THE NS-3 LTE MODULE

Nicola Baldo, Ph.D.
Senior Researcher
Mobile Networks Department
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)
Castelldefels, Spain
nbaldo@cttc.es
How the LTE module was developed

- Google Summer of Code 2010
- **LENA project**
 - CTTC-Ubiquisys, Jan 2011 to Jun 2013
- Other projects, including:
 - SYMBIOSIS project
 - FP7 ICT-COMBO project
- Community contributions
The LENA project: an open source product-oriented LTE/EPC Network Simulator

- A Product-oriented simulator:
 - designed around an industrial API: the Small Cell Forum MAC Scheduler Interface Specification
 - Allows testing of real code in the simulation
 - Accurate model of the LTE/EPC protocol stack
 - Specific Channel and PHY layer models for LTE macro and small cells

- An Open source simulator:
 - Development open to the community
 - Fosters early adoption and contributions
 - Helps building confidence and trust on simulation model
 - Candidate reference evaluation platform
 - Based on ns-3
 - Free and open source licensing (GPLv2)
LENA: an open source product-oriented LTE/EPC Network Simulator

Target applications for LENA include the design and performance evaluation of:

- DL & UL LTE MAC Schedulers
- Radio Resource Management Algorithms
- Inter-cell interference coordination solutions
- Load Balancing and Mobility Management
- Heterogeneous Network (HetNets) solutions
- End-to-end QoE provisioning
- Multi-RAT network solutions
- Cognitive LTE systems
LENA High level requirements

- Support the evaluation of:
 - Radio-level performance
 - End-to-end QoE

- Allow the prototyping of algorithms for:
 - QoS-aware Packet Scheduling
 - Radio Resource Management
 - Inter-cell Interference Coordination
 - Self Organized Networks
 - Cognitive / Dynamic Spectrum Access

- Scalability requirements:
 - Several 10s to a few 100s of eNBs
 - Several 100s to a few 1000s of UEs
Design approach

- Simulation is a tradeoff between:
 - Detail of the model
 - Implementation complexity and run-time scalability
- Choose min detail that satisfies requirements
 - Minimize implementation complexity
 - Minimize difficulty in using the simulator
(Some) Important Design Choices

- FemtoForum LTE MAC Scheduler API
- Radio signal model granularity: Resource Block
 - Symbol-level model not affordable
 - Simplified Channel & PHY model
- Realistic Data Plane Protocol stack model
 - Realistic RLC, PDCP, S1-U, X2-U
 - Allow proper interaction with IP networking
 - Allow end-to-end QoE evaluations
- Hybrid Control Plane model:
 - Realistic RRC model
 - Simplified S1-C, X2-C and S11 models
- Simplified EPC
 - One MME and one SGW
 - SGW and PGW in the same node (no S5/S8 interface)
- Focus on connected mode
 - RRC connected, EMM Registered, ECM connected
LENA model overview
End-to-end Data Plane protocol stack
End-to-end Data Plane architecture: data flow in downlink
End-to-end Data Plane architecture:
data flow in uplink
LTE Data Plane protocol stack: UE
LTE Data Plane protocol stack: eNB
PHY and Channel architecture: UE
PHY and Channel architecture: eNB
LTE Ctrl Plane protocol stack: UE
LTE Ctrl Plane protocol stack: eNB
EPC Control Plane Architecture
Radio Propagation Models

- Included new models for enabling 3GPP-like scenarios
 - New path loss models (indoor and outdoor)
 - External & internal wall losses
 - Shadowing
 - Pathloss logic
 - Buildings model
 - Add buildings to network topology
 - Antenna models
 - Isotropic, sectorial (cosine & parabolic shape)
 - Fast fading model
 - Pedestrian, vehicular, etc.
Outdoor Radio Propagation models

- Okumura Hata: open area pathloss for distances > 1 Km and frequencies ranging from 150 MHz to 2.0 GHz

- Kun empirical model for 2.6 GHz

- ITU-R P1411 Line-of-Sight (LoS) short range outdoor communication in the frequency range 300 MHz to 100 GHz
 - Used for short communication link (< 200 m.)

