
Distributed Simulation with NS-3

Ken Renard
US Army Research Lab

Outline

• Introduction and Motivation for Distributed NS-3
• Parallel Discrete Event Simulation
• MPI Concepts
• Distributed NS-3 Scheduler
• Limitations
• Example Code Walk-through
• Error Conditions
• Performance Considerations
• Advanced Topics

Introduction to Distributed NS-3
• Distributed NS-3 is a scheduler that allows discrete events to be

executed concurrently among multiple CPU cores
– Load and memory distribution

• Initially released in version 3.8
• Implemented by George Riley and Josh Pelkey (Georgia Tech)
• Roots from:

– Parallel/Distributed ns (pdns)
– Georgia Tech Network Simulator (GTNetS)

• Performance Studies
– “Performance of Distributed ns-3 Network Simulator”, S. Nikolaev, P.

Barnes, Jr., J. Brase, T. Canales, D. Jefferson, S. Smith, R. Soltz, P.
Scheibel, SimuTools '13

– “A Performance and Scalability Evaluation of the NS-3 Distributed
Scheduler”, K. Renard, C. Peri, J. Clarke , SimuTools '12

• 360 Million Nodes

Motivation for High Performance,
Scalable Network Simulation

• Reduce simulation run-time for large, complex network
simulations
– Complex models require more CPU cycles and memory

• MANETs, robust radio devices
• More realistic application-layer models and traffic loading
• Load balancing among CPUs

– Potential to enable real-time performance for NS-3 emulation
• Enable larger simulated networks

– Distribute memory footprint to reduce swap usage
– Potential to reduce impact of N2 problems such as global routing

• Allows network researchers to run multiple simulations and
collect significant data

Discrete Event Simulation
• Execution of a series of time-ordered events

– Events can change the state of the model
– Create zero or more future events

• Simulation time advances based on when the next event occurs
– Instantaneously skip over time periods with no activity
– Time effectively stops during the processing of an event

• Events are executed in time order
– New events can be scheduled “now” or in the future
– New events cannot be scheduled “in the past”
– Events that are scheduled at the exact same time may be executed in any

order
• To model a process that takes time to complete, schedule a series of

events that happen at relative time offsets
– Start sending packet: set medium busy, schedule stop event
– Stop sending packet: set medium available, schedule receive events

• Exit when there are no more events are in the queue

Discrete Events and Timing for a
Packet Transmission

Parallel Discrete Event Simulation
(Conservative)

• By partitioning the model (network) into multiple pieces and map these pieces to Logical Processes,
(LPs), each LP has its own set of events to process

– LPs are synchronized copies of NS3 running at the same time

• Try to distribute event load (processing load) equally among LPs
– Exploit parallelism in simulation

• At some point, we will need to schedule an event that will be executed on another LP
– Messages are passed between LPs to communicate event details and scheduling information
– Some form of time synchronization is required between LPs
– Must maintain causality – cannot schedule an event “in the past”
– We need to communicate our event to a remote LP before that LP’s simulation time passes our event time

• Events across LPs can execute independently and in parallel

Clock Synchronization in
Conservative PDES

• We grant each LP a future time value such
that no incoming events will occur before
that time
– In the simple case, all LPs are granted the

same time
– All LPs advance time in synchronized

“chunks”
• The LP can now execute all events up to

that time while preserving causality
– Incoming event requests are queued

• Incoming events will occur after the granted
time

• The LP waits until it is granted additional
time
– Even distribution of workload limits wasted

time
• We want to maximize grant time such that

a larger set of events can be computed in
parallel

Lookahead & Grant Time Computation

• Lookahead value is the minimum amount of time that
must elapse before an event at an LP can effect
anything in another LP
– In network simulation we can use the propagation delay

over a link/channel as the basis for lookahead
– Among a set of LPs, the maximum lookahead is the time

of the next event, plus the minimum propagation delay
among links that span LPs

• Compute Lower Bound Time Step (LBTS)
– Smallest timestamp of an event that can be delivered to

another LP
– Select lowest LBTS over all LPs as global grant time

• All LPs advance to the same grant time before repeating
• Getting all LPs to communicate and determine lowest

