
1 

NS-3 Tutorial 
 
  Tom Henderson (University of Washington and  

Boeing Research & Technology) 
Mathieu Lacage (Alcméon) 

  
March 2013 



2 

ns-3 tutorial agenda 

• 13h00-15h00:  Getting started with ns-3 
 
 
• 15h00-15h30:  30-minute coffee break  
• 15h30-17h00:  Going further with ns-3 
 
 
 
 

•  Overview of software and models 
•  Basic structure of the core and important models 
•  Running and understanding an existing example 
•  Animation and visualization 

•  Writing and debugging your own examples 
•  Integrating other tools and libraries 
•  Parallel simulations 
•  Emulation, virtual machine and testbed integration 
•  Getting help and getting involved 

NS-3 Consortium Meeting 
March 2013 



3 

Preliminaries 

• ns-3 is written in C++, with bindings available 
for Python 
– simulation programs are C++ executables or 

Python programs 
– ~300,000 lines of mostly C++ (estimate based on 

cloc source code analysis) 

• ns-3 is a GNU GPLv2-licensed project 
• ns-3 is mainly supported for Linux, OS X, and 

FreeBSD 
• ns-3 is not backwards-compatible with ns-2 
 

NS-3 Consortium Meeting 
March 2013 



Preliminaries (cont.) 

• Where do I get ns-3? 
– http://www.nsnam.org 

 
• Where do I get today's code? 

– http://www.nsnam.org/release/ns-allinone-
3.16.tar.bz2 

NS-3 Consortium Meeting 
March 2013 

4 



What have people done with ns-3? 

• ~300 publications to date 
– search of 'ns-3 simulator' on IEEE and ACM digital 

libraries 

NS-3 Consortium Meeting 
March 2013 

5 



What have people done with ns-3? 

• Educational use (from ns-3 wiki) 

NS-3 Consortium Meeting 
March 2013 

6 



Software introduction 

• Download the latest release 
– wget http://www.nsnam.org/releases/ns-allinone-
3.16.tar.bz2 

– tar xjf ns-allinone-3.16.tar.bz2 

• Clone the latest development code 
– hg clone http://code.nsnam.org/ns-3-allinone 

NS-3 Consortium Meeting 
March 2013 

Q.  What is "hg clone"?   
A.  Mercurial (http://www.selenic.com) is our source 
code control tool.  

7 
7 



Software organization 

• Two levels of ns-3 software and libraries 

NS-3 Consortium Meeting 
March 2013 

ns-3 Click routing Netanim pybindgen 

module 

module module 

module 

module 

module 

1) Several supporting libraries, not system-installed, can be in parallel to ns-3 

2) ns-3 modules exist 
within the ns-3 directory 

8 



Current models 

core 

network 

applications 

internet 
(IPv4/v6) 

propagation 

mobility 

mpi 

energy 

bridge 

csma 

emu 

point-to- 
point 

spectrum 

tap-bridge 

virtual- 
net-device 

wifi lte 

wimax 

devices 

uan 

mesh 

9 

nix-vector- 
routing 

aodv 

dsdv 

olsr 

click 

protocols 

openflow 

NS-3 Consortium Meeting 
March 2013 

flow-monitor 

BRITE 

topology- 
read 

utilities 

stats 

config- 
store 

netanim 

visualizer 



Current models 

core 

network 

applications 

internet 
(IPv4/v6) 

propagation 

mobility 

mpi 

energy 

bridge 

csma 

emu 

point-to- 
point 

spectrum 

tap-bridge 

virtual- 
net-device 

wifi lte 

wimax 

devices 

uan 

mesh 

10 

nix-vector- 
routing 

aodv 

dsdv 

olsr 

click 

protocols 

openflow 

NS-3 Consortium Meeting 
March 2013 

flow-monitor 

BRITE 

topology- 
read 

utilities 

stats 

config- 
store 

netanim 

visualizer 

Smart pointers 
Dynamic types 
Attributes 

Callbacks 
Tracing 
Logging 
Random Variables Events 

Scheduler 
Time arithmetic 

Packets 
Packet Tags 
Packet Headers 
Pcap/ascii file writing 

Node class 
NetDevice ABC 
Address types 
(Ipv4, MAC, etc.) 
Queues 
Socket ABC 
Ipv4 ABCs 
Packet sockets 



Module organization 

• models/ 
• examples/ 
• tests/ 
• bindings/ 
• doc/ 
• wscript 

NS-3 Consortium Meeting 
March 2013 

11 



Software building 

• Two levels of ns-3 build 

NS-3 Consortium Meeting 
March 2013 

ns-3 click routing 
Network 
Simulation 
Cradle 

pybindgen 

module 

module module 

module 

module 

module 

1) build.py (a custom Python build script to control an ordered build of  
    ns-3 and its libraries) 

2) waf, a build system written in Python 

12 



13 

ns-3 uses the 'waf' build system 

• Waf is a Python-based framework for 
configuring, compiling and installing 
applications.  
– It is a replacement for other tools such as 

Autotools, Scons, CMake or Ant  
– http://code.google.com/p/waf/ 

• For those familiar with autotools: 
• configure           ./waf configure 
• make           ./waf build 

 
 NS-3 Consortium Meeting 

March 2013 



waf configuration 

• Key waf configuration examples 
./waf configure 

--enable-examples 

--enable-tests 

--disable-python 

--enable-modules 

• Whenever build scripts change, need to 
reconfigure 
 

NS-3 Consortium Meeting 
March 2013 

14 

Demo:  ./waf --help 
       ./waf configure --enable-examples --
enable-tests --enable-modules='core' 

Look at:  build/c4che/_cache.py  



wscript example 

## -*- Mode: python; py-indent-offset: 4; indent-tabs-mode: nil; coding: utf-8; -*- 
 
def build(bld): 
    obj = bld.create_ns3_module('csma', ['network', 'applications']) 
    obj.source = [ 
        'model/backoff.cc', 
        'model/csma-net-device.cc', 
        'model/csma-channel.cc', 
        'helper/csma-helper.cc', 
        ] 
    headers = bld.new_task_gen(features=['ns3header']) 
    headers.module = 'csma' 
    headers.source = [ 
        'model/backoff.h', 
        'model/csma-net-device.h', 
        'model/csma-channel.h', 
        'helper/csma-helper.h', 
        ] 
 
    if bld.env['ENABLE_EXAMPLES']: 
        bld.add_subdirs('examples') 
 
    bld.ns3_python_bindings() 

NS-3 Consortium Meeting 
March 2013 

15 



waf build 

• Once project is configured, can build via 
./waf build or ./waf  

• waf will build in parallel on multiple cores 
• waf displays modules built at end of build 

