" attribute is set to "Llc", the encapsulation is by LLC SNAP.
In this case, a SNAP header is added that contains the EtherType (IP or ARP).

The other implemented encapsulation modes are IP ARP (set "EncapsulationMode" to
"IpArp") in which the length type of the Ethernet header receives the protocol number of
the packet; or ETHERNET V1 (set "EncapsulationMode" to "EthernetV1") in which the
length type of the Ethernet header receives the length of the packet. A "Raw" encapsulation
mode is defined but not implemented – use of the RAW mode results in an assertion.

Note that all net devices on a channel must be set to the same encapsulation mode for
correct results. The encapsulation mode is not sensed at the receiver.

The CsmaNetDevice implements a random exponential backoff algorithm that is exe-
cuted if the channel is determined to be busy (TRANSMITTING or PPROPAGATING) when the
device wants to start propagating. This results in a random delay of up to pow (2, retries)
- 1 microseconds before a retry is attempted. The default maximum number of retries is
1000.

16.4 Using the CsmaNetDevice

The CSMA net devices and channels are typically created and configured using the associ-
ated CsmaHelper object. The various ns3 device dhelpers generally work in a similar way,
and their use is seen in many of our example programs.

The conceptual model of interest is that of a bare computer “husk” into which you plug
net devices. The bare computers are created using a NodeContainer helper. You just ask
this helper to create as many computers (we call them Nodes) as you need on your network:

NodeContainer csmaNodes;
csmaNodes.Create (nCsmaNodes);

Once you have your nodes, you need to instantiate a CsmaHelper and set any attributes
you may want to change.

CsmaHelper csma;
csma.SetChannelAttribute ("DataRate", StringValue ("100Mbps"));
csma.SetChannelAttribute ("Delay", TimeValue (NanoSeconds (6560)));

csma.SetDeviceAttribute ("EncapsulationMode", StringValue ("Dix"));
csma.SetDeviceAttribute ("FrameSize", UintegerValue (2000));

Once the attributes are set, all that remains is to create the devices and install them on
the required nodes, and to connect the devices together using a CSMA channel. When we
create the net devices, we add them to a container to allow you to use them in the future.
This all takes just one line of code.

NetDeviceContainer csmaDevices = csma.Install (csmaNodes);

82ns-3.6 13 November 2009

Chapter 16: CSMA NetDevice ns-3 manual

16.5 CSMA Tracing

Like all ns-3 devices, the CSMA Model provides a number of trace sources. These trace
sources can be hooked using your own custom trace code, or you can use our helper functions
to arrange for tracing to be enabled on devices you specify.

16.5.1 Upper-Level (MAC) Hooks

From the point of view of tracing in the net device, there are several interesting points to
insert trace hooks. A convention inherited from other simulators is that packets destined
for transmission onto attached networks pass through a single "transmit queue" in the net
device. We provide trace hooks at this point in packet flow, which corresponds (abstractly)
only to a transition from the network to data link layer, and call them collectively the device
MAC hooks.

When a packet is sent to the CSMA net device for transmission it always passes through
the transmit queue. The transmit queue in the CsmaNetDevice inherits from Queue, and
therefore inherits three trace sources:
• An Enqueue operation source (see Queue::m traceEnqueue);
• A Dequeue operation source (see Queue::m traceDequeue);
• A Drop operation source (see Queue::m traceDrop).

The upper-level (MAC) trace hooks for the CsmaNetDevice are, in fact, exactly these
three trace sources on the single transmit queue of the device.

The m traceEnqueue event is triggered when a packet is placed on the transmit queue.
This happens at the time that CsmaNetDevice::Send or CsmaNetDevice::SendFrom is called
by a higher layer to queue a packet for transmission.

The m traceDequeue event is triggered when a packet is removed from the transmit
queue. Dequeues from the transmit queue can happen in three situations: 1) If the un-
derlying channel is idle when the CsmaNetDevice::Send or CsmaNetDevice::SendFrom is
called, a packet is dequeued from the transmit queue and immediately transmitted; 2) If
the underlying channel is idle, a packet may be dequeued and immediately transmitted in
an internal TransmitCompleteEvent that functions much like a transmit complete interrupt
service routine; or 3) from the random exponential backoff handler if a timeout is detected.

Case (3) implies that a packet is dequeued from the transmit queue if it is unable to
be transmitted according to the backoff rules. It is important to understand that this
will appear as a Dequeued packet and it is easy to incorrectly assume that the packet was
transmitted since it passed through the transmit queue. In fact, a packet is actually dropped
by the net device in this case. The reason for this behavior is due to the definition of the
Queue Drop event. The m traceDrop event is, by definition, fired when a packet cannot be
enqueued on the transmit queue because it is full. This event only fires if the queue is full
and we do not overload this event to indicate that the CsmaChannel is "full."

16.5.2 Lower-Level (PHY) Hooks

Similar to the upper level trace hooks, there are trace hooks available at the lower levels of
the net device. We call these the PHY hooks. These events fire from the device methods
that talk directly to the CsmaChannel.

83ns-3.6 13 November 2009

Chapter 16: CSMA NetDevice ns-3 manual

The trace source m dropTrace is called to indicate a packet that is dropped by the
device. This happens in two cases: First, if the receive side of the net device is not enabled
(see CsmaNetDevice::m receiveEnable and the associated attribute "ReceiveEnable").

The m dropTrace is also used to indicate that a packet was discarded as corrupt if a
receive error model is used (see CsmaNetDevice::m receiveErrorModel and the associated
attribute "ReceiveErrorModel").

The other low-level trace source fires on reception of an accepted packet (see CsmaN-
etDevice::m rxTrace). A packet is accepted if it is destined for the broadcast address, a
multicast address, or to the MAC address assigned to the net device.

84ns-3.6 13 November 2009

Chapter 17: Wifi NetDevice ns-3 manual

17 Wifi NetDevice

ns-3 nodes can contain a collection of NetDevice objects, much like an actual computer
contains separate interface cards for Ethernet, Wifi, Bluetooth, etc. This chapter describes
the ns-3 WifiNetDevice and related models. By adding WifiNetDevice objects to ns-3 nodes,
one can create models of 802.11-based infrastructure and ad hoc networks.

17.1 Overview of the model

The WifiNetDevice models a wireless network interface controller based on the IEEE 802.11
standard. We will go into more detail below but in brief, ns-3 provides models for these
aspects of 802.11:
• basic 802.11 DCF with infrastructure and adhoc modes
• 802.11a and 802.11b physical layers
• QoS-based EDCA and queueing extensions of 802.11e

• various propagation loss models including Nakagami, Rayleigh, Friis, LogDistance,
FixedRss, Random

• two propagation delay models, a distance-based and random model
• various rate control algorithms including Aarf, Arf, Cara, Onoe, Rraa, ConstantRate,

and Minstrel

• 802.11s (mesh), described in another chapter

The set of 802.11 models provided in ns-3 attempts to provide an accurate MAC-level
implementation of the 802.11 specification and to provide a not-so-slow PHY-level model
of the 802.11a specification.

The implementation is modular and provides roughly four levels of models:
• the PHY layer models

• the so-called MAC low models: they implement DCF and EDCAF
• the so-called MAC high models: they implement the MAC-level beacon generation,

probing, and association state machines, and
• a set of Rate control algorithms used by the MAC low models

There are presently six MAC high models, three for non-QoS MACs and three for QoS
MACs.
• non-QoS MACs:

1. a simple adhoc state machine that does not perform any kind of beacon
generation, probing, or association. This state machine is implemented by the
ns3::AdhocWifiMac class.

2. an active probing and association state machine that handles automatic
re-association whenever too many beacons are missed is implemented by the
ns3::NqstaWifiMac class.

3. an access point that generates periodic beacons, and that accepts every attempt
to associate. This AP state machine is implemented by the ns3::NqapWifiMac
class.

85ns-3.6 13 November 2009

Chapter 17: Wifi NetDevice ns-3 manual

• QoS MACs:

1. a simple adhoc state machine like above but also able to manage QoS traffic. This
state machine is implemented by ns3::QadhocWifiMac class.

2. a station state machine like above but also able to manage QoS traffic. Imple-
mented by ns3::QstaWifiMac.

3. a QoS access point state machine like above implemented by ns3::QapWifiMac.

With QoS MAC models is possible to work with traffic belonging to four different access
classes: AC VO for voice traffic, AC VI for video traffic, AC BE for best-effort traffic and
AC BK for background traffic. In order to determine MSDU’s access class, every packet
forwarded down to these MAC layers should be marked using ns3::QosTag in order to set
a TID (traffic id) for that packet otherwise it will be considered belonging to AC BE access
class.

The MAC low layer is split into three components:

1. ns3::MacLow which takes care of RTS/CTS/DATA/ACK transactions.

2. ns3::DcfManager and ns3::DcfState which implements the DCF and EDCAF func-
tions.

3. ns3::DcaTxop or ns3::EdcaTxopN which handle the packet queue, packet fragmenta-
tion, and packet retransmissions if they are needed. ns3::DcaTxop object is used by
non-QoS high MACs. ns3::EdcaTxopN is used by QoS high MACs and performs also
QoS operations like 802.11n MSDU aggregation.

There are also several rate control algorithms that can be used by the Mac low layer:

• ns3::ArfMacStations

• ns3::AArfMacStations

• ns3::IdealMacStations

• ns3::CrMacStations

• ns3::OnoeMacStations

• ns3::AmrrMacStations

The PHY layer implements a single model in the ns3::WifiPhy class: the physical
layer model implemented there is described fully in a paper entitled "Yet Another Network
Simulator". Validation results for 802.11b are available in this technical report.

In ns-3, nodes can have multiple WifiNetDevices on separate channels, and the WifiNet-
Device can coexist with other device types; this removes an architectural limitation found
in ns-2. Presently, however, there is no model for cross-channel interference or coupling.

The source code for the Wifi NetDevice lives in the directory src/devices/wifi.

86ns-3.6 13 November 2009

http://cutebugs.net/files/wns2-yans.pdf
http://cutebugs.net/files/wns2-yans.pdf
http://www.nsnam.org/~pei/80211b.pdf

Chapter 17: Wifi NetDevice ns-3 manual

Figure 17.1: Wifi NetDevice architecture.

17.2 Using the WifiNetDevice

The modularity provided by the implementation makes low-level configuration of the
WifiNetDevice powerful but complex. For this reason, we provide some helper classes to
perform common operations in a simple matter, and leverage the ns-3 attribute system to
allow users to control the parametrization of the underlying models.

Users who use the low-level ns-3 API and who wish to add a WifiNetDevice to their node
must create an instance of a WifiNetDevice, plus a number of constituent objects, and bind
them together appropriately (the WifiNetDevice is very modular in this regard, for future
extensibility). At the low-level API, this can be done with about 20 lines of code (see
ns3::WifiHelper::Install, and ns3::YansWifiPhyHelper::Create). They also must
create, at some point, a WifiChannel, which also contains a number of constituent objects
(see ns3::YansWifiChannelHelper::Create).

However, a few helpers are available for users to add these devices and channels with
only a few lines of code, if they are willing to use defaults, and the helpers provide addi-
tional API to allow the passing of attribute values to change default values. The scripts in
src/examples can be browsed to see how this is done.

87ns-3.6 13 November 2009

Chapter 17: Wifi NetDevice ns-3 manual

17.2.1 YansWifiChannelHelper

The YansWifiChannelHelper has an unusual name. Readers may wonder why it is named
this way. The reference is to the yans simulator, from which this model is taken. The helper
can be used to create a WifiChannel with a default PropagationLoss and PropagationDelay
model. Specifically, the default is a channel model with a propagation delay equal to a
constant, the speed of light, and a propagation loss based on a log distance model with a
reference loss of 46.6777 dB at reference distance of 1m.

Users will typically type code such as:
YansWifiChannelHelper wifiChannelHelper = YansWifiChannelHelper::Default ();

Ptr<WifiChannel> wifiChannel = wifiChannelHelper.Create ();

to get the defaults. Note the distinction above in creating a helper object vs. an actual
simulation object. In ns-3, helper objects (used at the helper API only) are created on the
stack (they could also be created with operator new and later deleted). However, the actual
ns-3 objects typically inherit from class ns3::Object and are assigned to a smart pointer.
See the chapter on Object model for a discussion of the ns-3 object model, if you are not
familiar with it.

Todo: Add notes about how to configure attributes with this helper API

17.2.2 YansWifiPhyHelper

Physical devices (base class ns3::Phy) connect to ns3::Channel models in ns-3. We need
to create Phy objects appropriate for the YansWifiChannel; here the YansWifiPhyHelper
will do the work.