LBTS can be expensive
– O(n) to O(n2) messages, interconnect type, interconnect

speed

Message Passing Interface (MPI)
• Distributed NS-3 uses MPI for communication and synchronization
• Message Passing Specification (not the library itself)

– Point-to-Point as well as collective communications
– Designed for high performance and scalability
– De-facto standard for distributed computing

• Allows communication between sets of processes (ranks)
– mpirun –np 10 ./main

• Language Independent (C, C++, FORTRAN, Java, Python, etc)
• Targeted distributed memory systems, but works nicely on shared memory as well

• Libraries are built to take advantage of underlying hardware
– Such as drivers for high-speed interconnects
– Low latency, high throughput

• Implementations: OpenMPI, MPICH, mpi4py, mpiJava, etc
Images: https://computing.llnl.gov/tutorials/mpi/

MPI Concepts
• Communicators

– A “channel” among a group of processes (unsigned int)
– Each process in the group is assigned an ID or rank

• Rank numbers are contiguous unsigned integers starting with 0
• Used for directing messages or to assign functionality to specific processes

– if (rank == 0) print “Hello World”

– Default [“everybody”] communicator is MPI_COMM_WORLD
• Point-To-Point Communications

– A message targeting a single specific process
– MPI_Send(data, data_length, data_type,

 destination, tag, communicator)
• Data/Data Length – Message contents
• Data Type – MPI-defined data types
• Destination – Rank Number
• Tag – Arbitrary message tag for applications to use
• Communicator – Specific group where destination exists

– MPI_Send() / MPI_Isend() – blocking and non-blocking sends
• MPI_Recv() / MPI_Irevc() – blocking and non-blocking receive

MPI Concepts
• Collective Communications

– Synchronization – Block until all members of communicator have reached that point
– Data messaging – Broadcast, scatter/gather, all-to-all
– Collective Computation – One rank collects data from all ranks and performs an operation (sum, avg,

min, max)

• Data Types – select examples
– MPI_CHAR, MPI_UNSIGNED_CHAR
– MPI_SHORT, MPI_LONG, MPI_INT
– MPI_FLOAT, MPI_DOUBLE, MPI_COMPLEX
– Derived types – built from primitives

• Specifying where processes are run
– Use config file to specify hosts and #CPUs to run on

• --hostfile file for OpenMPI

– Cluster systems usually have queuing system or
 scheduler interfaces where host/CPU mapping
 is done

This is an example hostfile. Comments begin with #

The following node is a single processor machine:
foo.example.com

The following node is a dual-processor machine:
bar.example.com slots=2

The following node is a quad-processor machine, and we
absolutely want to disallow over-subscribing it:
yow.example.com slots=4 max-slots=4

#!/bin/csh
#PBS -l walltime=01:00:00
#PBS -l select=128:ncpus=8:mpiprocs=8
#PBS -l place=scatter:excl
#PBS -N myjob
#PBS -q standard

mpirun_shim ${PATH}/big_simulation

MPI Programming
OpenMPI Example

• MPI Program Structure
– Include headers
– Initialize MPI with command-line args
– Parallel code

• Send messages, synchronize
– Finalize

• Use front-end for compiler
– mpicc, mpicxx, mpif77
– Automatically includes appropriate

libraries and include directories
• Use mpirun to execute

– Use config file to specify hosts and #CPUs
to run on

• --hostfile file for OpenMPI
– Cluster systems usually have queuing

system/scheduler interfaces where
host/CPU mapping is done

#include <mpi.h>
#include <unistd.h> // For getpid()

int
main (int argc, char **argv)
{
 int size, rank, rc;

 rc = MPI_Init (&argc, &argv);
 if (rc != MPI_SUCCESS)
 MPI_Abort(MPI_COMM_WORLD, rc);