NS-3 Consortium Meeting 
March 2013 

Demo:  ./waf build 
        

Look at:  build/  libraries and executables 



Running programs 

• ./waf shell provides a special shell for 
running programs 
– Sets key environment variables 

 
./waf --run sample-simulator 

./waf --pyrun src/core/examples/sample-
simulator.py 

NS-3 Consortium Meeting 
March 2013 



18 

Discrete-event simulation basics 

• Simulation time moves in discrete jumps from 
event to event 

• C++ functions schedule events to occur at 
specific simulation times 

• A simulation scheduler orders the event 
execution 

• Simulation::Run() gets it all started 
• Simulation stops at specific time or when events 

end 

NS-3 Consortium Meeting 
March 2013 



Simulator example 

NS-3 Consortium Meeting 
March 2013 

19 



Simulator example (in Python) 

NS-3 Consortium Meeting 
March 2013 

20 



Command-line arguments 

• Add CommandLine to your program if you want 
command-line argument parsing 

 
 

• Passing --PrintHelp to programs will display command 
line options, if CommandLine is enabled 

./waf --run "sample-simulator --PrintHelp" 

NS-3 Consortium Meeting 
March 2013 

21 



Time in ns-3 

• Time is stored as a large integer in ns-3 
– Avoid floating point discrepancies across platforms 

• Special Time classes are provided to manipulate 
time (such as standard operators) 

• Default time resolution is nanoseconds, but can 
be set to other resolutions 

• Time objects can be set by floating-point values 
and can export floating-point 
double timeDouble = t.GetSeconds(); 

NS-3 Consortium Meeting 
March 2013 

22 



Events in ns-3 

• Events are just function calls that execute 
at a simulated time 
– i.e. callbacks 

• Events have IDs to allow them to be 
cancelled or to test their status 

NS-3 Consortium Meeting 
March 2013 

23 



Simulator and Schedulers 

• The Simulator class holds a scheduler, 
and provides the API to schedule events, 
start, stop, and cleanup memory 

• Several scheduler data structures 
(calendar, heap, list, map) are possible 

• A "RealTime" simulation implementation is 
possible 
– aligns the simulation time to wall-clock time 

 
NS-3 Consortium Meeting 

March 2013 

24 



Random Variables 

 
• Currently implemented distributions 

– Uniform: values uniformly distributed in an interval 
– Constant: value is always the same (not really random) 
– Sequential: return a sequential list of predefined values 
– Exponential: exponential distribution (poisson process) 
– Normal (gaussian), Log-Normal, Pareto, Weibull, triangular 
 
 
 
 

from src/core/examples/sample-rng-plot.py 

NS-3 Consortium Meeting 
March 2013 

25 



Random variables and independent 
replications 

• Many simulation uses involve running a 
number of independent replications of the 
same scenario 

 
• In ns-3, this is typically performed by 

incrementing the simulation run number 
– not by changing seeds 

NS-3 Consortium Meeting 
March 2013 

26 



ns-3 random number generator 

• Uses the MRG32k3a generator from Pierre 
L'Ecuyer  
– http://www.iro.umontreal.ca/~lecuyer/myftp/papers/str

eams00.pdf 
– Period of PRNG is 3.1x10^57 

• Partitions a pseudo-random number generator 
into uncorrelated streams and substreams 
– Each RandomVariableStream gets its own stream 
– This stream partitioned into substreams 

NS-3 Consortium Meeting 
March 2013 

27 



Run number vs. seed 

• If you increment the seed of the PRNG, the 
streams of random variable objects across 
different runs are not guaranteed to be 
uncorrelated 

• If you fix the seed, but increment the run 
number, you will get an uncorrelated substream 

NS-3 Consortium Meeting 
March 2013 

28 



Putting it together 

• Example of scheduled event 

NS-3 Consortium Meeting 
March 2013 

Demo real-time, command-line, random variables... 
29 



Build variations 

• Configure a build type is done at waf 
configuration time 

• debug build (default):  all asserts and 
debugging code enabled 
./waf -d debug configure 

• optimized 
./waf -d optimized configure 

• static libraries 
./waf --enable-static configure 

NS-3 Consortium Meeting 
March 2013 

30 



Controlling the modular build 

• One way to disable modules: 
–  ./waf configure --enable-modules='a','b','c' 

• The .ns3rc file (found in utils/ directory) can be used to 
control the modules built 

• Precedence in controlling build 
1) command line arguments 
2) .ns3rc in ns-3 top level directory 
3) .ns3rc in user's home directory 

NS-3 Consortium Meeting 
March 2013 

31 

Demo how .ns3rc works 



Building without wscript 

• The scratch/ directory can be used to build 
programs without wscripts 

NS-3 Consortium Meeting 
March 2013 

32 

Demo how programs can be built without wscripts 



33 

APIs 

• Most of the ns-3 API is documented with 
Doxygen 
– http://www.stack.nl/~dimitri/doxygen/ 

 

NS-3 Consortium Meeting 
March 2013 



Review of topics covered 

• Software layout 
• Software build 
• Library documentation 
• Basic discrete-event simulation concepts 
• Control of randomness 
• Simulation time 
• A simple C++ ns-3 program 
• A simple Python ns-3 program 

 
NS-3 Consortium Meeting 

March 2013 

34 



ns-3 

Walkthrough of WiFi Internet example 

35 



ns-3 
36 

Application 

The basic model 

Application 

Protocol 
stack 

Node 

NetDevice NetDevice 

Application Application 

Protocol 
stack 

Node 

NetDevice NetDevice 

Sockets-like 
 API 

Channel 

Channel 

Packet(s)  



Example program 

• examples/wireless/wifi-simple-adhoc-
grid.cc 

• examine wscript for necessary modules 
– 'internet', 'mobility', 'wifi', 'config-store', 
'tools' 

– we'll add 'visualizer' 

 
• ./waf configure --enable-examples --
enable-modules=... 

NS-3 Consortium Meeting 
March 2013 

37 



Example program 

• (5x5) grid of WiFi ad hoc nodes 
• OLSR packet routing 
• Try to send packet from one node to another 

WiFi 
•  Goal is to read and  
understand the high-level 
ns-3 API 

NS-3 Consortium Meeting 
March 2013 

Source (node 24) by default 

Sink (node 0) by default 
38 



ns-3 

Fundamentals 

Key objects in the simulator are Nodes, 
Packets, and Channels 

 
Nodes contain Applications, “stacks”, and 

NetDevices 

39 



ns-3 
40 

Node basics 

A Node is a shell of a computer to which 
applications, stacks, and NICs are added 

Application 
Application 

Application 

“DTN” 



ns-3 
41 

NetDevices and Channels 

NetDevices are strongly bound to Channels 
of a matching type 

 
 
 
 
 
Nodes are architected for multiple interfaces 

WifiNetDevice 

WifiChannel 



ns-3 

Internet Stack 

• Internet Stack 
– Provides IPv4 and some IPv6 models 

currently 
• No non-IP stacks presently in ns-3 

– but no dependency on IP in the devices, 
Node, Packet, etc. 