The YansWifiPhyHelper class configures an object factory to create instances of a
YansWifiPhy and adds some other objects to it, including possibly a supplemental Er-
rorRateModel and a pointer to a MobilityModel. The user code is typically:
YansWifiPhyHelper wifiPhyHelper = YansWifiPhyHelper::Default ();
wifiPhyHelper.SetChannel (wifiChannel);

Note that we haven’t actually created any WifiPhy objects yet; we’ve just prepared the
YansWifiPhyHelper by telling it which channel it is connected to. The phy objects are
created in the next step.

17.2.3 NqosWifiMacHelper and QosWifiMacHelper

The ns3::NqosWifiMacHelper and ns3::QosWifiMacHelper configure an object factory to
create instances of a ns3::WifiMac. They are used to configure MAC parameters like type
of MAC, values of contention windows and so on. Setting up a non-QoS MAC layers the
object we use is ns3::NqosWifiMacHelper. For example the following user code configures
a non-QoS MAC sta and changes its default values for contention window and Aifsn:

NqosWifiMacHelper wifiMacHelper = NqosWifiMacHelper::Default ();

Ssid ssid = Ssid ("ns-3-ssid");

wifiMacHelper.SetType ("ns3::NqstaWifiMac", "Ssid", SsidValue (ssid),

"ActiveProbing", BooleanValue (false));

wifiMacHelper.SetDcaParameters ("MinCw", UintegerValue (20), "Aifsn",

UintegerValue (3));

Setting up a QoS MACs we use a ns3::QosWifiMacHelper instead. This object could
be also used to change default EDCA parameters, and to set a possible MSDU aggregator

88ns-3.6 13 November 2009

http://cutebugs.net/files/wns2-yans.pdf
Object model

Chapter 17: Wifi NetDevice ns-3 manual

for a particular access class in order to use 802.11n MSDU aggregation feature. A possible
user code:

QosWifiMacHelper wifiMacHelper = QosWifiMacHelper::Default ();

wifiMacHelper.SetType ("ns3::QapWifiMac",

"Ssid", SsidValue (ssid),

"BeaconGeneration", BooleanValue (true),

"BeaconInterval", TimeValue (Seconds (2.5)));

wifiMacHelper.SetMsduAggregatorForAc (AC_VO, "ns3::MsduStandardAggregator",

"MaxAmsduSize", UintegerValue (3839));

Call to QosWifiMacHelper::Default () is needed in order to set default EDCA parameters
properly for all access classes; otherwise we should set them one by one.

17.2.4 WifiHelper

We’re now ready to create WifiNetDevices. First, let’s create a WifiHelper with default
settings:
WifiHelper wifiHelper = WifiHelper::Default ();

What does this do? It sets the RemoteStationManager to ns3::ArfWifiManager. Now,
let’s use the wifiPhyHelper and wifiMacHelper created above to install WifiNetDevices on
a set of nodes in a NodeContainer "c":

NetDeviceContainer wifiContainer = WifiHelper::Install (wifiPhyHelper, wifiMacHelper, c);

This creates the WifiNetDevice which includes also a WifiRemoteStationManager, a
WifiMac, and a WifiPhy (connected to the matching WifiChannel).

There are many ns-3 Attributes that can be set on the above helpers to deviate from
the default behavior; the example scripts show how to do some of this reconfiguration.

17.2.5 AdHoc WifiNetDevice configuration

This is a typical example of how a user might configure an adhoc network.� �
To be completed
 	

17.2.6 Infrastructure (Access Point and clients) WifiNetDevice
configuration

This is a typical example of how a user might configure an access point and a set of clients.� �
To be completed
 	

17.3 The WifiChannel and WifiPhy models

The WifiChannel subclass can be used to connect together a set of ns3::WifiNetDevice
network interfaces. The class ns3::WifiPhy is the object within the WifiNetDevice that
receives bits from the channel. A WifiChannel contains a ns3::PropagationLossModel
and a ns3::PropagationDelayModel which can be overridden by the WifiChan-
nel::SetPropagationLossModel and the WifiChannel::SetPropagationDelayModel methods.
By default, no propagation models are set.

89ns-3.6 13 November 2009

Attributes

Chapter 17: Wifi NetDevice ns-3 manual

The WifiPhy models an 802.11a channel, in terms of frequency, modulation, and bit
rates, and interacts with the PropagationLossModel and PropagationDelayModel found in
the channel.

This section summarizes the description of the BER calculations found in the yans paper
taking into account the Forward Error Correction present in 802.11a and describes the
algorithm we implemented to decide whether or not a packet can be successfully received.
See "Yet Another Network Simulator" for more details.

The PHY layer can be in one of three states:

1. TX: the PHY is currently transmitting a signal on behalf of its associated MAC

2. RX: the PHY is synchronized on a signal and is waiting until it has received its last
bit to forward it to the MAC.

3. IDLE: the PHY is not in the TX or RX states.

When the first bit of a new packet is received while the PHY is not IDLE (that is, it is
already synchronized on the reception of another earlier packet or it is sending data itself),
the received packet is dropped. Otherwise, if the PHY is IDLE, we calculate the received
energy of the first bit of this new signal and compare it against our Energy Detection
threshold (as defined by the Clear Channel Assessment function mode 1). If the energy of
the packet k is higher, then the PHY moves to RX state and schedules an event when the
last bit of the packet is expected to be received. Otherwise, the PHY stays in IDLE state
and drops the packet.

The energy of the received signal is assumed to be zero outside of the reception interval
of packet k and is calculated from the transmission power with a path-loss propagation
model in the reception interval. where the path loss exponent, n, is chosen equal to 3, the
reference distance, d0 is choosen equal to 1.0m and the reference energy is based based on
a Friis propagation model.

When the last bit of the packet upon which the PHY is synchronized is received, we need
to calculate the probability that the packet is received with any error to decide whether or
not the packet on which we were synchronized could be successfully received or not: a ran-
dom number is drawn from a uniform distribution and is compared against the probability
of error.

To evaluate the probability of error, we start from the piecewise linear functions shown
in Figure Figure 17.2 and calculate the SNIR function.

90ns-3.6 13 November 2009

http://cutebugs.net/files/wns2-yans.pdf

Chapter 17: Wifi NetDevice ns-3 manual

Figure 17.2: SNIR function over time
From the SNIR function we can derive bit error rates for BPSK and QAM modulations.

Then, for each interval l where BER is constant, we define the upper bound of a probability
that an error is present in the chunk of bits located in the interval l for packet k. If
we assume an AWGN channel, binary convolutional coding (which is the case in 802.11a)
and hard-decision Viterbi decoding, the error rate is thus derived, and the packet error
probability for packet k can be computed..

17.3.1 WifiChannel configuration

WifiChannel models include both a PropagationDelayModel and a PropagationLossModel.
The following PropagationDelayModels are available:
• ConstantSpeedPropagationDelayModel
• RandomPropagationDelayModel

The following PropagationLossModels are available:
• RandomPropagationLossModel
• FriisPropagationLossModel
• LogDistancePropagationLossModel
• JakesPropagationLossModel
• CompositePropagationLossModel

17.4 The MAC model

The 802.11 Distributed Coordination Function is used to calculate when to grant access
to the transmission medium. While implementing the DCF would have been particularly
easy if we had used a recurring timer that expired every slot, we chose to use the method

91ns-3.6 13 November 2009

Chapter 17: Wifi NetDevice ns-3 manual

described in (missing reference here from Yans paper) where the backoff timer duration is
lazily calculated whenever needed since it is claimed to have much better performance than
the simpler recurring timer solution.

The higher-level MAC functions are implemented in a set of other C++ classes and deal
with:
• packet fragmentation and defragmentation,
• use of the rts/cts protocol,
• rate control algorithm,
• connection and disconnection to and from an Access Point,
• the MAC transmission queue,
• beacon generation,
• msdu aggregation,
• etc.

17.5 Wifi Attributes

The WifiNetDevice makes heavy use of the ns-3 Chapter 5 [Attributes], page 25 subsystem
for configuration and default value management. Presently, approximately 100 values are
stored in this system.

For instance, class ns-3::WifiMac exports these attributes:
• CtsTimeout: When this timeout expires, the RTS/CTS handshake has failed.
• AckTimeout: When this timeout expires, the DATA/ACK handshake has failed.
• Sifs: The value of the SIFS constant.
• EifsNoDifs: The value of EIFS-DIFS
• Slot: The duration of a Slot.
• Pifs: The value of the PIFS constant.
• MaxPropagationDelay: The maximum propagation delay. Unused for now.
• MaxMsduSize: The maximum size of an MSDU accepted by the MAC layer.This value

conforms to the specification.
• Ssid: The ssid we want to belong to.

17.6 Wifi Tracing

This needs revised/updating based on the latest Doxygen
ns-3 has a sophisticated tracing infrastructure that allows users to hook into existing

trace sources, or to define and export new ones.
Wifi-related trace sources that are available by default include:

• ns3::WifiNetDevice

• Rx: Received payload from the MAC layer.
• Tx: Send payload to the MAC layer.

• ns3::WifiPhy

92ns-3.6 13 November 2009

Chapter 17: Wifi NetDevice ns-3 manual

• State: The WifiPhy state
• RxOk: A packet has been received successfully.
• RxError: A packet has been received unsuccessfully.
• Tx: Packet transmission is starting.

Briefly, this means, for example, that a user can hook a processing function to the
"State" tracing hook above and be notified whenever the WifiPhy model changes state.

93ns-3.6 13 November 2009

Chapter 18: Mesh NetDevice ns-3 manual

18 Mesh NetDevice� �
Placeholder chapter
 	

The Mesh NetDevice based on 802.11s was added in ns-3.6. An overview presentation
by Kirill Andreev was published at the wns-3 workshop in 2009:
http://www.nsnam.org/wiki/index.php/Wns3-2009

95ns-3.6 13 November 2009

http://www.nsnam.org/wiki/index.php/Wns3-2009

Chapter 19: Bridge NetDevice ns-3 manual

19 Bridge NetDevice

� �
Placeholder chapter
 	

Some examples of the use of Bridge NetDevice can be found in examples/csma/ direc-
tory.

97ns-3.6 13 November 2009

Chapter 20: Emulation ns-3 manual

Part 3: Emulation

20 Emulation

ns-3 has been designed for integration into testbed and virtual machine environments. We
have addressed this need by providing two kinds of net devices. The first kind, which we call
an Emu NetDevice allows ns-3 simulations to send data on a “real” network. The second
kind, called a Tap NetDevice allows a “real” host to participate in an ns-3 simulation as
if it were one of the simulated nodes. An ns-3 simulation may be constructed with any
combination of simulated, Emu, or Tap devices.

One of the use-cases we want to support is that of a testbed. A concrete example of
an environment of this kind is the ORBIT testbed. ORBIT is a laboratory emulator/field
trial network arranged as a two dimensional grid of 400 802.11 radio nodes. We integrate
with ORBIT by using their “imaging” process to load and run ns-3 simulations on the
ORBIT array. We use our Emu NetDevices to drive the hardware in the testbed and we
can accumulate results either using the ns-3 tracing and logging functions, or the native
ORBIT data gathering techniques. See http://www.orbit-lab.org/ for details on the
ORBIT testbed.

A simulation of this kind is shown in the following figure:

Figure 20.1: Example Implementation of Testbed Emulation.
You can see that there are separate hosts, each running a subset of a “global” simulation.

Instead of an ns-3 channel connecting the hosts, we use real hardware provided by the
testbed. This allows ns-3 applications and protocol stacks attached to a simulation node to
communicate over real hardware.

99ns-3.6 13 November 2009

http://www.orbit-lab.org/

Chapter 20: Emulation ns-3 manual

We expect the primary use for this configuration will be to generate repeatable exper-
imental results in a real-world network environment that includes all of the ns-3 tracing,
logging, visualization and statistics gathering tools.

In what can be viewed as essentially an inverse configuration, we allow “real” machines
running native applications and protocol stacks to integrate with an ns-3 simulation. This
allows for the simulation of large networks connected to a real mahince, and also enables
virtualization. A simulation of this kind is shown in the following figure:

Figure 20.2: Implementation overview of emulated channel.

Here, you will see that there is a single host with a number of virtual machines running
on it. An ns-3 simulation is shown running in the virtual machine shown in the center
of the figure. This simulation has a number of nodes with associated ns-3 applications
and protocol stacks that are talking to an ns-3 channel through native simulated ns-3 net
devices.