 MPI_Comm_size (MPI_COMM_WORLD, &size);
 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 printf ("Hello World from rank %d of %d
 (%d)\n", rank, size, getpid ());

 MPI_Finalize();
}

$ mpicxx -o hello hello.cc
$ mpirun -np 4 ./hello
Hello World from rank 3 of 4 (35986)
Hello World from rank 0 of 4 (35983)
Hello World from rank 1 of 4 (35984)
Hello World from rank 2 of 4 (35985)

MPI Messaging Example
#include <mpi.h>
int main (int argc, char **argv)
{
 int rank, rc;
 char *msg = (char *)"Hello";
 int msg_len = strlen(msg);
 char in_msg[msg_len + 1];

 MPI_Init (&argc, &argv);
 MPI_Comm_size (MPI_COMM_WORLD, &size);
 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 if (size < 2) {
 printf ("Need more than one rank to communicate\n");
 MPI_Abort(MPI_COMM_WORLD, 0);
 }

 if (rank == 0) {
 int dest = 1;
 rc = MPI_Send (msg, msg_len, MPI_CHAR, dest,
 0, MPI_COMM_WORLD);
 }

 if (rank == 1) {
 int count = 0;
 MPI_Status stat;

 rc = MPI_Recv (&in_msg, msg_len, MPI_CHAR,
 MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &stat);
 in_msg[msg_len] = (char) 0;
 MPI_Get_count (&stat, MPI_CHAR, &count);
 printf("Rank %d receive message \"%s\" (%d) from rank
 %d tag %d\n", rank, in_msg, count,
 stat.MPI_SOURCE, stat.MPI_TAG);
 }

 MPI_Finalize();
}

$ mpicxx -o send1 send1.cc
$ mpirun -np 4 ./send1
Rank 1 receive message "Hello" (5) from rank 0 tag 0
$

MPI Collective Example -- Barrier
#include <mpi.h>
#include <unistd.h>
#include <stdlib.h>

int
main (int argc, char **argv)
{
 int size, rank, rc;

 rc = MPI_Init (&argc, &argv);
 if (rc != MPI_SUCCESS)
 MPI_Abort(MPI_COMM_WORLD, rc);

 MPI_Comm_size (MPI_COMM_WORLD, &size);
 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Barrier (MPI_COMM_WORLD);

 srand (getpid ());
 int count = rand() % 1000000000;

 int sum = 0;
 for (int i=0; i < count; i++) {
 sum += rand () % 1000000;
 }

 printf("Rank %d: done with spin (%d)\n",
 rank, count);
 MPI_Barrier (MPI_COMM_WORLD);
 printf("Rank %d: Final Barrier\n", rank);

 MPI_Finalize();
}

$ time mpirun -np 4 ./coll
Rank 0: done with spin (11587458)
Rank 3: done with spin (171572520)
Rank 2: done with spin (402449947)
Rank 2: Final Barrier
Rank 1: done with spin (777659848)
Rank 1: Final Barrier
Rank 3: Final Barrier
Rank 0: Final Barrier

real 0m10.151s
user 0m36.471s
sys 0m0.050s

$ time mpirun -np 4 ./coll
Rank 1: done with spin (30229414)
Rank 0: done with spin (258675938)
Rank 3: done with spin (496367588)
Rank 1: Final Barrier
Rank 2: done with spin (731537290)
Rank 2: Final Barrier
Rank 0: Final Barrier
Rank 3: Final Barrier

real 0m9.621s
user 0m34.365s
sys 0m0.043s

MPI Collective Example -- AllGather
#include <mpi.h>
#include <unistd.h>
#include <stdlib.h>

int
main (int argc, char **argv)
{
 int size, rank, rc;

 rc = MPI_Init (&argc, &argv);
 if (rc != MPI_SUCCESS)
 MPI_Abort(MPI_COMM_WORLD, rc);

 MPI_Comm_size (MPI_COMM_WORLD, &size);
 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 srand (getpid ());
 int allValues[size];
 int myValue = rand() % 1000000000;

