
WNS3 2016

Workshop on ns-3
Seattle, Washington, USA

June 15-16, 2016

WWNNSS33 22001166

General Chair
Thomas Henderson

Technical Program Committee Co-Chairs
Brian Swenson and Hajime Tazaki

Proceedings Chair
Eric Gamess

WWoorrkksshhoopp oonn nnss--33

SSeeaattttllee,, WWaasshhiinnggttoonn,, UUSSAA
JJuunnee 1155--1166,, 22001166

ISBN: 978-1-4503-4216-2

The Association for Computing Machinery
2 Penn Plaza, Suite 701

New York, New York 10121-0701

ACM COPYRIGHT NOTICE. Copyright © 2016 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212)
869-0481, or permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is
permitted provided that the per-copy fee indicated in the code is paid through the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, +1-978-750-8400, +1-978-750-4470 (fax).

ACM ISBN: 978-1-4503-4216-2

Program Committee

General Chair
Thomas Henderson

University of Washington, USA

Technical Program Committee Co-Chairs

Brian Swenson
Georgia Institute of Technology, USA

Hajime Tazaki
IIJ Innovation Institute, Japan

Proceedings Chair

Eric Gamess
Universidad Central de Venezuela, Venezuela

Technical Program Committee Members

Alexander Afanasyev University of California at Los Angeles, USA
Ramón Agüero Universidad de Cantabria, Spain
Peter D. Barnes Jr. Lawrence Livermore National Laboratory, USA
Bow-Nan Cheng Massachusetts Institute of Technology, USA
Sebastien Deronne Alcatel-Lucent Bell, Belgium
David Ediger Georgia Institute of Technology, USA
Eric Gamess Universidad Central de Venezuela, Venezuela
Lorenza Giupponi Centre Tecnològic Telecomunicacions Catalunya, Spain
Thomas Henderson University of Washington, USA
Sam Jansen StarLeaf, United Kingdom
Kevin Jin Illinois Institute of Technology, USA
Mathieu Lacage Alcmeon, France
Jason Liu Florida International University, USA
Margaret Loper Georgia Institute of Technology, USA
Marco Miozzo Centre Tecnològic Telecomunicacions Catalunya, Spain
Carlos Moreno Universidad Central de Venezuela, Venezuela
David Nicol University of Illinois, USA
Luis Perrone Bucknell University, USA
Ken Renard Army Research Lab, USA
Manuel Ricardo INESC Porto, Portugal
Damien Saucez Inria, France
Brian Swenson Georgia Institute of Technology, USA
Mohit Tahiliani National Institute of Technology Karnataka, India
Cristiano Tapparello University of Rochester, USA
Hajime Tazaki IIJ Innovation Institute, Japan
Thierry Turletti Inria, France

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

iii

Preface

The 2016 Workshop on ns-3 (WNS3 2016) is the eighth edition of an annual series of workshops
around the discrete-event network simulator known as “ns-3”. The workshop aims to gather ns-3
users and developers, together with networking simulation practitioners and users, and
developers of other network simulation tools, to discuss the ns-3 simulator and related activities.
ns-3 is a tool used for performance evaluation in computer networks, and this workshop offers a
venue for those involved with extending or testing the tool itself to publish original work in this
regard. The workshop is sponsored by the ns-3 Consortium and organized as part of a full week of
activities including also training sessions, the Consortium Annual Meeting, and developer
discussions.

WNS3 2016 was hosted by the Electrical Engineering department of the University of Washington
in Seattle, Washington, and held on 15-16 June, 2016. Thomas R. Henderson served as General
Chair of this edition of the workshop, and Eric Gamess, with the Central University of Venezuela,
acted as the Proceedings Chair. The technical program committee, co-chaired by Dr. Brian
Swenson and Dr. Hajime Tazaki, included 26 international reviewers from prestigious universities,
laboratories, and manufacturers with a large experience in ns-3 and discrete-event network
simulation research in general. The workshop was organized with technical cooperation of the
Association for Computing Machinery (ACM), the European Alliance of Innovation (EAI), and the
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (ICST), to
which we extend our gratitude and acknowledgment.

The organizers received 28 submissions from around the world, out of which 18 papers were
selected for presentation and publication. Each contribution submitted to the workshop was
reviewed by at least two technical program committee members, with most papers receiving
three reviews. Authors of accepted contributions were encouraged to provide links to code and
scripts that would allow future readers to reproduce the results of their work. Accepted papers
can be categorized into one of three themes: (1) twelve papers focused on the design,
implementation process, and performance evaluation for extensions to ns-3 models, (2) three
papers were primarily concerned with performance analysis, improvements, and testing of ns-3
itself and its Direct Code Execution environment, and (3) three papers described frameworks for
integrating ns-3 with other software frameworks or libraries providing network coding, power grid
planning and modeling, and software-defined networking.

We thank the WNS3 2016 members of the program committee and the organization committee,
invited lectures and speakers, authors, teachers and students, and in general, to all those who
contributed with their valuable support to carry out the successful completion of this important
responsibility, keeping at the highest levels the relevance of WNS3.

Brian Swenson
Georgia Tech Research Institute

TPC Co-Chair

Hajime Tazaki
IIJ Innovation Institute

TPC Co-Chair

Thomas R. Henderson
University of Washington

General Chair

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

iv

Table of Contents

Program Committee iii

Preface iv

1. Design and Implementation of the Traffic Control Module in ns-3

Pasquale Imputato, Stefano Avallone
1-8

2. Implementation and Evaluation of Proportional Integral Controller Enhanced
(PIE) Algorithm in ns-3
Shravya K.S, Smriti Murali, Mohit Tahiliani

9-16

3. An Implementation of Scalable, Vegas, Veno, and YeAH Congestion Control
Algorithms in ns-3
Truc Nguyen, Siddharth Gangadhar, Md Rahman, James Sterbenz

17-24

4. TCP Evaluation Suite for ns-3
Dharmendra Mishra, Pranav Vankar, Mohit Tahiliani

25-32

5. OFSwitch13: Enhancing ns-3 with OpenFlow 1.3 Support
Luciano Chaves, Islene Garcia, Edmundo Madeira

33-40

6. Analysis of Programming Language Overhead in DCE
Jared Ivey, George Riley

41-48

7. Implementation and Validation of an IEEE 802.11ah Module for ns-3
Le Tian, Sébastien Deronne, Steven Latré, Jeroen Famaey

49-56

8. Implementation and Evaluation of a WLAN IEEE 802.11ad Model in ns-3
Hany Assasa, Joerg Widmer

57-64

9. Investigation and Improvements to the OFDM Wi-Fi Physical Layer
Abstraction in ns-3
Hossein-Ali Safavi-Naeini, Farah Nadeem, Sumit Roy

65-70

10. LL SimpleWireless: A Controlled MAC/PHY Wireless Model to Enable Network
Protocol Research
Patricia Deutsch, Leonid Veytser, Bow-Nan Cheng

71-78

11. A Realistic MAC and Energy Model for 802.15.4
Vishwesh Rege, Tommaso Pecorella

79-84

12. A Framework for End-to-End Evaluation of 5G mmWave Cellular Networks in
ns-3
Russell Ford, Menglei Zhang, Sourjya Dutta, Marco Mezzavilla, Sundeep Rangan,
Michele Zorzi

85-92

13. ns-3 Web-Based User Interface - Power Grid Communications Planning and
Modeling Tool
Kurt Derr

93-100

14. Getting Kodo: Network Coding for the ns-3 Simulator
Néstor Hernández, Morten Pedersen, Péter Vingelmann, Janus Heide, Daniel
Lucani, Frank Fitzek

101-107

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

v

Table of Contents

15. Improving ns-3 Emulation Performance for Fast Prototyping of Network

Protocols
Helder Fontes, Tiago Cardoso, Manuel Ricardo

108-115

16. ns-3 Based Framework for Simulating Communication Based Train Control
(CBTC) Systems
Abdulhalim Dandoush, Alina Tuholukova, Sara Alouf, Giovanni Neglia, Sebastien
Simoens, Pascal Derouet, Pierre Dersin

116-123

17. Implementation of 3D Obstacle Compliant Mobility Models for UAV Networks
in ns-3
Paulo Regis, Suman Bhunia, Shamik Sengupta

124-131

18. Topology Simulation for Aeronautical Communication Protocols with ns-3 and
DCE
Andreas Lehmann, Matthias Kreuzer, Jörg Deutschmann, Ulrich Berold,
Johannes Huber

132-138

Index of Authors 139-140

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

vi

Design and Implementation of the Traffic Control
Module in ns-3

Pasquale Imputato, Stefano Avallone
Università degli Studi di Napoli “Federico II”

Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione
Via Claudio 21, 80125, Napoli

{pasquale.imputato, stefano.avallone}@unina.it

ABSTRACT
The Linux networking subsystem relies on the Traffic Con-
trol infrastructure to process both the incoming and the out-
going packets. One of the most important components of
the Traffic Control is the queueing discipline, whose role is
to store packets waiting for transmission and select the next
packet to pass to the network interface. The Linux Traffic
Control enables to perform scheduling, shaping of the egress
traffic, policing of the ingress traffic, and dropping of both
ingress and egress traffic.

In this paper, we present the design and implementation
of the Traffic Control layer as an additional module in ns-3.
This layer sits in between the netdevices and the network
layer. We also present the design and implementation of
the base class introduced to model a queueing discipline.
Finally, we report a preliminary validation of our work, con-
sisting in a number of tests that properly compare the new
stack to the previous one.

CCS Concepts
•Networks → Network simulations; Network perfor-
mance modeling;

Keywords
ns-3, Traffic Control, Queueing Discipline, Active Queue
Management, Explicit Congestion Notification

1. INTRODUCTION
The Traffic Control infrastructure [1] of the Linux kernel

enables to perform a number of actions on both outgoing
packets, before they are handed to the netdevice for trans-
mission, and incoming packets, before they are processed
by the network layer protocols. In this paper, we focus
on the transmission path taken by packets. Once the out-
put interface and the next hop for an outgoing packet have
been selected, the packet is enqueued into a queueing disci-
pline (queue disc), which determines how the packet will be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WNS3, June 15-16, 2016, Seattle, WA, USA
c© 2016 ACM. ISBN 978-1-4503-4216-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2915371.2915382

treated. A number of queue discs have been implemented
in the Linux kernel, including simple FIFO (First In First
Out) schedulers, such as pfifo fast, fair-queuing schedulers,
such as Deficit Round Robin (DRR) [7], Stochastic Fairness
Queuing (SFQ) [5] and Quick Fair Queuing (QFQ+) [2],
and Active Queue Management (AQM) algorithms, such
as Random Early Drop (RED) [3] and Controlled Delay
(CoDel) [6]. A queue disc stores the packets waiting for
transmission and decides which packet to pass to the net-
work interface when it is requested to dequeue a packet.

When a queue disc is requested to dequeue a packet de-
pends on the implemented flow control mechanisms. Basi-
cally, enqueuing a packet into a queue disc triggers a number
of consecutive requests of dequeuing a packet. This process
can be halted by the netdevice driver (or by the network
stack itself) by putting its netdevice queue into a stop state.
The netdevice driver usually stops its transmission queue
when it is full or its occupancy is above a given threshold.
When the netdevice is able to receive packets again, the
driver can start its transmission queue. Additionally, the
netdevice driver can wake a queue disc, i.e., request it to
dequeue a packet, when its transmission queue is empty or
its occupancy is below a given threshold.

Currently, ns-3 is lacking an equivalent of the Linux Traf-
fic Control infrastructure. No flow control mechanism is
implemented and packets are only stored in the netdevice
transmission queues. Consequently, AQM algorithms such
as RED and CoDel can only manage the packets stored in
the netdevice queues, which is not what happens in Linux.
This paper presents the work done to introduce an equiv-
alent of the Linux Traffic Control infrastructure into ns-3.
We believe that our work will allow researchers to carry out
more realistic simulations and to evaluate AQM algorithms
more precisely.

The remainder of this paper is organised as follows. In
section 2 we provide an overview of the Linux Traffic Control
and of the current status of ns-3. Section 3 describes the
model and design of the proposed Traffic Control module
for ns-3. Section 4 presents the Traffic Control helper and
some usage examples. Section 5 describes the experiments
we performed with the new architecture and the results we
obtained. In section 6 we conclude our work.

2. BACKGROUND
In this section, we describe the Linux Traffic Control in-

frastructure and the ns-3 queue system.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

1

2.1 Linux Traffic Control
The Traffic Control is a component of the network subsys-

tem of the Linux kernel. This component supports multiple
operations needed to provide Quality of Service (QoS), in-
cluding:

• shaping and scheduling of egress traffic;

• policing of ingress traffic;

• dropping of both ingress and egress traffic.

The Traffic Control relies on three fundamental compo-
nents to perform the above mentioned operations:

• queue discs;

• classes;

• filters.

A queue disc can be added to every network interface in
the Linux kernel and determines how packets outgoing from
the interface are treated. A simple queue disc is fifo, which
does no processing and is a pure FIFO queue with queue
limit expressed in packets or bytes. It stores a packet when
the network interface cannot handle it immediately. The
default queue disc in Linux is pfifo fast, which consists of a
three band queue acting as a priority queue. The priority
assigned to each packet may depend on the Type of Service
(ToS) value or Diffserv Codepoint (DSCP) carried by the
packet. More complex queue discs are available in the Traf-
fic Control component. A typical taxonomy divides queue
discs in classful (i.e., support classes) and classless (i.e., do
not support classes). A classful queue disc can contain mul-
tiple classes, each of which has a child queue disc attached.
Each class can be configured with distinct parameter val-
ues, so as to reserve a distinct treatment to different traffic
classes. For instance, the prio queue disc is a container for
a configurable number of classes which are served in order
of priority. A packet filter can be used by a classful queue
disc to classify packets based on different criteria. The most
advanced filter available is u32 that can use anything in the
header for classification.

More recently, after the appearance of multi-queue net-
devices (such as Wifi), some multi-queue aware queue discs
have been introduced. Multi-queue aware queue discs han-
dle as many queues (or queue discs – without using classes)
as the number of transmission queues used by the netdevice
on which the queue disc is installed. An attempt is made,
also, to enqueue each packet in the“same”queue both within
the queue disc and within the netdevice.

2.2 ns-3 Queue System
In this section, we analyze ns-3 for what concerns the

queuing system adopted at the network and netdevice layers.
The network layer has no queuing system. In case the

IPv4 stack is employed (the same holds for the IPv6 stack),
packets generated from the upper layers are passed to the
Ipv4L3Protocol, which determines the right Ipv4Interface

for packet forwarding. Then, the Ipv4Interface passes the
packet to the corresponding netdevice. Thus, it is not pos-
sible to differentiate traffic at this layer and hold packets
whose transmission to the netdevice failed (and are therefore

dropped). Netdevices store the packets waiting for trans-
mission in a queue. Such a queue contains packets with the
data link header already added and is modelled through the
base class Queue. Derived classes are DropTailQueue, RedQueue
and CoDelQueue. DropTailQueue is a classical first in first
out limited queue. The two models of AQM, RedQueue and
CoDelQueue, both presently derive from class Queue and can
be only installed on the Csma and PointToPoint netdevices
but not on Wifi and LTE netdevices. The reason is that
Wifi and LTE do not use subclasses of the base class Queue

to implement their netdevice queues.
The ns-3 netdevices do not support any form of flow con-

trol between the network and netdevice layers. Indeed, net-
devices have no means to request the network layer to stop
sending packets and all the packets passed to the netdevices
when their queues are full are inevitably lost.

The base class Queue does not provide easy visibility of
the IP and transport headers. The non trivial access or
modification of the IP header have hindered the addition of
the Explicit Congestion Notification (ECN) support in ns-
3 [8]. The ns-3 ECN support should remove the L2 header
(of different length for a different netdevice) then remove the
L3 header and apply the ECN policy. Also, the non simple
access to the transport header, e.g. TCP, has hindered the
ns-3 support to the recent internet aware queue discs such
as FlowQueue-CoDel (FQ-CoDel). Those queue discs need
access to the 5-tuple of IP protocol, source and destination
IP addresses and port numbers.

3. DESIGN AND IMPLEMENTATION
In this section, we describe the model of the Traffic Con-

trol module, its design and several challenges that we en-
countered during its implementation.

3.1 Model Description
In order to add support for the features described in the

previous section, we decided to introduce a new layer that
sits above the netdevice and below the IP forwarding layer.
The main consequence is that it requires flow control be-
tween the new Traffic Control layer and each of the netde-
vice queues. For each netdevice queue, it is necessary to
keep a status bit which indicates if further packets can be
passed to the netdevice for the transmission. The netdevice
(or the network layer) can stop the passing of further pack-
ets when a resource becomes unavailable (e.g. the netdevice
queue is full) and wake up the upper layer when the resource
becomes available again.

Packets received by the Traffic Control layer for transmis-
sion to a netdevice can be passed to a queue disc to perform
scheduling and policing. A netdevice can have a single (root)
queue disc installed on it. Installing a queue disc on a netde-
vice is not mandatory. If a netdevice does not have a queue
disc installed on it, the Traffic Control layer sends the pack-
ets directly to the netdevice. This is the case, for instance,
of the loopback netdevice.

As in Linux, a queue disc may contain distinct elements:

• queues, which actually store the packets waiting for
transmission;

• classes, which allow to reserve a different treatment to
different packets;

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

2

Figure 1: The send and receive path on internet
enabled nodes after the introduction of the Traffic
Control layer (IPv4 case).

• filters, which determine the queue or class which a
packet is destined to.

Notice that a child queue disc must be attached to every
class and a packet filter is only able to classify packets of a
single protocol. Also, while in Linux some queue discs (e.g.,
FQ-CoDel) use an internal classifier and do not make use
of packet filters, in ns-3 every queue disc including multiple
queues or multiple classes needs an external filter to classify
packets (this is to avoid having the Traffic Control module
depend on other modules such as internet).

The Traffic Control layer interacts with a queue disc in
a simple manner: after requesting to enqueue a packet, the
Traffic Control layer requests the queue disc to “run”, i.e., to
dequeue a set of packets, until a predefined number (“quota”)
of packets is dequeued or the netdevice stops the queue disc.
A netdevice may stop the queue disc when its transmission
queue(s) is/are (almost) full. Also, a netdevice may wake the
queue disc when its transmission queue(s) is/are (almost)
empty. Waking a queue disc is equivalent to make it run.

3.2 Design
The new internet enabled node stack with Traffic Con-

trol is illustrated in Figure 1 (for the IPv4 case, the IPv6
case is similar). A TrafficControlLayer object is aggregated
to every internet enabled node. The new layer intercepts
packets that transit both in the input and output direc-
tions. Currently, scheduling of outgoing packets is sup-
ported, while policing of incoming packets is not supported
(since the equivalent of the Linux ingress queue disc has
not been implemented yet). The IPv{4,6} interfaces uses
the aggregated TrafficControlLayer object to send packets
down, instead of calling NetDevice::Send() directly. After
the analysis and the process of the packet, when the flow con-
trol mechanism allows it, TrafficControlLayer will call the
Send() method on the right netdevice. The IPv{4,6} inter-
faces call the NetDevice::Send() directly only in the case of
packets destined to the loopback interface. To receive pack-
ets, instead, the callback chain, that (in the past) involved

the node protocol handlers and the netdevice, is extended
to involve TrafficControlLayer.

A TrafficControlLayer object holds a reference (smart
pointer) to the objects representing the queue discs installed
on each netdevice of the node. An abstract base class, class
QueueDisc, is subclassed to implement specific queue discs.
A subclass is required to implement the following methods:

• bool DoEnqueue (Ptr<QueueDiscItem> item): enqueue a
packet;

• Ptr<QueueDiscItem> DoDequeue (void): dequeue a packet;

• Ptr<const QueueDiscItem> DoPeek (void) const: peek a
packet;

• bool CheckConfig (void) const: check if the configura-
tion is correct.

The base class QueueDisc implements:

• methods to add/get a single queue, class or filter and
methods to get the number of installed queues, classes
or filters;

• a Classify method which classifies a packet by process-
ing the list of filters until a filter able to classify the
packet is found;

• methods to extract multiple packets from the queue
disc, while handling transmission (to the netdevice)
failures by requeuing packets.

The base class QueueDisc holds the list of attached queues,
classes and filter by means of three vectors accessible through
attributes (InternalQueueList, QueueDiscClassList and Pack-
etFilterList).

Internal queues are implemented as (subclasses of) Queue

objects. A Queue stores QueueItem objects, which consist
of just a Ptr<Packet>. Since a queue disc has to store at
least the destination address and the protocol number for
each enqueued packet, a new class, QueueDiscItem, is derived
from QueueItem to store such additional information for each
packet. Thus, internal queues are implemented as Queue ob-
jects storing QueueDiscItem objects. Also, there could be
the need to store further information depending on the net-
work layer protocol of the packet. For instance, for IPv4
and IPv6 packets it is needed to separately store the header
and the payload, so that header fields can be manipulated,
e.g., to support ECN. To this end, Ipv4QueueDiscItem and
Ipv6QueueDiscItem are derived from QueueDiscItem to addi-
tionally store the packet header and provide protocol specific
operations such as ECN marking.

Classes are implemented via the QueueDiscClass class,
which just consists of a pointer to the attached queue disc.
Such a pointer is accessible through the queue disc attribute.
Classful queue discs needing to set parameters for their classes
can subclass QueueDiscClass and add the required parame-
ters as attributes.

An abstract base class, PacketFilter, is subclassed to im-
plement specific filters. Subclasses are required to imple-
ment two virtual private pure methods:

• bool CheckProtocol (Ptr<QueueDiscItem> item) const:
check whether the filter is able to classify packets of
the same protocol as the given packet;

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

3

(a) Classful queue disc

(b) Multi-queue aware queue disc

Figure 2: Queue discs in Traffic Control.

• int32_t DoClassify (Ptr<QueueDiscItem> item) const:
actually classify the packet.

PacketFilter provides a public method, Classify, which
first calls CheckProtocol to check that the protocol of the
packet matches the protocol of the filter and then calls Do-

Classify. Specific filters subclassed from PacketFilter should
not be placed in the Traffic Control module but in the mod-
ule corresponding to the protocol of the classified packets.

In Linux, information about the status of a transmission
queue of a netdevice is stored in the struct netdev_queue,
which includes a qdisc field that is mainly used to solve the
following problems:

• if a netdevice transmission queue is (almost) empty,
identify the queue disc to wake;

• if a packet will be enqueued in a given netdevice trans-
mission queue, identify the queue disc which the packet
must be enqueued into.

The latter problem arises because Linux attempts to de-
termine the netdevice transmission queue which a packet will
be enqueued into before passing the packet to a queue disc.
This is done by calling a specific function of the netdevice
driver, if implemented, or by employing fallback mechanisms
(such as hashing of the addresses) otherwise. The identifier

of the selected netdevice transmission queue is stored in the
queue_mapping field of the struct sk_buff, so that both the
queue disc and the netdevice driver can get the same infor-
mation. In ns-3, such identifier is stored in the m_txq member
of the QueueDiscItem class.

Concerning the qdisc field of the struct netdev_queue in
Linux, such a field cannot be similarly stored in a object
NetDeviceQueue, because it would make the network mod-
ule depend on the Traffic Control module. Instead, this
information is stored in the TrafficControlLayer object ag-
gregated to each node. In particular, a TrafficControlLayer

object holds a map which stores, for each netdevice, a vec-
tor of Ptr<QueueDisc>. The size of such a vector is the num-
ber of netdevice transmission queues and each element of
this vector is a pointer to the queue disc to activate when
the above problems occur. The SetRootQueueDiscOnDevice

method takes care of configuring such a map, based on the
wake mode of the root queue disc. If the wake mode of
the root queue disc is WAKE_ROOT, then all the elements of
the vector are pointers to the root queue disc. If the wake
mode of the root queue disc is WAKE_CHILD, then each ele-
ment of the vector is a pointer to a distinct child queue disc.
This requires that the number of child queue discs matches
the number of netdevice queues. It follows that the wake
mode of a classless queue disc must necessarily be WAKE_ROOT.
These two configurations are illustrated in Figure 2.

Finally, we mention that the queue disc installed on a
netdevice, along with the associated packet filters, classes
and internal queues, can be removed by calling the method
DeleteRootQueueDiscOnDevice of the TrafficControlLayer class.

3.3 Implementation Issues
The Ipv{4,6}Interface add the IP header to the packet

before passing the packet to the underlying layer. Receving
a packet with the IP header already attached makes it ineffi-
cient for the Traffic Control layer to manipulate the header,
e.g., to perform ECN markings. For this reason, we changed
the behavior of the internet stack so that the IP header and
the IP payload of a packet are sent separately to the Traffic
Control layer. This required modifications both to IPv4 (L3
protocol, ARP cache, ARP L3 protocol) and IPv6 (L3 pro-
tocol, extensions, ICMPv6, NDisc cache). The IP header is
now added to the packet after the packet is dequeued from
the queue disc.

The Traffic Control module cannot depend on the internet
module, in order to avoid that future, alternative to internet,
L3 modules have to depend on internet (through the depen-
dency on Traffic Control) and to avoid a circular dependency
(given that internet depends on Traffic Control). As a con-
sequence, the Traffic Control layer cannot manipulate IP
headers, which is necessary, e.g., to perform ECN marking,
or filter packets based on the content of the IP header. As
described earlier, this problem has been solved by enqueu-
ing packets as (pointer to) QueueDiscItem objects which are
actually either Ipv4QueueDiscItem or Ipv6QueueDiscItem ob-
jects. Likewise, using an abstract PacketFilter class allowed
us to define protocol specific packet filters in the respective
modules instead of in the Traffic Control module.

Other minor issues needed to be addressed. For instance,
incorrect packet drops may be traced because the queue discs
requeues packets whose transmission to the netdevice failed.
Thus, if a netdevice drops a packet because, e.g., its queue
is full, such a packet is traced as lost while it is actually

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

4

requeued by the queue disc and retransmitted as soon as the
netdevice is ready to receive packets again. A workaround
for this issue is to compute the number of packets that have
been actually dropped as the difference between the number
of dropped packets as reported by the netdevice drop trace
and the number of requeued packets.

4. HELPER
A Traffic Control helper has been designed and imple-

mented which allows to build even complex configurations
(classful queue disc with multiple filters and child queue
discs) and install them on a number of netdevices. Also
a queue disc container has been implemented which allows
to store the queue discs associated with the netdevices.

By default, the InternetStackHelper aggregates a Traffic-

ControlLayer object to every node. The Ipv{4,6}Address-

Helper, besides creating a Ipv{4,6}Interface, installs the de-
fault queue disc, PfifoFastQueueDisc, on every netdevice for
which it creates an Ipv{4,6}Interface, unless a queue disc
has been already installed on the netdevice. Thus, netde-
vices get the default queue disc installed even if they are
added to the node after the internet stack has been installed
on the node.

To install a queue disc other than the default one, it is
necessary to install such queue disc before an IP address is
assigned to the netdevice. Alternatively, the default queue
disc can be removed from the netdevice after assigning an
IP address, by using the convenient Uninstall method of the
TrafficControlHelper class, and then installing a different
queue disc on the netdevice. Clearly, it is also possible to
have no queue disc installed on a netdevice.

The TrafficControlHelper class offers multiple methods:

• AddInternalQueues to add an internal Queue object to
the QueueDisc;

• AddPacketFilter to add a PacketFilter to the QueueDisc;

• AddQueueDiscClasses to add a QueueDiscClass to the
QueueDisc.

The QueueDisc::CheckConfig is called when the first packet
is enqueued in the queue disc to verify that the queue disc
is correctly configured.

A typical usage pattern is to create a Traffic Control helper
object and to configure type and attributes of queue discs,
queues, classes and filters in a top-down manner (i.e., the
root queue disc is defined first). For example, the default
PfifoFastQueueDisc can be configured as follows:

TrafficControlHelper tch;
uint16_t handle = tch.SetRootQueueDisc

("ns3:: PfifoFastQueueDisc");
tch.AddInternalQueues (handle , 3,

"ns3:: DropTailQueue", "MaxPackets",
UintegerValue (1000));

tch.AddPacketFilter (handle ,
"ns3:: PfifoFastIpv4PacketFilter");

QueueDiscContainer qdiscs = tch.Install
(devices);

With the above configuration, the config path of the root
queue disc installed on the j-th netdevice of the i-th node is

/NodeList /[i]/$ns3:: TrafficControlLayer/
RootQueueDiscList /[j]

Figure 3: The network topology used for the valida-
tion tests.

5. RESULTS

5.1 Simulation Settings
For all of the experiments described hereinafter, the sim-

ple three node topology reported in Figure 3 was used. Nodes
A and B are connected by means of a point-to-point link hav-
ing a data rate of 100 Mb/s and a delay of 0.1 ms. Nodes B
and C are connected by means of a point-to-point bottleneck
link having a data rate of 10 Mb/s and a delay of 5 ms. Two
scenarios have been considered, each of which compares the
current ns-3 stack with the new stack featuring the Traffic
Control layer:

• the first scenario aims, to some extent, to validate the
proposed Traffic Control layer by comparing the re-
sults obtained with the current and the new stacks in
similar configurations. In particular, the current stack
is evaluated by using netdevice queues having a size
of 1000 packets, while the new stack is evaluated by
using queue discs having a size of 1000 packets and
netdevice queues having a size of 1 packet;

• the second scenario aims to highlight that queuing at
the netdevice layer has a non negligible impact on the
performance of AQM algorithms like RED and CoDel
and that such an effect cannot be observed with the
current ns-3 stack. The current stack is evaluated by
using netdevice queues having a size of 100 packets,
while the new stack is evaluated by using queue discs
having a size of 1000 packets and netdevice queues
having a size of 100 packets.

An OnOff traffic generator is installed on node A, while a
packet sink is installed on node C. The OnOff data rate is
100 Mb/s in the TCP simulations and 10 Mb/s in the UDP
simulations. The TCP version is New Reno. The packets
size is 1458 bytes. The generated traffic is not marked with
any QoS information. Three configurations are compared.
For the current stack, we consider DropTail, RED and CoDel
as the types of netdevice queues. For the new stack, we con-
sider PfifoFast, RED and CoDel as the types of queue discs
and DropTail as the type of netdevice queues. RED and
CoDel are configured with the same parameter values when
comparing the current and the new stack. RED is configured
by setting the LinkBandwidth and LinkDelay attributes to
the corresponding values of the bottleneck link, MeanPack-
etSize to the packet size, MinTh to 5 packets, MaxTh to 15
packets, the Gentle parameter to true. CoDel is configured
by setting Interval to 100 ms and Target to 5 ms.

5.2 First Scenario
To evaluate the effects of the introduction of the Traffic

Control module, the current stack (with a netdevice queue
size of 1000 packets) is compared to the new stack (with

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

5

(a) Dropping (TCP) (b) RTT (TCP) (c) Goodput (TCP)

(d) Dropping (UDP) (e) Delay (UDP) (f) Goodput (UDP)

Figure 4: Plots of the first scenario.

a netdevice queue size of 1 packet and a queue disc size
of 1000 packets). When evaluating the new stack, the net-
device queue size is set to 1 packet in order to reduce the
netdevice queueing delay, which is outside the control of
the AQM algorithm, while focusing on the effectiveness of
the AQM algorithm and the interactions between the Traffic
Control layer and the netdevice. Note that this is equivalent
to turn off the hardware offload feature and set the kernel
Byte Queue Limits (BQL) to a maximum of one packet in a
real system [4]. This case, occurring in a real system, could
not be currently modeled in ns-3.

The results are reported in Figure 4. As noted below,
when evaluating the new stack, the queue discs take advan-
tage of the opportunity to deliver two packets to the netde-
vices, one immediately transmitted and another queued in
netdevice queue.

In the case of TCP, the presence of the netdevice queue
leads to a minor dropping activity in the queue discs in the
cases of RED and CoDel (Figure 4a). We also noticed that
the time elapsed between two consecutive packet droppings
is higher when using the new stack and the difference be-
tween these values for the current and the new stack grows
with the progress of the simulation. The dropping appears
smoother in the new stack. Also, the Round Trip Time

(RTT), which takes into account the netdevice queueing de-
lay, is slightly greater when adding the Traffic Control layer,
in the cases of RED and CoDel (Figure 4b). The minor
dropping activity with the Traffic Control layer enables to
achieve higher goodput than the current stack, in the cases of
RED and CoDel (Figure 4c). When using PfifoFast/Drop-
tail, there is no noticeable difference between the current
and the new stacks.

In the case of UDP, the presence of the netdevice queue
being able to accommodate one additional packet makes no
difference, because, contrarily to TCP, UDP does not adapt
its sending rate based on the estimated RTT. The dropping
activity remains substantially unchanged in all three cases
(Figure 4d). We note that no dropping activity occurs due
to the netdevice queue (current stack) or the queue disc (new
stack) being full, because the dropping is null in the Pfifo-
Fast/DropTail case. The delay also remains substantially
unchanged in all three cases (Figure 4e). When using RED,
the delay remains unchanged and is equal to about 20 ms;
when using CoDel, the delay remains unchanged, too, and
is equal to about 10 ms. The goodput remains constant in
all three cases (Figure 4f).

The obtained results show that the new stack, in this sce-
nario, behaves very similarly to the current one.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

6

(a) Dropping (TCP) (b) RTT (TCP) (c) Goodput (TCP)

(d) Dropping (UDP) (e) Delay (UDP) (f) Goodput (UDP)

Figure 5: Plots of the second scenario.

5.3 Second Scenario
The second scenario aims to evaluate the effectiveness of

some AQM algorithms in the common scenario in which
a netdevice queue introduces a non negligible delay. The
queue management algorithm is unaware of the time spent
in the underlying netdevice queue, which can limit the effec-
tiveness of the AQM algorithm. This is the case of all the
netdevices for which BQL is not available and the sizing of
the netdevice queue is difficult. For instance, this is the case
of Wifi netdevices [4]. This case could not be evaluated in
the current ns-3 stack.

The results are reported in Figure 5. In this case, the
queue disc can send downwards 100 packets (queued in the
netdevice queue) in addition to the packet being transmit-
ted.

In the case of TCP, the netdevice queue limits the benefits
of using an AQM algorithm. The dropping activity reflects
the ability to deliver 100 packets to the netdevice. With
the new stack, the dropping activity of the AQM algorithms
(RED and CoDel) is reduced with respect to the current
stack (Figure 5a). Consequently, the limited effectiveness of
the AQM algorithms leads to a higher RTT, with respect
to the current stack, in the cases of RED and CoDel (Fig-

ure 5b). In these cases, the RTT is about 50 ms. Given the
reduced dropping compared to the current stack, the good-
put improves and it is slightly greater than that achieved
by PfifoFast/DropTail (Figure 5c). When using PfifoFast/-
Droptail, there is no noticeable difference between the cur-
rent and the new stacks.

In the case of UDP, the dropping activity tends to be
slightly less and more smooth with the new stack, in the
cases of RED and CoDel, while remains unchanged in the
PfifoFast/DropTail case (Figure 5d). We note that no drop-
ping activity occurs due to the netdevice queue (current
stack) or the queue disc (new stack) being full. The de-
lay is affected by queueing in the netdevice (Figure 5e). In
this scenario, the netdevice queue introduces a non negligi-
ble delay. With the new stack, the delay is about 140 ms
and 130 ms when using RED and CoDel, respectively. The
goodput remains substantially unchanged in all three cases
(Figure 5f)

The results obtained, in this scenario, show a behavior
which cannot be observed with the current ns-3 stack. Such
behavior is encountered in real systems where the netdevice
queue introduces a non negligible delay that limit the effec-
tiveness of the AQM algorithms.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

7

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented the design, implementation

and a preliminary validation of a Traffic Control module for
ns-3. Our code has been integrated into ns-3 starting from
the ns-3.25 release. We believe that our work will allow re-
searchers to carry out more realistic simulations and to eval-
uate AQM schemes more precisely. One of the advantages of
our Traffic Control infrastructure is that AQM schemes can
now be tested on any netdevice, including, e.g., Wifi and
LTE. However, changes to netdevices are still required to
make them Traffic Control aware and support features such
as flow control. Currently, the PointToPoint netdevice is the
only Traffic Control aware netdevice. Work is in progress to
make Wifi support flow control and the other features of the
Traffic Control module.

Future work includes the implementation of additional
queue discs such as FQ-CoDel and packet filters and of ad-
vanced features such as ECN and BQL, which is used by
Linux to dynamically control the size of the netdevice trans-
mission queues. Additionally, we plan to validate our ns-3
implementation of the Traffic Control layer against real sys-
tems, such as Linux, by exploiting the availability of power-
ful tools such as DCE (Direct Code Execution) or container-
based platforms such as Docker.

7. ACKNOWLEDGMENTS
We wish to thank Natale Patriciello for the initial imple-

mentation of the Traffic Control layer and Tom Henderson
and Tommaso Pecorella for their helpful suggestions and re-
view of our code.

8. REFERENCES
[1] W. Almesberger, J. Salim, and A. Kuznetsov.

Differentiated services on linux. In Proceedings of the
Global Telecommunications Conference (Globecom),
volume 1B, pages 831–836. IEEE, 1999.

[2] F. Checconi, L. Rizzo, and P. Valente. Qfq: Efficient
packet scheduling with tight guarantees. IEEE/ACM
Transactions on Networking, 21(3):802–816, June 2013.

[3] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM
Transactions on Networking, 1(4):397–413, August
1993.

[4] T. Høiland-Jørgensen, P. Hurtig, and A. Brunstrom.
The good, the bad and the wifi: Modern aqms in a
residential setting. Computer Networks, 89:90–106,
2015.

[5] P. McKenney. Stochastic fairness queueing. In
Proceedings of the Ninth Annual Joint Conference of
the IEEE Computer and Communication Societies
(INFOCOM), pages 733–740. IEEE, June 1990.

[6] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar.
Controlled Delay Active Queue Management.
draft-ietf-aqm-codel-02, IETF, December 2015.

[7] M. Shreedhar and G. Varghese. Efficient fair queueing
using deficit round-robin. IEEE/ACM Transactions on
Networking, 4(3):375–385, June 1996.

[8] B. P. Swenson and G. F. Riley. Implementing explicit
congestion notification in ns-3. In Proceedings of the
2014 Workshop on ns-3, WNS3 ’14, pages 1–8. ACM,
2014.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

8

Implementation and Evaluation of Proportional Integral
Controller Enhanced (PIE) Algorithm in ns-3

Shravya K.S, Smriti Murali and Mohit P. Tahiliani
Wireless Information Networking Group (WiNG)

NITK Surathkal, Mangalore, India, 575025
shravya.ks0@gmail.com, m.smriti.95@gmail.com, tahiliani@nitk.ac.in

ABSTRACT
This paper proposes a new ns-3 model and presents the
evaluation results for Proportional Integral controller En-
hanced (PIE), a recently designed Active Queue Manage-
ment (AQM) mechanism to address the problem of bufferbloat.
The problem of bufferbloat arises due to the presence of large
unmanaged buffers in routers. This leads to high queuing
latency and significantly degrades the performance of time-
sensitive and interactive traffic. AQM mechanisms that aim
to address the problem of bufferbloat try to achieve an op-
timal trade-off between high link utilization and low mean
queue length. PIE is a lightweight AQM mechanism that
tries to achieve the same. To our knowledge, ns-3 network
simulator does not have a model for simulating PIE. Hence,
in this paper, we implement a ns-3 model for PIE, and show
that the results obtained from it are in line with those ob-
tained from the ns-2 model of PIE, implemented by its au-
thors.

CCS Concepts
• Networks → Network simulations; • Computing
methodologies → Model development and analysis;

Keywords
ns-3, Proportional Integral controller Enhanced, Active Queue
Management, Bufferbloat

1. INTRODUCTION
Network buffers play a pivotal role in ensuring proper

link utilization and smoothening of internet traffic, espe-
cially when there are intermittent bursts. Over the period
of time, there has been a sharp increase in the size of net-
work buffers due to the reduced memory cost and the need
to handle large amount of bursts. The importance of man-
aging these buffers has long been emphasized by researchers
because unmanaged buffers (or passive buffers) lead to large

c© 2016 Association for Computing Machinery. ACM acknowledges that this contri-
bution was authored or co-authored by an employee, contractor or affiliate of a national
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

WNS3, June 15-16, 2016, Seattle, WA, USA
c© 2016 ACM. ISBN 978-1-4503-4216-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2915371.2915385

number of packet drops and increase the queuing latency.
Other known issues with passive buffers are: global synchro-
nization [1], lock-out [2] and bufferbloat [3]. Active Queue
Management (AQM) mechanisms are targeted to solve these
issues by continuously monitoring and managing the router
queues. From an initial goal of avoiding congestion to the
recent most focus on controlling queue latency, AQM mech-
anisms have come a long way in the past two decades. One
among the recent AQM mechanisms is Proportional Inte-
gral controller Enhanced (PIE), a lightweight mechanism to
control the mean queue delay to a desired value [4].

In this paper, we make two contributions: (i) propose a
new model for PIE algorithm in ns-3 network simulator [5],
and discuss its design and implementation. The implemen-
tation presented in this paper is based on the PIE model
in ns-2 [6], implemented by the authors of PIE (ii) validate
the proposed ns-3 PIE model by comparing its results to
those obtained from ns-2 PIE model. Moreover, the results
presented in this paper can be easily reproduced (see ap-
pendix).

The rest of this paper is organized as follows: Section 2
provides a brief theoretical overview of the PIE algorithm.
Section 3 discusses the design and implementation of ns-3
PIE model in detail. Section 4 presents the validation of
ns-3 PIE model by comparing the results obtained from it
to those obtained from the ns-2 PIE model. Lastly, Section
5 summarizes and concludes the paper.

2. BACKGROUND OF PIE
PIE algorithm uses the classic Proportional Integral con-

troller [7] to control the queuing latency, and further extends
it by auto-tuning the control parameters based on the level
of congestion. Moreover, PIE combines the advantages of
two AQM mechanisms: Random Early Detection (RED) [1]
and Controlled Delay (CoDel) [8]; it is simple to deploy like
RED and considers queuing delay as a measure of conges-
tion like CoDel. Adding further, it uses the trends in latency
values i.e., increase or decrease in latency, to determine the
level of congestion.

PIE is designed to improve the performance of time-sensitive
and interactive traffic while maintaining high link utilization
and ensuring network stability. The latter is guaranteed by
adapting its control parameters in small increments, thereby
avoiding the large oscillations that lead to instability. PIE
algorithm comprises following four components:

Random Dropping: PIE algorithm randomly drops pack-
ets depending on the value of drop probability, p which is

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

9

calculated at a regular interval. Like RED, drop probability
calculation is a separate component in PIE.

Drop Probability Calculation: Drop probability is
calculated at a regular interval which is denoted by Tup-
date. The parameters involved in the calculation of drop
probability are:

• cur del : queuing delay during the current sample. It
is estimated using Little’s law [9].

• old del : queuing delay during the previous sample.

• ref del : desired queuing delay.

• avg drate: average departure rate of the queue. It is
a separate component in PIE, and its calculation is
discussed later in the paper.

• α and β: scaling factors.

The difference between cur del and old del is used to de-
termine whether the queuing delay is increasing or decreas-
ing. The scaling factor α decides how much this impacts the
drop probability.

Similarly, the difference between cur del and ref del helps
to determine whether drop probability has stabilized (a sta-
ble state is when cur del is equal to ref del). The scaling
factor β decides whether any adjustments are required to
stabilize the drop probability.

Average Departure Rate Estimation: In order to
account for inaccuracies that may arise due to short inter-
mittent bursts of packets, the avg drate is calculated only
when the queue is in a measurement cycle i.e., when the
amount of data in the queue is greater than a predeter-
mined value, dq threshold. Once a queue has more than
dq threshold amount of data, the samples of current depar-
ture rate (dq rate) are obtained and exponentially averaged
with an averaging constant (ε) to determine the avg drate.
The time interval between two samples of dq rate is rep-
resented by dq int and the amount of data that departed
during dq int is stored in dq count.

Burst Allowance Calculation: This component of PIE
ensures that short bursts of packets are allowed to pass suc-
cessfully through the buffers. Two parameters are required
to achieve this: (i) burst allow ; to decide whether burst
should be allowed and (ii) max burst ; maximum time till
which the burst should be allowed. If burst allow is false,
packets are randomly dropped with probability p; otherwise
they are enqueued. Initially, burst allow is set to max burst
and then decremented by Tupdate in every sample. It is
reset to max burst when drop probability is 0, and cur del
and old del are less than half of ref del. max burst is a user
configurable parameter, similar to the interval parameter in
CoDel or Adaptive RED (ARED) [10].

3. PIE MODEL IN NS-3
This section provides the details of our implementation

of PIE algorithm in ns-3. Figure 1 illustrates the interac-
tion between the base Queue class in ns-3 and the derived
PieQueue class. In our implementation, the entire PIE algo-
rithm is contained in PieQueue and covers all four compo-
nents of PIE described in Section 2.

Queue

m nPackets

m nTotalReceivedPackets

m nTotalDroppedPackets

Enqueue()

Dequeue()

Peek()

Drop()

PieQueue

m burstAllowance
m burstState
m inMeasurement

DoEnqueue()

DoDequeue()

CalculateP()

DropEarly()

m rtrsEvent

Figure 1: Class diagram for PIE model in ns-3.

Figure 2: Interaction between the core methods of
PIE.

The four private methods of class PieQueue, named DoEn-

queue, DoDequeue, DropEarly and CalculateP implement
the required functionality of PIE. DoEnqueue and DoDequeue

are invoked on every packet arrival and departure, respec-
tively. DropEarly is used to decide whether the incoming
packet should be enqueued or dropped, and CalculateP cal-
culates drop probability at a regular interval. Figure 2 de-
picts an interaction diagram between these four methods.
Going forward, we provide the implementation details of ev-
ery PIE component individually.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

10

3.1 Dropping Packets Randomly
PIE drops the incoming packets randomly during the en-

queue time and hence, this component has been implemented
in DoEnqueue method. The decision to enqueue or drop the
packet is arrived at by invoking DropEarly method, which
returns a boolean value; false indicates enqueue and true
indicates drop. Internally, DropEarly compares the drop
probability, p with a value u, obtained from UniformRan-

domVariable class available in ns-3, and returns false if p is
smaller than u; else, returns true. Other conditions when
DropEarly method returns false include: (i) cur del is less
than the half of ref del and (ii) the queue length is less than
twice the mean packet size.

3.2 Calculation of Drop Probability
This component is implemented in CalculateP method

and it includes: estimating cur del by using Little’s law,
auto-tuning the scaling factors, calculating drop probabil-
ity, p and updating old del. All are implemented based on
a set of equations provided in Section III.B of [4], respec-
tively. Table 1 provides a list of PIE parameters required to
calculate the drop probability and maps them to their corre-
sponding variable names in ns-3. Among these parameters,
Tupdate and ref del can be configured by the user whereas
rest of the parameters are internally set and updated by the
PIE algorithm.

Table 1: PIE parameters to calculate p.

PIE parameter ns-3 variable
Tupdate m tUpdate
cur del m qDelay
old del m qDelayOld
ref del m qDelayRef

α m a
β m b

avg drate m avqDqRate

3.3 Estimation of Average Departure Rate
This component is implemented in DoDequeue method.

As mentioned in Section 2, the avg drate is calculated only
when the queue is in a measurement cycle. Table 2 provides
a list of PIE parameters required to estimate average depar-
ture rate of a queue and maps them to their corresponding
variable names in ns-3. All listed parameters are internally
set and updated by the PIE algorithm.

Table 2: PIE parameters to estimate avg drate.

PIE parameter ns-3 variable
qlen m packets / m bytesInQueue

dq threshold m dqThreshold
dq count m dqCount

start m dqStart
dq int tmp

ε fixed to 0.5

3.4 Calculation of Burst Allowance
The calculation of burst allowance has a direct impact on

the calculation of drop probability. Thus, the implemen-
tation of this component is coupled with the calculation of

drop probability in CalculateP method. Table 3 provides a
list of PIE parameters required to calculate burst allowance
and maps them to their corresponding variable names in ns-
3. Apart from these parameters, three states of the burst are
also tracked; NO_BURST indicates that the probability based
random dropping should be bypassed, IN_BURST_PROTECTING
indicates that an active burst should be allowed to pass till
burst_allow reaches zero and IN_BURST indicates that ran-
dom dropping should be enabled on the passing burst.

Table 3: PIE parameters to calculate burst allow.

PIE parameter ns-3 variable
burst allow m burstAllowance
max burst m maxBurst
Tupdate m tUpdate
cur del m qDelay
old del m qDelayOld
ref del m qDelayRef

3.5 Implementation Issues
Besides pro-actively dropping packets, AQM mechanisms

are targeted to work with Explicit Congestion Notification
(ECN) [11] and mark the packets, instead. Our implemen-
tation of PIE does not support marking of packets due to
the unavailability of ECN model in ns-3. Even though there
is an implementation of ECN available for ns-3 [12], it has
not been included in the main distribution yet.

4. MODEL EVALUATION
To evaluate the performance of our PIE implementation,

we first provide a test suite in ns-3. Further, we simulate the
PIE algorithm in ns-3 and ns-2 by configuring scenarios de-
picted in the original paper of PIE [4]. The results obtained
from both the tools are then compared to validate the im-
plementation of our PIE model in ns-3. The performance
metrics used for comparison are:

• instantaneous queue delay,

• throughput, and

• the number of packet drops.

Instructions to reproduce the results presented in this paper
are provided in Appendix.

4.1 Model Verification
As a part of the PIE test suite, we run tests to ensure

the compatibility of our PIE model with ns-3. Simultane-
ously, we also verify for the appropriate setting of attributes
like Queue Limit, parameters α and β, burst allowance, etc.
We consider a wide range of traffic, ranging from 8 pack-
ets to 3,000,000 packets to confirm the correct functionality
of enqueue and dequeue methods. We also vary the burst
allowance to check if the packet drop behavior changes ac-
cordingly.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

11

4.2 Functional Verification
This verification is required to confirm that while mini-

mizing the queuing delay, PIE does not affect the overall
link utilization or increase the packet drop rate. We use the
results obtained from the PIE model of ns-2 (implemented
by the authors of PIE) and compare them with the results
obtained from the PIE model of ns-3 to verify the function-
ality of our implementation. The simulation setup details
are listed in Table 4, and are similar to the ones described
in [4] except that, we use TCP Newreno “without” SACK
because ns-3 does not have a model for simulating SACK.
Further, our simulations consist of four different scenarios as
suggested in [4]: (i) light TCP traffic, (ii) heavy TCP traffic,
(iii) mix TCP and UDP traffic, and (iv) bursty UDP traffic.

Table 4: Simulation setup.

Parameter Value
Topology Dumbbell

Bottleneck RTT 100ms
Bottleneck buffer size 200KB
Bottleneck bandwidth 10Mbps

Bottleneck queue PIE
Non-bottleneck RTT 10ms

Non-bottleneck bandwidth 10Mbps
Non-bottleneck queue DropTail

Mean packet size 1000B
TCP NewReno

ref del 20ms
Tupdate 30ms

α 0.125Hz
β 1.25Hz

dq threshold 10KB
max burst 100ms

Application start time 0s
Application stop time 99s
Simulation stop time 100s

Scenario 1: Light TCP Traffic
This scenario consists of 5 TCP flows that pass through a
bottleneck link in the dumbbell topology. We start all our
TCP sources at the same time to validate the functionality
of PIE in terms of controlling queue delay around a reference
value and retaining proper link utilization. Other simulation
parameters are same as described in Table 4.

We observe that the results obtained from ns-2 and ns-3
are similar. Fig. 3 presents the instantaneous queue delay
obtained from the PIE model of ns-2 and ns-3. In both ns-2
and ns-3 results, there is a sharp increase in the queue delay
initially because our TCP flows start at the same time and
lead to a sudden burst of traffic. However, we observe that
PIE algorithm successfully brings down the queue delay to a
reference value of 20ms within 1 or 2 seconds and maintains
it performance for the rest of the simulation.

The instantaneous throughput results obtained from ns-
2 and ns-3 are presented in Fig. 4. We observe that link
throughput drops significantly at the beginning of the simu-
lation because PIE aggressively drops packets to bring down
the queue delay from 160ms to a reference value of 20ms (see
Fig. 3). For the rest of the simulation, we observe a TCP

sawtooth behavior sometimes because the number of TCP
senders in this scenario is less and hence, when a few TCP
senders reduce their congestion window (cwnd), the bottle-
neck link utilization reduces.

Scenario 2: Heavy TCP Traffic
This scenario consists of 50 TCP flows that pass through a
bottleneck link in the dumbbell topology. Like in previous
scenario, we start all our TCP sources at the same time
to validate the functionality of PIE in terms of controlling
queue delay and retaining proper link utilization. Other
simulation parameters are same as described in Table 4.

We observe that the results obtained from our PIE model
in ns-3 are similar to those obtained from the PIE model
in ns-2. Fig. 5 presents the instantaneous queue delay ob-
tained from the PIE model of ns-2 and ns-3. We observe
that increasing the amount of traffic has negligible impact
on the performance of PIE as it successfully controls the
queue delay around the reference value, except for the ini-
tial burst caused by starting all the TCP flows at the same
time.

The results for instantaneous throughput obtained from
ns-2 and ns-3 are presented in Fig. 6. Like in Fig. 4, the
link throughput drops at the beginning of the simulation
because of aggressive behavior of PIE. But, for the rest of
the simulation in this scenario, the bottleneck link is fully
utilized because the number of TCP senders are more and
hence, when a few TCP senders reduce their cwnd, other
TCP senders utilize the unused bottleneck link bandwidth.
This also confirms that PIE algorithm does not affect the
bottleneck link utilization while trying to control the queue
delay.

Scenario 3: Mix TCP and UDP Traffic
This scenario consists of 5 TCP and 2 UDP flows that pass
through a bottleneck link in the dumbbell topology. Like in
previous scenarios, all TCP and UDP sources start at the
same time. UDP sources send the data at a rate of 10 Mbps.
Other simulation parameters remain same as described in
Table 4.

Fig. 7 shows that the performance of PIE remains unaf-
fected in the presence of unresponsive UDP traffic, and the
results obtained from our PIE model of ns-3 are inline with
those obtained from the PIE model of ns-2. Similarly, Fig.
8 confirms that PIE successfully regulates the traffic to keep
bottleneck link fully utilized.

Scenario 4: Bursty UDP Traffic
This scenario consists of one UDP flow that passes through
a bottleneck link in the dumbbell topology and generates
the traffic at a rate of 25 Mbps. The main purpose of this
scenario is to functionally verify PIE’s ability to tolerate
bursts by varying the value of max burst parameter. We
consider two values of max burst : (i) 0ms, (ii) 100ms while
keeping the burst length fixed to 200ms. The start time of
the flow is 1s and stop time is 1.2s. Mean packet size used
in this scenario is 500B. Other parameters are configured as
mentioned in Table 4.

Fig. 9 shows plots of the number of packet drops as a
function of simulation time, and confirms that the results
obtained from ns-2 and ns-3 are similar. Further, we can ob-
serve that when max burst is set to 0ms, PIE starts dropping
packets from the beginning of the simulation (i.e., 1.04s)

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

12

(a) ns-2 (b) ns-3

Figure 3: Queue delay with light TCP traffic.

(a) ns-2 (b) ns-3

Figure 4: Link throughput with light TCP traffic.

(a) ns-2 (b) ns-3

Figure 5: Queue delay with heavy TCP traffic.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

13

(a) ns-2 (b) ns-3

Figure 6: Link throughput with heavy TCP traffic.

(a) ns-2 (b) ns-3

Figure 7: Queue delay with mix TCP and UDP traffic.

(a) ns-2 (b) ns-3

Figure 8: Link throughput with mix TCP and UDP traffic.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

14

(a) Burst allowance : ns-2

(b) Burst allowance : ns-3

Figure 9: PIE’s burst control with short lived UDP
traffic.

whereas when max burst is set to 100ms, it drops the pack-
ets after 1.1s i.e., it allows the burst for 100ms and then
starts dropping the packets.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we present an implementation of PIE AQM

mechanism in ns-3. We provide details for the implemen-
tation of every component of PIE algorithm. Additionally,
we also provide the interactions among different methods
used for implementing PIE. We validate our PIE implemen-
tation in a variety of simulation scenarios that include: light
TCP traffic, heavy TCP traffic, mix TCP and UDP traffic
and bursty UDP traffic. The results show that PIE effec-
tively controls the queuing delay without affecting the bot-
tleneck link utilization. Moreover, we compare the results
obtained from our ns-3 PIE model to those obtained from
ns-2 PIE model, and show that they are similar. Our PIE
implementation is currently under review. We plan to fur-
ther extend our PIE implementation to work with the traffic
control layer which will be available in ns-3 soon, and finally
merge it to the main distribution of ns-3.

6. ACKNOWLEDGMENTS
We would like to acknowledge Tommaso Pecorella for re-

viewing our PIE implementation in ns-3 and helping us in

resolving few bugs. We highly appreciate the support of
Hajime Tazaki and all reviewers, who helped us to revise
the paper. Further, we would like to acknowledge Ankit
Deepak and Virang Vyas for helping in the implementation
of few simulation scenarios used for evaluation, and Rad-
hesh Anand and Ayush Agarwal for correcting parts of this
paper.

7. REFERENCES
[1] S. Floyd and V. Jacobson. Random early detection

gateways for congestion avoidance. Networking,
IEEE/ACM Transactions on, 1:397–413, 1993.

[2] M. Hassan and R. Jain. High performance TCP/IP
networking, volume 29. Prentice Hall, 2003.

[3] J. Gettys and K. Nichols. Bufferbloat: dark buffers in
the internet. Communications of the ACM,
55(1):57–65, 2012.

[4] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu,
V. Subramanian, F. Baker, and B. VerSteeg. PIE: A
lightweight control scheme to address the bufferbloat
problem. In High Performance Switching and Routing
(HPSR), 2013 IEEE 14th International Conference
on, pages 148–155. IEEE, 2013.

[5] Network Simulator 3. https://www.nsnam.org, 2011.

[6] Network Simulator 2. http://www.isi.edu/nsnam/ns,
1995.

[7] C. V. Hollot, V. Misra, D. Towsley, and W. Gong. On
designing improved controllers for AQM routers
supporting TCP flows. In INFOCOM 2001. Twentieth
Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE,
volume 3, pages 1726–1734. IEEE, 2001.

[8] K. Nichols and V. Jacobson. Controlling queue delay.
Communications of the ACM, 55(7):42–50, 2012.

[9] J. D. C. Little and S. C. Graves. Little’s law. In
Building intuition, pages 81–100. Springer, 2008.

[10] S. Floyd, R. Gummadi, S. Shenker, et al. Adaptive
RED: An algorithm for increasing the robustness of
RED’s active queue management, 2001.

[11] K. Ramakrishnan, S. Floyd, D. Black, et al. The
addition of explicit congestion notification (ECN) to
IP, 2001.

[12] B. P. Swenson and G. F. Riley. Implementing explicit
congestion notification in ns-3. In Proceedings of the
2014 Workshop on ns-3, page 5. ACM, 2014.

APPENDIX
In this section we provide additional details about reproduc-
ing the simulation scenarios described in this paper.

The latest version of ns-3 at the time of writing this pa-
per is ns-3.24 and the same has been used for implementing
the PIE algorithm. Some initial reviews on our code can be
found here1. For ns-2 simulations, we have used ns-allinone-
2.36.rc1 which contains a PIE model implemented by the
authors of PIE. Our source code for ns-2 and ns-3 simula-
tions can be found here2.

Our ns-3 PIE model is implemented in pie-queue {.h,

.cc} and the test suite can be found in pie-queue-test-

suite.cc. Similarly, we modified the existing PIE model

1https://codereview.appspot.com/277610043
2https://github.com/mohittahiliani/reproduce-pie-paper

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

15

of ns-2 to enable tracing of queue delay parameter. The
modified code is available in pie {.h, .cc}. Further, the
simulation scripts used to obtain results in this paper are
provided in the directories named ns-2 and ns-3 (see the

github link mentioned above). A README file is also pro-
vided in each directory, which includes stepwise details to
reproduce our simulation results.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

16

An Implementation of Scalable, Vegas, Veno, and YeAH
Congestion Control Algorithms in ns-3

Truc Anh N. Nguyen∗, Siddharth Gangadhar∗, Md Moshfequr Rahman∗,
and James P.G. Sterbenz∗†§

∗Information and Telecommunication Technology Center
Department of Electrical Engineering and Computer Science

The University of Kansas, Lawrence, KS 66045, USA
‡School of Computing and Communications (SCC) and InfoLab21

Lancaster University, LA1 4WA, UK
§Department of Computing

The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
{annguyen, siddharth, moshfequr, jpgs}@ittc.ku.edu

ABSTRACT
Despite the modern advancements in networking, TCP con-
gestion control is still one of the key mechanisms that ensure
the stability of the Internet. Given its principal role, it is
a popular research topic revisited every time TCP and its
variants are studied. Open-source network simulators such
as ns-3 are important tools used by the research community
to gain valuable insight into existing TCP congestion con-
trol algorithms and to develop new variants. However, the
current TCP infrastructure in ns-3 supports only a few con-
gestion control algorithms. As part of the ongoing effort to
extend TCP functionalities in the simulator, we implement
Scalable, Vegas, Veno, and YeAH based on the original lit-
erature and their implementations in the Linux kernel; this
paper presents our implementation details. The paper also
discusses our validation of the added models against the the-
ories to demonstrate their correctness. Through our evalu-
ation, we highlight the key features of each algorithm that
we study.

CCS Concepts
•Networks → Transport protocols; Network simula-
tions;

Keywords
TCP Vegas, NewReno, Veno, YeAH, Scalable, transport
protocols, ns-3 network simulator, performance evaluation,
congestion control, loss-based, delay-based, hybrid, Future
Internet

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WNS3, June 15-16, 2016, Seattle, WA, USA
c© 2016 ACM. ISBN 978-1-4503-4216-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2915371.2915386

TCP has been proven to be a crucial component of the In-
ternet due to its ability to sustain its performance (although
not optimal) with the evolution of networking during the
past decades. One of TCP elements that is principal in en-
suring the Internet stability and widely studied with numer-
ous research is its congestion control algorithm. TCP con-
gestion control is revisited on almost every attempt to study
the Internet transport layer. With the modern advance-
ments in networking, comes the emergence of new network
environments such as Gigabit Ethernet or satellite links with
challenging characteristics: high bit-error rate, long propa-
gation delay, high link capacity, and asymmetric channels.
Standard TCP has been enhanced for the Future Internet,
resulting in many variants such as those studied in our pa-
per (Scalable, Vegas, Veno, and YeAH). The current effort to
employ load balancing at the transport layer by incorporat-
ing multi-path feature into TCP producing MPTCP [8] also
requires a thorough understanding of the standard conges-
tion control. This enables design of new algorithms that can
operate efficiently in a more complex system, one with mul-
tiple coexistent, but heterogeneous subflows simultaneously
transferring data through a bottleneck with high congestion
probability.

The study of existing TCP algorithms and the develop-
ment of any new enhancements gain substantial benefits
through the use of open-source network simulators such as
ns-3 [2]. However, the current ns-3 standard release only
consists of NewReno (default), Westwood, Westwood+, Hy-
bla, and HighSpeed congestion control algorithms. In or-
der to extend the supported ns-3 TCP functionalities, we
implement additional protocols, including Scalable, Vegas,
Veno, and YeAH. This paper presents our implementation
details of the added models. The paper also discusses our
validation of these contributions against the original papers
to demonstrate the correctness of the models. Through our
evaluation, we highlight the key features of each algorithm.

The remainder of the paper is organized as follows: Sec-
tion 2 briefly provides the theoretical background of the con-
gestion control algorithms studied in our paper followed by a
short survey on related work. Section 3 explains the imple-
mentations and how the new models interact with the rest of
the TCP framework in ns-3. In Section 4, the correctness of
our implementations is verified. Finally, Section 5 concludes

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

17

our paper with directions for future work.

2. BACKGROUND AND RELATED WORK
This section provides the theoretical background of differ-

ent congestion control algorithms studied in our paper, in-
cluding the standard NewReno, Scalable, Vegas, Veno, and
YeAH, followed by a brief survey of related work.

2.1 TCP Congestion Control Algorithms
TCP congestion control algorithms can be classified into

four categories: loss based, delay based, hybrid, and explicit
notification [5]. Loss-based algorithms treat the occurrence
of a packet loss as an indication of congestion. Delay-based
algorithms infer congestion based on the increasing delay
due to queue build-up when traffic load exceeds network ca-
pacity. Hybrid algorithms take advantage of both loss- and
delay-based mechanisms, while explicit congestion notifica-
tion (ECN) relies on explicit signals from network elements
to learn about congestion. Our paper covers the first three
groups, in that Scalable is a loss-based algorithm, Vegas is
delay-based, and Veno and YeAH are hybrid. The loss-based
NewReno (default TCP in ns-3) is used in our paper as the
baseline for comparison.

Most TCP congestion control variants are derivatives of
the standard defined in RFC 5681 [4], which is known as the
Reno algorithm introduced by Jacobson [13] as a revision of
his original Tahoe [12]. The standard specifies four inter-
twined algorithms that together play a principal role in the
stabilization of the Internet and the prevention of congestion
collapse: slow start, congestion avoidance, fast retransmit,
and fast recovery. The implementation of these algorithms
requires the definition and maintenance of three state vari-
ables: cwnd, rwnd, and ssthresh. Congestion window (cwnd)
determines the amount of data a sender can transmit be-
fore it receives an ACK to prevent network overflow. The
receiver window (rwnd) indicates the amount of data a re-
ceiver is willing to accept. The actual sending window is the
minimum of cwnd and rwnd. Slow start threshold (ssthresh)
provides the transition point between slow start and conges-
tion avoidance phases.

The slow start allows TCP to gradually probe for network
bandwidth when TCP starts its data transmission or after
an expiration of its retransmission timer. The slow start al-
gorithm prevents TCP from suddenly throttling the network
with a large burst of traffic. In addition, slow start initiates
TCP ACK clocking that determines when new data should
be placed into the network to sustain equilibrium during a
connection lifetime. During slow start, cwnd is incremented
by 1 for every new ACK received, resulting in an exponential
increase of the sending rate until a loss happens as shown in
Equation 1.

cwnd = cwnd + 1 (1)

The congestion avoidance algorithm continues to allow
TCP to increase its sending rate (cwnd), but at a slower
speed than when it is in the slow start phase to prevent con-
gestion after the sending rate reaches ssthresh. Specifically,
cwnd is incremented by 1 for every RTT, resulting in a lin-
ear increase over time until the experience of a loss. This is
equivalent to the cwnd modification per Equation 2 upon a
new ACK receipt.

cwnd = cwnd +
1

cwnd
(2)

The fast retransmit algorithm is responsible for promptly
detecting and recovering lost data by observing the number
of received duplicate ACKs (dupACKs), with the arrival of
three dupACKs signifying the loss of a segment. Fast re-
transmit was developed as an alternative to the original re-
transmission timer in detecting packet losses. The fast re-
covery governs data transmission after fast retransmit until
a new ACK arrives informing the recovery of the loss. The
occurrence of a loss requires Reno to halve its slow-start
threshold and sending rate according to Equations 3 and 4,
respectively.

ssthresh =
cwnd

2
(3)

cwnd = ssthresh + 3 (4)

2.1.1 NewReno
NewReno [11] modifies the Reno fast recovery algorithm

explained above by introducing a mechanism for respond-
ing to partial acknowledgments to enhance TCP’s ability by
recovering more efficiently from multiple losses occurring in
a single sending window. NewReno defines an additional
state variable named recover to keep track of the highest
sequence number transmitted before the sender enters fast
retransmit, and it only leaves its fast recovery state upon
the receipt of a full ACK, which is an ACK that acknowl-
edges all sent data up to and including recover. In case a
partial ACK arrives with acknowledgment number less than
recover, the algorithm remains in fast recovery trying to re-
transmit the next in-sequence packet while sending a new
segment if cwnd and rwnd allow. The NewReno algorithm is
an alternate solution for multiple data loss recovery in the
absence of TCP selective acknowledgment (SACK) [16].

2.1.2 Scalable
Scalable (STCP) [14] improves TCP performance for bulk

transfers in high-speed wide-area networks that are charac-
terized by long delay and high link bandwidth, by altering
TCP congestion window update algorithm. The goal is to
shorten TCP recovery time following a transient congestion
by using a different additive increase and multiplicative de-
crease factors from those employed in Reno. While oper-
ating in congestion avoidance phase, STCP increments its
cwnd by 0.01 for every new ACK received until a loss occurs
as shown in Equation 5. On its detection of a congestion, the
ssthresh value is reduced by a factor of 0.125 as in Equation 6
instead of 0.5 as in Reno (Eq. 3).

cwnd = cwnd + 0.01 (5)

ssthresh = cwnd− �0.125× cwnd� (6)

2.1.3 Vegas
Vegas [6] implements a proactive congestion control al-

gorithm that tries to prevent packet drops by keeping the
backlog at the bottleneck queue small. During a connection
lifetime, Vegas continuously samples the actual throughput
rate and measures the RTT since these metrics reflect the

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

18

network condition when it approaches congestion. The ac-
tual sending rate is computed using Equation 7. The dif-
ference diff (Equation 9) between this throughput value and
the expected throughput calculated in Equation 8 reflects
the number of packets enqueued at the bottleneck, i.e. the
amount of extra data sent because the Vegas sender has
been transmitting at a rate higher than the available net-
work bandwidth. Vegas tries to keep this diff value between
two predefined thresholds, α and β by linearly increasing
and decreasing cwnd during its congestion avoidance phase.
The diff value and another predefined threshold γ are used
to determine the transition between slow-start and linear
increase/decrease mode.

actual =
cwnd

RTT
(7)

expected =
cwnd

BaseRTT
(8)

diff = expected− actual (9)

In Equation 8, BaseRTT represents the minimum RTT
observed during a connection lifetime.

2.1.4 Veno
TCP Veno [9] enhances Reno algorithm to deal with ran-

dom loss in wireless access networks by employing the Ve-
gas algorithm for estimating the current network condition
to identify the actual cause of a loss. Specifically, Veno
does not use the estimated number of packets enqueued
(backlog N calculated in Equation 10) at the bottleneck to
proactively detect congestion, but to distinguish between a
corruption-based loss and a congestion-based loss. When
Veno learns that a loss is non-congestive, instead of halv-
ing ssthresh (Eq. 3), it reduces ssthresh by a smaller amount
using Equation 11. Veno also refines the Reno congestion
avoidance algorithm by increasing the sending rate by 1 ev-
ery 2 RTTs if the backlog exceeds its predefined threshold
β, allowing it to operate longer in the stable state during
which network capacity is fully utilized.

N = actual× (RTT− BaseRTT) = diff × BaseRTT (10)

ssthresh = cwnd× 4

5
(11)

2.1.5 YeAH
Yet Another Highspeed (YeAH) [5] is a heuristic aimed to

fully exploit the capacity of high bandwidth-×-delay product
(BDP) networks with a small number of induced congestion
events, while trying to balance among various constraints
such as fair competition with standard Reno flows and ro-
bustness to random losses. YeAH-TCP operates between its
Fast and Slow modes. While in the Fast mode when the net-
work link is not yet fully utilized, YeAH increases its cwnd
according to STCP rule (Eq. 5). After full link utilization is
achieved, it switches to Slow mode and behaves as Reno with
a precautionary decongestion algorithm. The transition be-
tween the two modes is determined based on the backlog
at the bottleneck queue calculated in Equation 12 and the
estimated level of network congestion shown in Equation 13.
Note that Equation 12 is basically the same as Equation 10.

