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ns-3 tutorial agenda 

• 13h00-15h00:  Getting started with ns-3 
 
 
• 15h00-15h30:  30-minute coffee break  
• 15h30-17h00:  Going further with ns-3 
 
 
 
 

•  Overview of software and models 
•  Basic structure of the core and important models 
•  Running and understanding an existing example 
•  Animation and visualization 

•  Writing and debugging your own examples 
•  Integrating other tools and libraries 
•  Parallel simulations 
•  Emulation, virtual machine and testbed integration 
•  Getting help and getting involved 
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Preliminaries 

• ns-3 is written in C++, with bindings available 
for Python 
– simulation programs are C++ executables or 

Python programs 
– ~300,000 lines of mostly C++ (estimate based on 

cloc source code analysis) 

• ns-3 is a GNU GPLv2-licensed project 
• ns-3 is mainly supported for Linux, OS X, and 

FreeBSD 
• ns-3 is not backwards-compatible with ns-2 
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Preliminaries (cont.) 

• Where do I get ns-3? 
– http://www.nsnam.org 

 
• Where do I get today's code? 

– http://www.nsnam.org/release/ns-allinone-
3.16.tar.bz2 
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What have people done with ns-3? 

• ~300 publications to date 
– search of 'ns-3 simulator' on IEEE and ACM digital 

libraries 
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What have people done with ns-3? 

• Educational use (from ns-3 wiki) 
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Software introduction 

• Download the latest release 
– wget http://www.nsnam.org/releases/ns-allinone-
3.16.tar.bz2 

– tar xjf ns-allinone-3.16.tar.bz2 

• Clone the latest development code 
– hg clone http://code.nsnam.org/ns-3-allinone 
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Q.  What is "hg clone"?   
A.  Mercurial (http://www.selenic.com) is our source 
code control tool.  
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Software organization 

• Two levels of ns-3 software and libraries 
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module 

1) Several supporting libraries, not system-installed, can be in parallel to ns-3 

2) ns-3 modules exist 
within the ns-3 directory 
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flow-monitor 

BRITE 
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Smart pointers 
Dynamic types 
Attributes 

Callbacks 
Tracing 
Logging 
Random Variables Events 

Scheduler 
Time arithmetic 

Packets 
Packet Tags 
Packet Headers 
Pcap/ascii file writing 

Node class 
NetDevice ABC 
Address types 
(Ipv4, MAC, etc.) 
Queues 
Socket ABC 
Ipv4 ABCs 
Packet sockets 



Module organization 

• models/ 
• examples/ 
• tests/ 
• bindings/ 
• doc/ 
• wscript 
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Software building 

• Two levels of ns-3 build 
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ns-3 click routing 
Network 
Simulation 
Cradle 

pybindgen 
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1) build.py (a custom Python build script to control an ordered build of  
    ns-3 and its libraries) 

2) waf, a build system written in Python 
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ns-3 uses the 'waf' build system 

• Waf is a Python-based framework for 
configuring, compiling and installing 
applications.  
– It is a replacement for other tools such as 

Autotools, Scons, CMake or Ant  
– http://code.google.com/p/waf/ 

• For those familiar with autotools: 
• configure           ./waf configure 
• make           ./waf build 
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waf configuration 

• Key waf configuration examples 
./waf configure 

--enable-examples 

--enable-tests 

--disable-python 

--enable-modules 

• Whenever build scripts change, need to 
reconfigure 
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Demo:  ./waf --help 
       ./waf configure --enable-examples --
enable-tests --enable-modules='core' 

Look at:  build/c4che/_cache.py  



wscript example 

## -*- Mode: python; py-indent-offset: 4; indent-tabs-mode: nil; coding: utf-8; -*- 
 
def build(bld): 
    obj = bld.create_ns3_module('csma', ['network', 'applications']) 
    obj.source = [ 
        'model/backoff.cc', 
        'model/csma-net-device.cc', 
        'model/csma-channel.cc', 
        'helper/csma-helper.cc', 
        ] 
    headers = bld.new_task_gen(features=['ns3header']) 
    headers.module = 'csma' 
    headers.source = [ 
        'model/backoff.h', 
        'model/csma-net-device.h', 
        'model/csma-channel.h', 
        'helper/csma-helper.h', 
        ] 
 
    if bld.env['ENABLE_EXAMPLES']: 
        bld.add_subdirs('examples') 
 
    bld.ns3_python_bindings() 
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waf build 

• Once project is configured, can build via 
./waf build or ./waf  

• waf will build in parallel on multiple cores 
• waf displays modules built at end of build 
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Demo:  ./waf build 
        

Look at:  build/  libraries and executables 



Running programs 

• ./waf shell provides a special shell for 
running programs 
– Sets key environment variables 

 
./waf --run sample-simulator 

./waf --pyrun src/core/examples/sample-
simulator.py 

NS-3 Consortium Meeting 
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Discrete-event simulation basics 

• Simulation time moves in discrete jumps from 
event to event 

• C++ functions schedule events to occur at 
specific simulation times 

• A simulation scheduler orders the event 
execution 

• Simulation::Run() gets it all started 
• Simulation stops at specific time or when events 

end 

NS-3 Consortium Meeting 
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Simulator example 
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Simulator example (in Python) 
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Command-line arguments 

• Add CommandLine to your program if you want 
command-line argument parsing 

 
 