- ITU-R P1411 Non-Line-of-Sight (NLoS) short range outdoor communication over rooftops in the frequency range 300 MHz to 100 GHz.
 - Used for communication link < 1 km
Buildings defined as ns3 Box classes with
- xMin, xMax, yMin, yMax, zMin, zMax (inherited by Box)
- Number of floors
- Number of room in x-axis and y-axis (grid topology)

Buildings model that allows to “install” building information to
mobility model of a node:
- the ns3 Box class containing the building
- Position in terms of floors
- Position in the grid of rooms
- Node condition: indoor vs. outdoor

ITU-R P1238 implements building-dependent indoor propagation
loss model as function of the type of building (i.e., residential,
office and commercial)
• External wall losses for penetration loss through walls for indoor to outdoor communications and vice-versa (from COST231)
 – Wood ~ 4 dB
 – Concrete with windows (not metallized) ~ 7 dB
 – Concrete without windows ~ 15 dB (spans between 10 and 20)
 – Stone blocks ~ 12 dB
• Internal wall losses evaluated assuming that each single internal wall has a constant penetration (5 dB) and evaluating the number of walls
• Log-normal shadowing standard deviation as function of the connection characteristics
 – Outdoor $\sigma_o = 7$
 – Indoor $\sigma_i = 10$
 – External walls penetration $\sigma_E = 5$
• Height gain model when transmitting device is on a floor above the ground (2 dB)
• Pathloss logic chooses correct model depending on nodes positions
Antenna models

- Isotropic [default one]
- Sectorial (cosine & parabolic shape)
Fading model

• Fast fading model based on pre calculated traces for maintaining a low computational complexity
 – Matlab script provided in the code using \texttt{rayleighchan} function

• Main parameters:
 – \textbf{users’ speed}: relative speed between users (affects the Doppler frequency)
 – \textbf{number of taps} (and relative power): number of multiple paths considered
 – \textbf{time granularity} of the trace: sampling time of the trace.
 – \textbf{frequency granularity} of the trace: number of RB.
 – \textbf{length of trace}: ideally large as the simulation time, might be reduced by windowing mechanism.

Urban scenario 3 kmph
Pedestrian scenario 3 kmph
• Only FDD is modeled
• Freq domain granularity: RB
• Time domain granularity: 1 TTI (1 ms)
• The subframe is divided in frequency into DL & UL

• DL part is made of
 – control (RS, PCFICH, PDCCH)
 – data (PDSCH)

• UL part is made of
 – control and data (PUSCH)
 – SRS
Interference and Channel Feedback

- **LTE Spectrum model**: \((f_c, B)\) identifies the radio spectrum usage
 - \(f_c\): LTE Absolute Radio Frequency Channel Number
 - \(B\): Transmission Bandwidth Configuration in number of RB
 - Supports different frequencies and bandwidths per eNB
 - UE will automatically use the spectrum model of the eNB it is attached to

- **Gaussian Interference model**
 - powers of interfering signals (in linear units) are summed up together to determine the overall interference power per RB basis

- **CQI feedback**
 - periodic wideband CQIs: single value representative for the whole B.
 - inband CQIs: a set of value representing the channel state for each RB

- **In DL evaluated according to the SINR of control channel (RS, PDCCH)**
- **In UL evaluated according to the SINR of**
 - SRS signal periodically sent by the UEs.
 - PUSCH with the actual transmitted data.

- **Scheduler can filter the CQI according to their nature:**
 - SRS_UL_CQI for storing only SRS based CQIs.
 - PUSCH_UL_CQI for storing only PUSCH based CQIs.
 - ALL_UL_CQI for storing all the CQIs received.
PHY Data error model

- Signal processing not modeled accurately ⇒ use error model
- Transport Block error model
- Used for PDSCH and PUSCH
- Based on Link-to-System Mapping
 - SINR measured per Resource Block
 - Mutual Information Effective SINR Mapping (MIESM)
 - BLER curves from dedicated link-level LTE simulations
 - Error probability per codeblock
 - Multiple codeblocks per Transport Block
BLER Curves
PHY DL Control error model

- Error model only for downlink, while uplink has an error-free channel
- Based on an evaluation study carried out in the RAN4 (R4-081920)
- Evaluated according to the equivalent SINR perceived in the whole bandwidth of PCFICH+PDCCH with MIESM model
- In case of error correspondent DCIs are discarded and data will not decoded
• Ns3 provides only SISO propagation model
• MIMO has been modeled as SINR gain over SISO according to
• Catreux et al. present the statistical gain of several MIMO solutions respect to the SISO one (in case of no correlation between the antennas as CDF)
• The SINR distribution can be approximated with a log-normal one with different mean and variance as function of the scheme considered (i.e., SISO, MIMO-Alamouti, MIMO-MMSE, MIMO-OSIC-MMSE and MIMO-ZF)
• Variances are not so different and they are approximatively equal to the one of the SISO mode already included in the shadowing component of the BuildingsPropagationLossModel
• MIMO can be modeled as different gains for different TX modes respect to the SISO
UE Measurements

