ns-3 Testing and Validation

ns-3 project
feedback: ns-developersQisi.edu

Simulator version: 3.7 28 January 2010

This is an ns-3 reference manual. Primary documentation for the ns-3 project is available
in Doxygen, several documents, and the wiki:

e ns-3 Doxygen: Documentation of the public APIs of the simulator
e 1ns-3 Tutorial
e 1ns-3 Manual
e ns-3 Testing and Validation (this document)
e ns-3 wiki
This document is written in GNU Texinfo and is to be maintained in revision control on

the ns-3 code server. Both PDF and HTML versions should be available on the server.
Changes to the document should be discussed on the ns-developers@isi.edu mailing list.

This software is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This software is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program.
If not, see http://www.gnu.org/licenses/.

Short Contents

T OVEIVIEW & ettt e 1
2 Background......... ... 2
Part It Testingot e 6
3 Testing Framework i 7
4 How towrite tests. 18
Part II: Validation i 19
5 Random Variables.......... 20
6 Propagation Loss Models 21

T References 23

Chapter 1: Overview 1

1 Overview

This document is concerned with the testing and validation of ns-3 software.
This document provides
e background about terminology and software testing (Chapter 2);
e a description of the ns-3 testing framework (Chapter 3);
e a guide to model developers or new model contributors for how to write tests (Chapter
4);
e validation and verification results reported to date (Chapters 5-onward).
In brief, the first three chapters should be read by ns developers and contributors who
need to understand how to contribute test code and validated programs, and the remainder

of the document provides space for people to report on what aspects of selected models
have been validated.

Chapter 2: Background 2

2 Background

[This chapter may be skipped by readers familiar with the basics of software testing.

Writing defect-free software is a difficult proposition. There are many dimensions to the
problem and there is much confusion regarding what is meant by different terms in different
contexts. We have found it worthwhile to spend a little time reviewing the subject and
defining some terms.

Software testing may be loosely defined as the process of executing a program with the
intent of finding errors. When one enters a discussion regarding software testing, it quickly
becomes apparent that there are many distinct mind-sets with which one can approach the
subject.

For example, one could break the process into broad functional categories like “correct-
ness testing,” “performance testing,” “robustness testing” and “security testing.” Another
way to look at the problem is by life-cycle: “requirements testing,” “design testing,” “accep-
tance testing,” and “maintenance testing.” Yet another view is by the scope of the tested
system. In this case one may speak of “unit testing,” “component testing,” “integration
testing,” and “system testing.” These terms are also not standardized in any way, and so
“maintenance testing” and “regression testing” may be heard interchangeably. Additionally,

these terms are often misused.

b ANN14

There are also a number of different philosophical approaches to software testing. For
example, some organizations advocate writing test programs before actually imlementing
the desired software, yielding “test-driven development.” Some organizations advocate
testing from a customer perspective as soon as possible, following a parallel with the agile
development process: “test early and test often.” This is sometimes called “agile testing.”
It seems that there is at least one approach to testing for every development methodology.

The ns-3 project is not in the business of advocating for any one of these processes, but
the project as a whole has requirements that help inform the test process.

Like all major software products, ns-3 has a number of qualities that must be present
for the product to succeed. From a testing perspective, some of these qualities that must
be addressed are that ns-3 must be “correct,” “robust,” “performant” and “maintainable.”
Ideally there should be metrics for each of these dimensions that are checked by the tests
to identify when the product fails to meet its expectations / requirements.

2.1 Correctness

The essential purpose of testing is to determine that a piece of software behaves “correctly.”
For ns-3 this means that if we simulate something, the simulation should faithfully represent
some physical entity or process to a specified accuracy and precision.

It turns out that there are two perspectives from which one can view correctness. Ver-
ifying that a particular model is implemented according to its specification is generically
called verification. The process of deciding that the model is correct for its intended use is
generically called validation.

Chapter 2: Background 3

2.2 Validation and Verification

A computer model is a mathematical or logical representation of something. It can represent
a vehicle, an elephant (see David Harel’s talk about modeling an elephant at SIMUTools
2009, or a networking card. Models can also represent processes such as global warming,
freeway traffic flow or a specification of a networking protocol. Models can be completely
faithful representations of a logical process specification, but they necessarily can never
completely simulate a physical object or process. In most cases, a number of simplifications
are made to the model to make simulation computationally tractable.