• Passing --PrintHelp to programs will display command 
line options, if CommandLine is enabled 

./waf --run "sample-simulator --PrintHelp" 
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Time in ns-3 

• Time is stored as a large integer in ns-3 
– Avoid floating point discrepancies across platforms 

• Special Time classes are provided to manipulate 
time (such as standard operators) 

• Default time resolution is nanoseconds, but can 
be set to other resolutions 

• Time objects can be set by floating-point values 
and can export floating-point 
double timeDouble = t.GetSeconds(); 
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Events in ns-3 

• Events are just function calls that execute 
at a simulated time 
– i.e. callbacks 

• Events have IDs to allow them to be 
cancelled or to test their status 
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Simulator and Schedulers 

• The Simulator class holds a scheduler, 
and provides the API to schedule events, 
start, stop, and cleanup memory 

• Several scheduler data structures 
(calendar, heap, list, map) are possible 

• A "RealTime" simulation implementation is 
possible 
– aligns the simulation time to wall-clock time 
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Random Variables 

 
• Currently implemented distributions 

– Uniform: values uniformly distributed in an interval 
– Constant: value is always the same (not really random) 
– Sequential: return a sequential list of predefined values 
– Exponential: exponential distribution (poisson process) 
– Normal (gaussian), Log-Normal, Pareto, Weibull, triangular 
 
 
 
 

from src/core/examples/sample-rng-plot.py 
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Random variables and independent 
replications 

• Many simulation uses involve running a 
number of independent replications of the 
same scenario 

 
• In ns-3, this is typically performed by 

incrementing the simulation run number 
– not by changing seeds 
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ns-3 random number generator 

• Uses the MRG32k3a generator from Pierre 
L'Ecuyer  
– http://www.iro.umontreal.ca/~lecuyer/myftp/papers/str

eams00.pdf 
– Period of PRNG is 3.1x10^57 

• Partitions a pseudo-random number generator 
into uncorrelated streams and substreams 
– Each RandomVariableStream gets its own stream 
– This stream partitioned into substreams 
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Run number vs. seed 

• If you increment the seed of the PRNG, the 
streams of random variable objects across 
different runs are not guaranteed to be 
uncorrelated 

• If you fix the seed, but increment the run 
number, you will get an uncorrelated substream 

NS-3 Consortium Meeting 
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Putting it together 

• Example of scheduled event 

NS-3 Consortium Meeting 
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Demo real-time, command-line, random variables... 
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Build variations 

• Configure a build type is done at waf 
configuration time 

• debug build (default):  all asserts and 
debugging code enabled 
./waf -d debug configure 

• optimized 
./waf -d optimized configure 

• static libraries 
./waf --enable-static configure 

NS-3 Consortium Meeting 
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Controlling the modular build 

• One way to disable modules: 
–  ./waf configure --enable-modules='a','b','c' 

• The .ns3rc file (found in utils/ directory) can be used to 
control the modules built 

• Precedence in controlling build 
1) command line arguments 
2) .ns3rc in ns-3 top level directory 
3) .ns3rc in user's home directory 

NS-3 Consortium Meeting 
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Demo how .ns3rc works 



Building without wscript 

• The scratch/ directory can be used to build 
programs without wscripts 
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Demo how programs can be built without wscripts 
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APIs 

• Most of the ns-3 API is documented with 
Doxygen 
– http://www.stack.nl/~dimitri/doxygen/ 
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Review of topics covered 

• Software layout 
• Software build 
• Library documentation 
• Basic discrete-event simulation concepts 
• Control of randomness 
• Simulation time 
• A simple C++ ns-3 program 
• A simple Python ns-3 program 
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ns-3 

Walkthrough of WiFi Internet example 
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Application 

The basic model 

Application 

Protocol 
stack 

Node 

NetDevice NetDevice 

Application Application 

Protocol 
stack 

Node 

NetDevice NetDevice 

Sockets-like 
 API 

Channel 

Channel 

Packet(s)  



Example program 

• examples/wireless/wifi-simple-adhoc-
grid.cc 

• examine wscript for necessary modules 
– 'internet', 'mobility', 'wifi', 'config-store', 
'tools' 

– we'll add 'visualizer' 

 
• ./waf configure --enable-examples --
enable-modules=... 
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Example program 

• (5x5) grid of WiFi ad hoc nodes 
• OLSR packet routing 
• Try to send packet from one node to another 

WiFi 
•  Goal is to read and  
understand the high-level 
ns-3 API 

NS-3 Consortium Meeting 
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Source (node 24) by default 

Sink (node 0) by default 
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Fundamentals 

Key objects in the simulator are Nodes, 
Packets, and Channels 

 
Nodes contain Applications, “stacks”, and 

NetDevices 
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Node basics 

A Node is a shell of a computer to which 
applications, stacks, and NICs are added 

Application 
Application 

Application 

“DTN” 
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NetDevices and Channels 

NetDevices are strongly bound to Channels 
of a matching type 

 
 
 
 
 
Nodes are architected for multiple interfaces 

WifiNetDevice 

WifiChannel 
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Internet Stack 

• Internet Stack 
– Provides IPv4 and some IPv6 models 

currently 
• No non-IP stacks presently in ns-3 

– but no dependency on IP in the devices, 
Node, Packet, etc. 