- UE has to report a set of measurements of the eNBs when it receives their physical cell identity (PCI)
 - reference signal received power (RSRP) ~ “average” power across the RBs
 - reference signal received quality (RSRQ) ~ “average” ratio between the power of the cell and the total power received across all the RBs
- Measurements are performed during the reception of the RS
- RSRP is reported by PHY layer in dBm while RSRQ in dB through the C-PHY SAP every 200 ms.
- Layer 1 filtering is performed by averaging the all the measurements collected during the last window slot.
HARQ model

- Model implemented is *soft combining hybrid IR Full incremental redundancy* (also called IR Type II)
- Asynchronous model for DL
 - Dedicated feedback (ideal)
- Synchronous model for UL
 - After 7 ms of the original transmission
- Retransmissions managed by Scheduler
 - Retransmissions are mixed with new one (retx has higher priority)
 - Up to 4 redundancy version (RV) per each HARQ block
- Integrated with error model
 - New rates due to the “soft combination” of the codeblocks
 - Extend the original ones with the ones of RVs with lower R_{eff} of each modulation order

\[
R_{\text{eff}} = \frac{X}{q} \sum_{i=1}^{q} C_i \\
X \text{ no. of info bits} \\
C_i \text{ no. of coded bits}
\]
MAC & Scheduler model

- Resource allocation model:
 - allocation type 0
 - RBs grouped into RBGs
 - localized mapping approach (2 slots of the RBG to the same UE)

- Transport Block model
 - Mimics 3GPP structure
 - mux RLC PDU onto MAC PDU
 - Virtual MAC Headers and CEs (no real bits)
 - MAC overhead not modeled
 - Consistent with requirements (scheduler neglects MAC OH)
Adaptive Modulation and Coding (AMC)

- Two algorithms working on reported CQI feedback
 - **Piro** model: based on analytical BER (very conservative)
 \[
 \text{BER} = 0.00005, \quad \Gamma = \frac{-\ln(5 \times \text{BER})}{1.5}, \quad \gamma_i \text{ SINR of UE } i, \\
 \eta_i = \log_2 \left(1 + \frac{\gamma_i}{\Gamma} \right)
 \]
 - **Vienna** model: aim at max 10% BLER as defined in TS 36.213 based on error model curves

- Dynamic TX mode selection supported
 - Interface present in the scheduler interface
 - but no adaptive algorithm currently implemented
Most of the primitives used in LENA are based on the scheduler APIs

- Example: primitive CSCHED_CELL_CONFIG_REQ is translated to
 CschedCellConfigReq method with struct
 CschedCellConfigReqParameters parameters in the ns-3 code
- Control primitives has been implemented through Service Access Points (SAPs)

Control APIs (configuration and update)

- CschedCellConfigReq
- DoCschedUeConfigReq
- DoCschedLcConfigReq
- DoCschedLcReleaseReq
- DoCschedUeReleaseReq
SCF-API MAC Scheduler Interface (2)

- Scheduling primitives
 - DoSchedDlRlcBufferReq
 - DoSchedDlTriggerReq (containing info on HARQ)
 - DoSchedDlRachInfoReq
 - DoSchedDlCqiInfoReq
 - DoSchedUlTriggerReq
 - DoSchedUlCqiInfoReq
MAC Scheduler implementations

- Round Robin (RR)
- Proportional Fair (PF)
- Maximum Throughput (MT)
- Throughput to Average (TTA)
- Blind Average Throughput (BET)
- Token Bank Fair Queue (TBFQ)
- Priority Set Scheduler (PSS)
- Channel and QoS Aware Scheduler (CQA)

- All implementations based on the FemtoForum API
- The above algorithms are for downlink only
- For uplink, all current implementations use the same Round Robin algorithm
- Assumption: HARQ has always higher priority respect to new data
Round Robin

• Divide the available resources among the active UEs (i.e., the ones with at least one LC with buffer \(!= 0\))

• If no. of UEs > no. RBs
 – Circular buffer allocation
Proportional Fair

- Schedule a user when its instantaneous channel quality is high relative to its own average channel condition over time.
- Defines per each UE i the achievable rate as:
 \[
 R_i(k, t) = \frac{S(M_{i,k}(t), 1)}{\tau} \quad M_{i,k}(t) \text{ MCS usable by user on resource block}\]
 \[
 \tau \quad \text{TTI duration}\]

- At RBG k pick the user that maximize
 \[
 \hat{i}_k(t) = \arg\max_{j=1,...,N} \left(\frac{R_j(k, t)}{T_j(t)} \right) \quad T_j(t) \text{ past throughput perceived by the user } j
 \]
 \[
 T_j(t) = (1 - \frac{1}{\alpha})T_j(t-1) + \frac{1}{\alpha}\hat{T}_j(t)
 \]

