
Session 2: Monday 10:30am

ns-3 Annual Meeting

May 2014

1

ns-3 Training

Discrete-event simulation basics

• Simulation time moves in discrete jumps from

event to event

• C++ functions schedule events to occur at

specific simulation times

• A simulation scheduler orders the event

execution

• Simulation::Run() gets it all started

• Simulation stops at specific time or when events

end

NS-3 Annual Meeting

May 2014

2

Software orientation

Key differences from other tools:

1) Command-line, Unix orientation

– vs. Integrated Development Environment

(IDE)

2) Simulations and models written directly in

C++ and Python

– vs. a domain-specific simulation language

NS-3 Annual Meeting

May 2014

Simulator example

NS-3 Annual Meeting

May 2014

4

Simulator example (in Python)

NS-3 Annual Meeting

May 2014

5

Simulation program flow

NS-3 Annual Meeting

May 2014

Handle program inputs

Configure topology

Run simulation

Process outputs

Command-line arguments

• Add CommandLine to your program if you want

command-line argument parsing

• Passing --PrintHelp to programs will display command

line options, if CommandLine is enabled

./waf --run "sample-simulator --PrintHelp"

NS-3 Annual Meeting

May 2014

7

Time in ns-3

• Time is stored as a large integer in ns-3

– Minimize floating point discrepancies across platforms

• Special Time classes are provided to manipulate

time (such as standard operators)

• Default time resolution is nanoseconds, but can

be set to other resolutions

• Time objects can be set by floating-point values

and can export floating-point values

double timeDouble = t.GetSeconds();

NS-3 Annual Meeting

May 2014

8

Events in ns-3

• Events are just function calls that execute

at a simulated time

– i.e. callbacks

– another difference compared to other

simulators, which often use special "event

handlers" in each model

• Events have IDs to allow them to be

cancelled or to test their status

NS-3 Annual Meeting

May 2014

9

Simulator and Schedulers

• The Simulator class holds a scheduler,

and provides the API to schedule events,

start, stop, and cleanup memory

• Several scheduler data structures

(calendar, heap, list, map) are possible

• A "RealTime" simulation implementation is

possible

– aligns the simulation time to wall-clock time

NS-3 Annual Meeting

May 2014

10

Random Variables

• Currently implemented distributions
– Uniform: values uniformly distributed in an interval
– Constant: value is always the same (not really random)
– Sequential: return a sequential list of predefined values
– Exponential: exponential distribution (poisson process)
– Normal (gaussian), Log-Normal, Pareto, Weibull, triangular

NS-3 Annual Meeting

May 2014

11

from src/core/examples/sample-rng-plot.py

Random variables and independent

replications

• Many simulation uses involve running a

number of independent replications of the

same scenario

• In ns-3, this is typically performed by

incrementing the simulation run number

– not by changing seeds

NS-3 Annual Meeting

May 2014

12

ns-3 random number generator

• Uses the MRG32k3a generator from Pierre
L'Ecuyer

– http://www.iro.umontreal.ca/~lecuyer/myftp/papers/str
eams00.pdf

– Period of PRNG is 3.1x10^57

• Partitions a pseudo-random number generator
into uncorrelated streams and substreams

– Each RandomVariableStream gets its own stream

– This stream partitioned into substreams

NS-3 Annual Meeting

May 2014

13

Run number vs. seed

• If you increment the seed of the PRNG, the

streams of random variable objects across

different runs are not guaranteed to be

uncorrelated

• If you fix the seed, but increment the run

number, you will get an uncorrelated substream

NS-3 Annual Meeting

May 2014

14

Putting it together

• Example of scheduled event

NS-3 Annual Meeting

May 2014

15

Demo real-time, command-line, random variables...

Walkthrough of WiFi Internet example

16
ns-3

The basic model

17
ns-3

Application
Application

Protocol

stack

Node

NetDevice
NetDevice

Application
Application

Protocol
stack

Node

NetDevice
NetDevice

Sockets-like

API

Channel

Channel

Packet(s)

Example program

• examples/wireless/wifi-simple-adhoc-

grid.cc

• examine wscript for necessary modules
– 'internet', 'mobility', 'wifi', 'config-store',

'tools'

– we'll add 'visualizer'

• ./waf configure --enable-examples --

enable-modules=...