Q = RTTqueue×G = (RTTmin−RTTbase)× cwnd

RTTmin
(12)

L =
RTTqueue

RTTbase
(13)

To fairly compete with Reno flows, YeAH ensures that it
only executes its decongestion algorithm if its current cwnd
is greater than the cwnd of the competing Reno flows that
it estimates, denoted by countreno in the algorithm.
Upon the receipt of three dupACKs, YeAH adjusts its

ssthresh based on the current value of Q as in Equation 14
if it is not competing with Reno flows. Otherwise, ssthresh
is halved as in Reno.

ssthresh = min{max{cwnd
8

, Q}, cwnd
2

} (14)

2.2 Related Work
There are three ns-3 research works that are most rele-

vant to our paper. The first implements TCP Westwood
and Westwood+ protocols [10] and compares their perfor-
mance against existing variants, including Tahoe, Reno, and
NewReno under some selected network conditions. The sec-
ond presents an implementation of TCP CUBIC [15], which
is the default congestion control algorithm in the Linux ker-
nel. The authors validate their implementation by compar-
ing their model with the one in Linux using Network Simu-
lator Cradle (NSC) and the corresponding implementation
in ns-2 [1]. In the most recent work, Window Scaling and
Timestamp Options together with other congestion control
algorithms including Hybla, Highspeed, BIC, CUBIC, and
Noordwijk are introduced into ns-3 TCP infrastructure [7].

3. IMPLEMENTATIONS
In this section, we first explain the TCP congestion con-

trol classes and their main operations in the new ns-3 TCP
framework. We follow this with the implementation details
of STCP, Vegas, Veno, and YeAH algorithms.

3.1 TCP Congestion Control Classes in ns-3
TCP implementation in ns-3 resides in the Internet mod-

ule and consists of multiple classes interacting with each
other to perform the supported TCP functionalities. The
current standard release contains multiple TCP variants in-
cluding NewReno as the default congestion control algo-
rithm, Hybla, Highspeed, Westwood, andWestwood+. They
are pluggable components implemented as child classes of
TcpNewReno, which is in turn derived from the congestion
control abstract class TcpCongestionOps. The main meth-
ods currently utilized in the base classes are described in ns-
3 documentation [3] and summarized below. An extended
version of this paper with class diagram is available on our
ResiliNets wiki [17] 1.

• TcpCongestionOps::GetSsThresh() and
TcpNewReno::GetSsThresh(): These methods compute
ssthresh after a loss event.

• TcpCongestionOps::IncreaseWindow() and
TcpNewReno::IncreaseWindow(): These methods de-
termine the current congestion phase by comparing
cwnd and ssthresh and call the corresponding functions.

• TcpNewReno::SlowStart(): This method adjusts cwnd
during slow-start phase.

1http://www.ittc.ku.edu/resilinets/reports/Nguyen-
Gangadhar-Rahman-Sterbenz-2016-extended.pdf

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

19

• TcpNewReno::CongestionAvoidance(): This method
modifies cwnd during congestion avoidance phase.

• TcpCongestionOps::PktsAcked(): This method ma-
nipulates timing information carried by received ACKs.

3.2 STCP
TcpScalable is a derived class of TcpNewReno that inher-

its TcpNewReno::IncreaseWindow() and TcpNewReno::

SlowStart(). Because STCP modifies NewReno additive
increase and multiplicative decrease factors used in the con-
gestion avoidance and fast retransmit modes, respectively,
TcpScalable replaces TcpNewReno::CongestionAvoidance()
and TcpNewReno::GetSsThresh(). The implementation of
these methods requires three class members to be declared:
m aiFactor that represents the increase factor with a default
value of 50, m mdFactor that represents the decrease fac-
tor with a default value of 0.125, and m ackCnt that keeps
track of the number of segments acknowledged. Following
the Linux implementation of STCP, we use 50 for m aiFactor
instead of 100 suggested in the literature to account for de-
layed ACKs. Listing 1 shows a code snippet of TcpScal-

able::CongestionAvoidance().

u i n t 32 t w = std : : min (cwndInSegments ,
m aiFactor) ;

i f (m ackCnt >= w)
{

cwndInSegments += m ackCnt / w; }
cwnd = cwndInSegments ∗ m segmentSize ;

Listing 1: TcpScalable::CongestionAvoidance().

TcpScalable::GetSsThresh() updates ssthresh after the
receipt of three dupACKs following STCP rule as shown in
Listing 2.

u in t32 t ssThresh = std : : max (2 . 0 ,
cwndInSegments ∗ (1 . 0 − m mdFactor)) ∗
m segmentSize ;

Listing 2: TcpScalable::GetSsThresh().

3.3 Vegas
The key components of our Vegas implementation in

TcpVegas are its RTT sampling performed in TcpVegas::

PktsAcked() method upon the receipt of an ACK, its cal-
culation of the diff rate based on the RTT measurements
in PktsAcked(), and the implementation of its linear in-
crease/decrease mode. The latter is performed inside TcpVe-
gas::IncreaseWindow() method, in which a code snippet is
presented in Listing 3.

i f (d i f f > beta)
{

/∗ We are going too f a s t , we need to
slow down by l i n e a r l y dec r ea s ing cwnd
f o r the next RTT ∗/

cwnd = cwnd − m segmentSize ; }
e l s e i f (d i f f < alpha)

{
/∗ We are going too slow , we need to
speed up by l i n e a r l y i n c r e a s i n g cwnd
f o r the next RTT ∗/
cwnd = cwnd + m segmentSize ; }

e l s e
{

/∗ We are going at the r i g h t speed ,
∗ cwnd should not be changed ∗/ }

Listing 3: TcpVegas::IncreaseWindow().

3.4 Veno
Similar to Vegas, TcpVeno requires an implementation of

the PktsAcked() method to perform RTT sampling needed
for the calculation of backlog N at the bottleneck queue.
TcpVeno::IncreaseWindow() modifies cwnd following Veno
additive increase rule as shown in Listing 4, where m inc is
a boolean variable that is only set to True every other RTT.

i f (N < beta)
{

/∗ Ava i l ab l e bandwidth i s not f u l l y
u t i l i z e d , we i n c r e a s e cwnd by 1 every
RTT as in NewReno ∗/
TcpNewReno : : CongestionAvoidance (tcb ,

segmentsAcked) ; }
e l s e

{
/∗ Ava i l ab l e bandwidth i s f u l l y
u t i l i z e d , we i n c r e a s e cwnd by 1 every
other RTT ∗/
i f (m inc)

{
TcpNewReno : : CongestionAvoidance (

tcb , segmentsAcked) ; }
e l s e

{
m inc = true ; } }

Listing 4: TcpVeno::IncreaseWindow().

TcpVeno::GetSsThresh() implements the Veno multiplica-
tive decrease algorithm as shown in Listing 5.

i f (N < beta)
{

/∗ Random l o s s i s most l i k e l y to have
occurred , we reduce cwnd by only 1/5 ∗/
return std : : max (cwnd ∗ 4 / 5 , 2 ∗
m segmentSize) ; }

e l s e
{

/∗ Congestion−based l o s s i s most l i k e l y
to have occurred , we reduce cwnd by

1/2 as in NewReno ∗/
return std : : max (cwnd / 2 , 2 ∗
m segmentSize) ; }

Listing 5: TcpVeno::GetSsThresh().

3.5 YeAH-TCP
TcpYeah also implements the PktsAcked()method to mea-

sure the RTT values required for its calculation of Q, which
is used by TcpYeah::IncreaseWindow() to determine YeAH’s
operation mode (Fast or Slow) during its congestion avoid-
ance phase. A code snippet of TcpYeah::IncreaseWindow()
is presented in Listing 6. Following the Linux kernel imple-
mentation of YeAH, we use 80 and 8 as the default values
of the two thresholds maxQ and phy, respectively.

i f (Q < maxQ & L < (1 / phy))
{

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

20

// We are in Fast mode ; cwnd i s
incremented based on STCP ru l e
TcpScalable : : CongestionAvoidance (tcb ,
segmentsAcked) ; }

e l s e
{

/∗ We are in Slow mode , determine i f we
need to execute the precaut ionary

deconges t i on a lgor i thm ∗/
i f (Q > maxQ && cwndInSegments >
renoCount)

{// Precaut ionary deconges t ion
cwndInSegments −= Q;
cwnd = cwndInSegments ∗

m segmentSize ; } }

Listing 6: TcpYeah::IncreaseWindow().

In TcpYeah::GetSsThresh(), the reduction of cwnd de-
pends on whether YeAH competes with Reno flows as shown
in Listing 7, where the threshold rho is the minimum number
of RTTs required to consider the presence of Reno flows.

i f (doingRenoNow < rho)
{// YeAH does not compete with Reno f l ows

re turn std : : min (std : : max (cwnd / 8 ,Q) ,
cwnd / 2) ; }

e l s e
{// YeAH competes with Reno f l ows

re turn std : : max (cwnd / 2 , 2 ∗
m segmentSize) ; }

Listing 7: Yeah::GetSsThresh().

4. VERIFICATION AND VALIDATION
In addition to writing various unit tests that are manda-

tory in ns-3 to ensure the correctness of our new models be-
fore they can be merged into the standard release, we also
try to simulate them under various network conditions and
validate their performance against the corresponding litera-
ture. Given that the testing scenarios in the original papers
are varied, the exact parameters used are not explicitly de-
scribed in some sources, and to be consistent in our paper,
we use the dumbbell topology illustrated in Figure 1 to fulfill
our validation purpose. The goal of this section is to demon-
strate that despite the simulation topology that we use, our
models still exhibit the key characteristics of the protocols.
Our simulations are conducted with ns-3.24-dev.

4.1 Simulation Topology
At each edge of the dumbbell topology in Figure 1 are two

nodes serving as the sources on one end and the sinks at the
other end. The endpoints communicate through a single bot-
tleneck link that connects two network routers. All traffic
across the network are generated using BulkSendApplica-

tion with an MTU size of 1500 bytes. Drop Tail queues are
used at the bottleneck link with size set to the bandwidth-
×-delay product. Each of the access link that connects an
endpoint with one of the two routers has a bandwidth of 10
Mb/s with a negligible delay of 0.1 ms. The bandwidth and
delay of the bottleneck link are varied depending on the sim-
ulated scenarios. The one-way delay value of this link ranges
from 50 ms to 300 ms to cover the different delays for various
network environments. Given that the protocols studied in

this paper focus on improving the standard NewReno lin-
ear increase and multiplicative decrease phases, we set both
the initial congestion window and slow start threshold to 15
packets to eliminate the slow start phase. Timestamps and
window scaling options are both enabled. The duration of
each simulation is 200 to 400 seconds. We use NewReno as
the baseline for all of our comparisons. Simulation parame-
ters are summarized in Table 1.

router router

TCP
source 1

TCP
source 2

TCP sink 1

TCP sink 2
bottleneck link

Figure 1: Simulation topology.

Table 1: Simulation parameters.
Parameter Values

Access link bandwidth 10 Mb/s
Bottleneck link bandwidth varied

Access link delay 0.1 ms
Bottleneck link delay varied
Packet MTU size 1500 B

Delayed ACK count 2 segments
Application type Bulk send application

Queue type Drop tail
Queue size BDP

Simulation time 200 s – 400 s

4.2 Robustness to Random Loss
To study the impact of random packet losses on the con-

gestion control algorithms, we set the bottleneck bandwidth
to 10 Mb/s and delay to 100 ms. Using ns3::RateErrorModel,
we introduce a packet error rate (PER) of 10−3 into the un-
reliable bottleneck link. For a clearer presentation of the
plots, each simulation is run for 200 seconds. We show the
congestion window dynamics of a single connection with one
sender and receiver on each network edge.

nu
m

be
r o

f s
eg

m
en

ts

time [s]

STCP

NewReno

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

0 20 40 60 80 100 120 140 160 180 200

Figure 2: cwnd dynamics of STCP and NewReno.

Figure 2 shows the cwnd of STCP in comparison with
NewReno’s as they evolve over time. Overall, STCP’s cwnd
values are much higher than NewReno’s, resulting in about

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

21

7 times more average throughput than the standard algo-
rithm. As seen in the plot, NewReno takes C/2 seconds
to recover where C is the cwnd that NewReno reaches fol-
lowing a loss, while the packet loss recovery time for STCP
is independent of the connection’s window size. In addi-
tion, NewReno halves its cwnd upon the receipt of three
dupACKs. STCP, on the other hand, only reduces its win-
dow by b×C with b equal to 0.125. However, similar to other
loss-based congestion control algorithms that were designed
for high BDP network environments, the high throughput
achieved by STCP comes at a price of higher chance of expe-
riencing multiple retransmission timer timeouts (RTO) due
to its aggressive increasing rule, as shown in the plot at time
between 110 seconds and 160 seconds.

nu
m

be
r o

f s
eg

m
en

ts

time [s]

Vegas-2,4

NewReno

Vegas-1,3

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0 20 40 60 80 100 120 140 160 180 200

Figure 3: cwnd dynamics of Vegas and NewReno.

nu
m

be
r o

f s
eg

m
en

ts

time [s]

Veno

NewReno

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 20 40 60 80 100 120 140 160 180 200

Figure 4: cwnd dynamics of Veno and NewReno.

Figure 3 shows the cwnd evolution of two versions of Ve-
gas against NewReno. Following the notation used in the
original Vegas paper, Vegas-1,3 sets α to 1 and β to 3, while
Vegas-2,4 uses 2 and 4 for α and β, respectively. Overall,
with our setup for this simulation, Vegas-2,4 outperforms
Vegas-1,3, which even has a lower sending rate than the stan-
dard NewReno. Vegas-2,4 is able to achieve a throughput of
4.6 Mb/s, which is 3 times higher than the 1.5 Mb/s through-
put achieved by NewReno. On the other hand, Vegas-1,3 is
unable to utilize the available network capacity, resulting in
a throughput of only 0.7 Mb/s. When we use 1 and 3 for α

and β as the default values, most of the time, the calculated
diff rate falls in between the two thresholds, causing Vegas
to remain sending at the same rate without modifying its
cwnd. For Vegas-2,4, the cwnd is increased by 1 segment
size every RTT when the diff value is less than α, resulting
in a linear increase until three dupACKs are received due
to the random packet loss we introduce into the channel,
which causes Vegas to reduce its cwnd by the maximum of
the current ssthresh and 1/4 of congestion window. The lin-
ear increase/decrease mode then governs the sending rate
after the reduction of cwnd. In our other simulations, we
use Vegas-2,4 for a better throughput of Vegas, and this is
also the default Vegas version in the Linux kernel.

Figure 4 shows the cwnd dynamics of Veno and NewReno.
In this case, when the protocols are unable to fully utilize the
available network bandwidth due to packet corruptions, the
Veno increase rule is the same as NewReno. The only dif-
ference is its decreasing algorithm when a loss is detected.
Since Veno is able to distinguish between congestive and
non-congestive losses, for most of the time, Veno only re-
duces its cwnd by 1/5, resulting in a better throughput than
NewReno.

nu
m

be
r o

f s
eg

m
en

ts

time [s]

YeAH

NewReno

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

0 20 40 60 80 100 120 140 160 180 200

Figure 5: cwnd dynamics of YeAH and NewReno.

Figure 5 shows the cwnd dynamics of YeAH and NewReno.
The congestion avoidance phase of YeAH is the switching
between its Fast and Slow mode. With our simulation pa-
rameters and the default value of maxQ set to 80 segments,
YeAH does not execute its precautionary decongestion algo-
rithm because Q is less than maxQ although it detects that
it does not compete with “greedy” Reno flows. Thus, the
cwnd is only updated when YeAH enters its Fast mode. The
increment rule during Fast mode follows STCP, but at a
slower speed than the result for STCP presented in Figure 2
because we set m aiFactor to 100 for YeAH implementation.
Upon the detection of a loss through the receipt of three
dupACKs before the occurrence of several RTOs, YeAH re-
duces its window by 1/8. The RTOs trigger a false alarm
of the presence of Reno flows, which causes YeAH to halve
its window afterward. All of these factors result in a low
throughput of YeAH when comparing with STCP.

4.3 Friendliness to NewReno
For a new TCP congestion control algorithm to be widely

deployed in practice, it must be friendly with the standard
Reno traffic. When it shares the network capacity with Reno

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

22

th
ro

ug
hp

ut
 [M

b/
s]

time [s]

STCP

NewReno

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0 50 100 150 200 250 300 350 400

(a) STCP

th
ro

ug
hp

ut
 [M

b/
s]

time [s]

Vegas

NewReno

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 50 100 150 200 250 300 350 400

(b) Vegas

th
ro

ug
hp

ut
 [M

b/
s]

time [s]

Veno

NewReno

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 50 100 150 200 250 300 350 400

(c) Veno

th
ro

ug
hp

ut
 [M

b/
s]

time [s]

YeAH

NewReno

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 50 100 150 200 250 300 350 400

(d) YeAH

Figure 6: Instantaneous throughput with NewReno traffic.

th
ro

ug
hp

ut
 [M

b/
s]

time [s]

Scalable-1

Scalable-2

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 50 100 150 200 250 300 350 400

(a) STCP

th
ro

ug
hp

ut
 [M

b/
s]

time [s]

Vegas-1

Vegas-2

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 50 100 150 200 250 300 350 400

(b) Vegas
th

ro
ug

hp
ut

 [M
b/

s]

time [s]

Veno-1

Veno-2

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 50 100 150 200 250 300 350 400

(c) Veno

th
ro

ug
hp

ut
 [M

b/
s]

time [s]

YeAH-1

YeAH-2

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 50 100 150 200 250 300 350 400

(d) YeAH

Figure 7: Instantaneous throughput with second flow using same algorithm.

flows, it should avoid starving the competing flows while be-
ing able to exploit the link bandwidth. So, in our second sce-
nario, we study the friendliness of STCP, Vegas, Veno, and
YeAH. We use the same dumbbell topology, but with two
senders and two receivers at each network edge. Each 400-
second simulation generates two traffic flows; one of them is
NewReno while the other is one of the protocols studied in
the paper. The bottleneck link has a bandwidth of 6 Mb/s
and a delay of 100 ms with no random losses. The NewReno
flow starts 10 seconds later than the other one.

Figure 6 shows the instantaneous throughput of each vari-
ant against NewReno’s. Overall, Veno is the most TCP-
friendly among all algorithms. The aggressive STCP puts
the NewReno flow in starvation with the ratio of STCP
throughput to NewReno throughput being 3.26:0.5 Mb/s.
Basically, STCP is a NewReno derivative with higher in-
crease, but smaller decrease factor than the standard algo-
rithm’s. Vegas exhibits its well-known behavior of a pure
delay based algorithm as being the least aggressive among
all protocols studied in our paper. While NewReno contin-
ues to increase its cwnd until a packet loss occurs, Vegas
executes its proactive window adjustment that tries to send
data at a moderate rate to prevent any packet drops at the
bottleneck queue. As soon as the Reno flow enters the net-
work, Vegas throughput starts to reduce. NewReno quickly
obtains the same throughput as Vegas about 40 seconds af-
ter it starts and continues to steal the network bandwidth
away from Vegas. Unlike Vegas, Veno does not use the ex-
tra number of packets at the bottleneck queue to control
its sending rate. When the available bandwidth is not fully
utilized and no random loss presents, Veno behaves exactly
as NewReno during its additive increase and multiplicative
decrease phase, resulting in a fair share of network capacity
at 200 seconds. Because YeAH does not execute its pre-
cautionary decongestion control algorithm due to the pres-

ence of NewReno flow, it behaves like STCP during conges-
tion avoidance. The ratio of YeAH to NewReno through-
put is 3.47:2.17, which is smaller than the ratio of STCP to
NewReno due to the higher m aiFactor used in YeAH imple-
mentation as explained previously.

4.4 Intra Fairness
In addition to TCP friendliness, a congestion control algo-

rithm is required to be internally fair: it should be friendly
to itself. We study intra fairness of the protocols by simu-
lating the same scenario as in Section 4.3, except that the
second flow uses the same TCP variant as the first flow.

Figure 7 plots the instantaneous throughput of each vari-
ant in the competition with a second flow. While STCP,
Veno, and YeAH try to converge to a fair share of the net-
work resource after some time, Vegas maintains a constant
gap between the throughput values of its two flows through-
out the whole simulation period. This is because both Ve-
gas flows have the tendency of attempting to prevent any
queue drops. The first flow has the advantage of entering
the network 10 seconds before the other, so it can obtain
more bandwidth. By the time the second flow starts, it just
attempts to utilize the remaining capacity.

4.5 Impact of Channel Delay
In this scenario, we study the impact of link delay on the

performance of our congestion control algorithms. Each sim-
ulation generates a single flow of traffic through the bottle-
neck link that has a bandwidth of 6 Mb/s and delay varying
from 50 ms to 300 ms. No random losses are introduced into
the link.

Figure 8 plots the average throughput achieved by each
algorithm when the bottleneck delay is varied. Overall, all
variants are affected by high link delay, resulting in a de-
creasing of throughput with increasing RTT. STCP exhibits
the most interesting behavior as it initially performs worse

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

23

av
er

ag
e

th
ro

ug
hp

ut
 [M

b/
s]

bottleneck delay [ms]

STCP

Vegas

YeAH

Veno

NewReno

0.00

1.00

2.00

3.00

4.00

5.00

6.00

50 100 150 200 250 300

Figure 8: Average throughput vs. increasing delay.

than Vegas and YeAH, but starts to improve the through-
put at the 150-second delay. Considering Vegas and its vari-
ants (Veno and YeAH), Vegas performs the best while Veno
performs the worst. As explained above, with no random
loss and available bandwidth not fully utilized (the high
delays prevent all protocols from efficiently exploiting net-
work capacity), Veno behaves exactly like NewReno. The
non-aggressive behavior of the pure delay-based Vegas is an
advantage in this case as its sending rate is more stable,
resulting in fewer RTO occurrences.

5. CONCLUSIONS
We have presented our implementations of STCP, Vegas,

Veno, and YeAH congestion control algorithms in ns-3 and
studies of their behavior under various network conditions
using a variety of metrics (robustness to random loss, TCP
friendliness, intra-protocol fairness, and the impact of link
delay) while verifying the correctness of the models. The
results show that STCP is the most robust to random bit er-
rors, and Vegas outperforms Veno and YeAH in the presence
of non-congestive packet drops. While STCP and YeAH are
the most aggressive algorithms, Vegas is the least when they
have to share the bottleneck link capacity with a standard
NewReno flow. The proactive congestion control mecha-
nism that Vegas employs also prevents it from achieving
intra fairness, although the same mechanism helps Vegas to
better sustain its throughput than other protocols in a high
propagation delay network.

For future work, we plan to study these variants under ad-
ditional network scenarios to have a more complete picture
of the algorithms’ characteristics. We are also interested in
experimenting with different values for the thresholds used
in our implementations as we have seen from Section 4 that
the different default values for α and β affect Vegas perfor-
mance. In addition, we plan to continue to contribute to the
ns-3 community with more TCP models, inclduing CTCP.

6. ACKNOWLEDGMENTS
We would like to acknowledge the members of the Resi-

liNets research group for their useful discussions and sugges-
tions that helped us with this implementation. We would
like to thank the anonymous reviewers for their helpful feed-
back on this paper. Finally, we would also like to thank
Tom Henderson, Natale Patriciello, and the ns-3 develop-
ment team for their timely responsiveness to guidance and
issues with the ns-3 platform. This work was funded in part
by NSF grant CNS-1219028 (Resilient Network Design for
Massive Failures and Attacks).

7. REFERENCES
[1] The Network Simulator: ns-2.

http://www.isi.edu/nsnam/ns, December 2007.

[2] The ns-3 Network Simulator. http://www.nsnam.org,
July 2009.

[3] The ns-3 Network Simulator Doxygen Documentation.
http://www.nsnam.org/doxygen, July 2012.

[4] M. Allman, V. Paxson, and E. Blanton. TCP
Congestion Control. RFC 5681 (Draft Standard),
Sept. 2009.

[5] A. Baiocchi, A. P. Castellani, and F. Vacirca.
YeAH-TCP: yet another highspeed TCP. In Proc.
PFLDnet, volume 7, pages 37–42, 2007.

[6] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson.
TCP Vegas: new techniques for congestion detection
and avoidance. SIGCOMM Comput. Commun. Rev.,
24(4):24–35, 1994.

[7] M. Casoni, C. A. Grazia, M. Klapez, and
N. Patriciello. Implementation and Validation of TCP
Options and Congestion Control Algorithms for ns-3.
In Proceedings of the 2015 Workshop on ns-3, WNS3
’15, pages 112–119, New York, NY, USA, 2015. ACM.

[8] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure.
TCP Extensions for Multipath Operation with
Multiple Addresses. RFC 6824 (Experimental), Jan.
2013.

[9] C. P. Fu and S. Liew. TCP Veno: TCP enhancement
for transmission over wireless access networks. IEEE
Journal on Selected Areas in Communications
(JSAC), 21(2):216–228, 2003.

[10] S. Gangadhar, T. A. N. Nguyen, G. Umapathi, and
J. P. Sterbenz. TCP Westwood Protocol
Implementation in ns-3. In Proceedings of the ICST
SIMUTools Workshop on ns-3 (WNS3), Cannes,
France, March 2013.

[11] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida.
The NewReno Modification to TCP’s Fast Recovery
Algorithm. RFC 6582 (Standards Track), 2012.

[12] V. Jacobson. Congestion avoidance and control.
SIGCOMM Comput. Commun. Rev., 18(4):314–329,
1988.

[13] V. Jacobson. Modified TCP congestion avoidance
algorithm, April 1990.

[14] T. Kelly. Scalable TCP: Improving performance in
highspeed wide area networks. ACM SIGCOMM
Computer Communication Review (CCR), 33(2):83,
Apr. 2003.

[15] B. Levasseur, M. Claypool, and R. Kinicki. A TCP
CUBIC Implementation in ns-3. In Proceedings of the
2014 Workshop on ns-3, WNS3 ’14, pages 3:1–3:8,
New York, NY, USA, 2014. ACM.

[16] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow.
TCP Selective Acknowledgment Options. RFC 2018
(Proposed Standard), Oct. 1996.

[17] T. A. N. Nguyen, S. Gangadhar, M. M. Rahman, and
J. P. Sterbenz. An Implementation of Scalable, Vegas,
Veno, and YeAH Congestion Control Algorithms in
ns-3 (extended). ITTC Technical Report
ITTC-FY2016-TR-69921-04, The University of
Kansas, Lawrence, KS, April 2016.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

24

TCP Evaluation Suite for ns-3

Dharmendra Kumar Mishra, Pranav Vankar and Mohit P. Tahiliani
Wireless Information Networking Group (WiNG)

NITK Surathkal, Mangalore, India, 575025
dharmendra.nitk@gmail.com, pranavvankar442@gmail.com, tahiliani@nitk.ac.in

ABSTRACT
Congestion Control (CC) algorithms are essential to quickly
restore the network performance back to stable whenever
congestion occurs. A majority of the existing CC algo-
rithms are implemented at the transport layer, mostly cou-
pled with TCP. Over the past three decades, CC algorithms
have incrementally evolved, resulting in many extensions of
TCP. A thorough evaluation of a new TCP extension is a
huge task. Hence, the Internet Congestion Control Research
Group (ICCRG) has proposed a common TCP evaluation
suite that helps researchers to gain an initial insight into
the working of their proposed TCP extension.

This paper presents an implementation of the TCP eval-
uation suite in ns-3, that automates the simulation setup,
topology creation, traffic generation, execution, and results
collection. We also describe the internals of our implemen-
tation and demonstrate its usage for evaluating the perfor-
mance of five TCP extensions available in ns-3, by automati-
cally setting up the following simulation scenarios: (i) single
and multiple bottleneck topologies, (ii) varying bottleneck
bandwidth, (iii) varying bottleneck RTT and (iv) varying
the number of long flows.

CCS Concepts
•Networks → Transport protocols; Network simula-
tions; •Computing methodologies → Simulation envi-
ronments;

Keywords
ns-3, Congestion Control, TCP Evaluation

1. INTRODUCTION
Congestion Control (CC) algorithms implemented in TCP

play a vital role in ensuring proper functioning of the Inter-
net. Over the period of time, as CC algorithms continue to
evolve, a lot of new TCP extensions are frequently proposed.
Evaluating the performance of new TCP extensions is not
trivial because there is a lack of agreed set of performance
metrics, because of which, each study highlights only a par-
ticular aspect of TCP while leaving some of the most impor-
tant ones. Due to a high volume of research being carried

c© 2016 Association for Computing Machinery. ACM acknowledges that this contri-
bution was authored or co-authored by an employee, contractor or affiliate of a national
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

WNS3, June 15-16, 2016, Seattle, WA, USA

c© 2016 ACM. ISBN 978-1-4503-4216-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2915371.2915388

out in this area, there is a need for systematically screening
every new TCP extension and identifying the suitable ones
for detailed evaluation.

To address this problem, the Internet Congestion Control
Research Group (ICCRG) [1] provides information regarding
a common test suite for evaluating new TCP extensions.
This suite is not framed to exhaustively evaluate a new TCP
extension; instead, it focuses to help the researchers to easily
and quickly derive initial results of their work.

In this paper, we present an implementation of TCP eval-
uation suite in ns-3 [2]. We also highlight some additions
that were required in existing models of ns-3 to success-
fully implement the suite. Our implementation can be used
to automate the work cycle from setting up the simulation
environment to collecting results. Moreover, our implemen-
tation provides support for automatically configuring many
Internet-like scenarios such as scenarios with single and mul-
tiple bottleneck links, scenarios with different traffic mix and
scenarios with varying bottleneck attributes. Nevertheless,
our implementation is only a part of the evaluation suite de-
signed by ICCRG [1]. Implementing the entire suite requires
significant changes to existing models in ns-3 and is beyond
the scope of this paper.

The rest of this paper is organized as follows: Section 2
provides a review of similar benchmark proposals for TCP
evaluation and their implementation details. Section 3 dis-
cusses the design choices and our proposed architecture of
TCP evaluation suite in ns-3. Section 4 demonstrates the us-
age of our suite to compare existing TCP extensions in ns-3
by automatically configuring different simulation scenarios.
Lastly, Section 5 summarizes and concludes the paper.

2. RELATED WORK
The design of TCP evaluation suite dates back from a pa-

per in 2007 to an internet draft in 2014, as shown in Table
1. All proposals have been implemented using ns-2 [7]. Al-
though both, proposal 1 and 3, are targeted towards evaluat-
ing High-Speed TCPs, each adopts a different approach for
implementing it. Proposal 4 is an enhancement of proposal
2, both being the internet drafts. Moreover, they adopt a
similar approach for implementation in ns-2; in fact, pro-
posal 4 extends the implementation of proposal 2.

The design and implementation of TCP evaluation suite
presented in this paper is partially adopted from the ap-
proach followed by proposals 2 and 4. We found that the
implementation of TCP evaluation suite in ns-3 is relatively
simpler, thanks to the topology helper classes provided.

3. DESIGN AND IMPLEMENTATION

TCP evaluation suite is implemented as a separate model
called tcp-eval, under the src directory in ns-3. This sec-

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

25

Table 1: Different implementations of TCP Evalua-
tion Suite.

No. Details of proposals Tools used
1 Shimonishi, Hideyuki, M. Y.

Sanadidi, and Tutomu Murase.
“Assessing Interactions among
Legacy and High-Speed TCPs.”
PFLDnet 2007 (2007).

ns-2. Download
link [3]

2 Internet draft: “An NS-2 TCP
Evaluation Tool”, Gang wang,
Yong Xia, David Harrison (April
2007)

ns-2. Code was
released in two
versions. Down-
load link of sec-
ond version [4]

3 Li, Yee-Ting, Douglas Leith, and
Robert N. Shorten. “Experi-
mental evaluation of TCP pro-
tocols for high-speed networks.”
Networking, IEEE/ACM Trans-
actions on 15.5 (2007): 1109-1122.

ns-2. Download
link [5]

4 Internet draft: “Common TCP
Evaluation Suite”, D. Hayes, D.
Ros, L. Andrew, S. Floyd (July
2014)

ns-2. Download
link [6]

tion describes the core design decisions made for the develop-
ment of the TCP evaluation suite model, along with several
additions that were required in the existing models of ns-3.
Table 2 highlights different elements that are supported in
our implementation of tcp-eval. Figure 1 depicts the in-
teractions among different classes implemented in tcp-eval,
and with other existing classes of ns-3.

Table 2: Different elements supported by tcp-eval.

Topologies Types of traffic Performance
metrics

Dumbbell (single
bottleneck)

Long-lived FTP
(TCP)

Aggregate link
utilization

Parking lot (mul-
tiple bottleneck)

Streaming video
(UDP)

Mean queue
length

Interactive voice
(UDP)

Packet drop rate

The tcp-eval model comprises three primary classes:

3.1 ConfigureTopology
This class is used for configuring the simulation param-

eters such as setting bottleneck bandwidth and bottleneck
delay, setting the parameters for Random Early Detection
(RED) algorithm [8], etc. It acts as a base class to configure
parameters for dumbbell and parking lot topologies.

3.2 CreateTraffic
This class generates different traffic patterns for the sim-

ulation, as listed in Table 2.

Long-lived FTP traffic: It runs on top of TCP and is
generated by using the BulkSend Application provided in
ns-3. It generates a stream of packets, each of size 512 bytes,
till the end of simulation. Moreover, this traffic can be gen-
erated in forward, reverse and cross directions. Cross FTP

traffic is generated only for parking lot topology.

Streaming video traffic: It runs on top of UDP and is
generated by using the OnOff Application provided in ns-3.
The default packet size is set to 840 bytes and the streaming
rate is set to a default value of 640 Kbps [4]. The packet
size and streaming rate can be explicitly configured by the
user through command line arguments. This traffic can be
generated in forward and reverse directions.

Interactive voice traffic: This traffic also runs on top
of UDP and is generated by using the OnOff Application
provided in ns-3. The default packet size is set to 172 bytes
and the data rate is set to a default value of 64 Kbps [4].
This is a two-way traffic between the caller and the callee.

3.3 EvalStats
This class is used for collecting post simulation results and

store them in files, which are later used to plot graphs. All
the performance metrics listed in Table 2 are calculated in
this class.

Aggregate Link Utilization: This metric specifies the
ratio of current network traffic to the maximum available
bandwidth. It is important for a new TCP extension to
maximize the bandwidth utilization, while ensuring fairness
with other TCP flows.

Mean Queue Length: Maintaining a steady queue length
is important to avoid variations in delay. Large variations
in delay affect the user perceived application behaviour, es-
pecially in the case of interactive voice applications and
streaming applications. This metric is important to anal-
yse the stability of a new TCP extension.

Average Packet Drop Rate: This metric is crucial to
analyse the performance of TCP in the presence of bursty
background traffic. High packet drop rate hurts the perfor-
mance of time sensitive traffic like Google search, etc.

3.4 Other Classes in tcp-eval

TrafficParameters: This class provides setters and getters
for configuring the traffic related parameters like:

• Number of forward FTP flows

• Number of reverse FTP flows

• Number of cross FTP flows

• Number of two-way voice flows

• Number of forward streaming flows

• Number of reverse streaming flows

DumbbellTopology: This class sets up a dumbbell sim-
ulation scenario, and is placed in a file called dumbbell-

topology.cc in tcp-eval model. First, it creates a dumb-
bell topology by invoking PointToPointDumbbellHelper class
which is already available in ns-3. Next, it obtains the
simulation parameters from ConfigureTopology, generates
the traffic using CreateTraffic, and finally calculates and
stores the results using EvalStats. Figure 2 shows user’s
interaction with tcp-eval model for simulating dumbbell

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

26

Figure 1: Class diagram of TCP Evaluation Suite in ns-3.

User

drive-dumbbell.cc

Results

point-to-point-dumbbell.ccdumbbell-topology.cc

eval-stats.cc

create-traffic.cc

traffic-parameters.cc

configure-topology.cc

1

2

3

4

5

6

7

8
Core modules

Configuration module

Supporting module

Legends

Figure 2: User interaction diagram of tcp-eval for dumbbell scenario.

scenarios. drive-dumbbell.cc creates an object of Traf-

ficParameters, before creating an object of this class.

ParkingLotTopology: While implementing this class we
found that a helper for creating multiple bottleneck topol-
ogy, like parking lot topology, is not available in ns-3. Hence,
we implemented a class called PointToPointParkingLotHelper

and included it in the point-to-point-layout model of ns-
3. This helper is a stand-alone implementation and not
closely linked to tcp-eval model. It can be used to simulate

parking lot scenarios, even without the tcp-eval model.
The functionality of ParkingLotTopology class is equiva-

lent to that of DumbbellTopology, except that it is respon-
sible to set up a parking lot simulation scenario. This class
is placed in a file called parking-lot-topology.cc in tcp-

eval model. Figure 3 shows user’s interaction with tcp-eval

model for simulating parking lot scenarios. drive-parking-
lot.cc creates an object of TrafficParameters, before cre-
ating an object of this class.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

27

User

drive-parking-lot.cc

Results

point-to-point-parking-lot.ccparking-lot-topology.cc

eval-stats.cc

create-traffic.cc

traffic-parameters.cc

configure-topology.cc

1

2

3

4

5

6

7

8
Core modules

Configuration module

Supporting module

Legends

Figure 3: User interaction diagram of tcp-eval for parking lot scenario.

4. NS-3 TCP EVALUATION USING TCP-EVAL
In this section, we compare the performance of five TCP

extensions available in ns-3 by using our implementation of
the suite. We provide a set of six shell scripts that run a se-
ries of simulations by varying the following three parameters:
bottleneck bandwidth, bottleneck RTT and the number of
forward FTP flows in two topologies: dumbbell and parking
lot. Once the results are collected in respective files for ev-
ery scenario, shell scripts convert those textual results into
graphical form. Further, a PDF file containing graphs for
each scenario is created automatically if LaTex is installed.

As suggested by ICCRG, we randomize the start times of
all traffic flows to model the real traffic behaviour. More-
over, our implementation provides support for simulating
RED algorithm [8] at bottleneck routers. We have used the
traditional droptail mechanism in our scenarios, however, to
keep the analysis simple. The bottleneck routers can be eas-
ily configured to use RED algorithm by passing command
line arguments. No further changes are required.

Table 3: Default simulation parameters.

Simulation Parameters Values
Bottleneck bandwidth 10 Mbps
Round Trip Time 80 ms
Number of forward FTP flows 5
Number of reverse FTP flows 5
Number of voice flows 5
Number of forward streaming flows 5
Number of reverse streaming flows 5
Simulation time 100 seconds
Streaming rate 640 Kbps
Streaming packet size 840 bytes

4.1 Varying Bottleneck Bandwidth
In this scenario, the bottleneck bandwidth is varied from

1 Mbps to 100 Mbps. Other parameters shown in Table 3
remain fixed. For every TCP extension, simulation runs till
the specified duration for a collection of bandwidth values.

Varying the bottleneck bandwidth provides an estimate
of TCP’s performance under the same traffic load, but dif-
ferent bottleneck capacity. Figure 4 and 5 depict the simu-
lation results obtained by varying bottleneck bandwidth in
dumbbell and parking lot topologies, respectively. It can
be observed that the bottleneck link occupancy in both the
figures is close to 100% for all TCP extensions when the
bandwidth values are relatively low, and it gradually de-
creases with the increase in the bandwidth. It is important
for any TCP extension to adapt its congestion window to
ensure that bottleneck bandwidth remains fully utilized.

4.2 Varying RTT
In real internet scenarios, the hosts can be distributed over

the large span of geographical area. Such hosts can be mod-
elled by varying the propagation delays between the nodes
in the simulation environment. Hence, in this scenario, we
change the RTT values between the bottleneck routers from
10 milliseconds to 1 second, while keeping other values fixed
as shown in Table 3.

Figure 6 and 7 depict the simulation results obtained by
varying the RTT values between the bottleneck routers in
dumbbell and parking lot topology. The results clearly de-
pict the performance of each TCP extension, and how its
behavior differs from other TCP extensions.

4.3 Varying the Number of FTP Flows
This scenario is designed to test the performance of TCP

extensions by varying the traffic load. We run a series of
simulations by varying the number of forward FTP flows
from 1 to 100. Other simulation parameters listed in Ta-

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

28

 0

 20

 40

 60

 80

 100

 1 10 100

L
in

k
 U

ti
li
z
a

ti
o

n
 (

%
)

Bandwidth (Mbps) Log Scale

Link Utilization with Bandwidth Changes

Tahoe
Reno

Newreno
Westwood

Westwood+

(a) Aggregate bandwidth utilization.

 0

 2

 4

 6

 8

 1 10 100

P
a

c
k
e

t
D

ro
p

 R
a

te
 (

%
)

Bandwidth (Mbps) Log Scale

Packet Drop Rate with Bandwidth Changes

Tahoe
Reno

Newreno
Westwood

Westwood+

(b) Packet drop rate.

 0

 20

 40

 60

 80

 100

 1 10 100

M
e

a
n

 Q
u

e
u

e
 L

e
n

g
th

 (
%

)

Bandwidth (Mbps) Log Scale

Percent of Mean Queue Length with Bandwidth Changes

Tahoe
Reno

Newreno
Westwood

Westwood+

(c) Mean queue length.

Figure 4: TCP performance results for changing
bandwidth for dumbbell topology.

 0

 20

 40

 60

 80

 100

 1 10 100

L
in

k
 U

ti
li
z
a

ti
o

n
 (

%
)

Bandwidth (Mbps) Log Scale

Link Utilization with Bandwidth Changes

Tahoe
Reno

Newreno
Westwood

Westwood+

(a) Aggregate bandwidth utilization.

 0

 2

 4

 6

 8

 1 10 100

P
a

c
k
e

t
D

ro
p

 R
a

te
 (

%
)

Bandwidth (Mbps) Log Scale

Packet Drop Rate with Bandwidth Changes

Tahoe
Reno

Newreno
Westwood

Westwood+

(b) Packet drop rate.

 0

 20

 40

 60

 80

 100

 1 10 100

M
e

a
n

 Q
u

e
u

e
 L

e
n

g
th

 (
%

)

Bandwidth (Mbps) Log Scale

Percent of Mean Queue Length with Bandwidth Changes

Tahoe
Reno

Newreno
Westwood

Westwood+

(c) Mean queue length.

Figure 5: TCP performance results for changing
bandwidth for parking lot topology.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

29

 0

 20

 40

 60

 80

 100

 0.01 0.1 1

L
in

k
 U

ti
li
z
a

ti
o

n
 (

%
)

RTT (s) Log Scale

Link Utilization with RTT Changes

Tahoe
Reno

Newreno
Westwood

Westwood+

(a) Aggregate bandwidth utilization.

 0

 2

 4

 6

 8

 0.01 0.1 1

P
a

c
k
e

t
D

ro
p

 R
a

te
 (

%
)

RTT (s) Log Scale

Packet Drop Rate with RTT Changes

Tahoe
Reno

Newreno
Westwood

Westwood+

(b) Packet drop rate.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01 0.1 1

M
e

a
n

 Q
u

e
u

e
 L

e
n

g
th

 (
%

)

RTT (s) Log Scale

Percent of Mean Queue Length with RTT Changes

Tahoe
Reno

Newreno
Westwood

Westwood+

(c) Mean queue length.

Figure 6: TCP performance results for changing
RTT for dumbbell topology.

 0

 20

 40

 60

 80

 100

 0.01 0.1 1

L
in

k
 U

ti
li
z
a

ti
o

n
 (

%
)

RTT (s) Log Scale

Link Utilization with RTT Changes

Tahoe
Reno

Newreno
Westwood

Westwood+

(a) Aggregate bandwidth utilization.

 0

 2

 4

 6

 8

 0.01 0.1 1

P
a

c
k
e

t
D

ro
p

 R
a

te
 (

%
)

RTT (s) Log Scale

Packet Drop Rate with RTT Changes

Tahoe
Reno

Newreno
Westwood

Westwood+

(b) Packet drop rate.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01 0.1 1

M
e

a
n

 Q
u

e
u

e
 L

e
n

g
th

 (
%

)

RTT (s) Log Scale

Percent of Mean Queue Length with RTT Changes

Tahoe
Reno

Newreno
Westwood

Westwood+

(c) Mean queue length.

Figure 7: TCP performance results for changing
RTT for parking lot topology.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

30

 0

 20

 40

 60

 80

 100

 1 10 100

L
in

k
 U

ti
li
z
a

ti
o

n
 (

%
)

FTP Log Scale

Link Utilization with FTP Changes

Tahoe
Reno

Newreno
Westwood

Westwood+

(a) Aggregate bandwidth utilization.

 0

 2

 4

 6

 8

 1 10 100

P
a

c
k
e

t
D

ro
p

 R
a

te
 (

%
)

FTP Log Scale

Packet Drop Rate with FTP Changes

Tahoe
Reno

Newreno
Westwood

Westwood+

(b) Packet drop rate.

 0

 20

 40

 60

 80

 100

 1 10 100

M
e

a
n

 Q
u

e
u

e
 L

e
n

g
th

 (
%

)

FTP Log Scale

Percent of Mean Queue Length with FTP Changes

Tahoe
Reno

Newreno
Westwood

Westwood+

(c) Mean queue length.

Figure 8: TCP performance results for changing
FTP flows for dumbbell topology.

 0

 20

 40

 60

 80

 100

 1 10 100

L
in

k
 U

ti
li
z
a

ti
o

n
 (

%
)

FTP Log Scale

Link Utilization with FTP Changes

Tahoe
Reno

Newreno
Westwood

Westwood+

(a) Aggregate bandwidth utilization.

 0

 2

 4

 6

 8

 1 10 100

P
a

c
k
e

t
D

ro
p

 R
a

te
 (

%
)

FTP Log Scale

Packet Drop Rate with FTP Changes

Tahoe
Reno

NewReno
Westwood

Westwood+

(b) Packet drop rate.

 0

 20

 40

 60

 80

 100

 1 10 100

M
e

a
n

 Q
u

e
u

e
 L

e
n

g
th

 (
%

)

FTP Log Scale

Percent of Mean Queue Length with FTP Changes

Tahoe
Reno

Newreno
Westwood

Westwood+

(c) Mean queue length.

Figure 9: TCP performance results for changing
FTP flows for parking lot topology.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

31

ble 3 remain fixed. Figure 8 and 9 depict the simulation
results obtained for dumbbell and parking lot topology re-
spectively. The bottleneck link utilization remains close to
90% for small number of FTP flows, and as expected, grad-
ually increases with the increase in traffic load.

All graphs presented for this scenario and previous two
scenarios are automatically generated using the shell scripts.
Instructions to reproduce these results are provided in the
Appendix.

5. CONCLUSION AND FUTURE WORK
In this paper, we present an implementation of TCP eval-

uation suite as a separate model in ns-3. We provide the
implementation details for every class and highlight the in-
teractions among them. Additionally, we demonstrate the
usage of our TCP evaluation model by comparing five TCP
extensions available in ns-3 in benchmark scenarios stated in
the internet drafts. The results are collected for aggregate
link utilization, mean queue length and packet drop rate,
and the statistics are generated in textual and graphical for-
mats.

We plan to further extend our implementation and add
other features suggested in the draft of ICCRG. We have
completed porting Tmix traffic generator to work with the
latest version of ns-3. The next step would be to integrate it
with our implementation and provide flexibility in terms of
using realistic traffic patterns for evaluating the performance
of TCP extensions.

6. ACKNOWLEDGMENTS
We would like to acknowledge the support of Gopika Pai,

H. J. Bhargav, Pratheek B., Sourabh S. Shenoy for helping
in the implementation of EvalStats class. Further, we would
like to acknowledge Radhesh Anand for correcting the parts
of this paper.

7. REFERENCES
[1] D. Hayes, D. Ros, L. L. H. Andrew, and S. Floyd.

Common TCP Evaluation Suite. Internet-Draft
draft-irtf-iccrg-tcpeval-01, Internet Engineering Task
Force, January 2015. Work in Progress.

[2] Network Simulator 3. https://www.nsnam.org, 2016.

[3] H. Shimonishi, M. Y. Sanadidi, M. Gerla,
C. Marcondes, and P. Vasu. TCP Evaluation Suite.
http://nrlweb.cs.ucla.edu/tcpsuite/index.html, 2007.
Evaluating New Congestion Control Schemes and Its
Impact on Standard TCP NewReno.

[4] An NS2 TCP Evaluation Tool.
https://sourceforge.net/projects/tcpeval, 2007.

[5] Y. Li, D. Leith, and R. N. Shorten. Hamilton Institute
TCP Evaluation Suite.
http://www.hamilton.ie/net/eval/hi2005.htm, 2007.

[6] D. Hayes, D. Ros, L. Andrew, and S. Floyd. Common
TCP Evaluation Suite. https://bitbucket.org/hayesd,
July 2014.

[7] Network Simulator 2. http://www.isi.edu/nsnam/ns,
2016.

[8] S. Floyd and V. Jacobson. Random Early Detection
Gateways for Congestion Avoidance. Networking,
IEEE/ACM Transactions on, 1(4):397–413, 1993.

APPENDIX
In this section, we provide additional details about repro-
ducing the simulation scenarios described in this paper.

The latest version of ns-3 at the time of writing this paper
is ns-3.24 and the same has been used for implementing the
TCP evaluation suite. The modified ns-3.24 that contains
our TCP evaluation suite implementation can be obtained
from here1. All the results obtained from our suite get stored
in a new directory called tcp-eval-results in ns-3.24 di-
rectory.

TCP evaluation suite is implemented in src/tcp-eval

and its the classes can be found at src/tcp-eval/model.
The helper for point to point parking lot topology
is located at src/point-to-point-layout/model/point-

to-point-parking-lot{.h, .cc}. drive-dumbbell.cc

and drive-parking-lot.cc are available at src/tcp-

eval/examples. Several command line arguments can be
passed to both; more details can be found in the respective
files. Lastly, six shell scripts are provided in ns-3.24 direc-
tory that reproduce the graphs presented in Section 4 of this
paper. Each shell script produces three graphs, and if La-
Tex is found installed on the machine, it places the graphs
in respective PDF files on successful completion.

1https://github.com/dharmendra-mishra/wns3-2016

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

32

OFSwitch13: Enhancing ns-3 with OpenFlow 1.3 Support

Luciano Jerez Chaves, Islene Calciolari Garcia, and Edmundo Roberto Mauro Madeira
Computer Networks Laboratory, Institute of Computing

University of Campinas (Unicamp), Brazil
luciano@lrc.ic.unicamp.br, {islene, edmundo}@ic.unicamp.br

ABSTRACT
The world is witnessing the rapid evolution of communica-
tion technologies, and meeting current market requirements
is virtually impossible with traditional network architec-
tures. Many works point to the use of Software Defined
Networking (SDN) paradigm and the OpenFlow protocol as
enabling solutions to overcome current limitations. Despite
the fact that the Network Simulator 3 (ns-3) already has
a module that supports OpenFlow simulations, it is pos-
sible to note that the available implementation provides a
very outdated protocol version (0.8.9). As many new ma-
jor features were introduced up to the latest versions, it is
interesting to have some of them available for use. In this
context, this paper presents the OFSwitch13: a module to
enhance the ns-3 with OpenFlow 1.3 technology support.
This module provides both an OpenFlow 1.3 switch device
and a controller application interface. Details about mod-
ule design and implementation are discussed throughout this
paper, and a case study scenario is used to illustrate some
of the available OFSwitch13 module features.

CCS Concepts
•Computing methodologies → Model development
and analysis; Simulation support systems; Simula-
tion environments; Discrete-event simulation; •Networks
→ Network simulations;

Keywords
SDN, OpenFlow 1.3, Network Simulator 3 (ns-3)

1. INTRODUCTION
As stated by the Open Networking Foundation (ONF),

network operators are facing challenges as the number of
connected devices increases [14]. Meeting current market
requirements is virtually impossible with traditional network
architectures, where the vendor dependence and lack of open
interfaces limit the ability of network operators to tailor the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WNS3, June 15-16, 2016, Seattle, WA, USA
c© 2016 ACM. ISBN 978-1-4503-4216-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2915371.2915381

network to their individual environments. In this context,
SDN has emerged as a network architecture where network
control is decoupled from packet forwarding, enabling more
agile and flexible networks [14]. The OpenFlow protocol [12]
is the first standard technology designed specifically for SDN
and has been adopted by a number of networking vendors
and by the research community.

As is known, it is very costly to deploy a complete testbed
containing multiple networked computers, routers, switches
and data links to validate and verify a certain network proto-
col or a specific network algorithm. In these circumstances,
software tools save a lot of money and time in accomplish-
ing this task. When talking about OpenFlow, the straight-
forward software tool is Mininet [6]. It is an open-source
emulator that provides a quick and easy way to prototype
and evaluate SDN networks. It creates user-space or kernel
full-compliant OpenFlow switches, allowing the use of real
controllers and softwares. However, Mininet suffers from the
maximum link bandwidth limited by hardware processing
power and no time dilation, which prevents it from carry-
ing out emulations when computational demand is higher
than the real-time processing capacity. When it comes to
the experimentation of the OpenFlow protocol in wireless
networks, these shortcomings become more worrisome [3].

A reasonable choice would be using a simulated environ-
ment to this end, such as the Network Simulator 3 (ns-3) [7].
It is a discrete-event simulator, targeted primarily for re-
search and educational use, and distributed as free software.
ns-3 simulations can model OpenFlow switches via the ex-
isting OpenFlow module [4], which relies on an external
OpenFlow switch library linked to the simulator. This mod-
ule implements a very outdated OpenFlow protocol (ver-
sion 0.8.9 [16]), and too many new major features were in-
troduced up to the latest versions. Among these new fea-
tures, it is possible to cite multiple tables in the pipeline,
group tables, virtual ports, extensible match support, IPv6
support, per flow meters, auxiliary connections, and support
for multiple controllers.

To overcome this shortage, this paper introduces the OF-

Switch13 module for ns-3 [8]. This module provides sup-
port for OpenFlow protocol version 1.3 [17], bringing both
a switch device and a controller application interface to the
simulator, as depicted in Figure 1. With this module, it is
possible to interconnect ns-3 nodes to send and receive traf-
fic using the existing Carrier Sense Multiple Access (CSMA)
network devices and channels. To orchestrate the network,
the controller application interface can be extended to im-
plement any desired control logic. The communication be-

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

33

ofsoftswitch13 library

ns-3 environment
external environment

OpenFlow 1.3 controller
application interface

Protocol
stack

NetDevice

C
on
tr
ol
le
r

(n
s-

3
no

de
)

OpenFlow 1.3 switch device

Protocol
stack

NetDevice

Sw
itc
h

(n
s-

3
no

de
)

CSMA
NetDeviceCSMA

NetDeviceCSMA
NetDevice

Channel

C
on

tro
l p

la
ne

D
at

a
pl

an
e

Figure 1: The OFSwitch13 module overview.

tween the controller and the switch is realized over standard
ns-3 protocol stack, devices and channels. The module also
relies on an external library (ofsoftswitch13) [11] that pro-
vides the switch datapath implementation, the dpctl utility
tool used to create OpenFlow messages from command lines
with simple syntax, and the code for converting OpenFlow
messages to and from wire format.

The remainder of this paper describes the SDN paradigm,
the module design and implementation, and an illustrative
case study scenario. It is organized as follows: Section 2
examines the SDN paradigm and the OpenFlow protocol
while Section 3 describes the module design and implemen-
tation. Section 4 presents a case study scenario that is used
to demonstrate some of the OpenFlow 1.3 module features.
Section 5 concludes by summarizing the work described in
this paper and looking toward future endeavors.

2. SOFTWARE-DEFINED NETWORKING
Software Defined Networking (SDN) is a paradigm that

has been designed to enable more agile and cost-effective
networks. In the SDN architecture, the control and data
planes are decoupled, network intelligence and state are log-
ically centralized, and the underlying network infrastructure
is abstracted from the applications. By centralizing network
intelligence, decision-making is facilitated based on a global
(or domain) view of the network, as opposed to today’s net-
works, which are built on an autonomous system view where
nodes are unaware of the overall state of the network [15].
To better understand this paradigm, Subsection 2.1 presents
the classical SDN architecture while Subsection 2.2 describes
some of the main OpenFlow protocol features.

2.1 SDN Architecture
The ONF is taking the lead in SDN standardization and

has defined the architecture depicted in Figure 2. This SDN
architecture consists of three distinct layers that are acces-
sible through open Application Program Interfaces (APIs):

• The Application Layer consists of the end-user applica-
tions that consume the SDN communications services.
The boundary between the Application Layer and the
Control Layer is traversed by the northbound API.

ONF SOLUTION BRIEF
OpenFlow-Enabled Mobile and Wireless Networks

3 of 13© Open Networking Foundation. All rights reserved.

SDN Overview

Software Defined Networking is a new architecture that has been designed to enable

more agile and cost-effective networks. The Open Networking Foundation (ONF) is

taking the lead in SDN standardization, and has defined an SDN architecture model as

depicted in Figure 1.

APPLICATION LAYER

CONTROL LAYER

INFRASTRUCTURE
LAYER

Network
Services

Business Applications

Network Services

APIAPIAPI

The ONF/SDN architecture consists of three distinct layers that are accessible through

open APIs:

The Application Layer consists of the end-user business applications that

consume the SDN communications services. The boundary between the

Application Layer and the Control Layer is traversed by the northbound API.

The Control Layer provides the consolidated control functionality that supervises

the network forwarding behavior through an open interface.

The Infrastructure Layer consists of the network elements (NE) and devices that

provide packet switching and forwarding.

According to this model, an SDN architecture is characterized by three key attributes:

Logically centralized intelligence. In an SDN architecture, network control is

distributed from forwarding using a standardized southbound interface: OpenFlow.

By centralizing network intelligence, decision-making is facilitated based on a

FIGURE 1
ONF/SDN architecture

Figure 2: The ONF/SDN architecture [15].

• The Control Layer provides the consolidated control
functionality that supervises the network forwarding
behavior through the southbound API.

• The Infrastructure Layer consists of the simplified net-
work elements and devices that provide packet switch-
ing and forwarding.

Network intelligence is centralized at control layer, in a
software-based controller. The controller can maintain a
network global view, providing real-time information, fast
optimized routing, etc. By centralizing network state, SDN
gives network managers the flexibility to configure, man-
age, secure, and optimize network resources via dynamic,
automated SDN programs. Such programmability enables
network configuration to be automated, influenced by the
rapid adoption of the cloud. By providing open APIs for ap-
plications to interact with the network, SDN networks can
achieve unprecedented innovation and differentiation [15].

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

34

2.2 OpenFlow Protocol
The OpenFlow protocol [12] is the first southbound inter-

face designed for SDN networks, providing high-performance
and granular traffic control across multiple network devices
from different vendors. OpenFlow uses the concept of flows
to identify network traffic based on predefined match rules
that can be programmed by the SDN controller. The Open-
Flow protocol is implemented on both sides of the interface
between infrastructure devices and the SDN control soft-
ware. The current specification covers the components and
the basic functions of the switch, and the OpenFlow proto-
col to manage a switch from a remote controller. Figure 3
shows the main components of an OpenFlow switch.

The OpenFlow channel is the interface that connects each
OpenFlow switch to an OpenFlow controller. Through this
interface, the controller configures and manages the switch,
receives events and sends packets out to the network. The
control channel of the switch may support a single Open-
Flow channel with a single controller, or multiple OpenFlow
channels enabling multiple controllers to share management
of the switch. All OpenFlow channel messages must be for-
matted according to the OpenFlow protocol. The OpenFlow
channel is usually encrypted using Transport Layer Secu-
rity (TLS), but may be run directly over plain Transmission
Control Protocol (TCP).

The OpenFlow switch datapath consists of a pipeline of
one or more flow tables, which perform packet lookups and
forwarding, based on flow entries configured by the con-
troller. Each flow entry consists of OpenFlow eXtensible
Match (OXM) Type-Length-Value (TLV) fields to identify
the flow, counters, and a set of instructions to apply to
matching packets. The matching starts at the first pipeline
flow table, following order of priority, and may continue to
next tables. If a matching entry is found, the instructions
associated with the specific flow entry are applied. Instruc-
tions can modify the pipeline processing, sending the packet
to one of the following tables, or can contain actions that
describe packet forwarding, packet modification, and group
table processing. The most common action is the output,
which forwards the packet to an output port. Another ac-
tion is the group action, which directs the packets to another
switch datapath element that is called group table. Groups
represent sets of actions for flooding, as well as more complex
forwarding semantics. The switch can also send unmatched
packets to the controller, or simply drop the packet.

OpenFlow Switch Specification Version 1.5.1

1 Introduction

This document describes the requirements of an OpenFlow Logical Switch. Additional information
describing OpenFlow and Software Defined Networking is available on the Open Networking Foundation
website (https://www.opennetworking.org/). This specification covers the components and the basic
functions of the switch, and the OpenFlow switch protocol to manage an OpenFlow switch from a
remote OpenFlow controller.

Port

Port

Port

Port

OpenFlow
Channel

Flow
Table

Flow
Table

Flow
Table

Controller

Pipeline

OpenFlow Switch

OpenFlow
Channel Group

Table
Meter
TableControl Channel

Controller

Datapath

Protocol

Figure 1: Main components of an OpenFlow switch.

2 Switch Components

An OpenFlow Logical Switch consists of one or more flow tables and a group table, which perform packet
lookups and forwarding, and one or more OpenFlow channels to an external controller (Figure 1). The
switch communicates with the controller and the controller manages the switch via the OpenFlow switch
protocol.

Using the OpenFlow switch protocol, the controller can add, update, and delete flow entries in flow
tables, both reactively (in response to packets) and proactively. Each flow table in the switch contains
a set of flow entries; each flow entry consists of match fields, counters, and a set of instructions to apply
to matching packets (see 5.2).

Matching starts at the first flow table and may continue to additional flow tables of the pipeline (see
5.1). Flow entries match packets in priority order, with the first matching entry in each table being
used (see 5.3). If a matching entry is found, the instructions associated with the specific flow entry are
executed (see 5.5). If no match is found in a flow table, the outcome depends on configuration of the

11 © 2015; The Open Networking Foundation

Figure 3: The OpenFlow switch architecture [18].

Another OpenFlow switch datapath element is the meter
table, consisted of entries defining per-flow meters. Per-flow
meters enable OpenFlow to implement rate-limiting, a sim-
ple Quality of Service (QoS) operation constraining a set of
flows to a chosen bandwidth. A switch can also optionally
have one or more queues attached to a specific output port,
and in many cases, those two features can be combined to
implement complex work conserving QoS frameworks, such
as Differentiated Services (DiffServ). The reader can re-
fer to the OpenFlow Switch specification [18] for details on
the protocol operation. Note that the Appendix B of the
specification contains the release notes highlighting the main
changes between major versions of the OpenFlow protocol.

3. OFSWITCH13 MODULE
This section describes the OFSwitch13 module design and

implementation. Subsection 3.1 brings the description of
the switch device, followed by the controller application in-
terface at Subsection 3.2. The OpenFlow channel, used for
interconnecting the controller to the switches, is described
in Subsection 3.3. The external ofsoftswitch13 library is
presented in Subsection 3.4, and the current module limi-
tations are listed in Subsection 3.5. For details in classes
design, please refer to the code API documentation [9].

3.1 OpenFlow 1.3 Switch Device
The OpenFlow 1.3 switch device (hereinafter referred to as

switch device) can be used to interconnect ns-3 nodes using
the existing CSMA network devices and channels. Figure 4
shows the internal switch device structure. The switch de-
vice takes a collection of ports, each one associated with a
ns-3 underlying CSMA network device. It acts as the inter-
mediary between the ports, receiving a packet from one port
and forwarding it to another. The OpenFlow switch data-
path implementation (flow tables, group table, and meter
table) is provided by the ofsoftswitch13 library. For this
reason, packets entering the switch are sent to the library
for OpenFlow pipeline processing before being forwarded to
the correct output port(s). Messages received from the con-
troller are also sent to the library for datapath configuration.

A packet enters the switch device through a new Open-
Flow receive callback in the CSMA network device that is
invoked for packets successfully received by the network de-
vice. This is a promiscuous receive callback, but in contrast
to a promiscuous protocol handler, the packet sent to this
callback also includes the Ethernet header, which is neces-
sary for pipeline processing. This is the only required modi-
fication to the ns-3 source code for OFSwitch13 integration.

OpenFlow 1.3 switch device

OpenFlow ports

OpenFlow channel
(controller communication)

OpenFlow port

Output packet
(from the library)

Input packet
(to the library)

CSMA network device

OpenFlow
queue

OpenFlow
RX callback

ofsoftswitch13
library

Figure 4: The OFSwitch13 switch device structure.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

35

OpenFlow 1.3 queue

Enqueue (Queue ID)
Dequeue

…

Queue QueueQueue
Output

scheduller

Figure 5: The OFSwitch13 queue structure.

To model OpenFlow hardware operations, the OFSwitch13
module considers the concept of virtual Ternary Content-
Addressable Memory (TCAM) to estimate the average flow
table search time [4]. This search time is used to postpone
the pipeline processing at the library. To provide a more
realistic delay, the module considers that real OpenFlow im-
plementations use sophisticated search algorithms for packet
classification and matching. As most of these algorithms are
based on binary search trees, the equation k∗ log2(n) is used
for delay estimation, where k is the constant attribute set
to the time for a single TCAM hardware operation and n is
the current number of flow entries in the pipeline.

Packets coming back from the library for output action
are sent to the OpenFlow queue. An OpenFlow switch pro-
vides limited QoS support by means of a simple queuing
mechanism, where one or more queues can attach to a port
and be used to map flow entries on it. The OpenFlow queue
extends the ns-3 queue interface to allow compatibility with
the CSMA network devices. Figure 5 shows its internal
structure. It can hold a collection of other queues, each one
identified by a unique ID. Packets sent to the OpenFlow
queue for transmission are expected to carry a queue tag,
which is used to identify the internal queue that will hold
the packet. Then, the output scheduling algorithm decides
from which queue to get packets during dequeue procedures.

3.2 OpenFlow 1.3 Controller Interface
The OpenFlow 1.3 controller application interface (here-

inafter referred to as controller interface) provides the basic
functionalities for controller implementation. As illustrated
in Figure 6, it can manage a collection of OpenFlow switches.
For constructing OpenFlow messages and sending them to
the switches, the controller interface relies on the dpctl util-
ity provided by the ofsoftswitch13 library. With a simple
command-line syntax, this utility can be used to add flows
to the pipeline, query for switch features and status, and
change other configurations. For OpenFlow messages com-
ing from the switches, the internal collection of handlers are
used to deal with the different types of messages. Some han-
dlers can not be modified, as they must behave as already
implemented. Other handlers can be overridden by derived
controllers to implement the desired control logic.

The OFSwitch13 module brings a learning controller that
implements the controller interface to work as a learning
bridge device without the Spanning Tree Protocol (STP)
implementation [5]. It instructs OpenFlow switches to for-
ward incoming unicast frames from one port to the correct
output port whenever possible (as in the BridgeNetDevice).

OpenFlow 1.3 controller application interface

OpenFlow channel
(switch communication)

ofsoftswitch13
library

Internal handlers

dpctl commands
“flow-mod add …”

Figure 6: The OFSwitch13 controller structure.

3.3 OpenFlow Channel
The OpenFlow channel is the interface that connects each

switch to an OpenFlow controller. Through this interface,
the controller configures and manages the switch, receives
events from the switch, and sends packets out the switch. In
the OFSwitch13 module, the controller interface can manage
the switch devices remotely over a separate dedicated net-
work (out-of-band controller connection). It is possible to
use standard ns-3 channels and devices to create an Open-
Flow channel using a single shared channel or individual
connections between the controller interface and each switch
device. This model provides realistic control plane connec-
tions, including communication delay and, optionally, error
models. It also simplifies the OpenFlow protocol analysis,
as the ns-3 tracing subsystem can be used for outputting
PCAP files to be read by third-party software.

Considering that the OpenFlow messages traversing the
OpenFlow channel follow the standard wire format, it is
also possible to use the ns-3 TapBridge to allow an exter-
nal OpenFlow controller, running on the local machine, to
interact with the simulated environment over this control
channel. This would allow the use of real controller imple-
mentations to manage simulated OpenFlow switches. How-
ever, note that this use case has not been validated yet.

3.4 ofsoftswitch13 Library
The OFSwitch13 module was designed to work together

with the ofsoftswitch13 user-space software switch com-
piled as a library [2, 10]. The original implementation was
forked and slightly modified for proper integration with the
OFSwitch13 module [11]. The code does not modify the dat-
apath implementation, which is currently maintained in the
original repository and regularly synced to the modified one.

Figure 7 shows the library architecture and highlights the
OFSwitch13 interconnection points. The library provides
the complete OpenFlow switch datapath implementation,
including input and output ports, the flow-table pipeline for
packet matching, the group table, and the meter table. It
also provides the OFLib library that is used for converting in-
ternal messages to and from OpenFlow 1.3 wire format, and
the dpctl utility for converting text commands into internal
messages. The NetBee library [13] is used for packet decod-
ing and parsing, based on the NetPDL XML-based language
for packet header description [19].

For proper ns-3 integration, the switch ports were set
aside, and the library was modified to receive and send pack-
ets directly to the ns-3 environment. To accomplish this
task, all library functions related to sending and receiving

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

36

OpenFlow 1.3
Controller

Ports

0

1

N

Ports

0

1

N
Flow Tables

0 1 2 N

NetBee Parser
(flow extract)

NetPDL

Meter Table

Meter
band
Rate X

Meter
band
Rate Y

Meter
band
Rate Z

Group Table

0
Actions

1
Actions

N
Actions

OFLib

NetBee Link

OpenFlow 1.3
Software Switch

datapath

OpenFlow messages

User packets

OFSwitch13 module
interconnection

Control
channel

dpctl utility

Figure 7: The ofsoftswitch13 library architecture (adapted from [2]).

packets over ports were annotated as weak symbols, allowing
the module to override them at link time. This same strat-
egy was used for overriding time-related functions, ensuring
time consistency between the library and the simulator. The
integration also relies on callbacks, which are used by the li-
brary to notify the module about internal packet events,
like packets dropped by meter bands, packet content mod-
ifications by pipeline instructions, packets cloned by group
actions, and buffered packets sent to the controller.

One potential performance drawback is the conversion
between the ns-3 packet representation and the serialized
packet buffer used by the library. This is even more criti-
cal for empty packets, as ns-3 provides optimized internal
representation for them. To improve the performance, when
a packet is sent to the library for pipeline processing, the
module keeps track of its original ns-3 packet. For pack-
ets processed by the pipeline without content changes, the
switch device forwards the original ns-3 packet to the spec-
ified output port. In the face of content changes, the switch
device creates a new ns-3 packet with the modified content
(eventually copying all packet and byte tags from the origi-
nal packet to the new one). This approach is more expensive
than the previous one but is far more simple than identifying
which changes were performed in the packet by the library
to modify the original ns-3 packets.

3.5 Current Limitations
These are the major limitations of the available module

in current implementation:

• Platform support : The module implementation is only
available for GNU/Linux platforms, and must be com-
piled with the GNU Compiler Collection (GCC).

• Auxiliary connections: Only a single connection be-
tween the switch and the controller is available. Ac-
cording to the OpenFlow specifications, auxiliary con-
nections could be created by the switch and are helpful
to improve the switch processing performance and ex-
ploit the parallelism of most switch implementations.

• Multiple controllers: Each switch can only be man-
aged by a single controller. According to the Open-
Flow specifications, having multiple controllers would
improve reliability as the switch can continue to oper-
ate if one controller or controller connection fails.

• OpenFlow channel encryption: The switch and con-
troller may communicate through a TLS connection to
provide authentication and encryption of the connec-
tion. However, as there is no straightforward TLS sup-
port on ns-3, the OpenFlow channel is implemented
over a plain TCP connection, without encryption.

• In-band control : The OpenFlow controller manages
the switches remotely over a separate dedicated net-
work (out-of-band controller connection), as the switch
port representing the switch’s local networking stack
and its management stack is not implemented.

4. CASE STUDY SCENARIO
The network topology proposed for this case study sce-

nario is described in Subsection 4.1, and it is used to demon-
strate how some of the OpenFlow 1.3 module features can
be exercised to improve network management. Specifically,
a link aggregation, a load balancing, and QoS per-flow me-
tering solutions for this network topology are detailed in
Subsections 4.2, 4.3, and 4.4, respectively.