Every model has a target system that it is attempting to simulate. The first step in
creating a simulation model is to identify this target system and the level of detail and
accuracy that the simulation is desired to reproduce. In the case of a logical process, the
target system may be identified as “TCP as defined by RFC 793.” In this case, it will
probably be desirable to create a model that completely and faithfully reproduces RFC
793. In the case of a physical process this will not be possible. If, for example, you would
like to simulate a wireless networking card, you may determine that you need, “an accurate
MAC-level implementation of the 802.11 specification and [...] a not-so-slow PHY-level
model of the 802.11a specification.”

Once this is done, one can develop an abstract model of the target system. This is
typically an exercise in managing the tradeoffs between complexity, resource requiremens
and accuracy. The process of developing an abstract model has been called model quali-
fication in the literature. In the case of a TCP protocol, this process results in a design
for a collection of objects, interactions and behaviors that will fully implement RFC 793 in
ns-3. In the case of the wireless card, this process results in a number of tradeoffs to allow
the physical layer to be simulated and the design of a network device and channel for ns-3,
along with the desired objects, interactions and behaviors.

This abstract model is then developed into an ns-3 model that implements the abstract
model as a computer program. The process of getting the implementation to agree with
the abstract model is called model verification in the literature.

The process so far is open loop. What remains is to make a determination that a given
ns-3 model has some connection to some reality — that a model is an accurate representation
of a real system, whether a logical process or a physical entity.

If one is going to use a simulation model to try and predict how some real system is going
to behave, there must be some reason to believe your results — i.e., can one trust that an
inference made from the model translates into a correct prediction for the real system. The
process of getting the ns-3 model behavior to agree with the desired target system behavior
as defined by the model qualification process is called model validation in the literature. In
the case of a TCP implementation, you may want to compare the behavior of your ns-3
TCP model to some reference implementation in order to validate your model. In the case
of a wireless physical layer simulation, you may want to compare the behavior of your model
to that of real hardware in a controlled setting,

The ns-3 testing environment provides tools to allow for both model validation and
testing, and encourages the publication of validation results.

Chapter 2: Background 4

2.3 Robustness

Robustness is the quality of being able to withstand stresses, or changes in environments,
inputs or calculations, etc. A system or design is “robust” if it can deal with such changes
with minimal loss of functionality.

This kind of testing is usually done with a particular focus. For example, the system
as a whole can be run on many different system configurations to demonstrate that it can
perform correctly in a large number of environments.

The system can be also be stressed by operating close to or beyond capacity by generating
or simulating resource exhaustion of various kinds. This genre of testing is called “stress
testing.”

The system and its components may be exposed to so-called “clean tests” that de-
mostrate a positive result — that is that the system operates correctly in response to a large
variation of expected configurations.

The system and its components may also be exposed to “dirty tests” which provide inputs
outside the expected range. For example, if a module expects a zero-terminated string
representation of an integer, a dirty test might provide an unterminated string of random
characters to verify that the system does not crash as a result of this unexpected input.
Unfortunately, detecting such “dirty” input and taking preventive measures to ensure the
system does not fail catastrophically can require a huge amount of development overhead. In
order to reduce development time, a decision was taken early on in the project to minimize
the amount of parameter validation and error handling in the ns-3 codebase. For this
reason, we do not spend much time on dirty testing — it would just uncover the results of
the design decision we know we took.

We do want to demonstrate that ns-3 software does work across some set of conditions.
We borrow a couple of definitions to narrow this down a bit. The domain of applicability is
a set of prescribed conditions for which the model has been tested, compared against reality
to the extent possible, and judged suitable for use. The range of accuracy is an agreement
between the computerized model and reality within a domain of applicability.

The ns-3 testing environment provides tools to allow for setting up and running test
environments over multiple systems (buildbot) and provides classes to encourage clean tests
to verify the operation of the system over the expected “domain of applicability” and “range
of accuracy.”

2.4 Performant

Okay, “performant” isn’t a real English word. It is, however, a very concise neologism that
is quite often used to describe what we want ns-3 to be: powerful and fast enough to get
the job done.

This is really about the broad subject of software performance testing. One of the key
things that is done is to compare two systems to find which performs better (cf benchmarks).
This is used to demonstrate that, for example, ns-3 can perform a basic kind of simulation
at least as fast as a competing tool, or can be used to identify parts of the system that
perform badly.

In the ns-3 test framework, we provide support for timing various kinds of tests.

Chapter 2: Background)

2.5 Maintainability

A software product must be maintainable. This is, again, a very broad statement, but a
testing framework can help with the task. Once a model has been developed, validated and
verified, we can repeatedly execute the suite of tests for the entire system to ensure that it
remains valid and verified over its lifetime.

When a feature stops functioning as intended after some kind of change to the system is
integrated, it is called generically a regression. Originally the term regression referred to a
change that caused a previously fixed bug to reappear, but the term has evolved to describe
any kind of change that breaks existing functionality. There are many kinds of regressions
that may occur in practice.