NS-3 Annual Meeting

May 2014

18

Example program

• (5x5) grid of WiFi ad hoc nodes

• OLSR packet routing

• Try to send packet from one node to another

NS-3 Annual Meeting

May 2014

19

WiFi
• Goal is to read and

understand the high-level

ns-3 API

Source (node 24) by default

Sink (node 0) by default

Fundamentals

Key objects in the simulator are Nodes,

Packets, and Channels

Nodes contain Applications, “stacks”, and

NetDevices

20
ns-3

Node basics

A Node is a shell of a computer to which

applications, stacks, and NICs are added

21
ns-3

Application
Application

Application

“DTN”

NetDevices and Channels

NetDevices are strongly bound to Channels

of a matching type

Nodes are architected for multiple interfaces

22
ns-3

WifiNetDevice

WifiChannel

Internet Stack

• Internet Stack

– Provides IPv4 and some IPv6 models

currently

• No non-IP stacks in ns-3.19

– but no dependency on IP in the devices,

Node, Packet, etc.

– IEEE 802.15.4-based models introduced for

ns-3.20

23
ns-3

Other basic models in ns-3

• Devices

– WiFi, WiMAX, CSMA, Point-to-point, Bridge

• Error models and queues

• Applications

– echo servers, traffic generator

• Mobility models

• Packet routing

– OLSR, AODV, DSR, DSDV, Static, Nix-
Vector, Global (link state)

24
ns-3

ns-3 Packet

• Packet is an advanced data structure with

the following capabilities

– Supports fragmentation and reassembly

– Supports real or virtual application data

– Extensible

– Serializable (for emulation)

– Supports pretty-printing

– Efficient (copy-on-write semantics)

25
ns-3

ns-3 Packet structure

• Analogous to an mbuf/skbuff

26
ns-3

Copy-on-write

• Copy data bytes only as needed

27
ns-3

Figure source: Mathieu Lacage's Ph.D. thesis

Structure of an ns-3 program

int main (int argc, char *argv[])

{

// Set default attribute values

// Parse command-line arguments

// Configure the topology; nodes, channels, devices, mobility

// Add (Internet) stack to nodes

// Configure IP addressing and routing

// Add and configure applications

// Configure tracing

// Run simulation

}

28
ns-3

Review of example program

29
ns-3

Helper API

• The ns-3 “helper API” provides a set of classes

and methods that make common operations

easier than using the low-level API

• Consists of:

– container objects

– helper classes

• The helper API is implemented using the low-

level API

• Users are encouraged to contribute or propose

improvements to the ns-3 helper API

30
ns-3

Containers

• Containers are part of the ns-3 “helper

API”

• Containers group similar objects, for

convenience

– They are often implemented using C++ std

containers

• Container objects also are intended to

provide more basic (typical) API

31
ns-3

The Helper API (vs. low-level API)

• Is not generic

• Does not try to allow code reuse

• Provides simple 'syntactical sugar' to make

simulation scripts look nicer and easier to

read for network researchers

• Each function applies a single operation on

a ''set of same objects”

• A typical operation is "Install()"

32
ns-3

Helper Objects

• NodeContainer: vector of Ptr<Node>

• NetDeviceContainer: vector of Ptr<NetDevice>

• InternetStackHelper

• WifiHelper

• MobilityHelper

• OlsrHelper

• ... Each model provides a helper class

33
ns-3

Example program

• (5x5) grid of WiFi ad hoc nodes

• OLSR packet routing

• Try to send packet from one node to another

NS-3 Annual Meeting

May 2014

34

WiFi

Source (node 24) by default

Sink (node 0) by default

• Let’s look closely at how

these objects are created

Installation onto containers

• Installing models into containers, and

handling containers, is a key API theme

NodeContainer c;

c.Create (numNodes);

...

mobility.Install (c);

...

internet.Install (c);

...

NS-3 Annual Meeting

May 2014

35

Mobility models in ns-3

• The MobilityModel interface:

– void SetPosition (Vector pos)

– Vector GetPosition ()

• StaticMobilityModel

– Node is at a fixed location; does not move on its own

• RandomWaypointMobilityModel

– (works inside a rectangular bounded area)

– Node pauses for a certain random time

– Node selects a random waypoint and speed

– Node starts walking towards the waypoint

– When waypoint is reached, goto first state

• RandomDirectionMobilityModel

– works inside a rectangular bounded area)

– Node selects a random direction and speed

– Node walks in that direction until the edge

– Node pauses for random time

– Repeat

36
ns-3

3D Cartesian coordinate system

z
y

x

Internet stack

37
ns-3

• The public interface of

the Internet stack is

defined (abstract base

classes) in

src/network/model

directory

• The intent is to support

multiple implementations

• The default ns-3 Internet

stack is implemented in

src/internet-stack

ns-3 TCP

• Several options exist:

– native ns-3 TCP

– Tahoe, Reno, NewReno (others in development)

– TCP simulation cradle (NSC)

– Use of virtual machines or DCE (more on this

later)

• To enable NSC:
internetStack.SetNscStack ("liblinux2.6.26.so");

38
ns-3

ns-3 simulation cradle

• Port by Florian Westphal of Sam Jansen’s Ph.D. work

39
ns-3

Figure reference: S. Jansen, Performance, validation and testing with the Network

Simulation Cradle. MASCOTS 2006.

ns-3 simulation cradle

40
ns-3

For ns-3:

• Linux 2.6.18

• Linux 2.6.26

• Linux 2.6.28

Others:

• FreeBSD 5

• lwip 1.3

• OpenBSD 3

Other simulators:

• ns-2

• OmNET++

Figure reference: S. Jansen, Performance, validation and testing with the Network

Simulation Cradle. MASCOTS 2006.

IPv4 address configuration

• An Ipv4 address helper can assign

addresses to devices in a NetDevice

container

41
ns-3

Ipv4AddressHelper ipv4;

ipv4.SetBase ("10.1.1.0", "255.255.255.0");

csmaInterfaces = ipv4.Assign (csmaDevices);

...

ipv4.NewNetwork (); // bumps network to 10.1.2.0

otherCsmaInterfaces = ipv4.Assign (otherCsmaDevices);

Applications and sockets

• In general, applications in ns-3 derive from

the ns3::Application base class

– A list of applications is stored in the ns3::Node

– Applications are like processes

• Applications make use of a sockets-like

API

– Application::Start () may call

ns3::Socket::SendMsg() at a lower layer

42
ns-3

Sockets API

Plain C sockets

int sk;

sk = socket(PF_INET, SOCK_DGRAM, 0);

struct sockaddr_in src;

inet_pton(AF_INET,”0.0.0.0”,&src.sin_ad

dr);

src.sin_port = htons(80);

bind(sk, (struct sockaddr *) &src,

sizeof(src));

struct sockaddr_in dest;

inet_pton(AF_INET,”10.0.0.1”,&dest.sin_

addr);

dest.sin_port = htons(80);

sendto(sk, ”hello”, 6, 0, (struct

sockaddr *) &dest, sizeof(dest));

char buf[6];

recv(sk, buf, 6, 0);

}

43
ns-3

ns-3 sockets

Ptr<Socket> sk =

udpFactory->CreateSocket ();

sk->Bind (InetSocketAddress (80));

sk->SendTo (InetSocketAddress (Ipv4Address

(”10.0.0.1”), 80), Create<Packet>

(”hello”, 6));

sk->SetReceiveCallback (MakeCallback

(MySocketReceive));

• […] (Simulator::Run ())

void MySocketReceive (Ptr<Socket> sk,

Ptr<Packet> packet)

{

...

}

Attributes and default values

NS-3 Annual Meeting

May 2014

44

ns-3 attribute system

Problem: Researchers want to identify all of the values
affecting the results of their simulations

– and configure them easily

ns-3 solution: Each ns-3 object has a set of attributes:

– A name, help text

– A type

– An initial value

• Control all simulation parameters for static objects

• Dump and read them all in configuration files

• Visualize them in a GUI

• Makes it easy to verify the parameters of a simulation

45
ns-3

Short digression: Object metadata

system

• ns-3 is, at heart, a C++ object system

• ns-3 objects that inherit from base class

ns3::Object get several additional features

– dynamic run-time object aggregation

– an attribute system

– smart-pointer memory management (Class

Ptr)

46
ns-3

We focus here on the attribute system

Use cases for attributes

• An Attribute represents a value in our

system

• An Attribute can be connected to an

underlying variable or function

– e.g. TcpSocket::m_cwnd;

– or a trace source

47
ns-3

Use cases for attributes (cont.)

• What would users like to do?