 MPI_Allgather (&myValue, 1, MPI_INT,
 allValues, 1, MPI_INT,
 MPI_COMM_WORLD);

 printf ("Rank %d: [", rank);
 for (int i = 0; i < size; i++) {
 printf("%d, ", allValues[i]);
 }
 printf ("]\n");

 MPI_Finalize();
}

$ mpirun -np 4 ./gather
Rank 3: [29003797, 719191937, 424799615, 114846810,]
Rank 0: [29003797, 719191937, 424799615, 114846810,]
Rank 1: [29003797, 719191937, 424799615, 114846810,]
Rank 2: [29003797, 719191937, 424799615, 114846810,]

Distributed NS-3

1. Configuring and Building Distributed NS-3
2. Basic approach to Distributed NS-3

simulation
3. Memory Optimizations
4. Discussion of works-in-progress to simplify

and optimize distributed simulations

Building Distributed NS-3
• Add “--enable-mpi” to ‘waf configure’ line

– Tries to run ‘mpic++’
• Recognizes OpenMPI and MPICH libraries

– Defines “NS3_MPI” and either “NS3_OPENMPI” or “NS3_MPICH”

---- Summary of optional NS-3 features:
Python Bindings : not enabled (PyBindGen missing)
BRITE Integration : not enabled (BRITE not enabled (see option --with-brite))
NS-3 Click Integration : not enabled (nsclick not enabled (see option --with-nsclick))
GtkConfigStore : enabled
XmlIo : enabled
Threading Primitives : enabled
Real Time Simulator : enabled
Emulated Net Device : enabled
File descriptor NetDevice : enabled
Tap FdNetDevice : enabled
Emulation FdNetDevice : enabled
PlanetLab FdNetDevice : not enabled (PlanetLab operating system not detected…
Network Simulation Cradle : not enabled (NSC not found (see option --with-nsc))
MPI Support : enabled
NS-3 OpenFlow Integration : not enabled (OpenFlow not enabled (see option --with-openflow))
SQlite stats data output : enabled

Building a Distributed NS-3 Simulation

• Choose partitioning strategy
– Find obvious sections of the network that will operate most independently

• Minimize communication between partitions
– Find large latencies in network

• Large latencies are large (good) lookahead values
• Build topology as normal, assigning “SystemId” values on all Nodes

– CreateObject<Node> (rankId)
• Distributed NS-3 can only be partitioned over Point-to-Point (P2P) links

– A special type of P2P will be created by the PTPHelper if Nodes do not have
the same systemId [PointToPointRemoteChannel]

– P2P links can be “inserted” where latency is available
– Latency can sometimes be “moved” around

Distributed NS-3
Load Distribution

• All ranks create all nodes and links
– Setup time and memory requirements are similar to sequential simulation
– Event execution happens in parallel
– Memory is used for nodes/stacks/devices that “belong” to other ranks

• Non-local nodes do not have to be fully configured
– Application models should not be installed on non-local nodes
– Stacks and addresses probably should be installed on non-local nodes

• So that global routing model can ‘see’ the entire network
• When packets are transmitted over P2P-Remote links, the receive event is

communicated to the receiving rank
– Send event immediately, do not wait for grant time
– Receive event is added to remote rank’s queue instead of local

• At end of grant time
– Read and schedule all incoming events
– Compute and negotiate next grant time

Sending a Packet to Remote Rank
• Consider 2 CSMA networks connected by a single P2P link

– One router on each network that spans P2P and CSMA networks
– A packet is sent from H1 to H6 via R1 and R2
– At R1, packet is forwarded on to P2P link R1<->R2

• When Packet is sent to P2P-Remote Channel
– Instead of scheduling a receive on the destination PTPDevice, we call

MpiInterface::SendPacket()
• MpiInterface::SendPacket()

– Arguments
• Packet data
• Receive time – Packet time plus link delay
• Remote SystemId (rank)
• Remote nodeId
• Remote InterfaceId

– Serializes packet and destination data
– MPI_Isend() byte stream to remote rank

Receiving a Packet from Remote Rank

• At granted time, read all MPI message from wire
• For each message

– Deserialize target Receive Time, Node and InterfaceId
– Deserialize packet
– Find Node by ID
– Find NetDevice on node with correct interfaceId
– Get MpiReceiver object which is aggregated to the

NetDevice
• MpiReceiver is a small shim that passes receive events to the proper

NetDevice callback
– Schedule Receive event @RxTime

• MpiReceiver::Receive()
– This calls its callback which set is to PointToPointNetDevice::Receive() by the

PointToPoint helper.