A local regression is one in which a change affects the changed component directy. For
example, if a component is modified to allocate and free memory but stale pointers are
used, the component itself fails.

A remote regression is one in which a change to one component breaks functionality in
another component. This reflects violation of an implied but possibly unrecognized contract
between components.

An unmasked regression is one that creates a situation where a previously existing bug
that had no affect is suddenly exposed in the system. This may be as simple as exercising
a code path for the first time.

A performance regression is one that causes the performance requirements of the system
to be violated. For example, doing some work in a low level function that may be repeated
large numbers of times may suddenly render the system unusable from certain perspectives.

The ns-3 testing framework provides tools for automating the process used to validate
and verify the code in nightly test suites to help quickly identify possible regressions.

Part I: Testing

Part I: Testing

Chapter 3: Testing Framework 7

3 Testing Framework

ns-3 consists of a simulation core engine, a set of models, example programs, and tests. Over
time, new contributors contribute models, tests, and examples. A Python test program
‘test.py’ serves as the test execution manager; test.py can run test code and examples
to look for regressions, can output the results into a number of forms, and can manage
code coverage analysis tools. On top of this, we layer ‘Buildbots’ that are automated build
robots that perform robustness testing by running the test framework on different systems
and with different configuration options.

[Insert figure showing the components here

3.1 Buildbots

At the highest level of ns-3 testing are the buildbots (build robots). If you are unfamiliar
with this system look at http://djmitche.github.com/buildbot/docs/0.7.11/. This
is an open-source automated system that allows ns-3 to be rebuilt and tested each time
something has changed. By running the buildbots on a number of different systems we can
ensure that ns-3 builds and executes properly on all of its supported systems.

Users (and developers) typically will not interact with the buildbot system other than
to read its messages regarding test results. If a failure is detected in one of the automated
build and test jobs, the buildbot will send an email to the ns-developers mailing list. This
email will look something like:

The Buildbot has detected a new failure of osx-ppc-g++-4.2 on NsNam.
Full details are available at:
http://ns-regression.ee.washington.edu:8010/builders/osx-ppc-g42B2B-4.2/builds/0

Buildbot URL: http://ns-regression.ee.washington.edu:8010/
Buildslave for this Build: darwin-ppc
Build Reason: The web-page ’force build’ button was pressed by ’ww’: ww

Build Source Stamp: HEAD
Blamelist:

BUILD FAILED: failed shell_5 shell_6 shell_7 shell_8 shell_9 shell_10 shell_11 shell_12
sincerely,

-The Buildbot
In the full details URL shown in the email, one can search for the keyword failed and
select the stdio link for the corresponding step to see the reason for the failure.
The buildbot will do its job quietly if there are no errors, and the system will undergo
build and test cycles every day to verify that all is well.

3.2 Test.py

The buildbots use a Python program, test.py, that is reponsible for running all of the
tests and collecting the resulting reports into a human- readable form. This program is also
available for use by users and developers as well.

Chapter 3: Testing Framework 8

test.py is very flexible in allowing the user to specify the number and kind of tests to
run; and also the amount and kind of output to generate.

By default, test.py will run all available tests and report status back in a very concise
form. Running the command,

./test.py
will result in a number of PASS, FAIL, CRASH or SKIP indications followed by the kind of

test that was run and its display name.

Waf: Entering directory ‘/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
Waf: Leaving directory ‘/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
’build’ finished successfully (0.939s)

FAIL:
PASS:
PASS:
PASS:

PASS:
PASS:
PASS:

TestSuite ns3-wifi-propagation-loss-models
TestSuite object-name-service

TestSuite pcap-file-object

TestSuite ns3-tcp-cwnd

TestSuite ns3-tcp-interoperability
Example csma-broadcast
Example csma-multicast

This mode is indented to be used by users who are interested in determining if their
distribution is working correctly, and by developers who are interested in determining if
changes they have made have caused any regressions.