– some activity on IEEE 802.15.4-based models 

42 



ns-3 

Other basic models in ns-3 

• Devices 
– WiFi, WiMAX, CSMA, Point-to-point, Bridge 

• Error models and queues 
• Applications 

– echo servers, traffic generator 
• Mobility models 
• Packet routing 

– OLSR, AODV, DSR, DSDV, Static, Nix-
Vector, Global (link state) 

 
43 



ns-3 

ns-3 Packet 

• Packet is an advanced data structure with 
the following capabilities 
– Supports fragmentation and reassembly 
– Supports real or virtual application data 
– Extensible 
– Serializable (for emulation) 
– Supports pretty-printing 
– Efficient (copy-on-write semantics) 

44 



ns-3 

ns-3 Packet structure 

• Analogous to an mbuf/skbuff 

45 



ns-3 

Copy-on-write 

• Copy data bytes only as needed 

46 



ns-3 

Structure of an ns-3 program 
int main (int argc, char *argv[]) 
{ 
  
  // Set default attribute values 
 
  // Parse command-line arguments 
 
  // Configure the topology; nodes, channels, devices, mobility 
 
  // Add (Internet) stack to nodes 
 
  // Configure IP addressing and routing 
 
  // Add and configure applications 
 
  // Configure tracing 
 
  // Run simulation 
}  
 

47 



ns-3 

Review of example program 

 

48 



ns-3 

Helper API 

• The ns-3 “helper API” provides a set of classes 
and methods that make common operations 
easier than using the low-level API 

• Consists of: 
– container objects 
– helper classes 

• The helper API is implemented using the low-
level API 

• Users are encouraged to contribute or propose 
improvements to the ns-3 helper API 

49 



ns-3 

Containers 

• Containers are part of the ns-3 “helper 
API” 

• Containers group similar objects, for 
convenience 
– They are often implemented using C++ std 

containers 
• Container objects also are intended to 

provide more basic (typical) API 

50 



ns-3 
51 

The Helper API (vs. low-level API) 

• Is not generic 
• Does not try to allow code reuse 
• Provides simple 'syntactical sugar' to make 

simulation scripts look nicer and easier to 
read for network researchers 

• Each function applies a single operation on 
a ''set of same objects” 



ns-3 
52 

Helper Objects 

• NodeContainer: vector of Ptr<Node> 
• NetDeviceContainer: vector of Ptr<NetDevice> 
• InternetStackHelper 
• WifiHelper 
• MobilityHelper 
• OlsrHelper 
• ... Each model provides a helper class 



Example program 

• (5x5) grid of WiFi ad hoc nodes 
• OLSR packet routing 
• Try to send packet from one node to another 

WiFi 

NS-3 Consortium Meeting 
March 2013 

Source (node 24) by default 

Sink (node 0) by default 
53 

•  Let’s look closely at how 
these objects are created 



Installation onto containers 

• Installing models into containers, and 
handling containers, is a key API theme 
 

NodeContainer c; 

c.Create (numNodes); 

... 

mobility.Install (c); 

... 

internet.Install (c); 

... 

 
NS-3 Consortium Meeting 

March 2013 

54 



ns-3 

Mobility models in ns-3 
• The MobilityModel interface: 

– void SetPosition (Vector pos) 
– Vector GetPosition () 

• StaticMobilityModel 
– Node is at a fixed location; does not move on its own 

• RandomWaypointMobilityModel 
– (works inside a rectangular bounded area) 
– Node pauses for a certain random time 
– Node selects a random waypoint and speed 
– Node starts walking towards the waypoint 
– When waypoint is reached, goto first state 

• RandomDirectionMobilityModel 
– works inside a rectangular bounded area) 
– Node selects a random direction and speed 
– Node walks in that direction until the edge 
– Node pauses for random time 
– Repeat 3D Cartesian coordinate system 

z y 

x 

55 



ns-3 

Internet stack 

•  The public interface of 
the Internet stack is 
defined (abstract base 
classes) in  
src/network/model 
directory 
• The intent is to support 
multiple implementations 
• The default ns-3 Internet 
stack is implemented in 
src/internet-stack 

56 



ns-3 

ns-3 TCP 

• Several options exist: 
– native ns-3 TCP 

– Tahoe, Reno, NewReno (others in development) 
– TCP simulation cradle (NSC) 
– Use of virtual machines or DCE (more on this 

later) 
 

• To enable NSC: 
internetStack.SetNscStack ("liblinux2.6.26.so");  

57 



ns-3 

ns-3 simulation cradle 

• Port by Florian Westphal of Sam Jansen’s Ph.D. work 

Figure reference:  S. Jansen, Performance, validation and testing with the Network  
Simulation Cradle. MASCOTS 2006.  

58 



ns-3 

ns-3 simulation cradle 

For ns-3: 
• Linux 2.6.18 
• Linux 2.6.26 
• Linux 2.6.28 
 
Others: 
• FreeBSD 5 
• lwip 1.3 
• OpenBSD 3 
 
Other simulators: 
• ns-2 
• OmNET++ 

Figure reference:  S. Jansen, Performance, validation and testing with the Network  
Simulation Cradle. MASCOTS 2006.  

59 



ns-3 

IPv4 address configuration 

• An Ipv4 address helper can assign 
addresses to devices in a NetDevice 
container  

  Ipv4AddressHelper ipv4; 
  ipv4.SetBase ("10.1.1.0", "255.255.255.0"); 
  csmaInterfaces = ipv4.Assign (csmaDevices); 
 
  ... 
 
  ipv4.NewNetwork ();  // bumps network to 10.1.2.0 
  otherCsmaInterfaces = ipv4.Assign (otherCsmaDevices); 

60 



ns-3 

Applications and sockets 

• In general, applications in ns-3 derive from 
the ns3::Application base class 
– A list of applications is stored in the ns3::Node 
– Applications are like processes 

• Applications make use of a sockets-like 
API 
– Application::Start () may call 

ns3::Socket::SendMsg() at a lower layer 

61 



ns-3 

Sockets API 
Plain C sockets 
 
int sk; 
sk = socket(PF_INET, SOCK_DGRAM, 0); 
 
struct sockaddr_in src; 
inet_pton(AF_INET,”0.0.0.0”,&src.sin_ad

dr); 
src.sin_port = htons(80); 
bind(sk, (struct sockaddr *) &src, 

sizeof(src)); 
 
struct sockaddr_in dest; 
inet_pton(AF_INET,”10.0.0.1”,&dest.sin_

addr); 
dest.sin_port = htons(80); 
sendto(sk, ”hello”, 6, 0, (struct 

sockaddr *) &dest, sizeof(dest)); 
 
char buf[6]; 
recv(sk, buf, 6, 0); 
} 

ns-3 sockets 
 
Ptr<Socket> sk =  
udpFactory->CreateSocket (); 
 
 
sk->Bind (InetSocketAddress (80)); 
 