4.1 Network Topology
Figure 8 shows the network topology used for this case

study scenario. It represents the internal network of an orga-
nization, where servers and client nodes are located far from
each other (e.g. in separated buildings). The“long-distance”
connection between the sites is via two links of 10 Mbps each,
while all the other local connections are 100 Mbps. On the
server side, the OpenFlow border switch acts as a border
router element: it is responsible for handling connection re-
quests coming from the clients, and redirecting them to the
appropriate internal server. On the client side, the Open-
Flow client switch is used to interconnect all clients in a star

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

37

Server 0

Server 1

OpenFlow
border switch

OpenFlow
aggregation switch

OpenFlow
client switch

OpenFlow
QoS controller

OpenFlow
learning controller

Client 0

Client N

…

100Mbps
100

Mb
ps

10Mbps

100Mbps

10Mbps

Figure 8: The network topology for the case study scenario.

topology. Between these two switches, there is the OpenFlow
aggregation switch, located at the border of the client side
and used to provide long-distance improved communication.
The default learning controller is used to manage the client
switch, whereas the new OpenFlow QoS controller is used
to manage the other two switches. The latter controller im-
plements some QoS functionalities exploiting OpenFlow 1.3
features, as described in the following subsections.

For this case study scenario, a total number of 4 client
nodes was used during simulations. Each client opens a
single TCP connection with one of the 2 available servers,
and sends packets in uplink direction as much as possible,
trying to fill the available bandwidth. TCP segment size is
set to 1400 bytes and the length of the simulation is set to
100 seconds. The ns-3 simulation scripts for this case study
scenario are available under the examples/qos-controller/
directory at the OFSwitch13 source code.

4.2 Link Aggregation
The link aggregation can be used to combine multiple net-

work connections in parallel in order to increase throughput
beyond what a single connection could sustain. To imple-
ment the link aggregation, the OpenFlow group table can
be used to split the traffic.

OpenFlow groups were introduced in OpenFlow 1.1 as a
way to perform more complex operations on packets that
cannot be defined within a flow alone. Each group receives
packets as input and performs any OpenFlow actions on
these packets. The power of a group is that it contains sep-
arate lists of actions, and each individual action list is re-
ferred to as an OpenFlow bucket. There are different types
of groups, and the select group type can be used to per-
form link aggregation. Each bucket in a select group has
an assigned weight, and each packet that enters the group
is sent to a single bucket. The bucket selection algorithm
is undefined and is dependent on the switch’s implementa-
tion (the ofsoftswitch13 library implements the weighted
round robin algorithm).

In the network topology, the QoS controller configures
both the border and the aggregation switches to perform link
aggregation over the two narrowband long-distance connec-
tions, providing a 20 Mbps connection between servers and
clients. Each OpenFlow bucket has the same weight in the

 0

 10

 20

 30

 0 10 20 30 40 50 60 70 80 90 100

N
et

w
or

k
th

ro
ug

hp
ut

 (M
bp

s)

Simulation time

With link aggregation
Without link aggregation

Figure 9: Link aggregation mechanism.

select group, so the load is evenly distributed over the links.
Figure 9 shows the network aggregated throughput, mea-

sured at the aggregation switch, for simulations with and
without link aggregation. In the case of no link aggregation,
only one of the two long-distance links are used, limiting
the available bandwidth to 10 Mbps. With the link aggre-
gation, TCP connections can fill all the available bandwidth
for both links, coming to 20 Mbps throughput.

4.3 Load Balancing
A load balancing mechanism can be used to distribute

workloads across multiple servers. Among many goals, it
aims to optimize resource use and avoid overload of any
single server. One of the most commonly used applications
of load balancing is to provide a single Internet service from
multiple servers, sometimes known as a server farm.

In the network topology, the OpenFlow QoS controller
configures the border switch to listen for new requests on
the Internet Protocol (IP) and port where external clients
connect to access the servers. The switch forwards the new
request to the controller, which will decide which of the in-
ternal servers must take care of this connection. Then, it
install the match rules into border switch to forward the
subsequent packets from the same connection directly to the

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

38

 0

 10

 20

 30

 0 10 20 30 40 50 60 70 80 90 100

Se
rv

er
 lo

ad
 th

ro
ug

hp
ut

 (M
bp

s)

Simulation time

Server 0
Server 1

Figure 10: Server load balancing mechanism.

chosen server. All this happen without the client ever know-
ing about the internal separation of functions.

To implement this load balancing mechanism, the QoS
controller depends on the extensible match support intro-
duced in OpenFlow 1.2. Prior versions of the OpenFlow
specification used a static fixed length structure to specify
matches, which prevents flexible expression of matches and
prevents the inclusion of new match fields. The extensible
match support allows the switch to match Address Resolu-
tion Protocol (ARP) request messages looking for the server
IP address and redirect them to the controller, which will
create the ARP reply message and send it back to the net-
work. The set-field action is used by the border switch to
rewrite packet headers, replacing source/destinations IP ad-
dresses for packets leaving/entering the server farm.

Figure 10 compares the server load balancing in terms
of data arrival throughput from uplink TCP connections.
In this case study, the QoS controller uses the round robin
algorithm to perform load balancing among the two available
servers, redirecting half of TCP connections to each one.
The link aggregation was enabled during the simulation.

4.4 Per-Flow Meters
OpenFlow meter table, introduced in OpenFlow 1.3, en-

ables the switch to implement various simple QoS opera-
tions. A meter measures the rate of packets assigned to it
and enables controlling the rate of those packets. The meter
triggers a meter band if the packet rate or byte rate passing
through the meter exceeds a predefined threshold. If the
meter band drops the packet, it is called a rate limiter.

To illustrate the meter table usage, the OpenFlow QoS
controller can optionally limit each connection throughput
to a predefined data rate threshold, installing meter rules at
the border switch along with the load balancing flow entries.

Figure 11 compares the smoothed throughput of all 4 TCP
connections for simulations with and without per-flow meter
entries. The link aggregation was enabled during the sim-
ulation, and all meter bands were configured to limit each
individual connections at 1 Mbps. It is possible to observe
that TCP connection throughput grows up to the available
bandwidth for simulations without per-flow meter entries
(near 5 Mbps for each connection). With meter entries, the
throughput of all TCP connections is limited to 1 Mbps, re-
gardless of the available bandwidth.

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100

TC
P

co
nn

ec
tio

n
th

ro
ug

hp
ut

 (M
bp

s)

Simulation time

With meter entries
Without meter entries

Figure 11: Per-flow metering mechanism.

5. CONCLUSIONS AND FUTURE WORK
SDN represents an important paradigm shift that will en-

able future networks to be more simple and flexible. Tar-
geting scientific research in this area, this paper introduced
the OFSwitch13: a module to enhance the ns-3 simula-
tor with OpenFlow 1.3 technology support. The module
design and implementation were presented in the paper,
highlighting the available features and listing current lim-
itations. The OFSwitch13 module is available as free soft-
ware, and its usage requires minimal changes to the ns-3
source code. Interested users can visit the project homepage
at http://www.lrc.ic.unicamp.br/ofswitch13, which contains
links to the code repository and module documentation.

A case study scenario was used to illustrate some of the
OpenFlow 1.3 module features: group tables used to per-
form link aggregation; extensible match support used for
fine-grained packet matching, server farm implementation,
and load balancing solution; and meter table used for im-
plementing QoS rate-limiting mechanism. The OFSwitch13

module was also used for ns-3 simulations integrating Open-
Flow and Long Term Evolution (LTE) networks, which are
described in another work of the same authors [1].

As future work, it is intended to improve the module with
new features to overcome current limitations. Especial at-
tention will be dedicated to the support of auxiliary con-
nections and multiple controllers, which are considered as
important features of OpenFlow version 1.3. In addition, it
is intended to create a set of ns-3 tests to endorse the mod-
ule validation, and also to evaluate its scalability in terms
of the size of the simulated topology.

As OFSwitch13 is free software, contributions can also be
made by interested developers and users. Note that the
module offers support to OpenFlow 1.3 as a result of the of-
softswitch13 library datapath implemented version. Once
the library is updated to a newer OpenFlow protocol ver-
sion (the latest version is 1.5.1 [18]), it would be possible to
update de module to support the recent features.

6. ACKNOWLEDGMENTS
The authors would like to thank Vı́tor Marge Eichem-

berger and Eder Leão Fernandes for their contributions to
module design and implementation. They also would like to
thank Capes and CNPq - Brazil, for the financial support
(process 118198/2014-9).

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

39

7. REFERENCES
[1] L. J. Chaves, V. M. Eichemberger, I. C. Garcia, and

E. R. M. Madeira. Integrating OpenFlow to LTE:
some issues toward Software-Defined Mobile Networks.
In International Conference on New Technologies,
Mobility and Security (NTMS), pages 1–5, Paris,
France, July 2015.

[2] E. L. Fernandes and C. E. Rothenberg. OpenFlow 1.3
software switch. In Brazilian Symposium on Computer
Networks and Distributed Systems (SBRC), pages
1021–1028, Florianópolis, Brazil, May 2014.

[3] R. R. Fontes, S. Afzal, S. H. B. Brito, M. A. S. Santos,
and C. E. Rothenberg. Mininet-WiFi: Emulating
software-defined wireless networks. In International
Conference on Network and Service Management
(CNSM), pages 1–6, Barcelona, Spain, November
2015.

[4] GSoC 2010 OpenFlow. Available at:
http://www.nsnam.org/wiki/GSOC2010OpenFlow.

[5] IEEE Standard for Local and metropolitan area
networks: Media Access Control (MAC) Bridges.
IEEE Std 802.1D-2004 (Revision of IEEE Std
802.1D-1998), IEEE Computer Society, 2004.

[6] Mininet: An instant virtual network on your laptop
(or other PC). Available at: http://www.mininet.org.

[7] ns-3 Network Simulator. Available at:
http://www.nsnam.org.

[8] OpenFlow 1.3 module for ns-3. Available at:
http://www.lrc.ic.unicamp.br/ofswitch13.

[9] OpenFlow 1.3 module for ns-3 API documentation.
Available at: http://www.lrc.ic.unicamp.br/
ofswitch13/doc/html/index.html.

[10] OpenFlow 1.3 software switch. Available at:
http://cpqd.github.io/ofsoftswitch13/.

[11] OpenFlow 1.3 software switch for ns-3. Available at:
https://github.com/ljerezchaves/ofsoftswitch13.

[12] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: Enabling innovation in campus
networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, April 2008.

[13] The NetBee library. Available at:
http://www.nbee.org/doku.php.

[14] Open Networking Foundation. Software-Defined
Networking: The new norms for networks. White
Paper, 2012.

[15] Open Networking Foundation. OpenFlow enabled
mobile and wireless networks. Solution Brief, 2013.

[16] OpenFlow 0.8.9. OpenFlow switch specification v0.8.9.
ver. 0.8.9, Open Networking Foundation, 2008.

[17] OpenFlow 1.3.5. OpenFlow switch specification.
OpenFlow Spec v1.3.5, Open Networking Foundation,
2015.

[18] OpenFlow 1.5.1. OpenFlow switch specification.
OpenFlow Spec v1.5.1, Open Networking Foundation,
2015.

[19] F. Risso and M. Baldi. NetPDL: An extensible
XML-based language for packet header description.
Computer Networks, 50(5):688–706, 2006.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

40

Analysis of Programming Language Overhead in DCE

Jared S. Ivey
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA, USA

j.ivey@gatech.edu

George F. Riley
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA, USA

riley@ece.gatech.edu

ABSTRACT
In the context of network simulation, directly executing the
code for new protocols and applications can add a sense of
realism to the simulation while saving time that would have
been required for development and validation of sufficiently
representative models. Direct Code Execution (DCE) in ns-
3 provides this functionality for debugging and analyzing
new network applications directly in simulation. However,
DCE currently requires that these applications are executed
as native code that has been compiled from source code writ-
ten in C or C++. This work exploits the fact that languages
such as Python and Java launch their applications through
native code that ultimately translates their source code into
instructions that the underlying system understands. The
efforts of this study provide a framework for allowing appli-
cations written in Python or Java to be executed within the
simulated environment similarly to how DCE currently al-
lows applications written in C or C++ to be introduced into
simulation. This framework is tested on multiple simulated
topologies for a variety of applications, and its overhead is
examined in the context of memory usage and wallclock ex-
ecution time.

CCS Concepts
•Computing methodologies → Discrete-event simu-
lation; Simulation evaluation; •Software and its engi-
neering → Object oriented languages;

Keywords
Network Simulation, ns-3, Direct Code Execution, Program-
ming Languages, C/C++, Java, Python

1. INTRODUCTION
The field of network communications is constantly evolv-

ing and expanding with the introduction of new technologies
and protocols aimed at providing greater quality, resiliency,
and security to the vast amounts of data traversing current

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WNS3, June 15-16, 2016, Seattle, WA, USA
c© 2016 ACM. ISBN 978-1-4503-4216-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2915371.2915383

networks. In this ever-changing field, modeling and sim-
ulation provide an avenue for examining the traffic within
new or existing network topologies. In simulating a net-
work, characteristics and metrics of the topology may be
derived without interfering with the existing framework or
incurring an immediate hardware or software cost. Popular
network simulators such as ns-3 are effective tools for study-
ing these network behaviors. However, adequate coverage of
new network programs and protocols within simulation re-
quires that models of these new applications are ported by
developers into the simulators. These efforts require a sig-
nificant amount of time in terms of simply writing the code
but also in testing its validity against real-world behaviors.
Instead, a mechanism for directly deploying real-world net-
work applications within a simulated environment can al-
leviate these issues while supplying an air of realism. The
Direct Code Execution (DCE) framework in ns-3 can deliver
this functionality. It allows real-world protocols and applica-
tions to be installed and executed directly on the simulated
nodes of a topology created in ns-3.

The concept of direct code execution is primarily con-
strained to network applications and protocols written in
the programming language of the employed simulator. For
DCE in ns-3 and some similar network simulators, prior
work has demonstrated their effective use for applications
written in C or C++, which is conveniently accomplished
because these simulators are written in C++. The Python-
based flow simulator fs includes extensions that can connect
it to external applications simply because those applications
are also written in Python[1]. The efforts of this work in-
troduce a framework for allowing DCE to accommodate and
execute code for network applications written in languages
other than C or C++, specifically Python and Java. The
executables that launch applications written in these lan-
guages are simply native code binaries that are built from
C/C++ source code. This work exploits this fact in order
to launch Python and Java applications within the DCE en-
vironment, allowing their source code to be interpreted line
by line from within the context of the simulation. In this
way, entirely new sets of network applications can be con-
veniently examined through the DCE environment without
source code modification or the need for a translated port
to the languages that DCE understands.

The remainder of this paper is organized into the follow-
ing sections. Section 2 briefly describes ns-3 and provides
detailed information on DCE. The programming languages
C/C++, Python, and Java as well as considerations required
for their usage in DCE are discussed in section 3. Section

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

41

4 details the applications, topologies, and experiments ex-
amined for each programming language. The results are ex-
amined and discussed in section 5. Section 6 outlines prior
work and use cases of DCE and similar libraries. Section
7 concludes the work and provides potential directions for
future research.

2. NETWORK SIMULATOR NS-3
This work uses the network simulator ns-3, a popular dis-

crete event network simulator written in C++. It is used
for a variety of educational and research-oriented purposes
within the field of computer networking. ns-3 provides sim-
ulation and emulation frameworks for developing network
topologies and analyzing their network characteristics. In
creating network simulations, users of ns-3 have the choice
of accessing its libraries by programming in C++ or through
Python bindings. Stock or user-created applications may be
installed on the nodes of simulated topologies in ns-3, gener-
ating and monitoring packets within the simulated network.
Data may be collected from the artifacts of these network
simulations in order to better understand and gauge the per-
formance of existing and proposed real-world networks.

2.1 Direct Code Execution
DCE is an additional module for ns-3 that can test real-

world network applications within the ns-3 environment. It
provides the capability to execute userspace and kernelspace
network protocols and applications directly within an ns-3
simulation to provide additional realism to the simulated
network. These real-world applications are installed on spec-
ified nodes within the simulated topology in a similar man-
ner to the stock applications in the ns-3 baseline. The ap-
plications themselves typically require no modifications, but
they must be rebuilt such that they can act as dynamic bi-
naries rather than static executables. This procedure simply
requires that some additional configuration flags are added
to the compile and link instructions. Once installed on a
node, the applications can interact with the rest of the sim-
ulated network through either the ns-3 simulated network
stack or the Linux kernel stack. DCE interacts with the in-
stalled binary similarly to how an actual operating system
would. DCE applications are executed within the simulated
environment under a single-process model such that all ap-
plications inside their own simulated processes are managed
by a single process on the underlying system. This single-
process approach provides a convenient debugging alterna-
tive to complex, distributed debuggers.

DCE is composed of three layers: the core, the kernel, and
a POSIX layer. The core layer provides virtualization mech-
anisms to coordinate the actions of the simulated processes
within the context of the ns-3 event scheduler. At this layer,
global variables are loaded in physical pages on the under-
lying single process to be shared by the multiple simulated
processes. Threads, stack space, and the heap for each par-
ticular process are managed in the core layer as well. The
kernel layer connects the real-world Linux TCP/IP stack to
the simulated physical layer (L2) of ns-3. Traffic from the in-
stalled applications can then traverse this hybrid simulated
stack from application-level socket function calls.

The POSIX layer of DCE replaces the real GNU C Li-
brary (glibc), the standard library for the C programming
language. Calls to glibc functions are caught by this layer
to determine how they should be handled. In many cases,

DCE does not need to manage the interactions and results of
certain glibc calls within the context of the simulation. Calls
to functions in string.h or math.h, for example, can sim-
ply be passed to the glibc of the underlying system. Time-
related functions return information about the simulated
time rather than the wallclock time. Socket function calls
are effectively wrappers to the simulated sockets in relation
to the ns-3 stack. Subprocess and threading functions are
also handled by this layer to appropriately manage their con-
texts. Local files are managed in the POSIX layer relative
to specific file space for each node running DCE-configured
applications. The file space holds all output generated by
the application and may also be used to hold any runtime
file dependencies[2, 3, 4].

3. PROGRAMMING LANGUAGES
This section provides a simple historical and technical

overview of the programming languages examined in this
work. It begins by examining the languages for which DCE
was originally intended to be compatible, namely C and
C++. Through extensions for DCE performed in this work,
two additional languages have been made operable within
the ns-3/DCE environment. The interpreted language Python
and its predominant runtime library CPython are described.
Additionally, the Java programming language and its run-
time environment, the Java Virtual Machine (JVM), are dis-
cussed.

3.1 C/C++
The C programming language is considered one of the

first mainstream, general-purpose programming languages.
It was developed by Dennis Ritchie from 1969 to 1973 at Bell
Telephone Laboratories (now AT&T Bell Labs). It is a stat-
ically typed, procedural language that has been adopted for
use in a variety of systems. It is one of the “lower” high level
languages available with many newer languages, including
C++, Java, and Python, employing it as an intermediary at
some point in their respective compiler/runtime pipelines.
As stated in section 2.1, the standard library for the C pro-
gramming language, referred to as glibc, provides a substan-
tial level of functionality. String and memory manipulation,
mathematical functions, system time information, file and
socket handling, parallel processing, and a variety of other
capabilities are available in glibc.

The C++ programming language, created by Bjarne Strous-
trup at AT&T Bell Labs in 1983, was originally intended as
an object-oriented enhancement to C. In addition to simi-
lar features as C, C++ enables class creation complete with
abstraction, encapsulation, inheritance, and polymorphism,
templates, and operator overloading. A standard API is pro-
vided by the C++ Standard Library, which glibc currently
supports. Both C and C++ are compiled to native code that
an underlying computer system can recognize equivalently.
This characteristic results in them being effectively identical
from the viewpoint of the DCE environment.

To operate as DCE applications, programs written in C or
C++ must be recompiled such that DCE recognizes them as
dynamic libraries rather than static executables. In this way,
DCE can load the main function of a particular program as if
it was just another addressed symbol in the memory space of
the dynamically loaded library. Compiling the source code
into position-independent code with the fPIC flag allows it
to be loaded similarly to a shared object library. Subse-

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

42

quently, linking with pie produces a position-independent
executable and rdynamic ensures that all of its symbols will
be loaded into the dynamic symbol table. Regarding oper-
ability within DCE, the addition of these flags to the compile
and link steps is generally the only modification required for
building a target application for execution in DCE. However,
additional considerations may be necessary if certain func-
tions used by the application are not currently implemented
in the glibc coverage of the DCE baseline.

3.2 Python
The Python programming language is a multi-paradigm,

general-purpose, high-level language that aims to be more
readable than other general-purpose, object-oriented lan-
guages, such as C++ or Java. It was developed by Guido
van Rossum and initially released in 1991. Today, program-
ming in Python is available in two versions: Python 2 (most
recently 2.7) and the backwards-incompatible Python 3 (cur-
rently 3.5). The reference implementation for both versions
is CPython, whose source is written in C. CPython acts as
a source code interpreter more so than a compiler. When
Python programs (or scripts) are provided as inputs to the
python command, the code will be read and directly exe-
cuted by the Python runtime. This fact suggests that, with
the proper configuration, the python command can be built
to operate in the DCE environment. In this way, when it
is provided a Python script, the source lines will be inter-
preted, and the underlying glibc calls can be handled by
DCE. The focus of this work is the CPython implementa-
tion of Python 2.7.

The CPython source code did not require any modifica-
tions. In building it into the python executable and libraries,
it required the typical flags such that DCE could recognize
and load it, i.e. fPIC for compile and pie and rdynamic

for linking. Similarly to glibc, Python is equipped with the
Python Standard Library (PSL), a set of objects and APIs
written in Python that provide a standardized baseline of
Python programming capabilities. Because the PSL is writ-
ten as Python scripts and not a “built” library in the same
sense as glibc, it is loaded in a different way. A Python script
is generally “imported” into the Python runtime through the
python command. In the context of DCE, this step occurs
after the python executable is loaded and executed. In this
way, the effective kernel space has transitioned into simula-
tion. At this point, the location of the user-defined Python
application and baseline Python scripts in the PSL such as
os, socket, and string must be placed where the DCE-
enabled node can “see” them. To make the files visible to
the simulated node, the user-defined script is copied into the
filespace for the node, and the PSL is symbolically linked
under this filespace as well.

Integrating CPython into the DCE framework is relatively
straightforward and follows the typical process for installing
and testing new programs on DCE-enabled nodes in an ns-
3 topology. Code within new programs that is currently
not recognized by the POSIX layer of DCE can be marked
to use the system glibc library with the NATIVE macro. A
number of math.h functions are needed within the Python
library such as exp, log, pow, __isnan, __isinf, etc. Some
pthread attribute functions are set to execute natively as well
such as pthread_attr_init, pthread_attr_setscope, and
pthread_attr_destroy. Since these functions only handle
pthread attributes and not the actual threads, they can be

manipulated natively with relatively low risk. For a function
that cannot be run natively, the DCE macro can be utilized to
either override the function behavior or wrap it within the
context of the simulation. Conveniently, the Python library
required relatively few functions needing the DCE macro.
One example is sendfile which is intended to move data
between file descriptors more quickly than a combination of
read and write. In the context of simulation, this efficiency
is less of a requirement, and as such, its DCE version can
simply be the read-write combination. Another function
– __rawmemchr – is only available in the binary standard
rather than the source standard in the glibc base. Hence,
DCE cannot recognize it natively. Instead, __rawmemchr

must be forward-declared and wrapped around a simpler call
to strchr as a workaround. Furthermore, a patch providing
epoll support is incorporated as well from [5].

3.3 Java
Java is a general-purpose, object-oriented programming

language similar in some ways to C++. It was created by
James Gosling and released in 1995 through Sun MicroSys-
tems (acquired by Oracle). Java applications are compiled
but not to native code. Instead, they are converted to Java
bytecode which can be executed on the JVM. The JVM
along with the standard Java Class Library (JCL) com-
prises the Java Runtime Environment (JRE) which provides
the APIs and executable environment for running Java pro-
grams. When running a compiled Java program, the JRE
will initialize the environment, and then the JVM will in-
terpret the provided bytecode into native code that the un-
derlying system can understand. One version of the JVM,
HotSpot, provides performance optimizations such as adap-
tive compilation as well as efficient heap management and
garbage collection. Development of Java programs is en-
abled through the Java Development Kit (JDK), which al-
lows the applications to be compiled and packaged.

The OpenJDK library, an open-source implementation of
the Java Standard Edition (SE) Platform, provides a config-
urable mechanism to build an interface between DCE and
the Java programming language. The JRE and JDK pro-
vided by Oracle is only distributed as binaries such that
they are only available in specific build configurations. In
contrast, OpenJDK is available as source code that can be
built – compiled and linked – with the position-independent
and dynamic flags that allow DCE to load its programs into
simulation. The “program” of specific interest is the java

command. The source code that produces the command
and the JRE and JVM libraries that it calls to configure
and execute the Java environment are all written in C. In
this way, applications written in Java that are compiled to
class files that the java command will accept will ultimately
be interpreted to glibc symbols. These symbols can then be
loaded and executed by the DCE environment. The imple-
mentation of OpenJDK used by this work is OpenJDK 8.

The JRE, designed around the JVM, requires additional
considerations beyond simply addressing glibc symbols that
the DCE baseline has yet to include. This process did
require the inclusion of additional symbols, some related
to determining the process location for newly created Java
threads within virtual memory. However, accommodating
the JVM also needed to address determining networking
interfaces for the DCE-enabled nodes. Under the baseline
OpenJDK source code, information about network interfaces

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

43

and next-hop routes for a system running the JVM is gath-
ered from the /proc/net/if_inet6 and /proc/net/ipv6_route

files, respectively. (The JVM handles translating addresses
between IPv4 and IPv6 schemes.) The information in these
files is relatively easy to gather. However, an interesting is-
sue presents itself in the form of buffer limitations for stan-
dard I/O methods such as sscanf within the DCE environ-
ment. Limitations are implicitly imposed by DCE on the
applications it manages simply due to the nature of handling
virtual kernel space inside of a simulation. To model the en-
vironment the JVM expects as closely as possible, filespace
for a DCE-enabled node is created with the /proc/net direc-
tory in place. However, to accommodate the noted buffer is-
sues, modified versions of the if_inet6 and ipv6_route files
are written that only hold the information that the JVM
needs. For if_inet6, this information is the hexadecimal
representations of the IPv6 addresses for a node as well as
their indexes and device names. The ipv6_route file that
is responsible for configuring routes for the node holds the
base IPv6 addresses as 32-character hexadecimal values, the
hexadecimal prefix length (similar to the IPv4 subnet mask),
configuration flags, and the device names.

4. EXPERIMENTS
This section describes three sets of experiments that have

been performed to confirm – and in the case of C/C++
applications reaffirm – the relative range of functionality
DCE provides for a variety of applications. Since both C
and C++ programs would compile to roughly similar native
code representations, only C programs have been examined.
Alternatively, the choice of compiler between the GNU C
Compiler (GCC) and the Clang frontend for LLVM is in-
troduced for examination to gauge potential differences in
compiler optimizations. In one set of experiments, a single
node is tasked to perform some simple applications written
in each language. In the second set of experiments, a sim-
ple dumbbell topology tests basic networking functionality
for client/server-style applications written in each language.
The final experiments task a host to ping every other end
host in a ring topology multiple times to examine the scal-
ability of the simulations when handling multiple DCE ap-
plications. All experiments have been performed using the
baseline ns-3.24.1 and a modified version of DCE 1.7 that
implements the described updates from section 3. Perfor-
mance is examined against the unoptimized builds of ns-3
and DCE as they are the defaults and typically provide the
lowest risk for interference with DCE applications.

4.1 Performance Benchmarks
The first set of experiments installs programs written in C,

Java, and Python on a single DCE-enabled node. These pro-
grams provide computational workload through some sim-
ple algorithms to confirm basic language capability in terms
of data types and operators. They also test simple func-
tionality in threading and local (loopback) networking, two
relatively common features in networking applications.

4.1.1 Matrix Multiplication and Digits of Pi
The matrix multiplication applications for each language

create a 1000-by-1000 array of integers and populate all
columns in each row with the row index, e.g. array[0] =
[0 0 ... 0], array[1] = [1 1 ... 1], etc. The program then
performs matrix multiplication of the array with itself and

inserts the corresponding values in a separate 1000-by-1000
array. Although it is not algorithmically complex, the ma-
trix multiplication example demonstrates successful mem-
ory allocation, basic operand functionality, and simple con-
trol statement behavior in each language within the context
of DCE. Furthermore, while the matrix multiplication ap-
plications in C and Java simply use nested for loop con-
structs, the Python application administers array allocation
and multiplication “Pythonically” using the following con-
struct:
[[x for y in range(0,1000)] for x in range(0,1000)]

An application to display 100,000 digits of π is written
for each language based on the spigot algorithm in [6]. This
application tests control statements similarly to the matrix
multiplication program. However, additional mathematical
complexity is administered, and string formatting is tested
as well.

4.1.2 Simple Threading
A threaded application is examined to confirm success-

ful import and usage of threads in Python and Java. The
application written for this benchmark creates 500 threads.
When each thread executes, it simply iterates 1,000 times
printing a string. Threading capabilities using pthreads in C
are already available in the DCE baseline. Since Python and
Java threading functionality ultimately encapsulates calls to
pthreads methods, it is expected that similar functionality
can be achieved in these languages, most likely with some
processing overhead. Java implements a Thread class for
handling thread-based parallelism. In Python, threads are
created and managed by importing the threading library.

4.1.3 Local Ping
An application to test local networking functionality per-

forms an Internet Control Message Protocol (ICMP) echo
request 1,000 times to the localhost (127.0.0.1) address and
determines if ICMP echo replies are returned. For C, the
source code for the original PING application[7] is recom-
piled for DCE. In Java, an InetAddress object is created
using the getLocalHost method. Then, the isReachable

method is called to determine the reachability of the ad-
dress. For the Python application, ping functionality uses
a library that mimics the C version of PING through raw
sockets sending ICMP echo requests[8].

4.2 Simple Topology
A simple dumbbell topology is constructed to confirm

successful networking capabilities are achieved in C/C++,
Java, and Python. The dumbbell consists of two inner nodes
acting as routers that are connected by a point-to-point link
with a data rate of 100Mbps and a speed-of-light delay of
1ms. The outer 2 nodes each connect to one router with a
10Mbps link with 1ms delays. Additionally, network inter-
faces for the links are configured on different 255.255.255.0
subnets (CIDR /24) to confirm packet transmission occurs
through successful L3 routing and not simply ARP requests.

Both end hosts in the described topology are enabled for
installation of DCE applications. One end host is installed
with a DCE application that acts as a client pushing data
to the other end host. The client will create a TCP socket,
establishing a connection with the other end host. Follow-
ing successful connections, the client allocates 65,536 bytes
for transmission. This amount is selected to ensure that

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

44

10Mbps, 1ms delay10Mbps, 1ms delay 100Mbps, 1ms delay

192.168.1.1/24 192.168.1.2/2410.1.1.1/24 10.1.1.2/24 10.1.2.1/24 10.1.2.2/24

DCE: client
ns-3: PacketSink

DCE: server-client

Figure 1: The simple dumbbell topology is used to confirm successful socket handling and data transmission
and reception for C/C++, Java, and Python. The topology consists of 4 nodes connected linearly with the
outer 2 nodes acting as end hosts and the inner 2 acting as routers.

the socket connection will accommodate multiple segments
(based on the ns-3 default segment size of 536 bytes) without
encountering congestion control, a process of the simulated
stack rather than the examined program. These allocated
bytes will be transmitted iteratively multiple times to exam-
ine the processing overhead of socket writes for the different
programming languages. Upon completion of the specified
number of transmission iterations, the client program will
exit.

At the other end host, a hybrid server/client program is
installed. The server aspect of the program binds a TCP
socket to the host and sets it to listen on the same port
that the client on the other host will attempt to connect.
When the client makes a connection to the server, the server
program will accept the connection and reads bytes from the
socket until the client closes the connection. Upon closing
the initial socket connection, the server program will store
the number of received bytes, increment the port number,
and relay the same amount of bytes back to the first end
host on a new TCP connection. Ready to accept packets on
this new port is an ns-3 PacketSink application ready to call
the Simulator::Stop method when it receives the expected
number of bytes. The server-turned-client will iteratively
transmit 1,024 bytes until it has transmitted as many bytes
as it originally received.

4.3 Ping Ring
A ring topology is simulated to examine the scalability of

ns-3 when it must handle multiple DCE applications. The
ring consists of a variable number of routers connected to one
another in a circle. Point-to-point links connect the routers
with a data rate of 100Mbps and 1ms delays. Each router is
connected to an end host through a separate point-to-point
link with 10Mbps rates and 1ms delays. Network interfaces
for all links are configured similarly to those in the dumb-
bell topology using different 255.255.255.0 subnets (CIDR
/24) to again confirm packet transmission occurs through
successful L3 routing and not simply ARP requests.

Within the topology, one end host is selected for DCE
application installations. The applications are the same ap-
plications described in 4.1.3. However, instead of testing for
the localhost address, the end host attempts to reach every
other end host in the topology. Pings are sent 1,000 times for
each end host to inflate the amount of processing required
for each DCE application.

5. RESULTS AND DISCUSSION
All of the described experiments have been performed on

a system running 64-bit Linux Mint 17.3 with a 2.5GHz
dual-core Intel i5-3210M processor with 8GB of memory.
Simulations are executed 10 times for each set of parame-

100Mbps, 1ms delay
10Mbps, 1ms delayDCE: ping all hosts

Figure 2: The ring topology is used to examine the
scalability of ns-3 simulations when handling mul-
tiple DCE applications. The network is comprised
of a variable number of router nodes connected in a
ring with an end host connected to each one. One
host is tasked to ping every other end host a specific
number of times.

ters to obtain the average total memory usage in MB and
average wallclock execution time. Gathering memory usage
is accomplished through the ps_mem Python utility, which
determines the core memory usage for a running process[9].
During each simulation run, this tool is called periodically to
record the maximum usage realized by the ns-3/DCE simu-
lation at any point in execution. This statistic is important
as insufficient memory any time during the life of a program
would inhibit successful simulation completion.

The benchmark results are shown in Figures 3 and 4 along-
side results of each application executed natively in the real
Linux environment rather than the ns-3/DCE simulated en-
vironment. (The local ping benchmarks are not compared
against native versions due to timing differences in the ap-
plication designs in each programming language.) Java is
run both regularly and with the -Xint flag to allow it to run
in interpreted mode without some of the“performance bene-
fits”of the HotSpot JVM. The programs compiled with GCC
and Clang required roughly the same amount of memory and
produced similar time results. Based on the programs used
in the benchmark simulations, the resource results are as ex-
pected. Most of the variables in the C programs had been al-
located with stack memory and relatively few variables were
utilized, providing little room for any significant compiler
optimizations. Interestingly, the Clang-compiled executable
for matrix multiplication produced a slight timing improve-
ment over its GCC-built counterpart. This result may sug-
gest that Clang realized some compiler optimizations such as
loop unrolling that GCC may not have attempted. Even so,

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

45

the timing discrepancies between the two compiler versions
are still relatively negligible when compared to the Python
and Java versions of the applications. Based on the notion
that both Python and Java are effectively invoking C/C++
calls within their underlying libraries, a certain amount of
computational overhead is expected. In most of the bench-
mark tests, a tradeoff appears between lower memory us-
age with higher wallclock times in Python versus higher re-
source requirements with quicker execution performance in
Java. The printing of the digits of π as well as the threading
test produced a relatively significant discrepancy between re-
source usage and execution timing. However, this tradeoff is
actually not realized for the matrix multiplication program.
This result suggests that dynamically typed list allocation
and assignment for the Python arrays incurs both a resource
and performance cost compared to the statically typed in-
teger array in Java. Additionally, within the DCE environ-
ment, the “performance benefits” of the HotSpot JVM ap-
pear to provide some level of speed-up to interpreted-only
Java. However, these benefits come with increased memory
usage in some cases. Threading appears to be one of the
few cases that benefit in terms of memory and time from
full access to the JVM. The local ping results are relatively
flat compared to the other benchmarks most likely imply-
ing that the overall program ultimately lacked a significant
amount of processing.

Simple dumbbell topology results are graphed in Figures
5 and 6. For the applications written in C, memory remains
approximately constant as address space is simply and ex-
plicitly reused while performance intuitively requires more
processing time as more processing is required. The Java
versions of the programs had to be run in interpreted mode
in order to complete. Full usage of the HotSpot JVM in this
context is prevented due to its alternation between periods
of optimization and deoptimization for profiling and debug-
ging. In testing the framework, it was determined that this
feature actually presented conflicts for the addressable space
that DCE maintains. Again, an overhead is noted for the
interpreted Java and Python programs compared to the C
versions. However, interpreted Java memory usage appears
to approach a limit suggesting potential memory reuse and
adequate garbage collection. On the other hand, Python
continues to require more memory with more transmission
iterations. One possible reason behind this result may be
that Python will continue to dynamically allocate memory
as its applications transmit and receive data without reach-
ing a point where garbage collection is deemed appropriate
by the interpreter.

Figures 7 and 8 display the results of the ring topology
experiments. Starting multiple ping applications for the na-
tive code did not require significant overhead in terms of
memory or time. In this set of experiments, Python pro-
duced wallclock times between Java and interpreted-only
Java. However, its memory usage was significantly lower
than the dumbbell topology results. The Java program ben-
efited from the -Xint flag in this set of experiments, produc-
ing lower wallclock times than the Python version with a
slight memory usage improvement over the full JVM. How-
ever, both experimental runs of the Java program produced
significantly higher resource usage than the other programs.
This memory usage trend may have been a consequence of
starting and stopping the JVM multiple times.

During testing of the OpenJDK within DCE, multiple ap-

plications running simultaneously within the limited address
space of DCE made it difficult for the JVM to find free space
for its code heap. Two Java applications running at the same
time as in the dumbbell topology experiments appeared to
be the stable limit while more than two simultaneous appli-
cations produced inconsistent successful results. DCE ap-
plications within the ring topology experiments were given
staggered start times such that one would complete before
another began. When Java applications had dedicated in-
dividual access to the Java runtime as in the ring topol-
ogy experiments, the JVM resources could be successfully
launched and deconstructed without interference. Testing
for potential solutions to the simultaneous usage issue is on-
going. However, sufficient use cases are available to advocate
for usage of the current framework.

6. RELATED WORK
DCE has previously been used in numerous experiments

to enhance the realism of network simulations. Demonstra-
tions of DCE in literature have primarily focused on the
fields of mobile and wireless networks where updated proto-
cols are introduced frequently as the technology improves.
Rather than constantly porting and modifying these pro-
cedures into simulation, it can be much quicker to simply
introduce these protocol implementations into simulation
via DCE. In [10], a comparison of the ns-3 Optimized Link
State Routing (OLSR) model with an actual OLSR dae-
mon in DCE uncovered deficiencies in both programs. Ad-
dressing tuning issues in the simulated model and the dae-
mon program allowed them to be updated to better fit the
OLSR RFC. Demonstrations of content-centric networking
(CCN) over mobile ad-hoc networks (MANETs) and multi-
path TCP over LTE and wireless in [11, 12] provide examples
of additional use cases for DCE that required no modifica-
tions to the original implementations. However, these ex-
amples are limited to software binaries that originated from
C/C++ source code whereas this work has provided a proof
of concept and framework for testing protocols in Java and
Python in addition to C/C++.

The rise of software-defined networking (SDN) in the net-
work communications field over the past few years has pro-
vided another valuable avenue for utilizing DCE. In separat-
ing the control and forwarding planes of a network, SDN em-
ploys a separate controller process for handling the routing
decisions of a network. These controller processes are im-
plemented as libraries, such as NOX (C++), POX and Ryu
(Python), Floodlight and OpenDaylight (Java), etc. NOX
and the Open vSwitch virtual switch kernel have already
been demonstrated successfully in [13] for use cases in both
wired and wireless networks. The framework discussed in
this work will surely benefit the testing of controller appli-
cations written for some of these other libraries as well.

The Open Network Emulator (ONE) [14] is another net-
work simulator providing direct code execution functional-
ity. It provides a compiler framework that converts real-
world network applications into modules that can be inte-
grated into simulated network stacks. The source code for
these applications requires no modification prior to compi-
lation within the ONE framework. Applications compiled
for ONE are built with LLVM into the LLVM intermediate
representation (IR)[15]. This notion provides the claim that
ONE modules can be language and architecture indepen-
dent. However, the published literature on ONE and its dis-

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

46

Figure 3: Performance benchmark total memory us-
age in MB for a single DCE-enabled node and native
equivalents for the various programming languages,
compilers, and configurations. All data have stan-
dard errors that are less than 2% of their respective
reported values.

Figure 4: Performance benchmark wallclock execu-
tion time for a single DCE-enabled node and native
equivalents for the various programming languages,
compilers, and configurations. All data have stan-
dard errors that are less than 2% of their respective
reported values except the GCC and Clang versions
of the simple thread test. Their standard errors are
6% of their reported values.

0 50 100 150 200 250
0

100

200

300

400

500

600

Number of Transmit Iterations

M
e

m
o

ry
 U

s
e

d
 (

M
B

)

Resource Usage of Dumbbell Topology

Python

Java -Xint

GCC

Clang

Figure 5: Total memory usage in MB for the simple
dumbbell topology for the programming languages,
compilers and configurations. Standard error bars
are displayed for each data point.

0 50 100 150 200 250
0

20

40

60

80

100

120

Number of Transmit Iterations

W
a

llc
lo

c
k
 T

im
e

 (
s
)

Realtime Performance of Dumbbell Topology

Python

Java -Xint

GCC

Clang

Figure 6: Wallclock execution time for the simple
dumbbell topology for the programming languages,
compilers and configurations. Standard error bars
are displayed for each data point and noted as neg-
ligible.

0 10 20 30 40 50
0

100

200

300

400

Number of Nodes

M
e

m
o

ry
 U

s
e

d
 (

M
B

)

Resource Usage of Ring Topology

Java

Java -Xint

Python

GCC

Clang

Figure 7: Total memory usage in MB for the ring
topology for the programming languages, compilers
and configurations. Standard error bars are dis-
played for each data point and noted as negligible.

0 10 20 30 40 50
0

50

100

150

200

250

Number of Nodes

W
a

llc
lo

c
k
 T

im
e

 (
s
)

Realtime Performance of Ring Topology

Java

Python

Java -Xint

GCC

Clang

Figure 8: Wallclock execution time for the ring
topology for the programming languages, compil-
ers and configurations. Standard error bars are dis-
played for each data point and noted as negligible.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

47

tributed descendant[16] only examine applications written in
C and C++. Based on the subprojects for LLVM[17], these
applications are most likely compiled with Clang. For other
languages, the DragonEgg plugin allows LLVM to interface
with GCC parsers. One such parser, GCJ[18], allows Java
source code to be compiled directly to native code. However,
it utilizes segmentation fault signals to determine the limits
of addressable memory, making it difficult to integrate with
DCE.

7. CONCLUSIONS AND FUTURE WORK
This work has described and analyzed a framework using

DCE for examining network applications written in Python
or Java within simulated topologies in ns-3. This frame-
work provides a convenient way to test entirely new sets of
applications written in Python or Java that were not previ-
ously compatible to the DCE environment. The framework
itself exploits the fact that Python and Java applications
are launched and translated ultimately via native code with
which DCE can interface. Parts of the underlying language
libraries that required modification for successful DCE inter-
action have been discussed. Multiple applications on topolo-
gies of varying complexity have been studied to confirm suc-
cessful operation of the framework. The resource usage and
wallclock execution time of multiple applications written in
C, Java, and Python have been gathered and studied to
gauge the overhead required to run these applications within
simulation.

Future work will continue to enhance the framework to
automate some of the discussed environment and library
modifications. Efforts to test SDN libraries such as POX
and Ryu within the DCE framework have already had pre-
liminary success. Testing will be expanded to determine
how well Java controller libraries such as Floodlight and
OpenDaylight integrate into the discussed framework. Fur-
thermore, attempts to address the GCJ issue discussed in
section 6 will continue in order to better gauge the benefits
and shortcomings of the described framework against simply
compiling the applications to native code.

8. REFERENCES
[1] M. Gupta, J. Sommers, and P. Barford. Fast, accurate

simulation for SDN prototyping. In Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking, HotSDN ’13, pages
31–36, New York, NY, USA, 2013. ACM.

[2] D. Camara, H. Tazaki, E. Mancini, T. Turletti,
W. Dabbous, and M. Lacage. DCE: Test the real code
of your protocols and applications over simulated
networks. Communications Magazine, IEEE,
52(3):104–110, March 2014.

[3] H. Tazaki, F. Urbani, E. Mancini, M. Lacage,
D. Camara, T. Turletti, and W. Dabbous. Direct code
execution: Revisiting library OS architecture for
reproducible network experiments. In Proceedings of
the Ninth ACM Conference on Emerging Networking
Experiments and Technologies, CoNEXT ’13, pages
217–228, New York, NY, USA, 2013. ACM.

[4] Inria. Direct code execution (DCE) manual. Website,
2013. https://www.nsnam.org/docs/dce/release/1.5/
manual/html/index.html.

[5] H. Tazaki. dce-pre.patch. Website, 2014. https:
//gist.github.com/thehajime/b2efe96e797cd131cac1.

[6] S. Rabinowitz and S. Wagon. A spigot algorithm for
the digits of π. The American Mathematical Monthly,
102(3):195–203, 1995.

[7] M. Muuss. The story of the ping program. Website,
1999. http://ftp.arl.army.mil/˜mike/ping.html.

[8] J. Diemer. python-ping. Website, 2011.
https://pypi.python.org/pypi/python-ping.

[9] P. Brady. ps mem 3.6: Python package index. Website,
2015. https://pypi.python.org/pypi/ps mem/3.6.

[10] E. Bikov and P. Boyko. Direct execution of OLSR
MANET routing daemon in ns-3. In Proceedings of the
4th International ICST Conference on Simulation
Tools and Techniques, SIMUTools ’11, pages 454–461,
ICST, Brussels, Belgium, Belgium, 2011. ICST
(Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

[11] S. Kwon, K. Hasan, M. Lee, and S. Jeong.
Comparative analysis of real-time video performance
in the CCN-based LTE networks. In Information and
Communication Technology Convergence (ICTC),
2015 International Conference on, pages 509–511, Oct
2015.

[12] H. Tazaki, E. Mancini, D. Camara, T. Turletti, and
W. Dabbous. MSWIM demo abstract: Direct code
execution: Increase simulation realism using
unmodified real implementations. In Proceedings of the
11th ACM International Symposium on Mobility
Management and Wireless Access, MobiWac ’13,
pages 29–32, New York, NY, USA, 2013. ACM.

[13] E. Mancini, H. Soni, T. Turletti, W. Dabbous, and
H. Tazaki. Demo abstract: Realistic evaluation of
kernel protocols and software defined wireless networks
with DCE/ns-3. In Proceedings of the 17th ACM
International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, MSWiM
’14, pages 335–337, New York, NY, USA, 2014. ACM.

[14] V. Duggirala and S. Varadarajan. Open network
emulator: A parallel direct code execution network
simulator. In Proceedings of the 2012 ACM/IEEE/SCS
26th Workshop on Principles of Advanced and
Distributed Simulation, PADS ’12, pages 101–110,
Washington, DC, USA, 2012. IEEE Computer Society.

[15] C. Lattner and V. Adve. LLVM: a compilation
framework for lifelong program analysis
transformation. In Code Generation and Optimization,
2004. CGO 2004. International Symposium on, pages
75–86, March 2004.

[16] V. Duggirala, C. Ribbens, and S. Varadarajan.
Distributed ONE: Scalable parallel network
simulation. In Proceedings of the 6th International
ICST Conference on Simulation Tools and Techniques,
SimuTools ’13, pages 10–16, ICST, Brussels, Belgium,
Belgium, 2013. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications
Engineering).

[17] C. Lattner. The LLVM compiler infrastructure

Website, 2016. https://gcc.gnu.org/java.

project. Website, 2016. http://llvm.org.
[18] GCC Team. GCJ: The GNU compiler for Java.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

48

Implementation and Validation of
an IEEE 802.11ah Module for ns-3

Le Tian∗, Sébastien Deronne†, Steven Latré∗, Jeroen Famaey∗

∗ Department of Mathematics and Computer Science, University of Antwerp – iMinds, Belgium
{le.tian, steven.latre, jeroen.famaey}@uantwerpen.be

† Nokia, Belgium
sebastien.deronne@gmail.com

ABSTRACT
IEEE 802.11ah or HaLow is a new Wi-Fi standard for sub-
1Ghz communications, aiming to address the major chal-
lenges of the Internet of Things: connectivity among a large
number of power-constrained stations deployed over a wide
area. Existing research on the performance evaluation of
802.11ah is generally based on analytical models, which does
not accurately represent real network dynamics and is hard
to adjust to different network conditions. To address this
hiatus, we implemented the 802.11ah physical and MAC
layer in the ns-3 network simulator, which, compared to ana-
lytical models, more closely reflects actual protocol behavior
and can more easily be adapted to evaluate a broad range of
network and traffic conditions. In this paper, we present
the details of our implementation, including a sub-1Ghz
physical layer model and several novel MAC layer features.
Moreover, simulations based on the implemented model are
conducted to evaluate performance of the novel features of
IEEE 802.11ah.

CCS Concepts
•Networks → Wireless access networks; •Computing
methodologies → Model development and analysis;
Simulation evaluation;

Keywords
IEEE 802.11ah, Wi-Fi HaLow, ns-3, Fast Association, Re-
stricted Access Window

1. INTRODUCTION
The Internet of Things (IoT) consists of millions of con-

strained devices addressable over the Internet. Existing low-
power wireless network technologies for connecting such de-
vices can be categorized into two groups: (i) wireless per-
sonal area networking (WPAN) technologies that provide

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WNS3, June 15 - 16, 2016, Seattle, WA, USA

DOI: http://dx.doi.org/10.1145/2915371.2915372

Figure 1: Position of IEEE 802.11ah compared to ex-
isting WPAN and LPWAN technologies, promising
considerably extended range compared to WPAN
and higher bitrate than LPWAN.

connectivity up to tens of meters (e.g., ZigBee, Bluetooth
Low Energy) and (ii) low-power wide-area networking (LP-
WAN) technologies that offer an extended range up to sev-
eral kilometers but sacrifice in terms of throughput (e.g.,
LoRaWAN, Sigfox, DASH-7). As such, a gap still exists
for a low-power communication technology that offers both
extended range and higher throughput.

The new IEEE 802.11ah standard, marketed as Wi-Fi
HaLow, fills this gap, combining the advantages of Wi-Fi
and low-power communication technologies (cf. Figure 1).
IEEE 802.11ah is a wireless communication PHY and MAC
layer protocol that operates in the unlicensed sub-1Ghz fre-
quency bands (e.g., 863–868 Mhz in Europe and 902–928 Mhz
in North-America). It was designed to provide communica-
tions at a range of up to 1 kilometer while maintaining a data
rate of 150 Kbps, offering a much greater coverage than ex-
isting WPAN and considerably higher throughput than LP-
WAN technologies. In the MAC layer, 802.11ah introduces
mechanisms such as hierarchical organization, short MAC
header, fast association, restricted access window (RAW),
traffic indication map (TIM) segmentation and target wake
time (TWT) to support densely deployed energy-constrained
stations.

Even though the IEEE 802.11ah standard has only been
officially released since January 2016, researchers have been
investigating it already for a few years. Several recent stud-
ies investigate physical layer aspects of IEEE 802.11ah specif-
ically and sub-1Ghz communications generally [5, 3, 2, 4].
Hazmi et al. [5] study link budget, achievable data rate and

Copyright held by the owner/author(s). Publication rights licensed to ACM

ACM 978-1-4503-4216-2/16/06. . . $15.00

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

49

Table 1: 802.11ah MCSs for 1, 2 MHz, NSS=1,
GI=8 μs.

MCS
Index

Modulation
Coding
rate

Data rate (Kbps)
1 Mhz 2 Mhz

0 BPSK 1/2 300 650
1 QPSK 1/2 600 1300
2 QPSK 3/4 900 1950
3 16-QAM 1/2 1200 2600
4 16-QAM 3/4 1800 3900
5 64-QAM 2/3 2400 5200
6 64-QAM 3/4 2700 5850
7 64-QAM 5/6 3000 6500
8 256-QAM 3/4 3600 7800
9 256-QAM 5/6 4000 Not valid

10 BPSK
1/2 with 2x

150 Not valid
repetition

the influence of packet size in different scenarios. Moreover,
a few studies of the IEEE 802.11ah physical layer have been
performed using an implementation based on Software De-
fined Radios (SDRs) [3, 2, 4]. Current research on the MAC
layer of 802.11ah mainly focuses on performance of the RAW
mechanism [11, 7, 16, 12, 13, 9, 8]. Nearly all of this research
is based on analytical modelling of the saturated network
state. Such models do not accurately capture real network
behavior and are hard to adapt to non-saturated network
conditions. Only Raeesi et al. [12] performed actual simula-
tions using OMNeT++.

To address this hiatus, we have implemented the 802.11ah
standard in the ns-3 network simulator. Our implementa-
tion builds upon existing 802.11 implementations in ns-3 and
extends them with a physical layer model for sub-1Ghz radio
communications and a subset of the new MAC layer features
of the standard. The implementation is modular, allowing it
to be easily extended with additional 802.11ah-specific fea-
tures. Moreover, it has been made available as open source
for other researchers to experiment with1.

Our simulation model has several benefits compared to
the OMNeT++ model implemented by Raeesi et al. [12].
Specifically, their RAW implementation does not support
grouping. Moreover, we have implemented the fast asso-
ciation and two-stage back-off mechanisms. Finally, their
implementation, in contrast to ours, is not publicly avail-
able.

The contributions of this paper are twofold. First, we
outline our implementation, its features, and its integration
into ns-3. Second, we have conducted an in-depth simulation
study to validate our implementation.

The remainder of this paper is structured as follows. Sec-
tion 2 provides an overview of the most prominent 802.11ah
features, both on the PHY and MAC layer. Details on the
ns-3 implementation model are provided in Section 3. In
Section 4, we validate both the physical and MAC layer of
the implemented model. The planned future extensions to
our implementation are detailed in Section 5. Finally, con-
clusions are discussed in Section 6.

2. OVERVIEW OF THE IEEE 802.11AH
IEEE 802.11ah operates at sub-1GHz, supporting long

1https://www.uantwerpen.be/en/rg/mosaic/projects/ieee-
802-11ah/

distance transmission, 8192 nodes connected to a single AP
and high energy efficiency. These features make it an at-
tractive standard for long-range IoT applications, such as
sensor-based monitoring, smart meters and home automa-
tion. Throughout this section we highlight aspects of the
standard that are important for our implementation. For a
more detailed overview of the standard, the reader is referred
to existing literature [6, 1].

2.1 PHY Layer
The IEEE 802.11ah PHY layer inherits characteristics from

IEEE 802.11ac and adapts them to sub-1Ghz frequencies.
Its channel bandwidths range from 1 to 16 MHz, with 1
and 2 MHz support being mandatory. Operating at low
frequency and narrow bandwidth allows it to transmit at
longer ranges (up to 1 km or more in theory) with consid-
erably less power consumption than traditional Wi-Fi tech-
nologies, which use frequencies in the 2.4 and 5 GHz bands.

For different data rates and bandwidths, 802.11ah utilizes
different sets of modulation and coding schemes (MCSs),
number of spatial streams (NSS) and duration of the guard
interval (GI). Coding schemes include binary conventional
coding (BCC), which is mandatory, as well as the optional
low density parity check (LDPC). Table 1 lists data rates and
their MCSs when GI and NSS are 8 μs and 1 respectively
for 1 and 2 MHz bandwidth.

2.2 MAC Layer
The MAC layer of IEEE 802.11ah consists of several novel

features, such as fast association and authentication, RAW,
TIM segmentation and TWT, aiming to address the require-
ments of dense IoT networks. Details of the those features
are described as follows.

2.2.1 Fast Authentication and Association
When an AP is deployed or after a power outage, a large

number of stations are simultaneously trying to associate,
this process could take a long time due to collisions. Two
more effective fast authentication and association control
mechanisms (i.e., centralized and distributed), are proposed
for IEEE 802.11ah. In centralized authentication, the AP
sets a threshold in authentication control elements attached
to a beacon. When a station is initialized, it generates a
random value from the interval [0, 1022] and send authenti-
cation/association requests to the AP if the random value is
smaller than the threshold obtained from the received bea-
con, otherwise postpone authentication/association until the
next beacon. The threshold should be adjusted dynamically
by the AP to allow all stations to get associated eventually.
Distributed authentication is based on the truncated binary
exponential back-off, each beacon interval is divided into
slots of equal duration, stations randomly select one slot to
send their association request.

2.2.2 Restricted Access Window (RAW)
The RAW mechanism aims to reduce collisions and im-

prove throughput when hundreds or even thousands of sta-
tions are simultaneously contending for channel access. It
restricts the number of stations that can simultaneously ac-
cess the channel by splitting them into groups and only al-
lowing stations that belong to a certain group to access the
channel at specific times. Figure 2 schematically depicts how
RAW works. Specifically, the airtime is split into intervals,

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

50

 RAW A RAW B RAW C RAW D

slot 0 slot 1 slot i slot NRAW-1

Station X

RAW C

slot i

assigned to

assigned to

Beacon
carrying RPS

Beacon
carrying RPS

Figure 2: Schematic representation of the RAW
mechanism.

each of which is assigned to one RAW group. Each interval
is preceded by a beacon that carries a RAW parameter set
(RPS) information element that specifies the stations that
belong to the group, as well as the interval start time. More-
over, each RAW interval consists of one or more slots, over
which the stations in the RAW group are split evenly. As
such, the RPS also contains the number of slots, slot format
and slot duration count sub-fields which jointly determine
the RAW slot duration as follows:

D = 500 μs+ C × 120 μs (1)

Where C represents slot duration count sub-field, which is
either y = 11 or y = 8 bits long if the slot format sub-field is
set to respectively 1 or 0. The number of slots field is 14−y
bits long.

Different from previous IEEE 802.11 technologies, each
station uses two back-off states of enhanced distributed chan-
nel access (EDCA) to manage transmission inside and out-
side its assigned RAW slot respectively. The first back-off
function state is used outside RAW and the second is used
inside RAW slots. For the first back-off state, the station
suspends its back-off at the start of each RAW and stores
the back-off states, then restores them and resumes back-
off at the end of the RAW. For the second back-off state,
stations start back-off with initial back-off state inside their
own RAW slot, and disregard the back-off state at the end
of their RAW slot. As shown in Figure 3, station 1 is inside
the RAW group and assigned to slot 1, while station 2 is not
included in this RAW group. Therefore, station 1 uses the
first back-off state outside its RAW slot period and the sec-
ond back-off state inside its RAW slot, while station 2 only
uses the first back-off state outside the RAW group period
and goes into a sleep state inside the RAW group period.

2.2.3 Power Saving Mechanisms
In the current 802.11 standards, beacons trigger power

saving (PS) station contention for the channel, which is
the bottleneck of the whole power management framework
since stations have to wake up to listen to every beacon.
IEEE 802.11ah introduces the TIM segmentation mecha-
nism to split information transmitted in the TIM into sev-
eral segments and transmit them separately. In addition to
using TIM beacons for station-level signaling, as shown in
Figure 4, it also uses delivery traffic indication map (DTIM)
beacons for TIM group-level signaling. The AP uses the
DTIM beacon to broadcast to stations which TIM segments
have pending data, stations only need wake up to listen to

Beacon
carrying RPS

Beacon
carrying RPS

1st back
off function

Doze state

1st back
off function

1st back
off function

1st back
off function

slot 0 Slot 1 … … Slot NRAW-1

Doze state
2nd back

 off function Doze state

RAW

Station 1, assigned to RAW slot 1

Station 2, not belongs to current RAW group

Figure 3: Back-off procedure for the IEEE 802.11ah
RAW mechanism.

TIM1 TIM2 TIM3 TIM4 TIM5 TIM6 TIM7 TIM8 TIM1

Receiving Contenting Sleeping

AP

Rest of
 station

Other TIM7
 station

Station #1538
And #1539

DTIM

TIM2TIM1 TIM4TIM3 TIM6TIM5 TIM8TIM7

00 00 00 01

15381537
…

1539

10 …1

DTIM

Figure 4: Example of the TIM segmentation mech-
anism (source: Adame et al. [1]).

their corresponding TIM beacon, thus they can maintain a
longer power-saving state. Power consumption can be fur-
ther reduced by TWT for stations transmitting data rarely.
TWT stations can negotiate a time slot with the AP when
they should wake up to exchange frames, therefore they can
stay in a power-saving state for very long periods of time
during their TWT intervals.

3. IMPLEMENTATION
Currently, ns-3 comes with support for several IEEE 802.11

standards, including 802.11a, 802.11b, 802.11g, 802.11n and
since recently 802.11ac. As Figure 5 shows, the components
of the ns-3 Wi-Fi PHY and MAC models consist of 4 main
components:

• WifiChannel: An analytical approximation of the phys-
ical medium over which data is transmitted (i.e., the
air in case of Wi-Fi), consisting of propagation loss and
delay models.

• WifiPhy: The PHY part of the protocol, takes care of
sending and receiving frames and determining loss due
to interference.

• MacLow: Implements RTS/CTS/DATA/ACK trans-

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

51

DcaTxop/
EdcaTxopN

MacHigh (ApWifiMAC/
StaWifiMac)

MacLow

caTxop/pp
caTxopN

Ma

WifiMAC/CC
Mac)

D
Edc
Dc
dc

star transmission

enqueue packets

MacRxMid
dle

DcfManager

WifiPhy/YansWifiPhyWifiPhy/yy Ya//

ow

ggerDcfMaana

send packets receive packets

RTS/CTS
/DATA/ACK
transaction

receive

packet queue
fragmentation
retransmission

receive packets
DCF function

access granted

request access

listener

listener

WifiChannel
PropagationDela

yModel
PropagationLos

sModelWifiC

WifiP

Dela Prop
get delay

get signal
strength

send packets
receive packets

InterferenceHelper
/ErrorRateModelPhy

Inter
/Er

get PER

Figure 5: ns-3 Wi-Fi models and interactions; grey
background denotes changed components in our im-
plementation.

actions, the distributed coordination function (DCF)
and enhanced distributed channel access (EDCA), packet
queues, fragmentation, re-transmission and rate con-
trol.

• MacHigh: Implements management functions such as
beacon generation, probing, association.

The remainder of this section outlines how we adapted the
above models to support 802.11ah. Our implementation is
based on ns-3 version 3.23.

3.1 PHY Layer
Our work in implementing 802.11ah PHY model focused

on the components marked in Figure 5: InterferenceHelper,
ErrorRateModel, WifiPhy, YansWifiPhy and Propagation-
LossModel.

3.1.1 WifiPhy and YansWifiPhy
In the WifiPhy class, the modulation and coding schemes

MCS0 to MCS9 for channel bandwidths 1, 2, 4, 8 and 16 Mhz
(cf. Table 1) are defined, while MCS10 is currently not
supported by our implementation. Moreover, header and
preamble formats of IEEE 802.11ah as well as the way of cal-
culating sending/receiving duration of the preamble, header
and payload are implemented. The ConfigureStandard(),
WifiModeToMcs(), and McsToWifiMode() functions in Yan-
sWifiPhy are modified to support the 802.11ah configuration
and the conversion between Wi-Fi mode and MCS.

3.1.2 InterferenceHelper and ErrorRateModel
Since 802.11ah defines new header formats, the Calcu-

latePlcpPayloadPer() and CalculatePlcpHeaderPer() func-
tions in the InterferenceHelper class are revised to calculate
the length of received 802.11ah packets, which is required
for the packet error rate calculation. Additionally, the Nis-
tErrorRate and YansErrorRate classes are modified to be
capable of calculating the packet error rate of 802.11ah with
support for the QAM256 modulation scheme. It is worth
noting that YansErrorRate mode is known to be too op-
timistic, while NistErrorRatemodel better matches experi-
mental results according to Pei and Henderson [10].

Add RAW attributes

Create RPS element

SendOneBeacon ()

Assign AID to
stations

SendAssocResp ()

Create AuthenCtrl
element

Add RPS element into Beacon

Adjust Authencation
Threshold Add RAW attributes

Create RPS elementte RPS ele

SendOneBeacon ()

Assign AID to
stations

SendAssocResp ()

Crea nCtrl
element

PS element into

Adjust Authencation
Threshold

Add RP Beacon

ate Authen
element

ApWifiMac class

Figure 6: New funcationality in ApWifiMac class.

3.1.3 PropagationLossModel
This model determines the signal strength in the wireless

medium based on the distance between sender and receiver.
We implemented the indoor and outdoor propagation loss
models for 802.11ah developed by Hazmi et al. [5]. They
proposed two different outdoor models, one for macro de-
ployments and one for pico or hotzone deployments. The
macro deployment model assumes an antenna height of 15
meters above a rooftop, with the propagation loss (in dB)
given as follows:

L (d) = 8 + 37.6 log10 (d) + 21 log10

(
f

900MHz

)
(2)

The pico deployment model is assumed to be at rooftop
height, with the propagation loss (in dB) given as follows:

L(d) = 23.3 + 36.7 log10(d) + 21 log10

(
f

900MHz

)
(3)

Finally, the indoor propagation loss model is the same as
that of 802.11n, and consists of the free space loss (FSL)
with a slope of 2 up to a breakpoint distance and a slope of
3.5 after this breakpoint:

L(d) =

{
20 log10

(
4dπf

c

)
d ≤ dBP

20 log10
(
4dπf

c

)
+ 35 log10

(
d

dBP

)
d > dBP

(4)

With d, f , c and dBP the transmit-receive distance in me-
ters, carrier frequency, speed of light and breakpoint dis-
tance respectively.

3.2 MAC Layer
Among the new features of IEEE 802.11ah listed in Sec-

tion 2, our simulator currently supports fast association and
RAW, the implementation mainly focuses on the MacHigh,
DcaTxop, EdcaTxopN and DcfManager components. The
implementation of the power-saving features (e.g., TIM seg-
mentation and TWT) is planned as future work.

3.2.1 MacHigh
As shown in Figures 6 and 7, new functionality is added

in both ApWifiMac and StaWifiMac in order to support fast
association and RAW.

For the ApWifiMac class, RAW related attributes, as listed
in Table 2, are added in order to allow user configuration.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

52

Read received beacon

Extract RPS
element

Get its own RAW slot

Control two stage back-off

StaWifiMac::
startRAW ()

Get AID

Read association
 response packets

StaWifiMac::
SendAssociationRequest ()

Extract AuthenCtrl
 element

Get association
threshold

Send association
 request or not

StaWifiMac::received ()

Start/stop
second back-off

Store/restore
back-off value

Read received beacon

RPS Extract R
elementelemen

its own RAW sGet

Read association
 response packets

Get AID

slot

Extra enCtrl
element

Get association
threshold

act Authe
element

t associat
threshold

tionRequest ()

re
ue

DcaTxop/EdcaTxopN class DcfManager class

Sta
sta

Start/sto
cond bac

l two stag

Figure 7: New funcationality in StaWifiMac class.

Table 2: 802.11ah attributes in ApWifiMac class.

Parameter Description
NRawGroupStas Stations per RAW group
NRawStations Stations supporting RAW
SlotFormat Slot format
SlotDurationCount Slot duration count
NRawSlotNum Slots per RAW group

The RPS and AuthentCtrl elements, which carry RAW group
and association information, are defined in a new classes,
and are generated and attached to beacons based on the
values of the newly defined attributes. A mechanism for ad-
justing the association threshold is implemented as well, to
allow changing the threshold dynamically. Besides that, the
AID assignment scheme is added in the SendAssocResp()

function to allows the AP to assign an AID to stations dur-
ing the association exchange.

For the StaWifiMac class, the station receives an associ-
ation threshold and RAW information from the RPS and
AuthentCtrl elements carried by the received beacon, and
gets an AID from the association response packet in the re-
ceived() function. Based on the association threshold, the
station determines to send an association request or not.
RAW information and the AID jointly determine the RAW
slot stations belong to and control the two stage back-off,
making sure stations are allowed to access the channel dur-
ing their own RAW slot.

3.2.2 DcaTxopN, EdcaTxopN and DcfManager
The two stage back-off mechanism was implemented in the

DcaTxop, EdcaTxopN and DcfManager classes, supporting
both Quality of Service (QoS) and non-QoS data transmis-
sions. The start and termination of the two stage back-
off is managed by the DcaTxop and EdcaTxopN classes by
sending instructions to the DcfManager class, which is mod-
ified to be able to store and restore back-off related values.
Based on the instructions from the StaWifiMac class, sta-
tions start to contend for the channel in the appropriate
slot with the corresponding back-off state. Additionally, the
WifiRemoteStationManager class is modified as well to store
and restore the re-transmission counter of the two back-off
states.

Table 3: Default physical layer parameters used in
our experiments.

Parameter Value
Frequency 900 Mhz
Transmission power 0 dBm
Transmission gain 0 dB
Reception gain 3 dB
Noise Figure 3 dB
Coding method BCC
Propagation loss model Outdoor, macro [5]
Error Rate Model NistErrorRate, YansErrorRate

Table 4: Default MAC layer parameters used in our
experiments.

Parameter Value
CWmin 15
CWmax 1023
AIFSN 3
Traffic access categories AC BE
Payload size 256 bytes
MAC header type legacy header
RTS/CTS not enabled
Beacon Interval 0.1 s
Cross slot boundary enabled
Station distribution randomly
Wi-Fi mode MCS8, 2 Mhz
Rate control algorithm constant

4. EVALUATION
In this section we present and discuss our results obtained

using the ns-3 implementation of IEEE 802.11ah. The sim-
ulation setup is described, and the implementation of the
physical layer, fast association and RAW is validated.

4.1 Simulation Setup
We consider an IoT sensor-based monitoring scenario where

a large number of battery-powered sensors send measure-
ments to a back-end server (through the AP) at specific
time intervals. Stations are deployed randomly within a
400 meter diameter around the AP. The default PHY and
MAC layer parameters are shown in Tables 3 and 4 respec-
tively. Note that these are the default parameter values, and
some of them take different values in specific experiments
(e.g., Wi-Fi mode), which is explicitly mentioned. Given the
low-power nature of battery-powered sensors, transmission
power is limited to 0 dBm. Like 802.11ac, 802.11ah uses
forward error correction (FEC) schemes to improve trans-
mission range. With the same physical parameters, we also
test Wi-Fi mode MCS0 of 802.11ac, which has a data rate
of 6.5 Mbps for bandwidth of 20 MHz.

4.2 Physical Layer
This section evaluates the physical layer packet error rate

as a function of distance of different 802.11ah Wi-Fi modes
for outdoor macro deployments, using the parameters de-
fined in Table 3. Figure 8 shows the transmission range of
different Wi-Fi modes. When YansErrorRateModel is used,
IEEE 802.11ah can transmit over distances up to 640 m with
a packet error rate below 10% and up to 670 m with an error
rate below 50% using MCS0 with 1 Mhz bandwidth, which
achieves data rates up to 300 kbps. Results also clearly
show that using modes that provide higher data rate signifi-

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

53

(a) YansErrorRate Model (b) NistErrorRate Mode

Figure 8: Packet error rate as a function of uplink
distance with different ErrorRate Model for vari-
ous IEEE 802.11ah Wi-Fi modes and compared to
IEEE 802.11ac.

cantly reduces the maximum transmission distance. For ex-
ample, MCS9 with 1 Mhz bandwidth and MCS8 with 2 Mhz
bandwidth are capable of achieving data rate up to 4 Mbps
and 7.8 Mbps respectively. They allow error-free transmis-
sion up to 130 and 110 m respectively. For comparison,
IEEE 802.11ac only has a range of up to 60 m with a data
rate of 6.5 Mbps and an error rate of 10% (at an equal 0 dBm
transmission power). As indicated in Section 3.1, the trans-
mission range becomes shorter when NistErrorRateModel is
applied, around 150, 20 and 10 m are lost for Wi-Fi modes
MCS0 with 1 Mhz, MCS9 with 1 Mhz and MCS8 with 2 Mhz
bandwidth. It should be noted that the 1 km range promised
by 802.11ah could potentially be realized using the MCS10
mode together with LDPC coding, since it is capable of
bridging higher distances. This mode’s implementation is
left for future work.