There are a number of options available to control the behavir of test.py. if you run
test.py ——help you should see a command summary like:

Usage: test.py [options]

Options:
-h, --help show this help message and exit
—-c KIND, --constrain=KIND

constrain the test-runner by kind of test

-e EXAMPLE, --example=EXAMPLE

specify a single example to run

-g, ——grind run the test suites and examples using valgrind

-k, --kinds print the kinds of tests available

-1, —-list print the list of known tests

-m, --multiple report multiple failures from test suites and test
cases

-n, --nowaf do not run waf before starting testing

-s TEST-SUITE, --suite=TEST-SUITE

specify a single test suite to run

-v, ——verbose print progress and informational messages
-w HTML-FILE, --web=HTML-FILE, --html=HTML-FILE

write detailed test results into HTML-FILE.html

-r, —-retain retain all temporary files (which are normally

deleted)

-t TEXT-FILE, --text=TEXT-FILE

write detailed test results into TEXT-FILE.txt

-x XML-FILE, --xml=XML-FILE

Chapter 3: Testing Framework 9

write detailed test results into XML-FILE.xml

If one specifies an optional output style, one can generate detailed descriptions of the
tests and status. Available styles are text and HTML. The buildbots will select the HTML
option to generate HTML test reports for the nightly builds using,

./test.py --html=nightly.html

In this case, an HTML file named “nightly.html” would be created with a pretty summary
of the testing done. A “human readable” format is available for users interested in the
details.

./test.py --text=results.txt

In the example above, the test suite checking the ns-3 wireless device propagation loss
models failed. By default no further information is provided.

To further explore the failure, test.py allows a single test suite to be specified. Running
the command,

./test.py --suite=ns3-wifi-propagation-loss-models
results in that single test suite being run.
FAIL: TestSuite ns3-wifi-propagation-loss-models

To find detailed information regarding the failure, one must specify the kind of output
desired. For example, most people will probably be interested in a text file:

./test.py --suite=ns3-wifi-propagation-loss-models --text=results.txt

This will result in that single test suite being run with the test status written to the file
“results.txt”.

You should find something similar to the following in that file:
FAIL: Test Suite ‘‘ns3-wifi-propagation-loss-models’’ (real 0.02 user 0.01 system 0.00)

PASS: Test Case "Check ... Friis ... model ..." (real 0.01 user 0.00 system 0.00)
FAIL: Test Case "Check ... Log Distance ... model" (real 0.01 user 0.01 system 0.00)
Details:

Message: Got unexpected SNR value

Condition: [long description of what actually failed]

Actual: 176.395

Limit: 176.407 +- 0.0005

File: ../src/test/ns3wifi/propagation-loss-models-test-suite.cc

Line: 360

Notice that the Test Suite is composed of two Test Cases. The first test case checked
the Friis propagation loss model and passed. The second test case failed checking the Log
Distance propagation model. In this case, an SNR of 176.395 was found, and the test
expected a value of 176.407 correct to three decimal places. The file which implemented
the failing test is listed as well as the line of code which triggered the failure.

If you desire, you could just as easily have written an HTML file using the ——htm1 option
as described above.

Typically a user will run all tests at least once after downloading ns-3 to ensure that
his or her environment has been built correctly and is generating correct results according
to the test suites. Developers will typically run the test suites before and after making a
change to ensure that they have not introduced a regression with their changes. In this case,
developers may not want to run all tests, but only a subset. For example, the developer
might only want to run the unit tests periodically while making changes to a repository. In

Chapter 3: Testing Framework

this case, test.py can be told to constrain the types of tests being run to a particular class
of tests. The following command will result in only the unit tests being run:

./test.py --constrain=unit
Similarly, the following command will result in only the example smoke tests being run:
./test.py --constrain=unit

To see a quick list of the legal kinds of constraints, you can ask for them to be listed.
The following command

./test.py —-kinds

will result in the following list being displayed:

Waf: Entering directory °/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
Waf: Leaving directory ‘/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
’build’ finished successfully (0.939s)Waf: Entering directory ‘/home/craigdo/repos/ns-3-allinone-test/ns-3-de

bvt: Build Verification Tests (to see if build completed successfully)
core: Run all TestSuite-based tests (exclude examples)

example: Examples (to see if example programs run successfully)

performance: Performance Tests (check to see if the system is as fast as expected)
system: System Tests (spans modules to check integration of modules)

unit: Unit Tests (within modules to check basic functionality)

Any of these kinds of test can be provided as a constraint using the --constraint
option.

To see a quick list of all of the test suites available, you can ask for them to be listed.
The following command,

./test.py --list

will result in a list of the test suite being displayed, similar to :
Waf: Entering directory ‘/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
Waf: Leaving directory ‘/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
’build’ finished successfully (0.939s)
histogram
ns3-wifi-interference
ns3-tcp-cwnd
ns3-tcp-interoperability
sample
devices-mesh-flame
devices-mesh-dotlls
devices-mesh

object-name-service

callback

attributes

config

global-value

command-line

basic-random-number

object

Any of these listed suites can be selected to be run by itself using the --suite option

as shown above.

Similarly to test suites, one can run a single example program using the --example
option.

./test.py --example=udp-echo

results in that single example being run.