 
 
 
 
sk->SendTo (InetSocketAddress (Ipv4Address 

(”10.0.0.1”), 80), Create<Packet> 
(”hello”, 6)); 

 
 
 
 
sk->SetReceiveCallback (MakeCallback 

(MySocketReceive)); 
• […] (Simulator::Run ()) 
 
void MySocketReceive (Ptr<Socket> sk, 

Ptr<Packet> packet) 
{ 
... 
} 62 



63 

ns-3 tutorial agenda 

• 13h00-15h00:  Getting started with ns-3 
 
• 15h00-15h30:  30-minute coffee break  
• 15h40-17h15:  Going further with ns-3 
 
 
 

•  Overview of software and models 
•  Basic structure of the core and important models 
•   

•  Running and understanding an existing example 
•  Animation and visualization 
•  Writing and debugging your own examples 
•  Integrating other tools and libraries 
•  Parallel simulations 
•  Emulation, virtual machine and testbed integration 
•  Getting help and getting involved 

NS-3 Consortium Meeting 
March 2013 



Attributes and default values 

NS-3 Consortium Meeting 
March 2013 

64 



ns-3 
65 

ns-3 attribute system 

Problem:  Researchers want to identify all of the values 
affecting the results of their simulations 

– and configure them easily 
ns-3 solution:  Each ns-3 object has a set of attributes: 

– A name, help text 
– A type 
– An initial value 

• Control all simulation parameters for static objects 
• Dump and read them all in configuration files 
• Visualize them in a GUI 
• Makes it easy to verify the parameters of a simulation 



ns-3 
66 

Short digression: Object metadata 
system 

• ns-3 is, at heart, a C++ object system 
• ns-3 objects that inherit from base class 

ns3::Object get several additional features 
– dynamic run-time object aggregation 
– an attribute system 
– smart-pointer memory management (Class 

Ptr) 

We focus here on the attribute system 



ns-3 
67 

Use cases for attributes 

• An Attribute represents a value in our 
system 

• An Attribute can be connected to an 
underlying variable or function  
– e.g. TcpSocket::m_cwnd; 
– or a trace source 



ns-3 
68 

Use cases for attributes (cont.)  

• What would users like to do? 
– Know what are all the attributes that affect the 

simulation at run time 
– Set a default initial value for a variable 
– Set or get the current value of a variable 
– Initialize the value of a variable when a 

constructor is called 
• The attribute system is a unified way of 

handling these functions 



ns-3 
69 

How to handle attributes 

• The traditional C++ way: 
– export attributes as part of a class's public API 
– walk pointer chains (and iterators, when 

needed) to find what you need 
– use static variables for defaults 

• The attribute system provides a more 
convenient API to the user to do these 
things 



ns-3 
70 

Navigating the attributes 

• Attributes are exported into a string-based 
namespace, with filesystem-like paths 
– namespace supports regular expressions 

• Attributes also can be used without the 
paths 
– e.g. “ns3::WifiPhy::TxGain” 

• A Config class allows users to manipulate 
the attributes 



ns-3 

Attribute namespace 

• strings are used 
to describe paths 
through the 
namespace 

  

Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipv4.tcp_sack", StringValue ("0")); 

71 



ns-3 
72 

Navigating the attributes using paths 

• Examples: 
– Nodes with NodeIds 1, 3, 4, 5, 8, 9, 10, 11: 

“/NodeList/[3-5]|[8-11]|1” 

– UdpL4Protocol object instance aggregated to 
matching nodes: 
“/$ns3::UdpL4Protocol” 

 

 



ns-3 
73 

What users will do 

• e.g.: Set a default initial value for a 
variable 
Config::Set (“ns3::WifiPhy::TxGain”, 
DoubleValue (1.0)); 

• Syntax also supports string values: 
Config::Set (“WifiPhy::TxGain”, StringValue 
(“1.0”)); 

Attribute Value 



ns-3 
74 

Fine-grained attribute handling 

• Set or get the current value of a variable 
– Here, one needs the path in the namespace to 

the right instance of the object 
Config::SetAttribute(“/NodeList/5/DeviceList/3/Ph
y/TxGain”, DoubleValue(1.0)); 

DoubleValue d; nodePtr->GetAttribute ( 
“/NodeList/5/NetDevice/3/Phy/TxGain”, v); 

• Users can get Ptrs to instances also, and 
Ptrs to trace sources, in the same way 



ns-3 
75 

ns-3 attribute system 

• Object attributes 
are organized and 
documented in the 
Doxygen 

 
• Enables the 

construction of 
graphical 
configuration tools: 



ns-3 

Attribute documentation 

76 



ns-3 

Options to manipulate attributes 
• Individual object attributes often derive from default values 

– Setting the default value will affect all subsequently created objects 
– Ability to configure attributes on a per-object basis 

• Set the default value of an attribute from the command-line: 
CommandLine cmd; 
cmd.Parse (argc, argv); 

• Set the default value of an attribute with NS_ATTRIBUTE_DEFAULT 
• Set the default value of an attribute in C++: 

Config::SetDefault ("ns3::Ipv4L3Protocol::CalcChecksum", 
BooleanValue (true)); 

• Set an attribute directly on a specic object: 
Ptr<CsmaChannel> csmaChannel = ...; 
csmaChannel->SetAttribute ("DataRate", 
StringValue ("5Mbps")); 

 

77 



ns-3 

Object names 

• It can be helpful to refer to objects by a 
string name 
– “access point” 
– “eth0” 

• Objects can now be associated with a 
name, and the name used in the attribute 
system 

78 



ns-3 

Names example 
NodeContainer n;  
n.Create (4);  
Names::Add ("client", n.Get (0));  
Names::Add ("server", n.Get (1));  
... 
 
Names::Add ("client/eth0", d.Get (0));  
... 
 