Sending a Packet to a Remote Rank
Sequential

Distributed

Distributed NS-3
Load and Memory Distribution

• Save memory by not creating nodes/stacks/links that “belong” in other
LPs
– Exception is “ghost” nodes that bridge LP borders

• Ghost node creation is only necessary as a convenience
• Requires manual intervention

– Global and NIX routing do not see entire topology
• Add static, default routes manually
• Hint: IPv6 allows for more “aggregatable” routes

– Node indexing is not symmetric
• If R1 or R2 have different node numbers in each LP, then
MpiInterface::SendPacket() will select the wrong destination

– Interface identifiers must align in same fashion

Node and Interface “Alignment”

F2

F3

F4 F5

F0

F1

Inter-Federate “Mesh”

F2

F3

F4 F5

F0

F1

Inter-Federate “Mesh”
Federate 1 perspective

Packets from F1 go to
1st interface on remote

Federates

Create (N-1) links
instead of N*(N-1)/2

• “Router-in-the-sky” scenario
• N2 mesh of interconnected

nodes at central hub

Limitations of Distributed NS3

• Partitioning is a manual process
• Partitioning is restricted to Point-To-Point links only

– Partitioning within a wireless network is not supported
• Lookahead is very small and dynamic

• Need full topology in all LPs
– Exception with careful node ordering, interface

numbering, and manual routing

Example Code
src/mpi/examples/third-distributed.cc

#ifdef NS3_MPI
#include <mpi.h>
#endif

// Default Network Topology (same as third.cc from tutorial)
// Distributed simulation, split along the p2p link
// Number of wifi or csma nodes can be increased up to 250
//
// Wifi 10.1.3.0
// AP
// * * * *
// | | | | 10.1.1.0
// n5 n6 n7 n0 -------------- n1 n2 n3 n4
// point-to-point | | | |
// ================
// | LAN 10.1.2.0
// |
// Rank 0 | Rank 1
// -------------------------|----------------------------

using namespace ns3;

NS_LOG_COMPONENT_DEFINE ("ThirdExampleDistributed");

Need to
include mpi.h

int
main (int argc, char *argv[])
{
#ifdef NS3_MPI
 // Distributed simulation setup
 MpiInterface::Enable (&argc, &argv);
 GlobalValue::Bind ("SimulatorImplementationType",
 StringValue ("ns3::DistributedSimulatorImpl"));

 uint32_t systemId = MpiInterface::GetSystemId ();
 uint32_t systemCount = MpiInterface::GetSize ();

 // Check for valid distributed parameters.
 // Must have 2 and only 2 Logical Processors (LPs)
 if (systemCount != 2)
 {
 std::cout << "This simulation requires 2 and only 2 logical
 processors.” << std::endl;
 return 1;
 }
[Command line parsing and LogEnable]

Example Code
src/mpi/examples/third-distributed.cc

Enable MPI
Set Scheduler

Rank Number
Size

Size Check

NodeContainer p2pNodes;
Ptr<Node> p2pNode1 = CreateObject<Node> (0); // Create node w/ rank 0
Ptr<Node> p2pNode2 = CreateObject<Node> (1); // Create node w/ rank 1
p2pNodes.Add (p2pNode1);
p2pNodes.Add (p2pNode2);

PointToPointHelper pointToPoint;
pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

NetDeviceContainer p2pDevices;
p2pDevices = pointToPoint.Install (p2pNodes);