Chapter 3: Testing Framework

PASS: Example udp-echo

Normally when example programs are executed, they write a large amount of trace file
data. This is normally saved to the base directory of the distribution (e.g., /home/user/ns-
3-dev). When test.py runs an example, it really is completely unconcerned with the trace
files. It just wants to to determine if the example can be built and run without error. Since
this is the case, the trace files are written into a /tmp/unchecked-traces directory. If
you run the above example, you should be able to find the associated udp-echo.tr and
udp-echo-n-1.pcap files there.

The list of available examples is defined by the contents of the “examples” directory
in the distribution. If you select an example for execution using the --example option,
test.py will not make any attempt to decide if the example has been configured or not, it
will just try to run it and report the result of the attempt.

When test.py runs, by default it will first ensure that the system has been completely
built. This can be defeated by selecting the ——nowaf option.

./test.py --list --nowaf
will result in a list of the currently built test suites being displayed, similar to :

ns3-wifi-propagation-loss-models
ns3-tcp-cwnd
ns3-tcp-interoperability
pcap-file-object
object-name-service
random-number—-generators

Note the absence of the Waf build messages.

test.py also supports running the test suites and examples under valgrind. Valgrind is
a flexible program for debugging and profiling Linux executables. By default, valgrind runs
a tool called memcheck, which performs a range of memory- checking functions, including
detecting accesses to uninitialised memory, misuse of allocated memory (double frees, access
after free, etc.) and detecting memory leaks. This can be selected by using the --grind
option.

./test.py --grind

As it runs, test.py and the programs that it runs indirectly, generate large numbers of
temporary files. Usually, the content of these files is not interesting, however in some cases
it can be useful (for debugging purposes) to view these files. test.py provides a --retain
option which will cause these temporary files to be kept after the run is completed. The
files are saved in a directory named testpy under a subdirectory named according to the
current Coordinated Universal Time (also known as Greenwich Mean Time).

./test.py --retain

Finally, test.py provides a —-verbose option which will print large amounts of infor-
mation about its progress. It is not expected that this will be terribly useful unless there
is an error. In this case, you can get access to the standard output and standard error
reported by running test suites and examples. Select verbose in the following way:

./test.py --verbose

Chapter 3: Testing Framework

All of these options can be mixed and matched. For example, to run all of the ns-3 core
test suites under valgrind, in verbose mode, while generating an HTML output file, one
would do:

./test.py --verbose --grind --constrain=core --html=results.html

3.3 Test Taxonomy

As mentioned above, tests are grouped into a number of broadly defined classifications to
allow users to selectively run tests to address the different kinds of testing that need to be
done.

e Build Verification Tests
e Unit Tests

e System Tests

e Examples

e Performance Tests

3.3.1 Build Verification Tests

These are relatively simple tests that are built along with the distribution and are used to
make sure that the build is pretty much working. Our current unit tests live in the source
files of the code they test and are built into the ns-3 modules; and so fit the description
of BVTs. BVTs live in the same source code that is built into the ns-3 code. Our current
tests are examples of this kind of test.

3.3.2 Unit Tests

Unit tests are more involved tests that go into detail to make sure that a piece of code
works as advertised in isolation. There is really no reason for this kind of test to be built
into an ns-3 module. It turns out, for example, that the unit tests for the object name
service are about the same size as the object name service code itself. Unit tests are tests
that check a single bit of functionality that are not built into the ns-3 code, but live in
the same directory as the code it tests. It is possible that these tests check integration
of multiple implementation files in a module as well. The file src/core/names-test-suite.cc
is an example of this kind of test. The file src/common/pcap-file-test-suite.cc is another
example that uses a known good pcap file as a test vector file. This file is stored locally in
the src/common directory.

3.3.3 System Tests

System tests are those that involve more than one module in the system. We have lots of this
kind of test running in our current regression framework, but they are typically overloaded
examples. We provide a new place for this kind of test in the directory “src/test”. The
file src/test/ns3tcp/ns3-interop-test-suite.cc is an example of this kind of test. It uses NSC
TCP to test the ns-3 TCP implementation. Often there will be test vectors required for
this kind of test, and they are stored in the directory where the test lives. For example,
ns3tcp-interop-response-vectors.pcap is a file consisting of a number of TCP headers that
are used as the expected responses of the ns-3 TCP under test to a stimulus generated by
the NSC TCP which is used as a “known good” implementation.

Chapter 3: Testing Framework

3.3.4 Examples

The examples are tested by the framework to make sure they built and will run. Nothing
is checked, and currently the pcap files are just written off into /tmp to be discarded. If
the examples run (don’t crash) they pass this smoke test.