Figure 9: Association time comparison between nor-
mal association and fast association.

4.3 Fast Association Mechanism
In this section, we evaluate the fast association mechanism

for a varying number of stations. A threshold adaptation
mechanism proposed by Wang [15] is adopted in this simu-

lation, in which the AP adjusts the association threshold dy-
namically based on its sending queue size. This results in in-
creasing the threshold by 50 when the queue is smaller than
10, otherwise decreasing the threshold by 50. The result is
depicted in Figure 9, which clearly reveals that fast associ-
ation substantially decreases association time, especially for
a large number of stations. It is quite straightforward since
fewer stations are allowed to send association requests si-
multaneously, reducing the collision probability. Association
performance could be further improved with more advanced
threshold adaptation algorithms.

4.4 RAW Mechanism

(a) Without RAW

(b) With 32 RAW groups

Figure 10: Number of active stations and instanta-
neous throughput for a 512 station network.

Figure 10 depicts the active stations (by AID) and through-
put at each instant in time with and without the use of
RAW. Figure 10a clearly shows that the channel is randomly
utilized by stations all the time without the use of RAW. Due
to the density of the network this results in many collisions
and an average throughput of around 0.5 Mbps. In contrast,

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

54

(a) Throughput (b) Latency(infinite queue) (c) Latency(queue of 10-packets)

Figure 11: Throughput and latency for varying number of RAW slots.

Figure 12: Packets loss with different number of
RAW slots when the length of send queue is 10 pack-
ets.

Figure 10b clearly shows that the RAW mechanisms results
in a more controlled channel access manner, only allowing
contention among a limited number of stations. As a re-
sult, collision probability drops and the average throughput
increases by 50% and becomes 0.75 Mbps.

Figure 11 aims to assess the influence of the number of
RAW slots per group, as well as transmit buffer length on
throughput and latency. The reader is referred to our previ-
ous work [14] for the impact of the number of RAW groups.
There is a single RAW group, and each station sends one
packet every 0.1 seconds to the AP with a random starting
time. Due to the relatively small payload size, the max-
imum throughput that can be achieved using MCS8 with
2 Mhz bandwidth is around 1 Mbps. The network becomes
congested when there are more than 50 stations transmit-
ting. In the case of an infinite buffer, no packets are dropped,
while packet loss for the case with a 10 packet buffer is shown
in Figure 12.

Figure 11 clearly shows that the RAW slot parameter
has no effect on performance for a small number of sta-

Read received beacon

Extract TWT
element

Get its wake up
time

 Switch

Extract TIM/page
 slice element

Get buffered data
infrotmation

Sleep state
management

StaWifiMac::received ()

Read received beacon

TWT Extract T
elementelemen

Get its wake up
time

Extract TIM/page
 slice element

Get buffered data
infrotmation

ract TIM/p
lice eleme

buffered
nfrotmatio

 Sw

SleepS
managm

et its wak
time

Send ps-poll
frame

Send
fra

Add TWT
attributes

Send TWT
request

 Send

Add TIM/page
slice attribute

Create TIM
element

Add TIM/page
slice attribute

Creeate TIM
elementement

ApWifiMac::SendOneBeacon ()

Create TWT
element

Add elements into Beacon

Add TWT
attribute

d elemen o Beacon

reate TW
element

SendPspoll

 AddAttribute

Figure 13: Future planned implementation of TIM
segmentation and TWT.

tions. However, higher throughput and reduced latency
can be achieved for more stations with a larger number of
slots. This is because splitting stations into RAW slots re-
duces contention, and in turn collision probability and re-
transmissions. However, it should be noted that very many
slots could make the duration of slots too short to be enough
for one packet to be successfully sent.

The use of an infinite transmit buffer obviously results in
a considerable latency increase as congestion increases. On
the other hand, a limited buffer space causes a considerable
amount of packet loss. Finally, the fact that a higher number
of RAW slots results in significantly less packet loss, again
confirms that RAW reduces contention.

5. FUTURE IMPLEMENTATION PLANS
Our aim is to implement TIM segmentation and TWT in

ns-3 in the near future. As shown in Figure 13, the imple-
mentation will focus on ApWifiMac and StaWifiMac. For
the ApWifiMac class, TIM and TWT elements will be de-
fined and attached to beacons according to the related at-
tributes. For the StaWifiMac class, functionality such as
reading TIM and TWT elements from received beacons,

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

55

sending ps-poll frames and managing sleep state indicated
by the TIM and TWT elements, is going to be implemented.
Since the TWT setup can be launched by both stations and
the AP, TWT related attributes and sending TWT requests
will also be implemented in the StaWfiMac class. Moreover,
support for MCS10 Wi-Fi mode will be added by imple-
menting LDPC coding with 2x repetition. On the longer
term, we aim to support other features of 802.11ah, such as
Relays and hierarchical RAW. Finally, work is in progress
to include 802.11ah support in a future ns-3 official release.

6. CONCLUSION
This paper presents an implementation of the IEEE 802.11ah

physical and MAC layer protocol for the ns-3 network sim-
ulator. The implementation and its integration into ns-3
are described in detail. Moreover, the implementation was
evaluated, validated through simulation based on the imple-
mented model. The evaluation confirmed a correct behavior
of the fast association and RAW MAC-layer mechanisms.
Moreover, 802.11ah is shown to be a promising wireless tech-
nology for densely deployed IoT applications, due to its abil-
ity to limit contention using RAW groups and slots.

7. REFERENCES
[1] T. Adame, A. Bel, B. Bellalta, J. Barcelo, and

M. Oliver. IEEE 802.11ah: the WiFi approach for
M2M communications. IEEE Wireless
Communications, 21(6):144–152, 2014.

[2] S. Aust and R. V. Prasad. Advances in wireless M2M
and IoT: Rapid SDR-prototyping of IEEE 802.11ah.
In IEEE Local Computer Networks Conference, 2014.

[3] S. Aust, R. V. Prasad, and I. G. M. M. Niemegeers.
Performance study of MIMO-OFDM platform in
narrow-band sub-1 GHz wireless LANs. In 11th
International Symposium on Modeling & Optimization
in Mobile, Ad Hoc & Wireless Networks (WiOpt),
pages 89–94. IEEE, 2013.

[4] R. A. Casas, V. Papaparaskeva, R. Kumar, P. Kaul,
and S. Hijazi. An IEEE 802.11ah programmable
modem. In IEEE 16th International Symposium on A
World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2015.

[5] A. Hazmi, J. Rinne, and M. Valkama. Feasibility
study of IEEE 802.11ah radio technology for IoT and
M2M use cases. In 2012 IEEE Globecom Workshops,
pages 1687–1692. IEEE, 2012.

[6] E. Khorov, A. Lyakhov, A. Krotov, and A. Guschin. A
survey on IEEE 802.11ah: An enabling networking

technology for smart cities. Computer
Communications, 58:53–69, 2015.

[7] K. Ogawa, M. Morikura, K. Yamamoto, and
T. Sugihara. IEEE 802.11ah based M2M networks
employing virtual grouping and power saving
methods. IEICE Transactions on Communications,
E96-B(12):2976–2985, 2013.

[8] C. W. Park, D. Hwang, and T.-J. Lee. Enhancement
of IEEE 802.11ah MAC for M2M communications.
IEEE Communications Letters, 18(7):1151–1154, 2014.

[9] M. Park. IEEE 802.11ah: Energy efficient MAC
protocols for long range wireless LAN. In 2014 IEEE
International Conference on Communications (ICC),
pages 2388–2393. IEEE, 2014.

[10] G. Pei and T. R. Henderson. Validation of ofdm error
rate model in ns-3. Boeing Research Technology, pages
1–15, 2010.

[11] M. Qutab-ud din, A. Hazmi, B. Badihi, A. Larmo,
J. Torsner, and M. Valkama. Performance analysis of
IoT-enabling IEEE 802.11ah technology and its RAW
mechanism with non-cross slot boundary holding
schemes. In IEEE 16th International Symposium on A
World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2015.

[12] O. Raeesi, J. Pirskanen, A. Hazmi, T. Levanen, and
M. Valkama. Performance evaluation of IEEE
802.11ah and its restricted access window mechanism.
In IEEE International Conference on Communications
Workshops (ICC), pages 460–466.

[13] O. Raeesi, J. Pirskanen, A. Hazmi, J. Talvitie, and
M. Valkama. Performance enhancement and
evaluation of IEEE 802.11ah multi-access point
network using restricted access window mechanism. In
IEEE International Conference on Distributed
Computing in Sensor Systems, pages 287–293, 2014.

[14] L. Tian, J. Famaey, and S. Latré. Evaluation of the
ieee 802.11ah restricted access window mechanism for
dense iot networks. In IEEE 17th International
Symposium on A World of Wireless, Mobile and
Multimedia Networks (WoWMoM), Accepted.

[15] H. Wang. Supporting Authentication/Association for
Large Number of Stations, 2012., 2012.
https://mentor.ieee.org/802.11/dcn/12/11-12-0112-04-
00ah-supporting-of-the-authentication-association-for-
large-number-of-stations.pptx.

[16] L. Zheng, L. Cai, J. Pan, and M. Ni. Performance
analysis of grouping strategy for dense IEEE 802.11
networks. In 2013 IEEE Global Communications
Conference (Globecom), pages 219–224, 2013.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

56

Implementation and Evaluation of a WLAN IEEE 802.11ad
Model in ns-3

Hany Assasa
IMDEA Networks Institute and

Universidad Carlos III de Madrid, Spain
hany.assasa@imdea.org

Joerg Widmer
IMDEA Networks Institute

Madrid, Spain
joerg.widmer@imdea.org

ABSTRACT
The IEEE 802.11ad amendment to the 802.11 standard for
multi-gigabit communication at 60 GHz was published sev-
eral years ago, but to date, no precise simulation model
for networking in this band is available. In this paper, we
present a model for IEEE 802.11ad implemented in the net-
work simulator ns-3. We model new techniques that are
essential for IEEE 802.11ad operation such as beamform-
ing training and steering, relay support, and fast session
transfer. We then evaluate by simulation the performance
of IEEE 802.11ad as well as the gains obtained through
the aforementioned techniques. The code for our simulation
model is publicly available.

CCS Concepts
•Networks → Network simulations; Wireless local
area networks;

Keywords
Millimeter Wave, IEEE 802.11ad, 60 GHz, ns-3

1. INTRODUCTION
With the proliferation of mobile devices with data hun-

gry applications, existing mobile networks and wireless lo-
cal area networks (WLAN) technologies are becoming in-
creasingly congested and overloaded. As a result, mobile
network operators and telecommunications equipment ven-
dors are considering leveraging the underutilized radio spec-
trum available between 30 GHz and 300 GHz, the so called
the millimeter wave (mmWave) band, for next generation
wireless networks. Wireless communication in this band is
highly appealing since it provides extremly high capacity
and thus allows for a several-fold increase in data rates and
lower latencies. However, transmission in this band has spe-
cific signal propagation characteristics compared to existing
technologies working in lower bands and thus requires major
design changes for both medium access control (MAC) and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WNS3, June 15-16, 2016, Seattle, WA, USA
c© 2016 ACM. ISBN 978-1-4503-4216-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2915371.2915377

physical (PHY) layers. Both the Wireless Gigabit Alliance
(WiGig) and the Wi-Fi Alliance took the initiative to lever-
age this wide spectrum and provide multi-gigabit per second
communication in the 60 GHz unlicensed band. They intro-
duced the WLAN IEEE 802.11ad amendment [2, 9] which
provides very high throughput of up to 7 Gbps for short
range communication for local area networks. This allows
for a range of new high-rate applications, such as wireless
docking stations, wireless storage, and instant file synchro-
nization. Compared to IEEE 802.11ac [3] which is capable
of supporting multi-gigabit throughput by employing high
modulation and coding schemes (MCSs) and advanced phys-
ical layer technologies such as multi-user-multiple-input and
multiple-output (MIMO), IEEE 802.11ad achieves multi-
gigabit throughput by utilizing only the wide channels of
2.16 GHz available at the 60 GHz band.

Experimental evaluation of networking in this band is ex-
tremely costly and available hardware has very limited ca-
pabilities. Current research studies deduce network perfor-
mance from individual 60 GHz links [7, 4, 8] but cannot
evaluate the behavior of an entire network. In such cases,
resorting to network simulation is a very useful alterna-
tive which abstracts implementation details while providing
a good grade of realism. However, there are no publicly
available simulation tools supporting IEEE 802.11ad in the
mmWave band. For these reasons, we provide in this pa-
per a concrete model for simulating IEEE 802.11ad with its
novel techniques such as channel access periods, beamform-
ing training, relay operation, and fast session transfer.

The paper structure is as follows. In Section 2 we provide
background on IEEE 802.11ad accompanied by a survey of
the existing simulation models. Section 3 presents our IEEE
802.11ad implementation in ns-3 and Section 4 presents the
evaluation results for the proposed model for different sce-
narios. Finally, Section 5 concludes the paper.

2. BACKGROUND AND RELATED WORK
In the following subsections, we provide background on

the WLAN IEEE 802.11ad amendment and survey existing
work on network level simulators for mmWave technologies.

2.1 Background on IEEE 802.11ad
Wireless communication in the 60 GHz band has different

characteristics compared to IEEE 802.11 devices operating
in the 2.4 GHz and 5 GHz bands. In the following para-
graphs, we provide a brief description of the major design
changes for both MAC and PHY layers in IEEE 802.11ad
and the intuition behind them.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

57

2.1.1 802.11ad Physical Layer
Emerging applications using the IEEE 802.11ad multi-

gigabit capability have different constraints and requirements
in terms of power consumption, data rates, processing capa-
bilities and antenna design complexity. For these reasons,
IEEE 802.11ad introduces four different types of PHY layers
to cope with these requirements. Each PHY layer supports
a set of specific MCSs.

• Control PHY: This PHY layer (MCS0) is dedicated
to low Signal-to-Noise Ratio (SNR) operation with low
throughput communication (27.5 Mbps). It is mainly
used during the Beamforming Training (BF) phase.

• OFDM PHY: This PHY layer (MCS 13-24) pro-
vides the highest data rates of up to 6.76 Gbps. It
adopts Orthogonal Frequency Division Multiplexing
(OFDM) technology which is very efficient in multi-
path environments. However, its implementation is
complex and therefore it targets devices with less strin-
gent power and design constraints, such as docking
stations and wireless streaming devices.

• Single Carrier (SC) PHY: Power limited and low
complexity devices adopt this physical layer which pro-
vides a good trade-off between average throughput and
energy efficiency compared to the OFDM PHY. Mo-
bile phones and tablet devices will most likely adopt
this PHY layer. SC PHY defines MCS 1-12, of which
MCS 1-4 are mandatory modes to be implemented in
all devices for interoperability.

• Low Power (LP)-SC PHY: This PHY layer with
MCS 25-31 is similar to the SC PHY layer, but allows
for further power reduction by using low-density parity
check (LDPC) codes instead of Reed-Solomon codes.

Figure 1 depicts the IEEE 802.11ad frame structure. The
frame starts with the typical IEEE 802.11 fields such as short
training field (STF) and channel estimation field (CEF) which
are used for detecting the type of the PHY layer. These
fields are followed by the PHY header which includes in-
formation such as payload length in bytes and index of the
MCS used in the payload part. This field together with the
MAC header and the MAC payload are protected by a Cyclic
redundancy check (CRC). Finally, IEEE 802.11ad appends
optionally two fields named automatic gain control (AGC)
and training (TRN). These new fields are used during the
BF phase which we describe in section 2.1.3.

2.1.2 DMG Channel Access
IEEE 802.11ad organizes the access to the medium in so-

called Beacon Intervals (BIs). Each BI is further subdivided
into different access periods. An access period has different
access rules and provides certain functionalities to nearby
directional multi-gigabit (DMG) stations (STAs). Figure 2
illustrates a typical BI consisting of Beacon Header Inter-
val (BHI) and Data Transmission Interval (DTI). The BHI
compromises the following three sub-intervals:

• Beacon Transmission Interval (BTI): In this sub-
interval, multiple DMG Beacon frames are transmit-
ted across different sectors by the DMG personal ba-
sic service set control point (PCP)/access point (AP)
to announce the network and provide transmit sector

training towards nearby stations. DMG Beacons are
transmitted using MCS 0 to reach large distances.

• Association Beamforming Training (A-BFT): The
A-BFT is used mainly by DMG STAs to train their
transmit antenna sectors towards the DMG PCP/AP
in a contention based manner.

• Announcement Transmission Interval (ATI): This
sub-interval is used mainly for management frame ex-
change between the PCP/AP and beam-trained STAs.
Since communication takes place with beam-trained
stations, stations can use high MCSs during the ATI
for more efficient communication.

In the DTI period, DMG STAs exchange data frames ei-
ther in the contention-based access period (CBAP) or the
scheduled service period (SP). During the CBAP, DMG
STAs contend for the channel access using the IEEE 802.11
Enhanced Distributed Coordination Function (EDCF), whereas
in SP, DMG STAs access the channel in a contention-free
manner where the channel is reserved for communication
between two dedicated DMG STAs.

2.1.3 Beamforming Training Mechanism
Propagation conditions at 60 GHz band are worse com-

pared to the lower bands due to oxygen absorption [10],
high attenuation, weak signal reflectivity, and quasi-optical
propagation behavior [11]. For these reasons, IEEE 802.11ad
provides a mechanism to establish a directional link through
a beamforming training process to compensate for signal
quality degradation. In this process, stations focus their
energy towards the intended receivers only, which increases
antenna gain and may result in reduced interference, allow-
ing for high spatial reuse. The beamforming training process
in IEEE 802.11ad is divided into the following two phases:

• Sector Level Sweep (SLS) Phase: In this phase,
a DMG STA selects a coarse grain antenna sector for
the initial communication. The phase can be used in
two ways: 1) as transmit sector sweep (TXSS) where
a DMG STA tries to select the best transmit antenna
sector towards a particular DMG STA by sending Sec-
tor Sweep (SSW) frames via each of its antenna sectors
or 2) as a receive sector sweep (RXSS), where a DMG
STA trains its receive antenna sector by requesting a
peer DMG STA to transmit SSW frames using a fixed
antenna pattern while the former is sweeping across its
receive antenna sectors.

• Beam Refinement Protocol (BRP) Phase: IEEE
802.11ad defines multiple optional mechanisms to re-
fine the sectors obtained in the SLS phase. The most
important mechanism is the beam refinement mecha-
nism, which is an iterative process where two DMG
STAs exchange a special BRP packet ending with ei-
ther transmit training (TRN-T) or receive training
(TRN-R) fields. Additionally, the amendment defines
a Beam Tracking (BT) option to keep a track of signal
quality during an ongoing data transmission by adding
the previous TRN fields to the PHY frames.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

58

STF PHY Headerr MAC Headerr MAC Payload CRC ACK

PPDU (PLCP Protocol Data Unit)

SIFS
Channel

Busy DIFS

Overhead OverheadPayload

P

O h

CEF CC AGC
S

O h dO

C TRN

Backoff

Figure 1: IEEE 802.11ad frame structure.

BTI CBAP 1
BHIIBHI
A-BFT ATI

DTIDTI
SP 1

ITI
CBAP 2 SP 2

Beacon Inteval

BRP BRP

D
M

G
 B

ea
co

n
D

M
G

 B
ea

co
n

D
M

G
 B

ea
co

n

D
M

G
 B

ea
co

n

A-BFT Slot

SSW Frames

SSW SSW

s SSW-
FBCK

SSW

Request1

ACK

RequestN

ResponseN

SS SlotTime
SSW Frames s SSW-

FBCK

SS SlotTime

t A-BFT Slot A-BFT Slot

D
M

G
 B

ea
co

n
D

M
G

 B
ea

co
n

Figure 2: IEEE 802.11ad beacon interval with different access periods.

2.1.4 Fast Session Transfer Technique
Since communication in the 60 GHz band is limited in

range and suffers high penetration loss in case of obstacles,
IEEE 802.11ad included a fast session transfer (FST) tech-
nique. With this, an IEEE 802.11 capable device can change
seamlessly its operational band from 60 GHz to 2.4/5 GHz.
As a result, a device can extend its coverage area and main-
tain its current sessions. As an example of this technique, a
user may stream an Ultra High Definition (UHD) video on
his device from a wireless docking station over the 60 GHz
band when he is in the proximity of the docking station.
As the user starts to move a way from the docking station,
signal quality starts to degragade so the docking station de-
cides to transfer the session to a lower band but continues
video streaming using lower video encoding techniques.

2.1.5 DMG Relay Operation
IEEE 802.11ad also introduces a relay mode. In this

mode, two DMG STAs named source Relay Endpoint DMG
STA (REDS) and destination REDS can communicate with
each other with the assistance of a Relay DMG STA (RDS)
which results in coverage area extension, improved link re-
silience against interruptions, and persistent multi-gigabit
throughput. IEEE 802.11ad defines the following two types
of relay operation modes:

• Link Switching Type: In this type, the source REDS
maintains two links to the destination REDS: a direct
link and a relay link through RDS. If the direct link is
disrupted, the source REDS switches its transmission
to the relay link. Communication over the disrupted
link can resume once the direct link is recovered. Un-
der this type, the RDS can operate either in full-duplex
amplify-and-forward (FD-AF) mode or in half-duplex
decode-and-forward (HD-DF) mode. In FD-AF mode,
RDS amplifies the received frames and forwards them
directly to the destination DMG STA. For this rea-
son, the RDS should include at least two RF chains for
sending and receiving frames at the same time. In con-
trast, for the HD-DF mode the RDS receives multiple
frames from the source REDS in one SP and forwards

them to the destination REDS in the following SP.

• Link Cooperating Type: Contrary to the previous
mode, in this mode the source REDS utilizes both di-
rect link and relay link simultaneously to improve re-
ceived signal quality at the destination REDS. Op-
erating in this mode requires the source DMG to be
aware of propagation delays over each link.

2.2 Existing Work
Although wireless networking in the mmWave band is a

hot topic, limited work has been done to provide system
level simulators, particularity for IEEE 802.11ad. For ex-
ample, authors in [7] propose a 5G module in ns-3 based
on the LTE protocol stack. The module provides a chan-
nel model based on extensive channel measurements in the
28 GHz band. However, it does not employ any algorithms
for establishing directional links nor steering antennas ar-
rays. Authors in [4] utilize a IEEE 802.11ad PHY layer to
establish multi-gigabit links in data centers using ns-3. In
their implementation, they use data rates provided for both
SC and OFDM PHY layers in the amendment. Additionally,
since the topology of the data center is stable and known,
they steer their antennas geometrically i.e. they do not sim-
ulate any of the beamforming procedures established in the
standard. Finally, authors in [6] provide an architecture for
simulating IEEE 802.11ad in ns-3 with a general description
on modeling various BF procedures provided in the amend-
ment. However, the implementation is not publicly available
and in the validation section the author does not take into
account the overhead imposed by different access periods in
the BI. All of the previous works simplify the implemen-
tation and do not model essential techniques for MAC and
PHY operation in the mmWave band.

3. IMPLEMENTATION
In the following section, we provide an overview of the

IEEE 802.11 model in ns-3 and how we augmented it to
adhere to the IEEE 802.11ad amendment. The model im-
plementation is available on GitHub [1].

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

59

WifiNetDevice

DmgApWifiMac/
DmgStaWifiMac

Abstract Directional Antenna

MacLow

WifiChannel

WifiPhy

DmgWifiMac
Beamforming

Operations
DMG Channel

Access DMG Rely Operation Multiband Operation

Error Model

Propagation Model

New Class

New Functions

Original Class

Mac High Layer

MPDU Aggregator/Deaggregator Mac Low Layer

Channel Layer

BTI ACCESS ATI ACCESSA-BFT ACCESS EDCA-TXOP-N SERVICE PERIOD

Figure 3: Our implemented IEEE 802.11ad architecture in ns-3.

3.1 IEEE 802.11 Model in ns-3
The current Wifi model in ns-3 supports different IEEE

802.11 specifications such as a/b/e/g/n/ac with an accu-
rate implementation of the MAC layer. The model can be
divided into the following four layers:

• MAC High Layer: It provides some Mac layer man-
agement entity (MLME) functionalities depending on
the underlying network it supports, such as Infrastruc-
ture basic service set (BSS) or Independent BSS.

• MAC Low Layer: This layer takes care of Ready
to Send (RTS)/Clear to Send (CTS)/DATA/Normal
Acknowledgment (ACK)/BlockACK transmission us-
ing the distributed coordination function (DCF) and
Enhanced DCF channel access (EDCA) functions. Ad-
ditionally, it is provides both MAC service data unit
(MSDU)/MAC protocol data unit (MPDU) aggrega-
tion and deaggregation capabilities.

• Physical Layer: It is a simplified model of the real
Wifi PHY layer. This layer handles packet transmis-
sion and reception over the underlying channel. It cal-
culates interference among different STAs and provides
some probabilistic error model for packet reception.

• Channel Layer: This layer interconnects different
PHY layers of different wireless STAs. Additionally,
it simulates and models propagation effects that wire-
less signals encounter in real environments.

The IEEE 802.11 model in ns-3 is well suited for wireless
technologies that use a carrier sense multiple access with col-
lision avoidance (CSMA/CA) scheme with omni-directional
transmission and reception. However, IEEE 802.11ad has
characteristics that require some major changes to this model.
Figure 3 shows the existing ns-3 IEEE 802.11 architecture
together with the new blocks for the mechanisms introduced
in IEEE 802.11ad. An abstract DmgWifiMac class provides

common capabilities and techniques for DMG operation.
From this class, we derive two classes to represent differ-
ent BSS types. The first class DmgStaWifiMac implements
procedures specific to DMG STA such as TXSS in A-BFT,
responding to request frames in the ATI period, and the
association state machine. The second class, DmgApWifi-
Mac, represents the DMG AP and provides DMG Beacon-
ing, BRP Setup Subphase, and BRP transaction initiation.

The following subsections provide an in-depth description
of implementation and design assumptions for each block.
Since ns-3 provides packet-level granularity, it was impor-
tant to provide an accurate implementation of the newly
introduced MAC frames and Wifi Information Elements to
support various procedures defined in IEEE 802.11ad. Fur-
thermore, representing the actual frame structure facilitates
packet flow analysis using any network protocol analyzer
that supports the IEEE 802.11ad extension.

3.2 DMG PHY Layer
ns-3 provides a simple PHY layer for the operation of

IEEE 802.11. In this layer, the reception of the Physical
Protocol Data Unit (PPDU) frame is modeled as simula-
tion delay corresponding to the transmission time of this
frame plus propagation delay. To model the multi-gigabit
throughput of IEEE 802.11ad, we provide all the mathe-
matical equations required for the calculation of PHY frame
transmission time including preamble, header and payload
using either control, SC, or OFDM PHYs.

3.3 DMG Access Periods
TheDmgApWifiMac class organizes medium access by ini-

tiating BI through transmission of DMG Beacons across all
its antenna sectors. The remaining time for each access pe-
riod is announced in the duration field of the MAC header.
This allows DMG STAs to synchronize their clocks with the
DMG AP clock. During BTI, the DMG AP ensures the
medium is free before it starts DMG beacon transmission.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

60

For this reason, the value of the duration field is calculated
once the DMG AP is granted access to the channel. A
DMG STA that receives at least one DMG beacon from
the DMG AP schedules an event to start the A-BFT ac-
cess period at the end of the current BTI. The DMG APs
divides the A-BFT into slots, where the duration of each
slot is calculated based on the number of SSW frames to
be transmitted. DMG STAs choose one of these slots ran-
domly using a uniform distribution. If two DMG STAs select
the same slot, they will collide and do not receive an SSW-
Feedback (FBCK) frame within a pre-determined period of
time. These two DMG STAs then have to select a new slot
while ensuring that they do not exceed the duration of the
A-BFT. This period is followed by the ATI access period,
where the DMG AP initiates management frame transmis-
sion. Currently, we use this period to perform the BRP
setup phase and exchange BRP transactions. Any packet
that arrives during the previous access periods is queued for
transmission until the beginning of the DTI.

3.4 Directional Antenna Pattern
Unlike the previous IEEE 802.11 specifications which are

able to exploit omni-directional communication, IEEE 802.11ad
requires a directional communication link towards its in-
tended receiver, and thus a directional antenna pattern model.
We provide a generic directional antenna model named Ab-
stractDirectionalAntenna which divides the 2D plane into a
user defined number of virtual sectors with equal apertures
and coverage range. Concrete antenna models are inherited
from this base model. In this derived model it is possible to
define the attributes of the radiation pattern such as maxi-
mum gain, side lobe gain, and the gain based on the selected
sector and the geometric angle between the transmitter and
the receiver. In our implementation, we use the antenna
model provided in [5] for evaluating IEEE 802.11ad in a con-
ference room. In this antenna model, the authors provide
a simple mathematical model to characterize a directional
antenna with averaged side lobe. For frame transmission, a
DMG STA should be using one of the predefined antenna
transmit sectors. For reception, the antenna can be either
in omni receive mode or directional receive mode depending
on the current access period.

3.5 DMG Beamforming Operation
We provide a generic implementation for both SLS and

BRP phases in the DmgWifiMac class. The implementation
can be used either as part of the initial BT between DMG
AP and DMG STAs or as a scheduled SP between two DMG
STAs. The DmgWifiMac class has two data structures: one
for storing and mapping antenna sector configurations for
each received frame from a peer DMG STA with its corre-
sponding SNR and another data structure for storing the
best transmit and receive antenna sectors towards a partic-
ular station. The latter is updated at the end of each BF
operation. In the current implementation, all decisions re-
garding the best transmit and receive antenna sectors are
based on SNR measurements. The MacLow class uses the
second data structure to select the antenna sector based on
the receiver address in the MAC header. In the current im-
plementation, we assume DMG STAs perform TXSS in the
A-BFT. In addition, the BRP phase will be utilized to train
antenna receive sectors for all DMG STAs instead of refin-
ing the selected antenna transmit sector. All BF frames are

transmitted using MCS 0.
To model TRN field transmission in ns-3, we modify the

current Physical Layer Convergence Protocol (PLCP) trans-
mission model which handles PHY preamble, header and
payload transmission and reception only. For example, a
MAC frame that requires TRN fields to be appended to its
end pass this information in the TxVector together with the
length and type of the TRN fields to be appended (either
TRN-T or TRN-R). Since each TRN field corresponds to a
unique antenna sector pattern, we schedule the transmission
of each TRN field separately to allow DMG to change its ac-
tive sector. At the end of each TRN field transmission, the
receiver calculates the received SNR value for this particular
field and reports it to the DmgWifiMac. Once all TRN fields
are received, the DmgWifiMac determines the best antenna
sector.

3.6 Fast Session Transfer
IEEE 802.11ad supports multi-band operation for fast ses-

sion transfer (FST). FST operation can be either in trans-
parent or non-transparent mode. In transparent mode, all
MAC sub-layers in the STA expose a single MAC-Service
Access Point (SAP) to the upper layers, i.e., a single MAC
address. In non-transparent mode, each MAC sub-layer ex-
poses its own MAC-SAP to the higher layers which adds
more complexity. In our implementation, we use the trans-
parent mode where we design a new NetDevice namedMulti-
BandNetDevice. This new NetDevice encapsulates differ-
ent IEEE 802.11 technologies as depicted in Figure 4. For
each technology, a user defines a WifiMac, WifiPhy, WifiRe-
moteStation andWifiChannel object. One technology should
be active at any point for any pair of devices. A STA that
supports multi-band operation should announce this in its
Beacon, Association Request, Association Response, Probe
Request, Probe Response, and DMG Beacon a MultiBand
Information Element.

MultibandNetDevice

WifiMac1

WifiPhy1

Technology1 Attributes

WifiChannel1

WifiMacN

WifiPhyN

TechnologyN Attributes

WifiChannelN

Figure 4: MultiBandNetDevice implementation.

Figure 5 illustrates various states a STA goes through
to establish a unique fast session transfer session (FSTS)
ID with a peer STA. At the beginning, each STA is in
the INITIAL STATE where they communicate in the old
band/channel. A station that wishes to set-up a FSTS is
called FST Initiator and the peer station is FST Responder.
To proceed to the SETUP COMPLETION STATE and
obtain a unique FSTS ID, both Initiator and Responder have
to exchange FST Setup Request/Response frames success-
fully. In this new state, STAs keep communicating in the old
band/channel. However, depending on the value of the link
loss timeout (LLT) field in the Session Transfer Information
Element, both STAs shall either transfer their current ses-
sion to the new band/channel immediately if the value of

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

61

Initial State

Communicating in
Old Band/Channel

Setup Completion State

Communicating in
Old Band/Channel

Transition Confirmed State

Full connectivity in
New Band/Channel

Transition Done State

Communicating in
New Band/Channel

FST Tear DownFST Setup Request,
FST Setup Response

LLT=0 in FST Setup Request/
LLT transitions from 1 to 0

New Band/Channel becomes
Old Band/Channel

LLT>0

FST Ack Request,
FST Ack Response

Figure 5: FST state machine.

LLT is equal to zero, or they shall start a Link Loss count-
down equal to LLT ∗ 32μs if LLT > 0. The LLT defines the
amount of time that has to elapse since the initiating STA
received an MPDU frame from the responding STA until
the initiating STA should perform FST. Once the value of
LLT reaches zero, both Initiator and Responder move to
the TRANSITION DONE STATE and start communi-
cating in the new band/channel. If the two STAs exchange
normal MPDU frames or FST ACK Request/Response in
the new band/channel successfully, the two STAs move to
the TRANSITION CONFIRMED STATE, otherwise
the two STAs move to the INITIAL STATE and resume
communication in the old band/channel.

3.7 DMG Relay Operation
We implement link switching type relay operating in FD-AF

mode. Figure 6 summarizes different procedures to estab-
lish a relay link with a destination Relay Endpoint DMG
STA (REDS) in a DMG BSS. A STA should acquire the
DMG capabilities of the DMG STA it wishes to establish a
relay operation with before it initiates any relay setup op-
eration. This is done by sending an Information Request
frame to the DMG AP after the DMG STA completes its
association with the DMG AP.

• RDS Discovery Procedure: In this phase, a source
REDS searches for candidates Relay DMG STAs (RDSs)
in the DMG BSS. The DMG AP informs both source
REDS and destination REDS about the available REDS
in the network with their DMG capabilities.

• RDS Selection Procedure: At this point, the DMG
AP schedules several SPs for BF training between all
the available RDSs together with source REDS and
destination REDS consecutively. After that, the source
REDS request for channel measurements with the can-
didates RDSs. Later on, the DMG AP schedules a SP
for BF between source REDS and destination REDS.
After finishing the BF, the source REDS requests des-
tination REDS to send channel measurements with the
available RDSs. As a result, the source REDS will
be aware of all channel states in the network. Based
on this information, the source REDS selects the best
RDS for relaying. In our implementation, we select the
RDS which receives frames from both source REDS
and destination REDS with the highest SNR.

• Relay Link Setup (RLS) Procedure: In this phase,
the source REDS decides to forward its current trans-
mission through the selected REDS in the previous
phase. Thus, it sends an RLS Request frame to the
selected RDS. The selected RDS in return forwards
this frame to the destination REDS. At this point,
the destination REDS replies back to the selected RDS
with an RLS Response with a status equal to Success
if it accepts to communicate through the relay link.
The selected REDS forwards this frame to the source
REDS with a status equal to Success if it accepts to
act as relay. If both destination REDS and RDS ac-
cept to switch the link, the source REDS sends an
announcement frame to the DMG AP regarding the
newly established relay link in the network.

• Relay Teardown Procedure: If the source REDS
decides to terminate its relay link through the selected
RDS, it shall transmit an RLS Tear Down frame to
the selected RDS, destination REDS and DMG AP.

4. MODEL EVALUATION
In this section we provide some evaluation results for our

new IEEE 802.11ad model. In all the experiments, we as-
sume all DMG STAs and DMG AP have one antenna array
with 8 sectors. We use a Friis propagation loss model to
calculate received signal strength (RSS) and UDP as trans-
port protocol. All STAs support both MSDU and MPDU
aggregation, and data transmission is done in CBAP mode.

4.1 Evaluating 802.11ad Beamforming Over-
head and Achievable Throughput

In this experiment, we calculate the amount of time it
takes to establish directional communication between two
DMG STAs. We also demonstrate the obtained throughput
for different MCSs for both SC and OFDM PHY layers.

The setup compromises two nodes: one DMG AP and
one DMG STA. These nodes are spaced 2m apart from
each other. The DMG STA generates a flow of User Data-
gram Protocol (UDP) messages towards the DMG AP. The
announced A-BFT by the DMG AP consists of 8 sector
sweep (SS) slots where each slot contains 8 SSW frames.

From simulations, we find that the two nodes spends al-
most 572 μs to complete an SLS phase for TXSS. The
RXSS is performed during the BRP which takes around 396
μs. Figure 7 depicts the obtained throughput for two dif-

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

62

Source REDS RDS

1. Relay Search Request
2. Relay Search Response (Solicited)

3. Channel Measurement Request
4. Channel Measurement Response

RDS Discovery Procedure

RDS Selection Procedure

Destination REDS DMG AP

Relay Link Setup (RLS) Procedure

Relay Tear Down Procedure

3. Relay Search Response (Unsolicited)

5. Channel Measurement Request
6. Channel Measurement Response

7. RLS Request Frame

10. RLS Response Frame

Service Period with Beamforming TrainingSSSSer
Service Period with Beamforming Training

Relay L
Select RDS

pp

5555. ChChChChananannenenellll MMeMeMeasasas rururemememenenenttt RReReReqququesesesttt
Service Period with Beamforming Training

8. RLS Request Frame
9. RLS Response Frame

11. RLS Tear Down
12. RLS Tear Down
13. RLS Tear Down

11. Relay Announcement

Figure 6: Relay signaling procedure.

SC OFDM
0

1000

2000

3000

4000

5000

PHY Layer Type

Th
ro

ug
hp

ut
 [M

bp
s]

MCS1

MCS4

MCS8

MCS12

MCS13

MCS16

MCS19

MCS24

Figure 7: Throughput for different MCSs.

ferent sets of MCSs. The highest throughput achieved for
SC is almost 4 Gbps and for OFDM is 5.2 Gbps. How-
ever, the achieved throughput for OFDM is 1.5 Gbps less
than the theoretical maximum IEEE 802.11ad throughput
of 6.72 Gbps. This is mainly due to the overhead imposed
by the CBAP access mechanism. Besides that, the data
rate reported in the standard assumes a continues stream of
OFDM symbols without any PHY and MAC overhead and
any Interframe Space (IFS).

4.2 Evaluating DMG Relay Operation
Here, we measure how much time it takes to switch a

directional communication link between two REDSs and use
an alternative path through an RDS operating in full-duplex
amplify-and-forward (FD-AF). Additionally, we calculate
the throughput gain we obtain by using this alternative path
compared to the case where we do not have any available
RDS in the DMG network.

The simulation setup shown in Figure 8 contains one DMG
AP with 3 DMG STAs. Two DMG STAs act as REDS and

one DMG STA supports RDS. During the DTI acess period,
all DMG STAs communicate using MCS 24.

DMG PCP/AP

Destination
REDS

Source REDS

Direct Link Path
Relay Link Path

RDS

Figure 8: Relay test setup topology.

0 0.5 1 1.5 2 2.5 3 3.5 4
2000

2500

3000

3500

4000

4500

5000

Time (s)

T
hr

ou
gh

pu
t [

M
bp

s]

Throughput w/ Relay
Throughput w/o Relay

Throughput Gain = 2Gbps

Switch to
Relay Path

Figure 9: Relay setup results.

At the beginning, the two REDSs are able to communicate
with each other over the direct link. At a certain point in
the simulation, we introduce a blockage in the direct link.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

63

This blockage does not result in a complete link failure. The
source REDS starts to miss some ACKs from the destination
REDS and the achievable application throughput is halved.
As a counter measure, the source REDS decides to perform
an RLS procedure with the selected RDS to obtain a better
link quality with the destination REDS. Figure 9 shows the
received throughput with and without relay support. From
the simulations, we find that it takes around 117 μs to switch
from the direct link to the relay link. In addition, using the
relay link results in a throughput gain of 2.5 Gbps.

4.3 Evaluating Fast Session Transfer
In this experiment, we demonstrate the capability of trans-

ferring an on-going data session smoothly from the 60 GHz
band to the 2.4 GHz band. The simulation setup is similar to
the one in Section 4.1 with the addition that the nodes can
communication in the 2.4 GHz band using IEEE 802.11n.
We set the value of LLT to 1000 which corresponds to a
link loss countdown value of 32 ms. After the nodes estab-
lish the directional link, they setup a unique FSTS between
each other.

0 0.5 1 1.5 2 2.5 3 3.5
0

1000

2000

3000

4000

5000

Time (s)

T
hr

ou
gh

pu
t [

M
bp

s]

Application Throughput

Communicating in 2.4GHz band

Blockage Inserted

Figure 10: FST setup results.

A the beginning of the simulation, the nodes communi-
cate with each other normally and the achieved throughput
is around 5 Gbps as shown in Figure 10. After one second,
we introduce a blockage in the link of -45 dBm. This block-
age breaks the link so the nodes starts a link loss countdown.
When the timer expires, the two nodes switch to the 2.4 GHz
band and continue their session. We notice the degradation
in the achieved throughput around 60 Mbps due to the lim-
ited capacity available in the lower frequency band.

5. CONCLUSION AND FUTURE WORK
We provide an architecture for modeling WLAN IEEE

802.11ad with its various enhancements in ns-3. We imple-
ment beamforming training and steering, relay operation,
and fast session transfer. We discuss a range of implementa-
tions details and how the model integrates into ns-3. In the
evaluation section, we demonstrate the overhead required to
establish a directional communication link and the average
throughput achieved for different MCSs for both SC and
OFDM PHY layers. Then, we show that swapping a trans-
mission from a direct link to an alternative link through a
relay takes around 117 μs and the throughput gain is almost
double. Finally, we demonstrate the capability of fast ses-
sion transfer of maintaining an on-going session alive. The
source code of our implementation is publicly available.

IEEE 802.11ad provides many mechanisms to either avoid
communication disruption for certain cases or improves the

achievable data rate. The current implementation consid-
ers only CBAP access period in the DTI and lacks a hybrid
MAC model which provides dynamic channel allocations for
applications with strict Quality of Service (QoS) require-
ments. In our current DMG relay implementation, we model
full-duplex amplify-and-forward relay operation mode only
and we omit the half-duplex decode-and-forward mode. Ad-
ditionally, the standard defines a new type of frame aggrega-
tion named PPDU aggregation. In this aggregation mode, a
DMG STA transmit two or more PPDUs without any sepa-
ration. Next steps in the further development of our model
are to implement these missing features. The current im-
plementation provides all MAC frames and Information El-
ements necessary for modeling missing MAC sublayer func-
tionalities. Besides, our implementation can also serve as a
base line for implementing and evaluating the next genera-
tion 60 GHz WLAN IEEE 802.11ay amendment.

6. ACKNOWLEDGMENTS
This work is partially supported by the European Re-

search Council grant ERC CoG 617721, the Ramon y Cajal
grant from the Spanish Ministry of Economy and Compet-
itiveness RYC-2012-10788, and the Madrid Regional Gov-
ernment through the TIGRE5-CM program (S2013/ICE-
2919).

7. REFERENCES
[1] GitHub Repository for IEEE 802.11ad model.

https://github.com/hanyassasa87/ns3-802.11ad.git.

[2] IEEE 802.11ad, Amendment 3: Enhancements for
Very High Throughput in the 60 GHz Band. IEEE
802.11 Working Group, 2012.

[3] IEEE 802.11ac, Amendment 4: Enhancements for
Very High Throughput for Operation in Bands below
6 GHz. IEEE 802.11 Working Group, 2013.

[4] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and
D. Wetherall. Augmenting Data Center Networks with
Multi-gigabit Wireless Links. In Proc. of the ACM
SIGCOMM 2011 Conference, 2011.

[5] R. Maslennikov and A. Lomayev. Implementation of
60 GHz WLAN Channel Model. Technical report,
IEEE, 2010.

[6] M. May. Modelling and Evaluation of 60 GHz IEEE
802.11 Wireless Local Area Networks in ns-3, 2014.

[7] M. Mezzavilla, S. Dutta, M. Zhang, M. R. Akdeniz,
and S. Rangan. 5G MmWave Module for the Ns-3
Network Simulator. 2015.

[8] T. Nitsche, G. Bielsa, I. Tejado, A. Loch, and
J. Widmer. Boon and Bane of 60 GHz Networks:
Practical Insights into Beamforming, Interference, and
Frame Level Operation. 2015.

[9] T. Nitsche, C. Cordeiro, A. Flores, E. Knightly,
E. Perahia, and J. Widmer. IEEE 802.11ad:
directional 60 GHz communication for
multi-Gigabit-per-second Wi-Fi [Invited Paper].
Communications Magazine, IEEE, 2014.

[10] P. Smulders. Exploiting the 60 GHz band for local
wireless multimedia access: prospects and future
directions. Communications Magazine, IEEE, 2002.

[11] H. Xu, V. Kukshya, and T. Rappaport. Spatial and
temporal characteristics of 60-ghz indoor channels.
Selected Areas in Communications, IEEE Journal on.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

64

 Investigation and Improvements to the OFDM Wi-Fi
Physical Layer Abstraction in ns-3

Hossein-Ali Safavi-Naeini
University of Washington

safavi@u.washington.edu

Farah Nadeem
University of Washington

farahn@u.washington.edu

Sumit Roy
University of Washington

sroy@u.washington.edu

ABSTRACT
This work presents results based on a critical re-examination
of the current physical layer abstractions for IEEE 802.11
OFDM WLAN in the ns-3 network simulator motivated by
a) the need to improve fidelity of the Layer-1 abstraction es-
sential for a network level simulator, and b) setting the stage
for desired new features (not currently implemented) in the
future. We implement amulti-stage packet reception that ad-
dresses a shortcoming in the current WLAN receiver model,
making it closer to existing hardware, and lays the ground-
work for improvements such as packet capture. Next, we
consider the frame error rate (FER) model in ns-3 which re-
lies on analytical bounds on the bit error probability (BER)
at the output of the convolutional decoder. We demonstrate
key issues with the current approach through detailed link
level simulations using a newly developed Wi-Fi link simula-
tor and look forward to forthcoming fixes being considered.

CCS Concepts
•Computing methodologies ! Discrete-event simu-
lation; Modeling methodologies; Networks Network• !
simulations.

Keywords
Wi-Fi, Network Simulator 3 (ns-3)

1. INTRODUCTION
In recent years, simulation tools have played a critical

role in wireless research and development. Standards or-
ganizations such as the 3rd Generation Partnership Project
(3GPP) and the IEEE have relied heavily on simulation sce-
narios to guide the development of cellular and Wi-Fi stan-
dards and evaluate ideas proposed for inclusion. Likewise,
the research community has made extensive use of simu-
lation tools to accompany mathematical analysis. In fact,
in many cases, mathematical analysis is intractable or oth-
erwise cumbersome and simulation tools such as ns-3 have

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
WNS3, June 15 - 16, 2016, Seattle, WA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4216-2/16/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2915371.2915387

become the primary method for evaluating new designs and
performance in specified use-case scenarios. To that end, en-
suring the accuracy and performance of these tools is crucial
to their credibility and ultimately, wider acceptability. One
such tool widely used in academia is the network simulator
3 (ns-3) [2]. ns-3 is an open source packet level simulator,
with the intent to support a growing number of wireless
and wired network stacks. In this paper, we focus exclu-
sively on the current Layer-1 error model abstractions for
ns-3 OFDM Wi-Fi (802.11n); based on a critical examina-
tion, highlight some shortcomings.We first propose some ar-
chitecture modifications that are consistent as a foundation
for future extensions. We then implement a new multi-stage
packet reception framework and evaluate its impact.

1.1 The Simulation Workflow
Network simulation integrates two categories of simulation

tools:

1. Link Simulators These signal level simulators (typi-
cally built in MATLAB) are designed to closely mimic
the physical layer operation of a wireless modem in-
corporating all details of the digital baseband sections
- modulation, demodulation, coding, channel emula-
tion/estimation, and the e↵ect of analog components
such as gain control and digitization. The goal is to
evaluate receiver algorithms (typically as a function of
SNR) to derive bit and ultimately, frame error rates
in a single Wi-Fi link. The run-time complexities of
these simulators limit their suitability to single link
simulations.

2. System Simulators System level simulators are de-
signed to abstract away the e↵ects of the physical layer
into simple quantities such as frame error rate as a
function of SNR. By design, these operate at Layer-2
(frame-in/frame out) and thus require the Link Simu-
lator to provide a frame/packet based link abstraction
(i.e. a table look-up for the FER as a function of all
relevant system parameters, including SNR). By op-
erating at this level of abstraction, system simulators
o↵er the ability to simulate networks with hundreds
of nodes with reasonable run-time. Hence, they are
an excellent tool for evaluating the full protocol stack
including the e↵ect of application, transport and net-
work layers as well as network topologies.

One important aspect in the usage of system simulators
is the choice of the physical layer abstractions (also referred
to as the link-to-system mapping). The accuracy of this

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

65

STF
10 ⇥ 800ns

LTF
2 ⇥ 4µs

SIG
4µs

PAYLOAD

ns-3 Decision Time-line

Decide P SIG

e Act P SIG

e

Decide & Act PPayload

e

(a)

STF
10 ⇥ 800ns

LTF
2 ⇥ 4µs

SIG
4µs

PAYLOAD

Proposed Decision Time-line

Decide & Act P SYNC

e

Decide & Act P SIG

e

Decide & Act PPayload

e

(b)

Figure 1: (a)The current implementation of Wi-Fi in ns-3 uses a single action point at the end of the frame.
(b)Our newly proposed decision process makes the appropriate decisions at the relevant intermediate points.

mapping (and hence the credibility of the system simulator)
reflect how closely the simulator models e↵ects that occur
in real networks. In the case on ns-3, the Wi-Fi model at
present lacks the ability to accurately depict packet capture
[10]. Also, concerns have been raised over the validity of
the two error models in use; the YANS error model [13]
has been found to be too optimistic for AWGN channels,
while the NIST error model [16] has been found to be too
conservative [12,16]. These concerns motivate detailed look
at the current physical layer abstraction employed in ns-3.

1.2 Preliminaries
We begin by describing the structure of a Wi-Fi packet

as it pertains to the reception process. In this paper, we
consider a Wi-Fi system with a channel width of 20MHz ac-
cording to the 802.11 standard [6]. Since the 802.11g release
of Wi-Fi, OFDM has served as the underlying air interface
technology for a multitude of reasons pertaining to favorable
performance characteristics (e.g. resistance to multi-path
delay spread, ease of equalization, etc.) At the physical
layer, a Wi-Fi frame consists of four major portions1 (Fig-
ure 1):
Short Training Field (STF): This portion of the frame
consists of an 800ns signal repeated 10 times. The peri-
odic nature of the signal is meant to assist in frame syn-
chronization and detection using a delayed autocorrelation
method [19]. At the start of the frame, correlating the
incoming signal with a version of itself delayed by 800ns
presents strong peaks that allow the receiver to locate the
start of the frame. In addition, during the STF, the Auto-
matic Gain Control (AGC) at the receiver is adjusted in
order to obtain good quantization performance (dynamic
range) for the remainder of the frame.
Long Training Field (LTF): This portion of the frame
consists of a 4µs OFDM symbol repeated twice. The pur-
pose of this portion of the frame is to assist in channel esti-
mation, coarse carrier frequency o↵set estimation, IQ imbal-
ance estimation and other signal processing tasks requiring
a reference signal. Errors in the estimate can dramatically
impact decoding of the payload. Typical estimators such as
MMSE or DFT are employed [8].
L-SIG Field: This portion of the frame is modulated as
BPSK with a rate 1/2 convolutional code. It is responsi-
ble for carrying information on how the data field can be
decoded including the modulation scheme, the coding rate,

1We omit specifically addressing additional header fields in-
troduced in the HT modes in this work and leave it as a
subject of future work

and the duration of the data. The BPSK symbols are con-
verted into OFDM symbols with the same properties as the
data portion.
Payload: The data field is transmitted using 64 sub-carriers
with a carrier separation of 312.5 kHz. Some sub-carriers
are unused (e.g. DC sub-carrier, 6 on the left and 5 on the
right due to the guard bands) and 4 of the modulated sub-
carriers are allocated as pilots. The remaining 48 data sub-
carriers all use the same modulation which can range from
BPSK/QPSK through 64-QAM (802.11a/n) or 256-QAM
(802.11ac or later). The data is encoded using a convolu-
tional encoder and decoded at the receiver using a Viterbi
decoder. Each OFDM symbol used for data transmission
is of duration 4µs (which includes an 800ns cyclic prefix).
For Modulation Coding Schemes (MCSes) addressed in this
work, Wi-Fi employs a constraint length 7 convolutional en-
coder with rate 1/2 which can be punctured to achieve other
desired rates [6].

1.3 Motivation
The current ns-3 error model for payload reception is

based on analytical results for bit error probabilities (note
that the L-SIG is nothing but a short duration payload).
Specifically, once an expression for Pb (the bit error rate) as
a function of SNR is obtained [14], the payload error rate
Pe is computed as follows:

Pe = 1� (1� Pb)
N , (1)

where N is the number of data bits in the payload.
In examining the current physical layer abstraction and

error model in ns-3, we will consider two aspects:

1. Sources of packet/frame error

2. Accuracy of error probabilities as a function of SNR
and payload length

To address the first aspect, we note that in the current im-
plementation of ns-3, a successful packet entails a compu-
tation at the end of the L-SIG for correct reception of the
header, followed by an error rate computation at the end
of the frame to decide on correct reception of the payload.
Although failure of the L-SIG is considered at the end of the
L-SIG field, the model defers any change of state notifica-
tion (i.e. the receiver remains in an RX state) until the end
of the frame. This does not conform to existing hardware
Wi-Fi systems. Lastly, errors during STF/LTF are not even
considered.

But first, we begin our examination with the second facet
of the abstraction by considering the analytical bit/packet

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

66

Random Data Encoder Interleaver Map to Const.

Pilots

OFDM Mod. Framing

Preamble

Channel +

AWGN

To Receiver

(a)

From Channel AGC Frame Synch.

SNR

Equalizer

Ch. Est

OFDM Demod. Hard/Soft Dec. De-interleave Viterbi Data

per sub-carrier noise var.

(b)

Figure 2: (a) Block diagram for a single antenna Wi-Fi transmitter. (b) Receiver block diagram for single-
antenna Wi-Fi receiver link simulations.

Table 1: Link Simulation Parameters.

Antenna 1x1 (SISO)

Sampling Rate 100 MHz

AGC Logarithmic Loop

ADC Ideal 12bit

Synchronization Delayed Auto-correlation

Channel Estimation Ideal (AWGN)

Demodulator Soft Decision (8bit quantization)

Decoder Viterbi (128 Traceback)

Noise Figure 0dB

Iterations > 2048

error rates used within ns-3. In the next section, using the
published results from 802.11 standardization as a guide [15],
we take a closer look at these error rates and consider any
factors that may explain the large discrepancies.

2. AWGN PHY LAYER SIMULATIONS
In order to take a critical look at the ns-3 physical layer

error model, we employ a MATLAB based link simulator [5]
and focus on a SISO Wi-Fi system as a natural first step.
Figure 2 shows a block diagram describing operations carried
out in our link simulator. Additionally, the current incar-
nation of ns-3 operates under the assumption of an AWGN
channel exclusively, hence the results we produce make the
same assumption (we hope to address frequency selective
channel models such as TGn Channel D in the future).

On the transmitter side, after the application of a con-
volutional error correcting code [6], the bits are interleaved
and modulated according to the desired constellation (BPSK
through 64QAM) before being transmitted through the chan-
nel. The parameters used for the link simulations are shown
in Table 1. We emphasize that noise figure is set to 0dB
for all the results in this section ensuring a fair comparison.
Non-zero noise figure can easily be accounted for as a simple
additive SNR shift for all results.

The currently employed ns-3 model for frame errors is
described in 1.3 and in particular in (1). The two issues
with this approach which we aim to study in this section:

1. The bit error rate bounds are accurate at higher SNRs,
yet the lower MCSes are typically used at lower SNRs
(where the bound is loose).

2. Computing the frame error rate using (1) makes the
critical assumption that bit errors occur independently

There are two other discrepancies when comparing ns-3
to our simulations as well as those from IEEE Task Group n
(TGn). Firstly, modern WLAN receivers typically use soft
decoding in place of hard decoding due to the 1-2dB gain2

a↵orded as a result. The 802.11 standard does not require
any specific decoding mechanism, though usage of soft de-
coders has become standard practice.

Another contributing factor in mismatch between ns-3 and
simulations lies in the computation of the SNR (Figure 2b
shows where SNR is measured in the system). Currently,
ns-3 considers noise power over 20MHz while in reality the
noise of interest is limited to the occupied sub-carriers (i.e.
52/64), hence an additional SNR shift must be accounted
for:

SNR
dB

= 10 log
10

PTX

N
0

20MHz
+ 10 log

10

52
64

(2)

In Figure 3a, we compare our link simulation results to
those produced by the IEEE’s 802.11n task group [15] dur-
ing standardization for MCS0, NCS3 and MCS7 (selected
for simplicity, though all MCSes exhibit the same behavior).
While our link simulation results for frame errors closely
match those of IEEE TGn, ns-3 displays a far more pes-
simistic error rate. We can observe that this disparity is not
merely an SNR shift since the slope of the graphs also di↵ers
(ns-3 exhibits a sharper transition).

Even if we were to adjust for the SNR o↵set described by
(2), ns-3 retains a 2-3dB gap across the range. This can be
attributed in part to the assumption of independence regard-
ing bit errors which in e↵ect spreads errors amongst multiple
frames when they are actually more concentrated/localized.
In our opinion, this intrinsic assumption makes models that
rely on bit errors less suitable for use in ns-3.

2.1 Packet Error Rates in ns-3: Issues
A possible remedy is for the ns-3 physical layer to move to

a packet error based model that uses link simulation results
2The real system gain is less than the theoretical one due to
quantization and truncation of the log-likelihood ratios

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

67

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

SNR (dB)

P
a
ck
et

E
rr
o
r
R
a
te

TGn vs. Link Simulations vs. ns-3 (1000 Bytes)

MCS0

TGn

ns-3

MCS3

TGn

ns-3

MCS7

TGn

ns-3

(a)

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

SNR (dB)

P
a
ck
et

E
rr
o
r
R
a
te

Link Simulations vs. ns-3 (50 Bytes)

MCS0

ns-3

MCS3

ns-3

MCS7

ns-3

(b)

Figure 3: (a) Comparing simulation and TGn results (see [15] Figure 2-1) to ns-3 reveals a large gap. The
transition is also more rapid in the case of ns-3. (b) The SNR gap between ns-3 results and those of the link
simulator widens for smaller payloads. No TGn results exist for this payload size.

to decide on packet errors directly. In deriving frame errors
from analytical bounds on bit error rates for coded bits,
we encounter complicating factors that warrant a thorough
examination of mappings from SNR to error rates:

• E↵ect of frame length on error rates

• The impact of coding on isolated bit errors

It is this second shortcoming which is most problematic. It
is well known within the literature that bit errors occur in
bursts at the output of the Viterbi decoder [9]. Hence, using
the Viterbi bit error rate under the iid assumption (1) results
in a very loose upper bound. While this equality holds for
an uncoded packet, for coded bits, a tighter upper bound
can be obtained by using the first error probability Pe in (1)
instead of the bit error probability [17].

Figure 3b compares the error rates for a shorter frame du-
ration (50 bytes) that could represent something like a TCP
acknowledgment message. Clearly, the gap has increased
and the slope has diverged even more in comparison to the
1000 byte packets examined in 3a. Likewise, in the case
of the L-SIG (a 3 byte payload at MCS0), the di↵erence is
even more stark. In Table 2, we show the required SNR to
decode the L-SIG with various success rates. To achieve a
50% success rate in decoding the L-SIG, ns-3 error models
indicate a required SNR of 1.7dB while our link simulator
can do so at -3.5dB, a di↵erence of more than 5dB.

Then, we must also consider the e↵ect of varying SNR dur-
ing a frame which is currently tackled in ns-3 by splitting
the frame across bit boundaries (potentially introducing ad-
ditional inaccuracies). And finally, we note that ns-3’s cur-
rent treatment of interference via a unified SINR (whereby
interference is treated as additive noise) has it’s own limita-
tions; but changes to this is deferred to future. We conclude
this section by stating that the need for an improved physi-
cal layer abstraction is clear, and through the proposed im-
provements, we set the stage for subsequent improvements
in ns-3 WLAN/OFDM Phy abstractions in future.

3. WI-FI RECEPTION PROCESS IN NS-3
The existing Wi-Fi reception process in ns-3 works based

on the received SNR at the physical layer [1] and frame

Table 2: Required SNR to achieve given success
rates for SYNC and L-SIG.

ns-3 (SNR) LinkSim (SNR)

Success Rate 50% 95% 50% 95%

SYNC - -10 dB 0.21 dB

SIG 1.7 dB 2.4 dB -3.5 dB 0.3 dB

length. We propose to modify the existing decision process
to the one shown in Figure 1b, with the ability to “drop”
a frame at any of the decision stages, bringing it closer to
actual WLAN implementations [7]. The motivation behind
this modification is two fold: i) helping to account for the
lack of capture e↵ect in existing ns-3 reception, and ii) antic-
ipated low SINR scenarios in future co-existence simulations
within ns-3. Splitting up the reception process requires error
results for the STF/LTF preamble sync, which we generate
from link simulations.

A selection of results for sync are tabulated in Table 2.
A natural question to ask is: what is the significance of the
added stages? At SNRs higher than 5dB, synchronization
is almost always successful, however, keep in mind that ns-3
uses SNR in lieu of SINR, hence it incorporates interference.
While periodically low SINRs at the start of the frame are
expected to occur more frequently in co-existence studies,
they can occur even in the current Wi-Fi only simulations
when accounting for high node densities or hidden nodes
(see Table 3).

As an example, accounting for drops at the LTF/STF
stage can lead to a 5.5% drop in throughput in the case of
10 flows on the network. Conversely, if we consider a hidden
node scenario (described in [3]), we observe that partial col-
lisions within the STF/LTF occur frequently. If the receiver
is locked onto a weak signal through the end of a frame, other
subsequent stronger frames will be ignored. By dropping a
weak packet early, running the same simulation scenarios
yields a throughput gain of up to 16% at high o↵ered loads.

Given this motivation, we modify the Wi-Fi reception in
ns-3. It is pertinent to mention here that inclusion of accu-

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

68

0 500 1,000 1,500

4
8

12
16
20
24
28

O↵ered Load (Packets/sec)

T
h
ro
u
g
h
p
u
t
(M

b
p
s)

Multi-stage Reception Performance

ns-3 Multistage

Original ns-3

(a)

0 500 1,000 1,500

2

4

6

8

Packets per Second

%
D
ro
p
s

Makeup of Packet Drops

Preamble Drops

L-SIG Drops

(b)

Figure 4: (a) Throughput increase in the hidden node scenario due to multi-stage reception (b) Percentage
of frame drops occurring before the payload captured by multistage reception.

Table 3: Likelihood of Low SNR During Synchro-
nization for 25 Node Ad-Hoc Network [4].

Frequency of Occurrence

Flows < 2dB SINR < 5dB SINR

2 1.5% 2.4%

5 2.47% 4.04%

10 3.56% 5.71%

rate sync error models adds to the fidelity of the reception
process as opposed to relying only on the L-SIG error rates
and assuming perfect synchronization based only on received
power. This will have a greater impact in the case of multiple
possibly heterogeneous interference sources.

We now go on to describe the simulations used to obtain
the synchronization error rates, and the impact of the mul-
tistage reception on existing ns-3 Wi-Fi only simulations.

3.1 Multistage Reception
We use link simulations to provide a synchronization fail-

ure rate (P SYNC

e) for the newly added stage in ns-3. Aside
from the trivial case of not detecting the start of a frame al-
together, any timing error in the synchronization can prop-
agate through the remainder of the reception process (so
called “soft e↵ects”). In particular, the e↵ective SNR loss
due to synchronization error has some impact on payload
demodulation especially for higher modulation orders (e.g.
64QAM).

We do not propose keeping track of such soft e↵ects at
this time due to the added implementation complexity that
it would entail (though we are considering them for inclusion
in the future). Instead, in order to arrive at a number for
P SYNC

e , we set an acceptable synchronization error threshold
of less than 1 cyclic prefix (i.e. 800ns) within the LinkSim.
If the initial synchronization estimate is within this window,
we consider the timing acquisition (and frame detection) to
have been successful3. Table 2 shows some synchronization
results as a function of SNR for the AWGN channel. Note

3For higher MCSes, a fine grained timing synchronization
step can follow the initial coarse estimate [18].

that if there is significant SNR variation between the syn-
chronization stage and the payload, the soft e↵ects of syn-
chronization will become more apparent, however, we leave
this case for future work.

The implementation has been modified to separate the
preamble and header reception process, with the ability to
drop the packet at either of these stages and, potentially,
commit to another incoming packet. The preamble recep-
tion is compliant with the standard [6, 15.3.6.2]. At the
start of reception, if the PHY is either IDLE or CCA BUSY,
and there is currently no SYNC being attempted, an end of
preamble event is scheduled. At the LTF, the success rate of
the preamble sync is looked up from LinkSim based results,
and an event for L-SIG header reception is scheduled. If
the preamble has synced successfully, the reception process
moves onto header decode, otherwise the frame is dropped
and the PHY reverts from the reception state. If the header
is decoded successfully, this is followed by payload decode.
Again, if the header fails, the frame is dropped with a cor-
responding change in the PHY state. This model necessi-
tates the addition of a state to indicate whether there is a
preamble sync being attempted, and to ensure that a header
decode is preceded by a successful preamble sync.

4. NS-3 SIMULATION RESULTS
To study the impact of multi-stage reception on Wi-Fi

simulations, a canonical hidden node scenario was studied,
both with and without RTC/CTS enabled [3]. Two nodes,
hidden from each other, transmit to a common access point
placed in the center. The L-SIG was transmitted at MCS0,
with the payload at MCS7 for 1472 byte frames. Constant
bit rate tra�c was generated, and the number of frames per
second ranged from 125 (1.47Mbps) to 1800 (21.19Mbps)
for each transmitting station. The default NIST error rate
model was used for both cases, with SYNC results from
LinkSim incorporated for the multi-stage reception.

The original reception process gives lower throughput,
since incoming frames with a high (average) SNR can be
dropped due to the AP’s commitment to receive a frame
from the other station that partially overlaps the incoming
frame. With modified reception, the throughput improves,
with increased e↵ect at higher tra�c loads as seen in Fig-
ure 4a. To further illustrate the impact of frame drops at the

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

69

preamble and header stages, the percentage of total drops
occurring at these two stages were tabulated 4b. In the hid-
den node scenario, 8-10% of the total drops happen before
the payload stage. For these cases, the AP is now free to
receive the next incoming frame, instead of being tied to the
last received erroneous frame. In both implementations we
observe that the throughput levels o↵ at increasing o↵ered
load due to built-in MAC layer overheads.

The same experiment was repeated with RTC/CTS en-
abled. Since the data packet collisions decrease significantly,
the throughput for both the multi-stage and original recep-
tion line up. There is still a small di↵erence in the through-
put (0.3Mbps) at the maximum o↵ered load (1800 packets
per second), due to the collision of RTS frames.

When the same simulation scenario is repeated with both
stations visible to each other, the throughput is identical for
both cases. For simulations with multiple flows with no hid-
den nodes, the throughput with multi-stage reception was
lower than the original ns-3 implementation. One example
scenario was an ad-hoc grid [4], where the throughput for
multistage is 0.3% lower for 2 flows, and decreases by 5.5%
for 10 4Mbps flows. This di↵erence results from an overall
greater number of frame drops, a direct consequence of the
newly added sync stage.

The results indicate that in current scenarios, multistage
reception has an impact on the simulation results, albeit in
a limited fashion. However, while our current work does
not explicitly model frame capture, the additional stages
we have introduced set the stage for inclusion of capture
e↵ect in the future which will lead to even greater changes
in throughput (see [11]).

5. CONCLUSION AND FUTURE WORK
In this paper, we evaluate the ns-3 physical layer abstrac-

tion to improve fidelity and accuracy. We developed a link
simulation tool and show that its results closely match those
published by the IEEE task group charged with Wi-Fi stan-
dardization. We then used our link simulator to examine
possible sources of error in the ns-3 physical layer error
model that support a move away from the default analytical
model. Then, with a eye towards future inclusion of cap-
ture e↵ects in ns-3 as well conforming to existing hardware
implementation, we used results from our link simulator to
introduce a multi-stage reception model for ns-3 with in-
clusion of preamble sync error rates. Finally, we studied
the e↵ect of our modifications in some canonical scenarios
(hidden nodes and RTS/CTS) to ensure that the behavior
conforms to expectations. In this context, we are validating
and developing both analytical error models, and link-sim
results, as well as changes to the physical layer abstraction
to augment the fidelity and range of applicability of ns-3.

Although not finalized yet for submission to the ns-3 main
tree, we have developed modifications to the YansWifiPhy
class to enable the third stage of reception and to provide
a link simulation-based error model for the PLCP preamble
fields. We have also developed a framework that permits
the loading of link simulation-based error models that are
expressed as text files, to replace the analytical error models.
We plan to investigate further with our link simulator how
best to handle situations in which the SNR varies during
the duration of the received frame, including occurrences of
Wi-Fi signal overlap.

6. ACKNOWLEDGMENTS
The authors would like to thank Thomas Henderson from

the University of Washington for his invaluable guidance
and help during the course of this work. The authors would
also like to thank Benjamin Cizdziel for his contributions
in developing early prototypes of the multistage reception
process.

7. REFERENCES
[1] ns-3 Design Documentation: Wi-Fi Module.
[2] ns-3 Network Simulator.
[3] ns-3 Wi-Fi Example: wifi-hidden-terminal.
[4] ns-3 Wi-Fi Example: wifi-simple-adhoc-grid.
[5] University of Washington Wi-Fi Link Simulator.
[6] Part 11: Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) Specifications, Nov
2012.

[7] Broadcom. WLAN Chipset BCM2050.
[8] Y. S. Cho, J. Kim, W. Y. Yang, and C.-G. Kang.

MIMO-OFDM Wireless Communications with
MATLAB. Wiley, 1st edition, 2010.

[9] L. Deutsch and R. Miller. Burst Statistics of Viterbi
Decoding. Technical Report TDA Progress Report
42-64, NASA, May 1981.

[10] P. Fuxjaeger and S. Ruehrup. Validation of the NS-3
Interference Model for IEEE 802.11 Networks. In
Wireless and Mobile Networking Conference
(WMNC), 2015 8th IFIP, October 2015.

[11] X. Ge, Dongyan, and Y. Zhu. Throughput Model of
IEEE 802.11 Networks with Capture E↵ect. In
Wireless Communications, Networking and Mobile
Computing, 2006. WiCOM 2006.International
Conference on, pages 1–4, Sept 2006.

[12] C. Hepner, A. Witt, and R. Muenzner. In Depth
Analysis of the ns-3 Physical Layer Abstraction for
WLAN Systems and Evaluation of its Influences on
Network Simulation Results. SINCOM 2015, page 46,
2015.