NodeContainer csmaNodes;
csmaNodes.Add (p2pNodes.Get (1));
csmaNodes.Create (nCsma, 1); // Create csma nodes with rank 1

CsmaHelper csma;
csma.SetChannelAttribute ("DataRate", StringValue ("100Mbps"));
csma.SetChannelAttribute ("Delay", TimeValue (NanoSeconds (6560)));

NetDeviceContainer csmaDevices;
csmaDevices = csma.Install (csmaNodes);

Example Code
src/mpi/examples/third-distributed.cc

Node Rank 0
Node Rank 1

Nothing
different

here

CSMA net
node on
Rank 1

NodeContainer wifiStaNodes;
wifiStaNodes.Create (nWifi, 0); // Create wifi nodes with rank 0
NodeContainer wifiApNode = p2pNodes.Get (0);

YansWifiChannelHelper channel = YansWifiChannelHelper::Default ();
YansWifiPhyHelper phy = YansWifiPhyHelper::Default ();
phy.SetChannel (channel.Create ());

WifiHelper wifi = WifiHelper::Default ();
wifi.SetRemoteStationManager ("ns3::AarfWifiManager");

NqosWifiMacHelper mac = NqosWifiMacHelper::Default ();

Ssid ssid = Ssid ("ns-3-ssid");
mac.SetType ("ns3::StaWifiMac“, "Ssid", SsidValue (ssid),
 "ActiveProbing", BooleanValue (false));

NetDeviceContainer staDevices;
staDevices = wifi.Install (phy, mac, wifiStaNodes);

mac.SetType ("ns3::ApWifiMac“, "Ssid", SsidValue (ssid));

NetDeviceContainer apDevices;
apDevices = wifi.Install (phy, mac, wifiApNode);

Example Code
src/mpi/examples/third-distributed.cc

Wifi net on
Rank 0

[Mobility]

InternetStackHelper stack;
stack.Install (csmaNodes);
stack.Install (wifiApNode);
stack.Install (wifiStaNodes);

Ipv4AddressHelper address;

address.SetBase ("10.1.1.0", "255.255.255.0");
Ipv4InterfaceContainer p2pInterfaces;
p2pInterfaces = address.Assign (p2pDevices);

address.SetBase ("10.1.2.0", "255.255.255.0");
Ipv4InterfaceContainer csmaInterfaces;
csmaInterfaces = address.Assign (csmaDevices);

address.SetBase ("10.1.3.0", "255.255.255.0");
address.Assign (staDevices);
address.Assign (apDevices);

Example Code
src/mpi/examples/third-distributed.cc

Installing
Internet Stacks
on everything

Assigning
Addresses to
everything

// If this simulator has system id 1, then
// it should contain the server application,
// since it is on one of the csma nodes
if (systemId == 1)
 {
 UdpEchoServerHelper echoServer (9);
 ApplicationContainer serverApps = echoServer.Install (csmaNodes.Get (nCsma));
 serverApps.Start (Seconds (1.0));
 serverApps.Stop (Seconds (10.0));
 }

// If the simulator has system id 0, then
// it should contain the client application,
// since it is on one of the wifi nodes
if (systemId == 0)
 {
 UdpEchoClientHelper echoClient (csmaInterfaces.GetAddress (nCsma), 9);
 echoClient.SetAttribute ("MaxPackets", UintegerValue (1));
 echoClient.SetAttribute ("Interval", TimeValue (Seconds (1.)));
 echoClient.SetAttribute ("PacketSize", UintegerValue (1024));

 ApplicationContainer clientApps =
 echoClient.Install (wifiStaNodes.Get (nWifi - 1));
 clientApps.Start (Seconds (2.0));
 clientApps.Stop (Seconds (10.0));
 }

Example Code
src/mpi/examples/third-distributed.cc

Apps for
Rank 1

Apps for
Rank 0

Ipv4GlobalRoutingHelper::PopulateRoutingTables ();

Simulator::Stop (Seconds (10.0));

[Tracing]

Simulator::Run ();
Simulator::Destroy ();