Config::Set ("/Names/client/eth0/Mtu", UintegerValue 

(1234));  
 

Equivalent to: 
 
Config::Set (“/NodeList/0/DeviceList/0/Mtu”, UintegerValue 

(1234)); 

79 



ns-3 
80 

Tracing and statistics 

• Tracing is a structured form of simulation 
output 

• Example (from ns-2): 
+ 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610 
- 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610 
r 1.84471 2 1 cbr 210 ------- 1 3.0 1.0 195 600 
r 1.84566 2 0 ack 40 ------- 2 3.2 0.1 82 602 
+ 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611 

Problem:  Tracing needs vary widely 
– would like to change tracing output without 

editing the core 
– would like to support multiple outputs 



ns-3 
81 

Tracing overview 

• Simulator provides a set of pre-configured 
trace sources 
– Users may edit the core to add their own 

• Users provide trace sinks and attach to the 
trace source 
– Simulator core provides a few examples for 

common cases 
• Multiple trace sources can connect to a 

trace sink 



Tracing in ns-3 

• ns-3 configures multiple 'TraceSource' objects 
(TracedValue, TracedCallback) 

• Multiple types of 'TraceSink' objects can be hooked to 
these sources 

• A special configuration namespace helps to manage 
access to trace sources 

NS-3 Consortium Meeting 
March 2013 

TraceSource 

TracedValue 

TraceSource 

Config::Connect ("/path/to/traced/value", callback1); 

Config::Connect ("/path/to/trace/source", callback2); 

unattached 

82 



NetDevice trace hooks 

• Example:  CsmaNetDevice 

NS-3 Consortium Meeting 
March 2013 

CsmaNetDevice::Send () 

CsmaNetDevice:: 
TransmitStart() 

CsmaNetDevice:: 
Receive() 

CsmaChannel 

NetDevice:: 
ReceiveCallback 

queue 

MacRx 
MacDrop 

MacTx 

MacTxBackoff 

PhyTxBegin 
PhyTxEnd PhyTxDrop 

Sniffer 
PromiscSniffer 

PhyRxEnd 
PhyRxDrop 

83 



Enabling tracing in your code 

• examples/tutorial/third.cc 

NS-3 Consortium Meeting 
March 2013 

Device helpers 
provide common 
API for enabling 
pcap traces 

Global pcap tracing 

Per-device pcap tracing 

84 



ns-3 
85 

Discovering ns-3 trace sources 

• various trace sources (e.g., packet receptions, state 
machine transitions) are plumbed through the system 

• Organized with the rest of the attribute system 
 



ns-3 

Basic tracing 

• Helper classes hide the tracing details 
from the user, for simple trace types 
– ascii or pcap traces of devices 

 
 
 
 

86 



ns-3 
87 

Multiple levels of tracing 

• Highest-level:  Use built-in trace sources 
and sinks and hook a trace file to them 

• Mid-level:  Customize trace source/sink 
behavior using the tracing namespace 

• Low-level:  Add trace sources to the 
tracing namespace 
– Or expose trace source explicitly 



ns-3 
88 

Highest-level of tracing 

• Highest-level:  Use built-in trace sources 
and sinks and hook a trace file to them 

 

  // Also configure some tcpdump traces; each interface will be traced 

  // The output files will be named 

  // simple-point-to-point.pcap-<nodeId>-<interfaceId> 

  // and can be read by the "tcpdump -r" command (use "-tt" option to 

  // display timestamps correctly)  

  PcapTrace pcaptrace ("simple-point-to-point.pcap"); 

  pcaptrace.TraceAllIp (); 



ns-3 
89 

Mid-level of tracing 

• Mid-level:  Customize trace source/sink 
behavior using the tracing namespace 

 

void 

PcapTrace::TraceAllIp (void)  

{ 

  NodeList::Connect ("/nodes/*/ipv4/(tx|rx)", 

                     MakeCallback (&PcapTrace::LogIp, this)); 

} 

Regular expression editing 

Hook in a different trace sink 



ns-3 
90 

Asciitrace:  under the hood 

void 

AsciiTrace::TraceAllQueues (void)  

{ 

  Packet::EnableMetadata (); 

  NodeList::Connect ("/nodes/*/devices/*/queue/enqueue", 

                      MakeCallback (&AsciiTrace::LogDevQueueEnqueue, this)); 

  NodeList::Connect ("/nodes/*/devices/*/queue/dequeue", 

                      MakeCallback (&AsciiTrace::LogDevQueueDequeue, this)); 

  NodeList::Connect ("/nodes/*/devices/*/queue/drop", 

                      MakeCallback (&AsciiTrace::LogDevQueueDrop, this)); 

} 



ns-3 
91 

Lowest-level of tracing 

• Low-level:  Add trace sources to the 
tracing namespace 

 

   

  Config::Connect ("/NodeList/.../Source", 

                   MakeCallback (&ConfigTest::ChangeNotification, this)); 



Review of topics covered 

• Structure of an ns-3 program 
• Fundamental classes 

– Nodes, NetDevices, Channels, Applications 
• Node and device containers 
• Helper APIs, and Install pattern 
• Wifi and Internet stack architecture 
• Attributes and default values 
• Tracing 

 
NS-3 Consortium Meeting 

March 2013 

92 



ns-3 

Animation and visualization 

93 



FlowMonitor 

• Network monitoring framework found in 
src/flow-monitor/ 

• Goals:  
– detect all flows passing through network 
– stores metrics for analysis such as bitrates, 

duration, delays, packet sizes, packet loss 
ratios 
 

NS-3 Consortium Meeting 
March 2013 

G. Carneiro, P. Fortuna, M. Ricardo, "FlowMonitor-- a network monitoring framework 
for the Network Simulator ns-3," Proceedings of NSTools 2009. 

94 



FlowMonitor architecture 

• Basic classes 
– FlowMonitor 
– FlowProbe 
– FlowClassifier 
– FlowMonitorHelper 

• Ipv4 only 
 

 

NS-3 Consortium Meeting 
March 2013 

Figure credit:  G. Carneiro, P. Fortuna, M. Ricardo, "FlowMonitor-- a network monitoring 
framework for the Network Simulator ns-3," Proceedings of NSTools 2009. 

95 



FlowMonitor statistics 

• Statistics gathered 

NS-3 Consortium Meeting 
March 2013 

96 

Figure credit:  G. Carneiro, P. Fortuna, M. Ricardo, "FlowMonitor-- a network monitoring 
framework for the Network Simulator ns-3," Proceedings of NSTools 2009. 



FlowMonitor configuration 

NS-3 Consortium Meeting 
March 2013 

• example/wireless/wifi-hidden-terminal.cc 

97 



FlowMonitor output 

• This program exports statistics to stdout 
• Other examples integrate with PyViz  

NS-3 Consortium Meeting 
March 2013 

98 



PyViz overview 

• Developed by Gustavo Carneiro 
• Live simulation visualizer (no trace files) 
• Useful for debugging 

– mobility model behavior 
– where are packets being dropped? 