3.3.5 Performance Tests

Performance tests are those which exercise a particular part of the system and determine if
the tests have executed to completion in a reasonable time.

3.4 Running Tests

Tests are typically run using the high level test.py program. They can also be run “man-
ually” using a low level test-runner executable directly from waf.

3.5 Running Tests Under the Test Runner Executable

The test-runner is the bridge from generic Python code to ns-3 code. It is written in C++
and uses the automatic test discovery process in the ns-3 code to find and allow execution
of all of the various tests.

Although it may not be used directly very often, it is good to understand how test.py
actually runs the various tests.

In order to execute the test-runner, you run it like any other ns-3 executable — using
waf. To get a list of available options, you can type:

./waf --run "test-runner --help"

You should see something like the following:

Waf: Entering directory °/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
Waf: Leaving directory ‘/home/craigdo/repos/ns-3-allinone-test/ns-3-dev/build’
’build’ finished successfully (0.353s)

--basedir=dir: Set the base directory (where to find src) to ‘‘dir’’
--constrain=test-type: Constrain checks to test suites of type ‘‘test-type’’

--help: Print this message

--kinds: List all of the available kinds of tests

--list: List all of the test suites (optionally constrained by test-type)
--out=file-name: Set the test status output file to ‘‘file-name’’
--suite=suite-name: Run the test suite named °‘suite-name’’

--verbose: Turn on messages in the run test suites

There are a number of things available to you which will be familiar to you if you have
looked at test.py. This should be expected since the test- runner is just an interface
between test.py and ns-3. You may notice that example-related commands are missing
here. That is because the examples are really not ns-3 tests. test.py runs them as if they
were to present a unified testing environment, but they are really completely different and
not to be found here.

One new option that appears here is the —-basedir option. It turns out that the tests
may need to reference the source directory of the ns-3 distribution to find local data, so a
base directory is always required to run a test. To run one of the tests directly from the
test-runner, you will need to specify the test suite to run along with the base directory. So
you could do,

Chapter 3: Testing Framework

./waf --run "test-runner --basedir=‘pwd‘ --suite=pcap-file-object"

Note the “backward” quotation marks on the pwd command. This will run the pcap-
file-object test quietly. The only indication that you will get that the test passed is the
absence of a message from waf saying that the program returned something other than a
zero exit code. To get some output from the test, you need to specify an output file to
which the tests will write their XML status using the -—out option. You need to be careful
interpreting the results because the test suites will append results onto this file. Try,

./waf --run "test-runner --basedir=‘pwd‘ --suite=pcap-file-object --out=myfile.xml’’

If you look at the file myfile.xml you should see something like,

<TestSuite>

<SuiteName>pcap-file-object</SuiteName>

<TestCase>
<CaseName>Check to see that PcapFile::Open with mode ‘w’’ works</CaseName>
<CaseResult>PASS</CaseResult>
<CaseTime>real 0.00 user 0.00 system 0.00</CaseTime>

</TestCase>

<TestCase>
<CaseName>Check to see that PcapFile::0Open with mode ‘r’’ works</CaseName>
<CaseResult>PASS</CaseResult>
<CaseTime>real 0.00 user 0.00 system 0.00</CaseTime>

</TestCase>

<TestCase>
<CaseName>Check to see that PcapFile::0Open with mode ‘‘a’’ works</CaseName>
<CaseResult>PASS</CaseResult>
<CaseTime>real 0.00 user 0.00 system 0.00</CaseTime>

</TestCase>

<TestCase>
<CaseName>Check to see that PcapFileHeader is managed correctly</CaseName>
<CaseResult>PASS</CaseResult>
<CaseTime>real 0.00 user 0.00 system 0.00</CaseTime>

</TestCase>

<TestCase>
<CaseName>Check to see that PcapRecordHeader is managed correctly</CaseName>
<CaseResult>PASS</CaseResult>
<CaseTime>real 0.00 user 0.00 system 0.00</CaseTime>

</TestCase>

<TestCase>
<CaseName>Check to see that PcapFile can read out a known good pcap file</CaseName>
<CaseResult>PASS</CaseResult>
<CaseTime>real 0.00 user 0.00 system 0.00</CaseTime>

</TestCase>

<SuiteResult>PASS</SuiteResult>

<SuiteTime>real 0.00 user 0.00 system 0.00</SuiteTime>

</TestSuite>

If you are familiar with XML this should be fairly self-explanatory. It is also not a
complete XML file since test suites are designed to have their output appended to a master
XML status file as described in the test.py section.