– some activity on IEEE 802.15.4-based models 
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Other basic models in ns-3 

• Devices 
– WiFi, WiMAX, CSMA, Point-to-point, Bridge 

• Error models and queues 
• Applications 

– echo servers, traffic generator 
• Mobility models 
• Packet routing 

– OLSR, AODV, DSR, DSDV, Static, Nix-
Vector, Global (link state) 
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ns-3 Packet 

• Packet is an advanced data structure with 
the following capabilities 
– Supports fragmentation and reassembly 
– Supports real or virtual application data 
– Extensible 
– Serializable (for emulation) 
– Supports pretty-printing 
– Efficient (copy-on-write semantics) 
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ns-3 Packet structure 

• Analogous to an mbuf/skbuff 
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Copy-on-write 

• Copy data bytes only as needed 
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Structure of an ns-3 program 
int main (int argc, char *argv[]) 
{ 
  
  // Set default attribute values 
 
  // Parse command-line arguments 
 
  // Configure the topology; nodes, channels, devices, mobility 
 
  // Add (Internet) stack to nodes 
 
  // Configure IP addressing and routing 
 
  // Add and configure applications 
 
  // Configure tracing 
 
  // Run simulation 
}  
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Review of example program 
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Helper API 

• The ns-3 “helper API” provides a set of classes 
and methods that make common operations 
easier than using the low-level API 

• Consists of: 
– container objects 
– helper classes 

• The helper API is implemented using the low-
level API 

• Users are encouraged to contribute or propose 
improvements to the ns-3 helper API 
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Containers 

• Containers are part of the ns-3 “helper 
API” 

• Containers group similar objects, for 
convenience 
– They are often implemented using C++ std 

containers 
• Container objects also are intended to 

provide more basic (typical) API 
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The Helper API (vs. low-level API) 

• Is not generic 
• Does not try to allow code reuse 
• Provides simple 'syntactical sugar' to make 

simulation scripts look nicer and easier to 
read for network researchers 

• Each function applies a single operation on 
a ''set of same objects” 
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Helper Objects 

• NodeContainer: vector of Ptr<Node> 
• NetDeviceContainer: vector of Ptr<NetDevice> 
• InternetStackHelper 
• WifiHelper 
• MobilityHelper 
• OlsrHelper 
• ... Each model provides a helper class 



Example program 

• (5x5) grid of WiFi ad hoc nodes 
• OLSR packet routing 
• Try to send packet from one node to another 

WiFi 

NS-3 Consortium Meeting 
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Source (node 24) by default 

Sink (node 0) by default 
53 

•  Let’s look closely at how 
these objects are created 



Installation onto containers 

• Installing models into containers, and 
handling containers, is a key API theme 
 

NodeContainer c; 

c.Create (numNodes); 

... 

mobility.Install (c); 

... 

internet.Install (c); 

... 
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ns-3 

Mobility models in ns-3 
• The MobilityModel interface: 

– void SetPosition (Vector pos) 
– Vector GetPosition () 

• StaticMobilityModel 
– Node is at a fixed location; does not move on its own 

• RandomWaypointMobilityModel 
– (works inside a rectangular bounded area) 
– Node pauses for a certain random time 
– Node selects a random waypoint and speed 
– Node starts walking towards the waypoint 
– When waypoint is reached, goto first state 

• RandomDirectionMobilityModel 
– works inside a rectangular bounded area) 
– Node selects a random direction and speed 
– Node walks in that direction until the edge 
– Node pauses for random time 
– Repeat 3D Cartesian coordinate system 

z y 

x 
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Internet stack 

•  The public interface of 
the Internet stack is 
defined (abstract base 
classes) in  
src/network/model 
directory 
• The intent is to support 
multiple implementations 
• The default ns-3 Internet 
stack is implemented in 
src/internet-stack 
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ns-3 TCP 

• Several options exist: 
– native ns-3 TCP 

– Tahoe, Reno, NewReno (others in development) 
– TCP simulation cradle (NSC) 
– Use of virtual machines or DCE (more on this 

later) 
 

• To enable NSC: 
internetStack.SetNscStack ("liblinux2.6.26.so");  
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ns-3 simulation cradle 

• Port by Florian Westphal of Sam Jansen’s Ph.D. work 

Figure reference:  S. Jansen, Performance, validation and testing with the Network  
Simulation Cradle. MASCOTS 2006.  
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ns-3 simulation cradle 

For ns-3: 
• Linux 2.6.18 
• Linux 2.6.26 
• Linux 2.6.28 
 
Others: 
• FreeBSD 5 
• lwip 1.3 
• OpenBSD 3 
 
Other simulators: 
• ns-2 
• OmNET++ 

Figure reference:  S. Jansen, Performance, validation and testing with the Network  
Simulation Cradle. MASCOTS 2006.  
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IPv4 address configuration 

• An Ipv4 address helper can assign 
addresses to devices in a NetDevice 
container  

  Ipv4AddressHelper ipv4; 
  ipv4.SetBase ("10.1.1.0", "255.255.255.0"); 
  csmaInterfaces = ipv4.Assign (csmaDevices); 
 
  ... 
 
  ipv4.NewNetwork ();  // bumps network to 10.1.2.0 
  otherCsmaInterfaces = ipv4.Assign (otherCsmaDevices); 
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Applications and sockets 

• In general, applications in ns-3 derive from 
the ns3::Application base class 
– A list of applications is stored in the ns3::Node 
– Applications are like processes 