• Built-in interactive Python console to 
debug the state of running objects 

• Works with Python and C++ programs 

NS-3 Consortium Meeting 
March 2013 

99 



GENI Eng. Conf., Nov. 2010 

Pyviz screenshot (Graphviz layout)  

100 



Pyviz and FlowMonitor 

• src/flow-monitor/examples/wifi-olsr-flowmon.py 

NS-3 Consortium Meeting 
March 2013 

101 



Enabling PyViz in your simulations 

• Make sure PyViz is enabled in the build 
 
 

• If program supports CommandLine 
parsing, pass the option  
--SimulatorImplementationType= 

ns3::VisualSimulatorImpl 

• Alternatively, pass the "--vis" option 
 

NS-3 Consortium Meeting 
March 2013 

102 



NetAnim 

• "NetAnim" by George Riley and John Abraham 

pyviz 

103 NS-3 Consortium Meeting 
March 2013 



NetAnim key features 

• Animate packets over wired-links and wireless-
links 
– limited support for LTE traces 

• Packet timeline with regex filter on packet meta-
data.  

• Node position statistics with node trajectory 
plotting (path of a mobile node).  

• Print brief packet-meta data on packets 
 

NS-3 Consortium Meeting 
March 2013 

104 



Writing and debugging your own examples 

105 
NS-3 Consortium Meeting 

March 2013 



Writing and debugging new programs 

• Choosing between Python and C++ 
• Reading existing code 
• Understanding and controlling logging code 
• Error conditions 
• Running programs through a debugger 

 

NS-3 Consortium Meeting 
March 2013 



Python bindings 

• ns-3 uses the 'pybindgen' tool to generate 
Python bindings for the underlying C++ libraries 

• Existing bindings are typically found in the 
bindings/ directory of a module 

• Some methods are not provided in Python (e.g. 
hooking trace sources) 

• Generating new bindings requires a toolchain 
documented on the ns-3 web site 

NS-3 Consortium Meeting 
March 2013 



Reading existing code 

• Much insight can be gained from reading ns-3 
examples and tests, and running them 
yourselves 

• Many core features of ns-3 are only 
demonstrated in the core test suite 
(src/core/test) 

• Stepping through code with a debugger can be 
done, but callbacks and templates make it more 
challenging than usual 

NS-3 Consortium Meeting 
March 2013 



Debugging support 
• Assertions: NS_ASSERT (expression); 

– Aborts the program if expression evaluates to false 
– Includes source file name and line number 

• Unconditional Breakpoints: NS_BREAKPOINT (); 
– Forces an unconditional breakpoint, compiled in 

• Debug Logging (not to be confused with tracing!) 
– Purpose 

• Used to trace code execution logic 
• For debugging, not to extract results! 

– Properties 
• NS_LOG* macros work with C++ IO streams 
• E.g.: NS_LOG_UNCOND (”I have received ” << p->GetSize () << ” bytes”); 
• NS_LOG macros evaluate to nothing in optimized builds 
• When debugging is done, logging does not get in the way of execution 

performance 

NS-3 Consortium Meeting 
March 2013 



Debugging support (cont.) 
• Logging levels: 

– NS_LOG_ERROR (...): serious error messages only 
– NS_LOG_WARN (...): warning messages 
– NS_LOG_DEBUG (...): rare ad-hoc debug messages 
– NS_LOG_INFO (...): informational messages (eg. banners) 
– NS_LOG_FUNCTION (...):function tracing 
– NS_LOG_PARAM (...): parameters to functions 
– NS_LOG_LOGIC (...): control flow tracing within functions 

• Logging ”components” 
– Logging messages organized by components 
– Usually one component is one .cc source file 
– NS_LOG_COMPONENT_DEFINE ("OlsrAgent"); 

• Displaying log messages. Two ways: 
– Programatically: 

• LogComponentEnable("OlsrAgent", LOG_LEVEL_ALL); 
– From the environment: 

• NS_LOG="OlsrAgent" ./my-program 

NS-3 Consortium Meeting 
March 2013 



Running C++ programs through gdb 

• The gdb debugger can be used directly on 
binaries in the build directory 

• An easier way is to use a waf shortcut 
./waf --command-template="gdb %s" --run <program-
name> 

 

• Note: valgrind can be run similarly 
./waf --command-template="valgrind %s" --run 

<program-name> 

 
 

NS-3 Consortium Meeting 
March 2013 



Testing 

• Can you trust ns-3 simulations? 
– Can you trust any simulation? 

• Onus is on the simulation project to validate and document 
results 

• Onus is also on the researcher to verify results 

• ns-3 strategies: 
– regression and unit tests 

• Aim for event-based rather than trace-based 
– validation of models on testbeds 
– reuse of code 

NS-3 Consortium Meeting 
March 2013 



Test framework 

• ns-3-dev is checked nightly on multiple platforms 
– Linux gcc-4.x, i386 and x86_64, OS X i386, FreeBSD 

and Cygwin (occasionally) 
• ./test.py will run regression tests 

 
Walk through test code, test terminology (suite, case), 
and examples of how tests are run 

NS-3 Consortium Meeting 
March 2013 



Improving performance 

• Debug vs optimized builds 
– ./waf -d debug configure 
– ./waf -d debug optimized 

 
• Build ns-3 with static libraries 

– ./waf --enable-static 

 
• Use different compilers (icc) 

– has been done in past, not regularly tested 



Integrating other tools and libraries 

115 



Gnuplot 

• src/tools/gnuplot.{cc,h} 

• C++ wrapper around gnuplot 
• classes: 

–Gnuplot 
–GnuplotDataset 

• Gnuplot2dDataset, Gnuplot2dFunction 
• Gnuplot3dDataset, Gnuplot3dFunction 

NS-3 Consortium Meeting 
March 2013 



Enabling gnuplot for your code 

• examples/wireless/wifi-clear-channel-cmu.cc 

NS-3 Consortium Meeting 
March 2013 

one dataset per mode 

Add data to dataset 

Add dataset to plot 

produce a plot file that 
will generate an EPS figure 



Matplotlib 

 
• src/core/examples/sample-rng-plot.py 

 
 
 
 

NS-3 Consortium Meeting 
March 2013 



Other libraries 

• ns-3 supports additional libraries (click, 
openflow, nsc) 

• ns-3 has optional libraries (libxml2, gsl, mysql) 
• both are typically enabled/disabled through the 

wscript 
• users are free to write their own Makefiles or 

wscripts to do something special 

NS-3 Consortium Meeting 
March 2013 



Scaling to multiple machines 

NS-3 Consortium Meeting 
March 2013 



Overview 

• Parallel and distributed discrete event 
simulation 
– Allows single simulation program to run on 

multiple interconnected processors 
– Reduced execution time! Larger topologies! 