// Exit the MPI execution environment
MpiInterface::Disable ();
return 0;

Example Code
src/mpi/examples/third-distributed.cc

GlobalRouting
will work since

we have full
topology

Disable MPI

Error Conditions
• Can't use distributed simulator without
MPI compiled in
– Not finding or building with MPI libraries
– Reconfigure NS-3 and rebuild

• assert failed. cond="pNode && pMpiRec",
file=../src/mpi/model/mpi-interface.cc,
line=413
– Mis-aligned node or interface IDs

Performance Optimizations
• Memory Optimization
• Larger lookahead (Link latency)

helps parallelism
• Cost of the AllGather grows

exponentially with LP count
– If workload per LP is high, fall-

off in performance moves to
higher LP count

– With lower workload,
performance can fall off at 32-
128 LPs

• More work and larger latencies
mean better performance of
distributed scheduler

• Choose appropriate metric for
measuring performance

– Events/sec can be misleading
with varying event cost

– Packet transmissions (or
receives) per wall-clock time

Conservative PDES – NULL Message

• An alternative to global synchronization of LBTS
– Decreases “cost” of time synchronization

• Each event message exchanged includes a new LBTS
value from sending LP to receiving LP
– LBTS is computed for each LP-to-LP message
– An LP now cares only about its connected set of LPs for

grant time calculation
• When there are no event messages exchanged, a

“NULL” event message is sent with latest LBTS value
• Advantages to using NULL-message scheduler

– Less expensive negotiation of time synchronization
– Allows independent grant times

Advanced Topics / Future Work
• Distributed Real Time

– Versus simultaneous real-time emulations:
• LP-to-LP messaging can be done with greater lookahead to counter interconnect delay

• Routing
– AS-like routing between LPs
– Goal is to enable Global or NIX routing without full topology in each LP

• Alignment
– Negotiate node and interface IDs at run time

• Partitioning with automated tools
– Graph partitioning tools
– Descriptive language to describe results of partitioning to topology generation

• Optimistic PDES
– Break causality with ability to “roll-back” time

• Partitioning across links other than P2P
• Full, automatic memory scaling

– Automatic ghost nodes, globally unique node IDs

References

• “Parallel and Distributed Simulation Systems”, R.
M. Fujimoto, Wiley Interscience, 2000.

• “Distributed Simulation with MPI in ns-3”, J.
Pelkey, G. Riley, Simutools ‘11.

• “Performance of Distributed ns-3 Network
Simulator”, S. Nikolaev, P. Barnes, Jr., J. Brase, T.
Canales, D. Jefferson, S. Smith, R. Soltz, P.
Scheibel, SimuTools '13.

• “A Performance and Scalability Evaluation of the
NS-3 Distributed Scheduler”, K. Renard, C. Peri, J.
Clarke , SimuTools '12.

	Distributed Simulation with NS-3
	Outline
	Introduction to Distributed NS-3
	Motivation for High Performance, Scalable Network Simulation
	Discrete Event Simulation
	Discrete Events and Timing for a Packet Transmission
	Parallel Discrete Event Simulation�(Conservative)
	Clock Synchronization in�Conservative PDES
	Lookahead & Grant Time Computation
	Message Passing Interface (MPI)
	MPI Concepts
	MPI Concepts
	MPI Programming�OpenMPI Example
	MPI Messaging Example
	MPI Collective Example -- Barrier
	MPI Collective Example -- AllGather
	Distributed NS-3
	Building Distributed NS-3
	Building a Distributed NS-3 Simulation
	Distributed NS-3�Load Distribution
	Sending a Packet to Remote Rank
	Receiving a Packet from Remote Rank
	Sending a Packet to a Remote Rank
	Distributed NS-3�Load and Memory Distribution
	Node and Interface “Alignment”
	Limitations of Distributed NS3
	Example Code�src/mpi/examples/third-distributed.cc
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Error Conditions
	Performance Optimizations
	Conservative PDES – NULL Message
	Advanced Topics / Future Work
	References