• Applications make use of a sockets-like 
API 
– Application::Start () may call 

ns3::Socket::SendMsg() at a lower layer 
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Sockets API 
Plain C sockets 
 
int sk; 
sk = socket(PF_INET, SOCK_DGRAM, 0); 
 
struct sockaddr_in src; 
inet_pton(AF_INET,”0.0.0.0”,&src.sin_ad

dr); 
src.sin_port = htons(80); 
bind(sk, (struct sockaddr *) &src, 

sizeof(src)); 
 
struct sockaddr_in dest; 
inet_pton(AF_INET,”10.0.0.1”,&dest.sin_

addr); 
dest.sin_port = htons(80); 
sendto(sk, ”hello”, 6, 0, (struct 

sockaddr *) &dest, sizeof(dest)); 
 
char buf[6]; 
recv(sk, buf, 6, 0); 
} 

ns-3 sockets 
 
Ptr<Socket> sk =  
udpFactory->CreateSocket (); 
 
 
sk->Bind (InetSocketAddress (80)); 
 
 
 
 
 
sk->SendTo (InetSocketAddress (Ipv4Address 

(”10.0.0.1”), 80), Create<Packet> 
(”hello”, 6)); 

 
 
 
 
sk->SetReceiveCallback (MakeCallback 

(MySocketReceive)); 
• […] (Simulator::Run ()) 
 
void MySocketReceive (Ptr<Socket> sk, 

Ptr<Packet> packet) 
{ 
... 
} 62 
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ns-3 tutorial agenda 

• 13h00-15h00:  Getting started with ns-3 
 
• 15h00-15h30:  30-minute coffee break  
• 15h40-17h15:  Going further with ns-3 
 
 
 

•  Overview of software and models 
•  Basic structure of the core and important models 
•   

•  Running and understanding an existing example 
•  Animation and visualization 
•  Writing and debugging your own examples 
•  Integrating other tools and libraries 
•  Parallel simulations 
•  Emulation, virtual machine and testbed integration 
•  Getting help and getting involved 

NS-3 Consortium Meeting 
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Attributes and default values 
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ns-3 attribute system 

Problem:  Researchers want to identify all of the values 
affecting the results of their simulations 

– and configure them easily 
ns-3 solution:  Each ns-3 object has a set of attributes: 

– A name, help text 
– A type 
– An initial value 

• Control all simulation parameters for static objects 
• Dump and read them all in configuration files 
• Visualize them in a GUI 
• Makes it easy to verify the parameters of a simulation 
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Short digression: Object metadata 
system 

• ns-3 is, at heart, a C++ object system 
• ns-3 objects that inherit from base class 

ns3::Object get several additional features 
– dynamic run-time object aggregation 
– an attribute system 
– smart-pointer memory management (Class 

Ptr) 

We focus here on the attribute system 
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Use cases for attributes 

• An Attribute represents a value in our 
system 

• An Attribute can be connected to an 
underlying variable or function  
– e.g. TcpSocket::m_cwnd; 
– or a trace source 
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Use cases for attributes (cont.)  

• What would users like to do? 
– Know what are all the attributes that affect the 

simulation at run time 
– Set a default initial value for a variable 
– Set or get the current value of a variable 
– Initialize the value of a variable when a 

constructor is called 
• The attribute system is a unified way of 

handling these functions 
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How to handle attributes 

• The traditional C++ way: 
– export attributes as part of a class's public API 
– walk pointer chains (and iterators, when 

needed) to find what you need 
– use static variables for defaults 

• The attribute system provides a more 
convenient API to the user to do these 
things 
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Navigating the attributes 

• Attributes are exported into a string-based 
namespace, with filesystem-like paths 
– namespace supports regular expressions 

• Attributes also can be used without the 
paths 
– e.g. “ns3::WifiPhy::TxGain” 

• A Config class allows users to manipulate 
the attributes 



ns-3 

Attribute namespace 

• strings are used 
to describe paths 
through the 
namespace 

  

Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipv4.tcp_sack", StringValue ("0")); 
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Navigating the attributes using paths 

• Examples: 
– Nodes with NodeIds 1, 3, 4, 5, 8, 9, 10, 11: 

“/NodeList/[3-5]|[8-11]|1” 

– UdpL4Protocol object instance aggregated to 
matching nodes: 
“/$ns3::UdpL4Protocol” 
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What users will do 

• e.g.: Set a default initial value for a 
variable 
Config::Set (“ns3::WifiPhy::TxGain”, 
DoubleValue (1.0)); 

• Syntax also supports string values: 
Config::Set (“WifiPhy::TxGain”, StringValue 
(“1.0”)); 

Attribute Value 



ns-3 
74 

Fine-grained attribute handling 

• Set or get the current value of a variable 
– Here, one needs the path in the namespace to 

the right instance of the object 
Config::SetAttribute(“/NodeList/5/DeviceList/3/Ph
y/TxGain”, DoubleValue(1.0)); 

DoubleValue d; nodePtr->GetAttribute ( 
“/NodeList/5/NetDevice/3/Phy/TxGain”, v); 

• Users can get Ptrs to instances also, and 
Ptrs to trace sources, in the same way 
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ns-3 attribute system 