– Know what are all the attributes that affect the

simulation at run time

– Set a default initial value for a variable

– Set or get the current value of a variable

– Initialize the value of a variable when a

constructor is called

• The attribute system is a unified way of

handling these functions
48

ns-3

How to handle attributes

• The traditional C++ way:

– export attributes as part of a class's public API

– walk pointer chains (and iterators, when

needed) to find what you need

– use static variables for defaults

• The attribute system provides a more

convenient API to the user to do these

things

49
ns-3

Navigating the attributes

• Attributes are exported into a string-based

namespace, with filesystem-like paths

– namespace supports regular expressions

• Attributes also can be used without the

paths

– e.g. “ns3::WifiPhy::TxGain”

• A Config class allows users to manipulate

the attributes

50
ns-3

Attribute namespace

• strings are used

to describe paths

through the

namespace

51
ns-3

Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipv4.tcp_sack", StringValue ("0"));

Navigating the attributes using paths

• Examples:

– Nodes with NodeIds 1, 3, 4, 5, 8, 9, 10, 11:

“/NodeList/[3-5]|[8-11]|1”

– UdpL4Protocol object instance aggregated to

matching nodes:

“/$ns3::UdpL4Protocol”

52
ns-3

What users will do

• e.g.: Set a default initial value for a

variable
Config::Set (“ns3::WifiPhy::TxGain”,

DoubleValue (1.0));

• Syntax also supports string values:
Config::Set (“WifiPhy::TxGain”, StringValue

(“1.0”));

53
ns-3

Attribute Value

Fine-grained attribute handling

• Set or get the current value of a variable

– Here, one needs the path in the namespace to

the right instance of the object
Config::SetAttribute(“/NodeList/5/DeviceList/3/Ph

y/TxGain”, DoubleValue(1.0));

DoubleValue d; nodePtr->GetAttribute (

“/NodeList/5/NetDevice/3/Phy/TxGain”, v);

• Users can get Ptrs to instances also, and

Ptrs to trace sources, in the same way

54
ns-3

ns-3 attribute system

• Object attributes
are organized and
documented in the
Doxygen

• Enables the
construction of
graphical
configuration tools:

55
ns-3

Attribute documentation

56
ns-3

Options to manipulate attributes

• Individual object attributes often derive from default values

– Setting the default value will affect all subsequently created objects

– Ability to configure attributes on a per-object basis

• Set the default value of an attribute from the command-line:

CommandLine cmd;

cmd.Parse (argc, argv);

• Set the default value of an attribute with NS_ATTRIBUTE_DEFAULT

• Set the default value of an attribute in C++:

Config::SetDefault ("ns3::Ipv4L3Protocol::CalcChecksum",

BooleanValue (true));

• Set an attribute directly on a specic object:

Ptr<CsmaChannel> csmaChannel = ...;

csmaChannel->SetAttribute ("DataRate",

StringValue ("5Mbps"));

57
ns-3

Object names

• It can be helpful to refer to objects by a

string name

– “access point”

– “eth0”

• Objects can now be associated with a

name, and the name used in the attribute

system

58
ns-3

Names example

NodeContainer n;

n.Create (4);

Names::Add ("client", n.Get (0));

Names::Add ("server", n.Get (1));

...

Names::Add ("client/eth0", d.Get (0));

...

Config::Set ("/Names/client/eth0/Mtu", UintegerValue

(1234));

Equivalent to:

Config::Set (“/NodeList/0/DeviceList/0/Mtu”, UintegerValue

(1234));

59
ns-3

Tracing and statistics

• Tracing is a structured form of simulation

output

• Example (from ns-2):
+ 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

- 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

r 1.84471 2 1 cbr 210 ------- 1 3.0 1.0 195 600

r 1.84566 2 0 ack 40 ------- 2 3.2 0.1 82 602

+ 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611

Problem: Tracing needs vary widely

– would like to change tracing output without

editing the core

– would like to support multiple outputs
60

ns-3

Tracing overview

• Simulator provides a set of pre-configured

trace sources

– Users may edit the core to add their own

• Users provide trace sinks and attach to the

trace source

– Simulator core provides a few examples for

common cases

• Multiple trace sources can connect to a

trace sink
61

ns-3

Tracing in ns-3

• ns-3 configures multiple 'TraceSource' objects

(TracedValue, TracedCallback)

• Multiple types of 'TraceSink' objects can be hooked to

these sources

• A special configuration namespace helps to manage

access to trace sources

NS-3 Annual Meeting

May 2014

62

TraceSource

TracedValue

TraceSource

Config::Connect ("/path/to/traced/value", callback1);

Config::Connect ("/path/to/trace/source", callback2);

unattached

NetDevice trace hooks

• Example: CsmaNetDevice

NS-3 Annual Meeting

May 2014

63

CsmaNetDevice::Send ()

CsmaNetDevice::

TransmitStart()

CsmaNetDevice::

Receive()

CsmaChannel

NetDevice::

ReceiveCallback

queue

MacRx

MacDrop
MacTx

MacTxBackoff

PhyTxBegin

PhyTxEnd
PhyTxDrop

Sniffer

PromiscSniffer

PhyRxEnd

PhyRxDrop