• Terminology 
– Logical process (LP) 
– Rank or system id 

NS-3 Consortium Meeting 
March 2013 



Simulation size record 

• Simulation on a HPC cluster at the U.S. Mobile Network 
Modeling Institute (2011) * 

– 176 cores, 3 TB of memory 
– 360,448,000 simulated nodes 
– 413,704.52 packet receive events per second [wall-clock] 

 

NS-3 Consortium Meeting 
March 2013 

* K. Renard et al, "A Performance and Scalability Evaluation of the NS-3 Distributed Scheduler. 
Proceedings of WNS3 2012. 



Quick and Easy Example 

Figure 1. Simple point-to-point topology 

NS-3 Consortium Meeting 
March 2013 



Quick and Easy Example 

Figure 2. Simple point-to-point topology, distributed 

NS-3 Consortium Meeting 
March 2013 



Implementation Details 

• LP communication 
– Message Passing Interface (MPI) standard 
– Send/Receive time-stamped messages 
– MpiInterface in ns-3 

• Synchronization 
– Conservative algorithm using lookahead 
– DistributedSimulator in ns-3 

NS-3 Consortium Meeting 
March 2013 



Implementation Details (cont.) 

• Assigning rank 
– Currently handled manually in simulation script 
– Next step, MpiHelper for easier node/rank 

mapping 

• Remote point-to-point links 
– Created automatically between nodes with 

different ranks through point-to-point helper 
– Packet sent across using MpiInterface 

NS-3 Consortium Meeting 
March 2013 



• Distributing the topology 
– All nodes created on all LPs, regardless of rank 
– Applications are only installed on LPs with target node 

Implementation Details (cont.) 

NS-3 Consortium Meeting 
March 2013 



Performance Test 

• DARPA NMS campus network simulation 
– Allows creation of very large topologies 
– Any number of campus networks are created and 

connected together 
– Different campus networks can be placed on 

different LPs 
– Tested with 2 CNs, 4 CNs, and 6 CNs 

NS-3 Consortium Meeting 
March 2013 



Campus Network Topology 

NS-3 Consortium Meeting 
March 2013 



2 Campus Networks 

Figure 5. Execution time with 2 campus networks Figure 6. Speedup with 2 LPs 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

116 164 260 452 836

Ti
m

e 
(s

)

Number of nodes

1 LP

2 LPs

1.5

1.75

2

2.25

2.5

116 164 260 452 836

Sp
ee

du
p

Number of nodes

NS-3 Consortium Meeting 
March 2013 



ns-3 

Summary 

• Distributed simulation in ns-3 allows a user to run a 
single simulation in parallel on multiple processors 

• By assigning a different rank to nodes and 
connecting these nodes with point-to-point links, 
simulator boundaries are created 

• Simulator boundaries divide LPs, and each LP can be 
executed by a different processor 

• Distributed simulation in ns-3 offers solid 
performance gains in time of execution for large 
topologies 

NS-3 Consortium Meeting 
March 2013 



emulation and testbeds 



Emulation support 

• Support moving between simulation and testbeds or live 
systems 

• A real-time scheduler, and support for two modes of 
emulation 

– GlobalValue::Bind (“SimulatorImplementationType”, 
StringValue (“ns3::RealTimeSimulatorImpl”)); 

NS-3 Consortium Meeting 
March 2013 



134 

ns-3 emulation modes 

virtual 
machine ns-3 

virtual 
machine 

1) ns-3 interconnects real or virtual 
machines 

real 
machine 

ns-3 

             Testbed 

real 
machine 

ns-3 

2) testbeds interconnect ns-3 
stacks 

real machine 

Various hybrids of the above are possible 

NS-3 Consortium Meeting 
March 2013 



135 

“Tap” mode:  netns and ns-3 integration 

Container 

ns-3 

Linux (FC 12 or Ubuntu 9.10) machine 

tapX 

/dev/tunX 

TapBridge 

WiFi 

ghost node 
             
Wifi ghost node 

tapY 

Tap device pushed into namespaces; no bridging needed 

/dev/tunY 

Container 

NS-3 Consortium Meeting 
March 2013 



136 

Example:  ORBIT and ns-3 

• Support for use of Rutgers WINLAB 
ORBIT radio grid 

NS-3 Consortium Meeting 
March 2013 



Issues 

• Ease of use 
– Configuration management and coherence 
– Information coordination (two sets of state) 

• e.g. IP/MAC address coordination 

– Output data exists in two domains 
– Debugging 

• Error-free operation (avoidance of misuse) 
– Synchronization, information sharing, exception handling 

• Checkpoints for execution bring-up 
• Inoperative commands within an execution domain 
• Deal with run-time errors 

– Soft performance degradation (CPU) and time discontinuities 

NS-3 Consortium Meeting 
March 2013 



Container-based virtual machines and ns-3 

NS-3 Consortium Meeting 
March 2013 



What is CORE? 

• The Common Open Research Emulator (CORE) is a Python framework and 
GUI for emulating networks using lightweight Virtualization native to Linux 
and FreeBSD kernels. 
 

NS-3 Consortium Meeting 
March 2013 



Screenshot 

 140 

Wired networks 

Wireless networks 

Lightweight VMs 
Double-click for 
shell 

Visualize 
routing state 

NS-3 Consortium Meeting 
March 2013 



Technical Goals 

• CORE provides Python libraries for using Linux network namespaces in 
network emulation experiments 

– CORE + ns-3 integrates realism of namespace with wireless device models 

• CORE is a graphical controller that users find intuitive 
– CORE GUI could eventually be used for ns-3 authoring/visualization 

scenario
definition configuration run-time

execution
data

collection

instantiation

data
collection

(not a GUI-based
activity)

scenario definition configuration

instantiation

run-time execution

Today's demo: 
• Allow users to interact with 
the running emulation (set 
node position) 
• Allow users to visualize  
ns-3 mobility in the GUI 
 
Future directions: 
• Author topologies and IP 
addressing plans 
• Control execution of hybrid 
experiments 
• Integrate ns-3 ConfigStore 
with CORE GUI 
 
 

NS-3 Consortium Meeting 
March 2013 



network 
namespace 

fd 
TAP 

network 
namespace 

fd 
TAP 

Virtual Interfaces 

• Ordinary CORE 
– Virtual Ethernet pairs (veth) 

are installed into a namespace 
and joined to a bridge. 

– For wireless networks 
(WLANs), ebtables rules 
govern pairwise connectivity. 
 

• CORE + ns-3 
– TUN/TAP device installed into 

a namespace, socket held by 
simulation. 