3.6 Class TestRunner

The executables that run dedicated test programs use a TestRunner class. This class pro-
vides for automatic test registration and listing, as well as a way to execute the individual
tests. Individual test suites use C++ global constructors to add themselves to a collection

Chapter 3: Testing Framework

of test suites managed by the test runner. The test runner is used to list all of the avail-
able tests and to select a test to be run. This is a quite simple class that provides three
static methods to provide or Adding and Getting test suites to a collection of tests. See the
doxygen for class ns3::TestRunner for details.

3.7 Test Suite

All ns-3 tests are classified into Test Suites and Test Cases. A test suite is a collection of
test cases that completely exercise a given kind of functionality. As described above, test
suites can be classified as,

e Build Verification Tests
e Unit Tests
System Tests

Examples

Performance Tests

This classification is exported from the TestSuite class. This class is quite simple, existing
only as a place to export this type and to accumulate test cases. From a user perspective,
in order to create a new TestSuite in the system one only has to define a new class that
inherits from class TestSuite and perform these two duties.

The following code will define a new class that can be run by test.py as a “unit” test
with the display name, “my-test-suite-name”.

class MySuite : public TestSuite

{
public:

MyTestSuite ();
};

MyTestSuite: :MyTestSuite ()
: TestSuite ("my-test-suite-name", UNIT)

{
AddTestCase (new MyTestCase);

}

MyTestSuite myTestSuite;

The base class takes care of all of the registration and reporting required to be a good
citizen in the test framework.

3.8 Test Case

Individual tests are created using a TestCase class. Common models for the use of a test
case include "one test case per feature", and "one test case per method." Mixtures of these
models may be used.

In order to create a new test case in the system, all one has to do is to inherit from the
TestCase base class, override the constructor to give the test case a name and override the
DoRun method to run the test.

Chapter 3: Testing Framework

class MyTestCase : public TestCase
{

MyTestCase ();

virtual bool DoRun (void);

};

MyTestCase: :MyTestCase ()

TestCase ("Check some bit of functionality")
{
}

bool

MyTestCase: :DoRun (void)

{
NS_TEST_ASSERT_MSG_EQ (true, true, "Some failure message");
return GetErrorStatus ();

¥

3.9 Utilities

There are a number of utilities of various kinds that are also part of the testing framework.
Examples include a generalized pcap file useful for storing test vectors; a generic container
useful for transient storage of test vectors during test execution; and tools for generating
presentations based on validation and verification testing results.

3.10 Debugging test suite failures

To debug test crashes, such as:
CRASH: TestSuite ns3-wifi-interference

You can access the underlying test-runner program via gdb as follows, and then pass
the "—basedir=‘pwd‘" argument to run (you can also pass other arguments as needed, but
basedir is the minimum needed)::

./waf --command-template="gdb %s" --run "test-runner"

Waf: Entering directory ‘/home/tomh/hg/sep09/ns-3-allinone/ns-3-dev-678/build’
Waf: Leaving directory ‘/home/tomh/hg/sep09/ns-3-allinone/ns-3-dev-678/build’
’build’ finished successfully (0.380s)

GNU gdb 6.8-debian

Copyright (C) 2008 Free Software Foundation, Inc.

L cense GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu"...

(gdb) r --basedir=‘pwd‘

Starting program: <..>/build/debug/utils/test-runner --basedir=‘pwd‘

[Thread debugging using libthread_db enabled]

assert failed. file=../src/core/type-id.cc, line=138, cond="uid <= m_information.size () && uid !'= 0"}

Here is another example of how to use valgrind to debug a memory problem such as:

Chapter 3: Testing Framework

VALGR: TestSuite devices-mesh-dotlls-regression

./waf --command-template="valgrind %s --basedir=‘pwd‘ --suite=devices-mesh-dotlls-regression" --run test-runner

Chapter 4: How to write tests

4 How to write tests

A primary goal of the ns-3 project is to help users to improve the validity and credibility
of their results. There are many elements to obtaining valid models and simulations, and
testing is a major component. If you contribute models or examples to ns-3, you may be
asked to contribute test code. Models that you contribute will be used for many years by
other people, who probably have no idea upon first glance whether the model is correct.
The test code that you write for your model will help to avoid future regressions in the
output and will aid future users in understanding the validity and bounds of applicability
of your models.

There are many ways to test that a model is valid. In this chapter, we hope to cover
some common cases that can be used as a guide to writing new tests.

4.1 Sample TestSuite skeleton

When starting from scratch (i.e. not adding a TestCase to an existing TestSuite), these
things need to be decided up front:

e What the test suite will be called

e What type of test it will be (Build Verification Test, Unit Test, System Test, or Per-
formance Test)

e Where the test code will live (either in an existing ns-3 module or separately in src/test/
directory). You will have to edit the wscript file in that directory to compile your new
code, if it is a new file.