[13] M. Lacage and T. R. Henderson. Yet Another Network
Simulator. In Proceeding from the 2006 workshop on
ns-2: the IP network simulator, page 12. ACM, 2006.

[14] L. Miller. Validation of 802.11 a/uwb coexistence
simulation. Technical report, national institute of
standards and technology (NIST), WCTG white
paper, 2003.

[15] S. A. Mujtaba. TGnSync Proposal PHY Results.
Technical Report IEEE 802.11-04/891r5, Agere
Systems, July 2005.

[16] G. Pei and T. R. Henderson. Validation of ofdm error
rate model in ns-3. Technical report, 2010.

[17] J. G. Proakis and M. Salehi. Digital conununicarions,
2007.

[18] T. M. Schmidl and D. C. Cox. Robust Frequency and
Timing Synchronization for OFDM. Communications,
IEEE Transactions on, 45(12):1613–1621, 1997.

[19] K. Wang, M. Faulkner, J. Singh, and I. Tolochko.
Timing synchronization for 802.11a wlans under
multipath channels. In Proc. ATNAC, volume 2004,
2003.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

70

LL SimpleWireless: A Controlled MAC/PHY Wireless Model
to Enable Network Protocol Research

Patricia Deutsch
MIT Lincoln Laboratory
Lexington, MA 02420

patricia.deutsch@ll.mit.edu

Leonid Veytser
MIT Lincoln Laboratory
Lexington, MA 02420
veytser@ll.mit.edu

Bow-Nan Cheng
MIT Lincoln Laboratory
Lexington, MA 02420
bcheng@ll.mit.edu

ABSTRACT
Wireless network protocol research typically requires evaluating
performance over a set of controlled wireless link conditions.
Although ns-3 provides wireless models like WiFi and WiMax,
they have dozens of parameters that affect performance and it is
difficult to control link rate, latency, error, and other attributes. To
mitigate this issue, we extended a basic, range-based ns-3 model
called SimpleWireless. Features that were added to this model
include transmission delay, configurable queues that enforce a
data rate, support for differentiation of control and data traffic,
support for several configurable error models, support for
directional networking, support for fixed contention and finally,
support for PCAP packet capture. The goal of these additional
features is to provide network protocol researchers with a basic
yet feature rich wireless model that enables evaluating their
protocol in a controlled wireless environment. In this paper, we
describe the base SimpleWireless model and each feature that has
been developed to enhance that model and create the so called
“LL SimpleWireless” model. Additionally, we provide
information on performance evaluation of the LL SimpleWireless
model to verify functionality of the added features.

CCS Concepts
• Networks → Network performance modeling • Computing
methodologies → Model development and analysis; Discrete
event simulation; Simulation support systems;

Keywords
Modeling; Simulation; ns-3; Wireless

1. INTRODUCTION
Network Simulator Version 3 (ns-3) [6] is a discrete-event
network simulator that provides several models for simulating
wireless environments such as WiFi [11] and WiMax [2][12].
However, these models do not necessarily lend themselves to use
for studying new network protocols in a wireless environment
because they couple medium access control (MAC) protocol
specifics with PHY channel effects. WiFi has limited transmission
range and does not support a large number of nodes. WiMax
overcomes these limitations, but with both wireless technologies,
there are dozens of parameters that affect network performance
and in many situations a user may want a more controlled wireless

environment. For example, when testing routing protocols, a user
may want a wireless environment that has limited delay and
guaranteed delivery. For these users, a SimpleWireless model is
available as an add-on to ns-3 [10]. Though this model solves the
complexity issues of using WiFi or WiMax, it is perhaps a little
too simple as it only provides propagation delay, receive error and
transmission range features. To enable wireless network protocol
research with tightly controlled MAC/PHY effects, we enhanced
the existing SimpleWireless model to provide a more realistic and
configurable wireless environment while maintaining the
simplicity that makes it a better choice than WiFi and WiMax for
certain simulation applications. In this paper, we present LL
SimpleWireless (LLSW) which extends SimpleWireless to
include transmission delay, configurable queues that enforce a
data rate, support for differentiation of control and data traffic,
support for several configurable error models including range
based error, support for directional networking, fixed contention,
and finally, PCAP [5] packet capture.

Key contributions of the work include:
1. LL SimpleWireless: A simple and configurable ns-3 MAC

model to enable network protocol research

2. Evaluation of the key features and discussions on the
applicability of LL SimpleWireless

The rest of the paper is organized as follows: Section 2 describes
the original SimpleWireless model while Section 3 focuses on the
key enhancements (LL SimpleWireless). Section 4 presents
evaluation results of the enhancements and discusses implications.
Finally, Section 5 concludes the paper and highlights some future
work.

2. SIMPLE WIRELESS MODEL
The ns-3 SimpleWireless model [10] is available as an add-on to
ns-3. It provides a simple range-based on/off model for the
transmission of packets and models a network interface controller
that is not based on any specific protocol but provides a simple
protocol for wireless communication (hence its name). The model
consists of two parts: SimpleWirelessChannel and
SimpleWirelessNetDevice. Figure 1 shows the base
SimpleWireless model.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
WNS3, June 15-16, 2016, Seattle, WA, USA
© 2016 ACM. ISBN 978-1-4503-4216-2/16/06…$15.00
DOI: http://dx.doi.org/10.1145/2915371.2915376

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

71

The SimpleWirelessChannel is the physical layer model and is
used to transmit packets within a user specified transmission
range with a propagation delay based on speed of light. When the
SimpleWirelessChannel receives a packet from the
SimpleWirelessNetDevice to transmit, it iterates over all devices
attached to the channel to determine if the packet should be sent to
each of these devices. The decision is quite simple: if the
destination is within the specified transmission range of the sender
then delivery of the packet to the destination device is scheduled
in the future with a delay based on propagation time of distance
times the speed of light. This transmission range is all or nothing
– within the range yields 100% delivery and outside the range
yields 0% delivery. Besides the range check, there are no other
limitations on sending the packet to the destination.

The SimpleWirelessNetDevice is the device model and is used to
receive packets based on a user specified error model. When a
packet is received from the channel of a sending node, the user
specified error model is applied to the packet and if the result is a
packet in error, the packet is dropped. Otherwise, the packet is
considered a successful reception. The error model uses ns-3’s
ErrorModel [7] class and thus supports several types of error
models: rate error (error based on a random distribution), list error
(error based on a list of packet IDs), and burst error (error in
random bursts). The available ErrorModel types allow errors to be
applied on a per-packet, per-byte, or per-bit basis.

With this understanding of the SimpleWireless model, its
limitations begin to appear. Though there is support for packet
errors, it is a fixed random distribution. Within the transmission
range, every packet has the same probability of error without
regard to distance from the sender. In reality, a wireless
transmission will have an error rate that is based on distance, that
is, the closer the receiver is to the source, the less errors will occur
and the error rate grows as the distance increases. Thus the error
modeling of the SimpleWireless model is not necessarily
representative of wireless transmission in which distance can
affect the amount of errors a packet experiences. As well, errors
are only applied on the receive side but applying an error to
packets on the send side would reduce simulation overhead
because a packet that is deemed not deliverable is dropped at the
source instead of being retained through to reception. Another
limitation of the SimpleWireless model is that there is no concept
of data rate thus the channel has effectively infinite bandwidth.
Finally, all nodes in the network are considered potential receivers
so there is no support for directional networks.

3. LL SIMPLE WIRELESS
In seeking to overcome the limitations of the SimpleWireless
model and create a more robust model, several features were
added to the SimpleWireless model to create the LL
SimpleWireless (LLSW) model. The following features were
added and are described in the sections that follow:

• Error Models (including range based error)
• Packet Queuing (including control and data sub-queues)
• Transmission delay
• Fixed contention
• Simulated directional networking
• PCAP packet capture

With the exception of the transmission delay, all of these features
are optional and are not required to be enabled. Thus if a user
wants the behavior of the original SimpleWireless model, this can
be accomplished by not enabling the new features and setting the
data rate to a large enough value that the transmission delay is
negligible. Figure 2 shows the LLSW model with some of these
features.

3.1 Error Models
In order to enhance the error modeling capabilities and potentially
reduce simulation overhead, LLSW implements several error
models on the send side: Constant Error Rate, Packet Error Rate
Curve, and Stochastic.
The Constant Error Rate model applies a uniform random
distribution for dropping packets. When a packet is to be sent, a
uniform random selection is performed and if the returned value
(which is between 0 and 1) is less than the user configured error
rate then the packet is dropped and not sent. This is quite a simple
error model and in fact has fewer features than the error models
available on the receive side. This error model was added to the
send side simply to provide a quick and easy method for dropping
packets at the source and improving simulation speed.
The Packet Error Rate Curve model applies a user specified curve
of distance versus error for dropping packets which provides a
more realistic transmission distance-based error. As part of
creating a scenario, the user builds this error curve using a set of
<distance, error rate> pairs. When a packet is sent, the distance
between the sender and receiver is used to determine a value from
this curve, linearly interpolating between points on the error curve
to provide the acceptable error rate for the given distance. If a
uniform random selection (values between 0 and 1) yields a value
that exceeds this error rate, the packet is considered in error and is
not sent. Figure 3 shows an example of this type of error model.
Because the user has full control over creating the error curve, this

Delivery: Based
on error curve

Delivery:0%

Figure 2. LLSimpleWireless Model.

Bandwidth: Queues
enforce data rate

ErrorModel
at receiver

0%

100%

Range

Data
Queue

Control
Queue

Figure 1. Base ns-3 SimpleWireless Model.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

72

error model is very flexible in providing a realistic transmission
range based error.

While these two newly added error models are packet based, that
is, they are used to determine if any one packet is in error, the
third error model, Stochastic, is used to disable the entire channel
between specific sender/receiver pairs. The Stochastic error model
[15] uses two exponential distributions with user specified means
– an “up” distribution and a “down” distribution – to toggle the
state of the channel between each sender/receiver pair in the
network. When the channel is down, all packets for the destination
from the sender are dropped. When the channel is up, all packets
for the destination from the sender are delivered. Figure 4 shows
an example of this type of error model.

The state of the channel is continuously altered between up and
down states based on the randomly selected state durations. The
selection of the channel state occurs when a packet is sent and is
not performed using timers to manage the states. This keeps
simulation overhead to a minimum because only those
source/destination channels that are being used have their states
maintained. Figure 5 shows an example of the channel state
selection. At initialization, the channel state is set to ON and the
random duration of this state is selected. Each time a packet is
sent, the current time is compared to the state end time and if the
state end time has passed, the next state duration is randomly
selected until the end time of the new state is greater than the
current time.

It is important to note that these error models have all been added
to the send side so that any packet that would not arrive at the
destination were it to be sent is not sent. This reduces simulation
overhead by deleting packets earlier in the processing chain.

3.2 Packet Queuing
In order to provide support for a device data rate, LLSW
implements queuing of outbound packets at the
SimpleWirelessNetDevice. Queues are always First-In-First-Out
(FIFO) but the method for dropping packets on a full queue is
configurable to be either drop head or drop tail. In addition, there
is support for priority queues which implements separate control
and data sub-queues, each of which can be set independently as
drop head or drop tail. When a priority queue is used, a PCAP
string filter can be configured and is used to differentiate control
and data packets. The control sub-queue operates as strict priority,
meaning it is always serviced first before the data sub-queue.
When queues are used, the SimpleWirelessNetDevice maintains a
transmit state flag to indicate if the device is currently transmitting
or is idle. Figure 6 shows an example of the use of this transmit
state flag. When the SimpleWirelessNetDevice receives a packet
from the upper layer to transmit, it places the packet into the
queue and if currently idle, immediately transmits the packet and
sets the flag to busy. After the transmission is complete, it sets the
flag back to idle and checks the queue to see if there is another
packet waiting to be sent. The transmission time of a packet is
based on the packet size and the user configured data rate.

It is important to note that the busy state is set and maintained at
the SimpleWirelessNetDevice without regard to what happens to
the packet when transmitted via the SimpleWirelessChannel. As
indicated previously, the SimpleWirelessChannel does not
actually send a packet that would be delivered in error at the
destination node. Such packets are dropped and not sent over the
channel. However, the device does not know about this and will
still be considered "busy" for the amount of time required to
transmit the packet even if the channel does not actually send it.
This is an important aspect of maintaining a data rate, and despite
packets being dropped instead of being transmitted, the
SimpleWirelessNetDevice still considers the time it would have

Figure 3. LL SimpleWireless PER Curve Error.

Figure 5. LL SimpleWireless Stochastic Error State
Selection.

Figure 4. LL SimpleWireless Stochastic Error.

Figure 6. LL SimpleWireless Queue Transmit State.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

73

taken to transmit the packet as not available to transmit any other
packet.
Enabling the use of queues is optional and when not used the
behavior is that of the original simple wireless model. The
SimpleWirelessNetDevice immediately sends a packet when it
receives it and does not maintain a busy flag.

3.3 Transmission Delay
Transmission delay is simply the size of the packet times the data
rate of the device. This delay is added to the propagation delay
when the packet delivery is scheduled in the
SimpleWirelessChannel. The data rate is a newly added attribute
on the SimpleWirelessNetDevice thus the device actually
provides the transmission time value to the channel when a packet
is sent. The data rate is defined on the device because it is also
used to support queuing which is discussed in the previous
section.

3.4 Fixed Contention
Fixed contention is a feature used to account for contention on the
channel. Each device uses the queuing mechanism to maintain the
specified data rate but in reality this bandwidth may actually need
to be shared amongst neighboring nodes. That is, each neighbor
node cannot have 100% of the available bandwidth. The fixed
contention feature is used to simulate the sharing of the channel
among neighbors. Figure 7 shows an example. Each time a
transmission occurs, the model counts the number of neighbor
nodes that could cause contention on the channel and uses that
number to adjust the data rate to a value that would be the
effective data rate based on contention on the channel. A node is
considered to cause contention if it is within a user configurable
“contention range”. This value is a separate value from the
transmission range of the channel but if it is not specified
explicitly by the user and the feature is enabled, the transmission
range will be used as the contention range. Once the count of
neighbors in contention is determined, it is used to reduce the data
rate available to a sending node. The data rate becomes the
original data rate divided by the number of contention neighbors.
The device uses this new, lower data rate when it determines the
transmit time which is used for setting how long to keep the
device’s busy flag set and for transmission time on the channel.
The manner in which the number of neighbors is counted is as
follows: the count first includes the sending device itself. Then
when the channel transmits a packet, it loops over all devices on
the channel. During this loop the number of destination devices
that are within the user specified contention range is counted and
this is the count that is used for the next time that a packet arrives
on the device to be sent. Note that this information is not the exact
number of nodes within contention range at the instant when a
packet is queued but is based on the previous transmit. The
neighbor count could be taken at the start of each transmit but
because the channel already loops over all the devices as part of
its sending, the fixed contention feature was designed to simply
re-use this loop instead of adding a second loop and introducing
overhead to a simulation.
Is it important to note that this method of simulating contention is
best used in scenarios with high volume traffic because that is
when the full number of neighbor nodes would actually cause
contention. When the volume of traffic is low and nodes are able
to transmit when no other neighbor is transmitting, this contention
model would falsely reduce the data rate as though the
transmissions were contested when in fact they were not.

3.5 Simulated Directional Networking
Although commercial wireless technologies are generally omni-
directional systems, there has been a large push in recent years to
leverage highly directional systems for increased capacity, range,
and reliability [1][3]. Implementation of highly directional radio
systems adds significant complexity due to the need to track
neighbor positions, orientation, and antenna patterns. To provide
basic directional effects to network protocol researchers, LLSW
implements a simple version of directional networks with the use
of a "neighbor list" in the SimpleWirelessNetDevice. In short, the
“neighbor list” is a fixed configuration which identifies the
neighbors that are in view of the node as though there was a
directional antenna. The goal is not to simulate the full details of
directional radio systems, but to give a high level effect to
network layer protocol researchers. Topology management
schemes can be built on top of this feature to dynamically elect
neighbors to connect if necessary. If the directional networking
feature is disabled then all nodes are within view of the node. If
this feature is enabled, then only the nodes listed in the node's
neighbor list are considered in view of the node. When directional
networking is enabled for the device, the
SimpleWirelessNetDevice enqueues outbound packets as follows:

• A broadcast packet is duplicated and enqueued once for
each directional neighbor.

• A unicast packet is enqueued only if the destination is a
directional neighbor.

Note that when the directional network feature is enabled, packets
are enqueued for a specific destination so that when the
SimpleWirelessChannel receives the packet to send, there will be
only one destination device to which the packet will be sent. This
differs from the case without a directional network when only one
packet is enqueued. As an example, suppose a node has nine
neighbors, five of which are considered directional neighbors. If
directional networks are enabled, the device will enqueue and
serially transmit five packets – one for each directional neighbor.
It is assumed that there is just one radio so the transmissions are
serial and not simultaneous. When the channel receives a packet
to send, it will only deliver it to one destination device. This is
equivalent to five serial transmissions using a directional antenna.
The only devices that receive the packet are the five that are
considered directional neighbors; the four neighbors that are not
do not receive the data. If directional networks are not enabled,
the device enqueues one packet. When the channel receives the
packet to send, it will deliver it to all devices in range which
includes the five directional neighbor devices as well as the four
other nodes. This latter case is equivalent to a single transmission
using an omnidirectional antenna. Figure 8 shows the difference

Figure 7. LL SimpleWireless Fixed Contention.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

74

in LLSW when using the directional network feature to send a
broadcast packet.
The list of directional neighbors is built by the user in the ns-3
scenario. The user needs to add nodes as directional neighbors in
the scenario and if desiring a non-static set of directional
neighbors the user must write the appropriate code to maintain the
list. LLSW provides the methods to add and remove directional
neighbors as well as the infrastructure to use the list once built but
it does not provide an automatic building and maintenance of a
directional neighbor list.

3.6 PCAP Packet Capture
PCAP packet capture is a feature that exists on other ns-3 device
models including WiFi and WiMax but was not part of the base
SimpleWireless model. This packet sniffing was added to the
LLSimpleWireless model to capture packets sent and received at
the device. This allows the simple wireless model to be consistent
with other ns-3 models which provide a packet capture capability.

4. EVALUATION
The new features of LLSW were evaluated for correct behavior
and performance. This section describes the testing that was
performed including a description of the scenarios used for
testing, and test results.

4.1 Error Model Test Case
The scenario to test the Error Model had 101 nodes in total placed
within a circle of radius 100. Node 0 was placed at the center of
the circle and nodes 1 through 100 were randomly placed within
the circle. Figure 9 shows the node placement. Node 0 sent
broadcast traffic at a rate of 1Mbps using the ns-3
OnOffApplication [9]. There were no queues used so the
bandwidth of the network was essentially infinite and did not
hinder successful packet delivery. Thus the only reason a packet
would not be received was packet error.
This scenario was executed using the Packet Error Rate (PER)
Curve for the error model with the error curve comprised of the
<distance, error rate pairs> shown in Table 1.

Table 1. Distance, Error Rate Pairs.
Distance Error Rate Distance Error Rate

0 0% 60 50%
10 0% 70 60%
20 5% 80 70%
30 7% 90 80%
40 12% 100 100%
50 15%

Figure 10 shows the results of the simulation in terms of the % of
packets dropped versus distance of the destination node from the
source node. These results are overlaid on the PER curve
specified per Table 1. As can be seen from the graph, the % of
packets dropped based on distance matches the PER curve
specified.

The scenario was executed a second time but with a reduction in
the number of nodes to 21 total and using the Stochastic error
model with an average up time of 15 seconds and an average
down time of 5 seconds. Figure 11 shows the results of the
simulation in terms of packet reception. The x-axis is the
simulation time and the y-axis is receiving node id. Each green
mark represents when a node received a packet. There are gaps in
the reception and these gaps correspond to when the channel
between the source node (Node 0) and the destination node id (y-
axis value) was disabled as part of the stochastic error. The
average error was purposely set to a high value of 5 seconds so
that gaps in reception could be seen on the graph. Note that each
destination has a unique pattern for when the channel is up/down

-100-90-80-70-60-50-40-30-20-10 0 10 20 30 40 50 60 70 80 90 100

Source

Receivers

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 20 40 60 80 100

Pa
ck

et
 E

rr
or

 R
at

e

Destination Node Distance from Source Node

Error Rate vs. Distance

Specified PER Curve % Packets Dropped

Figure 8. LLSimpleWireless Model Directional Network
Example for Sending a Broadcast Packet.

Omni

1 packet queued and 1 transmission
to deliver to all neighbors

Directional

5 packets queued and 5 transmissions
to deliver to directional neighbors only

Figure 9. Error Model Test Scenario Node Placement.

Figure 10. PER Curve Test Results: Measured packet
errors correctly match the user specified PER curve.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

75

which shows how this stochastic error is applied to each specific
source/receiver pair.

4.2 Queue Test Case
The scenario to test the queue implementation had two nodes.
Node 0 sent data to Node 1 at a rate of 1Mbps using the
OnOffApplication. Optimized Link State Routing (OLSR) [8][14]
was used as the routing protocol which provided control packets.
The data rate of the device was varied to show how the queues
enforce a device data rate. The queue type was also varied to
demonstrate how the queue latency is affected by the type of
queue used. Figure 12 shows the scenario for the queue test.

Figure 13 shows the results of the simulations run over a range of
device data rates from 0.1Mbps to 1.1Mbps using DropHead and
DropTail queues. The graph shows two sets of data: percent
packets received and queue latency. DropHead and DropTail
queues have nearly identical packet delivery rates so the values
from the DropHead and DropTail simulations were averaged to
show just one line on the graph. As the data rate increases, the
packet receive rate also increases, reaching 100% at 1.1Mbps,
which is just above the OnOffApplication traffic rate of 1Mbps.
At a device data rate of 1Mbps, 96% of the data packets are
received instead of 100% because some of the bandwidth is
needed for the OLSR overhead. The graph also shows the queue
latency for DropHead and DropTail queues. As expected, the
DropHead queue has a lower latency than DropTail because
DropHead will drop the oldest packet (highest latency) when there
is no room in the queue to enqueue a new packet while the
DropTail will drop the newest packet (lowest latency). Dropping
the newest packet means that the oldest packets remain in the
queue and thus increases the queue latency.

The scenario was used for a second set of simulations to test the
use of the priority queues to differentiate control and data traffic.
Once again, the device data rate was varied from 0.1Mbps to
1.1Mbps and Node 0 sent 1.0Mbps of data traffic but using a
PriorityTail queue configuration which separates control traffic
and data traffic and only sends data traffic when the control sub-
queue is empty. Figure 14 shows the results of the simulations.
The graph shows two sets of data for control and data traffic: %
packets received and queue latency. The graph shows that control
packets are given preference over data packets. Control packets
have a 100% reception rate and zero queue delay while the data
packets have reception rate and queue delay that vary with the
data rate. At a device data rate of 0.1Mbps, only 10% of the data
packets are delivered and the queue latency is high.

4.3 Fixed Contention Test Case
To test the fixed contention feature, a scenario similar to that used
for testing error models was used. A total of 101 nodes were
placed in a circle of radius 100. Node 0 was placed at the center

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 500,000 1,000,000
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

%
 P

ac
ke

ts
 R

ec
ei

ve
d

Device Data Rate, bits per second

Q
ue

ue
 L

at
en

cy
, s

ec
on

ds

Queue Performance vs. Device Data Rate
Drop Head vs. Drop Tail with Traffic Rate 1Mbps

Average % Packets Received
Drop Tail Queue Latency
Drop Head Queue Latency

0%

20%

40%

60%

80%

100%

120%

0.0

2.0

4.0

6.0

8.0

10.0

0 500,000 1,000,000

%
 P

ac
ke

ts
 R

ec
ei

ve
d

Q
ue

ue
 L

at
en

cy
, s

ec
on

ds

Device Data Rate, bits per second

Queue Performance vs. Device Data Rate
Control and Data Sub-queues with Traffic Rate 1Mbps

Data Queue Latency Control Queue Latency
% Data Pkts Received % Control Pkts Received

Figure 11. Stochastic Error Test Results: Each
destination node has a unique random error pattern.

Node 0
Source

Node 1
Destination

vs.
 Drop Tail Drop Head

1. varying data rate

Data
Queue Control

Queue

2. varying queue configuration

Figure 12. Queue Test Scenario.

Figure 13. Queue Test Results for Drop Head vs Drop
Tail: Delivery rate increases and queue latency decreases

as device data rate increases.

Figure 14. Queue Test Results for Control and Data
Sub-queues: Control traffic is appropriately given

priority over data traffic.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

76

and the other 100 nodes were randomly placed. The node
placement is identical to that shown in Figure 9. Node 0 sent
broadcast traffic at a rate of 1Mbps using the OnOffApplication.
A DropHead queue was used to limit the device data rate to
10Mbps so that the effect of contention could be observed. The
contention range was varied so that the number of contention
neighbors affecting Node 0’s transmissions varied. Figure 15
shows the results. The graphs shows the percentage of packets
received and the percentage of packets dropped at Node 0’s queue
due to queue overflow. Increasing the number of contention
neighbors increases the transmission time of each packet. This in
turn reduces the effective device data rate resulting in poor
throughput and queue congestion as the number of contention
neighbor increases.

4.4 Directional Networking Test Case
The scenario to test the directional networking had 13 nodes.
Node 0 was placed at the center of a circle of radius 50 and the
remaining 12 nodes were placed on the perimeter of the circle in a
clockwise fashion. Figure 16 shows the node placement. The
scenario was configured such that Node 0 had 6 directional
neighbors: Nodes 1, 3, 4, 7, 10, 11. All other nodes were in range
of Node 0 but were not directional neighbors.

A DropHead queue was used with a device data rate of 10Mbps.
In the first simulation run using this scenario, Node 0 was the
source of broadcast traffic at a rate of 1Mbps using the
OnOffApplication. As indicated previously, when a directional
network is enabled, a broadcast packet is duplicated and enqueued
once for each directional neighbor. Figure 17 shows the results of
the simulation in terms of the number of packets in the queue
versus simulation time for a small, 0.1 second interval. The time

scale on this graph is small so that the dots on the graph can be
seen. On a larger time scale, it is difficult to see the individual
dots as they appear as a solid line due to their density. Each time a
broadcast packet is sent, the queue occupancy peaks at five
packets then decreases to zero as each packet is transmitted. The
reason there are never six packets in the queue (the number of
directional neighbors) is because the channel is idle when the first
packet is sent and thus it is sent immediately and does not appear
in the queue occupancy statistics. This graph shows how a unique
packet is enqueued for each directional neighbor.

Figure 18 shows the packet delivery statistics for the scenario with
and without the directional network feature enabled. When the
directional networking feature is not enabled, all nodes receive
100% of the broadcast traffic but when directional networking is
enabled only those nodes that are designated as directional
neighbors receive the broadcast traffic.

5. CONCLUSION
ns-3 provides several models that can be used to simulate wireless
networks. However, for protocol research and development, the
WiFi and WiMax models can be complex to configure and
difficult to control in terms of packet delivery and performance.
The optional SimpleWireless model overcomes this complexity
but is a bit too simple and has limited features. The
LLSimpleWireless model adds several important features to the
base SimpleWireless model to provide a more realistic and yet

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100
Number of Nodes in Contention Range

Fixed Contention Performance vs. # Contention Nodes

% Data Received % Packets Dropped at Queue

0

1

3

4

7

10

11

2

5
6

8

9

12
Source

Directional Neighbors

Other Neighbor Nodes

0

1

2

3

4

5

20.7 20.72 20.74 20.76 20.78 20.8

N
um

be
r o

f P
ac

ke
ts

 in
 Q

ue
ue

Simulation Time, seconds

Packets in Queue vs. Time

0% 0% 0% 0% 0% 0%

-10%
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 11 12

%
 P

ac
ke

ts
 R

ec
ei

ve
d

Node Id

Packets Received - Directional Networks

Directional Networking Enabled Directional Networking NOT Enabled

Figure 15. Fixed Contention Test Results: % Data
received decreases and % packets dropped at queue

increases as contention increases.

Figure 16. Directional Network Test Scenario Node Placement.

Figure 17. Directional Networking Queueing: Each
packet sent correctly results in five packets enqueued.

Figure 18. Directional Networking Packet Delivery: Only
directional neighbors receive traffic when directional

networking is enabled.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

77

controlled wireless environment for ns-3 simulations. These
additional features provide queues for enforcing a data rate, range
based error modeling, transmission delay, support for simulating
channel contention and directional networks, and PCAP packet
capture. The goal of the effort is to provide wireless network
protocol researchers a MAC/PHY model that enables tight
controls of MAC/PHY effects to limit uncertainty when
developing network protocols.
Though this new set of features is extensive, there are several
enhancements that could be made as future work, specifically:

• Add full ErrorModel support on the send side. LLSW
includes three types of error models on the send side. The
random error that was added to LLSW only supports uniform
distribution of errors applied to entire packets. This could be
modified to support the ErrorModel class so that additional
random distributions beside uniform can be used and the
error rate can be applied at the bit or byte level in addition to
packet level.

• Add support to the priority queue for user configurable
number of sub-queues. LLSW includes support for queues
but only supports the use of a single queue to hold all packets
or a priority queue with two sub-queues for control and data
packets. The priority queue implementation could be
expanded to allow the user to define N sub-queues each with
a PCAP string filter as well as a user specified de-queueing
order.

• Add support for multiple radios for use in directional
networks. LLSW assumes that there is just one radio and
therefor the directional transmissions are serial. Support for a
multiple radio directional system could be added to the
model to allow for simultaneous directional transmissions.

• Add automatic support for directional networks including
automatic neighbor detection for mobility. LLSW includes
support for directional networking but the user must create
and maintain the list of directional neighbors for each node.
The simplest method is to statically configure this in the
scenario. If mobility is used, then the user must write the
appropriate code in their scenario to manage the list of
directional neighbors. Support for creating and maintaining
lists of directional neighbors based on current neighbors
could be added to the model so that the user does not have to
manually create and maintain the list of directional neighbors
in their scenario.

• Add support for interference. LLSW includes the support for
dropping packets based on an expected error rate at a given
range with the implementation of the PER curve error model.
This type of PER curve would be built from known or
expected performance of the network which could but may
not include the effects of packet interference. Support for
discrete modeling of packet interference could be added to
the model and could be based on existing interference
models such as the YANS WiFiPhy model [4][13].

• Add support for distance based data rate. LLSW includes a
user configurable data rate but this is a constant data rate.
Support for a distance-based data rate could be added to the
model for simulating adaptive coding techniques which
lower the data rate as distance increases in order to improve
bit error rates.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the Defense

Advanced Research Projects Agency under Air Force Contract
No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any
opinions, findings, conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the Defense Advanced Research Projects
Agency. Approved for public release; distribution unlimited.

7. REFERENCES
[1] R. R. Choudhury, X. Yang, R. Ramanathan, and N. Vaidya.

2002. Using directional antennas for medium access control
in ad hoc networks. In Proceedings of the 8th annual
international conference on Mobile computing and
networking (MobiCom '02). ACM, New York, NY, USA,
59-70.

[2] J. Farooq and T. Turletti. 2009. An IEEE 802.16 WiMAX
module for the ns-3 simulator. In Proceedings of the 2nd
International Conference on Simulation Tools and
Techniques (Simutools '09). ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications
Engineering), ICST, Brussels, Belgium, Belgium, , Article 8,
11 pages.

[3] Y.-B. Ko, V. Shankarkumar, and N. Vaidya. 2000. Medium
access control protocols using directional antennas in ad hoc
networks. In Proceedings Nineteenth Annual Joint
Conference of the IEEE Computer and Communications
Societies (INFOCOM 2000). IEEE, New York, NY, USA,
13-21, Vol. 1.

[4] M. Lacage and T.R. Henderson. 2006. Yet another network
simulator. In Proceeding from the 2006 workshop on ns-2:
the IP network simulator (WNS2 '06). ACM, New York,
NY, USA, Article 12.

[5] LibPCAP, http://www.tcpdump.org.
[6] Network Simulator 3 (ns-3), http://www.nsnam.org.
[7] ns-3 ErrorModel Code,

http://www.nsnam.org/doxygen/group__errormodel.html
[8] ns-3 OLSR Code,

http://www.nsnam.org/doxygen/group__olsr.html
[9] ns-3 OnOffApplication Code,

http://www.nsnam.org/doxygen/group__onoff.html
[10] ns-3 Simple Wireless, http://code.nsnam.org/tomh/ns-3-

simple-wireless
[11] ns-3 Wifi Code,

http://www.nsnam.org/docs/models/html/wifi-design.html
[12] ns-3 Wimax NetDevice,

http://www.nsnam.org/docs/release/3.12/models/html/wimax
.html

[13] ns-3 Yans WifiPhy Code,
http://www.nsnam.org/doxygen/classns3_1_1_yans_wifi_ph
y.html

[14] Optimized Link State Routing, RFC 3626,
https://www.ietf.org/rfc/rfc3626.txt

[15] M. Smith. 2005. Channel Characterization and Modeling for
Satellite Communications on the Move. In Proceedings of
Military Communications Conference 2005 (MILCOM
2005). IEEE, New York, NY, USA, 821-827 Vol. 2.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

78

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
WNS3, June 15 - 16, 2016, Seattle, WA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4216-2/16/06...$15.00
DOI: http://dx.doi.org/10.1145/2915371.2915379

A Realistic MAC and Energy Model for 802.15.4

Vishwesh Rege
Robert Bosch Centre for Cyber Physical Systems

Indian Institute of Science (IISc)
Bangalore, India

vishwesh.rege@cps.iisc.ernet.in

Tommaso Pecorella
Dpt. of Information Engineering (DINFO)

Università di Firenze
Firenze, Italy

tommaso.pecorella@unifi.it

ABSTRACT
The IEEE 802.15.4 standard defines the physical and media access
control layers for LR-WPANs (Low-Rate Wireless Personal Area
Networks), and is one of the enabling technologies for Wireless
Sensor Networks (WSNs) as well as the emerging Internet of
Things (IoT) applications. The ns-3 network simulator offers
support for simulating LR-WPANs as specified by the IEEE
standard 802.15.4 (2006). However, only the ad-hoc mode is
currently supported and many important features of the MAC such
as radio duty cycle management are missing from the
implementation.

Moreover, at the moment ns-3 does not support simulating the
energy consumption of LR-WPAN devices. Since energy
efficiency is an important consideration for WSN and IoT
applications, support for accurate energy modeling is highly
desirable in order to develop energy-aware protocols for such
applications. In this paper, we present the models developed for
simulating the energy consumption of nodes in LR-WPANs.
Further we implement the ContikiMAC radio duty cycling protocol
in order to provide a realistic 802.15.4 compliant MAC layer
which supports sleep/wake mechanisms.

CCS Concepts
• Computing methodologies → Model development and

analysis; Discrete-event simulation; Networks → Network

simulations

Keywords
ns-3, energy consumption, IEEE 802.15.4, IoT, WSN, MAC, duty
cycling

1. INTRODUCTION

Wireless sensor networks (WSNs) consist of a large number of
battery-powered wireless sensor nodes required to operate for
years without any human intervention. The Internet of Things
(IoT) is the future of wireless sensor network applications where
any device can be connected to and operated through the Internet.
Since the wireless network nodes in WSN and IoT applications are

typically battery-powered, they have a limited amount of energy
available. As a result, efficient utilization of the available energy is
essential for continuous operation over long periods of time.
Wireless sensor network research attempts to design network
protocols to meet these energy constraints and increase network
lifetime.

IEEE 802.15.4 is an important standard for wireless sensor
network and Internet of Things applications. The standard specifies
the physical layer and media access control for low-rate wireless
personal area networks (LR-WPANs), and is the underlying
protocol used in a majority of sensor network deployments with
applications such as remote sensing, surveillance and monitoring.
The standard provides an energy efficient and cost effective option
for low latency and high accuracy communication required in these
scenarios, with the ability to survive on battery or harvested power
for extended periods of time.

A number of custom and industry standard networking
protocols have been developed using the services provided by
802.15.4. It is the basis for standards like ZigBee, WirelessHART,
and the IPv6 adaptation protocol 6LoWPAN [4] which further
extend it by specifying the upper layers which are not defined.
When combined with 6LoWPAN, it can be used alongside the
standard Internet protocols to build a wireless embedded Internet
and facilitate the Internet of Things vision.

The 802.15.4 standard is the basis for the LRWPAN model in
ns-3. The model allows simulation of WSN scenarios, though it is
severely limited in its current capabilities. There is no support for
simulating the energy consumption of LRWPAN nodes in the
model. Since, energy efficiency is one of the major concerns for
researchers looking to test their WSN protocols, this is a serious
limitation that needs to be addressed.

Furthermore, the MAC (Media Access Control) layer doesn’t
incorporate sleep/wake mechanisms. As a result, the radio is
always ON, which doesn’t represent the actual deployment
situation. Most WSN nodes when deployed, use some sort of radio
duty cycling mechanism in order to turn off the radio when not in
use. As the radio is the main source of energy consumption on a
node, this is one of the primary methods used to increase energy
efficiency and consequently the network lifetime. Lack of radio
duty cycling therefore prevents users from running realistic
simulations. On one side this increases the performance (delay,
throughput, etc.), and on the other side overestimates the energy
consumption for receiving packets and underestimates the
transmission energy.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

79

A simulator model that supports modeling energy consumption
of 802.15.4 devices will allow studying the energy consumption of
nodes and thus the energy efficiency and network lifetime of
802.15.4 based protocols. A MAC model that incorporates radio
duty cycling will allow researchers to test their network protocols
under realistic conditions. Thus the developed models are expected
to greatly simplify the future development and evaluation of
protocols for WSN/IoT applications.

In this paper, we present our contributions to ns-3 which are as
follows:

• PHY layer support for modeling energy consumption of
802.15.4 radios

• LRWPAN device energy model that represents the energy
consumption of 802.15.4 devices

• A MAC model that incorporates radio duty cycling, in order
to realistically simulate WSN scenarios in ns-3

The rest of the paper is organized as follows: Section 2 gives an
overview of the IEEE 802.15.4 standard and the existing
implementation in ns-3. Section 3 presents the in detail design and
implementation of the proposed ns-3 energy and MAC models.
Section 4 includes the validation of the developed models. Section
5 discusses possible future work and Section 6 concludes the
paper.

2. IEEE 802.15.4 AND LRWPAN

SIMULATION MODEL IN NS-3

In this section, we give a brief overview of IEEE 802.15.4 and
introduce the relevant features of the standard. We also discuss the
LRWPAN simulation model in ns-3 which is based on the
standard.

2.1 PHY Layer

The 802.15.4 PHY layer provides two services:

1. The PHY data service, which enables the transmission and
reception of PHY protocol data units (PPDUs) across the
physical medium.

2. The PHY management service interfacing to the physical
layer management entity (PLME) service access point (SAP)
(known as PLME-SAP).

The features of the 802.15.4 PHY are activation and
deactivation of the radio transceiver, transmission and reception of
packets across the wireless channel, as well as performing
additional tasks that may be required by the upper layers, such as
Energy Detection (ED), Clear Channel Assessment (CCA) and
Link Quality Indicator (LQI) measurement for received packets.
ED and CCA operations are required in the Carrier Sense Multiple
Access Collision Avoidance (CSMA-CA) functionality of the
MAC layer.

In ns-3, the Phy model is based on the specification described in
section 6 of IEEE Std 802.15.4-2006. It models the PHY service
specifications, PPDU formats, PHY constants and PIB attributes.

2.2 MAC Layer

The medium access control (MAC) layer enables transmission
of frames through the physical channel.

The 802.15.4 MAC layer provides two services:

1. The MAC data service, which enables the transmission and
reception of MAC protocol data units (MPDUs) across the
PHY data service.

2. The MAC management service interfacing to the MAC layer
management entity (MLME) service access point (SAP)
(known as MLME-SAP).

The features of the 802.15.4 MAC layer are beacon
management, channel access, GTS management, frame validation,
acknowledged frame delivery, association, and disassociation.

The MAC model in ns-3 is based on the specification described
in section 7 of IEEE Std 802.15.4-2006. The standard allows three
different MAC modes: beacon-enabled, non beacon-enabled (star
and cluster tree modes) and beaconless (ad-hoc mode). However,
the current MAC implementation lacks some features foreseen by
the standard. In particular, there is no active support for
coordinators, association, disassociation and beacon management,
required for beacon-enabled and non beacon-enabled modes of
operation. Only channel access (using unslotted CSMA/CA) and
the basic data transfer API along with acknowledged frame
delivery is currently implemented. Thus, the only mode supported
is ad-hoc mode (i.e., beaconless).

Further, the current ns-3 MAC does not use low power features,
forcing the radio always in an ON state. As a result, it is impossible
to simulate realistic scenarios in which the nodes are assumed to be
duty-cycled spending most of the time with their transceivers
switched off. It must be stressed that the standard specifies only the
sleep management for beacon-enabled MAC, while for the
beaconless case the standard does not give any strict rule.

Due to the lack of beacons and centralized timing in the
beaconless case, the main challenge is to achieve a local
synchronization between two different nodes, because the local
clocks drift does not allow to keep the synchronization if not for
small periods. As a consequence, it is not guaranteed to know
when the receiver node will be awake.

In order to save energy in beaconless mode, many alternative
802.15.4 compliant MAC protocols such as S-MAC, B-MAC, X-
MAC, WiseMAC [9] have been proposed in the literature. Any of
these duty cycling schemes can be used in optimizing the radio
power consumption as required by the application. In our proposed
model, we implement ContikiMAC [10], which is the default radio
duty cycling mechanism in the Contiki OS [11].

2.3 ns-3 Energy Framework

The current ns-3 simulator (since ns-3.9) provides a basic
framework for modeling energy consumption in wireless networks
[5]. The model consists of 2 major components:

1. The Energy source, and

2. The Device energy model

The Energy Source represents the energy supply of a node in
the simulation, while the Device energy model is used to represent
the energy consumption characteristics of a specific device, such as
an 802.11 radio on a node.

The energy framework focuses on modeling radio energy
consumption because the radio is assumed to consume the most
power in a wireless node. The framework also assumes a state-
based model, i.e., the radio is assumed to be in one of several states

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

80

(Receive, Transmit, Idle, etc.) with a corresponding load current
associated with each state. The energy model and energy source
attached to each node keep track of the time spent in a particular
state and the total energy consumed by the node respectively.

The most difficult part in using the energy model is to define the
device states and the transitions, in order to mimic the real device
energy characteristics.

3. DESIGN AND IMPLEMENTATION

3.1 LRWPAN Energy Model

The LRWPAN energy model extends the basic energy framework
in order to model energy consumption of LRWPAN nodes. As
noted in the previous section, it follows a state based approach,
modeling the nodes’ energy consumption as a function of the states
of the radio transceiver. We base our model on the AT86RF231
[14], which is a typical 802.15.4 compliant radio transceiver.

Figure 1: State transition diagram.

According to the model, the radio can be in one of the following

states:

• TRX_OFF - Transceiver disabled

• TX_ON - Transmitter enabled

• RX_ON - Receiver enabled

• BUSY_TX - Transmitting

• BUSY_RX – Receiving

However, there is no difference between the (TX/RX) ON and
corresponding (TX/RX) BUSY states with respect to the radio
transceiver circuitry. The energy consumed in these states is
approximately the same. Hence, the node's energy consumption
can be modeled as a function of only three states TRX_OFF,
TX_ON and RX_ON.

Most transceiver chips also have an additional shutdown (sleep
in case of AT89RF231) state in which the chip is completely

deactivated. This state can only be entered through external
interrupts and isn’t modeled. The rest of the states can be entered
by sending appropriate commands to the PHY layer through the
PLME. BUSY_RX and BUSY_TX are entered automatically
during frame reception and transmission respectively. Figure 1
illustrates the corresponding radio transceiver states and the
allowed transitions between them. All the transitions are triggered
by MAC events, except for the BUSY states, which correspond to
actual PHY layer events (e.g. preamble detection causes the
transition from RX_ON to BUSY_RX).

A PHY Listener is registered with the LrWpan PHY in order to
notify concerned objects of every PHY state transition.

Energy update algorithm:
The PHY, on each successful transition notifies the Energy

model through the PHY Listener. Correspondingly, the LrWpan-
RadioEnergyModel notifies the EnergySource object to update its
energy. The EnergySource object queries the energy model for the
current draw of the state and uses that to calculate the energy
consumed using the formula:

stateDuration x stateCurrent x supplyVoltage

where, stateDuration represents the time spent in the state,
stateCurrent represents the state’s current draw, and supplyVoltage
is the node’s attached energy source’s supply voltage.

The energy source is then updated with the new value of
remaining energy. When the energy is completely depleted, the
LrWpanRadioEnergyModel is informed by the EnergySource,
using the EnergyDepletionCallback (defined in LrWpanRadio-
EnergyModel).

The node’s attached energy source is also updated periodically
to keep track of the energy consumed even when there are no radio
state transitions.

In most cases, the state transitions in radio transceivers aren’t
immediate. There is a finite time difference between the PHY
receiving a request to change the state, and then issuing a confirm
primitive indicating that the state change is accepted. This
transceiver switching time not only affects the MAC operations,
but also has a significant impact on the total energy consumption
as a result of the very low radio duty cycle in wireless sensor
networks [7]. Hence, it is important to also take into account the
transition time and energy between the states. In the Three States
Model described, six different transitions are possible:

• TRX_OFF -> TX_ON and vice versa.

• TRX_OFF -> RX_ON and vice versa.

• TX_ON -> RX_ON and vice versa.

Figure 2: Energy model flow diagram.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

81

Table 1: State transition timing.

Transition Transition Time

TRX_OFF � TX_ON 110 us

TX_ON � TRX_OFF Immediate

TRX_OFF � RX_ON 110 us

RX_ON � TRX_OFF Immediate

TX_ON � RX_ON 8/12 symbol periods* (128/192 us)

RX_ON � TX_ON 8/12 symbol periods* (128/192 us)

* defined by the standard

The transition times have been modeled according to the values

given in the datasheet. Table 1 shows the transition timings of the
AT89RF231 radio transceiver.

When a state change is requested by the MAC through the
PLME, the state machine is put in the transition state. On receiving
confirmation from the PHY that the target state is operative, the
state machine is finally updated with the new state. The state
transition energy is calculated by multiplying the transition time by
the power in the target state. This is a worst-case assumption since
the transition energy has been shown to depend on the power in the
state the transceiver is switching to, multiplied by a parametric
constant (less than 1) [8].

As noted before, the current LrWpanEnergyModel is modeled
based on Atmel’s AT89RF231 transceiver. However, other
802.15.4 compliant transceivers such as TI CC2420 [15] can be
simulated by changing the current draw to appropriate values. For
the CC2420, TRX_OFF, TX_ON and RX_ON correspond to the
chip’s Idle, Transmit and Receive states respectively.

The PHY enumeration values defined in LrWpanPhyEnum-

eration are used to represent the different states of the radio
transceiver, with IEEE_802_15_4_PHY_UNSPECIFIED being
used for the TRANSITION state.

3.2 LRWPAN ContikiMAC Model

ContikiMAC is the default duty cycling mechanism in the
Contiki OS. It is based on the concept of periodic wake-ups in
which nodes sleep most of the time and wake up at regular
intervals to check for radio activity. It uses an asynchronous
sender-initiated radio duty cycling mechanism, i.e. it doesn’t
depend on any a priori synchronization between nodes, and the
sender initiates communication by repeatedly sending the same
packet until a link layer acknowledgment is received. It is simple
to implement, since no signaling messages or additional packet
headers are used. All

ContikiMAC packets are ordinary link layer messages already
being used by the existing 802.15.4 standard.

The primary features of ContikiMAC can be summarized as
follows:

• Periodic sleep/wake mechanism defined by the channel
check rate.

• Stable wake-up interval unaffected by node’s radio activity.

• Two consecutive CCAs after wake-up to detect packet - stay
awake to receive the packet if energy is detected on the
channel, else sleep if channel is found idle.

• Link layer acknowledgment followed by sleep on packet
reception (transmitter repeatedly sends the frame until an
ACK is received, after which it too returns to sleep).

• Broadcast: Continuous transmission of the data packet by
the transmitter for full length of sleep period – since the
transmission must wake up and deliver the packet to all the
node’s neighbors.

• Fast sleep optimization – To optimize the power at the
receiver side by letting potential receivers go to sleep
earlier if the CCA caused a node to stay awake due to
spurious radio noise instead of an actual packet
transmission.

• Transmission Phase-Lock - sender side optimization to
reduce the power at the transmitter by minimizing the
number of retransmissions.

Note that the retransmissions by the ContikiMAC Radio Duty
Cycle (RDC) is independent of the MAC layer retransmissions
which refers to the number of times a frame is given to the RDC
layer for transmission.

The MAC and RDC mechanisms in the ContikiMAC model
could be split into two separate classes, like in Contiki OS.
However, in order to support multiple MAC protocols and reuse
the code, the ns-3 implementation follows a different approach.

The first choice has been to split the MAC functionalities into a
base, abstract class (LrWpanMac), implementing only the APIs
defined by the 802.15.4 standard and some common elements. The
particular MAC behavior is implemented in two subclasses:
LrWpanNullMac and LrWpanContikiMac. LrWpanNullMac
implements the current behavior, as is the always-on radio with no
sleep or duty cycle. The LrWpanContikiMac is responsible for
duty cycle, sleep wake, and node synchronization. All
ContikiMAC features, with the exception of the Fast sleep
optimization, have been implemented and tested in the proposed
model. Both MAC layers use the LrWpanCsmaCa module to
detect any activity on the channel.

It should be remarked that the new modular architecture enables
an easy integration of new MAC protocols. This is an important
feature, as the future IoT systems could be hindered by the use of
802.15.4-compliant (but mutually incompatible) protocols. As a
matter of fact, even if two protocols are formally following the
standard, different radio duty cycle management policies can make
them very inefficient, leading to high energy consumption.

The LrWpanContikiMac API is identical to LrWpanMac.
Additionally, the user can specify attributes such as the sleep
interval, the interval between the two CCAs, the interval between
each packet retransmission, and the maximum number of retries by
the RDC.

4. VALIDATION AND RESULTS

In this section, validation results of the proposed LRWPAN
energy and MAC models are presented. First, the energy consumed
by the LRWPAN energy model is compared against expected
values obtained through manual calculations. Next, in order to
evaluate the ContikiMAC model, the energy consumption values
of simulated nodes are compared with those obtained from running
the same scenario in the Cooja simulator.

Energy model evaluation

 In order to verify the correctness of the energy model, a simple
scenario involving 2 nodes is considered. Node 1 sends a packet of
size 50 bytes to Node 2 and receives an acknowledgement. The

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

82

simulation is run for 10s with both the nodes having their radios
turned on during the first 5s and turned off for the next 5s.

 The time spent by both the nodes in each state is shown in Table
2. The currents in TX, RX and OFF states are taken to be 19.5mA,
21.8mA and 1800µA respectively. For a supply voltage of 3.3V,
the energy consumption comes out to be 0.3894 Joules for Node 1
and 0.3895 Joules for Node 2 which agrees with the simulation
results.

Table 2: State timings for simulation scenario.

States
Node 1
(sender)

Node 2
(receiver)

TX_ON/BUSY_TX 0.002400 0.000544

to TX_ON* 0.000192 0.000192

RX_ON/BUSY_RX 4.997106 4.998962

to RX_ON* 0.000302 0.000302

TRX_OFF 5.000000 5.000000

to TRX_OFF* 0.000000 0.000000

* from any arbitrary state

ns-3 vs. Cooja Comparison

Cooja [12] is a sensor network simulator for the Contiki OS.
The Cooja energy estimation mechanism consists of keeping track
of the time the radio spends in the different transceiver states and
multiplying these times with corresponding power levels to obtain
a rough estimate of the energy consumed.

Cooja also separately keeps track of the CPU power
consumption. Apart from the regular CPU mode used during
communication, the nodes can also operate in a Low Power Mode
(LPM) during periods of inactivity. The total consumed energy is
then calculated as the sum of the total time spent in all the states –
similar to how the energy is calculated in our developed model in
ns-3. The state transition energy however isn’t taken into account.
Thus the energy consumed by a node at the end of the simulation is
given by:

E = PrxTrx + PtxTtx + PslpTslp + PlpmTlpm = IrxVrxTrx +
ItxVtxTtx + IslpVslpTslp + IlpmVlpmTlpm

where rx, tx, slp and lpm refer to the transmit, receive, sleep and
LPM states respectively.

The amount of time spent in each state can be tracked using the
Powertrace [13] tool provided with Cooja. Powertrace outputs four
values: cpu, lpm, transmit, and listen. These values correspond to
the time spent in each of the four states. transmit and listen
correspond to the “transmitter enabled” and “receiver enabled”
states in our model respectively. The cpu state includes the time
spent in transmit and listen states as well as the “transceiver off”
state. Therefore, the time when TRX is off, but CPU is in its
normal mode is given by cpu – (transmit + listen). lpm refers to the
state when TRX is off and the node is in its low power mode.
Since, our model only takes into account energy consumed by the
transceiver, we consider cpu with transceiver off and lpm as one
state by using the same current draw for both states.

For the comparison, we consider a two node scenario with Node
1 sending a packet to Node 2 periodically every 2.5 seconds over a
60 second interval. The channel check rate is set to be 8 Hz, which
corresponds to a sleep interval of 125 ms. The energy consumption
of both the sender and receiver nodes using the original
ContikiMAC implementation and the ns-3 ContikiMAC

implementation is compared in Table 3, while Table 4 compares
the respective NullMAC implementations.

Table 3: ContikiMAC energy comparison (in Joules).

Protocol Contiki OS
ContikiMAC

ns-3
ContikiMAC

Sender 0.47945 0.44100

Receiver 0.37694 0.38750

Table 4: NullMAC energy comparison (in Joules).

Protocol Contiki OS
NullMAC

ns-3
NullMAC

Sender 4.04262 4.28037

Receiver 4.17223 4.28071

Figure 3: ContikiMAC energy comparison.

In Figure 3 it is evident that the energy consumed by the

receiver nodes in both the implementations is in close agreement,
while there is a slight disagreement in the energy consumption
values of the sender nodes. This can be attributed to the difference
in time both the nodes spend in transmit mode which varies due to
the CSMA-CA random backoff algorithm.

5. FUTURE WORK

In this section, we discuss possible extensions to the proposed
models.

Local Clocks Drift Simulation
 One major improvement toward the model precision is to be
done as part of a different ns-3 development: per-node local clocks.
LR-WPAN energy efficiency is highly dependent on how nodes
can keep (or lose) a mutual synchronization. But ns-3 clock is
global, preventing a real evaluation of clock drift effects.

CPU Energy Consumption
 Currently, the LRWPAN energy model only considers energy
consumed by the radio transceiver and doesn’t take into account
the energy consumption of the CPU. As described in [5], states
representing computation tasks available on the node can be used
to incorporate CPU energy consumption information into the
simulations.

Another possible development goal is to upgrade the current model
to 802.15.4-2011 standard.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

83

6. CONCLUSION

In this paper, we presented an energy model for 802.15.4 radio
transceivers, which will enable users to measure the energy
consumption of 802.15.4 nodes in the network and thus allow them
to develop energy-efficient protocols for WSNs using this
information. We also developed a modular and easily extensible
MAC model and implemented the ContikiMAC radio duty cycling
protocol in order to enable realistic simulations of WSN scenarios.
The code is currently under review to be merged into ns-3.

7. ACKNOWLEDGMENT

This work was initiated as a project in the 2015 Google
Summer of Code (GSoC) program, funded by Google.

8. REFERENCES

[1] GSOC2015LrWpanMac. 2015.
http://www.nsnam.org/wiki/GSOC2015LrWpanMac

[2] ns-3 lr-wpan. http://www.nsnam.org/wiki/index.php/Lr-wpan

[3] IEEE Std 802.15.4-2006, Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for Low-
Rate Wireless Personal Area Networks (WPANs).

[4] J. Hui and P. Thubert. Compression format for IPv6
datagrams over IEEE 802.15.4-Based Networks. RFC6282,
IETF Sep. 2011.

[5] H. Wu, S. Nabar, and R. Poovendran. 2011. An energy
framework for the network simulator 3 (ns-3). In Proceedings
of the 4th International ICST Conference on Simulation Tools
and Techniques (SIMUTools '11). Brussels, Belgium, March
2011.

[6] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He. 2007.
Software-based on-line energy estimation for sensor nodes. In

Proceedings of the 4th workshop on Embedded networked
sensors (EmNets '07). New York, USA, June 2007.

[7] B. Bougard, F. Catthoor, D.C. Daly, A. Chandrakasan, W.
Dehaene. 2005. Energy efficiency of the IEEE 802.15.4
standard in dense wireless microsensor networks: modeling
and improvement perspectives. In Proceedings of the
conference on Design, Automation, and Test in Europe
(DATE '05). Munich, Germany, March 2005.

[8] P. Hurni, B. Nyffenegger, T. Braun, and A. Hergenroeder.
2011. On the accuracy of software-based energy estimation
techniques. In Proceedings of the 8th European conference on
Wireless sensor networks (EWSN'11). Bonn, Germany,
February 2011.

[9] A. Bachir, M. Dohler, T. Watteyne, and K. K. Leung. 2010.
MAC Essentials for Wireless Sensor Networks. Commun.
Surveys Tuts.

[10] A. Dunkels. The ContikiMAC radio duty cycling protocol.
Technical Report T2011:13 , Swedish Institute of Computer
Science Decembers 2011.

[11] A. Dunkels, B. Gronvall, and T. Voigt. 2004. Contiki - A
Lightweight and Flexible Operating System for Tiny
Networked Sensors. In Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks (LCN
'04). Tampa, USA, November 2004.

[12] F. Osterlind. A sensor network simulator for the Contiki OS.
Swedish Institute of Computer Science (SICS), Tech. Rep.
T2006-05, Feb. 2006.

[13] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes. Powertrace:
Network-level power profiling for low-power wireless
networks. Technical Report T2011:05, Swedish Institute of
Computer Science, Mar. 2011.

[14] AT86RF231 Datasheet. http://www.atmel.com/images/
doc8111.pdf

[15] CC2420 Datasheet. http://www.ti.com/lit/ds/symlink/
cc2420.pdf

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

84

A Framework for End-to-End Evaluation of 5G mmWave
Cellular Networks in ns-3

Russell Ford, Menglei Zhang, Sourjya Dutta
Marco Mezzavilla, Sundeep Rangan

New York University
Brooklyn, New York, USA

{russell.ford,menglei,sdutta}@nyu.edu
{mezzavilla,srangan}@nyu.edu

Michele Zorzi
University of Padova

Padova, Italy
zorzi@dei.unipd.it

ABSTRACT
The growing demand for ubiquitous mobile data services
along with the scarcity of spectrum in the sub-6 GHz bands
has given rise to the recent interest in developing wireless
systems that can exploit the large amount of spectrum avail-
able in the millimeter wave (mmWave) frequency range. Due
to its potential for multi-gigabit and ultra-low latency links,
mmWave technology is expected to play a central role in 5th
Generation (5G) cellular networks. Overcoming the poor
radio propagation and sensitivity to blockages at higher fre-
quencies presents major challenges, which is why much of the
current research is focused at the physical layer. However,
innovations will be required at all layers of the protocol stack
to effectively utilize the large air link capacity and provide
the end-to-end performance required by future networks.

Discrete-event network simulation will be an invaluable
tool for researchers to evaluate novel 5G protocols and sys-
tems from an end-to-end perspective. In this work, we
present the first-of-its-kind, open-source framework for mod-
eling mmWave cellular networks in the ns-3 simulator. Chan-
nel models are provided along with a configurable physi-
cal and MAC-layer implementation, which can be interfaced
with the higher-layer protocols and core network model from
the ns-3 LTE module to simulate end-to-end connectivity.
The framework is demonstrated through several example
simulations showing the performance of our custom mmWave
stack.

CCS Concepts
•Networks → Network performance evaluation; Net-
work simulations; Mobile networks; •General and
reference → Evaluation; Design; Performance;

Keywords
mmWave; 5G; Cellular; Channel; Propagation; PHY; MAC.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

WNS3, June 15-16, 2016, Seattle, WA, USA

© 2016 ACM. ISBN 978-1-4503-4216-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2915371.2915380

1. INTRODUCTION
Millimeter Wave (mmWave) communications promise to

be highly disruptive for both cellular and wireless LAN tech-
nologies due to the potential for multi-gigabit wireless links,
which make use of the gigahertz of contiguous bandwidth
available at mmWave frequencies in combination with high-
dimension antenna arrays for high-gain directional transmis-
sion. Although the mmWave channel is known to suffer from
poor high-frequency propagation loss, advances in physical
layer technology such as adaptive smart antennas, along
with recent work on channel measurements and modeling,
have paved the way for achieving sufficient range and cover-
age in these networks [1, 2]. Nevertheless, before mmWave
technology can be effectively realized in 5G cellular net-
works, there are numerous challenges to be addressed, not
only at the physical layer, but at higher layers of the ra-
dio stack and in the core network as well. For instance,
the extreme susceptibility of mmWave links to shadowing
from blockages will require frequent, near instantaneous han-
dovers between neighboring cells, fast link adaptation, and a
TCP congestion control algorithm that can utilize the large
capacity when available but adapt quickly to rapid channel
fluctuations to avoid congestion. Therefore, the constraints
and characteristics of the mmWave physical layer will re-
quire novel solutions throughout the 5G network and across
all layers of the stack.

Discrete-event network simulators have, for long, been one
of the most powerful tools available to researchers for de-
veloping new protocols and simulating complex networks.
The ns-3 network simulator [3] currently implements a wide
range of protocols in C++, making it especially useful for
cross-layer design and analysis.

In this work, we present the current state of the millimeter
wave module for ns-3, first introduced in [4], which can now
be easily interfaced with the LTE LENA module [5] radio
stack and core network in order to evaluate cross-layer and
end-to-end performance of 5G mmWave networks. We pro-
vide an overview of the module and discuss a number of en-
hancements and added features since the first version, such
as improved statistical channel model derived from 28 GHz
channel measurements as well as a new ray tracing-based
model. Custom implementations of an “LTE-like” Physical
(PHY) and Medium Access Control (MAC) layer are also
provided, which follow the LENA module architecture. The
PHY and MAC classes are parameterized and highly cus-
tomizable in order to be flexible enough for testing different

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

85

designs and numerologies without major modifications to
the source code.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the overall architecture of the mmWave
module framework. We then take a closer look at each com-
ponent, starting with the PHY layer and channel models
in Sections 3. Section 4 follows with a discussion on the
MAC layer, which includes several scheduler classes as well
as support for Adaptive Modulation and Coding (AMC) and
Hybrid Automatic Repeat Request (HARQ). In Section 5,
to demonstrate how the framework can be used for cross-
layer and end-to-end evaluation, we provide some example
simulations showing (i) the capacity of a TDMA mmWave
cell with multiple users and (ii) the performance of TCP for
a single user under varying channel conditions. Finally, we
discuss future work and conclude the paper in Section 6.

2. MMWAVE FRAMEWORK OVERVIEW
Presently, the ns-3 mmWave module is targeted for sim-

ulating LTE-style cellular networks and is based heavily
on the architecture and design patterns of the LTE LENA
module. The main enhancement introduced in this latest
version of the module is the implementation of Service Ac-
cess Points (SAPs) for interfacing with the existing LENA
classes, which enables mmWave classes to leverage the ro-
bust suite of LTE/EPC protocols the LENA module pro-
vides.

In Figure 1, we show the high-level composition of the
MmWaveEnbNetDevice and MmWaveUeNetDevice classes, which
respectively represent the mmWave eNodeB (eNB) base sta-
tion and User Equipment (UE) radio stacks. A more de-
tailed UML class diagram is given in Figure 1 of [4] and de-
tails on each layer will be given in their respective sections.
The MmWaveEnbMac and MmWaveUeMac MAC layer classes im-
plement the LTEmodule Service Access Point (SAP) provider
and user interfaces, which allow them to interoperate with
the LTE Radio Link Control (RLC) layer. Support for RLC
Saturation Mode (SM), Unacknowleged Mode (UM) and Ac-
knowledged Mode (AM) is built into the MAC and scheduler
classes (i.e., MmWaveMacScheduler and derived classes). The
MAC scheduler also implements a SAP for configuration by
the LTE RRC layer (LteEnbRrc). Therefore, all the compo-
nents required for Evolved Packet Core (EPC) connectivity
are available.

The MmWavePhy classes handle directional transmission and
reception of the downlink (DL) and uplink (UL) data and
control channels based on control messages from the MAC
layer. Similar to the LTE module, each PHY instance com-
municates over the channel (i.e., SpectrumChannel) via an
instance of the MmWaveSpectrumPhy class, which is shared for
both DL and UL (instead of separating such objects as in
LTE LENA). Instances of MmWaveSpectrumPhy encapsulate
all PHY-layer models including those for interference calcu-
lation
(MmWaveInterference), Signal to Interference and Noise Ra-
tio (SINR) calculation (MmWaveSinrChunkProcessor), the
Mutual Information (MI)-based error model
(MmWaveMiErrorModel), which computes packet error proba-
bility, as well as the Hybrid ARQ PHY-layer entity
(MmWaveHarqPhy) for performing soft combining.

A more detailed exposition of the procedures and inter-
actions of these classes is given in [4]. Since the structure,
high-level functions and naming scheme of each class closely

MultiModelSpectrumChannel

MmWaveSpectrumPhy MmWaveSpectrumPhy

MmWaveEnbPhy MmWaveUePhy

MmWaveEnbMac

MacScheduler

MmWaveUeNetDevice MmWaveEnbNetDevice

LteRlcAm/Um

LtePdcp

MmWaveUeMac

LteRlcUm/Am

LtePdcp

IP layer/EPC IP layer

LteEnbRrc LteUeRrc

MmWaveBeamforming

Figure 1: Simplified class diagram for the mmWave
module.

follows the LTE LENA module, the reader is also referred to
the LENA project documentation [6] for more information.

3. PHYSICAL LAYER
In this section, we discuss the key features of the mmWave

PHY layer. Specifically, we have implemented a TDD frame
and subframe structure, which has similarities to TD-LTE,
but allows for more flexible allocation and placement of con-
trol and data channels within the subframe and is suitable
for the variable Transmission Time Interval (TTI) MAC
scheme described in Section 4. Significant improvements
have also been made to the channel model since the version
introduced in [4]. The 28 GHz statistical path loss model
can now be combined with the building obstacle model to
simulate a realistic shadowing environment. A ray tracing-
based path loss and fading model, which makes use of paths
generated by third-party ray tracing software, has also been
added. Additionally, we have modified the LENA error
model and Hybrid ARQ model to be compatible with our
custom mmWave PHY and numerology (for instance, to sup-
port larger TB and codeword sizes as well as multi-process
stop-and-wait HARQ for both DL and UL).

3.1 Frame Structure
It is widely agreed that 5G mmWave systems will target

Time Division Duplex (TDD) operation because it offers
improved utilization of wider bandwidths and the oppor-
tunity to take advantage of channel reciprocity for chan-
nel estimation [1, 7, 8]. In addition, shorter symbol pe-
riods and/or slot lengths have been proposed in order to
reduce radio link latency [9, 10]. The ns-3 mmWave module
therefore implements a TDD frame structure which is de-
signed to be configurable and supports short slots so as to
be useful for evaluating different potential designs and nu-
merologies. These parameters, shown in Table 1, are acces-
sible through the common MmwavePhyMacCommon class, which
stores all user-defined configuration parameters used by the
PHY and MAC classes.

The frame and subframe structures share some similarities
with LTE in that each frame is subdivided into a number of
subframes of fixed length. However, in this case, the user is
allowed to specify the subframe length in multiples of Or-

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

86

 1 Frame, 1 ms

1 Frame =
10 Subframes

1 Subframe =
24 OFDM
symbols

Total Bandw
idth

(72 Sub-bands = 1 GHz)

1
Su

b-
ba

nd

(4
8

su
b

ca
rr

ie
rs

 =

13
.8

9
M

Hz

1 OFDM Symbol
4.16 μs

1 Subframe, 100 μs

Sym
1

DL
CTRL

Sym
24

UL
CTRL

Sym
23

DL/UL
DATA

Sym
2

DL/UL
DATA

Subframe
1

Subframe
2

Subframe
10

Figure 2: Proposed mmWave frame structure.

thogonal Frequency-Division Multiplexing (OFDM)
symbols.1 Within each subframe, a variable number of sym-
bols can be assigned by the MAC scheduler and designated
for either control or data channel transmission. The MAC
entity therefore has full control over multiplexing of phys-
ical channels within the subframe, as discussed in Section
4. Furthermore, each variable-length time-domain data slot
can be allocated by the scheduler to different users for either
DL or UL.

Figure 2 shows an example of the frame structure with the
numerology taken from our proposed design in [10]. Each
frame of length 1 ms is split in time into 10 subframes,
each of duration 100 μs, representing 24 symbols of approx-
imately 4.16 μs in length. In this particular scheme, the DL
and UL control channels are always fixed in the first and
last symbol of the subframe, respectively. A switching guard
period of one symbol is introduced every time the direction
changes from UL to DL. In the frequency domain, the entire
bandwidth of 1 GHz is divided into 72 sub-bands of width
13.89 MHz, each of which is composed of 48 sub-carriers.
It is possible to assign UE data to each of these sub-bands,
as is done with Orthogonal Frequency-Division Multiple Ac-
cess (OFDMA) in LTE, however only TDMA operation is
currently supported for reasons we shall explain shortly.

3.2 PHY Transmission and Reception
The MmWaveEnbPhy and the MmWaveUePhy classes model the

physical layer for the mmWave eNodeB and the UE, respec-
tively, and encapsulate similar functionality to the LtePhy

classes from the LTE module. Broadly, these objects (i)
handle the transmission and reception of physical control
and data channels (analogous to the PDCCH/PUCCH and
PDSCH/PUSCH channels of LTE), (ii) simulate the start
and the end of frames, subframes and slots and (iii) deliver
received and successfully decoded data and control packets
to the MAC layer.

In MmWaveEnbPhy/MmWaveUePhy, calls to StartSubFrame()

and EndSubFrame() are scheduled at fixed periods, based
on the user-specified subframe length, to mark the start

1Although many waveforms are being considered for 5G cel-
lular, OFDM is still viewed as a possible candidate. There-
fore we adopt OFDM, which allows us to continue to leverage
the existing PHY models derived for OFDM from the LTE
LENA module.

and the end of each subframe. The timing of variable-TTI
slots, controlled by scheduling the StartSlot() and End-

Slot() methods, is dynamically configured by the MAC via
the MAC-PHY SAP method SetSfAllocInfo(), which en-
queues a SfAllocInfo allocation element for some future
subframe index specified by the MAC. A subframe indica-
tion to the MAC layer triggers the scheduler at the beginning
of each subframe to allocate a future subframe. For the UE
PHY, SfAllocInfo objects are populated after reception of
Downlink Control Information (DCI) messages. At the be-
ginning of each subframe, the current subframe allocation
scheme is dequeued, which contains a variable number of
SlotAllocInfo objects. These, in turn, specify contiguous
ranges of OFDM symbol indices occupied by a given slot,
along with the designation as either DL or UL and control
(CTRL) or data (DATA).

The data packets and the control messages generated by
the MAC are mapped to a specific subframe and slot index
in the packet burst map and control message map, respec-
tively. Presently, in our custom subframe design, certain
control messages which must be decoded by all UEs (such as
the DCIs) are always transmitted in fixed PDCCH/PUCCH
symbols as the first and last symbol of the subframe, but
this static mapping can easily be changed by the user. 2

Other UE-specific control and data packets are dequeued at
the beginning of each allocated TDMA data slot and are
transmitted to the intended device.