There are also two virtual machines shown at the far left and far right of the figure. These
VMs are running native (Linux) applications and protocol stacks. The VM is connected
into the simulation by a Linux Tap net device. The user-mode handler for the Tap device is
instantiated in the simulation and attached to a proxy node that represents the native VM
in the simulation. These handlers allow the Tap devices on the native VMs to behave as if
they were ns-3 net devices in the simulation VM. This, in turn, allows the native software
and protocol suites in the native VMs to believe that they are connected to the simulated
ns-3 channel.

We expect the typical use case for this environment will be to analyze the behavior of
native applications and protocol suites in the presence of large simulated ns-3 networks.

100ns-3.6 13 November 2009

Chapter 21: Emu NetDevice ns-3 manual

21 Emu NetDevice

21.1 Behavior

The Emu net device allows a simulation node to send and receive packets over a real network.
The emulated net device relies on a specified interface being in promiscuous mode. It opens
a raw socket and binds to that interface. We perform MAC spoofing to separate simulation
network traffic from other network traffic that may be flowing to and from the host.

One can use the Emu net device in a testbed situation where the host on which the
simulation is running has a specific interface of interest which drives the testbed hardware.
You would also need to set this specific interface into promiscuous mode and provide an
appropriate device name to the ns-3 emulated net device. An example of this environment
is the ORBIT testbed as described above.

The Emu net device only works if the underlying interface is up and in promiscuous mode.
Packets will be sent out over the device, but we use MAC spoofing. The MAC addresses
will be generated (by default) using the Organizationally Unique Identifier (OUI) 00:00:00
as a base. This vendor code is not assigned to any organization and so should not conflict
with any real hardware.

It is always up to the user to determine that using these MAC addresses is okay on
your network and won’t conflict with anything else (including another simulation using Emu
devices) on your network. If you are using the emulated net device in separate simulations
you must consider global MAC address assignment issues and ensure that MAC addresses
are unique across all simulations. The emulated net device respects the MAC address
provided in the SetAddress method so you can do this manually. For larger simulations,
you may want to set the OUI in the MAC address allocation function.

IP addresses corresponding to the emulated net devices are the addresses generated in
the simulation, which are generated in the usual way via helper functions. Since we are
using MAC spoofing, there will not be a conflict between ns-3 network stacks and any native
network stacks.

The emulated net device comes with a helper function as all ns-3 devices do. One unique
aspect is that there is no channel associated with the underlying medium. We really have
no idea what this external medium is, and so have not made an effort to model it abstractly.
The primary thing to be aware of is the implication this has for IPv4 global routing. The
global router module attempts to walk the channels looking for adjacent networks. Since
there is no channel, the global router will be unable to do this and you must then use a
dynamic routing protocol such as OLSR to include routing in Emu-based networks.

21.2 Usage

Any mixing of ns-3 objects with real objects will typically require that ns-3 compute check-
sums in its protocols. By default, checksums are not computed by ns-3. To enable check-
sums (e.g. UDP, TCP, IP), users must set the attribute ChecksumEnabled to true, such as
follows:

GlobalValue::Bind ("ChecksumEnabled", BooleanValue (true));

101ns-3.6 13 November 2009

Chapter 21: Emu NetDevice ns-3 manual

The usage of the Emu net device is straightforward once the network of simulations has
been configured. Since most of the work involved in working with this device is in network
configuration before even starting a simulation, you may want to take a moment to review a
couple of HOWTO pages on the ns-3 wiki that describe how to set up a virtual test network
using VMware and how to run a set of example (client server) simulations that use Emu net
devices.
• http://www.nsnam.org/wiki/index.php/HOWTO_use_VMware_to_set_up_virtual_

networks_(Windows)

• http://www.nsnam.org/wiki/index.php/HOWTO_use_ns-3_scripts_to_drive_
real_hardware_(experimental)

Once you are over the configuration hurdle, the script changes required to use an Emu
device are trivial. The main structural difference is that you will need to create an ns-3
simulation script for each node. In the case of the HOWTOs above, there is one client script
and one server script. The only “challenge” is to get the addresses set correctly.

Just as with all other ns-3 net devices, we provide a helper class for the Emu net device.
The following code snippet illustrates how one would declare an EmuHelper and use it to
set the “DeviceName” attribute to “eth1” and install Emu devices on a group of nodes. You
would do this on both the client and server side in the case of the HOWTO seen above.
EmuHelper emu;
emu.SetAttribute ("DeviceName", StringValue ("eth1"));
NetDeviceContainer d = emu.Install (n);

The only other change that may be required is to make sure that the address spaces
(MAC and IP) on the client and server simulations are compatible. First the MAC address
is set to a unique well-known value in both places (illustrated here for one side).
//
// We’ve got the devices in place. Since we’re using MAC address
// spoofing under the sheets, we need to make sure that the MAC addresses
// we have assigned to our devices are unique. Ns-3 will happily
// automatically assign the same MAC address to the devices in both halves
// of our two-script pair, so let’s go ahead and just manually change them
// to something we ensure is unique.
//
Ptr<NetDevice> nd = d.Get (0);
Ptr<EmuNetDevice> ed = nd->GetObject<EmuNetDevice> ();
ed->SetAddress ("00:00:00:00:00:02");

And then the IP address of the client or server is set in the usual way using helpers.
//
// We’ve got the "hardware" in place. Now we need to add IP addresses.
// This is the server half of a two-script pair. We need to make sure
// that the addressing in both of these applications is consistent, so
// we use provide an initial address in both cases. Here, the client
// will reside on one machine running ns-3 with one node having ns-3
// with IP address "10.1.1.2" and talk to a server script running in
// another ns-3 on another computer that has an ns-3 node with IP

102ns-3.6 13 November 2009

http://www.nsnam.org/wiki/index.php/HOWTO_use_VMware_to_set_up_virtual_networks_(Windows)
http://www.nsnam.org/wiki/index.php/HOWTO_use_VMware_to_set_up_virtual_networks_(Windows)
http://www.nsnam.org/wiki/index.php/HOWTO_use_ns-3_scripts_to_drive_real_hardware_(experimental)
http://www.nsnam.org/wiki/index.php/HOWTO_use_ns-3_scripts_to_drive_real_hardware_(experimental)

Chapter 21: Emu NetDevice ns-3 manual

// address "10.1.1.3"
//
Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0", "0.0.0.2");
Ipv4InterfaceContainer i = ipv4.Assign (d);

You will use application helpers to generate traffic exactly as you do in any ns-3 simu-
lation script. Note that the server address shown below in a snippet from the client, must
correspond to the IP address assigned to the server node similarly to the snippet above.
uint32_t packetSize = 1024;
uint32_t maxPacketCount = 2000;
Time interPacketInterval = Seconds (0.001);
UdpEchoClientHelper client ("10.1.1.3", 9);
client.SetAttribute ("MaxPackets", UintegerValue (maxPacketCount));
client.SetAttribute ("Interval", TimeValue (interPacketInterval));
client.SetAttribute ("PacketSize", UintegerValue (packetSize));
ApplicationContainer apps = client.Install (n.Get (0));
apps.Start (Seconds (1.0));
apps.Stop (Seconds (2.0));

The Emu net device and helper provide access to ASCII and pcap tracing functionality
just as other ns-3 net devices to. You enable tracing similarly to these other net devices:
EmuHelper::EnablePcapAll ("emu-udp-echo-client");

To see an example of a client script using the Emu net device, see examples/emu-
udp-echo-client.cc and examples/emu-udp-echo-server.cc in the repository
http://code.nsnam.org/craigdo/ns-3-emu/.

21.3 Implementation

Perhaps the most unusual part of the Emu and Tap device implementation relates to the
requirement for executing some of the code with super-user permissions. Rather than force
the user to execute the entire simulation as root, we provide a small “creator” program that
runs as root and does any required high-permission sockets work.

We do a similar thing for both the Emu and the Tap devices. The high-level view is that
the CreateSocket method creates a local interprocess (Unix) socket, forks, and executes
the small creation program. The small program, which runs as suid root, creates a raw
socket and sends back the raw socket file descriptor over the Unix socket that is passed to it
as a parameter. The raw socket is passed as a control message (sometimes called ancillary
data) of type SCM RIGHTS.

The Emu net device uses the ns-3 threading and multithreaded real-time scheduler ex-
tensions. The interesting work in the Emu device is done when the net device is started
(EmuNetDevice::StartDevice ()). An attribute (“Start”) provides a simulation time at
which to spin up the net device. At this specified time (which defaults to t=0), the socket
creation function is called and executes as described above. You may also specify a time at
which to stop the device using the “Stop” attribute.

Once the (promiscuous mode) socket is created, we bind it to an interface name also
provided as an attribute (“DeviceName”) that is stored internally as m_deviceName:

103ns-3.6 13 November 2009

http://code.nsnam.org/craigdo/ns-3-emu/

Chapter 21: Emu NetDevice ns-3 manual

struct ifreq ifr;
bzero (&ifr, sizeof(ifr));
strncpy ((char *)ifr.ifr_name, m_deviceName.c_str (), IFNAMSIZ);

int32_t rc = ioctl (m_sock, SIOCGIFINDEX, &ifr);

struct sockaddr_ll ll;
bzero (&ll, sizeof(ll));

ll.sll_family = AF_PACKET;
ll.sll_ifindex = m_sll_ifindex;
ll.sll_protocol = htons(ETH_P_ALL);

rc = bind (m_sock, (struct sockaddr *)&ll, sizeof (ll));

After the promiscuous raw socket is set up, a separate thread is spawned to do reads
from that socket and the link state is set to Up.
m_readThread = Create<SystemThread> (

MakeCallback (&EmuNetDevice::ReadThread, this));
m_readThread->Start ();

NotifyLinkUp ();

The EmuNetDevice::ReadThread function basically just sits in an infinite loop reading
from the promiscuous mode raw socket and scheduling packet receptions using the real-time
simulator extensions.
for (;;)

{
...

len = recvfrom (m_sock, buf, bufferSize, 0, (struct sockaddr *)&addr,
&addrSize);

...

DynamicCast<RealtimeSimulatorImpl> (Simulator::GetImplementation ())->
ScheduleRealtimeNow (
MakeEvent (&EmuNetDevice::ForwardUp, this, buf, len));

...
}

The line starting with our templated DynamicCast function probably deserves
a comment. It gains access to the simulator implementation object using the
Simulator::GetImplementation method and then casts to the real-time simulator
implementation to use the real-time schedule method ScheduleRealtimeNow. This
function will cause a handler for the newly received packet to be scheduled for execution
at the current real time clock value. This will, in turn cause the simulation clock to be

104ns-3.6 13 November 2009

Chapter 21: Emu NetDevice ns-3 manual

advanced to that real time value when the scheduled event (EmuNetDevice::ForwardUp)
is fired.

The ForwardUp function operates as most other similar ns-3 net device methods do. The
packet is first filtered based on the destination address. In the case of the Emu device, the
MAC destination address will be the address of the Emu device and not the hardware address
of the real device. Headers are then stripped off and the trace hooks are hit. Finally, the
packet is passed up the ns-3 protocol stack using the receive callback function of the net
device.

Sending a packet is equally straightforward as shown below. The first thing we do is to
add the ethernet header and trailer to the ns-3 Packet we are sending. The source address
corresponds to the address of the Emu device and not the underlying native device MAC
address. This is where the MAC address spoofing is done. The trailer is added and we
enqueue and dequeue the packet from the net device queue to hit the trace hooks.
header.SetSource (source);
header.SetDestination (destination);
header.SetLengthType (packet->GetSize ());
packet->AddHeader (header);

EthernetTrailer trailer;
trailer.CalcFcs (packet);
packet->AddTrailer (trailer);

m_queue->Enqueue (packet);
packet = m_queue->Dequeue ();

struct sockaddr_ll ll;
bzero (&ll, sizeof (ll));

ll.sll_family = AF_PACKET;
ll.sll_ifindex = m_sll_ifindex;
ll.sll_protocol = htons(ETH_P_ALL);

rc = sendto (m_sock, packet->PeekData (), packet->GetSize (), 0,
reinterpret_cast<struct sockaddr *> (&ll), sizeof (ll));

Finally, we simply send the packet to the raw socket which puts it out on the real
network.

105ns-3.6 13 November 2009

Chapter 22: Tap NetDevice ns-3 manual

22 Tap NetDevice

� �
Placeholder chapter
 	

The Tap NetDevice can be used to allow a host system or virtual machines to interact
with a simulation. See
examples/tap/tap-wifi-dumbbell.cc for an example.