• Object attributes 
are organized and 
documented in the 
Doxygen 

 
• Enables the 

construction of 
graphical 
configuration tools: 
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Attribute documentation 
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Options to manipulate attributes 
• Individual object attributes often derive from default values 

– Setting the default value will affect all subsequently created objects 
– Ability to configure attributes on a per-object basis 

• Set the default value of an attribute from the command-line: 
CommandLine cmd; 
cmd.Parse (argc, argv); 

• Set the default value of an attribute with NS_ATTRIBUTE_DEFAULT 
• Set the default value of an attribute in C++: 

Config::SetDefault ("ns3::Ipv4L3Protocol::CalcChecksum", 
BooleanValue (true)); 

• Set an attribute directly on a specic object: 
Ptr<CsmaChannel> csmaChannel = ...; 
csmaChannel->SetAttribute ("DataRate", 
StringValue ("5Mbps")); 
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Object names 

• It can be helpful to refer to objects by a 
string name 
– “access point” 
– “eth0” 

• Objects can now be associated with a 
name, and the name used in the attribute 
system 
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Names example 
NodeContainer n;  
n.Create (4);  
Names::Add ("client", n.Get (0));  
Names::Add ("server", n.Get (1));  
... 
 
Names::Add ("client/eth0", d.Get (0));  
... 
 
Config::Set ("/Names/client/eth0/Mtu", UintegerValue 

(1234));  
 

Equivalent to: 
 
Config::Set (“/NodeList/0/DeviceList/0/Mtu”, UintegerValue 

(1234)); 
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Tracing and statistics 

• Tracing is a structured form of simulation 
output 

• Example (from ns-2): 
+ 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610 
- 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610 
r 1.84471 2 1 cbr 210 ------- 1 3.0 1.0 195 600 
r 1.84566 2 0 ack 40 ------- 2 3.2 0.1 82 602 
+ 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611 

Problem:  Tracing needs vary widely 
– would like to change tracing output without 

editing the core 
– would like to support multiple outputs 
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Tracing overview 

• Simulator provides a set of pre-configured 
trace sources 
– Users may edit the core to add their own 

• Users provide trace sinks and attach to the 
trace source 
– Simulator core provides a few examples for 

common cases 
• Multiple trace sources can connect to a 

trace sink 



Tracing in ns-3 

• ns-3 configures multiple 'TraceSource' objects 
(TracedValue, TracedCallback) 

• Multiple types of 'TraceSink' objects can be hooked to 
these sources 

• A special configuration namespace helps to manage 
access to trace sources 
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TraceSource 

TracedValue 

TraceSource 

Config::Connect ("/path/to/traced/value", callback1); 

Config::Connect ("/path/to/trace/source", callback2); 

unattached 
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NetDevice trace hooks 

• Example:  CsmaNetDevice 
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CsmaNetDevice::Send () 

CsmaNetDevice:: 
TransmitStart() 

CsmaNetDevice:: 
Receive() 

CsmaChannel 

NetDevice:: 
ReceiveCallback 

queue 

MacRx 
MacDrop 

MacTx 

MacTxBackoff 

PhyTxBegin 
PhyTxEnd PhyTxDrop 

Sniffer 
PromiscSniffer 

PhyRxEnd 
PhyRxDrop 

83 



Enabling tracing in your code 

• examples/tutorial/third.cc 
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Device helpers 
provide common 
API for enabling 
pcap traces 

Global pcap tracing 

Per-device pcap tracing 
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Discovering ns-3 trace sources 

• various trace sources (e.g., packet receptions, state 
machine transitions) are plumbed through the system 

• Organized with the rest of the attribute system 
 



ns-3 

Basic tracing 

• Helper classes hide the tracing details 
from the user, for simple trace types 
– ascii or pcap traces of devices 
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Multiple levels of tracing 

• Highest-level:  Use built-in trace sources 
and sinks and hook a trace file to them 

• Mid-level:  Customize trace source/sink 
behavior using the tracing namespace 

• Low-level:  Add trace sources to the 
tracing namespace 
– Or expose trace source explicitly 
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Highest-level of tracing 

• Highest-level:  Use built-in trace sources 
and sinks and hook a trace file to them 

 

  // Also configure some tcpdump traces; each interface will be traced 

  // The output files will be named 

  // simple-point-to-point.pcap-<nodeId>-<interfaceId> 

  // and can be read by the "tcpdump -r" command (use "-tt" option to 

  // display timestamps correctly)  

  PcapTrace pcaptrace ("simple-point-to-point.pcap"); 

  pcaptrace.TraceAllIp (); 
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Mid-level of tracing 

• Mid-level:  Customize trace source/sink 
behavior using the tracing namespace 

 

void 

PcapTrace::TraceAllIp (void)  

{ 

  NodeList::Connect ("/nodes/*/ipv4/(tx|rx)", 

                     MakeCallback (&PcapTrace::LogIp, this)); 

} 

Regular expression editing 

Hook in a different trace sink 
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Asciitrace:  under the hood 

void 

AsciiTrace::TraceAllQueues (void)  

{ 

  Packet::EnableMetadata (); 

  NodeList::Connect ("/nodes/*/devices/*/queue/enqueue", 

                      MakeCallback (&AsciiTrace::LogDevQueueEnqueue, this)); 

  NodeList::Connect ("/nodes/*/devices/*/queue/dequeue", 

                      MakeCallback (&AsciiTrace::LogDevQueueDequeue, this)); 