To initiate transmission of a data slot, the eNB PHY first
calls AntennaArrayModel::ChangeBeamformingVector() to
update the transmit and receive beamforming vectors for
both the eNB and the UE. In the case of control slots, no
beamforming update is applied since we currently assume
an “ideal” control channel. For both DL and UL, either the
MmWaveSpectrumPhy method StartTxDataFrame() or
StartTxCtrlFrame() is then called to transmit a data or
control slot, respectively. The functions of MmWaveSpec-

trumPhy, which are similar to the corresponding LENA class,
are as follows. After the reception of data packets, the
PHY layer calculates the SINR of the received signal in each
sub-band, taking into account the path loss, MIMO beam-
forming gains and frequency-selective fading. This triggers
the generation of Channel Quality Indicator (CQI) reports,
which are fed back to the base station in either UL data or
control slots. The error model instance is also called to prob-
abilistically compute whether a packet should be dropped by
the receiver based on the SINR and, in the case of a HARQ
retransmission, any soft bits that have been accumulated
in the PHY HARQ entity (see Section 4.3). Uncorrupted
packets are then received by the MmWavePhy instance, which
forwards them up to the MAC layer SAP.

3.3 Channel Models
The mmWave module allows the user to choose between

two channel models. The first, implemented in the MmWave-

PropagationLossModel and MmWaveBeamforming classes, is
based on our previous code in [4], which is derived from ex-

2As in [9, 10], we assume that either FDMA or SDMA-based
multiple access would be used in the control regions. How-
ever, we do not currently model these modulation schemes
nor the specific control channel resource mapping explic-
itly. We intend for this capability to be available in later
versions, which will enable more accurate simulation of the
control overhead.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

87

Table 1: Parameters for configuring the mmWave PHY.

Parameter Name Default Value Description
SubframePerFrame 10 Number of subframes in one frame
SubframeLength 100 Length of one subframe in μs
SymbolsPerSubframe 24 Number of OFDM symbols per slot
SymbolLength 4.16 Length of one OFDM symbol in μs
NumSubbands 72 Number of sub-bands

SubbandWidth 13.89× 106 Width of one sub-band in Hz
SubcarriersPerSubband 48 Number of subcarriers in each sub-band

CenterFreq 28× 109 Carrier frequency in Hz
NumRefScPerSymbol 864 (25% of total) Reference subcarriers per symbol
NumDlCtrlSymbols 1 Downlink control symbols per subframe
NumUlCtrlSymbols 1 Uplink control symbols per subframe
GuardPeriod 4.16 μs Guard period for UL-to-DL mode switching
MacPhyDataLatency 2 Subframes between MAC scheduling request and scheduled subframe
PhyMacDataLatency 2 Subframes between TB reception at PHY and delivery to MAC
NumHarqProcesses 20 Number of HARQ processes for both DL and UL

tensive MATLAB® simulation of the 28 GHz channel pre-
sented in [2]. This model has now been combined with the
built-in BuildingsObstaclePropagationLossModel for sim-
ulating mobility. The second model, the MmWaveChannel-

Raytracing class, uses data obtained from third-party ray
tracing software. The details of each model are as follows.

3.3.1 Simulation-Generated Statistical Model
A full discussion on the simulation based channel model is

available in [4]. We have strengthened this model by incor-
porating a building obstacle propagation model which en-
ables simulation of UE mobility through a shadowing en-
vironment. For each simulation, instances of the building
class (built into ns-3) are used to simulate obstacles. The
channel state is updated based on the relative position of the
transmitter, the receiver and the buildings as the UE moves
through the environment. A virtual line is drawn between
the transmitter and the receiver. If this line intersects any
building we assign the channel state as NLoS; otherwise, we
assign a LoS channel.

After selecting the channel state, the propagation loss can
be computed as

PL(d)[dB] = α+ β10 log10(d) + ξ, ξ ∼ N(0, σ2), (1)

where ξ represents shadowing, d is the distance from receiver
to transmitter and the values of the parameters α, β, and σ
for each channel state are given in [2]. In this model, we con-
sider the channel to be in outage if the distance between the
transmitter and the receiver exceeds a predefined threshold.

Due to lack of information about the effects of diffraction
in the mmWave channel, we assume the propagation loss
increases or decreases suddenly without a transition period
when the channel state changes. We plan to model diffrac-
tion more accurately in our future work.

Channel matrix. Following the method in [2], to compute
the long-term statistical characterization of the mmWave
channel, we model it as a combination of clusters, each com-
posed of several subpaths. The channel matrix is described
by the following equation,

H(t, f) =

K∑
k=1

Lk∑
l=1

gkl(t, f)urx(θ
rx
kl , φ

rx
kl)u

∗
tx(θ

tx
kl , φ

tx
kl) (2)

where K is the number of clusters, Lk the number of sub-
paths in cluster k, gkl(t, f) the small-scale fading over fre-
quency and time, urx(·)is the spatial signature of the re-
ceiver and utx(·) the spatial signature of the transmitter.

As given in [2], the small-scale fading is generated by

gkl(t, f) =
√
Pkle

2πifdcos(ωkl)t−2πiτklf (3)

where Pkl is the power of subpath kl, fd is the maximum
Doppler shift, ωkl is the angle between subpath kl and the
direction of motion of the receiver, τkl gives the delay spread
and f is the carrier frequency.

Beamforming. The two methods implemented in the
MmWaveBeamforming class to compute beamforming vectors
are the power iteration method and the swipe sector method.
For the power iteration method, we assume that the BS
knows the channel matrices and can compute the largest sin-
gular value and singular vector associated with the strongest
path (i.e., it uses non-codebook based beamforming with
perfect Channel State Information (CSI)). Therefore, the
optimal set of TX/RX beamforming vectors will always be
selected to maximize the antenna array gain for transmission
between a given BS-UE pair.

The swipe sector method implements a basic cell search/
synchronization technique where the cell is divided into fixed
sectors. The BS and UE scan all sectors and select the beam
with maximum gain based on these pre-stored beamforming
vectors (i.e., they perform codebook-based beam switching).
This method does not require the CSI to be known a priori,
but takes additional time to scan the cell. We provide this
code as a basis for implementing more advanced cell search
and synchronization protocols.

Channel Configuration. For both methods, the channel
matrices and optimal beamforming vectors are pre-generated
in MATLAB® to reduce the computational overhead in ns-
3. At the beginning of each simulation we load 100 instances
of the spatial signature matrices, along with the beamform-
ing vectors.

In order to simulate realistic channels with large-scale fad-
ing, the channel matrices are updated periodically for NLoS
channels but remain constant for LoS links as they are inher-
ently more stable. Currently, no results are available for how

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

88

Time (s)
0 5 10 15 20 25

A
v
er
a
g
e
S
IN

R
(d
B
)

-40

-30

-20

-10

0

10

20

30

40

0-2s (constant)

22-25s (constant)

2-22s (1.5m/s)

Small buildings

0

0

Figure 3: Average SINR plot for simulated route.

the large-scale statistics of the mmWave channel change over
time for a mobile user. We therefore implement a form of
large-scale block fading, where we update the channel by ran-
domly selecting one of the 100 channel matrix-beamforming
vector combinations after some interval. The large-scale pa-
rameters of the channel are thus independent in each inter-
val. The update time can be some fixed interval specified
by the LongTermUpdatePeriod attribute of the MmWaveBeam-
forming class. We also provide the option to update after
some time drawn from an exponentially-distributed random
variable (i.e., a Poisson process) with mean also defined by
the update period attribute. It should be noted that the
accuracy of this method is not validated at this time.

The small-scale fading is calculated for every transmission
based on Equation (3) where we obtain the speed of the user
directly from the mobility model. The remaining parameters
depending on the environment are assumed to be constant
over the entire simulation time.

From Figure 3 we observe the average SINR trend ob-
tained in a scenario where 3 buildings are distributed be-
tween BS and UE. The number of antennas at the BS and
the UE is 64 and 16, respectively. The user starts moving
at a speed of 1.5 m/s 2 seconds after the start of the simu-
lation and stops after 20 seconds. As expected, the SINR is
constant over time while the user is static (0-2 s and 22-25
s). However, the SINR varies over time when the user is in
motion. The sudden SINR jumps result from the switching
of the channel state (as discussed, the channel matrices are
updated after a fixed 100 ms interval for the NLoS channel
and remain unchanged for LoS transmissions).

3.3.2 Ray Tracing-Generated Model
In order to better characterize the time dynamics of the

mmWave channel, we have added a ray tracing-generated
channel model that computes the channel matrices in ns-3.
The input is traces generated by third-party ray-tracing soft-
ware, which simulates the physics of radio propagation for a
specific environment. 3 This channel model offers more flexi-
bility to customize parameters, such as transmit and receiver

3The ray tracing data is provided by the Communication
Systems and Networks Group, University of Bristol, UK.

Distance (m)
0 50 100 150 200 250

A
v
er
a
g
e
S
IN

R
(d
B
)

-80

-60

-40

-20

0

20

40

LOS

LOS

NLOS
NLOS

Figure 4: Average SINR plot for raytracing route.

antenna elements. Figure 4 shows the average SINR gener-
ated in ns-3 over a given ray tracing route, with 64 transmit
and 16 receive antennas. Propagation loss and channel ma-
trices are computed according to Equation (2), where pa-
rameters are obtained from the ray-tracing data containing
5000 samples within a 500 meter-long route. Each sample
includes the following fields:

• Number of paths
• Propagation loss per path
• Delay per path
• Angle of arrival (elevation and azimuth plane) per path
• Angle of departure (elevation and azimuth plane) per

path

As the user moves, the channel matrices are updated ac-
cordingly. For example, if the current location of the user is
10.1 meters from the BS, channel matrices are computed us-
ing the data corresponding to this distance. The beamform-
ing vectors are generated using the power method discussed
earlier.

Figure 4 plots the average SINR indicating both LoS in-
tervals and NLoS channel states. The SINR has a sudden
change when the channel state switches. We note that the
SINR curve within LoS matches our simulation generated
model, but for NLoS the ray tracing based model introduces
more random variation.

3.3.3 Interference
Albeit potentially less significant for directional mmWave

signals, which are generally assumed to be power-limited,
there are still some cases where interference is non-negligible.
For instance, although intra-cell interference (i.e., from de-
vices of the same cell) can be neglected in TDMA or FDMA-
mode operation, it does need to be explicitly calculated in
the case of SDMA/Multi-User MIMO, where users are multi-
plexed in the spatial dimension but operate in the same time-
frequency resources. As mentioned, only TDMA transmis-
sion is currently supported, however we anticipate that other
multiple access schemes, including SDMA, will be added in

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

89

later versions. Therefore, we include interference compu-
tation in the MmWaveInterference class that takes into ac-
count the beamforming vectors associated with each link.
More details on the relevant computation can be found in
Section 3.4 of [4].

4. MAC LAYER
The high-level structure and functions of the mmWave

MAC layer are now introduced. In particular, the two sched-
uler classes, multi-process stop-and-wait Hybrid ARQ (for
both the DL and the UL), along with some minor modifi-
cations that have been made to the LENA module AMC
and MI error model classes, are described in the following
sections.

4.1 MAC Scheduling
We now present the implementation of two scheduler classes,

which are based on a variable-length or flexible TTI, Time-
Division Multiple Access (TDMA) scheme.

TDMA is widely assumed to be the de-facto scheme for
mmWave access because of the dependence on analog beam-
forming, where the transmitter and receiver align their an-
tenna arrays to maximize the gain in a specific direction
(rather than in a wide angular spread or omni-directionally,
like conventional antennas). Many early designs and proto-
types have been TDMA-based [7, 8], with others incorpo-
rating SDMA for the control channel only [9]. While SDMA
or FDMA schemes (like in LTE) are possible with digital
beamforming, which would allow the base station to trans-
mit and receive in multiple directions within the same time
slot, they may not be practical for mmWave systems due to
high power consumption from requiring Analog-to-Digital
Converters (ADCs) on each antenna element [10]. It should
also be noted that FDMA with analog beamforming is pos-
sible with wider beam widths, but this approach comes at
the cost of some of the directional gain.

Furthermore, one of the foremost considerations driving
innovation for the 5G MAC layer is latency. The Key Per-
formance Indicator (KPI) of 1 ms over-the-air latency has
been proposed as one of the core 5G requirements by such
standards bodies as the ITU as well as recent studies such as
those carried out under the METIS 2020 project [11]. How-
ever, a well-known drawback of TDMA is that fixed slot
lengths or TTIs can result in poor resource utilization and
latency, which can become particularly severe in scenarios
where many intermittent, small packets must be transmitted
to/received from many devices.

Based on these considerations, variable TTI-based TDMA
frame structures and MAC schemes have been proposed in
[9, 10, 12]. This approach supports slot sizes that can vary
according to the length of the packet or Transport Block
(TB) to be transmitted and are well-suited for diverse traf-
fic since they allow both bursty or intermittent traffic with
small packets as well as high-throughput data like stream-
ing and file transfers to be scheduled efficiently and without
significant under-utilization.

4.1.1 Round-Robin Scheduler
The MmWaveFlexTtiMacScheduler class is the default sched-

uler for the mmWave module. It implements a variable TTI
scheme previously described in Section 3 and assigns OFDM
symbols to user flows in Round-Robin (RR) order. Upon
being triggered by a subframe indication, any HARQ re-

transmissions are automatically scheduled using whatever
OFDM symbols are available. While the slot allocated for
a retransmission does not need to start at the same symbol
index as the previous transmission of the same TB, they do
need the same number of contiguous symbols and Modula-
tion and Coding Scheme (MCS), since an adaptive HARQ
scheme has not yet been implemented.

Before scheduling new data, Buffer Status Report (BSR)
and Channel Quality Indicator (CQI) messages are first pro-
cessed. The MCS is then computed by the AMC model for
each user based on the CQIs for the DL or SINR measure-
ments for the UL data channel. The MCS and the buffer
length of each user are used to compute the minimum num-
ber of symbols required to schedule the data in the user’s
RLC buffers.

To assign symbols to users, the total number of users with
active flows is calculated. Then the total available data sym-
bols in the subframe are divided evenly among users. If
a user requires fewer symbols to transmit its entire buffer,
then the remaining symbols (i.e., the difference between the
available and required slot length) are distributed among the
other active users.

One also has the option to set a fixed number of symbols
per slot by enabling fixed TTI mode. However, utilization
and latency are likely to suffer in this case, depending on
the traffic pattern.

4.1.2 Max-Weight Scheduler
The MmWaveFlexTtiMaxWeightMacScheduler class is sim-

ilar to the RR scheduler but is intended to provide various
priority queue policies. Currently only an Earliest Dead-
line First (EDF) policy is implemented, which weighs flows
by their relative deadlines for packet delivery, with weights
determined by the delay budget of the QoS Class Indicator
(QCI) configured by the RRC layer. The EDF scheduler can
be used to evaluate the delay performance of various radio
frame configurations, although the results of such analysis
are outside the scope of this paper. Other weight-based dis-
ciplines, such as Proportional Fair (PF) scheduling, will be
added in future versions.

4.2 Adaptive Modulation and Coding
The MmWaveAmc class reuses most of the code from the

corresponding LENA module class. Some minor modifica-
tions and additional methods were necessary to accommo-
date the dynamic TDMA MAC scheme and frame structure.
For instance, the GetTbSizeFromMcsSymbols() and GetNum-

SymbolsFromTbsMcs() methods are used by the scheduler
to compute the TB size from the number of symbols for a
given MCS value, and vice-versa. Also the CreateCqiFeed-

backWbTdma() method is added to generate wideband CQI
reports for variable-TTI slots.

Figure 5 shows the results of the test case provided in
mmwave-amc-test.cc. This simulation serves to demonstrate
the performance of the AMC and CQI feedback mechanisms
for a single user in the UL (although a multi-user scenario
could easily be configured as well). The default PHY/MAC
parameters in Table 1 are used along with the default sched-
uler and default parameters for the statistical path loss,
fading and beamforming models (i.e., MmWavePropagation-
LossModel and MmWaveBeamforming).

We compute the rate versus the average SINR over a pe-
riod of 12 seconds (long enough for the small-scale fading to

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

90

Figure 5: Rate and MCS vs. SINR for single user
under AWGN and fast-fading mmWave channels

average out), after which we artificially increase the path loss
while keeping the UE position fixed. The average PHY-layer
rate is then computed as the average sum size of successfully
decoded TBs per second. As the SINR decreases, the MAC
will select a lower MCS level to encode the data. The test is
performed for the AWGN case as well as for small-scale fad-
ing. Although the UE position relative to the base station
is constant, we can generate time-varying multi-path fad-
ing through the MmWaveBeamforming class by setting a fixed
speed of 1.5 m/s to artificially generate Doppler, which is a
standard technique for such analysis. Also we assume that
the long-term channel parameters do not change for the du-
ration of the simulation.

If this plot is compared to the one generated from a similar
test in Figure 3.1 of the LENA documentation [6], we notice
that the AWGN curve from the mmWave test is shifted by
approximately 5 dB to the left, indicating that the LENA
version is transitioning to a lower MCS at a much higher
SINR. This is because the LENA test is using the more
conservative average SINR-based CQI mapping, whereas we
use the Mutual Information-Based Effective SINR (MIESM)
scheme with a target maximum TB error of 10% in order to
maximize the rate for a given SINR [13].

4.3 Hybrid ARQ Retransmission
Full support for HARQ with soft combining is now in-

cluded in the mmWave module. The MmWaveHarqPhy class
along with the functionality within the scheduler are based
heavily on the LENAmodule code. However, multiple HARQ
processes per user in the UL are now possible. The num-
ber of processes can also be configured through the NumHar-
qProcesses attribute in MmWavePhyMacCommon. Additional
modifications were needed to support larger codeword sizes
in both the HARQ PHY methods and the error model.

5. EXAMPLE SIMULATIONS
We now present some example simulations to show the

utility of the framework for the analysis of novel mmWave
protocols and testing higher-layer network protocols, such
as TCP, over 5G mmWave networks. The simulations in
this section are all configured with basic PHY and MAC
parameters as in Table 1, with other notable parameters
given in the sequel.

Figure 6: Empirical CDF of DL user rates for 10
users with RR scheduling.

5.1 Multi-User Throughput Simulation
The purpose of this experiment, which one can reproduce

by running the mmwave-tdma example, is to simulate the
DL throughput of 10 UEs in a 1 GHz mmWave cell un-
der the variable TTI/TDMA MAC scheme and round-robin
scheduling policy. UEs are placed at uniformly random dis-
tances between 20 and 200 meters from a single eNodeB. As
explained in Section 4.2, users are stationary but are mod-
eled as having a constant speed of 1.5 m/s and are thus sub-
ject to small-scale fading. The long-term channel parameters
are updated based on the exponentially-distributed update
time with a mean of 100 ms (see Section 3.3). Rates are
computed from the average size of RLC PDUs delivered to
each UE and therefore reflect the performance of the stack
up to and including the RLC layer. We assume full-buffer
traffic.

The simulation is performed for 10 runs or drops of the
10 UEs, where for each drop they are placed at different dis-
tances and assigned different channel matrices. The average
system throughput at the RLC layer for this scenario over
all drops is found to be about 1.2 Gbps. We observe in the
plot of the empirical distribution function in Figure 6 how
UEs with LoS links all have roughly the same average rates
around 325 Mbps. Also a significant number of NLoS users
achieve rates over 100 Mbps, and even the worst 5% of users
at the cell edge can get between 10 and 20 Mbps.

5.2 TCP Performance over mmWave
Here we run the mmwave-tcp-building example to analyze

the performance of TCP flows over a mmWave link. TCP
data packets are sent from a remote host to the UE at a
rate of 1 Gbps. The New Reno algorithm is used for this
experiment. The delays for the point-to-point link between
the remote host and PDN-Gateway (PGW), as well as that
from the PGW to the BS, are set to 10 ms. Thus, the
contribution to the total Round Trip Time (RTT) from the
core network is 40 ms and any additional latency is due
to the radio link, which, under stable queue conditions, is
observed to be less than 10 ms. The size of the RLC-AM
buffer is adjusted to 10 Megabytes to avoid overflow. The
TCP buffer size is set to 5 Megabytes and the slow start
threshold is 6000 segments (about 3 MB).

Figure 7 plots the SINR, transport layer throughput, con-
gestion window size (CWnd) and RTT. As shown, the trans-
port layer throughput matches the sending rate for the LoS

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

91

0 5 10 15 20 25T
h
ro
u
g
h
p
u
t
(M

b
p
s)

0

500

1000

1500
0 5 10 15 20 25

S
IN

R
(d
B
)

-40

-20

0

20

40

Time (s)
0 5 10 15 20 25

R
T
T

(m
s)

0

100

200

300
0 5 10 15 20 25

C
W

n
d

0

5000

10000

Figure 7: TCP performance for simulated route.

channel, but is reduced when the channel is in the NLoS
state. This is attributed to the MAC-layer AMC model
adapting to the change in capacity. From the congestion
window plot we see that there is no TCP timeout or re-
transmission since the packet loss events are handled by
lower layer retransmissions, i.e. MAC layer HARQ and RLC
ARQ. Moreover, we see that RTT is around the baseline of
40 ms for the LoS channel, but goes above 150 ms for the
NLoS case. It is clear that decreased channel capacity and
more frequent RLC retransmission events cause the RLC
buffer to become backlogged, which explains the increase
in RTT. This result suggests the need for a more advanced
congestion control mechanism, perhaps aided by feedback or
control from lower layers, to prevent large spikes in latency
under rapid channel fluctuations.

6. CONCLUSIONS & FUTURE WORK
In this paper, the current state of the ns-3 framework

for simulation of mmWave cellular systems has been pre-
sented. The code, which is publicly available at GitHub
[14], is highly modular and customizable to facilitate re-
searchers to experiment with novel 5G protocols. The code
includes implementations of a mmWave eNodeB and User
Equipment stack, including the MAC layer, PHY layer and
channel models. Some example simulations have been given,
which show how the framework may be used for analysis of
custom mmWave PHY/MAC protocols as well as higher-
layer network protocols over a mmWave stack and channel.

As part of our future work, we have targeted several new
features for channel modeling, including a more accurate
model for large-scale fading for mobile users as well as chan-
nel matrix generation and beamforming computation within
ns-3 to support experimentation with adaptive beamforming
algorithms. Future enhancements to the MAC layer include
support for other multiple access schemes, relay devices, and
additional scheduling algorithms. Also, although a number
of configurable example scripts are currently included, which
may be used for testing, a complete test framework is not
yet been provided. Thus, we intend to include a set of test
scripts in a later release.

7. REFERENCES
[1] S. Rangan, T. S. Rappaport, and E. Erkip,

“Millimeter-wave cellular wireless networks: Potentials
and challenges,” Proc. IEEE, vol. 102, no. 3, pp.
366–385, Mar. 2014.

[2] M. Akdeniz, Y. Liu, M. Samimi, S. Sun, S. Rangan,
T. Rappaport, and E. Erkip, “Millimeter wave channel
modeling and cellular capacity evaluation,” IEEE J.
Sel. Areas Commun., vol. 32, no. 6, pp. 1164–1179,
June 2014.

[3] “ns-3 Network Simulator,” Available at
http://www.nsam.org, Feb. 2012.

[4] M. Mezzavilla, S. Dutta, M. Zhang, M. R. Akdeniz,
and S. Rangan, “5G mmwave module for the ns-3
network simulator,” in Proceedings of the 18th ACM
International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM
’15), Nov. 2015, pp. 283–290.

[5] “LTE-EPC Network Simulator,” Available at
http://iptechwiki.cttc.es/

LTE-EPC_Network_Simulator_(LENA).

[6] “The LENA ns-3 LTE Module Documentation,”
Available at http://iptechwiki.cttc.es/
LTE-EPC_Network_Simulator_(LENA).

[7] Z. Pi and F. Khan, “System design and network
architecture for a millimeter-wave mobile broadband
MMB system,” in Proc. IEEE Sarnoff Symposium,
May 2011.

[8] A. Ghosh, T. A. Thomas, M. C. Cudak, R. Ratasuk,
P. Moorut, F. W. Vook, T. S. Rappaport,
J. G. R. MacCartney, S. Sun, and S. Nie,
“Millimeter-wave enhanced local area systems: A
high-data-rate approach for future wireless networks,”
IEEE J. Sel. Areas in Comm., vol. 32, no. 6, pp.
1152–1163, June 2014.

[9] T. Levanen, J. Pirskanen, and M. Valkama, “Radio
interface design for ultra-low latency millimeter-wave
communications in 5G era,” in Proc. IEEE Globecom
Workshops (Gc Wkshps), Dec. 2014, pp. 1420–1426.

[10] S. Dutta, M. Mezzavilla, R. Ford, M. Zhang,
S. Rangan, and M. Zorzi, “Frame structure design and
analysis for millimeter wave cellular systems, to
appear in Proceedings of the European Conference on
Networks and Communications (EuCNC 2016),” Jun.
2016.

[11] P. Popovski, V. Brau, H.-P. Mayer, P. Fertl, Z. Ren,
D. Gonzales-Serrano, E. G. Ström, T. Svensson,
H. Taoka, P. Agyapong et al., “EU FP7
INFSO-ICT-317669 METIS, D1.1: Scenarios,
requirements and KPIs for 5G mobile and wireless
system,” 2013.

[12] P. Kela, M. Costa, J. Salmi, K. Leppanen, J. Turkka,
T. Hiltunen, and M. Hronec, “A novel radio frame
structure for 5G dense outdoor radio access networks,”
in Proc. IEEE 81st Vehicular Technology Conference
(VTC Spring), May 2015, pp. 1–6.

[13] M. Mezzavilla, M. Miozzo, M. Rossi, N. Baldo, and
M. Zorzi, “A lightweight and accurate link abstraction
model for the simulation of lte networks in ns-3,” in
Proceedings of the 15th ACM International Conference
on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWiM ’12), Oct. 2012, pp. 55–60.

[14] “ns-3 module for simulating mmwave-based cellular
systems,” Available at
https://github.com/mmezzavilla/ns3-mmwave.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

92

ns-3 Web-Based User Interface - Power Grid
Communications Planning and Modeling Tool

Kurt Derr
Idaho National Laboratory
2525 Freemont Avenue
Idaho Falls, Idaho 83415

kurt.derr@inl.gov

ABSTRACT
All utilities have invested in some level of engineering tools and
qualified staff required to modernize the power grid. These
engineering tools vary in their level of complexity and fidelity.
Most of the existing tools are either application specific or have
not been designed to work together to assist in assembling
comprehensive first order smart grid build-out cost estimations
and planning, especially with regard to communications. There is
a need for software to assist utility owners, operators, engineers,
and consultants with smart grid communications planning and
engineering. The development of a web-based Power Grid
Communications Planning and Modeling Tool using ns-3 is in
process that will address these needs. This tool models use cases
for power grid communications, abstracting away the details of
programming in ns-3. The tool will be made open source at the
completion of the initial version.

CCS Concepts

• Computing methodologies → Model development and analysis
• Networks → Network performance evaluation

Keywords
Smart Grid, Network Simulation, Use Case, OMF

1. INTRODUCTION
The Power Grid Communications Planning and Modeling Tool
(PGCPMT) is a power grid communications network planning
tool for the smart grid. The smart grid is characterized by a set of
objectives specified in the U.S. Energy Independence and Security
Act of 2007. The goal of the PGCPMT is to perform a
comprehensive grid communications analysis that will evaluate a
utility’s existing architecture and/or proposed enhancements and
help identify optimal implementation strategies that will align
with the utility’s business roadmap and constraints.

The tool interacts with the user via a web-based geospatial user
interface coupled with other screens for specialized subsystems
such as modeling, simulations, cyber security, cost analysis, etc.
This interaction will occur in several different ways, including
creating, converting, manipulating, and analyzing or visualizing
the data and analysis results.

Understanding that users will be applying this tool with various
levels of data fidelity available to them for their specific system,

the tool will accommodate planning and design using a range of
data from basic “rough” estimations to highly detailed network
information.

By employing a library of grid component use cases that identify
not only the specific properties of each device but also the
recommended communication pathways and integration scenarios,
the tool will assist users in determining a confidence level in their
proposed configurations. This capability will aid in identifying
where more information and what detail is needed to improve the
overall design. The tool is intended to answer the question, “will
my communications network support the smart grid hardware and
applications I want to run?” The tool will also guide the user in
entering data required for preparing graphs and tables that
summarize the costs and benefits of the project.

The concept behind this tool development is to create an
application that blends geospatial analysis, standards application,
component database, and communication network
modeling/simulation with a graphical front end and menu driven
guidance that can adapt to meet the users skill level from a data
and expertise standpoint. The focus is to develop a tool to assist
in developing the communications and networking systems for the
smart grid, and not for developing the power delivery
infrastructure of the smart grid. The source code for PGCPMT
will be made available in the near future at the discretion of the
Department of Energy.

The rest of this paper is organized as follows: Section 2 discusses
related work. Section 3 provides an overview of the PGCPMT.
Section 4 presents the architecture of PGCPMT. Section 5
presents the PGCPMT implementation. Section 6 presents the
smart grid use case implementations with ns-3. Section 7
discusses the cyber security module that provides guidance for
cyber secure communications. Section 8 presents conclusions and
future work.

2. RELATED WORK
PGCPMT is designed to provide a graphical user interface (GUI)
front end to ns-3 and support the analysis of smart grid use cases.
The author is not aware of any other effort that provides a GUI
front end to ns-3 focused on the network modeling needs of the
utility community for smart grid deployment. Related efforts
describing the integration of ns-3 with other toolsets are
subsequently described.

CORE is the Common Open Research Emulator that controls
virtual machines and a network emulation subsystem [1]. The
emulated networks may be on one or more machines and can be
connected to live networks. A CORE GUI tool may be used to
create diagrams of network topologies. ns-3 networks can only be
instantiated from a Python script or from the GUI hooks facility in
the most current version of CORE. The WiFi model is supported

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
permissions@acm.org.
WNS3, June 15-16, 2016, Seattle, WA, USA
© 2016 ACM. ISBN 978-1-4503-4216-2/16/06…$15.00
DOI: http://dx.doi.org/10.1145/2915371.2915373

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

93

and experimentation is continuing with the WiMAX and 3GPP
LTE models.

Radio Mobile (RM) [2-3] is a freeware tool that predicts the
performance of a radio system by using digital terrain elevation
data. A user may create a graphical view of their network
topology on top of a rendered topography via the RM user
interface. A python script is used to translate the output results of
RM into a form suitable for import into an ns-3 simulation. Other
tools such as Gnuplot and net-measure may then be used to create
and view the performance of the simulation.

The Network Experiment Programming Interface (NEPI) [4] is an
experimental life-cycle management tool for heterogeneous
experiments with PlanetLab and Emulated nodes seamlessly
integrated with ns-3. NEPI is a general solution for providing life-
cycle control support for non-specific platform resources. NEPI
supports the design, execution, control, and results sequence of
steps in an experiment workflow. The experiment description is
written in XML providing an environment-independent
application programming interface (API) for the user. NEPI
supports ns-3, NETNS emulator, and PlanetLab. The two ways of
using NEPI are the Network Experimentation Frontend (NEF)
GUI or a python script. NEF allows dragging and dropping and
interconnecting of boxes in a canvas. Complex experiments may
be also designed and executed as a single python script.

The Universidad de los Andes has performed modeling and
simulation of an AMI network implemented with Long Term
Evolution (LTE) and WiFi technologies in ns-3 [5]. This work
includes the Device Language Message Specification (DLMS)
and the COmpanion Specification for Energy Metering (COSEM).
The authors have made the source code available for the AMI
network that includes multiple elements; a data concentrator
model; meter data management application; a demand response
(DR) application for a utility control center implemented without
the DR mechanism; LTE, WiFi, and CSMA technologies in the
DLMS/COSEM application.

None of these efforts provides a GUI exposing the capabilities of
ns-3 that is specifically targeted to support multiple smart grid use
cases and networking technologies, such as wireless mesh, WiFi,
LTE, WiMAX, and wired links. The next section presents an
overview of the PGCPMT.

3. TOOL OVERVIEW
ns-3 does not have a graphical user interface. Simulation code is
written in C++ or python to run an ns-3 simulation. Integrating the
ns-3 network simulator with GUIs is a large effort [6]. The
PGCPMT implementation is factoring this integration of GUIs
and ns-3 into manageable phases and building needed capabilities
over time. PGCPMT utilizes the ns-3 C++ bindings, rather than
the python bindings, to maximize the network simulation
capabilities that may be made available to the user.

PGCPMT will provide a capability to compare the performance of
multiple network models. Cost and performance criteria may be
used to evaluate each model.
The PGCPMT is comprised of the subsystems shown in Figure 1.
The implementation of each of these sub systems is in varying
states of progress.
The geospatial interface enables the user to develop a location
based layout of the communications network for power grid
network communications simulation and analysis. The interface
includes svg-edit and OpenLayers v3.12.1. svg-edit is an

opensource web-based JavaScript-driven SVG drawing editor that
works in a browser. The INL has customized svg-edit for the
visual graphical objects to contain metadata. The metadata
describes attributes of the real world network modeling objects
represented by the graphical elements, such as routers, switches,
and data concentrators. The logical network diagramming
subsystem provides a drawing tool for creating or editing logical
network diagrams that also utilizes this customized version of
svg-edit. OpenLayers is an opensource JavaScript library to load,
display and render maps from multiple sources on web pages.
The cybersecurity subsystem provides users with a systematic,
repeatable approach for assessing the cybersecurity posture of
their grid network components. A user may select the standards
for evaluating their network architecture that will be used to
generate a question-answer set. The questions and answers are
used to collect facility specific system information for evaluating
the cyber security posture of a user’s network.

Figure 1. System overview.

The network modeling and simulation subsystem enables utilities
to quickly evaluate design alternatives, or different configurations,
from both a performance and cost standpoint. Users may easily
compare the same or similar topologies using different networking
technologies and operating parameters.
The component database and cost analysis subsystem database
includes networked devices such as meters, gateways, and
distributed generation controllers, as well as different
communication channel types. This subsystem will enable users
and vendors to add component elements to the system in the
future.
The reports and metrics subsystem includes reports/data on
network simulation results and the results of the cybersecurity
evaluation. Cost reports are a future capability dependent upon
component database data. Metrics for evaluating network
performance must be specified before running a network
simulation. Examples of metrics include packet delivery ratio,
latency, packet loss, throughput, and average delay.
The next section presents the tool’s architecture that provides a
framework for the implementation of the PGCPMT subsystems.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

94

4. ARCHITECTURE
The high-level architecture of the PGCPMT is shown in Figure 2.
The Open Modeling Framework (OMF) is an analytics platform
for simulating the behavior of the electric grid [7] for smart grid
cost-benefit analysis. OMF, developed by the Cooperative
Research Network™ (CRN), is based on Flask, a python-based
web-development environment. CRN is the technology research
arm of the National Rural Electric Cooperative Association
(NRECA). NRECA members may log into the interface hosted in
the cloud, and accessible via a web browser, to perform power
distribution system simulation and analysis. NRECA members
may make their data and results sharable with other users, or
retain the privacy of this information. Developers may download
and install a working version of OMF from the GitHub web site.
The goal of OMF is to make advanced power distribution systems
models usable in the electric cooperative community.
The PGCPMT application is built within the OMF framework and
extends OMF with new GUIs, an ns-3 code generator, and access
to the ns-3 simulator. PGCPMT allows a user to create a new
communications model representing their utilities
communications infrastructure, or to select among a variety of use
cases representing network topologies and editing those
topologies to address their communications requirements.

Figure 2. PGCPMT architecture.

OMF uses the D3 JavaScript library for producing dynamic,
interactive data visualizations. Any browser such as Chrome, or
others, that supports D3 may be used to run the OMF and the
PGCPMT.
The ns-3 code generator uses XSD (XML Schema Definition) to
specify how to formally describe the elements in an Extensible
Markup Language (XML) document. The XML document
presented to the ns-3 code generator describes the network
topology, operating parameters of the requested network
simulation and the desired output results for analysis by the end
user. The ns-3 code generator is an Idaho National Laboratory
(INL) enhanced version of the ns-3 topology generator tool
originally written by Pierre Weiss and Sebastien Vincent,
University of Strasbourg.
The implementation of the PGCPMT tool based on this
architecture is described next.

5. PGCPMT IMPLEMENTATION
The OMF is targeted towards power system modeling. The INL
has extended OMF via additional GUI screens to support network
communications modeling. This section briefly describes the
OMF power distribution systems modeling screens with
subsections providing a more detailed explanation of the new

network communications modeling capability now incorporated in
the OMF.
Network communications modeling for the smart grid with the
PGCPMT requires a number of steps starting from creating a
model to analyzing the output results of a simulation.

1. Identify what smart grid use case to model. A user may
alternatively create a model that is not one of the pre-
defined use cases.

2. The PGCPMT initially displays a logical network model
diagramming view. The user may alternatively select a
Geographical Information System (GIS) modeling view
for placing network components at specific locations.

3. Create the network model/topology. Alternatively a user
may open a previously created topology.

4. Specify the applications that will run on each of the
network components in the diagram. Smart grid use
cases, described in Section 6, will have specialized
applications.

5. Specify the operating parameters for the network if this
is a new model or, if desired, adjust existing parameters.
Operating parameters include attributes such as packet
sizes, intervals between packets, maximum number of
packets, data rate, error rate and delay of
communications line/channel, mobility model, positions
of mobile devices, and wireless propagation model.

6. Specify the desired output results that enable the user to
evaluate the performance of the network. The options
include packet capture (pcap) and ascii trace file data, as
well as packet delivery ratio, latency, packet loss,
throughput, and average delay for different elements of
the network topology.

7. Specify the length of time to run the simulation if
applicable.

8. Run the simulation. Distributed simulations are not
supported.

9. Review the output results of the simulation. A user may
want to compare network simulation results from
multiple models, adjust operating parameters and rerun
a simulation. When a user is satisfied with the network
model, the user may export or print the results of the
modeling effort.

A walkthrough of the PGCPMT screens for performing network
modeling is described next.

5.1 Logon User Interface
The initial screen of the PGCPMT that is viewable in a browser is
the logon screen shown in Figure 3.

Figure 3. OMF logon screen.

Chrome
Browser
(running
PGCPMT)

Apache
HTTP Server

Flask
Framework
in OMF

ns-3 code
generator

ns-3
Simulator

CLIENT SIDE SERVER SIDE

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

95

This is the standard OMF login screen. The user is then presented
with the power systems modeling interface after logging into
OMF.

5.2 Power Systems Modeling User Interface
A user may next select power system models, feeders, or
communications systems modeling. The user is initially presented
with the models screen, shown in Figure 4, for power systems
modeling.

Figure 4. Power distribution system models screen.

A user may import feeder data or select a feeder for power
systems modeling as shown in Figure 5.

Figure 5. Power distribution system feeders screen.

OMF utilizes GridLAB-D, a power distribution system simulation
and analysis tool for users who design and operate distribution
systems. GridLAB-D simulates the interdependent behavior of a
multitude of devices in the power system. GridLAB-D is not part
of, or integrated with, the OMF communications modeling using
ns-3. GridLAB-D may be used to evaluate new power systems
technologies and control systems such as microgrid operation and
control, distributed energy storage and generation, and feeder
reconfiguration and automation [8]. GridLAB-D is packaged with
OMF for developer download.

5.3 Network Communications Modeling User
Interface
The network communications modeling screen, shown in Figure
6, is accessed by selecting the Comms tab. The modeling screen
has both horizontal and vertical toolbars, a drawing/viewing pane,
and a layers pane on the right side of the screen.
The horizontal toolbar across the top of the modeling screen has

icons for SVG code viewing , wireframe mode , show/hide

grid , xml code viewing , analysis , cyber , GIS lock

, GIS view , undo button , and redo button . The GIS
view icon allows the user to easily switch from a logical network
diagramming view to a GIS view to place icon and
communications lines at specific geographic locations.
The vertical toolbar on the left side of the modeling screen has
icons, in top to bottom order, for selection , drawing lines ,
selecting node types , selecting link types , text for
annotating the diagram , and a search button . The node and
link buttons allow the designer to create network components and
specify the communications link between those components
representative of their topology. The layers pane allows the user
to select one of their created models for modeling and analysis.
A user may create a network topology diagram as:

1. a logical network diagram or
2. network diagram in a GIS view.

A logical network model is useful when a user wishes to get an
idea of the performance of a network under ideal conditions (no
reflections, scattering, or propagation delays of wireless signals)
without specifying network component locations. The GIS
network modeling view allows a user to place networking
components at their desired locations and take environmental and
propagation delay factors into account.
A user may create a logical network diagram, shown in Figure 6,
or open a previously created logical network diagram, to analyze
the performance of a proposed network architecture. Network
components such as routers, switches, data concentrators, and
computers may be dragged and dropped onto the diagram. The
connections between these components, such as a wired or
wireless link, may be specified by selecting a link type and then
the components for this connection. A user may save the
topology through the Topology drop down menu in the left corner
of the modeling tool screen.

Figure 6. Network communications modeling screen.

A user may associate this topology data with geography and
location by selecting the GIS icon . The network is then
visualized in a GIS map view. The user may next zoom into the
GIS map at the appropriate level and visually move the network
elements to their desired locations as shown in Figure 7. Selecting
the GIS lock icon will then associate GIS coordinates for each
of the network elements at their current locations.
A “layers” pane is displayed in the right side of the modeling
screen. The user may quickly switch from one model to another to
compare and contrast network topologies and simulation results.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

96

Figure 7. GIS network diagramming screen.

Alternatively a user may create a new diagram in the GIS view
without using the logical modeling screen. A future capability will
enable a user to import network topology data in XML, CSV, or
other formats to expedite the modeling process.
A user also has the capability to select a predefined smart grid use
case with a specific topology as shown in Figure 8. This allows
the user to quickly develop a new network diagram that is
representative of their utilities communications infrastructure.
Each use case is associated with appropriate smart grid
application(s) that will be simulated using ns-3.

Figure 8. Smart grid use case and topology selection.

The operating parameters for network components and
communications lines may be specified by the user by editing the
properties of a component. Default operating parameters are
provided for every network element.
The network communications GUI enables the user to create and
view a network to be modeled or simulated. The network diagram
is represented in scalable vector graphics format (SVG). Any
network diagram may be modified, saved, and reused as needed
by the user. After creating a model of the network the user next
decides what data should be collected to evaluate the performance
of the network and the value of the model.

5.4 Simulation Execution and Desired Output
Results
Figure 9 shows the performance measurements and data that may
be collected and reported between nodes connected through a path
in the network topology. Multiple metrics, previously noted, may
be used to evaluate the performance of the network. The expected
reliability and latency performance measures, such as for the
smart meter (SM) application and the communications link
protocols connecting a smart meter to a data concentrator (DC),
may be entered by the user. Reliability is the probability that an
operation will complete without failure over a specific period or
amount of time [9]. Latency is the time from when an application
at an origin node sends a packet to an application at a destination
node which receives the packet.

Figure 9. Performance measurements selection.

A user selects a sending and receiving node, optionally specifies
expected reliability and latency requirements, indicates the data
to collect and calculate, and saves the entered information. These
performance measurements may be specified between two nodes
directly connected through a wired/wireless link or between two
nodes through which a communications path exists over multiple
network hops.
When a user runs a simulation of a model by clicking on the

analysis icon in the horizontal toolbar, the SVG representing
the drawn network topology in the GUI is translated into XML.
The XML describes the network topology, operating parameters,
and desired simulation results specified by the user. The XML is
passed to the server (see Figure 2) and translated into C++ ns-3
code by the ns-3 code generator program. The simulation is then
run by the server. At the completion of the simulation the
modeling results are then translated into user interface changes
representing the output results requested by the user. The
simulation output results may be textual, or ascii and/or pcap trace
files. Graphs and plots of network performance data will be
provided in the future.
The results of the simulation are stored in a database allowing the
user to analyze data over multiple trials (simulation runs with a
variety of operating parameters and/or topologies). Future
improvements to the PGCPMT will include additional features to
compare and contrast the results of multiple simulation runs, and
to request a copy of the generated C++ ns-3 simulation code.
Advanced users may desire a copy of the generated simulation
code to customize and run directly in ns-3 without the PGCPMT.
PGCPMT supports a number of pre-defined use cases presented in
the next section. A user may alternatively create a topology that is
not defined within these use cases.

6. SMART GRID USE CASES IN PGCPMT
The current use cases [9] built into PGCPMT are meter reading
for the Advanced Metering Infrastructure (AMI). These use cases
may be implemented with multiple technologies such as wireless
mesh, power line communications, WiFi, cellular Long Term
Evolution (LTE), dedicated wire lines, and WiMAX. Each of
these technologies is supported in ns-3 or available as an add on

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

97

developed by the user community. Users may create and save
their own network models that implement use cases other than
meter reading for the AMI via the modeling interface shown in
Figure 6.

6.1 AMI Use Cases
The communications (T1 thru T4) and NAN technologies
supported by each of the AMI use cases are:

 T1: WAN:fiber pt-to-pt NAN: wireless mesh
 T2: WAN:LTE NAN: wireless mesh
 T3: WAN:fiber pt-to-pt NAN: PLC
 T4: WAN:LTE NAN: PLC
where
LTE Long Term Evolution
NAN Neighborhood Area Network
PLC Power Line Communications
WAN Wide Area Network

The use cases (UC) initially being implemented are:

UC1: On Demand Meter read
Description: Meters may be read on demand to retrieve missing
information and terminate or start up new customer accounts.

UC2: On Demand Meter read failure
Description: Meters are hardware devices that may fail during an
on-demand meter reading request. Communication errors or meter
reading failures may occur requiring a failure notification to be
sent to an upstream device.

UC3: On Demand Meter interval period read
Description: Utilities typically acquire customer consumption data
at least once per day, typically at midnight for validating meter
intervals.

UC4: Normal Meter Reading Operations
Description: Utilities may acquire consumption data 4 to 6 times
per day with each acquisition obtaining interval usage information
from 15 minutes to 1 hour in duration.

UC5: Bulk Meter Interval data read
Description: A MDMS (Meter Data Management System) may
initiate a large bulk meter data request for billing purposes. This
will include data from on-demand or normal meter readings.

The ns-3 code generator is a key component of the PGCPMT. The
ns-3 code generator must support each of these use case
technologies for generating the appropriate simulation code.

6.2 AMI Networking Diagrams
An AMI networking diagram applicable for these use cases is
shown in Figure 10. The Head End (HE) computer communicates
with the DC and MDMS over an IP connection. Meter data
exchanges, commands and responses may occur between the HE
and the MDMS. The MDMS may communicate to a smart meter
only through the HE computer. The DC communicates with the
meters and collects periodic measurements and alarms as well as
sending commands from the HE to a meter(s).

Figure 10. AMI networking.

A logical network diagram for this AMI network is shown in
Figure 11. The text tool has been used to annotate and clarify
the components in the diagram. Possible technologies for the
WAN include fiber point-to-point link, WiMAX, or LTE
technology and for the NAN include wireless mesh, PLC, or WiFi
technology.

Figure 11. Logical network model for AMI network.

The implementation of the AMI network builds upon the
DLMS/COSEM package in [5] for the gathering of meter data.
This package includes helper classes for a data concentrator
application, meter data management application, demand response
application, and smart meter to data concentrator
communications.
The DC must support both WiFi and LTE technologies – WiFi for
communicating with the smart meters and LTE for a
communications path to the Data and Control Center (DCC)
computers. The router will interface with the Packet Data
Network Gateway (PGW) of the LTE network. The PGW
provides connectivity to external packet data networks via a point-
to-point link. DR and MDMS applications may run on the HE,
MDMS as well as other computers that are part of the Utility
DCC.
Several applications are part of this AMI network simulation:

• DLMS/COSEM
• Data Concentrator
• Meter Data Management
• Demand Response

DLMS/COSEM is currently based on the IEC 62056 standard for
electricity metering data exchange. The Cosem application server
and client, based on the User Datagram Protocol, are installed on
each smart meter and DC, respectively. The DLMS/COSEM
application will be modified in the future to support ANSI C12.22

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

98

– the ANSI standard protocol used in two-way communications
with a meter in North America.
A Data Concentrator application is installed on the Data
Concentrator as well. This application enables the DC to
communicate with each smart meter.
Meter Data Management (MDM) and DR applications are
installed on the DCC computers on the LAN. The MDM
application enables the DCC to send requests to the AMI
network’s DC and to receive consumption data from the DC.
The DR application enables sending data to the DC and receiving
data from the MDMS. Demand response is the managing of
increased demand by reducing demand and/or increasing supply.
The DR application uses the DLMS/COSEM protocol application
and is dependent upon the meter data collected by the MDMS.
Control/curtailment commands and updated pricing rates may be
sent to the meters.

6.3 AMI Simulation Output Results
Meter reading and the AMI network have latency and reliability
requirements as well as payload sizes and timed events for meter
reading. Users may have specified these latency and reliability
requirements as well as measurements and data to be collected
and reported on over the links between nodes, as previously
shown in Figure 9.
Possible simulation output results to assist the user in determining
if the planned network meets these latency and reliability
requirements are shown in Table 1 for a normal meter reading use
case. The performance indicator is the performance requirement
relevant to the smart grid topology. The planned performance is
the performance expected over the WAN, from smart meters to
the end of the AMI network such as the HE computer, and the
reliability and latency requirements from the smart meter to the
DC. The planned performance data are examples from the Smart
Grid Network Systems Requirement Specification [9]. The actual
average performance is the average of these measurements over a
given time period.
The green, yellow, and red status indicators in the Table are
simple visual indicators to give the user a quick view of whether
the planned network predicted performance is within pre-specified
bounds. Green indicates the actual performance matches the
expected performance, yellow less than expected performance and
red significantly less than expected performance. The boundary
values for these visual indicators may be specified by the user.

Table 1. Network and meter performance data.

The PGCPMT uses the ns-3 Flow Monitor to evaluate the network
model based on the previously described performance metrics (see

Section 5.4) chosen by a user. Flow Monitor tracks the packets
exchanged by nodes and measures a number of parameters. An
example output for a network flow is as follows.
UDP 10.0.0.10/49153 ----> 10.0.1.1/999
Tx bitrate:+9.17979797979798103100 kbps
Rx bitrate:+9.18220427381494926376 kbps
Mean delay:6.31181 ms
Packet Loss ratio: 0%
First Tx Packet: 1.1 secs.
First Rx Packet: 1.11526 secs.
Last Tx Packet: 25.85 secs.
Last Rx Packet: 25.8588 secs.
Delay Sum: 0.631181 secs.
Jitter Sum: 0.200328 secs.
Last Delay: 0.0087716 secs.
Tx Bytes: 28400
Rx Bytes: 28400
Tx Packets: 100
Rx Packets: 100
Lost Packets: 0
Times Forwarded: 100
Throughput: 8.96147 Kbps

A differentiating capability built into the PGCPMT is the cyber
security module presented in the next section.

7. CYBER SECURITY MODULE
PGCPMT includes a cybersecurity module that provides users
with a systematic and repeatable approach for assessing the
cybersecurity posture of their grid network components. The
Cyber Security Evaluation Tool (CSET) [10] is being used as a
model for this implementation.

Users are guided through a step by step process using a
question/answer approach to collect specific system information
that addresses topics such as hardware, software, administrative
policies, and user obligations. The rigors of the questions are
determined by the criticality of the components themselves in
addition to the confidentiality, integrity, and availability data
specified in the diagram. The user may select from a list of
standards to apply to their network as shown in Figure 12. The list
of generated questions will be dependent upon the standard
selected by the user.

Figure 12. Assessment configuration screen.

The tool compares user entered information to selected relevant
security standards and regulations, assesses overall compliance,
and provides appropriate recommendations for improving the
system’s cybersecurity posture. Recommendations are pulled

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

99

from a database of the best available cybersecurity practices that
have been adapted specifically for application to control system
networks and components. Where appropriate, recommendations
are linked to a set of actions to remediate specific security
vulnerabilities.

The primary objective of the questionnaires is to reduce the risk of
cyber-attacks by identifying current vulnerabilities within power-
grid architectures. This offers the following benefits:

1. Comprehensive evaluation and comparison to existing
industry standards and regulations.

2. Identification of potential vulnerabilities in the system
design and security policies.

3. Access to a centralized repository of cybersecurity
requirements.

The results of the questionnaire and evaluation may be reviewed
through an analysis screen where charts present both summary
and detailed information. By drilling down, the application will
open new screens that show a finer level of detail until reaching
the list of actual questions and answers as shown in Figure 13. All
missed questions will be ranked in the order of recommended
priority.

Figure 13. Drill Down into questions screen.

A summary report screen, Figure 14, is displayed when the user
has completed answering the security questions. The summary
report may then be downloaded to the user’s computer.

Figure 14. Security analysis summary.

8. CONCLUSION AND FUTURE WORK
PGCPMT provides a much needed capability for ns-3 focused on
utility communications – an easy way to create and evaluate the

predicted performance of smart grid network models without
programming. PGCPMT abstracts away the details of
programming in ns-3. Features of the tool are in different stages of
implementation and require future work, such as cost estimation
and planning, component database, additional network
performance reporting options, use case support for new domains,
and simulation run comparisons.

This paper describes the vision of the evolving capabilities of
PGCPMT. Suggestions and recommendations for tool features
may be sent to the author. PGCPMT will be made open source
when the initial version is fully implemented and tested. The goal
is to make PGCPMT extensible by other developers for adding
capabilities and making those capabilities available to the open
source community so that all users and developers may benefit
from their efforts.

9. ACKNOWLEDGMENTS
The Department of Energy Office (DOE) of Electricity Delivery
and Energy Reliability (OE) has the vision of providing tools to
assist utilities in accelerating the deployment of smart grid
technologies. The Idaho National Laboratory development team
thanks the DOE OE for supporting the development of the
PGCPMT.

10. REFERENCES
[1] CORE Documentation, Release 4.8, core-dev, June 5, 2015.
[2] A. Leclrec and M. Crosby, Test and Evaluation of WiMAX

Performance Using Open Source Modeling and Simulation
Software Tools, ITEA Journal, 31, pp. 518-524, 2010.

[3] I. Brown, Radio Mobile – What Can It Do For You?,
antenneX issue no. 147, July 2009.

[4] A. Quereilhac, NEP Network Experiment Programming
Interface, INRIA Sophia Antipolis, France.

[5] R. Bustamente and J. Aranda, Modeling and Simulation of
AMI Network Implemented under LTE and WiFi
Technologies, Universidad de los Andes, Electric and
Electronic Engineering Department, December 7, 2012.

[6] T. Henderson, C. Dowell, J. Ahrenholz, T. Goff, and B.
Adamson, Virtual Machines and ns-3.Workshop on ns-3,
March 2010.

[7] D. Pinney, Open Modeling Framework software,
https://github.com/dpinney/omf.

[8] D. Chassin, J. Fuller, GridLAB-D, A Unique Tool to Design
the Smart Grid, November 2012.

[9] OpenSG SG-Network 119 Task Force Core Development
Team, Smart Grid Networks System Requirements
Specification, Release Version 5.

[10] Cyber Security Evaluation Tool, ICS-CERT, Industrial
Control Systems Cyber Emergency Response Team,
https://ics-cert.us-cert.gov/.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

100

Getting Kodo: Network Coding for the ns-3 Simulator

Néstor J. Hernández M.
Steinwurf ApS, Aalborg

University
Aalborg, Denmark

nestor@steinwurf.com

Morten V. Pedersen
Steinwurf ApS

Aalborg, Denmark
morten@steinwurf.com

Péter Vingelmann
Steinwurf ApS

Dunaújváros, Hungary
peter@steinwurf.com

Janus Heide
Steinwurf ApS

Aalborg, Denmark
janus@steinwurf.com

Daniel E. Lucani
Aalborg University
Aalborg, Denmark
del@es.aau.dk

Frank H. P. Fitzek
Techn. Universität Dresden

Dresden, Germany
frank.fitzek@tu-

dresden.de

ABSTRACT
Network Coding (NC) has been shown to improve current
and upcoming communication systems in terms of through-
put, energy consumption and delay reduction. However, to-
day’s evaluations on network coding solutions rely on home-
grown simulators that might not accurately model realistic
systems. In this work, we present for the first time the steps
to use Kodo, a C++11 network coding library into the ns-3
simulator and show its potential with basic examples. Our
purpose is to allow ns-3 users to use a flexible and reliable
set of network coding functionalities together with the tech-
nologies simulated in ns-3. Therefore, in this paper we (i)
show how to set up the Kodo library with ns-3, (ii) present
the underlying design of the library examples, and (iii) ver-
ify the performance of key examples with known theoretical
results.

CCS Concepts
•Networks → Network simulations; Packet-switching
networks; •Mathematics of computing → Coding the-
ory; •Computing methodologies→ Simulation tools;
•Software and its engineering → Software libraries
and repositories;

Keywords
Network Coding, C++, ns-3, simulator

1. INTRODUCTION
Since its inception, network coding [14] has been a disrup-

tive technology that allows intermediate network nodes to
combine packets, instead of just routing them, resulting in
increased throughput, reliability, and lower delay. NC im-
plementations have also corroborated these promised gains

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WNS3, June 15-16, 2016, Seattle, WA, USA
c© 2016 ACM. ISBN 978-1-4503-4216-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2915371.2915389

under specific scenarios [15,23,24,27,29,30].
In most previous implementations, the Kodo C++11 net-

work coding library [31] was used. Kodo is intended to
make network coding implementations available to both re-
searchers and commercial entities, in particular those de-
veloping protocols. Kodo provides fast implementations of
finite field arithmetics and the encoding, decoding and re-
coding fnctionalities for a variety of network codes, includ-
ing Random Linear Network Coding (RLNC) [22], Perpet-
ual [21] and Fulcrum network codes [28]. The library is
continuously tested to support a large number of operating
systems, compilers and architectures with hardware acceler-
ation (SIMD) [6]. Hence, Kodo has been designed to ensure
performance, testability and flexibility.

An important part of the evaluation process for these pro-
tocols is the simulation stage that aids developers to verify
analytical results, rethink the modeling process by includ-
ing unobserved system effects or proceed with a given design.
Through the research community, the ns-3 project [8] aims
to develop and establish an open network simulation envi-
ronment for research. Among the project’s goals are: simu-
lation of standard technologies, simple usage and debugging,
code testing and documentation that caters to the needs of
the simulation workflow. Although there has been various
initiatives to develop simulations tools in the network coding
environment, [1, 9,12,18], most of these simulators: (i) may
not be continuously maintained and tested, (ii) may rely on
former functionalities of its components and (iii) are hard
to integrate with standard technologies. Thus, to date there
are no accurate network coding libraries that are well-tested
and maintained to interact with deployable network simula-
tion environments. Hence, in this work we provide for the
first time, a set of examples compliant with ns-3 using Kodo
as an external library for network coding where we verify
know and expected results from the NC literature.

Our work is organized in the following way: Section 2 pro-
vides the theoretical aspects regarding the encoding, decod-
ing and recoding of RLNC packets indicating some applica-
tion scenarios. Section 3 shows how to get the Kodo library
for ns-3 in an easy and rapid fashion. Section 4 describes the
design and implementation details of our examples. Section
5 provides known verifiable results in the NC literature us-
ing several ns-3 simulations to validate the examples. Final
conclusions of our work are drawn in Section 6.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

101

2. NETWORK CODING BASICS
Kodo implements core functionalities of intra-session NC

(i.e., where data packets from a single flow are combined
with each other). In this type of network coding, the origi-
nal data Pj , j ∈ [1, g], each of B bits, is used to create coded
packets. In the following subsections, we describe the ba-
sic functionalities of RLNC [22], namely encoding, decoding
and recoding. Later, we mention applications that could po-
tentially benefit from including RLNC as a coding scheme.
More complex code variants available in Kodo are described
in more detail in [3].

2.1 Encoding
With RLNC, each coded packet is a random linear com-

bination of the original set of packets. Hence, a linearly
independent (l.i.) set of g coded packets, Ci, i ∈ [1, g] is re-
quired in order to get the original information. Each original
packet is considered as a concatenation of elements from a
Galois Field (GF) of a given size q, which we denote GF (q).
To create a coded packet, a coding coefficient vi,j , is chosen
at random from GF (q) for every packet Pj and multiplied
and added following the respective GF arithmetics. In this
way, a coded packet is:

Ci =

g⊕
j=1

vi,j ⊗ Pj , ∀i ∈ [1, g] (1)

To indicate which packets were used to generate a coded
packet, one form is to append its coding coefficients. In this
case, the overhead included for Ci, ∀i ∈ [1, g] by the coding
coefficients is given by:

|vi| =
g∑

j=1

|vi,j | = g × dlog2(q)e [bits] (2)

2.2 Decoding
To perform decoding, we define C = [C1 . . . Cg]T and

P = [P1 . . . Pg]T . Then, decoding reduces to solve the linear
system C = V ·P using Gaussian elimination [19]. Here, the
coding matrix V contains any set of g linearly independent
packets Ci as rows as follows:

V =

 v1
...
vg

 =

 v1,1 . . . v1,g
...

. . .
...

vg,1 . . . vg,g

 (3)

The decoder begins to compute and remove the contribu-
tions from each of the pivot elements, e.g. leftmost elements
in the main diagonal of (3), to reduce V to reduced echelon
form. In this way, it is possible to recover the original set of
packets.

2.3 Recoding
Network coding allows intermediate nodes in a network

to recombine (or recode) packets from their sources whether
they are coded or not. In general, a recoded packet should
be indistinguishable from a coded one. Thus, we define a
recoded packet as Ri and its corresponding encoding vector

as wi with coding coefficients [wi,1 . . . wi,g], as follows:

Ri =

g⊕
j=1

wi,j ⊗ Cj , ∀i ∈ [1, g] (4)

(5)

In (4), wi,j is the coding coefficient that multiplies Cj ,
uniformly and randomly chosen from GF (q). Any decoder
that collects Ri, i ∈ [1, g] linearly independent coded pack-
ets, with their respective wi, will be able to decode the data
as mentioned before.

2.4 Network Coding Applications
There are numerous situations where NC provides bene-

fits over conventional routing schemes. Basic gain descrip-
tions and practical use cases for network coding can be
found in [19, Sections 3,4] covering various areas. Among
different benefits for communications, network coding can
achieve the capacity for networks with multicast flows [26],
improve content distribution in peer-to-peer networks [20] or
enhance throughput in conventional Transmission Control
Protocol (TCP) protocols for reliable communication [25].
For distributed storage systems, network coding has found
applications in scenarios where it could incur less redun-
dancy for data protection than simple replication [16].

3. GETTING KODO FOR NS-3
In this section, we explain how to get the Kodo up and

running. The procedure helps to quickly add new coding
functionalities in ns-3. The project with the examples is
available in [4] under a GPLv2 license and it tracks the latest
stable revision of the ns-3 development repository, ns-3-dev,
to get the most recent changes. For research purposes, Kodo
uses a free research license detailed in [10].

A more detailed setup guide can also be found at [4]. A
descriptive tutorial for the project is available at [5]. We
strongly encourage any developer to follow the setup guide.
As a reference for this guide, we assume that the ns-3 project
is in the ∼/ns-3-dev folder on the developer’s system.

1. To get access to Kodo, it is necessary to submit a re-
quest at [11] for a research license.

2. Build the local ns-3 repository with its examples since
the Kodo examples need the ns-3 binaries in order to
build itself. Execute in the local ns-3-dev folder:

(a) python waf configure --enable_examples

(b) python waf build

3. Go to ∼ and clone the kodo-ns3-examples git reposi-
tory. At this point, a confirmed license is necessary to
get the Kodo dependencies.

4. Go to the new kodo-ns3-examples folder and config-
ure with python waf configure (Kodo also uses the
waf [13] build system) to set and compile the project
and its dependencies.

5. Build the kodo-ns3-examples and install all the needed
files for ns-3 in the ∼/ns-3-dev/examples/kodo folder
with python waf build install --ns3_path="PATH".
In this case, "PATH" would be ∼/ns-3-dev.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

102

6. Get back to ns-3 folder and build the local ns-3 project
with python waf build. At this point, the examples
should be available to run as any ns-3 simulation.

4. KODO EXAMPLES FOR NS-3
In this section we describe our design implementation and

criteria for creating the examples, an overview of what do
the examples simulate and the design of two helpers that
provide the coding operations for the system represented in
the examples. The helpers function is to serve as an interface
between ns-3 and the Kodo C++ bindings [2]. These are
high level wrappers for the core functionalities of Kodo.

4.1 Examples Implementation
To create our examples, we consider an approach where

we perform intra-session network coding, between the ap-
plication and transport layer of the User Datagram Proto-
col (UDP) / Internet Protocol (IP) model as shown in Fig. 1.
Although other approaches apply coding between the trans-
port and Medium Access Control (MAC) layer [15,24,27,32],
we implement it below the application layer to not alter
other layers within the protocol stack and keep the imple-
mentation simple.

Application

Kodo bindings

UDP Socket

Helper/Net Device

Channel Model

Helper/Net Device

UDP Socket

Kodo bindings

Application

IP/MAC/PHY

Transport

RLNC Layer

App/Pres/Sess

Figure 1: ns-3 + Kodo Implementation Protocol
Stack based in a simple UDP/IP model.

In Fig. 1, we consider an application that generates a
batch of g packets of some content. For practical reasons,
we consider Hyper Text Transfer Protocol (HTTP) traffic
and represent it by sending RLNC coded packets through
port 80 of a UDP socket from the UdpSocketFactory. To
encode, recode (if necessary) and decode NC packets, we
employ the Application Programming Interface (API) pro-
vided by the bindings. We employ UDP datagrams because
we consider best effort traffic. For the IP layer, we em-
ploy IPv4. For address assignment and routing tables, we
use the InternetStackHelper, the Ipv4AddressHelper and
the Ipv4GlobalRoutingHelper from ns-3. The details of the
MAC, Physical Layer (PHY) and channel models depend on
the considered example as we will see.

4.2 Examples Description
With a defined protocol stack, we describe the networks

implemented in the examples to evaluate NC performance
providing the details for the layers not described previously.

4.2.1 kodo-wifi-broadcast
This example, shown in Fig. 2, simulates a source broad-

casting a generation of RLNC packets with generation size

g and field size q to N sinks with an IEEE 802.11b WiFi
ad-hoc channel. For the MAC we regard it without Quality
of Service (QoS) implemented through NqosWifiMacHelper.
We pick a WiFi MAC without QoS since in principle we are
simulating connectionless best-effort traffic. Thus, the ns-3
net devices are constructed through the WifiHelper. Also,
we turn off unnecessary MAC parameters, namely: frame
fragmentation for frames larger than 2200 bytes and RTS
/ CTS frame collision protocol for the less than 2200 bytes.
Although not required within the example, these parameters
need to be included in order for the WiFi MAC to work.

For the PHY of this example, we use the YansWifiPhy-

Helper. The considered PHY includes a channel model that
accounts for channel delay, path loss and receiver signal
strength in dBm. We employ the FixedRssLossModel where
the receiver signal (rss) is set to a fixed value. We set the
broadcast data rate to be the same as unicast for the given
phyMode. As a transmission policy, the sender keeps trans-
mitting coded packets until all the receivers have g l.i. coded
packets, even if some receivers are able to decode the whole
generation.

s

802.11b Non-QoS WiFi AdHoc
YansWiFi Fixed loss

t1 tN

Figure 2: kodo-wifi-broadcast example network.

4.2.2 kodo-wired-broadcast
The example shown in Fig. 3, is similar as in Fig. 2 but

instead, we evaluate a basic time-slotted wired system where
a node either transmits or receives a single packet in a given
time slot with the aid of the PointToPointHelper. To model
a network with erasures, we consider the RateErrorModel for
the PHY and channel model. In this case, packets sent from
the transmitter could be lost or useless before arriving at
the receiver. To control the amount of losses, an ErrorRate

attribute is included at the ReceiveErrorModel attribute of
the RateErrorModel to indicate the frequency of erasures
within a given channel. The resulting topology is a basic
representation for packet erasure networks which is akin for
network coding applications. The transmission policy is the
same as before. For simplicity, all devices are assumed to
have the packet erasure rate, 0 ≤ ε < 1. The erasure rate
can be introduced as a command-line argument to set the
ErrorRate attribute from the wired topology as we will see.

4.2.3 kodo-recoders
This example shows the gain of RLNC with recoding in a

2-hop line wired network consisting of a source, N recoders
and a sink with different erasure rates. All the links between
the sender and the recoders have the same packet erasure
rate, 0 ≤ εS→R < 1. Equivalently, the packet erasure rate
for the links between the recoders and the receivers is the

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

103

s

t1 tN

ε ε

Figure 3: kodo-wired-broadcast example network.

same, 0 ≤ εR→D < 1. Again, both recoding and the era-
sure rates can be modified by command-line parsing. The
transmission policy for this case, is as follows: First, pack-
ets are sent to each of the recoders. The transmitter stops
if the decoder or all the recoders are full rank, e.g. have g
l.i. coded packets. Second, a recoder retransmits packets in
another scheduled time slot if l.i. packets to transmit and it
stops only if the decoder is full rank.

s

r1

rN

t

εS→
R

εS→
R

εR→
D

εR→D

Figure 4: kodo-recoders example network.

4.3 Simulation Workflow and Helpers
In Fig. 5, we show the workflow of the example’s sim-

ulation source program. This workflow is standard for ns-
3 simulations and consists in defining the network (nodes,
net-devices) with ns-3 helpers according the required layer
functionality described in Section 4.1. Once the socket con-
nections are defined, we call the topology helper which pro-
vides the application and coding layers. A receive callback
is set to trigger an action whenever a packet is received in
a decoder socket. When an encoding or decoding action
has been performed, a new event is scheduled through the
ns3::Simulator class. Events are scheduled until a gener-
ation originated in the source is decoded by the sink(s) in
the evaluated example.

At the core of each example implementation resides a
topology helper which contains all the encoding, recoding
and decoding parameters and functionalities of the RLNC
layer, the transmission policy and eases the socket connec-
tions made in each source file. The helpers are classes that
serve as interfaces between the bindings and ns-3. To ac-
complish this, the helpers are included in ns-3, but its basic
elements are objects from the Kodo C++ bindings. For
our case, we use two helpers. For kodo-wifi-broadcast

and kodo-wired-broadcast, we use the Broadcast topol-
ogy helper . For the kodo-recoders example, we utilize the
Recoders topology helper. In this section we present the
API of these helpers in order to show the interface between
Kodo and ns-3. To do so, we elaborate an Unified Modeling

Parse arguments

Configure node helpers

Configure net-device helpers

Call topology helperSet socket connections

Set routing tables

Set scheduling events

Start simulation

End Simulation

Set socket callbacks

Data decoded?
Yes

No

Figure 5: Examples Simulations workflow.

Language (UML) class diagram to visualize the relationships
between our bindings and the helpers. We make this review
only for the Broadcast topology helper, since the analysis
for the Recoders topology would be similar.

Fig. 6 shows the UML class diagram for the Broadcast

topology. We have indicated the most important classes that
have a type of dependency with the bindings. Also, we em-
ploy the UML package notation to indicate the namespace
where all the bindings reside. We describe the topology
members where the links with kodocpp occur. Later, we
give an overview of other members whose type are natively
contained in the C++ standard library or ns-3. We list the
members with dependency on kodocpp according to their
functionality.

4.3.1 Code Parameter Members
First, m_codeType stands for the type of erasure correct-

ing codes utilized. In our implementation, an instance of
kodocpp::codec is passed to the source program. The avail-
able codecs in the bindings are: full_vector, on_the_fly,
sliding_window, sparse_full_vector, seed, sparse_seed,
perpetual, fulcrum and reed_solomon. A complete de-
scription of each codec can be found in the overview sec-
tion of the Kodo documentation [3]. Second, m_field in-
dicates the finite field of the coding scheme. An instance
of kodocpp::field is passed to the source program. For
the available fields: binary, binary4 and binary8 represent
GF (2), GF (24) and GF (28) respectively.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

104

Broadcast

-m_codeType: kodocpp::codec

-m_field: kodocpp::field

-m_encoder: kodocpp::encoder

-m_decoders: std::vector<kodocpp::decoder>

encoder decoder<<Enumeration>>

codec

<<Enumeration>>

field

kodocpp

ns-3

Figure 6: UML class diagram for the Broadcast
topology helper interface.