107ns-3.6 13 November 2009

Chapter 23: Sockets APIs ns-3 manual

Part 4: Internet Models

23 Sockets APIs

The sockets API is a long-standing API used by user-space applications to access network
services in the kernel. A “socket” is an abstraction, like a Unix file handle, that allows
applications to connect to other Internet hosts and exchange reliable byte streams and
unreliable datagrams, among other services.

ns-3 provides two types of sockets APIs, and it is important to understand the differences
between them. The first is a native ns-3 API, while the second uses the services of the
native API to provide a POSIX-like API as part of an overall application process. Both
APIs strive to be close to the typical sockets API that application writers on Unix systems
are accustomed to, but the POSIX variant is much closer to a real system’s sockets API.

23.1 ns-3 sockets API

The native sockets API for ns-3 provides an interface to various types of transport protocols
(TCP, UDP) as well as to packet sockets and, in the future, Netlink-like sockets. However,
users are cautioned to understand that the semantics are not the exact same as one finds in
a real system (for an API which is very much aligned to real systems, see the next section).

class ns3::Socket is defined in src/node/socket.cc,h. Readers will note that many
public member functions are aligned with real sockets function calls, and all other things
being equal, we have tried to align with a Posix sockets API. However, note that:

• ns-3 applications handle a smart pointer to a Socket object, not a file descriptor;

• there is no notion of synchronous API or a “blocking” API; in fact, the model for
interaction between application and socket is one of asynchronous I/O, which is not
typically found in real systems (more on this below);

• the C-style socket address structures are not used;

• the API is not a complete sockets API, such as supporting all socket options or all
function variants;

• many calls use ns3::Packet class to transfer data between application and socket.
This may seem peculiar to pass “Packets” across a stream socket API, but think of
these packets as just fancy byte buffers at this level (more on this also below).

109ns-3.6 13 November 2009

http://en.wikipedia.org/wiki/Berkeley_sockets
http://en.wikipedia.org/wiki/POSIX

Chapter 23: Sockets APIs ns-3 manual

23.1.1 Basic operation and calls

Figure 23.1: Implementation overview of native sockets API

23.1.1.1 Creating sockets

An application that wants to use sockets must first create one. On real systems using a
C-based API, this is accomplished by calling socket():

int
socket(int domain, int type, int protocol);

which creates a socket in the system and returns an integer descriptor.

In ns-3, we have no equivalent of a system call at the lower layers, so we adopt the
following model. There are certain factory objects that can create sockets. Each factory
is capable of creating one type of socket, and if sockets of a particular type are able to be
created on a given node, then a factory that can create such sockets must be aggregated to
the Node.

static Ptr<Socket> CreateSocket (Ptr<Node> node, TypeId tid);

Examples of TypeIds to pass to this method are TcpSocketFactory,
PacketSocketFactory, and UdpSocketFactory.

This method returns a smart pointer to a Socket object. Here is an example:
Ptr<Node> n0;

// Do some stuff to build up the Node’s internet stack

Ptr<Socket> localSocket = Socket::CreateSocket (n0, TcpSocketFactory::GetTypeId ());

In some ns-3 code, sockets will not be explicitly created by user’s main programs, if
an ns-3 application does it. For instance, for class ns3::OnOffApplication, the function
StartApplication() performs the socket creation, and the application holds the socket
pointer.

110ns-3.6 13 November 2009

Chapter 23: Sockets APIs ns-3 manual

23.1.1.2 Using sockets

Below is a typical sequence of socket calls for a TCP client in a real implementation:
• sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

• bind(sock, ...);

• connect(sock, ...);

• send(sock, ...);

• recv(sock, ...);

• close(sock);

There are analogs to all of these calls in ns-3, but we will focus on two aspects here.
First, most usage of sockets in real systems requires a way to manage I/O between the
application and kernel. These models include blocking sockets, signal-based I/O, and non-
blocking sockets with polling. In ns-3, we make use of the callback mechanisms to support
a fourth mode, which is analogous to POSIX asynchronous I/O.

In this model, on the sending side, if the send() call were to fail because of insufficient
buffers, the application suspends the sending of more data until a function registered at the
SetSendCallback() callback is invoked. An application can also ask the socket how much
space is available by calling GetTxAvailable (). A typical sequence of events for sending
data (ignoring connection setup) might be:
• SetSendCallback (MakeCallback(&HandleSendCallback));

• Send ();

• Send ();

• ...
• // Send fails because buffer is full

• (wait until HandleSendCallback() is called)
• (HandleSendCallback() is called by socket, since space now available)
• Send (); // Start sending again

Similarly, on the receive side, the socket user does not block on a call to recv(). Instead,
the application sets a callback with SetRecvCallback () in which the socket will notify the
application when (and how much) there is data to be read, and the application then calls
Recv() to read the data until no more can be read.

23.1.2 Packet vs. buffer variants

There are two basic variants of Send() and Recv() supported:
virtual int Send (Ptr<Packet> p) = 0;
int Send (const uint8_t* buf, uint32_t size);

Ptr<Packet> Recv (void);
int Recv (uint8_t* buf, uint32_t size);

The non-Packet variants are provided for legacy API reasons. When calling the raw
buffer variant of Send(), the buffer is immediately written into a Packet and the Send
(Ptr<Packet> p) is invoked.

111ns-3.6 13 November 2009

Chapter 23: Sockets APIs ns-3 manual

Users may find it semantically odd to pass a Packet to a stream socket such as TCP.
However, do not let the name bother you; think of ns3::Packet to be a fancy byte buffer.
There are a few reasons why the Packet variants are more likely to be preferred in ns-3:
• Users can use the Tags facility of packets to, for example, encode a flow ID or other

helper data at the application layer.
• Users can exploit the copy-on-write implementation to avoid memory copies (on the

receive side, the conversion back to a uint8_t* buf may sometimes incur an additional
copy).

• Use of Packet is more aligned with the rest of the ns-3 API

23.1.3 Sending dummy data

Sometimes, users want the simulator to just pretend that there is an actual data payload
in the packet (e.g. to calculate transmission delay) but do not want to actually produce
or consume the data. This is straightforward to support in ns-3; have applications call
Create<Packet> (size); instead of Create<Packet> (buffer, size);. Similarly, passing
in a zero to the pointer argument in the raw buffer variants has the same effect. Note that, if
some subsequent code tries to read the Packet data buffer, the fake buffer will be converted
to a real (zeroed) buffer on the spot, and the efficiency will be lost there.

23.1.4 Socket options

to be completed

23.1.5 Socket errno

to be completed

23.1.6 Example programs

to be completed

23.2 POSIX-like sockets API� �
Under development in the http://code.nsnam.org/mathieu/ns-3-simu repository.
 	

112ns-3.6 13 November 2009

Chapter 24: Internet Stack ns-3 manual

24 Internet Stack

24.1 Internet stack aggregation

A bare class Node is not very useful as-is; other objects must be aggregated to it to provide
useful node functionality.

The ns-3 source code directory src/internet-stack provides implementation of
TCP/IPv4- and IPv6-related components. These include IPv4, ARP, UDP, TCP, IPv6,
Neighbor Discovery, and other related protocols.

Internet Nodes are not subclasses of class Node; they are simply Nodes that have had a
bunch of IPv4-related objects aggregated to them. They can be put together by hand, or
via a helper function InternetStackHelper::Install () which does the following to all
nodes passed in as arguments:

void

InternetStackHelper::Install (Ptr<Node> node) const

if (node->GetObject<Ipv4> () != 0)

NS_FATAL_ERROR ("InternetStackHelper::Install(): Aggregating "

"an InternetStack to a node with an existing Ipv4 object");

return;

CreateAndAggregateObjectFromTypeId (node, "ns3::ArpL3Protocol");

CreateAndAggregateObjectFromTypeId (node, "ns3::Ipv4L3Protocol");

CreateAndAggregateObjectFromTypeId (node, "ns3::Icmpv4L4Protocol");

CreateAndAggregateObjectFromTypeId (node, "ns3::UdpL4Protocol");

node->AggregateObject (m_tcpFactory.Create<Object> ());

Ptr<PacketSocketFactory> factory = CreateObject<PacketSocketFactory> ();

node->AggregateObject (factory);

// Set routing

Ptr<Ipv4> ipv4 = node->GetObject<Ipv4> ();

Ptr<Ipv4RoutingProtocol> ipv4Routing = m_routing->Create (node);

ipv4->SetRoutingProtocol (ipv4Routing);

Where multiple implementations exist in ns-3 (TCP, IP routing), these objects are added
by a factory object (TCP) or by a routing helper (m routing).

Note that the routing protocol is configured and set outside this function. By default,
the following protocols are added to Ipv4:
InternetStackHelper::InternetStackHelper ()
{
SetTcp ("ns3::TcpL4Protocol");
static Ipv4StaticRoutingHelper staticRouting;
static Ipv4GlobalRoutingHelper globalRouting;
static Ipv4ListRoutingHelper listRouting;
listRouting.Add (staticRouting, 0);
listRouting.Add (globalRouting, -10);
SetRoutingHelper (listRouting);

}

113ns-3.6 13 November 2009

Chapter 24: Internet Stack ns-3 manual

By default, IPv4 and IPv6 are enabled.

24.1.1 Internet Node structure

An IPv4-capable Node (an ns-3 Node augmented by aggregation to have one or more IP
stacks) has the following internal structure.

24.1.1.1 Layer-3 protocols

At the lowest layer, sitting above the NetDevices, are the "layer 3" protocols, including
IPv4, IPv6 (in the future), and ARP. The class Ipv4L3Protocol is an implementation
class whose public interface is typically class Ipv4 (found in src/node directory), but the
Ipv4L3Protocol public API is also used internally in the src/internet-stack directory at
present.

In class Ipv4L3Protocol, one method described below is Receive ():
/**

* Lower layer calls this method after calling L3Demux::Lookup

* The ARP subclass needs to know from which NetDevice this

* packet is coming to:

* - implement a per-NetDevice ARP cache

* - send back arp replies on the right device

*/

void Receive(Ptr<NetDevice> device, Ptr<const Packet> p, uint16_t protocol,

const Address &from, const Address &to, NetDevice::PacketType packetType);

First, note that the Receive () function has a matching signature to the ReceiveCallback
in the class Node. This function pointer is inserted into the Node’s protocol handler when
AddInterface () is called. The actual registration is done with a statement such as: follows:

RegisterProtocolHandler (MakeCallback (&Ipv4Protocol::Receive, ipv4),
Ipv4L3Protocol::PROT_NUMBER, 0);

The Ipv4L3Protocol object is aggregated to the Node; there is only one such
Ipv4L3Protocol object. Higher-layer protocols that have a packet to send down to the
Ipv4L3Protocol object can call GetObject<Ipv4L3Protocol> () to obtain a pointer, as
follows:

Ptr<Ipv4L3Protocol> ipv4 = m_node->GetObject<Ipv4L3Protocol> ();
if (ipv4 != 0)

{
ipv4->Send (packet, saddr, daddr, PROT_NUMBER);

}

This class nicely demonstrates two techniques we exploit in ns-3 to bind objects together:
callbacks, and object aggregation.

Once IPv4 routing has determined that a packet is for the local node, it forwards it up
the stack. This is done with the following function:

void

Ipv4L3Protocol::LocalDeliver (Ptr<const Packet> packet, Ipv4Header const&ip, uint32_t iif)

The first step is to find the right Ipv4L4Protocol object , based on IP protocol number.
For instance, TCP is registered in the demux as protocol number 6. Finally, the Receive()
function on the Ipv4L4Protocol (such as TcpL4Protocol::Receive is called.

114ns-3.6 13 November 2009

Chapter 24: Internet Stack ns-3 manual

We have not yet introduced the class Ipv4Interface. Basically, each NetDevice is paired
with an IPv4 representation of such device. In Linux, this class Ipv4Interface roughly
corresponds to the struct in_device; the main purpose is to provide address-family spe-
cific information (addresses) about an interface.

The IPv6 implementation follows a similar architecture.

24.1.1.2 Layer-4 protocols and sockets

We next describe how the transport protocols, sockets, and applications tie together. In
summary, each transport protocol implementation is a socket factory. An application that
needs a new socket

For instance, to create a UDP socket, an application would use a code snippet such as
the following:

Ptr<Udp> udpSocketFactory = GetNode ()->GetObject<Udp> ();
Ptr<Socket> m_socket = socketFactory->CreateSocket ();
m_socket->Bind (m_local_address);
...

The above will query the node to get a pointer to its UDP socket factory, will create one
such socket, and will use the socket with an API similar to the C-based sockets API, such
as Connect () and Send (). See the chapter on ns-3 sockets for more information.