  NodeList::Connect ("/nodes/*/devices/*/queue/drop", 

                      MakeCallback (&AsciiTrace::LogDevQueueDrop, this)); 

} 
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Lowest-level of tracing 

• Low-level:  Add trace sources to the 
tracing namespace 

 

   

  Config::Connect ("/NodeList/.../Source", 

                   MakeCallback (&ConfigTest::ChangeNotification, this)); 



Review of topics covered 

• Structure of an ns-3 program 
• Fundamental classes 

– Nodes, NetDevices, Channels, Applications 
• Node and device containers 
• Helper APIs, and Install pattern 
• Wifi and Internet stack architecture 
• Attributes and default values 
• Tracing 
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ns-3 

Animation and visualization 
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FlowMonitor 

• Network monitoring framework found in 
src/flow-monitor/ 

• Goals:  
– detect all flows passing through network 
– stores metrics for analysis such as bitrates, 

duration, delays, packet sizes, packet loss 
ratios 
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G. Carneiro, P. Fortuna, M. Ricardo, "FlowMonitor-- a network monitoring framework 
for the Network Simulator ns-3," Proceedings of NSTools 2009. 
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FlowMonitor architecture 

• Basic classes 
– FlowMonitor 
– FlowProbe 
– FlowClassifier 
– FlowMonitorHelper 

• Ipv4 only 
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Figure credit:  G. Carneiro, P. Fortuna, M. Ricardo, "FlowMonitor-- a network monitoring 
framework for the Network Simulator ns-3," Proceedings of NSTools 2009. 
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FlowMonitor statistics 

• Statistics gathered 
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Figure credit:  G. Carneiro, P. Fortuna, M. Ricardo, "FlowMonitor-- a network monitoring 
framework for the Network Simulator ns-3," Proceedings of NSTools 2009. 



FlowMonitor configuration 
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• example/wireless/wifi-hidden-terminal.cc 

97 



FlowMonitor output 

• This program exports statistics to stdout 
• Other examples integrate with PyViz  
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PyViz overview 

• Developed by Gustavo Carneiro 
• Live simulation visualizer (no trace files) 
• Useful for debugging 

– mobility model behavior 
– where are packets being dropped? 

• Built-in interactive Python console to 
debug the state of running objects 

• Works with Python and C++ programs 
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GENI Eng. Conf., Nov. 2010 

Pyviz screenshot (Graphviz layout)  
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Pyviz and FlowMonitor 

• src/flow-monitor/examples/wifi-olsr-flowmon.py 
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Enabling PyViz in your simulations 

• Make sure PyViz is enabled in the build 
 
 

• If program supports CommandLine 
parsing, pass the option  
--SimulatorImplementationType= 

ns3::VisualSimulatorImpl 

• Alternatively, pass the "--vis" option 
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NetAnim 

• "NetAnim" by George Riley and John Abraham 

pyviz 
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NetAnim key features 

• Animate packets over wired-links and wireless-
links 
– limited support for LTE traces 

• Packet timeline with regex filter on packet meta-
data.  

• Node position statistics with node trajectory 
plotting (path of a mobile node).  

• Print brief packet-meta data on packets 
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Writing and debugging your own examples 

105 
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Writing and debugging new programs 

• Choosing between Python and C++ 
• Reading existing code 
• Understanding and controlling logging code 
• Error conditions 
• Running programs through a debugger 
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Python bindings 

• ns-3 uses the 'pybindgen' tool to generate 
Python bindings for the underlying C++ libraries 

• Existing bindings are typically found in the 
bindings/ directory of a module 

• Some methods are not provided in Python (e.g. 
hooking trace sources) 

• Generating new bindings requires a toolchain 
documented on the ns-3 web site 
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Reading existing code 

• Much insight can be gained from reading ns-3 
examples and tests, and running them 
yourselves 

• Many core features of ns-3 are only 
demonstrated in the core test suite 
(src/core/test) 

• Stepping through code with a debugger can be 
done, but callbacks and templates make it more 
challenging than usual 
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Debugging support 
• Assertions: NS_ASSERT (expression); 

– Aborts the program if expression evaluates to false 
– Includes source file name and line number 

• Unconditional Breakpoints: NS_BREAKPOINT (); 
– Forces an unconditional breakpoint, compiled in 

• Debug Logging (not to be confused with tracing!) 
– Purpose 

• Used to trace code execution logic 
• For debugging, not to extract results! 

– Properties 
• NS_LOG* macros work with C++ IO streams 
• E.g.: NS_LOG_UNCOND (”I have received ” << p->GetSize () << ” bytes”); 
• NS_LOG macros evaluate to nothing in optimized builds 
• When debugging is done, logging does not get in the way of execution 

performance 
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Debugging support (cont.) 
• Logging levels: 

– NS_LOG_ERROR (...): serious error messages only 
– NS_LOG_WARN (...): warning messages 
– NS_LOG_DEBUG (...): rare ad-hoc debug messages 
– NS_LOG_INFO (...): informational messages (eg. banners) 
– NS_LOG_FUNCTION (...):function tracing 
– NS_LOG_PARAM (...): parameters to functions 
– NS_LOG_LOGIC (...): control flow tracing within functions 

• Logging ”components” 
– Logging messages organized by components 
– Usually one component is one .cc source file 
– NS_LOG_COMPONENT_DEFINE ("OlsrAgent"); 

• Displaying log messages. Two ways: 
– Programatically: 

• LogComponentEnable("OlsrAgent", LOG_LEVEL_ALL); 
– From the environment: 

• NS_LOG="OlsrAgent" ./my-program 
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Running C++ programs through gdb 

• The gdb debugger can be used directly on 
binaries in the build directory 

• An easier way is to use a waf shortcut 
./waf --command-template="gdb %s" --run <program-
name> 

 

• Note: valgrind can be run similarly 
./waf --command-template="valgrind %s" --run 

<program-name> 
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Testing 

• Can you trust ns-3 simulations? 
– Can you trust any simulation? 