- Achievable rate ratio
 \[
 \rho_{R,i} = \frac{R_i}{\sum_{j=1}^{N} R_j}
 \]

- Achievable throughput ratio
 \[
 \rho_{T,i} = \frac{T_i}{\sum_{j=1}^{N} T_j}
 \]
Other “theoretical” LTE MAC schedulers

- **Maximum Throughput (MT)**

 \[R_i(k,t) = \frac{S(M_{i,k}(t), 1)}{\tau} \]
 \[\hat{i}_k(t) = \arg\max_{j=1,...,N} (R_j(k,t)) \]

- **Throughput to Average (TTA)**

 \[\hat{i}_k(t) = \arg\max_{j=1,...,N} \left(\frac{R_j(k,t)}{R_j(t)} \right) \]

- **Blind Average Throughput (BET)**

 \[\hat{i}_k(t) = \arg\max_{j=1,...,N} \left(\frac{1}{T_j(t)} \right) \]

\[M_{i,k}(t) \] MCS usable by user on resource block
\[\tau \] TTI duration
\[T_j(t) \] past throughput perceived by the user j
LTE MAC Schedulers with QoS support

- Token Bank Fair Queue (TBFQ)
 - leaky-bucket mechanism

- Priority Set Scheduler (PSS)
 - controls the fairness among UEs by a specified Target Bit Rate (TBR) defined with QCI bearer primitive

- Channel and QoS Aware (CQA)
 - considers the head of line (HOL) delay, the GBR parameters and channel quality over different subbands.
Random Access model

• Random Access preamble transmission
 – Ideal model: no propagation / error model
 – Collisions modeled with protocol interference model
 – No capture effect ⇒ contention resolution not modeled

• Random Access Response (RAR)
 – Ideal message, no error model
 – Resource consumption can be modeled by scheduler

• message3
 – UL grant allocated by Scheduler
 – PDU with actual bytes, subject to error model

• Supported modes:
 – Contention based (for connection establishment)
 – Non-contention based (for handover)
RLC Model

• Supported modes:
 – RLC TM, UM, AM as per 3GPP specs
 – RLC SM: simplified full-buffer model

• Features
 – PDUs and headers with real bits (following 3GPP specs)
 – Segmentation
 – Fragmentation
 – Reassembly
 – SDU discard
 – Status PDU (AM only)
 – PDU retx (AM only)
PDCP model

- **Simplified model supporting the following:**
 - Headers with real bytes following 3GPP specs
 - Transfer of data (both user and control plane)
 - Maintenance of PDCP SNs
 - Transfer of SN status (for handover)

- **Unsupported features**
 - Header compression and decompression using ROHC
 - In-sequence delivery of upper layer PDUs at re-establishment of lower layers
 - Duplicate elimination of lower layer SDUs at re-establishment of lower layers for radio bearers mapped on RLC AM
 - Ciphering and deciphering of user plane data and control plane data
 - Integrity protection and integrity verification of control plane data
 - Timer based discard
RRC Model features

• System Information (MIB, SIBs)
 – Generation at eNB
 – Reception and processing at UE
• Idle mode cell selection
• RRC Connection Establishment
• RRC Connection Reconfiguration, supporting:
 – SRB1 and DRB setup
 – SRS configuration index reconfiguration
 – PHY TX mode (MIMO) reconfiguration
 – Mobility Control Info (handover)
• UE Measurements
 – Event-based triggering supported (events A1 to A5)
 – Assumption: 1-to-1 PCI to EGCI mapping
 – Only E-UTRA intra-frequency; no measurement gaps
RRC Model architecture

- LteUeRrc: UE RRC logic
- LteEnbRrc + UeManager: eNB RRC logic
- Two models for RRC messages
 - Ideal RRC
 - SRBs not used, no resources consumed, no errors
 - Real RRC
 - actual RRC PDUs transmitted over SRBs
 - with ASN.1 encoding
RRC UE state machine
RRC eNB
State Machine

INITIAL_RANDOM_ACCESS
- rx RRC CONN REQ, Admit = false
- rx RA preamble
- rx X2 HANOVER REQ, Admit = true

HANOVER_JOINING
- rx RRC CONN REQ
- rx RRC CONN RECONF COMPLETED

CONNECTION_SETUP
- rx RRC CONN SETUP COMPLETED
- rx S1 PATH SWITCH REQ ACK

CONNECTION_REJECTED
- connection timeout
- connection rejected timeout

CONNECTED_NORMALLY
- handover trigger
- rx X2 HO PREP FAILURE
- rx RRC CONN RECONF COMPLETED
- reconfiguration trigger