– Simulation runs with real-time 
scheduler. 

network 
namespace 

veth 
veth 

Linux bridge 

network 
namespace 

veth 
veth 

network 
namespace 

veth 
veth 

network 
namespace 

fd 
TAP 

ns-3 simulation 

NS-3 Consortium Meeting 
March 2013 



Mobility demonstration 

Canvas-based mobility 
• ns-3 ConstantPosition 
MobilityModel 
• users can drag nodes 
around and change 
topology 
 

ns-3 mobility visualization 
• ns-3 RandomWalk Mobility 
Model 
• users can observe Linux 
namespace state (e.g. OSPF 
adjacencies) as nodes move 
in the ns-3 realm 
 



Scaling time in virtualized environments 

• Synchronized Network Emulation - RWTH 
Aachen University 
– Modified Xen  

• VAN Testbed – Telcordia/CERDEC 
– Modified Xen 

• Linux Time namespace - Jeff Dike (UML creator) 
– Add a time namespace to the Linux kernel, allowing 

for gettimeofday() offsets 

NS-3 Consortium Meeting 
March 2013 



Direct Code Execution 

NS-3 Consortium Meeting 
March 2013 



Goals 

• Lightweight virtualization of kernel and 
application processes, interconnected by 
simulated networks 

• Benefits: 
– Implementation realism in controlled topologies or 

wireless environments 
– Model availability 

• Limitations: 
– Not as scalable as pure simulation 
– Runs in real-time 
– Integration of the two environments 

 
NS-3 Consortium Meeting 

March 2013 



Direct Code Execution 

• Developed by Mathieu Lacage and Frederic Urbani, 
INRIA, Hajime Tazaki (WIDE) 

• Run unmodified application binaries in ns-3 
– Also, can run entire Linux stack in ns-3 

147 

Figure source: 
Mathieu Lacage 

http://www-sop.inria.fr/members/Frederic.Urbani/ns3dceccnx/index.html 

NS-3 Consortium Meeting 
March 2013 



NEPI 

NS-3 Consortium Meeting 
March 2013 



Network Experiment Management 
Framework (NEPI) 

Figure source:  Alina Quereilhac, INRIA 

NS-3 Consortium Meeting 
March 2013 

• Network experiment management framework to 
automate experiment life-cycle 

• Allows scenarios involving heterogeneous resources (ns-
3, PlanetLab, netns, …) 

• Wiki:   http://nepi.inria.fr 

149 



Getting Help and Getting Involved 

NS-3 Consortium Meeting 
March 2013 



151 

Resources 

Web site:   
http://www.nsnam.org 

Mailing list:   
http://mailman.isi.edu/mailman/listinfo/ns-developers 

IRC:  #ns-3 at freenode.net 
Tutorial: 

http://www.nsnam.org/docs/tutorial/tutorial.html 

Code server: 
http://code.nsnam.org 

Wiki: 
http://www.nsnam.org/wiki/index.php/Main_Page 

NS-3 Consortium Meeting 
March 2013 

http://www.nsnam.org/�
http://mailman.isi.edu/mailman/listinfo/ns-developers�
http://www.nsnam.org/docs/tutorial/tutorial.html�
http://code.nsnam.org/�
http://www.nsnam.org/wiki/index.php/Main_Page�


Questions? 

NS-3 Consortium Meeting 
March 2013 


	Slide Number 1
	ns-3 tutorial agenda
	Preliminaries
	Preliminaries (cont.)
	What have people done with ns-3?
	What have people done with ns-3?
	Software introduction
	Software organization
	Current models
	Current models
	Module organization
	Software building
	ns-3 uses the 'waf' build system
	waf configuration
	wscript example
	waf build
	Running programs
	Discrete-event simulation basics
	Simulator example
	Simulator example (in Python)
	Command-line arguments
	Time in ns-3
	Events in ns-3
	Simulator and Schedulers
	Random Variables
	Random variables and independent replications
	ns-3 random number generator
	Run number vs. seed
	Putting it together
	Build variations
	Controlling the modular build
	Building without wscript
	APIs
	Review of topics covered
	Walkthrough of WiFi Internet example
	The basic model
	Example program
	Example program
	Fundamentals
	Node basics
	NetDevices and Channels
	Internet Stack
	Other basic models in ns-3
	ns-3 Packet
	ns-3 Packet structure
	Copy-on-write
	Structure of an ns-3 program
	Review of example program
	Helper API
	Containers
	The Helper API (vs. low-level API)
	Helper Objects
	Example program
	Installation onto containers
	Mobility models in ns-3
	Internet stack
	ns-3 TCP
	ns-3 simulation cradle
	ns-3 simulation cradle
	IPv4 address configuration
	Applications and sockets
	Sockets API
	ns-3 tutorial agenda
	Attributes and default values
	ns-3 attribute system
	Short digression: Object metadata system
	Use cases for attributes
	Use cases for attributes (cont.)‏
	How to handle attributes
	Navigating the attributes
	Attribute namespace
	Navigating the attributes using paths
	What users will do
	Fine-grained attribute handling
	ns-3 attribute system
	Attribute documentation
	Options to manipulate attributes
	Object names
	Names example
	Tracing and statistics
	Tracing overview
	Tracing in ns-3
	NetDevice trace hooks
	Enabling tracing in your code
	Discovering ns-3 trace sources
	Basic tracing
	Multiple levels of tracing
	Highest-level of tracing
	Mid-level of tracing
	Asciitrace:  under the hood
	Lowest-level of tracing
	Review of topics covered
	Animation and visualization
	FlowMonitor
	FlowMonitor architecture
	FlowMonitor statistics
	FlowMonitor configuration
	FlowMonitor output
	PyViz overview
	Pyviz screenshot (Graphviz layout)	
	Pyviz and FlowMonitor
	Enabling PyViz in your simulations
	NetAnim
	NetAnim key features
	Writing and debugging your own examples
	Writing and debugging new programs
	Python bindings
	Reading existing code
	Debugging support
	Debugging support (cont.)
	Running C++ programs through gdb
	Testing
	Test framework
	Improving performance
	Integrating other tools and libraries
	Gnuplot
	Enabling gnuplot for your code
	Matplotlib
	Other libraries
	Scaling to multiple machines
	Overview
	Simulation size record
	Quick and Easy Example
	Quick and Easy Example
	Implementation Details
	Implementation Details (cont.)
	Implementation Details (cont.)
	Performance Test
	Campus Network Topology
	2 Campus Networks
	Summary
	emulation and testbeds
	Emulation support
	ns-3 emulation modes
	“Tap” mode:  netns and ns-3 integration
	Example:  ORBIT and ns-3
	Issues
	Container-based virtual machines and ns-3
	What is CORE?
	Screenshot
	Technical Goals
	Virtual Interfaces
	Mobility demonstration
	Scaling time in virtualized environments
	Direct Code Execution
	Goals
	Direct Code Execution
	NEPI
	Network Experiment Management Framework (NEPI)
	Getting Help and Getting Involved
	Resources
	Questions?