• Onus is on the simulation project to validate and document 
results 

• Onus is also on the researcher to verify results 

• ns-3 strategies: 
– regression and unit tests 

• Aim for event-based rather than trace-based 
– validation of models on testbeds 
– reuse of code 
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Test framework 

• ns-3-dev is checked nightly on multiple platforms 
– Linux gcc-4.x, i386 and x86_64, OS X i386, FreeBSD 

and Cygwin (occasionally) 
• ./test.py will run regression tests 

 
Walk through test code, test terminology (suite, case), 
and examples of how tests are run 
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Improving performance 

• Debug vs optimized builds 
– ./waf -d debug configure 
– ./waf -d debug optimized 

 
• Build ns-3 with static libraries 

– ./waf --enable-static 

 
• Use different compilers (icc) 

– has been done in past, not regularly tested 



Integrating other tools and libraries 
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Gnuplot 

• src/tools/gnuplot.{cc,h} 

• C++ wrapper around gnuplot 
• classes: 

–Gnuplot 
–GnuplotDataset 

• Gnuplot2dDataset, Gnuplot2dFunction 
• Gnuplot3dDataset, Gnuplot3dFunction 
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Enabling gnuplot for your code 

• examples/wireless/wifi-clear-channel-cmu.cc 
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one dataset per mode 

Add data to dataset 

Add dataset to plot 

produce a plot file that 
will generate an EPS figure 



Matplotlib 

 
• src/core/examples/sample-rng-plot.py 
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Other libraries 

• ns-3 supports additional libraries (click, 
openflow, nsc) 

• ns-3 has optional libraries (libxml2, gsl, mysql) 
• both are typically enabled/disabled through the 

wscript 
• users are free to write their own Makefiles or 

wscripts to do something special 
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Scaling to multiple machines 
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Overview 

• Parallel and distributed discrete event 
simulation 
– Allows single simulation program to run on 

multiple interconnected processors 
– Reduced execution time! Larger topologies! 

• Terminology 
– Logical process (LP) 
– Rank or system id 
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Simulation size record 

• Simulation on a HPC cluster at the U.S. Mobile Network 
Modeling Institute (2011) * 

– 176 cores, 3 TB of memory 
– 360,448,000 simulated nodes 
– 413,704.52 packet receive events per second [wall-clock] 
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* K. Renard et al, "A Performance and Scalability Evaluation of the NS-3 Distributed Scheduler. 
Proceedings of WNS3 2012. 



Quick and Easy Example 

Figure 1. Simple point-to-point topology 
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Quick and Easy Example 

Figure 2. Simple point-to-point topology, distributed 
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Implementation Details 

• LP communication 
– Message Passing Interface (MPI) standard 
– Send/Receive time-stamped messages 
– MpiInterface in ns-3 

• Synchronization 
– Conservative algorithm using lookahead 
– DistributedSimulator in ns-3 
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Implementation Details (cont.) 

• Assigning rank 
– Currently handled manually in simulation script 
– Next step, MpiHelper for easier node/rank 

mapping 

• Remote point-to-point links 
– Created automatically between nodes with 

different ranks through point-to-point helper 
– Packet sent across using MpiInterface 
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• Distributing the topology 
– All nodes created on all LPs, regardless of rank 
– Applications are only installed on LPs with target node 

Implementation Details (cont.) 
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Performance Test 

• DARPA NMS campus network simulation 
– Allows creation of very large topologies 
– Any number of campus networks are created and 

connected together 
– Different campus networks can be placed on 

different LPs 
– Tested with 2 CNs, 4 CNs, and 6 CNs 
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Campus Network Topology 
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2 Campus Networks 

Figure 5. Execution time with 2 campus networks Figure 6. Speedup with 2 LPs 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

116 164 260 452 836

Ti
m

e 
(s

)

Number of nodes

1 LP

2 LPs

1.5

1.75

2

2.25

2.5

116 164 260 452 836

Sp
ee

du
p

Number of nodes

NS-3 Consortium Meeting 
March 2013 



ns-3 

Summary 

• Distributed simulation in ns-3 allows a user to run a 
single simulation in parallel on multiple processors 

• By assigning a different rank to nodes and 
connecting these nodes with point-to-point links, 
simulator boundaries are created 

• Simulator boundaries divide LPs, and each LP can be 
executed by a different processor 

• Distributed simulation in ns-3 offers solid 
performance gains in time of execution for large 
topologies 
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emulation and testbeds 