We have described so far a socket factory (e.g. class Udp) and a socket, which may
be specialized (e.g., class UdpSocket). There are a few more key objects that relate to
the specialized task of demultiplexing a packet to one or more receiving sockets. The
key object in this task is class Ipv4EndPointDemux. This demultiplexer stores objects of
class Ipv4EndPoint. This class holds the addressing/port tuple (local port, local address,
destination port, destination address) associated with the socket, and a receive callback.
This receive callback has a receive function registered by the socket. The Lookup () function
to Ipv4EndPointDemux returns a list of Ipv4EndPoint objects (there may be a list since
more than one socket may match the packet). The layer-4 protocol copies the packet to
each Ipv4EndPoint and calls its ForwardUp () method, which then calls the Receive ()
function registered by the socket.

An issue that arises when working with the sockets API on real systems is the need to
manage the reading from a socket, using some type of I/O (e.g., blocking, non-blocking,
asynchronous, ...). ns-3 implements an asynchronous model for socket I/O; the application
sets a callback to be notified of received data ready to be read, and the callback is invoked
by the transport protocol when data is available. This callback is specified as follows:
void Socket::SetRecvCallback (Callback<void, Ptr<Socket>,

Ptr<Packet>, const Address&> receivedData);

The data being received is conveyed in the Packet data buffer. An example usage is in
class PacketSink:
m_socket->SetRecvCallback (MakeCallback(&PacketSink::HandleRead, this));

To summarize, internally, the UDP implementation is organized as follows:
• a UdpImpl class that implements the UDP socket factory functionality
• a UdpL4Protocol class that implements the protocol logic that is socket-independent

115ns-3.6 13 November 2009

Chapter 24: Internet Stack ns-3 manual

• a UdpSocketImpl class that implements socket-specific aspects of UDP

• a class called Ipv4EndPoint that stores the addressing tuple (local port, local address,
destination port, destination address) associated with the socket, and a receive callback
for the socket.

24.1.2 Ipv4-capable node interfaces

Many of the implementation details, or internal objects themselves, of Ipv4-capable Node
objects are not exposed at the simulator public API. This allows for different implementa-
tions; for instance, replacing the native ns-3 models with ported TCP/IP stack code.

The C++ public APIs of all of these objects is found in the src/node directory, including
principally:

• socket.h

• tcp.h

• udp.h

• ipv4.h

These are typically base class objects that implement the default values used in the
implementation, implement access methods to get/set state variables, host attributes, and
implement publicly-available methods exposed to clients such as CreateSocket.

24.1.3 Example path of a packet

These two figures show an example stack trace of how packets flow through the Internet
Node objects.

Figure 24.1: Send path of a packet.

116ns-3.6 13 November 2009

Chapter 24: Internet Stack ns-3 manual

Figure 24.2: Receive path of a packet.

117ns-3.6 13 November 2009

Chapter 25: IPv4 ns-3 manual

25 IPv4� �
Placeholder chapter
 	

119ns-3.6 13 November 2009

Chapter 26: IPv6 ns-3 manual

26 IPv6� �
Placeholder chapter
 	

IPv6 models are being added to ns-3. A paper on the IPv6 models was published in
WNS2 2008:
http://lsiit.u-strasbg.fr/Publications/2008/VMM08/

121ns-3.6 13 November 2009

http://lsiit.u-strasbg.fr/Publications/2008/VMM08/

Chapter 27: Routing overview ns-3 manual

27 Routing overview

ns-3 is intended to support traditional routing approaches and protocols, support ports
of open source routing implementations, and facilitate research into unorthodox routing
techniques. The overall routing architecture is described below in Section 27.1 [Routing ar-
chitecture], page 123. Users who wish to just read about how to configure global routing for
wired topologies can read Section 27.2 [Global centralized routing], page 124. Unicast rout-
ing protocols are described in Section 27.3 [Unicast routing], page 126. Multicast routing
is documented in Section 27.4 [Multicast routing], page 128.

27.1 Routing architecture

Figure 27.1: Overview of routing

Figure 27.1 shows the overall routing architecture for Ipv4. The key objects are
Ipv4L3Protocol, Ipv4RoutingProtocol(s) (a class to which all routing/forwarding has been
delegated from Ipv4L3Protocol), and Ipv4Route(s).

Ipv4L3Protocol must have at least one Ipv4RoutingProtocol added to it at simulation
setup time. This is done explicitly by calling Ipv4::SetRoutingProtocol ().

The abstract base class Ipv4RoutingProtocol () declares a minimal interface, consisting
of two methods: RouteOutput () and RouteInput (). For packets traveling outbound from
a host, the transport protocol will query Ipv4 for the Ipv4RoutingProtocol object interface,
and will request a route via Ipv4RoutingProtocol::RouteOutput (). A Ptr to Ipv4Route
object is returned. This is analagous to a dst cache entry in Linux. The Ipv4Route is

123ns-3.6 13 November 2009

Chapter 27: Routing overview ns-3 manual

carried down to the Ipv4L3Protocol to avoid a second lookup there. However, some cases
(e.g. Ipv4 raw sockets) will require a call to RouteOutput() directly from Ipv4L3Protocol.

For packets received inbound for forwarding or delivery, the following steps occur.
Ipv4L3Protocol::Receive() calls Ipv4RoutingProtocol::RouteInput(). This passes the
packet ownership to the Ipv4RoutingProtocol object. There are four callbacks associated
with this call:
• LocalDeliver
• UnicastForward
• MulticastForward
• Error

The Ipv4RoutingProtocol must eventually call one of these callbacks for each packet that
it takes responsibility for. This is basically how the input routing process works in Linux.

Figure 27.2: Ipv4Routing specialization
This overall architecture is designed to support different routing approaches, including

(in the future) a Linux-like policy-based routing implementation, proactive and on-demand
routing protocols, and simple routing protocols for when the simulation user does not really
care about routing.

Figure 27.2 illustrates how multiple routing protocols derive from this base class. A
class Ipv4ListRouting (implementation class Ipv4ListRoutingImpl) provides the existing list
routing approach in ns-3. Its API is the same as base class Ipv4Routing except for the abil-
ity to add multiple prioritized routing protocols (Ipv4ListRouting::AddRoutingProtocol(),
Ipv4ListRouting::GetRoutingProtocol()).

The details of these routing protocols are described below in Section 27.3 [Unicast rout-
ing], page 126. For now, we will first start with a basic unicast routing capability that is
intended to globally build routing tables at simulation time t=0 for simulation users who
do not care about dynamic routing.

27.2 Global centralized routing

Global centralized routing is sometimes called ”God” routing; it is a special implementation
that walks the simulation topology and runs a shortest path algorithm, and populates each

124ns-3.6 13 November 2009

Chapter 27: Routing overview ns-3 manual

node’s routing tables. No actual protocol overhead (on the simulated links) is incurred with
this approach. It does have a few constraints:
• Wired only: It is not intended for use in wireless networks.
• Unicast only: It does not do multicast.
• Scalability: Some users of this on large topologies (e.g. 1000 nodes) have noticed that

the current implementation is not very scalable. The global centralized routing will be
modified in the future to reduce computations and runtime performance.

Presently, global centralized IPv4 unicast routing over both point-to-point and shared
(CSMA) links is supported.

By default, when using the ns-3 helper API and the default InternetStackHelper, global
routing capability will be added to the node, and global routing will be inserted as a
routing protocol with lower priority than the static routes (i.e., users can insert routes via
Ipv4StaticRouting API and they will take precedence over routes found by global routing).

27.2.1 Global Unicast Routing API

The public API is very minimal. User scripts include the following:
#include "ns3/helper-module.h"

If the default InternetStackHelper is used, then an instance of global routing will be
aggregated to each node. After IP addresses are configured, the following function call
will cause all of the nodes that have an Ipv4 interface to receive forwarding tables entered
automatically by the GlobalRouteManager:
Ipv4GlobalRoutingHelper::PopulateRoutingTables ();

Note: A reminder that the wifi NetDevice will work but does not take any wireless effects
into account. For wireless, we recommend OLSR dynamic routing described below.

It is possible to call this function again in the midst of a simulation using the following
additional public function:
Ipv4GlobalRoutingHelper::RecomputeRoutingTables ();

which flushes the old tables, queries the nodes for new interface information, and rebuilds
the routes.

For instance, this scheduling call will cause the tables to be rebuilt at time 5 seconds:
Simulator::Schedule (Seconds (5),

&Ipv4GlobalRoutingHelper::RecomputeRoutingTables);

27.2.2 Global Routing Implementation

This section is for those readers who care about how this is implemented. A singleton object
(GlobalRouteManager) is responsible for populating the static routes on each node, using
the public Ipv4 API of that node. It queries each node in the topology for a "globalRouter"
interface. If found, it uses the API of that interface to obtain a "link state advertisement
(LSA)" for the router. Link State Advertisements are used in OSPF routing, and we follow
their formatting.

The GlobalRouteManager populates a link state database with LSAs gathered from the
entire topology. Then, for each router in the topology, the GlobalRouteManager executes

125ns-3.6 13 November 2009

Chapter 27: Routing overview ns-3 manual

the OSPF shortest path first (SPF) computation on the database, and populates the routing
tables on each node.

The quagga (http://www.quagga.net) OSPF implementation was used as the basis for
the routing computation logic. One benefit of following an existing OSPF SPF implemen-
tation is that OSPF already has defined link state advertisements for all common types of
network links:
• point-to-point (serial links)
• point-to-multipoint (Frame Relay, ad hoc wireless)
• non-broadcast multiple access (ATM)
• broadcast (Ethernet)

Therefore, we think that enabling these other link types will be more straightforward
now that the underlying OSPF SPF framework is in place.

Presently, we can handle IPv4 point-to-point, numbered links, as well as shared broadcast
(CSMA) links, and we do not do equal-cost multipath.

The GlobalRouteManager first walks the list of nodes and aggregates a GlobalRouter
interface to each one as follows:
typedef std::vector < Ptr<Node> >::iterator Iterator;
for (Iterator i = NodeList::Begin (); i != NodeList::End (); i++)

{
Ptr<Node> node = *i;
Ptr<GlobalRouter> globalRouter = CreateObject<GlobalRouter> (node);
node->AggregateObject (globalRouter);

}

This interface is later queried and used to generate a Link State Advertisement for each
router, and this link state database is fed into the OSPF shortest path computation logic.
The Ipv4 API is finally used to populate the routes themselves.

27.3 Unicast routing

There are presently five unicast routing protocols defined for IPv4 and two for IPv6:
• class Ipv4StaticRouting (covering both unicast and multicast)
• IPv4 Optimized Link State Routing (a MANET protocol defined in RFC 3626)
• class Ipv4ListRouting (used to store a prioritized list of routing protocols)
• class Ipv4GlobalRouting (used to store routes computed by the global route manager,

if that is used)
• class Ipv4NixVectorRouting (a more efficient version of global routing that stores source

routes in a packet header field)
• class Ipv6ListRouting (used to store a prioritized list of routing protocols)
• class Ipv6StaticRouting

In the future, this architecture should also allow someone to implement a Linux-like
implementation with routing cache, or a Click modular router, but those are out of scope
for now.

126ns-3.6 13 November 2009

http://www.ietf.org/rfc/rfc3626.txt

Chapter 27: Routing overview ns-3 manual

27.3.1 Ipv4ListRouting

This section describes the current default ns-3 Ipv4RoutingProtocol. Typically, multiple
routing protocols are supported in user space and coordinate to write a single forwarding
table in the kernel. Presently in ns-3, the implementation instead allows for multiple
routing protocols to build/keep their own routing state, and the IPv4 implementation will
query each one of these routing protocols (in some order determined by the simulation
author) until a route is found.

We chose this approach because it may better facilitate the integration of disparate rout-
ing approaches that may be difficult to coordinate the writing to a single table, approaches
where more information than destination IP address (e.g., source routing) is used to deter-
mine the next hop, and on-demand routing approaches where packets must be cached.