4.3.2 Encoder / Decoder Object Members
The encoder data type is kodocpp::encoder, which is pro-

vided by the bindings. However, the encoder is not aware of
the topology on its own, thus the uni-directional association
link to indicate this in Fig. 6. The encoder class is a child
class of the more general kodocpp::coder abstract class. In
this way, the encoder class contains both own and general
functionalities, inherited from kodocpp::coder, to configure
its basic parameters and generate coded data. Similarly, we
employ std::vector<kodocpp::decoder> to get a local de-
coder instance for each sink socket. As before, it contains
functionalities to configure itself, read coded data and signal
when to stop transmissions.

4.3.3 Sockets and Transmission-State Members
For packet transmissions and receptions, we use the na-

tive ns3::Ptr<ns3::Socket> class. Only the policies for
packet transmissions/receptions are implemented through
the methods SendPacket and ReceivePacket. Both of them
receive the intended socket for tranmission or reception. In
case of the transmitter, the packet interval time (ns3::Time
pktTime) is also given because this will indicate the trans-
mitter the scheduling time for next transmissions. Finally,
other members like the number of users to serve, genera-
tion, packet sizes and storage buffers are considered too as
standard types.

5. SIMULATIONS
To verify the accuracy of the results provided by the ex-

amples, we execute a set of ns-3 simulations to observe the
behavior of RLNC in well-known scenarios. For the simu-
lations, we compute the distribution of the number of tran-
missions required to decode a set of g packets with RLNC.

We only consider this metric since, typically, the time
cost for the encoding and decoding operations is much lower
when compared to the time spent in conveying the infor-
mation from a transmitter to a receiver. Still, information
regarding encoding and decoding speeds for RLNC can be
easily obtained by running the benchmarks in [7] for a given
platform. Similar benchmarks exist for other codes as well
in their respective repositories. In our scenarios, we con-
sider that an ideal feedback scheme is employed, where the
source is aware when any destination has acknowledged all
its required coded packets. To get this information, we sim-
ply call the bindings API required functions in the topology
helpers.

We obtain the distribution in two scenarios. First, we

consider the case of one transmitter-receiver pair. Second,
we review the scenario of single-hop broadcast for N re-
ceivers. We examine these scenarios under two conditions,
without packet erasures and with packet erasures. Hence,
for the broadcast case, we regard the packet erasure distri-
bution of receiver j ∈ [1, N] as Bernoulli(1 − εj) where εj
is the packet erasure probability. For evaluation purposes,
we compute the distribution under a homogeneous packet
erasure for all the receivers, εj = ε ∀j.

To accomplish this, we run the kodo-wired-broadcast

example and get the number of transmissions required to
decode the data in 104 runs. To get independent runs, the
pseudo-random number generator is set to use the default
seed and the RngRun parameter is changed in the RngSeed-

Manager class by command line parsing.
For the single transmitter and receiver, we use the follow-

ing parameters: users = 1, generationSize = 30, error-
Rate = 0, 0.1, and field = binary, binary8. For the broad-
cast case, we evaluate with users = 10, generationSize

= 50, errorRate = 0.1, 0.2, and field = binary, binary8.
To verify our simulations, we compare the practical results
with analytical ones. To do so, we compute the Probabil-
ity Mass Function (pmf) as [33, Eqs. 11-12] for the single
receiver and [17, Eq. 3, Sec. III-B] for the broadcast case.
Then, we plot the pmf of the analytical distributions against
the simulation results.

5.1 RLNC Probability Mass Function
Fig. 7 shows the result fors the pmf of the single receiver

for the evaluated parameters. We present the results for
g = 30, ε = [0, 0.1] with GF (2) and GF (28) to observe
the effect of linear independence in packets transmissions.
We also evaluate the consequences of packet erasures in the
number of transmissions required for decoding. In all the
results, it can be clearly seen that the analytical calculations
matches the simulations obtained from ns-3. For the case of
no erasures, employing RLNC with GF (2) requires more
transmissions compared with GF (28) since the possibilities
for selecting the coding coefficients are much reduced for
the last packets. For the erasure case, the transmissions
alos increase given that packets might be lost regardless of
linear dependency, but still are less that when employing a
higher field size.

30 32 34 36 38 40 42
Transmissions

0.0

0.2

0.4

0.6

0.8

1.0

D
ec
od
in
g
P
ro
ba
bi
li
ty

A, q = 2, ǫ = 0

S, q = 2, ǫ = 0

A, q = 28, ǫ = 0

S, q = 28, ǫ = 0

A, q = 2, ǫ = 0.1

S, q = 2, ǫ = 0.1

A, q = 28, ǫ = 0.1

S, q = 28, ǫ = 0.1

Figure 7: Analytical (A) vs. Simulation (S) for Uni-
cast with 1 receiver and 30 packets.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

105

5.2 RLNC Broadcast Probability Mass Func-
tion

Fig. 8 shows the result for the pmf of broadcast with
RLNC for the case of 10 receivers and the evaluated param-
eters. In this scenario, g = 50. The selected fields are GF (2)
and GF (28). We present the results for two erasure rates in
all the links, ε = [0.1, 0.2].

Again, we observe the theoretical computations fit the
simulations results. A difference that can be noticed with
the single receiver case is the number of transmissions re-
quired to decode increases much more. Excluding the field
and the erasure effects, the difference arises from all the re-
ceivers being required to get g l.i. coded packets in order to
be able to decode. This is the main reason why the pmfs
do not start to show a significant non-zero probability of
decoding at g transmissions and shortly afterwards.

55 60 65 70 75 80 85 90
Transmissions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
ec
od
in
g
P
ro
ba
bi
li
ty

A, q = 28, ǫ = 0.1

S, q = 28, ǫ = 0.1

A, q = 2, ǫ = 0.1

S, q = 2, ǫ = 0.1

A, q = 28, ǫ = 0.2

S, q = 28, ǫ = 0.2

A, q = 2, ǫ = 0.2

S, q = 2, ǫ = 0.2

Figure 8: Analytical (A) vs. Simulation (S) for
Broadcast with 10 receivers and 50 packets.

6. CONCLUSIONS
Given the increasing amount of NC applications from both

academia and industry, we introduced a framework for using
the Kodo library with ns-3. We hope that our contribution
helps to cover the need for NC simulation capabilities in ns-
3. With a set of examples where NC provides known gains,
we show that our library complies with the expected results.
Although the examples are made for particular topologies,
the deployment of different topologies or scenarios could be
easily extended by the user as detailed in [4]. Future work
will be to simulate RLNC with other technologies, such as
Long Term Evolution Advanced (LTE-A) within ns-3.

7. ACKNOWLEDGMENTS
This research has been financed by the CROSSFIRE MITN

Marie Curie project (317126) from the European Comission
FP7 framework, the Green Mobile Cloud project (Grant No.
DFF - 0602 - 01372B) and the TuneSCode project (Grant
No. DFF - 1335-00125) both granted by the Danish Council
for Independent Research.

8. REFERENCES
[1] Inter-session network coding simulator for matlab.

http://www.mathworks.com/matlabcentral/
fileexchange/53750-network-coding-simulator.

[2] Kodo c++ bindings git repository.
https://github.com/steinwurf/kodo-cpp.

[3] Kodo documentation read-the-docs codecs overview.
http://kodo-docs.steinwurf.com/en/latest/
overview.html.

[4] Kodo examples for the ns-3 simulator git repository.
https://github.com/steinwurf/kodo-ns3-examples.

[5] Kodo-ns3-examples documentation read-the-docs
tutorial.
http://kodo-ns3-examples.readthedocs.org/en/latest.

[6] Kodo platform support.
http://steinwurf.com/kodo-specifications.

[7] Kodo-rlnc git repository.
https://github.com/steinwurf/kodo-rlnc.

[8] ns-3 website. https://www.nsnam.org.

[9] Software related to network coding.
http://www.ifp.illinois.edu/∼koetter/NWC/
Software.html.

[10] Steinwurf research license.
http://steinwurf.com/research-license.

[11] Steinwurf research license webpage.
http://steinwurf.com/license.

[12] Universidad de cantabria network coding
implementation on ns-3.13.
https://github.com/dgomezunican/network-coding-
ns3.

[13] Waf. the metabuild system webpage. https://waf.io.

[14] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung.
Network information flow. Information Theory, IEEE
Transactions on, 46(4):1204–1216, 2000.

[15] S. Chachulski, M. Jennings, S. Katti, and D. Katabi.
Trading structure for randomness in wireless
opportunistic routing. SIGCOMM Comput. Commun.
Rev., 37(4):169–180, 2007.

[16] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J.
Wainwright, and K. Ramchandran. Network coding
for distributed storage systems. IEEE Trans. Inf.
Theor., 56(9):4539–4551, 2010.

[17] A. Eryilmaz, A. Ozdaglar, M. Médard, and E. Ahmed.
On the delay and throughput gains of coding in
unreliable networks. Information Theory, IEEE
Transactions on, 54(12):5511–5524, 2008.

[18] D. Ferreira, L. Lima, and J. Barros. Neco: Network
coding simulator. ICST, 5 2010.

[19] C. Fragouli, J.-Y. Le Boudec, and J. Widmer.
Network coding: an instant primer. ACM SIGCOMM
Computer Communication Review, 36(1):63–68, 2006.

[20] C. Gkantsidis and P. Rodriguez. Network coding for
large scale content distribution. In IEEE INFOCOM,
number MSR-TR-2004-80, page 12, 2005.

[21] J. Heide, M. V. Pedersen, F. H. P. Fitzek, and
M. Médard. Perpetual codes for network coding.
CoRR, abs/1509.04492, 2015.

[22] T. Ho, M. Médard, R. Koetter, D. R. Karger,
M. Effros, J. Shi, and B. Leong. A random linear
network coding approach to multicast. Information
Theory, IEEE Transactions on, 52(10):4413–4430,

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

106

2006.

[23] M. Hundebøll, J. Leddet-Pedersen, J. Heide,
M. Pedersen, S. Rein, and F. Fitzek. CATWOMAN:
Implementation and Performance Evaluation of IEEE
802.11 based Multi-Hop Networks using Network
Coding, pages 1–5. IEEE Press, 9 2012.

[24] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard,
and J. Crowcroft. Xors in the air: Practical wireless
network coding. IEEE/ACM Trans. Netw.,
16(3):497–510, 2008.

[25] M. Kim, T. Klein, E. Soljanin, J. Barros, and
M. Médard. Modeling network coded tcp: Analysis of
throughput and energy cost. Mobile Networks and
Applications, 19(6):790 – 803, December 2014.

[26] R. Koetter and M. Médard. An algebraic approach to
network coding. IEEE/ACM Trans. Netw.,
11(5):782–795, 2003.

[27] J. Krigslund, J. Hansen, M. Hundebøll, D. Lucani,
and F. Fitzek. CORE: COPE with MORE in Wireless
Meshed Networks, pages 1–6. IEEE, United States,
2013.

[28] D. E. Lucani, M. V. Pedersen, J. Heide, and F. H. P.
Fitzek. Fulcrum network codes: A code for fluid
allocation of complexity. CoRR, abs/1404.6620, 2014.

[29] A. Paramanathan, P. Pahlevani, S. Thorsteinsson,
M. Hundebøll, D. Lucani, and F. Fitzek. Sharing the
pi: Testbed description and performance evaluation of
network coding on the raspberry pi. In 2014 IEEE
79th Vehicular Technology Conference, 2014.

[30] A. Paramanathan, M. Pedersen, D. Lucani, F. Fitzek,
and M. Katz. Lean and mean: Network coding for
commercial devices. IEEE Wireless Communications
Magazine, 20(5):54 – 61, 2013.

[31] M. Pedersen, J. Heide, and F. Fitzek. Kodo: An open
and research oriented network coding library. In
Networking 2011 Workshops, volume 6827 of Lecture
Notes in Computer Science, pages 145–152. Valencia,
Spain, 2011.

[32] H. Seferoglu, A. Markopoulou, and K. K.
Ramakrishnan. I2nc: Intra- and inter-session network
coding for unicast flows in wireless networks. In
INFOCOM, pages 1035–1043. IEEE, 2011.

[33] O. Trullols-Cruces, J. M. Barcelo-Ordinas, and
M. Fiore. Exact decoding probability under random
linear network coding. Communications Letters,
IEEE, 15(1):67–69, 2011.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

107

Improving ns-3 Emulation Performance for Fast
Prototyping of Network Protocols

Helder Fontes
INESC TEC and

Faculdade de Engenharia
Universidade do Porto

Portugal
heldermf@gmail.com

Tiago Cardoso
INESC TEC and

Faculdade de Engenharia
Universidade do Porto

Portugal
ei10066@fe.up.pt

Manuel Ricardo
INESC TEC and

Faculdade de Engenharia
Universidade do Porto

Portugal
mricardo@inesctec.pt

ABSTRACT
A common problem in networking research and development
is the duplicate effort of writing simulation and implemen-
tation code of network protocols. This duplication can be
avoided through the use of fast prototyping development
processes, which enable reusing simulation code in real pro-
totyping and in production environments. Although this
functionality is already available by using ns-3 emulation,
there are still limitations regarding the additional packet
processing that emulation introduces, which degrades the
node’s performance and limits the amount of network traffic
that can be processed.
In this paper we propose an approach to reduce the per-

formance problem associated with fast prototyping that con-
sists in migrating data plane operations processing to out-
side of ns-3. In a well-designed network, most of the traffic
should be data. By moving the data plane operations out-
side of ns-3 the overhead associated with this kind of traffic
is greatly reduced, while control plane protocols may still be
reused.
In order to validate our proposed solution, we extended

the Wireless Metropolitan Routing Protocol (WMRP) and
Optimized Link State Routing (OLSR) protocols to use the
developed architecture, tested their performance in real en-
vironments, and verified the amount of code reuse between
the simulator and the real system.

CCS Concepts
•Networks → Network protocols; •Computing meth-
odologies → Real-time simulation; •Software and its
engineering → Reusability;

Keywords
ns-3; Network Simulation; Network Emulation; Fast Proto-
typing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WNS3, June 15-16, 2016, Seattle, WA, USA
c© 2016 ACM. ISBN 978-1-4503-4216-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2915371.2915374

1. INTRODUCTION
The development of new protocols for communication sys-

tems generally involves four phases: design, evaluation in a
network simulator, evaluation in a real testbed, and deploy-
ment.

The first phase consists in the design of a protocol concept
that is intended to solve a given problem. From this concept,
the researchers can implement a protocol model to be used
in simulation. Network simulation is a tool of great value
in the evaluation of communication protocols because the
variables that influence the network scenario can be easily
controlled to create specific and reproducible test conditions;
It is also an environment that is easily observable and much
cheaper to deploy than a testbed with real hardware. How-
ever, evaluation on a testbed must still be done, eventually
to test how the protocol behaves in real-world conditions
which gives more accurate and credible results. Finally, the
protocol can be deployed in the desired systems to solve the
problem for which it was initially designed.

DeploymentDesign Simulation Testbed

Figure 1: Development process of protocols for com-
munication systems.

This development process is usually iterative (Figure 1).
For example, findings in one of the evaluation phases may
force the researchers to go back to the design phase and
reevaluate some aspects of the protocol. This iteration is
necessary to improve the protocol but it is a drawback re-
lated to how the simulation model and the protocol testbed
implementation are usually developed.

Traditionally, a simulation model of the protocol is cre-
ated from the concept designed in the first phase. Multiple
simulations are run and the results are analyzed and used
to improve the protocol. When the simulation results are
acceptable, development can continue to the next phase. A
prototype of the protocol is thus implemented in a real sys-
tem and run in a testbed to be validated. If the results
do not meet the expectations then the protocol needs to
be changed (first phase) and new simulations carried out
(second phase). At this point, two implementations of the
protocol are being maintained: the simulation model and
the implementation prototype. This situation leads to du-
plication of effort when a change needs to be made in the

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

108

protocol which in turn increases both the development time
and the chance of introducing errors in the implementations
of the protocol.

Researchers have been trying to find ways to alleviate the
problem of having to create and maintain two implementa-
tions of protocols that have to be evaluated both in simula-
tion and in testbeds [12]. The solution is shared protocol
implementation, which consists in developing a single im-
plementation of a protocol that can run both in a simulator
and in a real system.

The motivation for this work is thus the need for a shared
protocol implementation that allows researchers to reuse the
same code in ns-3 simulations and in testbeds while at the
same time enabling the use of the full functionality provided
by the simulator and providing good performance in both
the simulation and the real environment.

A proposed solution for this problem was fast prototyp-
ing, a protocol development process in which the simulation
code is reused in the testbed with the help of a feature of
ns-3 that enables emulation [4]. Emulation allows nodes
in a simulation to communicate with the outside world and
thus enables them to participate in testbeds. The SITMe [1]
testbed, composed by 11 fast prototyped ns-3 nodes installed
in buses, was a successfull example of using fast prototyp-
ing via ns-3 emulation in complex real world networks [6].
However, it was found that this approach is not scalable
to nodes that need to process a large amount of real traf-
fic. The problem with this approach is that emulation in-
troduces overhead to packet processing which degrades the
node’s performance limiting the amount of network traffic
that can be handled.

The goal of this work is thus to propose an architecture
that improves the performance of emulated nodes while still
allowing most of the code developed for ns-3 to be reused.
With improved performance, fast prototyping can represent
a viable complementary approach to existing shared proto-
col implementation solutions such as Direct Code Execution
(DCE)[23], but from the ns-3 starting point rather than from
the existing implementation starting point. This is espe-
cially relevant when creating new routing protocols, where
developers may start by an easier to code ns-3 implementa-
tion, taking also advantage of the ns-3 tracing capabilities.

This document is structured as follows. In Section 2 we
introduce the related work, where the state-of-the-art solu-
tions to shared protocol implementation are presented and
analyzed. Then, in Section 3 we present the details of our
contribution to improve the Emulation Performance where
we introduce three optimizations to run the data plane out-
side of simulation. In Section 4 we validate each of the
proposed optimizations both by analysing the performance
gains and the level of code reuse. Finally, in Section 5 we
draw the conclusions about the proposed optimizations and
the obtained results, and we also introduce some examples
of future work to further improve the results obtained in this
work.

2. RELATED WORK
In this section we present and analyze the state-of-the-art

solutions related to shared protocol implementation.
RapidNet is a toolkit that enables the development of net-

work protocols for simulation and implementation [16]. The
protocols are specified in a declarative paradigm using Net-
work Datalog (NDlog), a recursive query language. Rapid-

Net can compile the protocol specification into ns-3 code
which can then be used for simulation. The same specifica-
tion can also be used in a real environment by running the
ns-3 code in emulation mode. One of the problems of Rapid-
Net is that it uses a declarative programming paradigm
which is unusual in protocol development and results in a
steep learning curve. Another problem is that the generated
ns-3 code depends on the RapidNet library an it cannot be
submitted for inclusion into ns-3 as a new module.

The Protean Protocol Prototyping Library (Protolib) is a
toolkit that provides a cross-platform C++ API for the de-
velopment of network protocols. The developed protocol can
run on various systems (including Linux, MacOS, Windows,
and FreeBSD among others) and on the ns-2 and OPNET
simulators [25]. Some interesting classes provided by Pro-
tolib include the following: ProtoSocket, which abstracts the
underlying systems TCP and UDP sockets; ProtoTimer, a
generic timer class; ProtoRouteMgr, which provides a com-
mon interface to the systems routing tables; and ProtoCap,
used for raw MAC-layer packet capture. The main disad-
vantage of Protolib is that it currently only supports ns-2,
not ns-3. However, even if it did, it is unclear if it could
provide all the features of ns-3 since some of those features
are not available on all systems that Protolib also supports.

The Click Modular Router (or just Click) is a flexible soft-
ware architecture for developing configurable routers [11].
A router can be created by combining small elements in a
graph-like architecture. Each element has a defined number
of input and output ports and implements some simple func-
tionality such as decrementing a packet TTL or looking up
an IP route. The combination of these elements can create
routers with complex functionality providing a flexible plat-
form for researchers to experiment with new protocols. Click
can run in several systems such as Linux and FreeBSD and
there are also tools that integrate it with ns-2 (nsclick [17])
and ns-3 (ns-3-click [22]). The ns-3 simulation can even be-
come more efficient in some cases by using Click to perform
the layer 3 functionality, although at the cost of increased
memory consumption. Click also has a steep learning curve
since it uses a flow-based programming paradigm [14] which
is different from the more usual discrete event simulation
used in ns-3. In addition, researchers also have to learn the
configuration syntax that is used to describe the connections
between the elements of a router.

The ns-3 Direct code execution (DCE) module simulator
provides an environment that is able to execute Linux pro-
tocols in simulation without source code changes [23]. Both
userspace and kernelspace protocols or applications can be
used, so it is possible, for instance, to use the real ping
program or the real Linux networking stack in simulation.
There are a number of problems when using the DCE mod-
ule as a way to achieve a shared protocol implementation.
First, there is a loss of performance in the simulation re-
sulting from having to virtualize the protocol [23]. It is also
more time consuming to develop protocols in Linux than in
ns-3 [4], resulting in a longer development time. Finally, not
all of the functionality provided by ns-3 can be used since
there is no equivalent in Linux. In some cases an alternative
is available, for example, it is possible to add tracing support
to a real protocol by using aspect based programming [13],
but this is not as straightforward as simply using the ns-3
tracing facilities.

Before the development of ns-3 DCE, the Network Simu-

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

109

lation Cradle (NSC) [10] was another framework that could
execute a kernel stack in ns-3; however it was hard to main-
tain because it relied on source code transformations. The
ns-3 DCE module can however replace most of the function-
ality provided by NSC [24].

Simulator-agnostic ns–3 applications are applications that
can run both in simulation and in real systems [3]. They are
developed as traditional ns-3 applications, but when needed
they can communicate with the real environment via real
sockets from the underlying system instead of simulated
sockets. The actual socket that is used is transparent to
the application so its code does not need to be rewritten.
This can be done by implementing the real socket function-
ality as classes derived from the base Socket class of ns-3
and using the factory pattern to create the actual socket
as needed (real or simulated). This approach is very effi-
cient [4] and works well for applications; however it is not
enough for the needs of a routing protocol. These protocols
need more than simple UDP or TCP sockets, they also need
to access and alter routing tables. Many protocols also do
not use TCP or UDP, but instead use IP datagrams directly
(e.g. OSPF [15]). Others may even work on top of layer 2
protocols (e.g. WMRP [20]). Simulator-agnostic ns–3 ap-
plications are thus a good complement to other approaches
such as the fast prototyping [4], allowing the control plane
of a layer 3 protocol developed in ns-3 (operating at a spe-
cific TCP or UDP port) to communicate using real system
sockets. Although, on their own they can not offer a com-
plete shared protocol implementation solution as they lack
the data forwarding capabilities of fast prototyping which
processes all the network traffic, including the data plane.

3. DATA PLANE OUTSIDE OF
SIMULATION

In a network node there are two planes of operation: the
control plane and the data plane. The control plane is
responsible, for instance, for discovering and maintaining
network routes and ensuring connectivity. The data plane
uses the routing information generated by the control plane
to forward network packets. In a well designed network,
most of the traffic corresponds to data and processing large
amounts of packets in ns-3 is less efficient than doing it
in userspace or kernelspace. Thus, by moving the data
plane operations outside of simulation the overhead asso-
ciated with this kind of traffic can be greatly reduced.

We propose two alternatives for doing this: executing the
data plane in userspace or executing it in kernelspace. These
approaches are described in the next sections.

3.1 Data Plane in Userspace
The first approach consists in running the data plane out-

side of ns-3 in userspace. The control plane is still executed
in ns-3 and communicates with the real environment through
emulation, but the data plane is executed in a userspace pro-
cess to avoid the overhead of processing the large amount of
data traffic in the simulator (Figure 2).

The two planes are executing in different processes so in-
terprocess communication (IPC) is needed to allow them to
exchange information. For example, the control plane needs
to update the routing table information in the data plane
so that data packets can be forwarded correctly. The data
plane may also need to send feedback to the control plane

ns-3

Control Plane

FdNetDevice
Data Plane

Filtered
Raw Socket

Real Device

Filtered
Raw Socket

IPC

Control Data

Userspace
Kernelspace

Figure 2: Data plane in userspace.

or request a route in the case of reactive protocols.
The classification of the packets that should be delivered

to the control and data planes is done through filters applied
to the raw sockets using the Linux Socket Filter (LSF) facil-
ity [8]. Listing 1 shows an example filter that accepts only
IPv4 packets. At line 0 we load the half word at position
12 in the frame (the EtherType field). Line 1 compares the
previously loaded half word to 0x800 (the IPv4 EtherType).
If both are equal we jump to line 2 which returns 65535.
This will result in the first 65535 bytes of the frame being
accepted and delivered to the userspace process. If the com-
parison of line 2 fails, we jump to line 3 which returns 0.
This means that no bytes of the frame are accepted and so
it is dropped.

A simple way to obtain the code of socket filters is to run
tcpdump with the -d option. For example, running tcpdump

-i eth0 -d ip will return the code in Listing 1.

0 ldh [12]
1 jeq #0x800 jt 2 jf 3
2 ret #65535
3 ret #0

Listing 1: Linux Socket Filter code that only accepts
IP packets.

Socket filters are configured in userspace but they are ex-
ecuted by the kernel on received frames so they are very
efficient because packets not accepted by the filter are not
delivered to userspace. In this way, the control and data
planes only receive their respective traffic, avoiding the over-
head caused by the processing of unneeded packets.

Using this architecture, the control plane code can be
reused between simulation and testbed but the data plane
code needs to be rewritten for the real system. However,
because the data plane is usually much simpler than the
control plane, only a relatively small amount of code needs
to be ported.

3.2 Data Plane in Kernelspace
It is possible to specialize the previous architecture for

the case of L3 routing protocols. For protocols of this type,
whose objective is to forward IP packets, we can update the
kernel routing tables with the information gathered by the
control plane. In this way the kernel will be forwarding the
traffic it receives (Figure 3) which is even more efficient than
doing it in userspace.

In this architecture, a route updater process receives the

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

110

ns-3

Netlink Socket

Route Updater

Real Stack

Control Plane

FdNetDevice

Real Device

Filtered
Raw Socket

IPC

DataControl

Userspace
Kernelspace

Figure 3: Data plane in kernelspace.

routing information from the control plane and updates the
kernel routing tables with that information. To do this, the
route updater process uses a netlink socket [21]. Netlink is a
communication channel between kernelspace and userspace
and, among other functionalities, allows user processes to
update and retrieve routing information. Root access is
needed to use this functionality so, in order to avoid run-
ning the whole simulation as root, the route updater is exe-
cuted in its own process as root and communicates with ns-3
trough IPC to receive the routes generated by the control
plane.

As in the previous architecture, the raw socket used by
the control plane needs to be filtered to avoid the overhead
of processing unnecessary network traffic.

This approach is more efficient than the previous one since
the forwarding is done in the kernel instead of userspace. In
addition, there is even less code that needs to be rewritten
because the route updater code can be reused by all the pro-
tocols that use this architecture. The downside is that this
approach is only applicable to proactive L3 protocols, where
the control plane is more independent from the data plane,
as the kernel may not provide the feedback needed. For ex-
ample, reactive protocols such as AODV need to know if a
route was not found for a given packet in order to initiate the
route request procedure [19]. To support this type of pro-
tocols the proposed architecture could be extended with a
kernel module that listens on the desired events and reports
them back to the control plane.

3.2.1 Real Routing Module
Most of the data plane in kernelspace architecture can

stay the same across different protocols, namely the route
updater and the interprocess communication. The only part
that is specific to each protocol is the socket filter used. This
is unlike the data plane in userspace architecture, which re-
quires the data plane (which can be very different between
protocols) to be ported to the real system. To enable re-
searchers to quickly use the data plane in kernelspace archi-
tecture, an implementation was developed for ns-3, the real
routing module [2].

The real routing module implements a route updater (Rt-
NetlinkRouteUpdater) that uses Netlink sockets to update
the kernel routing tables and that runs in a privileged user-
space process to avoid having to execute the whole simula-
tion with root privileges. Inside ns-3, the class RealRouteUp-
dater was created to spawn and configure the RtNetlinkRou-
teUpdater process, receive the routes from the routing pro-
tocols and send them to the created process, which in turn
updates the kernel. The interprocess communication, used

to send the routes from the simulator to the route updater,
is implemented with Unix domain sockets.

In order for ns-3 routing protocols be able to update the
routes of the system without having to be coupled to the
new real routing module, three new optional callbacks were
added to Ipv4RoutingProtocol, the base class of all IPv4 pro-
tocols (support for IPv6 was not created but it can be easily
added when needed). The new callbacks are: RouteAdded-
Callback (called when a the protocol creates a new route),
RouteRemovedCallback (called when a protocol deletes a
route), and RoutingTableUpdatedCallback (called when the
protocol updates the whole routing table at once). Protocols
that use these callbacks will work with the real routing mod-
ule. The RealRouteUpdater will register its route updating
functions with each of the protocol’s callbacks. Thus, every
time one of the callbacks is called, the corresponding func-
tion in the RealRouteUpdater is also called and the received
information is sent to the RtNetlinkRouteUpdater process
which, in turn, updates the kernel routing tables (Figure 4).

ns-3
Real Routing Module

Routing
Protocol

Real Route
Updater

RtNetlink
Route Updater

Kernel
Routing Tables

IPC

RouteAddedCallback

RouteRemovedCallback

RoutingTableUpdatedCallback

Netlink

Figure 4: Real Routing module architecture.

Finally, two other new features were added to the EmuFd-
NetDeviceHelper in the fd-net-device module to support the
data plane in kernelspace architecture and support network
namespaces: setting a socket filter in the raw socket and
selecting a network namespace for the socket.

With the real routing module implemented, a researcher
must take the following steps to use the kernelspace archi-
tecture in a new protocol. When implementing the routing
protocol in ns-3, the new callbacks must be called as appro-
priate. Then, when using the protocol in real environments,
the simulation script needs the following changes: (1) set
the socket filters in the EmuFdNetDeviceHelper and, if us-
ing network namespaces, set the network namespace as well;
(2) in the emulated routing node create an instance of the
RealRouteUpdater and configure it with the routing proto-
col being used, the network namespace of the node, and
the mapping between the ns-3 interfaces and the real inter-
faces of the host. With this configuration done, the created
scenario will then be executed using the data plane in ker-
nelspace architecture. All the patch files needed to add the
Real Routing module to ns-3.21 source code can be down-
loaded in [2]. The patch files have to be applied by the order
they are numbered.

4. VALIDATION
We evaluated the proposed solutions to make sure that

they achieve the stated goals of compatibility with ns-3, scal-
ability in simulation and real systems, and code reuse.

There is no need to validate the compatibility with ns-3
and scalability in simulation because the protocols are devel-
oped directly in ns-3 and so are as compatible and scalable

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

111

as any other ns-3 protocol as long as they are correctly im-
plemented. Since the proposed changes to network protocols
are only needed in testbeds, our validation focus on scalabil-
ity in real environments and in the amount of new code that
needs to be developed to use the proposed architectures.

The scalability in real environments requirement was vali-
dated by selecting routing protocols already implemented in
ns-3 and extending them to use the new architectures. The
performance of both implementations was then compared in
a real scenario.

The requirement of code reuse was validated by analyzing
the number of lines of code that were added to the imple-
mentations of the protocols in ns-3 in order to make them
use the proposed architectures.

4.1 Data Plane in Userspace

4.1.1 Performance Validation
To validate the data plane in userspace architecture we

used the Wireless Metropolitan Routing Protocol (WMRP),
an ad hoc, proactive routing protocol that operates over
layer 2 [20][5][7].

The scalability in real environments will be validated by
comparing the performance of WMRP running completely
in ns-3 emulation with the performance of WMRP when the
data plane is executing in userspace. We then analyze the
performance gains that were obtained with the new archi-
tecture.

The two scenarios have the same network topology (Fig-
ure 5), which is composed of four real nodes connected by
100 Mbit/s Ethernet links: the source S uses the iperf

tool to generate UDP traffic destined to D and at the same
time it also pings D to measure the round-trip time (RTT);
the destination D runs an iperf server; the routing bridges
RB1 and RB2 forward the frames between S and D.

Figure 5: Network topology of the test scenarios.

There were two scenarios tested. In the first scenario (ns-3
emulation), the two RBridges are implemented using trad-
tional ns-3 emulation. In the second scenario (userspace for-
warding), the proposed architecture for executing the data
plane in userspace is implemented in both RBridges.

For each scenario a series of tests was executed, starting
with S generating 1 Mbit/s of UDP traffic to D and then
increasing that value to 2, 4, 8, 16, 32, 64, and 70.8 Mbit/s.
Each test had a duration of 30 seconds and was repeated 5
times. The payload of the UDP packets was 160 bytes, thus
inducing a network load representing a worst case scenario
where the network had to process a large number of packets
per second and maxed out the CPU processing capabilities.
This was especially important due to the absence of Gigabit
Ethernet cards in the test machine. The maximum offered
data rate was of 70.8 Mbit/s because that is the maximum

throughput that can be achieved in 100 Mbit/s Ethernet
links for UDP packets with 160 bytes of data.

For each of these tests, four performance metrics were
measured: the received data rate in D; the packet loss ratio;
the average round round-trip time; and the average CPU
load in RB2.

The machine runningRB2 has an Intel Atom N270, which
is a single core processor but that uses the Hyper-Threading
technology so it behaves as having two logical cores. The
operating system used was Ubuntu 14.04 LTS.

Figure 6: Data plane in userspace performance
validation results for UDP traffic with payload of
160 bytes.

The results are shown in Figure 6, where the lines repre-
sent the average and the error bars represent the standard
deviation. The traditional ns-3 emulation implementation
is able to forward packets at the offered rate until 8 Mbit/s.
After that, performance starts degrading and when the of-
fered rate hits 70.8 Mbit/s, ns-3 emulation has 87% packet
loss, can only forward at 9 Mbit/s, and the round trip time
(RTT) also increases to 85 ms. The reason why ns-3 emula-
tion goes above 100% load is that the CPU of the bridge has
two logical cores (due to Hyper-Threading) and ns-3 uses a
dedicated thread for reading operations.

The data plane in userspace implementation is able to for-
ward packets at the offered rate until 32 Mbit/s while keep-
ing RTT low (1 ms until 16 Mbit/s and 2 ms at 32 Mbit/s).
For higher data rates performance starts degrading but at
70.8 Mbit/s, it can forward at around 44 Mbit/s (4.9 times
more than traditional emulation) while keeping RTT at 16 ms
(5.3 times lower than traditional emulation). Additionally,
while the offered data rate is lower than 64 Mbit/s the CPU
load of the data plane in userspace implementation is lower
than that of ns-3 emulation. For higher data rates both im-
plementations present similar loads, but the userspace im-
plementation is processing more traffic for that same load.

From our experience on using ns-3 emulation in varied
scenarios such as the tests performed in [4], we know that
the processing bottleneck is mostly related to the number
of packets processed, rather than the size of the packets
forwarded by the node. This is easily understandable as
“bulk”memory copy operations are usually much faster than
the multiple function calls and processing involved with the

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

112

handling of each packet object, such as the interpretation of
the header and routing/forwarding tables lookups. Based on
this information, it is expected near a ten-fold performance
increment in the forwarding data-rates if the node were to
be handling 1500 bytes Ethernet frames in Gigabit Ethernet
links.

4.1.2 Code Reuse Validation
To validate that using the data plane in userspace archi-

tecture does not require writing a large amount of new code
we counted the lines of code that were developed to imple-
ment the proposed architecture on top of the existing ns-3
implementation of WMRP. In this process we discarded the
blank and comment lines.

The original implementation of WMRP has 5057 lines
of code, while the same protocol implementation including
userspace forwarding has 5608 lines of code. This concludes
that only around 11% more lines of code were written to im-
plement the data plane of WMRP in userspace. This is in
part because the implemented data plane was simplified and
assumes that the topology of the network does not change.
Implementing the full operations of the data plane would
increase the number of lines of code but in general, the data
plane is much simpler than the control plane so only a rela-
tively small amount of code needs to be ported.

Ultimately, the researchers developing the protocol have
to decide if the extra amount of code that has to be written
is worth the performance gains that will be obtained.

4.2 Data Plane in Kernelspace

4.2.1 Performance Validation
The data plane in kernelspace architecture was validated

using the Optimized Link State Routing Protocol (OLSR),
a link state, proactive, L3 protocol [9].

The scalability in real environments was validated by com-
paring the performance of three different implementations:
OLSR using traditional ns-3 emulation; OLSR using the real
routing module; and olsrd, an implementation of OLSR for
real systems [18].

The three scenarios have the same network topology (Fig-
ure 7), which is composed of three nodes connected by 100
Mbit/s Ethernet links: the source S runs OLSR and uses
the iperf tool to generate UDP traffic destined to D while
at the same time it also pings D to measure the RTT; the
destination D runs OLSR and an iperf server to receive
the UDP traffic from S; R also run OLSR and forwards the
packets between S and D.

Figure 7: Network topology of the test scenarios.

There were three scenarios tested. In the first (ns-3 emu-
lation), R runs a traditional ns-3 emulation of OLSR. In the
second scenario, (ns-3 real routing) R runs a ns-3 emulation

of OLSR using the real routing module that was developed.
In the last scenario (olsrd), R runs olsrd. In all scenarios, S
and D run olsrd. The router R runs on an Intel Atom N270
with Ubuntu 14.04 LTS x86.

For each scenario, a series of tests was executed, following
the same procedure and parameters used to validate the per-
formance of the data plane in userspace architecture (Section
4.1.1).

For each of these tests, four performance metrics were
measured: the received data rate in D; the packet loss ratio;
the average RTT; and the average CPU load in R.

Figure 8: Data plane in kernelspace performance
validation results for UDP traffic with payload of
160 bytes.

The results are shown in Figure 8, where the lines repre-
sent the average and the error bars represent the standard
deviation. The traditional ns-3 emulation implementation
is able to forward packets at the offered rate until 8 Mbit/s.
After that, performance starts degrading and when the of-
fered rate hits 70.8 Mbit/s, ns-3 emulation has 95% packet
loss and can only forward at 3.5Mbit/s. The round trip time
(RTT) also increases to 342 ms, while until 8 Mbit/s it was
around 1 ms. The reason why ns-3 emulation goes above
100% load is that the CPU of the router has two logical
cores (due to Hyper-Threading) and ns-3 uses a dedicated
thread for reading operations.

The real routing implementation and olsrd are able to
forward packets at the offered rate at all rates except at
70.8 Mbit/s. At this highest rate there is packet loss of 4%
and 2% for real routing and olsrd, respectively, and they
forward traffic at 67.5 Mbit/s and 69 Mbit/s, respectively.
Both implementations provide very low round trip times,
less than 0.5 ms until 32 Mbit/s, around 1 ms at 64 Mbit/s
and around 23 ms at 70.8 Mbit/s. This means that, at the
highest rate, real routing provides an increase in throughput
of around 19 times when compared to traditional emulation
as well as a decrease in RTT of around 14 times.

The reason that real routing performs slightly worse than
olsrd is because it incurs a higher CPU load (around 3 times
more at 70.8 Mbit/s). This can be attributed mainly to the
socket filters, which must be executed for every packet that
is received in the system. One way to reduce the overhead
incurred by the filters is to enable them to be JIT (just-

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

113

in-time) compiled, which means that instead of the kernel
interpreting them for each packet, it will compile them to
the underlying processor architecture just once and then run
the compiled code for the received packets. However, we
could not enable this optimization in the system we were
using because it is a x86 machine and Ubuntu 14.04 only
configures the kernel to allow JIT compilation of filters in
x64 systems.

As explained in the performance results for the userspace
implementation using WMRP, in this OLSR scenario it is
also expected near a ten-fold performance increment in the
forwarding data-rates if the router were to be handling 1500
bytes Ethernet frames in Gigabit Ethernet links.

4.2.2 Code Reuse Validation
To validate that using the data plane in kernelspace ar-

chitecture only requires writing a small amount of new code
we counted the lines of code that were developed to use the
real routing module with the existing ns-3 implementation of
OLSR. In this process we discarded the blank and comment
lines.

The existing ns-3 implementation of OLSR has 5067 lines
of code, while the same protocol implementation including
the extension to work with the real routing module has 5140
lines of code. The lines of code of the real routing module
itself are not counted because it is a generic module that can
be used with any proactive L3 protocol without having to be
reimplemented. This concludes that only around 1.4% more
lines of code were written to use the real routing module.
Most of the new lines implement the code that calls the real
routing module callbacks to update the routing table and
the rest of the lines correspond to code that sets the socket
filters and initializes the real routing module. We can thus
conclude that the increase in code is negligible, especially
when compared to the performance gains that are obtained
when using the data plane in kernelspace architecture.

5. CONCLUSIONS AND FUTURE WORK
The main goal of this work was to propose an approach

to shared protocol implementation that allows users of ns-
3 to use their simulation code in real environments. Our
proposed solution is to use fast prototyping with ns-3 em-
ulation but move the data plane outside of the simulator.
Since most of the traffic of typical networks is related to
data, this solution improves the network nodes efficiency at
the cost of having to port the data plane code. This is not a
big problem, however, because the data plane is much sim-
pler than the control plane resulting in a relatively small
amount of code that needs to be ported. We proposed two
architectures to implement this solution: executing the data
plane in userspace and executing it in kernelspace. The for-
mer is more generic and works for any protocol while the
latter is more efficient and allows more code reuse but is
only applicable to proactive L3 protocols.

In the case of the data plane in kernelspace architecture,
since most of it can be reused between different protocols,
we created a new ns-3 module called real routing which im-
plements the generic parts of the architecture. This allows
researchers to easily extend their ns-3 protocols to execute
the data plane in kernelspace.

In order to validate the proposed solutions, we extended
the WMRP and OLSR protocols to work with the developed
architectures. Then, we compared the performance of the

new architectures against traditional ns-3 emulation running
multiple tests with different configurations. The summa-
rized interpretation of the obtained results is the following:
emulating an ns-3 node, the maximum throughput can be
improved by as much as 4.9 times in userspace and 19 times
in kernelspace, while having the RTT lowered by 5.3 and
14 times, respectively. With these results in consideration,
we can conclude that the proposed architectures (userspace
and kernelspace) allow much better data plane performance,
when compared against traditional ns-3 emulation. The ker-
nelspace architecture has the best performance, obtaining
results very close to a real protocol implementation. Thus,
when possible, the kernelspace architecture should be used
to obtain the best emulation performance results. This en-
ables the use of fast prototyping for network protocols in
more traffic demanding scenarios or in real nodes with lim-
ited processing power.

The amount of code reuse obtained was also verified by
counting the lines of code needed for each implementation.
We found that implementing the data plane in userspace
only required the development of around 11% additional
lines of code on top of traditional emulation implementa-
tions. In the case of executing the data plane in kernelspace,
that value can be reduce to 1.4% by using the real routing
module.

As a result of this work, ns-3 users will be able to reuse
their simulation code in real networks, now with reduced
packet processing overhead, enabling them to reap the ben-
efits of the fast prototyping process without the previously
associated negative performance impact.

In terms of future work, the real routing module can be
proposed for integration in the main ns-3 distribution in or-
der to reach more protocol developers and researchers. It
can also be made more easy to use, for example, it could
allow socket filters to be specified as a string with the tcp-
dump filter syntax instead of an array of machine code that
must be manually generated by users.

To increase the usefulness of the real routing module, it
can also be extended to support reactive protocols. To do
this, a kernel module or other facility would have to be cre-
ated that would listen to the events generated in the kernel
during packet processing (e.g. failure to find a route) and
send the relevant information back to the simulator so the
appropriate control plane operations can be executed.

It would be also interesting to test the performance gains
that can be obtained with the data plane in kernelspace
architecture on machines that support JIT compilation of
socket filters.

Finally, it would be interesting to merge the benefits of
the simulator agnostic applications approach with the real
routing module, by allowing to run the control plane imple-
mentation using real system sockets, thus complementing
the routing/forwarding funcionality already provided by the
real routing module. This can further reduce the ns-3 per-
formance footprint in a scenario where we are trading ns-3
logging and tracing functionalities for a better performing
prototype.

6. ACKNOWLEDGMENTS
The authors would like to thank the support from the

Portuguese Foundation for Science and Technology (FCT)
under the fellowship SFRH/BD/69051/2010.

The authors would also like to express their deepest grati-

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

114

tude to Tom Henderson, for his invaluable input to this work,
during both the development of the Real Routing module
and the review of this paper.

This work is financed by the ERDF – European Regional
Development Fund through the Operational Programme for
Competitiveness and Internationalisation - COMPETE 2020
Programme within project“POCI-01-0145-FEDER-006961”,
and by National Funds through the FCT – Fundação para a
Ciência e a Tecnologia (Portuguese Foundation for Science
and Technology) as part of project UID/EEA/50014/2013.

7. REFERENCES
[1] Sitme’s project website. http://www.sitme.org.

Accessed: 2016-02-12.

[2] Source code for real routing module - sequency of
patches to ns-3.21. http://telecom.inesctec.pt/
˜hfontes/real routing patches.zip, Feb. 2016.

[3] J. Abraham and G. Riley. Simulator-agnostic ns-3
applications. In Proceedings of the 5th International
ICST Conference on Simulation Tools and Techniques,
SIMUTOOLS ’12, pages 391–396,
Sirmione-Desenzano, Italy, 2012. ICST (Institute for
Computer Sciences, Social-Informatics and
Telecommunications Engineering).

[4] G. Carneiro, H. Fontes, and M. Ricardo. Fast
prototyping of network protocols through ns-3
simulation model reuse. Simulation Modelling Practice
and Theory, 19(9):2063–2075, Oct. 2011.

[5] G. J. a. A. M. Carneiro. Transparent metropolitan
vehicular network: design and fast prototyping
methodology. PhD thesis, Universidade do Porto,
Porto, 2012.

[6] H. Fontes, R. Campos, and M. Ricardo. Improving
ns-3 emulation support in real-world networking
scenarios. In Proceedings of the 8th International
Conference on Simulation Tools and Techniques,
SIMUTools ’15, pages 261–266, Athens, Greece, 2015.
ICST.

[7] H. M. Fontes. Multi-technology router for mobile
networks: layer 2 overlay network over private and
public wireless links, 2010. MSc Thesis, MIEIC,
FEUP, Universidade do Porto.

[8] G. Insolvibile. Kernel korner: Linux socket filter:
Sniffing bytes over the network. Linux J., 2001(86):8–,
June 2001.

[9] P. Jacquet and T. Clausen. Optimized link state
routing protocol (OLSR). RFC 3626, IETF, Oct. 2003.

[10] S. T. Jansen. Network Simulation Cradle. Thesis, The
University of Waikato, 2008.

[11] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. ACM Trans.
Comput. Syst., 18(3):263–297, Aug. 2000.

[12] G. Kunz, O. Landsiedel, and G. Wittenburg. From
Simulations to Deployments. In K. Wehrle, M. Günes,
and J. Gross, editors, Modeling and Tools for Network
Simulation, pages 83–97. Springer, New York, 2010
edition edition, June 2010.

[13] M. Lacage. Experimentation Tools for Networking

Research. Ph.D., Universite de Nice-Sophia Antipolis,
2010.

[14] J. P. Morrison. Flow-Based Programming, 2nd
Edition: A New Approach to Application Development.
CreateSpace Independent Publishing Platform,
Unionville, Ont., 2 edition edition, May 2010.

[15] J. Moy. OSPF version 2. RFC 2328, IETF, Apr. 1998.

[16] S. C. Muthukumar, X. Li, C. Liu, J. B. Kopena,
M. Oprea, and B. T. Loo. Declarative toolkit for rapid
network protocol simulation and experimentation. In
ACM SIGCOMM Conference on Data
Communications (demo), Barcelona, Spain, Aug. 2009.

[17] M. Neufeld, A. Jain, and D. Grunwald. Nsclick:
Bridging Network Simulation and Deployment. In
Proceedings of the 5th ACM International Workshop
on Modeling Analysis and Simulation of Wireless and
Mobile Systems, MSWiM ’02, pages 74–81, New York,
NY, USA, 2002. ACM.

[18] OLSR.org. OLSRd. http://www.olsr.org. Accessed
June 01, 2015.

[19] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc
on-demand distance vector (AODV) routing. RFC
3561, IETF, July 2003.

[20] M. Ricardo, G. Carneiro, P. Fortuna, F. Abrantes, and
J. Dias. WiMetroNet a scalable wireless network for
metropolitan transports. In 2010 Sixth Advanced
International Conference on Telecommunications
(AICT), pages 520–525, Barcelona, Spain, May 2010.

[21] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov.
Linux netlink as an IP services protocol. RFC 3549,
IETF, July 2003.

[22] P. L. Suresh and R. Merz. ns-3-click: click modular
router integration for ns-3. In Proceedings of the 4th
International ICST Conference on Simulation Tools
and Techniques, pages 423–430, Barcelona, Spain,
2011. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications
Engineering).

[23] H. Tazaki, F. Uarbani, E. Mancini, M. Lacage,
D. Camara, T. Turletti, and W. Dabbous. Direct
Code Execution: Revisiting Library OS Architecture
for Reproducible Network Experiments. In Proceedings
of the Ninth ACM Conference on Emerging
Networking Experiments and Technologies, CoNEXT
’13, pages 217–228, New York, NY, USA, 2013. ACM.

[24] H. Tazaki, F. Urbani, and T. Turletti. DCE cradle:
Simulate network protocols with real stacks for better
realism. In Proceedings of the 6th International ICST
Conference on Simulation Tools and Techniques,
SimuTools ’13, pages 153–158, Cannes, France, 2013.
ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications
Engineering).

[25] U.S. NRL Networks and Communications Systems
Branch. The Protean Protocol Prototyping Library
(Protolib).
http://www.nrl.navy.mil/itd/ncs/products/protolib.
Accessed January 16, 2015.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

115

ns-3 Based Framework for Simulating Communication
Based Train Control (CBTC) Systems

Abdulhalim Dandoush
∗

, Alina Tuholukova, Sara Alouf, Giovanni Neglia
Inria, Sophia Antipolis, France
name.surname@inria.fr

Sebastien Simoens, Pascal Derouet, Pierre Dersin
Alstom Transport, France

name.surname@transport.alstom.com

ABSTRACT
In a Communication Based Train Control System (CBTC), a
central zone controller server (ZC) exchanges signaling mes-
sages with on-board carborne controllers (CC) inside the
trains through a wireless technology. The ZC calculates and
sends periodically to each train its Limit of Movement Au-
thority (LMA), i.e. how far the train can proceed. A CC
triggers an emergency break (EB) if no message is received
within a certain time interval to avoid collision. Clearly, it is
not desired to have an EB due to signaling messages losses
(called spurious EB) and not to real risks for the trains.
Quantifying the rate of spurious EBs and predicting cor-
rectly CBTC system performance are hard tasks with im-
portant industrial relevance.

This work aims at filling this gap using simulation to bet-
ter predict CBTC system performance and avoid extra pro-
visioning before deployment. A typical CBTC system im-
plementation for metro by Alstom Transport is considered.
New ns-3 modules (CBTC protocol, Video traffic genera-
tor, multi-channel scanning mechanism, 3D antennas pat-
terns) are developed and a piece of existing code is enhanced.
The simulation is also used to investigate the dimension of
the radio access networks in a realistic environment (specific
modems and access point antennas, radio frequencies, train
and track models), another aspect also ignored in the previ-
ous literature. Last, our approach can be useful to validate
some analytical works.

CCS Concepts
•Computing methodologies → Discrete-event simu-
lation; •General and reference→Validation; •Networks
→Network simulations; Wireless local area networks; •Applied

∗This author is now with ESME Sudria, Paris Sud, France,
email: dandoush@esme.fr.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WNS3, June 15-16, 2016, Seattle, WA, USA
c© 2016 ACM. ISBN 978-1-4503-4216-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2915371.2915378

computing → Transportation;

Keywords
Communication Based Train Control, Signaling System, ns-
3, Video Streaming Generator, Directional Antennas, Per-
formance Evaluation

1. INTRODUCTION
In the traditional train control systems track lines are di-

vided into fixed blocks. Each of them can only contain one
train at a time to avoid collision. Improving the traditional
system is needed due to the increasing demand for efficient
mass transit transport. In other words, we have to utilize
train lines more efficiently taking advantage of the new on-
board processing and communication technologies. In fact,
the moving-block control allows to safely increase the num-
ber of trains traveling over a track line as it takes into ac-
count the real-time information about train position rather
than the information provided by the fixed blocks of large
enough length. The moving-block control is being deployed
as CBTC for urban mass transit system.

In moving-block systems, the zone controller (ZC) com-
putes the Limit of Movement Authority (LMA) for each
train based on the information received for all the trains in
its zone. Then, it sends the End-of-Authority (EOA) control
message carry the LMA to the on-board carborne controllers
(CC) in the train through a wireless technology. Currently,
Alstom uses WiFi technology. However, the use of 4G/5G
may be considered for the future. To increase the system re-
liability against losses and delays, the messages can be sent
redundantly through two separated networks called red and
blue network. To avoid the risk of collision, CC will stop
automatically the train if no valid EOA is received during a
given time interval by triggering an Emergency Break (EB).
Clearly, it is not desired to have an EB due simply to sig-
naling messages losses (called spurious EB) when there is no
eventual risk for the train. For this reason, the so-called per-
formance based contracts (similar to service level agreements
for network operators) can bind rail transport companies to
specify the maximum number of spurious emergency brakes
over a given period of time.

Therefore quantifying the rate of spurious EBs and pre-
dicting correctly CBTC system performance to avoid extra
provisioning before deployment are important industrial and

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

116

research problems. Until now this was only done through an-
alytical approaches that ignore many important aspects such
as packet losses, handovers and congestion due to bursty
traffic. The more reliable solution at the moment is based
on costly field measurements of deployed systems. For that
reason we decided to develop a framework that helps the
evaluation of the system performance and the prediction of
spurious EBs.

To that end, we have chosen the network simulator ns-
3 [4] because it is a GPLv2 licensed and an open source
discrete-event network simulator supported by Inria and the
University of Washington.1 It is highly modularized and
thus can be easily modified or extended. In addition, for
our industrial project, ns-3 includes many useful modules
for the wireless channel, modeling co-channel interference,
transmission error and the propagation, as well as mobility
models and the TCP/IP protocol stack.

However, the current ns-3 version is missing some func-
tionalities needed to simulate train-trackside communica-
tions. Thus, the need for implementing new modules and
enhancing some existing ones. Some modules cannot be
shared at this stage for confidentiality reasons. The current
shared code of this work is available at [5, 6].

The paper is organized as follows. In Section 2 we in-
troduce the new CBTC and MPEG video traffic generator
modules. We describe the details of the CBTC protocol,
the Train and Track objects and discuss their implemen-
tation and usage in Section 2.1. Section 2.2 presents the
design and the implementation of the new video streaming
generator. A brief description of the 3D Antenna module is
introduced in Section 2.3. Selected results to illustrate some
issues that can be addressed using our ns-3 based simulation
are presented and discussed in Section 3. Section 4 reviews
some related works and Section 5 concludes the paper. Last,
the acronyms used in the paper are listed in Appendix A.

2. NEW AND ENHANCED MODULES
In this section, we describe briefly the new modules and

enhancements we have integrated within ns-3 in order to
correctly simulate the train systems.

First, there are no ns-3 modules for train and track, and—
as expected—no implementation of a moving block control
system in ns-3. Second, there is no configurable and flex-
ible video traffic generator that can generate traffic based
on particular values of the basic characteristic of MPEG-
compatible cameras such as the group of pictures (GOP)
length, number of frames per second, average bit rate, etc.
In fact, trains and ground controllers broadcast two video
traffic profiles. The Platform TV flow is a video flow in
the ground-to-train direction (e.g. the control monitor in
the driving cabin). Closed-circuit television (CCTV) flow
is the second type of video flow in the train-to-ground di-
rection (e.g. video surveillance systems). Platform TV and
CCTV are MPEG-4 video traffic and the traffic shape can
be changed from camera to another one due to different reso-
lution, frame rate, compression method, motion degree, and
image quality settings. It is particularly important for the
application we are considering to simulate these video traffic
flows because they interfere with the critical signaling mes-
sages on the wireless link and they require large bandwidth.

1A main objective of Inria in the Inria-Alstom Transport lab
is to apply modeling and simulation tools in industry.

1 2 3 4 5 6 7

TZC

Controller
Zone

offset

LOC
generate read

LOC
send
EOA

lost
message

(with probability pD)
timers 1, 2 and 3
are deactivated

Controller
Carborne

timer LOC1

TCC EOA processing starts

Figure 1: Illustration of LOC-EOA exchanges.

Also, the current version is missing some functionalities
that we need to simulate train-trackside communications.
ns-3 considers only omni-directional antennas for the Yans-
WiFi model even if some theoretical directional antenna
models are implemented for the simulation of other wireless
technologies. However, the gain of the transmitter/receiver
antennas is a key parameter for the train system because it
changes the received signal strength (rss) and then the signal
to noise (SNR) ratio. SNR affects the packet loss probabil-
ity, the behavior of the handover process, and many of other
parameters such as the distance between two APs on a track.
Moreover, ns-3 does not yet implement a multi-channels scan
mechanism of beacon signals’ strength transmitted by ac-
cess points (APs) operating on different frequencies, which
is necessary for a realistic layer-2 handover implementation
in WiFi. In addition, ns-3 does not implement a switch ob-
ject because the impact of layer 2 switching operations on
the network performance is assumed to be negligible. Hence,
changing routes after a handover at the MAC level as done
in the real implementation, that we consider, is tricky. Us-
ing the layer-3 routing algorithms (e.g. OLSR, AODV) as a
workaround is not an option because the convergence to the
correct path may require a few seconds causing the loss of
several control messages (major limitation for CBTC).

2.1 New CBTC Modules
In this section we describe the detailed operation of a mov-

ing block system considering as reference the specific CBTC
implementation by Alstom Transport.2

Figure 1 shows a typical messages’ exchange between the
on board controller (the CC) and the ground controller (the
ZC). Observe that both the controllers operate in discrete
time on the basis of clock periods of hundreds of millisec-
onds. This is due to the fact that they are actually e-out-of-f
voting systems where different processors perform in parallel
the same calculations and a time-slotted operation simpli-
fies the synchronism of the processors. The clock periods
at the ZC and at the CC (respectively TZC and TCC) are
in general different because the subsystems are provided by
different vendors and also because they have different com-
putational loads during one period.

The most important CBTC messages are location reports
(LOC) and end-of-authority ones (EOA). A LOC is a mes-

2The parameters’ values have been slightly changed and
some specific implementation details are hidden to protect
the industrial know-how of the company.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

117

sage periodically transmitted from the on board CC through
the Data Communication Sub-System (DCS) to the ZC. The
message is actually sent twice to increase reliability through
the blue and the red radio networks (i.e. two separated WiFi
networks with separated Access Points APs and two differ-
ent on-board modems OBMs inside each train). We denote
by TRE (Track-side Radio Equipment) a pair of redundant
APs, one blue and another red AP that are installed at the
same location along a track. The first LOC arriving at the
ZC is processed. Each LOC is acknowledged by an EOA
message in the reverse direction (again sent through the two
networks). The EOA indicates to the CC how far the train
can advance. For each generated LOC, a timer is activated.
The timer expires when its value exceeds a validity duration
(TM) before it can be acknowledged and therefore an emer-
gency break (EB) is triggered to avoid collision. The details
of the protocol is described hereafter.

2.1.1 Implementation Overview
We created new modules/Objects as follows: (i) a sep-

arate module called “cbtc-manager” lives in the directory
“src/”and (ii) new application level modules“LocEoaClient”
and “LocEoaServer” live in “src/applications”. The cbtc-
manager module consists of the following objects:

1. Train: It contains mainly two OBMs (red/front and
blue/back OBM) with a CC server (i.e. Nodes, Nod-
Containers, NetDevices, Interfaces, smart pointers, etc.).
A train has several properties such as ID, length, initial
position, velocity, and direction.

2. Track: It defines the required number of TREs along
a track. The code is optimized such that referring
initially only to 5 TREs (10 APs) nodes, and then
reuses/cycles them to extend the track length as the
train moves. This is important to be able to simulate
long track without any ”out of memory”problem or ex-
ecution time limitation. The attributes of this object
are the number of the required TREs, a flag to acti-
vate the reuse/recycle feature, the position of the first
TRE, the distance between two TREs, the distance be-
tween twp APs of the same TRE, and the velocity of
the train (for recycling the APs at appropriate times).
The object will change the APs positions using their
mobility model smart pointer.

3. TrainCcServer: It handles the received EOAs by Lo-
cEoaClient application (sent by the LocEoaServer ap-
plication), manages the clock and the timers for the
CC, activates or deactivates an EB and calculates the
EB rate.

4. CbtcManager: The objective of this object is to sim-
plify the creation of the simulation scenarios by auto-
matically creating the networks topologies (on-board
LAN, radio network, ground LAN). It has member
functions to create all the networks elements, inter-
connect them and install the applications on. In par-
ticular, it will do the following: (i) create all the nodes
in the scenario (e.g. the Zc server, APs and OBMs of
trains); (ii) create the wired and wireless channels that
interconnect the nodes (e.g. Ethernet, a ppp link and
a WiFi connection); (iii) create the Net devices and at-
tache them to the corresponding nodes and channels;
(iv) identify the PHY/MAC properties of TREs/APs
and OBMs and install the right antennas; (v) create

and install a mobility model, internet stack and routing
instances for the created nodes. Then, in order to run
CBTC protocol the application LocEoaServer should
be created and installed on the node that corresponds
to the ground ZC (ground server) and the application
LocEoaClient needs to be installed on the nodes that
correspond to the OBMs of each train (back and front
OBM). A TrainCcServer object is then created to re-
fer to the OBMs and the LocEoaClient applications
installed on them, and to handle the EOA messages
sent by the ZC server (LocEoaServer) and received by
the front and back OBMs (LocEoaClients). An exam-
ple of the usage is given in the next subsection.

The LocEoaClient, LocEoaServer modules with their helpers
represent the CBTC message generators. Table 1 depicts
their attributes with the default values. The message ex-
change between these two applications and the TrainCc-
Server instance works as follows:

1. a LOC is generated at the CC every TLOC , multiple of
the CC clock period TCC ,

2. the LOC (say LOC k) is ready to be emitted and
passed to the DCS after a processing delay equal to
TCC since its generation,

3. the delivery delay introduced by the DCS is random
and depends on the network conditions,

4. at the ZC the LOC is available for computing at the
next tick of the local clock,

5. the computing time at the ZC required to process the
LOCs from all the trains in the zone and generate the
corresponding EOAs is TZC ,

6. the EOA k is emitted within the next cycle of the ZC
at an offset O depending on the train (the ZC sends
sequentially the EOAs to all the trains in the zone),

7. the EOA is delivered to the CC after a random delay
depending on the network conditions,

8. at the CC the EOA gets in a processing queue, at the
next tick of the CC clock the most recent EOA present
in the queue is processed unless there are higher pri-
ority tasks arrived during the same CC clock period
(which happens with probability pD); in any case an
EOA processing is not delayed more than an additional
CC period,

9. the EOA k is actually processed only if it remains valid
until the end of the current CC clock; once processing
starts, all the pending timers for older LOCs (i.e. LOC
h for h ≤ k) are deactivated,

10. if the timer of a LOC is not deactivated before its
expiration, the EB procedure is triggered.

2.1.2 Building Scenarios
We show in this subsection how easy it is to create a sce-

nario script using the cbtc-manager rather than implement-
ing a scenario from scratch (i.e. creating nodes for TREs and
Trains, Containers, Network topology, channels, Antennas,
mobility, internet stack, interfaces, etc).

We first describe briefly the creation of a default scenario
template that can be modified easily according to the needs.
The default scenario template has one train that moves along
the track that is simply a line. The track consists of 5 TREs.
In order to create this scenario we need to create the object

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

118

Table 1: Attributes of LocEoaClient, LocEoaServer
and CbtcManager.

Name of the
attribute Description

Attributes of LocEoaClient

LocProcessingDelay The time to wait after generation
(200ms) of the LOC and before its emission

InputProcDelay (5ms) The time to process the input
ClockPeriod (200ms) The period of the clock

Locfrequency (3) The number of ticks to wait before
generating new LOC message

ProbStartProcEoa Probability to start
(0.99) the processing of the EOA

on the next tick
TimeOutValue The time during which

(5s) the generated LOC is valid
OutputDelayMin Minimal output delay

(5ms)
OutputDelayMax Maximum output delay

(40ms)
ObmId The ID of the OBM

TrainCC Train CC server object

Attributes of LocEoaServer

InputProcDelay (12ms) The time to process the input
ClockPeriod (275ms) The period of the clock

ProcessingDelay Time to process the received LOC
(275ms)

Offset (40ms) The offset delay for
sending the EOA response

PacketLoss (0.1) Packet loss Probability
OutputDelayMin Minimal output delay

(5ms)
OutputDelayMax Maximum output delay

(40ms)

Attributes of CbtcManager

NumberOfTre (5) The number of the TREs
along the track

NumberOfChannels (5) Number of channels
that are used for TREs

SimulationTime The total time of the simulation
EnergyDetection-

Threshold (-80dbm) Energy detection threshold
CcaMode1Threshold CCA Mode 1 Threshold

(-90dbm)
ObmTxPower (16dbm) OBM transmission power
ApTxPower (16dbm) AP transmission power

of CbtcManager, then create the Train object and pass its
reference to the CbtcManager instance. After that, we call
the method DefaultScenario() of the CbtcManager as fol-
lows:

Ptr<CbtcManager> manager = CreateObject<CbtcManager>();
Ptr<Train> train = CreateObject<Train>();
manager->CreateTrainTopology(train);
manager->DefaultScenario();

In Table 1 the attributes of CbtcManager and their default
values are presented.

Now, we can easily change the default parameters values
using Config::SetDefault() or SetAttibute() methods.

To add CBTC traffic it is enough to call the method Se-
tUpLocEoaApplication() that will create and install the Lo-
cEoaClient/Sertver applications. The easiest way to change
the default behaviour of CBTC protocol is to modify the val-
ues of the attributes of the LocEoaClient and LocEoaServer
applications depicted in Table 1.

An important point is to activate the TREs reuse/cycle in
order to decrease the memory usage and optimize the ns-3
execution time as we explained in the Track object. This can
be done easily by setting the corresponding boolean property
to true as follows:

Config::SetDefault ("ns3::Track::DoCycle", BooleanValue
(true));

Note that when we have several trains that have different
directions on the same track, we cannot activate this prop-
erty.

Last, we can add MPEG video traffic generator and a
UDP server applications to the ZC server and the OBMs
nodes.

During the simulation, if we want to print some informa-
tion such as the current EB rate, or the association/disas-
sociation moments with train positions, we simply call the
corresponding member function of the cbtc-manager.

manager->PrintTime (periodToPrint);
manager->PrintEbRate (periodToCountEB);
manager->PrintAssocInfo();

A complete example is located at (/src/cbtc-manager/
examples/cbtc-manager-example.cc).

2.2 New Video Traffic Generator Module
The goal of the video generator module is to provide a

flexible configurable packet generator of MPEG-4-like UDP
traffic. The source code for the new module called (Mpeg-
PktGenClient) lives in the directory “src/applications”. A
helper module is also implemented to facilitate its use. We
can change the video streaming traffic shape, i.e. the group
of pictures (GOP) structure, by simply changing the key pa-
rameters values of the simulated camera explained hereafter.
The Video generator client can work with any UDP based
server like the already implemented UdpServer. An example
of usage, expected results, and a brief analysis of the output
pcap trace are presented in the next subsections. Table 2
summarizes these attributes with their typical values.

2.2.1 Implementation Overview
The methodology to create video streaming is: (i) to build

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

119

Table 2: MpegPktGenClient attributes.
GopLength number of frames (I + P or B) per Burst period 15f
ImageRate number of frames per Second fps created by the Camera 12fps
IframeSize size of the I-frames in the GOP in kbits 1200kbits
AvBitRate average Bit rate in mbps 2mpbs
PeakRate peak Bit rate at which we send the I-Frames in mbps 10mbps

MaxPacketSize the maximum size of a packet in Bytes without the headers 1468B
VideoFilename name of the text file that will contain GOP calculated structure mpeg-4.dat

RemotePort The port on which the server is listening -

Figure 2: An example of a generated GOP.

the GOP structure (e.g. the size and the type of frames in
the GOP and the spacing between frames) based on the at-
tributes values and save the characteristics in the text file
pointed by the user or in the mpeg-4.dat if no name was pro-
vided by the user were; (ii) calculate the number of packets
in each frame and the inter arrival time between two pack-
ets of the same frame type; (iii) schedule the sending events
of the generated packet at the appropriate moments; (iv)
repeat the process until the stop time of the application.

Detailed calculation.
We determine the moments of the sending events as fol-

lows3.

• Calculate the duration of a GOP “burstPeriod” in sec-
onds by dividing the values of gopLength over the im-
ageRate.

• Compute the burst duration of the I-frame: burstDu-
ration = iFrameSize/peakBitRate.

• The amount of data in each GOP is computed as fol-
lows: avDataSizeInGop = avBitRate * burstPeriod.

• Subtract the I-Frame-Size from the total amount of
data in a GOP to get the summation of the P/B-
Frames sizes (sum frames P sizes).

• The size of each P/B-Frame and the bitRate at which
we send them are calculated as follows:
pFrameSize = sum frames P sizes / (gopLength - 1)
(Bytes)
pFRate = sum frames P sizes / (burstPeriod -
burstDuration- interval P frames).

• Given the burstDuration (duration of the I-Frame in
a GOP), we calculate the inter-P-Frame durations as
follows:
interval P frames = (burstPeriod - burstDuration) /
(gopLength -1)

• Then we can organize the Frames in each GOP. An
example of typical GOP can be found in the auto gen-
erated .dat file. Figure 2 illustrates the structure of a
GOP obtained with the default values of attributes.

3We will delete the m from the beginning of all variables
for readability.

• Our next step is to transfer the characteristics into a
packets generator while respecting the key attributes
(e.g. average bit rate and packet size). Thus, we have
to calculate the number of packets of each frame and
then the interval between two consecutive packets of I-
frames and P/B-Frames by sending packets of I-frame
with “peakBitRate” and with “pFRate” for packets of
frames P/B. In other words, the key parameter “avBi-
tRate” for transmitting each GOP’s data must still be
verified.

Therefore, the next time to send a packet is (max-
PacketSize / dataRate), where dataRate is either the
PeakBitRate or the pFRate according to the frame
type.

• Using this calculated intervals, we can schedule send-
ing events for packets of all the frames in each GOP,
and we repeat the iteration again and again until the
stop time of the application.

2.2.2 Usage and Validation
The module usage is extremely simple. The helper will

take care of most things. Default values can be changed
easily as shown in the code below.

The typical use is to create a UDP server Application that
is listing on a particular port, and then to create the MPEG
Packet generator client application using the desired values
of its attributes as follows:

/*Create one udpServer applications on node one to
receive the video packets from our generator*/

UdpServerHelper server (port);
ApplicationContainer apps = server.Install (n.Get (1));
apps.Start (Seconds (1));
apps.Stop (Seconds (100));
/*Create one MpegPktGenClient application on node zero*/
std::string fn = "mpeg.dat";
MpegPktGenClientHelper client (serverAddress, port,"");
client.SetAttribute ("MaxPacketSize", UintegerValue

(1460));
client.SetAttribute ("VideoFilename", StringValue (fn));
client.SetAttribute("GopLength",UintegerValue (15));
client.SetAttribute("ImageRate",UintegerValue (12));
client.SetAttribute("IframeSize",UintegerValue (1200));
client.SetAttribute("AvBitRate",DoubleValue (2.0));
client.SetAttribute("PeakRate",DoubleValue (10.0));
apps = client.Install (n.Get (0));
apps.Start (Seconds (1.0));
apps.Stop (Seconds (100.0));

A complete example is located in examples/mpeg-gen-pkt-
client.