Emulation support 

• Support moving between simulation and testbeds or live 
systems 

• A real-time scheduler, and support for two modes of 
emulation 

– GlobalValue::Bind (“SimulatorImplementationType”, 
StringValue (“ns3::RealTimeSimulatorImpl”)); 
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ns-3 emulation modes 

virtual 
machine ns-3 

virtual 
machine 

1) ns-3 interconnects real or virtual 
machines 

real 
machine 

ns-3 

             Testbed 

real 
machine 

ns-3 

2) testbeds interconnect ns-3 
stacks 

real machine 

Various hybrids of the above are possible 
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“Tap” mode:  netns and ns-3 integration 

Container 

ns-3 

Linux (FC 12 or Ubuntu 9.10) machine 

tapX 

/dev/tunX 

TapBridge 

WiFi 

ghost node 
             
Wifi ghost node 

tapY 

Tap device pushed into namespaces; no bridging needed 

/dev/tunY 

Container 
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Example:  ORBIT and ns-3 

• Support for use of Rutgers WINLAB 
ORBIT radio grid 
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Issues 

• Ease of use 
– Configuration management and coherence 
– Information coordination (two sets of state) 

• e.g. IP/MAC address coordination 

– Output data exists in two domains 
– Debugging 

• Error-free operation (avoidance of misuse) 
– Synchronization, information sharing, exception handling 

• Checkpoints for execution bring-up 
• Inoperative commands within an execution domain 
• Deal with run-time errors 

– Soft performance degradation (CPU) and time discontinuities 
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Container-based virtual machines and ns-3 
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What is CORE? 

• The Common Open Research Emulator (CORE) is a Python framework and 
GUI for emulating networks using lightweight Virtualization native to Linux 
and FreeBSD kernels. 
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Screenshot 
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Wired networks 

Wireless networks 

Lightweight VMs 
Double-click for 
shell 

Visualize 
routing state 
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Technical Goals 

• CORE provides Python libraries for using Linux network namespaces in 
network emulation experiments 

– CORE + ns-3 integrates realism of namespace with wireless device models 

• CORE is a graphical controller that users find intuitive 
– CORE GUI could eventually be used for ns-3 authoring/visualization 

scenario
definition configuration run-time

execution
data

collection

instantiation

data
collection

(not a GUI-based
activity)

scenario definition configuration

instantiation

run-time execution

Today's demo: 
• Allow users to interact with 
the running emulation (set 
node position) 
• Allow users to visualize  
ns-3 mobility in the GUI 
 
Future directions: 
• Author topologies and IP 
addressing plans 
• Control execution of hybrid 
experiments 
• Integrate ns-3 ConfigStore 
with CORE GUI 
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network 
namespace 

fd 
TAP 

network 
namespace 

fd 
TAP 

Virtual Interfaces 

• Ordinary CORE 
– Virtual Ethernet pairs (veth) 

are installed into a namespace 
and joined to a bridge. 

– For wireless networks 
(WLANs), ebtables rules 
govern pairwise connectivity. 
 

• CORE + ns-3 
– TUN/TAP device installed into 

a namespace, socket held by 
simulation. 

– Simulation runs with real-time 
scheduler. 

network 
namespace 

veth 
veth 

Linux bridge 

network 
namespace 

veth 
veth 

network 
namespace 

veth 
veth 

network 
namespace 

fd 
TAP 

ns-3 simulation 
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Mobility demonstration 

Canvas-based mobility 
• ns-3 ConstantPosition 
MobilityModel 
• users can drag nodes 
around and change 
topology 
 

ns-3 mobility visualization 
• ns-3 RandomWalk Mobility 
Model 
• users can observe Linux 
namespace state (e.g. OSPF 
adjacencies) as nodes move 
in the ns-3 realm 
 



Scaling time in virtualized environments 

• Synchronized Network Emulation - RWTH 
Aachen University 
– Modified Xen  

• VAN Testbed – Telcordia/CERDEC 
– Modified Xen 

• Linux Time namespace - Jeff Dike (UML creator) 
– Add a time namespace to the Linux kernel, allowing 

for gettimeofday() offsets 
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Direct Code Execution 
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Goals 

• Lightweight virtualization of kernel and 
application processes, interconnected by 
simulated networks 

• Benefits: 
– Implementation realism in controlled topologies or 

wireless environments 
– Model availability 

• Limitations: 
– Not as scalable as pure simulation 
– Runs in real-time 
– Integration of the two environments 
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Direct Code Execution 

• Developed by Mathieu Lacage and Frederic Urbani, 
INRIA, Hajime Tazaki (WIDE) 

• Run unmodified application binaries in ns-3 
– Also, can run entire Linux stack in ns-3 
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Figure source: 
Mathieu Lacage 

http://www-sop.inria.fr/members/Frederic.Urbani/ns3dceccnx/index.html 
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NEPI 
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Network Experiment Management 
Framework (NEPI) 

Figure source:  Alina Quereilhac, INRIA 
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• Network experiment management framework to 
automate experiment life-cycle 

• Allows scenarios involving heterogeneous resources (ns-
3, PlanetLab, netns, …) 

• Wiki:   http://nepi.inria.fr 
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Getting Help and Getting Involved 
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Resources 

Web site:   
http://www.nsnam.org 

Mailing list:   
http://mailman.isi.edu/mailman/listinfo/ns-developers 

IRC:  #ns-3 at freenode.net 
Tutorial: 

http://www.nsnam.org/docs/tutorial/tutorial.html 

Code server: 
http://code.nsnam.org 

Wiki: 
http://www.nsnam.org/wiki/index.php/Main_Page 
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