27.3.1.1 Ipv4ListRouting::AddRoutingProtocol

Class Ipv4ListRouting provides a pure virtual function declaration for the method that
allows one to add a routing protocol:
void AddRoutingProtocol (Ptr<Ipv4RoutingProtocol> routingProtocol,

int16_t priority);

This method is implemented by class Ipv4ListRoutingImpl in the internet-stack module.
The priority variable above governs the priority in which the routing protocols are in-

serted. Notice that it is a signed int. By default in ns-3, the helper classes will instantiate
a Ipv4ListRoutingImpl object, and add to it an Ipv4StaticRoutingImpl object at priority
zero. Internally, a list of Ipv4RoutingProtocols is stored, and and the routing protocols are
each consulted in decreasing order of priority to see whether a match is found. Therefore,
if you want your Ipv4RoutingProtocol to have priority lower than the static routing, insert
it with priority less than 0; e.g.:
Ptr<MyRoutingProtocol> myRoutingProto = CreateObject<MyRoutingProtocol> ();
listRoutingPtr->AddRoutingProtocol (myRoutingProto, -10);

Upon calls to RouteOutput() or RouteInput(), the list routing object will search the list
of routing protocols, in priority order, until a route is found. Such routing protocol will
invoke the appropriate callback and no further routing protocols will be searched.

27.3.2 Optimized Link State Routing (OLSR)

This is the first dynamic routing protocol for ns-3. The implementation is found in
the src/routing/olsr directory, and an example script is in examples/simple-point-to-point-
olsr.cc.

The following commands will enable OLSR in a simulation.
olsr::EnableAllNodes (); // Start OLSR on all nodes
olsr::EnableNodes(InputIterator begin, InputIterator end); // Start on

// a list of nodes
olsr::EnableNode (Ptr<Node> node); // Start OLSR on "node" only

Once instantiated, the agent can be started with the Start() command, and the OLSR
"main interface" can be set with the SetMainInterface() command. A number of protocol
constants are defined in olsr-agent-impl.cc.

127ns-3.6 13 November 2009

Chapter 27: Routing overview ns-3 manual

Presently, OLSR is limited to use with an Ipv4ListRouting object, and does not respond
to dynamic changes to a device’s IP address or link up/down notifications; i.e. the topology
changes are due to loss/gain of connectivity over a wireless channel.

27.4 Multicast routing

The following function is used to add a static multicast route to a node:
void
Ipv4StaticRouting::AddMulticastRoute (Ipv4Address origin,

Ipv4Address group,
uint32_t inputInterface,
std::vector<uint32_t> outputInterfaces);

A multicast route must specify an origin IP address, a multicast group and an input
network interface index as conditions and provide a vector of output network interface
indices over which packets matching the conditions are sent.

Typically there are two main types of multicast routes: routes of the first kind are
used during forwarding. All of the conditions must be explicitly provided. The second
kind of routes are used to get packets off of a local node. The difference is in the in-
put interface. Routes for forwarding will always have an explicit input interface specified.
Routes off of a node will always set the input interface to a wildcard specified by the index
Ipv4RoutingProtocol::IF\ INDEX\ ANY.

For routes off of a local node wildcards may be used in the origin and multicast
group addresses. The wildcard used for Ipv4Adresses is that address returned by
Ipv4Address::GetAny () – typically "0.0.0.0". Usage of a wildcard allows one to specify
default behavior to varying degrees.

For example, making the origin address a wildcard, but leaving the multicast group
specific allows one (in the case of a node with multiple interfaces) to create different routes
using different output interfaces for each multicast group.

If the origin and multicast addresses are made wildcards, you have created essentially
a default multicast address that can forward to multiple interfaces. Compare this to the
actual default multicast address that is limited to specifying a single output interface for
compatibility with existing functionality in other systems.

Another command sets the default multicast route:
void
Ipv4StaticRouting::SetDefaultMulticastRoute (uint32_t outputInterface);

This is the multicast equivalent of the unicast version SetDefaultRoute. We tell the
routing system what to do in the case where a specific route to a destination multicast
group is not found. The system forwards packets out the specified interface in the hope
that "something out there" knows better how to route the packet. This method is only
used in initially sending packets off of a host. The default multicast route is not consulted
during forwarding – exact routes must be specified using AddMulticastRoute for that case.

Since we’re basically sending packets to some entity we think may know better what
to do, we don’t pay attention to "subtleties" like origin address, nor do we worry about
forwarding out multiple interfaces. If the default multicast route is set, it is returned as

128ns-3.6 13 November 2009

Chapter 27: Routing overview ns-3 manual

the selected route from LookupStatic irrespective of origin or multicast group if another
specific route is not found.

Finally, a number of additional functions are provided to fetch and remove multicast
routes:
uint32_t GetNMulticastRoutes (void) const;

Ipv4MulticastRoute *GetMulticastRoute (uint32_t i) const;

Ipv4MulticastRoute *GetDefaultMulticastRoute (void) const;

bool RemoveMulticastRoute (Ipv4Address origin,
Ipv4Address group,
uint32_t inputInterface);

void RemoveMulticastRoute (uint32_t index);

129ns-3.6 13 November 2009

Chapter 28: TCP models in ns-3 ns-3 manual

28 TCP models in ns-3

This chapter describes the TCP models available in ns-3.

28.1 Generic support for TCP

ns-3 was written to support multiple TCP implementations. The implementations inherit
from a few common header classes in the src/node directory, so that user code can swap
out implementations with minimal changes to the scripts.

There are two important abstract base classes:
• class TcpSocket: This is defined in src/node/tcp-socket.{cc,h}. This class exists

for hosting TcpSocket attributes that can be reused across different implementations.
For instance, TcpSocket::SetInitialCwnd() can be used for any of the implementa-
tions that derive from class TcpSocket.

• class TcpSocketFactory: This is used by applications to create TCP sockets. A
typical usage can be seen in this snippet:

// Create the socket if not already created
if (!m_socket)
{
m_socket = Socket::CreateSocket (GetNode(), m_tid);
m_socket->Bind (m_local);
...

}

The parameter m_tid controls the TypeId of the actual TCP Socket implementation
that is instantiated. This way, the application can be written generically and different
socket implementations can be swapped out by specifying the TypeId.

28.2 ns-3 TCP

ns-3 contains a port of the TCP model from GTNetS. This model is a full TCP, in that it
is bidirectional and attempts to model the connection setup and close logic. In fact, it is
a more complete implementation of the TCP state machine than ns-2’s "FullTcp" model.
This TCP model was originally written by George Riley as part of GTNetS and ported to
ns-3 by Raj Bhattacharjea.

The implementation of TCP is contained in the following files:
src/internet-stack/tcp-header.{cc,h}
src/internet-stack/tcp-l4-protocol.{cc,h}
src/internet-stack/tcp-socket-factory-impl.{cc,h}
src/internet-stack/tcp-socket-impl.{cc,h}
src/internet-stack/tcp-typedefs.h
src/internet-stack/rtt-estimator.{cc,h}
src/internet-stack/sequence-number.{cc,h}

28.2.1 Usage

The file examples/tcp-star-server.cc contains an example that makes use of
ns3::OnOffApplication and ns3::PacketSink applications.

131ns-3.6 13 November 2009

http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/index.html

Chapter 28: TCP models in ns-3 ns-3 manual

Using the helper functions defined in src/helper, here is how one would create a TCP
receiver:

// Create a packet sink on the star "hub" to receive these packets
uint16_t port = 50000;
Address sinkLocalAddress(InetSocketAddress (Ipv4Address::GetAny (), port));
PacketSinkHelper sinkHelper ("ns3::TcpSocketFactory", sinkLocalAddress);
ApplicationContainer sinkApp = sinkHelper.Install (serverNode);
sinkApp.Start (Seconds (1.0));
sinkApp.Stop (Seconds (10.0));

Similarly, the below snippet configures OnOffApplication traffic source to use TCP:

// Create the OnOff applications to send TCP to the server
OnOffHelper clientHelper ("ns3::TcpSocketFactory", Address ());

The careful reader will note above that we have specified the TypeId of an abstract base
class TcpSocketFactory. How does the script tell ns-3 that it wants the native ns-3 TCP
vs. some other one? Well, when internet stacks are added to the node, the default TCP
implementation that is aggregated to the node is the ns-3 TCP. This can be overridden as
we show below when using Network Simulation Cradle. So, by default, when using the ns-3
helper API, the TCP that is aggregated to nodes with an Internet stack is the native ns-3
TCP.

Once a TCP socket is created, you will want to follow conventional socket logic and
either connect() and send() (for a TCP client) or bind(), listen(), and accept() (for a TCP
server). See Chapter 23 [Sockets API], page 109 for a review of how sockets are used in
ns-3.

To configure behavior of TCP, a number of parameters are exported through the
Chapter 5 [ns-3 attribute system], page 25. These are documented in the Doxygen for
class TcpSocket.

28.2.2 Current limitations

• Only Tahoe congestion control is presently supported.
• Only IPv4 is supported (IPv6 support will start to be added after ns-3.6).

28.3 Network Simulation Cradle

The Network Simulation Cradle (NSC) is a framework for wrapping real-world network code
into simulators, allowing simulation of real-world behavior at little extra cost. This work
has been validated by comparing situations using a test network with the same situations
in the simulator. To date, it has been shown that the NSC is able to produce extremely
accurate results. NSC supports four real world stacks: FreeBSD, OpenBSD, lwIP and
Linux. Emphasis has been placed on not changing any of the network stacks by hand. Not
a single line of code has been changed in the network protocol implementations of any of
the above four stacks. However, a custom C parser was built to programmatically change
source code.

NSC has previously been ported to ns-2 and OMNeT++, and recently was added to ns-3.
This section describes the ns-3 port of NSC and how to use it.

132ns-3.6 13 November 2009

http://www.nsnam.org/doxygen/classns3_1_1_tcp_socket.html
http://www.wand.net.nz/~stj2/nsc/

Chapter 28: TCP models in ns-3 ns-3 manual

28.3.1 Prerequisites

Presently, NSC has been tested and shown to work on these platforms: Linux i386 and
Linux x86-64. NSC does not support powerpc.

Building NSC requires the packages flex and bison.

28.3.2 Configuring and Downloading

Using the build.py script in ns-3-allinone directory, NSC will be enabled by default unless
the platform does not support it. To disable it when building ns-3, type:
./waf configure --disable-nsc

28.3.3 Building and validating

Building ns-3 with nsc support is the same as building it without; no additional arguments
are needed for waf. Building nsc may take some time compared to ns-3; it is interleaved in
the ns-3 building process.

Try running the regression tests: ./waf --regression. If NSC has been successfully
built, the following test should show up in the results:
PASS test-tcp-nsc-lfn

This confirms that NSC is ready to use.

28.3.4 Usage

There are a few example files. Try
./waf --run tcp-nsc-zoo
./waf --run tcp-nsc-lfn

These examples will deposit some .pcap files in your directory, which can be examined
by tcpdump or wireshark.

Let’s look at the examples/tcp-nsc-zoo.cc file for some typical usage. How does it
differ from using native ns-3 TCP? There is one main configuration line, when using NSC
and the ns-3 helper API, that needs to be set:
InternetStackHelper internetStack;

internetStack.SetNscStack ("liblinux2.6.26.so");
// this switches nodes 0 and 1 to NSCs Linux 2.6.26 stack.
internetStack.Install (n.Get(0));
internetStack.Install (n.Get(1));

The key line is the SetNscStack. This tells the InternetStack helper to aggregate in-
stances of NSC TCP instead of native ns-3 TCP to the remaining nodes. It is important
that this function be called before calling the Install() function, as shown above.

Which stacks are available to use? Presently, the focus has been on Linux 2.6.18 and
Linux 2.6.26 stacks for ns-3. To see which stacks were built, one can execute the following
find command at the ns-3 top level directory:
~/ns-3.2> find nsc -name "*.so" -type f
nsc/linux-2.6.18/liblinux2.6.18.so

133ns-3.6 13 November 2009

Chapter 28: TCP models in ns-3 ns-3 manual

nsc/linux-2.6.26/liblinux2.6.26.so

This tells us that we may either pass the library name liblinux2.6.18.so or
liblinux2.6.26.so to the above configuration step.

28.3.5 Stack configuration

NSC TCP shares the same configuration attributes that are common across TCP sockets,
as described above and documented in Doxygen

Additionally, NSC TCP exports a lot of configuration variables into the ns-3 Chapter 5
[Attributes], page 25 system, via a sysctl-like interface. In the examples/tcp-nsc-zoo
example, you can see the following configuration:

// this disables TCP SACK, wscale and timestamps on node 1 (the attributes

represent sysctl-values).

Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipv4.tcp_sack",

StringValue ("0"));

Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipv4.tcp_timestamps",

StringValue ("0"));

Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipv4.tcp_window_scaling",

StringValue ("0"));

These additional configuration variables are not available to native ns-3 TCP.

28.3.6 NSC API

This subsection describes the API that NSC presents to ns-3 or any other simulator. NSC
provides its API in the form of a number of classes that are defined in sim/sim_interface.h
in the nsc directory.
• INetStack INetStack contains the ’low level’ operations for the operating system net-

work stack, e.g. in and output functions from and to the network stack (think of this
as the ’network driver interface’. There are also functions to create new TCP or UDP
sockets.