HANOVER_PREPARATION
- rx X2 HO REQ ACK

HANOVER_LEAVING
- handover leaving timeout
- rx X2 UE CONTEXT RELEASE
- context destroyed

no context

handover joining timeout

context destroyed
Handover Support

- API for Handover Algorithms
 - Measurement configuration
 - Measurement report handling
 - Handover triggering

- Available handover algorithms:
 - No-op
 - A2-A4-RSRQ
 - Strongest cell handover (A3-based)
 - <your algorithm here>
Handover example scenario
Handover behavior

![Graph showing handover behavior over time with RSRQ values on the y-axis and time in seconds on the x-axis, with different symbols representing different serving cells and neighbor cells.]
NAS model

• Focus on NAS Active state
 – EMM Registered, ECM connected, RRC connected

• Logical interaction with MME
 – NAS PDUs not implemented

• Functionality
 – UE Attachment (transition to NAS Active state)
 – EPS Bearer activation
 – Multiplexing of data onto active EPS Bearers
 • Based on Traffic Flow Templates
 • Both UDP and TCP over IPv4 are supported

• Unsupported features
 – PLMN and CSG selection
 – Idle mode (tracking area update, paging…)
S1 interface model

- **S1-U (user data plane)**
 - Realistic model including GTP-U implementation
 - Data packets forwarded over GTP/UDP/IPv4
 - Communication over ns3::PointToPoint links

- **S1-C (control plane)**
 - Abstract model, no PDUs exchanged
 - Supported S1-AP primitives:
 - INITIAL UE MESSAGE
 - INITIAL CONTEXT SETUP REQUEST
 - INITIAL CONTEXT SETUP RESPONSE
 - PATH SWITCH REQUEST
 - PATH SWITCH REQUEST ACKNOWLEDGE
 - ERAB RELEASE INDICATION
X2 interface model

- **X2-U (data plane)**
 - GTP/UDP/IPv4 over ns3::PointToPoint (similar to S1-U)
- **X2-C (control plane)**
 - Messages as PDUs over ns3::PointToPoint links
 - Handover primitives:
 - HANDOVER REQUEST
 - HANDOVER REQUEST ACK
 - HANDOVER PREPARATION FAILURE
 - SN STATUS TRANSFER
 - UE CONTEXT RELEASE
 - SON primitives:
 - LOAD INFORMATION
 - RESOURCE STATUS UPDATE
S11 interface model

- abstract model
 - no GTP-C PDUs exchanged between MME and SGW
- Supported primitives:
 - CREATE SESSION REQUEST
 - CREATE SESSION RESPONSE
 - MODIFY BEARER REQUEST
 - MODIFY BEARER RESPONSE
 - DELETE BEARER REQUEST
 - DELETE BEARER RESPONSE
Simulation Configuration

• Done via ns-3 attribute system
• Several configurable attributes per LTE object
• Default attribute values can be configured:
 – Via input config file
 – Via command line
 – within simulation program
• Per-instance attribute values can be configured:
 – Within simulation program
 – Using GtkConfigStore
Simulation Output

- Lots of KPIs available at different levels:
 - Channel
 - SINR maps
 - pathloss matrices
 - PHY
 - TB tx / rx traces
 - RSRP/RSRQ traces
 - MAC
 - UL/DL scheduling traces
 - RLC and PDCP
 - Time-averaged PDU tx / rx stats
 - IP and application stats
 - Can be obtained with usual ns-3 means
 - FlowMonitor, PCAP traces, get stats directly from app, etc.
Example: 3GPP dual stripe scenario
Example: 3GPP dual stripe scenario
Execution time performance

LTE+EPC with real RRC

<table>
<thead>
<tr>
<th>UEs/HeNB</th>
<th>elaspedTime/simTime [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Memory consumption

LTE+EPC with real RRC

maxMemory [MB]

HeNBs

1 UEs/HeNB
3 UEs/HeNB
6 UEs/HeNB
10 UEs/HeNB
Testing

• Huge effort in testing:
 – Unit tests
 • Checking that a specific module works properly
 – System test
 • Checking that the whole LTE model works properly
 – Validation tests
 • Validating simulation output against theoretical performance in a set of known cases
 – Valgrind test coverage
 • Systematically check for memory errors
 – memory corruption, leaks, etc. due to programming errors
 – Build tests
 • Provided by ns-3 project for stable LENA code
 • Verify correct build on all supported platforms
 • LENA dev code tested daily on ubuntu
• LTE module documentation
 - Part of the ns-3 models library docs
The End

- Questions?