See the file src/test/sample-test-suite.cc and corresponding wscript file in that
directory for a simple example, and see the directories under src/test for more complicated
examples.

[The rest of this chapter remains to be written

4.2 How to add an example program to the test suite
4.3 Testing for boolean outcomes

4.4 Testing outcomes when randomness is involved
4.5 Testing output data against a known distribution
4.6 Providing non-trivial input vectors of data

4.7 Storing and referencing non-trivial output data

4.8 Presenting your output test data

Part II: Validation

Part II: Validation

The goal of the remainder of this document is to list some validation results for the models of
ns-3. This extends beyond test code; for instance, results that compare simulation results
with actual field experiments or with textbook results, or even with the results of other
simulators, are welcome here. If your validation results exist in another published report or
web location, please add a reference here.

Chapter 5: Random Variables

5 Random Variables

[Wm'te me

Chapter 6: Propagation Loss Models

6 Propagation Loss Models
This chapter describes validation of ns-3 propagation loss models.

6.1 FriisPropagationLossModel

6.1.1 Model reference

From source: Wireless Communications-Principles and Practice
Given equation:
Pr = Pt*Gt*Gr*lmb~2/((4*pi) ~2xd"2*L)

Pt 107(17.0206/10) /1073 = .05035702
Pr = .05035702%.12572/((4*pi) "2*d*1) = 4.98265e-6/d"2

bandwidth = 2.2%1077

m_noiseFigure = 5.01187

noiseFloor = ((Thermal noise (K)* BOLTZMANN * bandwidth)* m_noiseFigure)
noiseFloor = ((290%1.3803*%107-23%2.2%1077)*5.01187) = 4.41361e-13W

no interference, so SNR = Pr/4.41361e-13W

Distance Pr HH SNR

100 4.98265e-10W 1128.93
500 1.99306e-11W 45.1571
1000 4.98265e-12W 11.2893
2000 1.24566e-12W 2.82232
3000 5.53628e-13W 1.25436
4000 3.11416e-13W 0.70558
5000 1.99306e-13W 0.451571
6000 1.38407e-13W 0.313591

6.1.2 Validation test

Test program available in ns-3 at src/devices/wifi/propagation-loss-model-test-
suite.cc

Taken with values (lambda = 0.125m for 802.11b at 2.4GHz, SystemLoss = 1):

Distance HH Pr

100 4.98265e-10W
500 1.99306e-11W
1000 4.98265e-12W
2000 1.24566e-12W

6.1.3 Discussion

As can be seen, the received power outputted from the model, and the power computed
from the source’s equation are identical. The test suite tests the expected value to the most
significant digit of the input expected value.

6.2 LogDistancePropagationLossModel

6.2.1 Model reference

From source: Urban Propagation Measurements and Statistical Path Loss Model at 3.5
GHz

Chapter 6: Propagation Loss Models

Given equation:
PL{dBm} = PL(d0) + 10*n*log(d/d0) + Xs

PL(1) from friis at 2.4GHz: 40.045997dBm
PL{dBm} = 10%log(.050357/Pr) = 40.045997 + 10*n*log(d) + Xg
Pr = .050357/(107((40.045997 + 10*n*log(d) + Xg)/10))

bandwidth = 2.2*%1077
m_noiseFigure = 5.01187
no interference, so SNR = Pr/4.41361e-13W

taking Xg to be constant at 0 to match ns-3 output:

Distance HH Pr HH SNR

10 4.98265e-9 11289.3
20 6.22831e-10 1411.16
40 7.78539%e-11 176.407
60 2.30678e-11 52.2652
80 9.73173e-12 22.0494
100 4.98265e-12 11.2893
200 6.22831e-13 1.41116
500 3.98612e-14 .090314
1000 4.98265e-15 .011289

6.2.2 Validation test

Test program available in ns-3 at src/devices/wifi/propagation-loss-model-test-
suite.cc

Taken at default settings (exponent = 3, reference loss = 46.6777, 802.11b at 2.4GHz)

Distance HH Pr

10 4.98265e-9
20 6.22831e-10
40 7.7853%e-11
80 9.73173e-12

6.2.3 Discussion

As can be seen, the received power outputted from the model, and the power computed
from the source’s equation are identical. The test suite tests the expected value to the most
significant digit of the input expected value.

Chapter 7: References

7 References

The following work about the validation of ns-3 models is published elsewhere.

[Write me

(Index is nonexistent)