• ISendCallback This is called by NSC when a packet should be sent out to the network.
This simulator should use this callback to re-inject the packet into the simulator so
the actual data can be delivered/routed to its destination, where it will eventually be
handed into Receive() (and eventually back to the receivers NSC instance via INetStack-
>if receive()).

• INetStreamSocket This is the structure defining a particular connection endpoint (file
descriptor). It contains methods to operate on this endpoint, e.g. connect, disconnect,
accept, listen, send data/read data, ...

• IInterruptCallback This contains the wakeup callback, which is called by NSC whenever
something of interest happens. Think of wakeup() as a replacement of the operating
systems wakeup function: Whenever the operating system would wake up a process
that has been waiting for an operation to complete (for example the TCP handshake
during connect()), NSC invokes the wakeup() callback to allow the simulator to check
for state changes in its connection endpoints.

28.3.7 ns-3 implementation

The ns-3 implementation makes use of the above NSC API, and is implemented as follows.
The three main parts are:

134ns-3.6 13 November 2009

http://www.nsnam.org/doxygen/classns3_1_1_tcp_socket.html
http://en.wikipedia.org/wiki/Sysctl

Chapter 28: TCP models in ns-3 ns-3 manual

• ns3::NscTcpL4Protocol: a subclass of Ipv4L4Protocol (and two nsc classes: ISend-
Callback and IInterruptCallback)

• ns3::NscTcpSocketImpl: a subclass of TcpSocket
• ns3::NscTcpSocketFactoryImpl: a factory to create new NSC sockets

src/internet-stack/nsc-tcp-l4-protocol is the main class. Upon Initialization, it
loads an nsc network stack to use (via dlopen()). Each instance of this class may use a
different stack. The stack (=shared library) to use is set using the SetNscLibrary() method
(at this time its called indirectly via the internet stack helper). The nsc stack is then set
up accordingly (timers etc). The NscTcpL4Protocol::Receive() function hands the packet
it receives (must be a complete tcp/ip packet) to the nsc stack for further processing. To
be able to send packets, this class implements the nsc send callback method. This method
is called by nsc whenever the nsc stack wishes to send a packet out to the network. Its
arguments are a raw buffer, containing a complete TCP/IP packet, and a length value. This
method therefore has to convert the raw data to a Ptr<Packet> usable by ns-3. In order to
avoid various ipv4 header issues, the nsc ip header is not included. Instead, the tcp header
and the actual payload are put into the Ptr<Packet>, after this the Packet is passed down
to layer 3 for sending the packet out (no further special treatment is needed in the send
code path).

This class calls ns3::NscTcpSocketImpl both from the nsc wakeup() callback and from
the Receive path (to ensure that possibly queued data is scheduled for sending).

src/internet-stack/nsc-tcp-socket-impl implements the nsc socket interface. Each
instance has its own nscTcpSocket. Data that is Send() will be handed to the nsc stack
via m nscTcpSocket->send data(). (and not to nsc-tcp-l4, this is the major difference com-
pared to ns-3 TCP). The class also queues up data that is Send() before the underlying
descriptor has entered an ESTABLISHED state. This class is called from the nsc-tcp-l4
class, when the nsc-tcp-l4 wakeup() callback is invoked by nsc. nsc-tcp-socket-impl then
checks the current connection state (SYN SENT, ESTABLISHED, LISTEN...) and sched-
ules appropriate callbacks as needed, e.g. a LISTEN socket will schedule Accept to see if
a new connection must be accepted, an ESTABLISHED socket schedules any pending data
for writing, schedule a read callback, etc.

Note that ns3::NscTcpSocketImpl does not interact with nsc-tcp directly: instead, data
is redirected to nsc. nsc-tcp calls the nsc-tcp-sockets of a node when its wakeup callback is
invoked by nsc.

28.3.8 Limitations

• NSC only works on single-interface nodes; attempting to run it on a multi-interface
node will cause a program error. This limitation should be fixed by ns-3.7.

• Cygwin and OS X PPC are not supported
• The non-Linux stacks of NSC are not supported in ns-3
• Not all socket API callbacks are supported

For more information, see this wiki page.

135ns-3.6 13 November 2009

http://www.nsnam.org/wiki/index.php/Network_Simulation_Cradle_Integration

Chapter 29: Applications ns-3 manual

Part 5: Applications

29 Applications

� �
Placeholder chapter
 	

137ns-3.6 13 November 2009

Chapter 30: Flow Monitor ns-3 manual

Part 6: Support

30 Flow Monitor� �
Placeholder chapter
 	

This feature was added as contributed code (src/contrib) in ns-3.6. A paper on this
feature is published in the proceedings of NSTools:
http://www.nstools.org/techprog.shtml

139ns-3.6 13 November 2009

http://www.nstools.org/techprog.shtml

Chapter 31: Animation ns-3 manual

31 Animation� �
Placeholder chapter
 	

This wiki page:
http://www.nsnam.org/wiki/index.php/NetAnim contains information about the animator
support that has been added to ns-3.6.

Another Python-based animator is available (ns-3-pyviz) but is not documented.

141ns-3.6 13 November 2009

http://www.nsnam.org/wiki/index.php/NetAnim

Chapter 32: Statistics ns-3 manual

32 Statistics� �
Placeholder chapter
 	

This wiki page:
http://www.nsnam.org/wiki/index.php/Statistical Framework for Network Simulation
contains information about the proposed statistical framework that is located in
src/contrib directory.

143ns-3.6 13 November 2009

http://www.nsnam.org/wiki/index.php/Statistical_Framework_for_Network_Simulation

Chapter 33: Creating a new ns-3 model ns-3 manual

33 Creating a new ns-3 model

This chapter walks through the design process of an ns-3 model. In many research cases,
users will not be satisfied to merely adapt existing models, but may want to extend the
core of the simulator in a novel way. We will use the example of adding an ErrorModel to
a simple ns-3 link as a motivating example of how one might approach this problem and
proceed through a design and implementation.

33.1 Design-approach

Consider how you want it to work; what should it do. Think about these things:

• functionality: What functionality should it have? What attributes or configuration is
exposed to the user?

• reusability: How much should others be able to reuse my design? Can I reuse code
from ns-2 to get started? How does a user integrate the model with the rest of another
simulation?

• dependencies: How can I reduce the introduction of outside dependencies on my new
code as much as possible (to make it more modular)? For instance, should I avoid
any dependence on IPv4 if I want it to also be used by IPv6? Should I avoid any
dependency on IP at all?

Do not be hesitant to contact the ns-3-users or ns-developers list if you have questions.
In particular, it is important to think about the public API of your new model and ask
for feedback. It also helps to let others know of your work in case you are interested in
collaborators.

33.1.1 Example: ErrorModel

An error model exists in ns-2. It allows packets to be passed to a stateful object that
determines, based on a random variable, whether the packet is corrupted. The caller can
then decide what to do with the packet (drop it, etc.).

The main API of the error model is a function to pass a packet to, and the return value
of this function is a boolean that tells the caller whether any corruption occurred. Note
that depending on the error model, the packet data buffer may or may not be corrupted.
Let’s call this function "IsCorrupt()".

So far, in our design, we have:

class ErrorModel
{
public:
/**
* \returns true if the Packet is to be considered as errored/corrupted
* \param pkt Packet to apply error model to
*/
bool IsCorrupt (Ptr<Packet> pkt);

};

145ns-3.6 13 November 2009

Chapter 33: Creating a new ns-3 model ns-3 manual

Note that we do not pass a const pointer, thereby allowing the function to modify the
packet if IsCorrupt() returns true. Not all error models will actually modify the packet;
whether or not the packet data buffer is corrupted should be documented.

We may also want specialized versions of this, such as in ns-2, so although it is not
the only design choice for polymorphism, we assume that we will subclass a base class
ErrorModel for specialized classes, such as RateErrorModel, ListErrorModel, etc, such as
is done in ns-2.

You may be thinking at this point, "Why not make IsCorrupt() a virtual method?".
That is one approach; the other is to make the public non-virtual function indirect through
a private virtual function (this in C++ is known as the non virtual interface idiom and is
adopted in the ns-3 ErrorModel class).

Next, should this device have any dependencies on IP or other protocols? We do not
want to create dependencies on Internet protocols (the error model should be applicable to
non-Internet protocols too), so we’ll keep that in mind later.

Another consideration is how objects will include this error model. We envision putting
an explicit setter in certain NetDevice implementations, for example.
/**
* Attach a receive ErrorModel to the PointToPointNetDevice.
*
* The PointToPointNetDevice may optionally include an ErrorModel in
* the packet receive chain.
*
* @see ErrorModel
* @param em Ptr to the ErrorModel.
*/

void PointToPointNetDevice::SetReceiveErrorModel(Ptr<ErrorModel> em);

Again, this is not the only choice we have (error models could be aggregated to lots of
other objects), but it satisfies our primary use case, which is to allow a user to force errors
on otherwise successful packet transmissions, at the NetDevice level.

After some thinking and looking at existing ns-2 code, here is a sample API of a base
class and first subclass that could be posted for initial review:
class ErrorModel
{
public:
ErrorModel ();
virtual ~ErrorModel ();
bool IsCorrupt (Ptr<Packet> pkt);
void Reset (void);
void Enable (void);
void Disable (void);
bool IsEnabled (void) const;

private:
virtual bool DoCorrupt (Ptr<Packet> pkt) = 0;
virtual void DoReset (void) = 0;

146ns-3.6 13 November 2009

Chapter 33: Creating a new ns-3 model ns-3 manual

};

enum ErrorUnit
{

EU_BIT,
EU_BYTE,
EU_PKT

};

// Determine which packets are errored corresponding to an underlying
// random variable distribution, an error rate, and unit for the rate.
class RateErrorModel : public ErrorModel
{
public:
RateErrorModel ();
virtual ~RateErrorModel ();
enum ErrorUnit GetUnit (void) const;
void SetUnit (enum ErrorUnit error_unit);
double GetRate (void) const;
void SetRate (double rate);
void SetRandomVariable (const RandomVariable &ranvar);

private:
virtual bool DoCorrupt (Ptr<Packet> pkt);
virtual void DoReset (void);

};

33.2 Scaffolding

Let’s say that you are ready to start implementing; you have a fairly clear picture of what
you want to build, and you may have solicited some initial review or suggestions from the
list. One way to approach the next step (implementation) is to create scaffolding and fill in
the details as the design matures.

This section walks through many of the steps you should consider to define scaffolding,
or a non-functional skeleton of what your model will eventually implement. It is usually
good practice to not wait to get these details integrated at the end, but instead to plumb
a skeleton of your model into the system early and then add functions later once the API
and integration seems about right.

Note that you will want to modify a few things in the below presentation for your model
since if you follow the error model verbatim, the code you produce will collide with the
existing error model. The below is just an outline of how ErrorModel was built that you
can adapt to other models.

33.2.1 Review the ns-3 coding style document

At this point, you may want to pause and read the ns-3 coding style document, especially if
you are considering to contribute your code back to the project. The coding style document
is linked off the main project page: ns-3 coding style.

147ns-3.6 13 November 2009

http://www.nsnam.org/codingstyle.html

Chapter 33: Creating a new ns-3 model ns-3 manual

33.2.2 Decide where in the source tree the model will reside in

All of the ns-3 model source code is in the directory src/. You will need to choose which
subdirectory it resides in. If it is new model code of some sort, it makes sense to put it into
the src/ directory somewhere, particularly for ease of integrating with the build system.

In the case of the error model, it is very related to the packet class, so it makes sense to
implement this in the src/common/ directory where ns-3 packets are implemented.

33.2.3 waf and wscript

ns-3 uses the Waf build system. You will want to integrate your new ns-3 uses the Waf build
system. You will want to integrate your new source files into this system. This requires
that you add your files to the wscript file found in each directory.

Let’s start with empty files error-model.h and error-model.cc, and add this to
src/common/wscript. It is really just a matter of adding the .cc file to the rest of the
source files, and the .h file to the list of the header files.

Now, pop up to the top level directory and type "./waf –check". You shouldn’t have
broken anything by this operation.