To validate the application, we present and discuss snap-
shots from the exchanged packets between the client and the

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

120

 Figure 3: Received packets of 1st frame (I-Frame)

in the GOP.

Figure 4: Received packets of 2ed frame (P-Frame)
in the GOP.

server applications. The presented data are extracted from
the pcap captured files. A graphical presentation of the cap-
tured data is displayed in Figures 2, 3 and 4, that are drawn
using the packet analyzer program “wireshark”.

We notice from Figure 2 that we have 15 frames, the first
one is the I-frame that lasts for 0.102 s (burst duration) over
the 1.25 s of the GOP duration (burst period), where the rest
are the P/B frames. The first I-Frame consists of 103 IPv4
(IPv6 is supported) packets with an interval around 0.001 s
between them because they are sent at the peak rate (e.g.
10 Mbps) as shown from Figure 4. The other frames consists
of 8 IPv4 packets (7 of size 1468 B and one of size 1389 B as
shown from packet N104 to N111 in the Figure 4) with inter
packet arrival time around 0.009 s because they are sent
with pFRate (< avBitRate) as explained in the previous
subsection. We remark as well that the first packet of each
new frame starts at the corresponding starting time of the
given frame as calculated in the GOP structure (the file
mpeg.data). Also, from the statistics information obtained
from wireshark and depicted in Figure 5, we see that the
average bit rate is verified (e.g. 2 Mbps).

2.3 New 3D Antennas Patterns Modules
To run a realistic simulation, it is crucial to model the

real radiation patterns of the different types of antennas
that are used in the real CBTC implementation. In the
real system, two types of antennas are used. A track-side
antenna ‘Ground antenna’ and an on board shark antenna
‘OBM antenna’. The first one consists of two back-to-back

Figure 5: Statistics from the pcap file generated by
wireshark.

antennas pointing in the direction tangent to the track and
connected by a coupler (this yields to some db loss, usually
3db). The on board shark antenna is physically installed on
the rooftop of the train, and screwed onto a horizontal metal
ground plane. As described in Section 2.1, for increasing re-
liability, two OBMs are installed inside a train. Each OBM
is attached to an OBM antenna. One antenna is pointing
to the movement direction of the train (front antenna) and
the second one is pointing at the opposite direction (back
antenna). Both antennas should be oriented parallel to the
track.

We implemented a new antenna model that imitates the
radiation pattern of real antennas. In order to use this mod-
ule, we need to provide the desired radiation pattern as an
input text file as the one provided by the H&S antennas
vendor [1].4 The vendors have usually a tool via their web
site that generate the data file for a given antenna model.
Usually, the text file consists of the three columns that corre-
spond to the azimuth, elevation angles and the gain values.
The angles are used to define the apparent position of an
OBM antenna or a Ground antenna in the polar coordinate
system used by H&S. The module performs the mapping
with the ns-3 coordinate system.

2.4 Handover and Fast Rerouting After it
Enhancing handover. We added a multi-channel scan-

ning mechanism and modified the related objects at Chan-
nel, Physical, and MAC level, based on the received signal
strength of beacons and the active probe response messages.
An OBM will scan for some fixed time the current channel
and the x next and previous channels, after switching to a
new frequency, where x is typically 2. The OBM will then
select the best channel to switch to and the corresponding
AP to associate with.5

Fast rerouting after handovers. We have modified
the static routing module and added some methods to the
MAC layer objects to statically and immediately update the
routing tables of the nodes affected by the association/dis-
association events.

3. SELECTED EXPERIMENT RESULTS
The new modules help in understanding the impact of

many factors on the performance of the system. In a real
implementation of the CBTC system, the engineers have to
adapt different system parameters (e.g. transmission power
levels, distance between TREs, change Antenna’s model,
timer values, . . .) when deploying a new line. The cost of
these experiments in terms of time and equipment is a main
difficulty for the rail transport companies. In particular, the
estimation of spurious EBs rate through experimental mea-
surements when important changes are done on a track is
very costly, because we want to estimate events that occur
at most once every 105 hours. An alternative solution is
to use a detailed simulation. For illustrative purpose of the
use of simulation for engineering the system, we will show
visual presentation of selected results of three scenarios. In
the first one we will see how to check the radio frequency
(RF) model and study the impact of different antennas gain,

4One of the largest constructors of antennas for CBTC sys-
tems.
5Sharing the details and the code of this part is not autho-
rized for confidentiality reasons.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

121

Figure 6: Evolution of RSSI, antenna gains and path
loss versus train position around one AP.

Figure 7: Evolution of RSSI, antenna gains and path
loss versus train position with mobility and multible
TREs.

transmitter/receiver power, the mobility and propagation
models. We will show in the second one the behavior of
the RF with handovers. We can study the impact of some
important factors such as train’s length as well as its speed
and the distance between TREs. Last, in the third one, we
show the exploitation of our modules for the estimation of
the spurious EBs with a particular configuration. In fact,
our ultimate goal is a fast estimator based on normal wire-
less network and traffic conditions. However, the simulation
approach is not computationally efficient to evaluate a very
rare event in normal conditions. Instead, we can evaluate
the EB rate using simulation in degraded and critical sce-
narios (e.g. a high packet loss rate and a large latency due
to interference between several trains of different speed and
direction, handovers, different inter-TREs distance, differ-
ent antennas gain, variable transmission power levels, and
bursty multimedia traffic). For normal conditions, our ap-
proach to evaluate the EB rate is analytical. The robust
developed analytical tool is a first step in this direction. We
advocate to use ns-3 for validating EB rate estimations un-
der degraded conditions and network provisioning.

First Experiment:
An important parameter to be observed and checked before
tracing the CBTC messages is the received signal strength

indicator (RSSI). In Figure 6, we depict the evolution of the
RSSI with respect to the evolution of the antennas gain and
the train position while assuming a single traveling train
rightward at constant speed (e.g. 30 km/h) along a track
that has only one AP. In fact, the RSSI determines when the
amount of radio energy is above the modem sensitivity or the
threshold power that must be received to correctly decode
the packet (e.g. -79 dbm for data transmission rate of 36
mbps). It is impacted by the transmitter power, the trans-
mission/receiving antenna gain, the orientation of antennas
and the propagation model. In Figure 6, the two extreme
points at initial and final time correspond to the front or
back lobe for OBM antenna and a main front lobe for the
Ground antenna model. Note that the former represents
physically one single antenna whereas the latter represents
two back-to-back antennas pointing in the direction tangent
to the track as explained in Section 2.3. Notice that the AP
transmits with the max gain and the OBM receives by the
front lobe in the left part of the figure (i.e. before crossing
the AP at time 250 seconds) and then it receives by the back
lobe after crossing the AP. Also, when the train is close to
the AP, the gain of both antenna’s types degrades. How-
ever, when it is too close to the AP, the attenuation is less
important and then the rssi remains above the threshold of
the handover, consequently the OBM keeps its association
with the current AP.

Second Experiment:
Figure 7 reports the evolution of the same metrics as in
Figure 6 while considering many TREs with some distance
between them (e.g. 400 m). The train will associate with
the first AP, then when the RSSI level decreases below some
value or after loosing some consecutive number of beacons,
it starts a handover process to associate with a new AP
after the scanning and the authentication times (e.g. some
tens to hundreds milliseconds). Here we can monitor many
important factors again as the distance between the TREs in
addition to the transmission power, etc. We want to verify
that the time to re-associate is close to what we observe in a
real implementation. Note that the probability of loss during
the handovers is 1. The loss probability before the handover
phases depends on the rssi value and other factors, and then
we aim at reducing this probability by correctly choosing the
handover threshold, the antenna’s type, their orientation,
the transmission power and the distance between TREs.

Third Experiment:
Figure 8 reports the EB rate with different values of the loss
probability out of the handovers periods. In this simple sce-
nario, we fix the loss probability rather than using the calcu-
lated value by ns-3 (based on the SNR, etc.) for two reasons:
(i) to simulate simply a degraded scenario without consider
many trains with congested traffic and interference, and (ii)
to present a new use of the simulation for our project; the
validation of a mathematical formula that estimates the EB
rate. From the figure, we see that for a constant packet loss
out of the handovers the analytical results are within the
confidence interval of the simulated results.

4. RELATED WORK
Studying train control systems has attracted considerable

attention recently such as [7, 3, 2] that considered the ab-
straction of ETCS level 3 specifications. However, most of

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

122

Figure 8: Number of emergency brakes per hour.

the work has been based on high level models using for in-
stance the stochastic Petri Networks without a validation
with realistic simulations. Some works developed Monte-
Carlo simulation or numerical results of the Petri Networks.
In both cases the dependence on the system parameters is
hidden (e.g. handovers and track model). The proposed
new modules aim at filling this gap.

5. CONCLUSION AND FUTURE WORK
The proposed CBTC simulation modules are useful for

driving experiments in intelligent transport domain. Some
developed modules, i.e. Video generator and directional An-
tennas, can be used in a wide range of research areas. It is
worth mentioning that we enhanced some modules and dis-
covered some bugs (e.g. some mishandled packets in CSMA,
and fixed OFDM transmission rates for some control mes-
sages (e.g. cts) in the constant rate WiFi manager model).

Using ns-3 with the new modules permits to explicitly
consider the impact of many important factors that are the
cause of losses or delay and then contribute to triggering
EBs. More precisely, we jointly study the impact of trains
mobility, the real directional antennas pattern, 802.11e/WMM-
style QoS support, and the bursty traffic with the handovers
on the performance. This aspect was ignored in the previ-
ous literature. Our framework can be used for validating
analytical approaches.

Using our ns-3 implementation we could answer the fol-
lowing questions: How to utilize train lines more efficiently?
What is the QoS level of the CBTC messages and video
traffic perceived by the system in a particular case?

The remaining barrier to enhancing our tool in the future
is the consideration of fast fading models and more elaborate
track models.

6. ACKNOWLEDGMENTS
This work is partially funded by the Inria-Alstom Trans-

port joint lab.

7. REFERENCES
[1] HUBER+SUHNER official site.

http://www.hubersuhner.com.

[2] L. Carnevali, F. Flammini, M. Paolieri, and E. Vicario.
Non-markovian performability evaluation of
ERTMS/ETCS level 3. In Computer Performance
Engineering (Proc. of EPEW 2015), volume 9272 of
Lecture Notes in Computer Science, pages 47–62. 2015.

[3] F. Flammini, S. Marrone, M. Iacono, N. Mazzocca, and
V. Vittorini. A multiformalism modular approach to
ERTMS/ETCS failure modeling. International Journal
of Reliability, Quality and Safety Engineering,
21(1):1450001 (29 pages), 2014.

[4] ns-3 official site. https://www.nsnam.org.

[5] ns-3 codereview issue of the cbtc module.
https://codereview.appspot.com/289110043.

[6] ns-3 codereview issue of the video generator.
https://codereview.appspot.com/286160043.

[7] A. Zimmermann and G. Hommel. Towards modeling
and evaluation of ETCS real-time communication and
operation. Journal of Systems and Software,
77(1):47–54, 2005.

APPENDIX
A. LIST OF ACRONYMS

The acronyms used in the paper are listed in below.

AP Access Point
CBTC Communication Based Train Control
CC Carborne Controller
DCS Data Communication Sub-System
EB Emergency Brake
EOA End-Of-Authority
ETCS European Train Control System
LMA Limit of Movement Authority
LOC Location report
OBM On Board Modem
RSSI Received Signal Strength Indicator
TM validity duration Timer of a LOC
TRE Trackside Radio Equipment
ZC Zone Controller

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

123

Implementation of 3D Obstacle Compliant Mobility Models
for UAV Networks in ns-3

Paulo Alexandre Regis, Suman Bhunia and Shamik Sengupta
Department of Computer Science and Engineering

University of Nevada, Reno
Reno, NV, USA 89557

{pregis, sbhunia}@nevada.unr.edu, ssengupta@unr.edu

ABSTRACT
UAV networks are envisioned to play a crucial role in the
future generations of wireless networks. The mechanical de-
grees of freedom in the movement of UAVs provides various
advantages for tactical and civilian applications. Due to the
high cost of failures in system-based tests, initial analysis
and refinement of designs and algorithms for UAV applica-
tions are performed through rigorous simulations. Current
trend of UAV specific simulators is mainly biased towards
the mechanical properties of flying. For network-centric sim-
ulations, the intended measurements on the performance of
protocols in mobile scenarios are conventionally captured
from general-purpose network simulators, which are not na-
tively equipped with comprehensive models for 3D move-
ments of UAVs. To facilitate such simulations for UAV sys-
tems, this paper presents different mobility models for em-
ulation of the movement of a UAV. Detailed description of
three mobility models (random walk, random direction, and
Gauss-Markov) are presented, and their associated move-
ment patterns are characterized. This characterization is
further extended by considering the effect of large obstacles
on movement patterns of nodes following the three models.
The mobility models are prepared as open-source add-ons
for ns-3 network simulator.

CCS Concepts
•Networks → Network simulations;

Keywords
UAV, 3D, mobility model, obstacle, ad hoc network, ns-3

1. INTRODUCTION
With the advancement in the unmanned aerial vehicles

(UAV) technologies, three-dimensional mobile networks are
gaining popularity as 3D mesh networks. In addition to
movement in a horizontal plane as in conventional mobile ad
hoc networks (MANET), UAVs enable nodes to move in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WNS3, June 15-16, 2016, Seattle, WA, USA
c© 2016 ACM. ISBN 978-1-4503-4216-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2915371.2915384

Figure 1: An example of a UAV 3D mesh network
in a urban environment with obstacles.

vertical direction in 3D as well. The autonomous movement
of UAVs in all directions makes it suitable for a wide range
of operations, such as border surveillance, disaster moni-
toring, firefighter networks, relay for ground vehicles, tac-
tical networks, imagery and sensing in rough terrain areas,
and so forth [7]. Infrastructure networks are conventionally
used to establish links with UAVs. But as the spatial diver-
sity increases, the deployed infrastructure is not adequate
to always associate UAVs with fixed access points. As a re-
sult, multi-hop mesh networks are gaining popularity. Data
can be relayed over multiple UAVs to reach the destination
without direct communication, either due to the link being
blocked by a large obstacle, or the end nodes being out of
communication range.

Testing with UAVs is a very costly, time-consuming event
which requires a lot of manpower, since failure in communi-
cation or any other mechanical malfunction may cause fatal
accidents. Also, in a real test environment, there are many
parameters involved making the comparison of two different
algorithms very difficult to perform. For example, the sig-
nal propagation characteristics change throughout the day,
or even with the local humidity. In addition to all these
factors, flying UAVs in outdoor spaces is prohibited due to
the risk of accidents with civilians. However, since 3D mesh
network is gaining its importance in scenarios such as first
responders in disaster situations or firefighter networks, the

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

124

required network protocols must be tested intensively before
deployment. Simulations are used widely to model the net-
works that can emulate the behavior of UAVs. Simulation
can reproduce the exact same environment when comparing
two different protocols. Another huge problem arises when
testing the scalability of protocols, i.e. the reaction of a
protocol when a larger number of nodes is present in the
network. After performing rigorous simulations, a protocol
or a model is tested with real hardware. To obtain realistic
performance, some networks with mobility should be tested
in an environment with large obstacles, the deployment of
which can be financially infeasible. Federal Aviation Admin-
istration restricts flying and testing with UAVs to mostly
rural areas such as in the state of Nevada [1]. Since testing
UAV networks in urban areas is not possible, simulation of
UAV networks should be done in a reliable network simula-
tor that provides seamless integrity of mobile nodes (MNs)
with a wide range of upper layer protocols, and also provides
the capability of 3D mobility with obstacles.

An example of 3D UAV mesh can be seen in Figure 1.
Different classes of UAVs are depicted at different layers.
One hop links between two neighbors fluctuate due to mul-
tipath signal propagation through reflection at large objects.
The upper layer network protocols are affected by the mo-
bility of MNs as well as the corresponding environment and
terrain [15]. For example, in a city with multistoried build-
ings or in an irregular terrain, the link between MNs may
break when a building is between them. Since the appli-
cation scenarios are not limited, UAV mobility is desired
to be integrated with simulator where the application and
other protocols are implemented. The movements of MNs
are created using standard mobility models. These models
are now incorporated into the networks simulator to describe
the migration of MNs. The mobility of an MN can be rep-
resented in a simulator in two ways: traces and synthetic
models. Traces are used to provide real-life recorded data as
a time-series position information. Traces are useful to sim-
ulate accurate systems, but in multiple MN scenarios with
long time simulation it is space consuming. Synthetic mod-
els are widely used in simulators to mimic the movement
of MNs movement in MANET for performance evaluation.
Mobility models characterize how MNs change their velocity
and direction over time. A wide range of mobility models
are presented in literature such as random walk, random
waypoint, random direction, Gauss-Markov, column formu-
lation, and nomadic community. A detailed description of
the mobility models commonly found in network simulators
can be found in [9] where a comprehensive study on the
mathematical properties of many models is detailed.

This paper introduces three extended mobility models to
allow obstacles in the environment. The models were devel-
oped for ns-3 [2] using the existing implementations when
possible. We show preliminary network performance results,
and also provide free access to the source code1. The main
contributions of the paper are:

• Description of three-dimensional mobility models

• Algorithms for how the models behave with obstacle
avoidance

• Open-source implementations of the models in ns-3

1http://www.cse.unr.edu/˜regis/ns-3

The remainder of the paper is organized as follows: Sec-
tion 2 provides an overview of the existing systems and their
weaknesses. Sections 3, 4, and 5 discribe the implementa-
tion of the new models and features. A brief demonstration
and performance comparison of these models is presented in
Section 6. Finally Section 7 concludes the paper.

2. MOBILITY MODELS AND
SIMULATORS

Mobility model is a set of rules that governs how a mobile
node moves. It rules how the velocity, acceleration, and loca-
tion of a node change over time. These mobility models are
necessary for simulation purposes when investigating new
communications protocols and techniques. Currently many
mobility models have been proposed, but their movements
are inspired by specific applications and scenarios.

For example, the Manhattan Mobility model [17] uses a
grid-like topology of paths in which a node is constrained to
move. This model aims to imitate the mobility of vehicles
in a urban city environment, and is particularly useful in
simulating vehicular ad hoc networks (VANETs). However,
the movements of UAVs are not limited by the street paths
of a city. If a node has the ability to fly with high enough
altitude, its movements may not be physically limited at
all. In these cases, more suitable mobility models should
be used to simulate the trajectory. Here is where random
models come into the picture, to simulate the movements of
a node without the knowledge of its mission or task. The
Random Walk mobility model defines a sequence of random
steps in which a node traverses a certain area. This model
establishes how long and in which direction the node should
move before changing its direction once again. The problem
with this model is that the node density in the simulation is
more concentrated in the center of the scenario and less near
the boundaries. The Random Direction mobility model is a
little different from the random walk, because it forces the
node to travel until it reaches the border before changing
direction, not limiting the trajectory by a certain amount of
time. Another branch of the random models are the tempo-
ral dependency mobility models. A popular example is the
Gauss-Markov model, in which the direction and speed of a
node depends on its previous direction, thus limiting these
parameters within a certain range [9].

Authors in [12] proposed a new MANET mobility model
called Realistic Mobility Model, in which the node veloc-
ities and directions are based on probability distributions
that imitate real user mobility behavior. The results create
trajectories that resemble real mobility traces. The authors
in [11] presented a new VANET mobility model. The move-
ments are limited to the streets in a city, and the speed of
a node changes based on its neighboring nodes, similar to a
real situation in the streets. In [13] two different mobility
models for common applications of fixed wings aircrafts are
proposed. The first is a simple random model with depen-
dency on the last action taken by the aircraft: turn right,
turn left or straight ahead. The second is a pheromone repel
model, where the probability of taking an action depends on
the other aircraft’s movement as well. The models however
were created to simulate cooperative reconnaissance applica-
tions. [8] proposed a mobility model for UAVs based on the
most common movement patterns executed by commercial-
ized products such as the paparazzi. The node selects one

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

125

of the predefined patterns based on the probability of a pat-
tern being chosen. Despite the complexity and resemblance
of the models to the real world, there is a lack of proposed
models for three-dimensional scenarios, and even less when
it comes to obstacles. In an effort to fill this gap, this paper
presents two mobility models that are both obstacle and 3D
compliant, imitating the movements of modern UAVs.

Simulation plays an important role when creating new
networking techniques and protocols. Before building the
hardware and software that implements a new feature, the
simulations help to decide the feasibility of the new tech-
nology; if it does not perform well, it most likely will not
perform well in the real world. The mobility of nodes is
an important aspect of a network. It directly influences the
topology of the network, the links formation, and link fail-
ures. Therefore, it is critical to build reliable simulation
models to assist the development of more advanced tech-
nologies. A network simulator consists of a series of dif-
ferent models that imitate certain behaviors and protocols,
glued together to analyze the performance of the system.
There are some network simulators available for use that
implement these mobility models. OPNET [5] is a commer-
cial platform specialized in telecommunication transmission
products for access networks. OMNeT++ [3] is a simulation
framework that relies on different modules to provide func-
tionalities rather than having an extensive core library. Its
modules are developed independent of each other, following
their own development schedule. ns-3 [2] is a discrete event
network simulator, created to overcome the weaknesses of its
ancestor ns-2. It is designed to facilitate the creation and
integration of new models into the core of the simulator.
The project is maintained by a community of researchers
affiliated with reliable educational institutions, and main li-
braries receive constant scheduled updates. It offers a means
to integrate third-party tools, such as Simulation of Urban
MObility (SUMO) [6]. Since the primary purpose of this
simulator is to serve the educational and research commu-
nities, its modules and source codes are kept under open-
source license. Due to its easy integration and support from
the community, ns-3 was chosen as the development plat-
form for the work presented in this paper. ns-3 assumes
the Cartesian coordinate system represented by the tuple
(x, y, z), while the mobility models use the spherical coordi-
nate system composed by (r, θ, φ). In this paper the radius
r can be referred to as v when representing speed. Figure 2
shows the coordinate systems.

There are many different applications for a UAV network:
surveillance, border control, first response in emergency sit-
uations, and so on. The movement patterns of each mission
can be very different from the other. In the same network for
example, different nodes may perform various tasks, but still
serve as relay nodes in the communication network. Cur-
rent simulators lack the ability to imitate the movements
enabled by the new UAV technologies. UAVs can, for ex-
ample, change rapidly its direction in both two and three
dimensions. They can also share the space in civilian en-
vironments with obstacles like buildings and houses. This
paper aims to fill this gap by providing new mobility models
that allow the simulation of obstacles, and implementing it
in a reliable network simulator to be used by the research
and educational communities.

The set of libraries contained in the core of ns-3 platform
provide the means to simulate not only the common Internet

Figure 2: Visualization of coordinates in both carte-
sian and spherical systems.

Figure 3: ns-3 block diagram.

but also other networking protocols. The mobility models
relevant to this work already implemented and integrated
into the ns-3 core libraries are:

• Random Walk (2D)

• Random Direction (2D)

• Gauss-Markov

ns-3 also implements different propagation loss models
that accounts for the effect in transmission when buildings
are present in the environment. The buildings module pro-
vides different physical characteristics of the construction.
Commercial buildings, for example, affect differently than
residential ones based on their common building materials.
This model can be easily reused to construct obstacle com-
pliant mobility models.

An overview of the building blocks and how the simula-
tor works is shown in Figure 3. The core block is where
the simulator implements classes with functionalities to fa-
cilitate the development of the actual models, like smart-
pointers, tracing, logging, and event scheduler. The network

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

126

Figure 4: Simplified block diagram of collision avoid-
ance.

block provides abstract base classes for common objects such
as packets. These modules are independent of specific net-
works, and comprise the core that may be used by the upper
modules to implement more sophisticated features in a net-
work, not exclusively Internet related. Modules depend only
on the modules beneath them. The mobility module, for
example, only uses components implemented by the core,
while propagation modules depend on the mobility model
beneath. The focus of this work is on the mobility module;
inside this block resides all the other mobility models im-
plemented in the simulator. Currently the mobility models
available to the community do not consider obstacles, they
simple assume the node moves in a straight line for a certain
period of time.

The flowchart in Figure 4 illustrates where the contribu-
tions in the mobility models reside. The adaptations verify
if the node collides with the obstacles and adjust the at-
tributes accordingly. Previously the models simply moved
from one point to another until the end of the current cycle,
denoted by time t in the figure. The new models presented
in this paper can be easily used in conjunction with other
models to simulate a UAV network. A simple example is the
use of SUMO to emulate the movements of ground vehicles
while utilizing the 3D models to imitate UAVs, all in the
same network. Street maps and building information can
be obtained from open sources, such as OpenStreetMap [4],
and used with SUMO to generate traces for VANETs [10].

3. RANDOM WALK 3D
Originally the Random Walk model was created to imitate

the behavior of particles in physics, but it was later used
to simulate movements of nodes in mobile networks. The
original Random Walk model implemented in ns-3 defines
the movements of a node by the random variables θ, that
changes the direction in which the node moves, and speed
v ∈ [Vmin, Vmax] contained in a predefined speed interval.
This model has two modes: time mode and distance mode.

The first one explicitly decides for how long a node will
keep its current speed and direction before choosing new
values. The later also decides the time before new values are
chosen, but based on the current speed of the node and the
predefined distance value: time = distance/speed. If the
mobile node reaches the boundary of the simulation before
the resetting process is executed, the node simply bounces
back by changing its direction in the corresponding axis and
continues moving for the remaining time. For example, if the
x-axis is the boundary limit (equivalent to y = 0), then the
direction in y of the velocity vector is inverted by multiplying
it with −1. Similarly, if y-axis is the limit (x = 0) the x
component of the velocity is inverted.

To enable this model to function in a three-dimensional
world, a new random variable is introduced, the aforemen-
tioned φ ∈ [0, π]. In addition to the speed and direction, now
the node also selects a new pitch at every cycle. Instead of
having lines as limits, now the model assumes planes. If the
node reaches the limit xy − plane for example, the z com-
ponent of the velocity vector is inverted to bounce the node
back into the scenario S.

Realistic scenarios such as urban environments are not
simply empty places where nodes move freely. These sce-
narios actually introduce certain constraints to the mobil-
ity. Even when they move in a 2d plane that is lower than
a skyscraper, obstacles must be considered. The implemen-
tation of the 3D mobility model in ns-3 provides the feature
to simulate movements in the presence of obstacles. The ob-
stacles are assumed to be boxes and axis aligned, meaning
their faces are parallel to the axis planes. The effect caused
is similar to the bouncing velocity vector: if the node collides
with an obstacle it changes the corresponding component of
the velocity, depending which side of the object was hit.

In each cycle of the Random Walk model the node chooses
new speed, direction, and pitch. These parameters basically
define the velocity vector of the node. Then it calculates the
next position based on the time it is supposed to move with
those parameters. If during this period any obstacle is en-
countered, the orthogonal component of the velocity vector
is inverted as mentioned. After the inversion it continues
to move with the new values for the remaining time of the
cycle, after which a new iteration takes place.

Algorithm 1 shows the pseudo-code of the random walk
3D with obstacles. The implementation required new meth-
ods to be added in original classes of the source-code: namely
the base classes ns3::Box and ns3::Rectangle. These mod-
ifications are used in all new mobility models. The new
method IsInside(position) simply verifies if a position is in-
side the object. A method called WillCollide(position,velocity)
is introduced to the ns3::Box class, it verifies if the trajec-
tory of a node will intersect with the box and also returns the
intersection point. The new ns3::RandomWalk3dMobilityModel
class is similar to the original 2d model, except by the new
angle variable and the AddObstacle(obstacle) method. The
Rebound() function simply multiplies some of the velocity
vector components (x,y,z) by −1, depending on which sur-
face of the object collision occurred.

4. RANDOM DIRECTION 3D
In [16] this model was first proposed with the objective

of eliminating the concentrated node density problem that
occurs in the Random Waypoint Model. In this model the
nodes randomly select a point inside the limited area and

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

127

Algorithm 1: Random Walk 3D

Input: Boundary (S), set of obstacles (O), default
distance (default distance) or default time,
and Speed limits [Vmin, Vmax]

Output: List of Time and Position pairs
1 repeat
2 if mode = time then
3 default distance← default time ∗ v;

4 θ ← U(0, 2π];
5 φ← U [0, π];
6 v ← U [Vmin, Vmax];
7 distance← default distance;
8 collides← false;
9 for Oi ∈ O do

10 if WillCollide(x, y, z, θ, φ,Oi) then
11 if ∆d > DistToObstacle(x, y, z, θ, φ,Oi)

then
12 ∆d← DistToObstacle(x, y, z, θ, φ,Oi);
13 collides← True;

14 if collides then
15 Rebound(∆d);

16 x← x+ sin(θ)cos(φ)∆d;
17 y ← y + sin(θ)sin(φ)∆d;
18 z ← z + sin(φ)∆d;

19 until simulation ends;

move there with a certain speed. Since the probability of
choosing a point closer to the boundaries is lower than in
the middle, the nodes in the scenario eventually end up con-
centrating in the center. The Random Direction model mit-
igates this problem by forcing the node to travel until it
reaches the boundary of the delimited area.

In the Random Direction model, three variables govern
the trajectory of a mobile node: pause P , direction θ, and
speed v. Similar to the Random Walk model, these at-
tributes are constrained in their limits. First the node chooses
a speed and direction in which it will move. Then it contin-
ues moving until it reaches the boundary, standing by that
position for P amount of time before reseting the parame-
ters and beginning the cycle once again. Intuitively, the node
will only move again if the new direction points towards the
middle of the limited area, otherwise it will remain in the
paused state.

The movements in Z-axis are allowed by the introduction
of the pitch φ in the system. In the main loop of the algo-
rithm the model selects the values for the random variables
φ, θ, and v. Then it calculates the intersection of the new
trajectory path of the node with each obstacle inside the
scenario, and the scenario boundaries itself. The next posi-
tion where the node will randomize the values again is the
intersection with the smallest distance to travel. If an ob-
ject is not in the path of the node, the intersection distance
returns infinity. After the node reaches the destination, it
pauses for a random amount of time, constrained within the
interval P ∈ [Pmin, Pmax].

Algorithm 2 shows the pseudo-code of the random direc-
tion 3D. The implementation utilizes the same new methods
included in base classes ns3::Box and ns3::Rectangle in the
source-code. The class ns3::RandomWalk3dMobilityModel
also adds a new angle to allow the movement in z-axis. To

keep consistent, the same AddObstacle(obstacle) method was
implemented.

Algorithm 2: Random Direction 3D

Input: Boundary (S), set of obstacles (O), Pause time
limits (Pmin, Pmax) and Speed limits
[Vmin, Vmax]

Output: List of Time and Position pairs
1 repeat
2 Pause(U [Pmin, Pmax]);
3 θ ← U(0, 2π];
4 φ← U [0, π];
5 v ← U [Vmin, Vmax];
6 ∆d← DistanceToBoundary(x, y, z, θ, φ);
7 for Oi ∈ O do
8 if WillCollide(x, y, z, θ, φ,Oi) then
9 if ∆d > DistToObstacle(x, y, z, θ, φ,Oi)

then
10 ∆d← DistToObstacle(x, y, z, θ, φ,Oi);

11 ∆t← ∆d/v;
12 x← x+ sin(θ)cos(φ)v∆t;
13 y ← y + sin(θ)sin(φ)v∆t;
14 z ← z + sin(φ)v∆t;

15 until simulation ends;

5. GAUSS-MARKOV
The movements of an object in real world may be lim-

ited and constrained by the laws of physics. Hence, the
change in velocity and direction may depend on the previ-
ous values of these attributes. This correlation between the
speed/direction in different iteration time slots is not consid-
ered when Random Models are used. In random approaches,
the nodes’ movements and speed may vary abruptly from
one instant to another. But when considering real objects
like cars, helicopters, and airplanes, even though some may
be able to change direction faster than others, these move-
ments are not as quick as the random models imply. The
Gauss-Markov mobility model, on the other hand, adds this
temporal dependency characteristic when the mobile node
is moving around the scenario, enabling the limitations of
real world movements to be emulated.

This model assumes the velocity of a mobile node is cor-
related over time. The changes in velocity are modeled
as a Gauss-Markov stochastic process. The new value is
constrained within a limited range, with a mean and stan-
dard deviation. The model also has a tunning parameter
α ∈ [0, 1], known as the memory level. This parameter dic-
tates the importance of old values when calculating the new
ones. This tunning parameter gives the ability to imitate the
behavior of other models. For example, if α is low, the veloc-
ity is determined by random variables and not the previous
values, making the behavior closer to the ones of random
models.

The Gauss-Markov model also assumes a bounding box
to limit the movements of the mobile node. The velocity
and directions of the node are changed after a predefined
amount of time. During this time interval the node moves
with fixed speed and direction. When it finishes moving for
the interval, new values are chosen based on the previous

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

128

ones and the system defined parameters. The system pa-
rameters define, for example, the deviation the new speed
will have from the previous one. If the node moves towards
the limits of the simulation, the direction is shifted by 180
degrees (πrad), forcing the node to stay within the bound-
aries. More details of the original model can be found in [14].

The implementation of obstacles in this model follow the
same principle as when the node gets closer to the bounding
limits. If the mobile node is moving towards an obstacle,
its direction and pitch are shifted, forcing it to bounce back
inside the simulation limits. The trajectory appears to be
smoother than the random models, giving the simulations a
more realistic behavior of a mobile node’s movement. Since
the 3D Gauss-Markov model is already implemented in ns-3,
the only modifications made were to allow the addition of
obstacles with AddObstacle(obstacle) and the collision veri-
fication, which is basically the same as the one to verify if
the node is out of bounds, and adjust the new directions
accordingly.

6. DEMONSTRATION AND RESULTS
To illustrate the behavior of the enhanced models, a sam-

ple trajectory for each of the described methods is shown
in Figure 5. In Figures 5a and 5b the Random Walk mod-
els are configured in different modes: time and distance
respectively. Figure 5c shows an example of the Random
Direction model, while the trajectory in Figure 5d is defined
by the Gauss-Markov model. Only one obstacle is placed
in this illustration to facilitate the visualization of the sam-
pled trajectory. The object is centered in (50, 50) and has
dimensions of 100m width and length, and 200m height.

The simulated scenario has dimensions of 300 × 300 ×
200(m). The speed of the node is set to an average of 25m/s,
and the simulation runs for 200s. In the distance mode of
the Random Walk, the node travels for 200m (equivalent
to time mode with 200/25 = 8s interval) before changing
direction, while in the time mode it travels for 10s before
resetting.

Table 1: Obstacle dimensions.
Parameter (meters) Obstacle 1 Obstacle 2
Center coordinates (50,50) (150,150)
Width 100 100
Length 100 100
Height 100 200

To provide some insights on the behavior of an ad hoc
network, we executed preliminary simulations comparing
the performance in two cases: with and without obstacles.
When simulating with obstacles, two objects are placed in
the simulated scenario. Both obstacles have the character-
istics of solid stone blocks, and the detailed position and
dimensions are depicted in Table 1. We traced the packet
delivery ratio of control packets (CPDR) of the Optimized
Link State Routing (OLSR) protocol. The general parame-
ters for the simulations are as follows.

By varying the number of nodes (5 to 50), it is possible
to see the degradation in the performance when obstacles
are considered. For example, the Gauss-Markov model has
CPDR of 80.9636% and 83.9625% when simulating 50 nodes
with and without obstacles, respectively. The same trend
can be observed for the other models as well, and the per-
formance is also influenced by the mobility model utilized.

Table 2: Simulation parameters.
Parameter Value
No. of nodes 20
Simulation time 200 s
Traffic generator OnOff Application
Transport protocol UDP
Routing protocol OLSR
WiFi standard IEEE 802.11b
Datarate 1 Mbps
Speed 5 to 25 m/s (25 default)
Propagation loss model Okumura-Hata

From the graph in Figure 6 we see that Gauss-Markov model
results in a deteriorated performance compared to the other
random models.

Figure 7 illustrates the performance of the network. The
traffic was generated by half of the nodes, the other half acts
as the receiver (i.e. there are 10 information flows with dis-
tinct sources and destinations). We compare the results in
both cases, with and without obstacles. We can see that the
number of reflections increases in a linear trend according
to the speed (when there is no obstacle, there is no reflec-
tion), as it would be expected. A counter-intuitive result
is the hop count, which is in general lower when there are
obstacles in the scenario. This happens because the nodes
are more restricted in their movements, forcing them to stay
closer to each other. Hence, if there is no obstacle, they have
more room to move, and the probability of augmenting the
distance is higher. Following the same logic, if the number of
hops increases, the end-to-end delay and jitter also increase
if there is no obstacle.

7. CONCLUSION AND FUTURE WORK
In this paper we implement the three different mobility

models in a reliable network simulator framework to emulate
a three-dimensional world. One requirement for the devel-
opment of the models is to make them obstacle compliant,
to meet the requirement when simulating realistic environ-
ments such as urban areas with buildings or mountains. The
models are implemented in the network simulator ns-3, due
to its open-source nature, and the focus in research and ed-
ucational communities. The models were demonstrated in
a simple scenario, resulting in the expected degradation of
performance when the obstacles are present in the simula-
tion.

In the future, more complex algorithms for obstacle avoid-
ance can be implemented to help simulate in case the path
of the node is known, like in a particular mission known to
the system developer. Such algorithms already exist and
are constantly being studied by the robotics research com-
munity. Integrating these two remains a challenge to be ex-
plored. This work provides the means to anyone interested
in quickly deploy simulations of UAV networks, without the
need of external tools to obtain the movements of the nodes
in the network.

8. ACKNOWLEDGMENTS
This research was supported by the National Science Foun-

dation, Partnership for Innovation Program, Grant No. 1430328
and CAPES Brazil 13184-13-0.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

129

(a) Random Walk (Time) (b) Random Walk (Distance)

(c) Random Direction (d) Gauss-Markov

Figure 5: Trajectory with one obstacle.

(a) With obstacles (b) Without obstacles

Figure 6: Control packets delivery ratio vs number of nodes.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

130

(a) With obstacles (b) Without obstacles

Figure 7: Network performance parameters.

9. REFERENCES
[1] Federal Aviation Administration approved UAS test

sites. https://www.faa.gov/uas/legislative programs/
test sites.

[2] ns-3. https://www.nsnam.org.

[3] OMNeT++. https://omnetpp.org.

[4] Open Street Map (OSM). https://www.openstreetmap.
org.

[5] Opnet. http://www.riverbed.com.

[6] Sumo. http://sumo.dlr.de.

[7] I. Bekmezci, O. K. Sahingoz, and Ş. Temel. Flying ad-
hoc networks (fanets): A survey. Ad Hoc Networks,
11(3):1254–1270, 2013.

[8] O. Bouachir, A. Abrassart, F. Garcia, and N. Larrieu.
A mobility model for uav ad hoc network. 2014 In-
ternational Conference on Unmanned Aircraft Systems
(ICUAS 2014), pages 383–388. IEEE, 2014.

[9] T. Camp, J. Boleng, and V. Davies. A survey of mobility
models for ad hoc network research. Wireless communi-
cations and mobile computing, 2(5):483–502, 2002.

[10] S. E. Carpenter and M. L. Sichitiu. An obstacle model
implementation for evaluating radio shadowing with ns-
3. In Proceedings of the 2015 Workshop on ns-3, WNS3
’15, pages 17–24, New York, NY, USA, 2015. ACM.

[11] D. S. Gaikwad and M. Zaveri. A novel mobility model
for realistic behavior in vehicular ad hoc network. IEEE
11th International Conference on Computer and Infor-
mation Technology (CIT 2011), pages 597–602. IEEE,
2011.

[12] A. E. Kamal and J. N. Al-Karaki. A new realistic
mobility model for mobile ad hoc networks. IEEE In-
ternational Conference on Communications (ICC 2007),
pages 3370–3375. IEEE, 2007.

[13] E. Kuiper and S. Nadjm-Tehrani. Mobility models
for uav group reconnaissance applications. Interna-
tional Conference on Wireless and Mobile Communica-
tions (ICWMC 2006), pages 33–33, July 2006.

[14] B. Liang and Z. Haas. Predictive distance-based mo-
bility management for pcs networks. In INFOCOM
’99. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings.
IEEE, volume 3, pages 1377–1384, March 1999.

[15] D. B. J. D. A. Maltz and J. Broch. DSR: The dynamic
source routing protocol for multi-hop wireless ad hoc net-
works. Computer Science Department Carnegie Mellon
University Pittsburgh, PA, pages 15213–3891, 2001.

[16] E. Royer, P. Melliar-Smith, and L. Moser. An analy-
sis of the optimum node density for ad hoc mobile net-
works. IEEE International Conference on Communica-
tions (ICC 2001), volume 3, pages 857–861, 2001.

[17] E. SMG. Universal mobile telecommunications system
(umts); selection procedures for the choice of radio trans-
mission technologies of the umts. ETSI Document TR,
101:112, 1997.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

131

Topology Simulation for Aeronautical Communication
Protocols with ns-3 and DCE

Andreas M. Lehmann
Chair of Information

Transmission
Friedrich-Alexander-

Universität
Erlangen-Nürnberg

andreas.lehmann@fau.de

Matthias Kreuzer
Chair of Information

Transmission
Friedrich-Alexander-

Universität
Erlangen-Nürnberg

matthias.kreuzer@fau.de

Jörg Deutschmann
iAd GmbH

Unterschlauersbacher
Hauptstr. 10

D-90613 Großhabersdorf,
Germany

software@iad-de.com

Ulrich Berold
iAd GmbH

Unterschlauersbacher
Hauptstr. 10

D-90613 Großhabersdorf,
Germany

hardware@iad-de.com

Johannes B. Huber
Chair of Information

Transmission
Friedrich-Alexander-

Universität
Erlangen-Nürnberg

johannes.huber@fau.de

ABSTRACT
The currently used aeronautical communication systems have
huge limitations and need to be replaced in order to meet
the requirements for air-ground communications due to a
constant growth in air traffic. In order to develop, test and
optimize protocols it is desired to have proper tools to simu-
late large scale (up to global) networks of ground and mobile
stations. We propose an ns-3 topology module that is tai-
lor fit for aeronautical communication protocols, compatible
with typical location information and provides propagation
parameters for communications between nodes.

CCS Concepts
•Networks → Network protocols; •Applied comput-
ing → Avionics; •Information systems → Information
systems applications

Keywords
Avionics, communication, navigation, LDACS, ns-3, DCE,
protocol design, physical layer, network simulation, protocol
stack development

1. INTRODUCTION
Today, flying is one of the safest ways to travel and the

demand for air transportation is continuously growing. This
of course increases the demand for air traffic management
as the traffic itself increases. Efficient and effective man-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACM 978-1-4503-4216-2/16/06. . . $15.00

agement depends on reliable and efficient communications.
The currently used system for air-ground communications
nevertheless is based on Double-Sideband Amplitude Mod-
ulation (DS-AM), which has been introduced in the 1940’s.
Furthermore, the current system is designed for voice trans-
mission only. With an ever growing demand for data ex-
change, e.g. for navigation and surveillance, it became ob-
vious in the recent years that new protocols for aeronau-
tical communication need to be developed. Two projects
have been initiated, which have the goal to modernize air
traffic management: Single European Sky Air Traffic Mon-
itoring Research (SESAR) [6] in Europe and Next Genera-
tion National Airspace System (NextGen) [5] in the United
States of America. Both of which are coordinated by the In-
ternational Civil Aviation Organization (ICAO) [2]. Those
projects both state the importance and requirement of mod-
ern communication systems. There are already two different
candidates for protocols with the recommendation of ICAO
for further development, namely L-band Digital Aeronauti-
cal Communications System 1 (LDACS1) [3] and LDACS2
[4], respectively. LDACS1 relies on Orthogonal Frequency-
Division Multiplexing (OFDM) together with adaptive cod-
ing and modulation, whereas LDACS2 relies on a single-
carrier system that is based on the well-known Global Sys-
tem for Mobile Communications (GSM). Both protocols have
in common that, in contrast to DS-AM, both rely on a cel-
lular network structure with ground base stations. From a
protocol development point of view it is highly desirable to
have network simulations available for development and test-
ing of the different protocol layers. Especially as the safety
and security in air traffic control are of major importance.
In order to do so it is vital to have simulation scenarios
that are close to reality but also efficient enough to allow for
simulations of large networks. Large in this context means
geographically but also in terms of number of communica-
tion nodes.

There have been approaches for modeling airborne net-
works in ns-3. Broyles et al. suggested a Gauß-Markov

WNS3, June 15 - 16, 2016, Seattle, WA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

DOI: http://dx.doi.org/10.1145/2915371.2915375

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

132

Model for the movement of the aircraft in [8] very similar to
the BonnMotion mobility generation tool [7]. Newton et al.
[11] introduced a model with real flight data and also imple-
mented antenna directions, but for the purpose of optimized
link state routing in airborne networks. Further simulations
of airborne networks with focus on higher layer protocols are
described in [14] and [9].

We decided that the existing wireless topology modules
were not perfectly suitable and not sophisticated enough for
the problem at hand. Furthermore we required the ability to
process spherical coordinates from a special file format with
interpolation in between waypoints as well as support for
antenna characteristics and 3-dimensional antenna-pointing
functionality. Therefore a new module has been developed
that is custom tailored to aerospace topology and the com-
munication needs accordingly.

The remainder of the paper is organized as follows. Sec-
tion 2 will present the details and constraints of the topology
situation. In Section 3 our framework and its integration
with ns-3 and DCE will be discussed. First exemplary re-
sults will be presented in Section 4. The paper provides an
overview about future work in Section 5 and is concluded
with Section 6.

2. MODELING OF AIR TRAFFIC
As the movement of aircraft around the globe follows

many rules and regulations it is obviously preferable to use
actual flight data instead of mobility models that rely on
probabilistic mechanisms. This point was also made in [11].
We currently use a file format in Extensible Markup Lan-
guage (XML) to feed the topology information into our topol-
ogy module. The description is designed to be compati-
ble with the well known ”All Purpose STructured Eurocon-
trol SuRveillance Information EXchange Category 62” (As-
terix CAT 62) format [1]. It provides one data set every
few seconds for every aircraft containing coordinates (way-
point), velocity and call sign together with a time stamp.
In the XML description this data is completed by infor-
mation about ground station locations and optionally an-
tenna pointing azimuth and elevation for each communica-
tion node. Instead of XML description our framework is also
able to accept real-time data in the Asterix CAT 62 format.

2.1 Position and Interpolation
The coordinates are provided in spherical format, i.e. lat-

itude, longitude and altitude. The altitude is measured in
meters above sea level. We assume the earth to be spher-
ical with a radius of 6371 km. The latitude is measured
between −90 degrees and +90 degrees, where the former
denotes the south pole and the latter the north pole, respec-
tively. The equator is at latitude 0 degrees. Longitude is
measured between −180 degrees and +180 degrees, with 0
degrees being the Greenwich meridian. The spherical coor-
dinates are transformed into Cartesian coordinates as that
allows the reuse of ns-3 functions and simplifies some cal-
culations within the topology module. The origin of the
coordinate system is located at the center of the earth. The
position in between waypoints of the aircraft can be acquired
by different methods. The simplest variation is to use the
last waypoint until a newer one is provided without interpo-
lation in between. Alternatively linear interpolation can be
carried out between the last and the future waypoint taking
into account the current time and the time stamps of the

waypoints. Furthermore it is possible to interpolate the po-
sition by assuming the airplane travels along a half versed
sine (Haversine), i.e. a great circle between the two way-
points. This requires the altitude to be averaged between
the waypoints in order to have both waypoints on a com-
mon great circle. Especially for a low time resolution of
provided waypoints this enhances accuracy. All of the var-
ious modi of interpolation are provided by our module. As
mentioned in the beginning of this Section it is also possible
to feed the topology module with real-time data telegrams.
Of course no interpolation is possible in that case and the
static update of waypoints is thus employed.

2.2 Direction of Antenna
As mentioned in the beginning of this Section the Asterix

data also optionally includes information about the antenna
direction of a node (aircraft or base station) in the format
of azimuth and elevation. Similar to the coordinates az-
imuth is measured between −180 degrees and +180 degrees,
whereas elevation is measured between −90 and +90 de-
grees. The reference direction for mobile nodes is their direc-
tion of movement and the tangent to the longitude meridian
in northern direction for fixed nodes. The reference direc-
tion of course corresponds to 0 degree azimuth and eleva-
tion. Initially all nodes have the reference direction of north
until they move. The information about antenna direction
together with the information about the directional radio
pattern of the respective antennas enables us to obtain the
specific gains of transmit and receive antenna via the trans-
mit and receive directions, respectively. This information is
then incorporated into the path loss.

3. FRAMEWORK DESCRIPTION
Our simulation framework is based on ns-3 together with

DCE. Some components are similar to the ns-3 ones but dif-
fer slightly. Most different from an out-of-the-box ns-3 DCE
is the integration of real-world Layer 2 code into DCE as
shown in Figure 1. For a power line communication proto-
col, the advantages of this approach have already been de-
scribed in [10]. We use a customized interface between pure
ns-3 physical layer simulation models and Layer 2+ protocol
stacks running in ns-3 DCE as shown in Figure 2. Because
we want to perform detailed physical layer simulations and
also handle different protocols, the physical layer models are
split into a universal shared medium handler (USMH) and
a specific physical layer handler (SPLH).

The USMH is comparable to the channel and models com-
mon influences, i.e. attenuation, delay, interference, etc. It
is able to track all packets and obtain interference infor-
mation in an efficient way. In order to obtain the physical
information the USMH relies on the Topology module, c.f.
Figure 2.

The communication nodes are connected to the USMH via
the SPLH which also provides the interface to ns-3 DCE, i.e.
the SPLH is responsible for the transmission (DCE → SPLH
→ USMH) and reception (UMSH→ SPLH→ DCE) of pack-
ets. Unlike a ns-3 NetDevice an SPLH does not model Layer
2 functionalities, which are in our case running within DCE.
However, an SPLH is somehow similar to an ns-3 NetDe-
vice in a way that it models protocol-specific properties of
a communication protocol and enables us to have multiple
SPLHs per communication node. As different protocols have
different parameters for sending a packet and different per-

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

133

Osi Layer Model

Application

ns-3 DCE
(out of the box)

ns-3 DCE
(customized)

7
6
5

4

3

2

1

”0”

Transport

Network

Data Link

Physical
And Channel

User-Space
mode

Kernel-Space
mode

NetDevice

Channel

Simulation models (ns3)

Real-World
Higher Layer

Protocol Stack

(Protocol dependent)

USMH

SPLH

Real-world code (DCE)

Figure 1: Layer overview of ns-3 DCE framework.

S
PL

H
 #

0

UtilsSendSignal()

Physical Layer
(src/ns-3.24)

Layer 2+
(src/ns-3-dce)

interrupt handler
of protocol stack

generate and
handle events

USMH (protocol independent channel)

ge
t

st
at

us
 a

nd
 r

ec
ei

ve
d

da
ta

se
t

pa
ra

m
et

er
,

se
nd

 d
at

a

pr
ot

oc
ol

 s
ta

ck
 #

0

S
PL

H
 #

1

S
PL

H
 #

N

pr
ot

oc
ol

 s
ta

ck
 #

1

pr
ot

oc
ol

 s
ta

ck
 #

N

D
C
E

fr
am

ew
or

k

Node #0
Node #1

Node #N

Topology Module

Figure 2: Structure of the (protocol agnostic) net-
work simulator.

formance in the same physical conditions they each need an
own SPLH implementation.

3.1 SPLH Packet Transmission and Reception
If an SPLH is instructed by its higher layers it calls the

USMH interface and provides it with a packet struct that
includes among data and protocol specific information all
necessary parameters. For example carrier frequency, band-
width and transmit power, which is modeled as a vector of
values. The length of that vector decides how many sub-
bands the transmit bandwidth is divided into and which
transmit power is used. This creates a flexible way of includ-
ing power spectral density of transmit packets. The USMH
keeps track of all packets to determine interference between
them and it obtains propagation parameters from the topol-
ogy module. The interface is simple and contains only the
current time, sending node and the packet struct. Based
on this information the topology can provide the following
propagation parameters

• channel model

• path loss

• delay

• relative speed

Figure 3: Examples for the various channel models.

• direction of reception

All those parameters are of course obtained for all SPLHs
connected to the USMH and a receive event is scheduled for
each SPLH after the appropriate time, i.e. when the packet
duration and the respective propagation delay is over. Upon
reception the SPLH can decide on the probability of correct
reception of the packet based on the physical parameters
that were originally obtained from the SPLH, interference
packets that have been registered by the USMH and indi-
vidual parameters like receiver noise etc. As the specific
protocols are out of the scope of the paper, it is explained
in the following how the topology module obtains the afore-
mentioned parameters.

3.2 Channel Model
The packet error ratio is highly dependent on the channel

between transmitter and receiver. For complexity reasons
usually no physical layer simulation is desired in large scale
network simulations as shown in [13]. Usually packet error
curves are employed that have been obtained by simulation
beforehand. In order to account for the channel conditions
in various geometrical settings of transmitter and receiver
we distinguish between five different channel models that
are depicted in Figure 3. The channel model needs to be
obtained first as it influences how other parameters are ob-
tained, e.g. if line of sight (LOS) can be assumed for the
calculation of delay and attenuation. The algorithm that de-
cides for the channel model does not only take into account
if both communication nodes are on the ground (ground-
ground), airborne (air-air) or mixed (air ground), but also
two special situations where one of the communication nodes
is a ground station while the aircraft is on the taxi way (taxi)
or in a take-off or landing phase (take-off). These channel
models are among others standardized in the LDACS1 stan-
dard as they significantly influence the performance of the
protocol. The SPLH design should take this into account
and provide different packet error behavior for each chan-
nel model. Table 1 summarizes the parameters that lead to
the different channel models. The flight threshold as well as
vflight and vtaxi can be configured by the user.

3.3 Path Loss and Delay
Depending on the channel model the path loss is calcu-

lated either as free space propagation (LOS) or free space
propagation with a shadowing penalty (non-LOS) that can

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

134

Table 1: Channel Model Properties.

Channel Model LOS Speed
Altitude
(threshold)

ground-air yes v > vflight above
air-air yes v > vflight above
ground-ground no v < vtaxi below
taxi yes vtaxi < v < vflight below
take-off yes v > vflight below

be configured. As the attenuation is frequency dependent it
is obtained separately for each subband of the power spectral
density. The delay is obtained in a similar fashion. Speed of
light is assumed as propagation velocity for the line of sight
case and an additional penalty is assumed for the non line
of sight case.

As the areal dimension of aircraft networks, and with that
distances between aircraft, can be very large, one has to
think about limitations of the free space propagation and
its reach. In order to limit the propagation range we keep
track of the radio horizon of the communication nodes. No
ionospheric wave propagation can be assumed in the rele-
vant communication carrier frequencies. Therefore, the ra-
dio horizon is calculated for every link and additional atten-
uation is added for propagation after the horizon in form of
a larger propagation exponent. This means that the atten-
uation increases with the quadratic distance up to the radio
horizon and with a free to choose exponent for the part of
the distance that exceeds the horizon.

3.4 Relative Speed and Direction of Reception
As the Doppler effect can influence the performance of the

communication the relative speed between two communica-
tion nodes is calculated and thus provided to the SPLH. The
relative direction between sender and recipient of a trans-
mission is calculated in order to obtain the transmit and
receive antenna gains, respectively. Different antenna char-
acteristics can be stored (in a table format), namely azimuth
versus elevation with arbitrary resolution and thus provide
gain values to look up for different directions of reception
and transmission, respectively. If necessary, interpolation
is carried out between the gain values. At the receiver the
direction of reception is also stored for the receiver SPLH
additionally to the reception gain. Thus, protocols that im-
plement direction estimation can be modeled in an SPLH.
Furthermore this is an interesting tracing information e.g.
for cell handover procedures or optimization and verifica-
tion.

3.5 Visualization
Especially with dynamic topologies it is not only helpful

for tracing simulations but also for designing simulations
that the topology can be visualized. Our model can be
visualized by the standard NetAnim functionality that is
provided by ns-3, but can also output Keyhole Markup Lan-
guage (KML) files that can be read by e.g. Google Earth and
visualized in 3D. Figure 4 shows a NetAnim XML plot with
30 aircraft that are depicted by blue dots and two ground
stations that are depicted in red. At the time of the snap-
shot three nodes are sending a packet, which is indicated
by the larger green bubbles. Although the plots are only in
bird eye view in 2D the plots are very helpful for debugging
and understanding the topology itself as well as interaction

Figure 4: Snapshot of a topology scenario visualized
in NetAnim.

Figure 5: Snapshot of a topology scenario visualized
in Google Earth.

between nodes. Also desired information can be depicted
next to the node, e.g. node ID and altitude as in the snap-
shot in Figure 4. If 3D is required, one can switch to the
KML files in e.g. Google earth. The same scenario is de-
picted in Figure 5. The additional geo information as well
as the 3D plots provide contextual information on the geo-
metric scenario. Figure 6 for example shows a flight profile
of a single aircraft zoomed in. This view is very helpful
to track the location history of an airplane. All introduced
topology examples in this section have been produced by
iAd GmbH with realistic aircraft data in the format accord-
ing to Eurocontrol’s Asterix standard described in Section
2 with additional information.

3.6 Implementation
Figure 7 depicts a block diagram of the topology mod-

ule. As described in the beginning of this Section we are
not using the NetDevice and Channel functionality of ns-3,
but a setup that is tailored to our needs. Like the exist-
ing ns-3 mobility models, our flight mobility module can be
installed on any ns-3 node. The FlightMobilityModel is
the elemental class of the topology model and contains all
attributes that concern a base station or aircraft. Location
and antenna information retrieved by XMLInput or via the
RealtimeSocket is processed here. The class SphericVec-

tor (VectorS) provides all conversion functionality from and
to spherical and Cartesian coordinates as well as various ge-
ometric calculations. The waypoint updates are handled by
the FlightTrace class and the TopoParameters class con-

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

135

Figure 6: Zoomed snapshot of Figure 5 that shows
the flight profile of one aircraft.

UsmhInterface
Packet Information

Propagation Information

FlightMobilityModel
Interface to USMH

Core Functions

TopoParameters
Constants (e.g. Earth

Radius)
User Parameters (e.g.

Flight Threshold)

FlightTrace
One per Node

(Coordinates, Speed,
Antenna Heading, etc.)

SphericVector
Geometric Calculations
Coordinate Conversion

TrackInterface
Create NetAnim XML

Create KML

RealtimeSocket
Socket with Asterix

CAT 62 Input

XMLInput
Waypoint Information

Antenna Heading

Figure 7: Block diagram of the topology module.

tains the variables for e.g. flight threshold, taxi speed, etc.
as well as constant parameters like speed of light, earth ra-
dius etc. The class TrackInterface provides all the optional
output functionality for visualization and the UsmhInter-

face symbolizes the interaction with the simulator, that re-
quests propagation information from the topology and han-
dles the USMH and all higher layers.

4. RESULTS
The visualization options described in Section 3.5 are al-

ready a valuable result of the flight mobility model. In the
following, we describe two artifical scenarios which demon-
strate the relevance of physical layer parameters. For both
scenarios, the following settings are chosen:

• Air-air channel model

• Free space path loss

• 0 dBm transmit power for all ground stations and air-
craft

• Carrier frequency 1GHz

• Haversine distances and interpolation

• Ground station height level: 0m above sea level

• Airplane height level: 10 km above sea level

• Airplane is always connected to only one airport/ground
station, i.e. no multi-channel receivers

Both scenarios describe a flight from the south of Germany
(Munich, IATA-Code MUC) to the north of Germany (Ham-
burg, IATA-Code HAM), which is a distance of 600 km.

The first scenario depicted in Figure 8 shows an inter-
station handover. Besides the ground stations at the depar-
ture and destination airport, two additional base stations
exist along the way, whereas ground station 1 (GS1) is lo-
cated eastwards enroute and ground station 2 (GS2) is lo-
cated westwards enroute. All airports and ground stations
are equipped with an omnidirectional antenna in this sce-
nario. Figure 9 shows the received signal power and the
direction to the ground station that leads to the highest
receive power relative to the plane movement. During the
first 100 km the airport of departure, MUC, is the ground
station with the highest receive power. The heading towards
this airpot is 180 degree, i.e. straight behind the airplane.
After a flight distance of 100 km, the receive power drops
to −80 dBm and a handover to GS1 is performed. With
the handover, the heading changes from 180 degree to ap-
proximately 75 degree as GS1 is north-east from the pilot’s
view. The heading increases monotonically until the next
handover. Obviously, when the heading is +90 degree (at
distance 125 km) the airplane is closest to BS1 and has max-
imum receive power. The next handover takes place at a
distance of 275 km between BS1 and BS2, with a receive
power of −83 dBm. The heading changes from a positive
(north-east) to a negative (nort-west) value and decreases
until the radio coverage area of the destination airport is
reached. With the last handover at 450 km, the airplane
heads straight towards the destination airport and thus the
receive power is significantly rising again.

The second scenario depicted in Figure 10 describes an
inter-cell handover. Different from the first scenario there is
only one additional ground station (GS) enroute but with a
three-sector antenna. We employed the 3 element Yagi-Uda
antenna proposed in [15] simulated with the matlab toolbox
for antenna simulations by Orfanidis [12]. Its directivity
pattern is depicted in Figure 11. The antenna elements are
oriented vertically and φ denotes the azimuth angle around
the antenna, where φ = 0 degree is the maximum gain di-
rection. The maximum gain is 8.18 dBi and all gain values
read from the pattern diagram are relative to that factor.
Please note that this is just an example case to demonstrate
the functionality of the simulator and that ground station
as well as aircraft antennas employ other designs. The GS is
placed west from the flight route, with an equal distance to
both airports. The main radiation direction of the first sec-
tor is south-east (150 degree relative to north direction), the
main radiation direction of the second sector is north-east
(30 degree relative to north direction), and the third sector is
of no interest for this scenario. As for the previous secenario
the receive power as well as the heading towards the ground
station are provided, c.f. Figure 12. The airplane flies again
from Munich to Hamburg with the first handover from Mu-
nich airport to GS after 90 km (slightly earlier compared to
the first scenario due to the chosen antenna gains) which
is again a inter-station handover. The second handover at
a flight distance of 290 km is then a inter-cell handover be-
tween GS’s sector 1 and sector 2. Of course, the direction
to the GS does not change during the inter-cell handover.
The second scenario demonstrates that considering antenna

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

136

Figure 8: Examplary flight over Germany, with 1
aircraft 2 airports and 2 base stations.

-180

-120

-60

0

60

120

180

0 100 200 300 400 500 600
Distance (km)

Direction to ground station with highest receive power, relative to airplane movement (degrees)

-100

-90

-80

-70

-60

-50

0 100 200 300 400 500 600
Distance (km)

Receive powers at the airplane during a flight from MUC to HAM (dBm)

MUC airport
GS1
GS2

HAM airport

Figure 9: Received power at the aircraft from the
different ground stations vs. travel distance (upper)
and heading to best GS over distance (lower).

gains in a flight mobility model is very important.
In summary we are able to perform very large, yet very

detailed simulation scenarios for airborne networks.

5. FUTURE WORK
For even more realistic topology simulation it would be

interesting to have not only a free space propagation model
to determine the attenuation, but also other propagation
models. Especially for the non line of sight case attenuation
models that consider shadowing effects would be desirable.

Figure 10: Examplary flight over Germany, with 1
aircraft 2 airports and a base station with sectorial
antenna.

 90o

-90o

 0o180o

60o

-60o

30o

-30o

120o

-120o

150o

-150o

-10-20-30
dB

Figure 11: Antenna pattern of a 8,18 dB gain 3 ele-
ment Yagi-Uda antenna.

Furthermore the influence of weather effects could be taken
into account.

A large improvement in terms of reality would be model-
ing the surface (mountains, trees, etc.) and not only con-
sider the earth to be a sphere. On the other hand this of
course would also significantly increase the complexity. It is
highly dependent on the application if the reality gain out-
weighs the drawback of added complexity and worse run-

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

137

-180

-120

-60

0

60

120

180

0 100 200 300 400 500 600
Distance (km)

Direction to ground station with highest receive power, relative to airplane movement (degrees)

-100

-90

-80

-70

-60

-50

0 100 200 300 400 500 600
Distance (km)

Receive powers at the airplane during a flight from MUC to HAM (dBm)

MUC airport
GS sector 1
GS sector 2
HAM airport

Figure 12: Received power at the aircraft from
the ground stations an the sectors vs. travel dis-
tance (upper) and heading to best GS over distance
(lower).

time performance. It might for example be less relevant for
communication scenarios but highly beneficial for position
estimation through multilateration.

6. CONCLUSIONS
We have presented a topology module for ns-3 and DCE

that is customized for iAd GmbH’s simulation framework,
that is described in Section 3 and in [10], but that also ap-
plies to and can easily be fit to the standard framework as
well. It accepts ICAO standard position information for-
mats and is able to simulate realistic civil air traffic with it.
The topology module together with the USMH is completely
protocol indepent and therefore very versatile as only the
SPLH and the higher layers have to be modified in order to
fit to the respective simulation objective. Furthermore, real-
istic antenna patterns and directivity can be simulated and
taken into account for the link budget. Direction estimation
functionality as well as protocol behavior can be developed
and tested. With the assistance of the DCE framework,
the actual machine code of the higher layers of the protocol
stack can be used for testing and development. We pre-
sented a 2D and a 3D visualization of the topology module
and showed examples of how simulation traces could be ob-
tained and also visualized. We believe that the framework is
a significant help for testing and developing modern aircraft
protocols for communications, navigation and surveillance.

7. REFERENCES
[1] Eurocontrol asterix format,

http://www.eurocontrol.int/asterix.

[2] International civil aviation organization (icao),
http://www.icao.int.

[3] Ldacs1 system definition proposal, eurocontrol,
http://www.ldacs.com/wp-
content/uploads/2014/02/ldacs1-specification-
proposal-d2-deliverable.pdf.

[4] Ldacs2 system definition proposal, eurocontrol,
https://www.eurocontrol.int/sites/default/files/article/
content/documents/communications/11052009-ldcas2-
d2-deliverable-v1.0.pdf.

[5] Next generation air transportation system (nextgen),
http://www.faa.gov/nextgen/.

[6] Single european sky atm research (sesar),
http://www.sesarju.eu.

[7] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, and
M. Schwamborn. Bonnmotion: a mobility scenario
generation and analysis tool. In Proceedings of the 3rd
International ICST Conference on Simulation Tools
and Techniques, page 51. ICST (Institute for
Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2010.

[8] D. Broyles, A. Jabbar, and J. P. Sterbenz. Design and
analysis of a 3-d gauss-markov mobility model for
highly dynamic airborne networks. In Proceedings of
the international telemetering conference (ITC), San
Diego, CA, 2010.

[9] E. K. Çetinkaya, J. P. Rohrer, A. Jabbar, M. J.
Alenazi, D. Zhang, D. S. Broyles, K. S. Pathapati,
H. Narra, K. Peters, S. A. Gogi, et al. Protocols for
highly-dynamic airborne networks. In Proceedings of
the 18th annual international conference on Mobile
computing and networking, pages 411–414. ACM,
2012.

[10] J. Deutschmann, A. Lehmann, J. Hampel, and
J. Huber. Network simulation for powerline protocols
with direct code execution applied to dlc-3000 sfn. In
IEEE International Conference on Smart Grid
Communications, pages 464–468, Nov 2014.

[11] B. Newton, J. Aikat, and K. Jeffay. Simulating
large-scale airborne networks with ns-3. In Proceedings
of the 2015 Workshop on ns-3, pages 32–39. ACM,
2015.

[12] S. J. Orfanidis. Electromagnetic waves and antennas.
Rutgers University New Brunswick, NJ, 2002.

[13] S. Papanastasiou, J. Mittag, E. G. Ström, and
H. Hartenstein. Bridging the gap between physical
layer emulation and network simulation. In Wireless
Communications and Networking Conference
(WCNC), 2010 IEEE, pages 1–6. IEEE, 2010.

[14] K. S. Pathapati, T. A. N. Nguyen, J. P. Rohrer, and
J. Sterbenz. Performance analysis of the aerotp
transport protocol for highly-dynamic airborne
telemetry networks. In Proceedings of the
International Telemetering Conference (ITC),(Las
Vegas, NV), 2011.

[15] P. P. Viezbicke. Yagi antenna design. Final Report

National Bureau of Standards, Boulder, CO. Time
and Frequency Div., 1, 1976.

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

138

Index of Authors

A
Alouf Sara 116
Assasa Hany 57
Avallone Stefano 1

B
Berold Ulrich 132
Bhunia Suman 124

C
Cardoso Tiago 108
Chaves Luciano 33
Cheng Bow-Nan 71

D
Dandoush Abdulhalim 116
Deronne Sébastien 49
Derouet Pascal 116
Derr Kurt 93
Dersin Pierre 116
Deutsch Patricia 71
Deutschmann Jörg 132
Dutta Sourjya 85

F
Famaey Jeroen 49
Fitzek Frank 101
Fontes Helder 108
Ford Russell 85

G
Gangadhar Siddharth 17
Garcia Islene 33

H
Heide Janus 101
Hernández Néstor 101
Huber Johannes 132

I
Imputato Pasquale 1
Ivey Jared 41

K
K.S Shravya 9
Kreuzer Matthias 132

L
Latré Steven 49
Lehmann Andreas 132
Lucani Daniel 101

M
Madeira Edmundo 33
Mezzavilla Marco 85
Mishra Dharmendra 25
Murali Smriti 9

N
Nadeem Farah 65
Neglia Giovanni 116
Nguyen Truc 17

P
Pecorella Tommaso 79
Pedersen Morten 101

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

139

Index of Authors

R
Rahman Md 17
Rangan Sundeep 85
Rege Vishwesh 79
Regis Paulo 124
Ricardo Manuel 108
Riley George 41
Roy Sumit 65

S
Safavi-Naeini Hossein-Ali 65
Sengupta Shamik 124
Simoens Sebastien 116
Sterbenz James 17

T
Tahiliani Mohit 9, 25
Tian Le 49
Tuholukova Alina 116

V
Vankar Pranav 25
Veytser Leonid 71
Vingelmann Péter 101

W
Widmer Joerg 57

Z
Zhang Menglei 85
Zorzi Michele 85

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

140

Workshop on ns-3

www.nsnam.org/overview/wns3/wns3-2016

WNS3 2016

Seattle, Washington, USA
June 15-16, 2016

http://www.nsnam.org/overview/wns3

9 781450 342162

ISBN: 978-1-4503-4216-2

	Cover Page
	Program Committee
	Preface
	Table of Contents
	Papers
	Design and Implementation of the Traffic Control Module in ns-3
	Implementation and Evaluation of Proportional Integral Controller Enhanced (PIE) Algorithm in ns-3
	An Implementation of Scalable, Vegas, Veno, and YeAH Congestion Control Algorithms in ns-3
	TCP Evaluation Suite for ns-3
	OFSwitch13: Enhancing ns-3 with OpenFlow 1.3 Support
	Analysis of Programming Language Overhead in DCE
	Implementation and Validation of an IEEE 802.11ah Module for ns-3
	Implementation and Evaluation of a WLAN IEEE 802.11ad Model in ns-3
	Investigation and Improvements to the OFDM Wi-Fi Physical Layer Abstraction in ns-3
	LL SimpleWireless: A Controlled MAC/PHY Wireless Model to Enable Network Protocol Research
	A Realistic MAC and Energy Model for 802.15.4
	A Framework for End-to-End Evaluation of 5G mmWave Cellular Networks in ns-3
	ns-3 Web-Based User Interface - Power Grid Communications Planning and Modeling Tool
	Getting Kodo: Network Coding for the ns-3 Simulator
	Improving ns-3 Emulation Performance for Fast Prototyping of Network Protocols
	ns-3 Based Framework for Simulating Communication Based Train Control (CBTC) Systems
	Implementation of 3D Obstacle Compliant Mobility Models for UAV Networks in ns-3
	Topology Simulation for Aeronautical Communication Protocols with ns-3 and DCE

	Index of Authors