33.2.4 include guards

Next, let’s add some include guards in our header file.
#ifndef ERROR_MODEL_H
#define ERROR_MODEL_H
...
#endif

33.2.5 namespace ns3

ns-3 uses the ns3 namespace to isolate its symbols from other namespaces. Typically, a user
will next put an ns-3 namespace block in both the cc and h file.
namespace ns3 {
...
}

At this point, we have some skeletal files in which we can start defining our new classes.
The header file looks like this:
#ifndef ERROR_MODEL_H
#define ERROR_MODEL_H

namespace ns3 {

} // namespace ns3
#endif

while the error-model.cc file simply looks like this:
#include "error-model.h"

namespace ns3 {

148ns-3.6 13 November 2009

http://www.freehackers.org/~tnagy/waf.html
http://en.wikipedia.org/wiki/Include_guard
http://en.wikipedia.org/wiki/Namespace_(computer_science)#Use_in_common_languages

Chapter 33: Creating a new ns-3 model ns-3 manual

} // namespace ns3

These files should compile since they don’t really have any contents. We’re now ready
to start adding classes.

33.3 Initial Implementation

At this point, we’re still working on some scaffolding, but we can begin to define our classes,
with the functionality to be added later.

33.3.1 use of class Object?

This is an important design step; whether to use class Object as a base class for your new
classes.

As described in the chapter on the ns-3 Chapter 4 [Object model], page 19, classes that
inherit from class Object get special properties:
• the ns-3 type and attribute system (see Chapter 5 [Attributes], page 25)
• an object aggregation system
• a smart-pointer reference counting system (class Ptr)

Classes that derive from class ObjectBase get the first two properties above, but do
not get smart pointers. Classes that derive from class RefCountBase get only the smart-
pointer reference counting system.

In practice, class Object is the variant of the three above that the ns-3 developer will
most commonly encounter.

In our case, we want to make use of the attribute system, and we will be passing instances
of this object across the ns-3 public API, so class Object is appropriate for us.

33.3.2 initial classes

One way to proceed is to start by defining the bare minimum functions and see if they will
compile. Let’s review what all is needed to implement when we derive from class Object.
#ifndef ERROR_MODEL_H
#define ERROR_MODEL_H

#include "ns3/object.h"

namespace ns3 {

class ErrorModel : public Object
{
public:
static TypeId GetTypeId (void);

ErrorModel ();
virtual ~ErrorModel ();

};

149ns-3.6 13 November 2009

Chapter 33: Creating a new ns-3 model ns-3 manual

class RateErrorModel : public ErrorModel
{
public:
static TypeId GetTypeId (void);

RateErrorModel ();
virtual ~RateErrorModel ();

};
#endif

A few things to note here. We need to include object.h. The convention in ns-3 is
that if the header file is co-located in the same directory, it may be included without any
path prefix. Therefore, if we were implementing ErrorModel in src/core directory, we could
have just said "#include "object.h"". But we are in src/common, so we must include it as
"#include "ns3/object.h"". Note also that this goes outside the namespace declaration.

Second, each class must implement a static public member function called GetTypeId
(void).

Third, it is a good idea to implement constructors and destructors rather than to let the
compiler generate them, and to make the destructor virtual. In C++, note also that copy
assignment operator and copy constructors are auto-generated if they are not defined, so
if you do not want those, you should implement those as private members. This aspect of
C++ is discussed in Scott Meyers’ Effective C++ book. item 45.

Let’s now look at some corresponding skeletal implementation code in the .cc file.
#include "error-model.h"

namespace ns3 {

NS_OBJECT_ENSURE_REGISTERED (ErrorModel);

TypeId ErrorModel::GetTypeId (void)
{
static TypeId tid = TypeId ("ns3::ErrorModel")

.SetParent<Object> ()
;

return tid;
}

ErrorModel::ErrorModel ()
{
}

ErrorModel::~ErrorModel ()
{
}

150ns-3.6 13 November 2009

Chapter 33: Creating a new ns-3 model ns-3 manual

NS_OBJECT_ENSURE_REGISTERED (RateErrorModel);

TypeId RateErrorModel::GetTypeId (void)
{
static TypeId tid = TypeId ("ns3::RateErrorModel")

.SetParent<ErrorModel> ()

.AddConstructor<RateErrorModel> ()
;

return tid;
}

RateErrorModel::RateErrorModel ()
{
}

RateErrorModel::~RateErrorModel ()
{
}

What is the GetTypeId (void) function? This function does a few things. It registers a
unique string into the TypeId system. It establishes the hierarchy of objects in the attribute
system (via SetParent). It also declares that certain objects can be created via the object
creation framework (AddConstructor).

The macro NS_OBJECT_ENSURE_REGISTERED (classname) is needed also once for every
class that defines a new GetTypeId method, and it does the actual registration of the class
into the system. The Chapter 4 [Object model], page 19 chapter discusses this in more
detail.

33.3.3 how to include files from elsewhere

33.3.4 log component� �
Here, write a bit about adding ns-3 logging macros. Note that
LOG COMPONENT DEFINE is done outside the namespace ns3
 	
33.3.5 constructor, empty function prototypes

33.3.6 key variables (default values, attributes)

33.3.7 test program 1

33.3.8 Object Framework
static const ClassId cid;

const InterfaceId ErrorModel::iid =

MakeInterfaceId ("ErrorModel", Object::iid);

151ns-3.6 13 November 2009

Chapter 33: Creating a new ns-3 model ns-3 manual

const ClassId ErrorModel::cid =

MakeClassId<ErrorModel> ("ErrorModel", ErrorModel::iid);

33.4 Adding a sample script

At this point, one may want to try to take the basic scaffolding defined above and add it
into the system. Performing this step now allows one to use a simpler model when plumbing
into the system and may also reveal whether any design or API modifications need to be
made. Once this is done, we will return to building out the functionality of the ErrorModels
themselves.

33.4.1 Add basic support in the class
point-to-point-net-device.h

class ErrorModel;

/**

* Error model for receive packet events

*/

Ptr<ErrorModel> m_receiveErrorModel;

33.4.2 Add Accessor
void

PointToPointNetDevice::SetReceiveErrorModel (Ptr<ErrorModel> em)

NS_LOG_FUNCTION (this << em);

m_receiveErrorModel = em;

.AddAttribute ("ReceiveErrorModel",

"The receiver error model used to simulate packet loss",

PointerValue (),

MakePointerAccessor (&PointToPointNetDevice::m_receiveErrorModel),

MakePointerChecker<ErrorModel> ())

33.4.3 Plumb into the system
void PointToPointNetDevice::Receive (Ptr<Packet> packet)

NS_LOG_FUNCTION (this << packet);

uint16_t protocol = 0;

if (m_receiveErrorModel && m_receiveErrorModel->IsCorrupt (packet))

//

// If we have an error model and it indicates that it is time to lose a

// corrupted packet, don’t forward this packet up, let it go.

//

m_dropTrace (packet);

else

//

// Hit the receive trace hook, strip off the point-to-point protocol header

152ns-3.6 13 November 2009

Chapter 33: Creating a new ns-3 model ns-3 manual

// and forward this packet up the protocol stack.

//

m_rxTrace (packet);

ProcessHeader(packet, protocol);

m_rxCallback (this, packet, protocol, GetRemote ());

if (!m_promiscCallback.IsNull ())

m_promiscCallback (this, packet, protocol, GetRemote (),

GetAddress (), NetDevice::PACKET_HOST);

33.4.4 Create null functional script
simple-error-model.cc

// Error model

// We want to add an error model to node 3’s NetDevice

// We can obtain a handle to the NetDevice via the channel and node

// pointers

Ptr<PointToPointNetDevice> nd3 = PointToPointTopology::GetNetDevice

(n3, channel2);

Ptr<ErrorModel> em = Create<ErrorModel> ();

nd3->SetReceiveErrorModel (em);

bool

ErrorModel::DoCorrupt (Packet& p)

NS_LOG_FUNCTION;

NS_LOG_UNCOND("Corrupt!");

return false;

At this point, we can run the program with our trivial ErrorModel plumbed into the
receive path of the PointToPointNetDevice. It prints out the string "Corrupt!" for each
packet received at node n3. Next, we return to the error model to add in a subclass that
performs more interesting error modeling.

33.5 Add subclass

The trivial base class ErrorModel does not do anything interesting, but it provides a useful
base class interface (Corrupt () and Reset ()), forwarded to virtual functions that can be
subclassed. Let’s next consider what we call a BasicErrorModel which is based on the ns-2
ErrorModel class (in ns-2/queue/errmodel.{cc,h}).

What properties do we want this to have, from a user interface perspective? We would
like for the user to be able to trivially swap out the type of ErrorModel used in the NetDe-
vice. We would also like the capability to set configurable parameters.

Here are a few simple requirements we will consider:

• Ability to set the random variable that governs the losses (default is UniformVariable)

• Ability to set the unit (bit, byte, packet, time) of granularity over which errors are
applied.

153ns-3.6 13 November 2009

Chapter 33: Creating a new ns-3 model ns-3 manual

• Ability to set the rate of errors (e.g. 10^-3) corresponding to the above unit of granu-
larity.

• Ability to enable/disable (default is enabled)

33.5.1 How to subclass

We declare BasicErrorModel to be a subclass of ErrorModel as follows,
class BasicErrorModel : public ErrorModel

public:

static TypeId GetTypeId (void);

...

private:

// Implement base class pure virtual functions

virtual bool DoCorrupt (Ptr<Packet> p);

virtual bool DoReset (void);

...

and configure the subclass GetTypeId function by setting a unique TypeId string and
setting the Parent to ErrorModel:
TypeId RateErrorModel::GetTypeId (void)
{
static TypeId tid = TypeId ("ns3::RateErrorModel")

.SetParent<ErrorModel> ()

.AddConstructor<RateErrorModel> ()
...

33.6 Build core functions and unit tests

33.6.1 assert macros

33.6.2 Writing unit tests

154ns-3.6 13 November 2009

Chapter 34: Troubleshooting ns-3 manual

34 Troubleshooting

This chapter posts some information about possibly common errors in building or running
ns-3 programs.

Please note that the wiki
(http://www.nsnam.org/wiki/index.php/Troubleshooting) may have contributed
items.

34.1 Build errors

34.2 Run-time errors

Sometimes, errors can occur with a program after a successful build. These are run-time er-
rors, and can commonly occur when memory is corrupted or pointer values are unexpectedly
null.

Here is an example of what might occur:
ns-old:~/ns-3-nsc$./waf --run tcp-point-to-point

Entering directory ‘/home/tomh/ns-3-nsc/build’

Compilation finished successfully

Command [’/home/tomh/ns-3-nsc/build/debug/examples/tcp-point-to-point’] exited with code -

11

The error message says that the program terminated unsuccessfully, but it is not clear
from this information what might be wrong. To examine more closely, try running it under
the gdb debugger:

ns-old:~/ns-3-nsc$./waf --run tcp-point-to-point --command-template="gdb %s"

Entering directory ‘/home/tomh/ns-3-nsc/build’

Compilation finished successfully

GNU gdb Red Hat Linux (6.3.0.0-1.134.fc5rh)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "i386-redhat-linux-gnu"...Using host libthread_db

library "/lib/libthread_db.so.1".

(gdb) run

Starting program: /home/tomh/ns-3-nsc/build/debug/examples/tcp-point-to-point

Reading symbols from shared object read from target memory...done.

Loaded system supplied DSO at 0xf5c000

Program received signal SIGSEGV, Segmentation fault.

0x0804aa12 in main (argc=1, argv=0xbfdfefa4)

at ../examples/tcp-point-to-point.cc:136

136 Ptr<Socket> localSocket = socketFactory->CreateSocket ();

(gdb) p localSocket

$1 = m_ptr = 0x3c5d65

(gdb) p socketFactory

$2 = m_ptr = 0x0

(gdb) quit

The program is running. Exit anyway? (y or n) y

155ns-3.6 13 November 2009

http://www.nsnam.org/wiki/index.php/Troubleshooting
http://sources.redhat.com/gdb/

Chapter 34: Troubleshooting ns-3 manual

Note first the way the program was invoked– pass the command to run as an argument
to the command template "gdb %s".

This tells us that there was an attempt to dereference a null pointer socketFactory.
Let’s look around line 136 of tcp-point-to-point, as gdb suggests:

Ptr<SocketFactory> socketFactory = n2->GetObject<SocketFactory> (Tcp::iid);

Ptr<Socket> localSocket = socketFactory->CreateSocket ();

localSocket->Bind ();

The culprit here is that the return value of GetObject is not being checked and may be
null.

Sometimes you may need to use the valgrind memory checker for more subtle errors.
Again, you invoke the use of valgrind similarly:

ns-old:~/ns-3-nsc$./waf --run tcp-point-to-point --command-template="valgrind %s"

(Index is nonexistent)

156ns-3.6 13 November 2009

http://valgrind.org

