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Preface

The 2016 Workshop on ns-3 (WNS3 2016) is the eighth edition of an annual series of workshops
around the discrete-event network simulator known as “ns-3”. The workshop aims to gather ns-3
users and developers, together with networking simulation practitioners and users, and
developers of other network simulation tools, to discuss the ns-3 simulator and related activities.
ns-3 is a tool used for performance evaluation in computer networks, and this workshop offers a
venue for those involved with extending or testing the tool itself to publish original work in this
regard. The workshop is sponsored by the ns-3 Consortium and organized as part of a full week of
activities including also training sessions, the Consortium Annual Meeting, and developer
discussions.

WNS3 2016 was hosted by the Electrical Engineering department of the University of Washington
in Seattle, Washington, and held on 15-16 June, 2016. Thomas R. Henderson served as General
Chair of this edition of the workshop, and Eric Gamess, with the Central University of Venezuela,
acted as the Proceedings Chair. The technical program committee, co-chaired by Dr. Brian
Swenson and Dr. Hajime Tazaki, included 26 international reviewers from prestigious universities,
laboratories, and manufacturers with a large experience in ns-3 and discrete-event network
simulation research in general. The workshop was organized with technical cooperation of the
Association for Computing Machinery (ACM), the European Alliance of Innovation (EAI), and the
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (ICST), to
which we extend our gratitude and acknowledgment.

The organizers received 28 submissions from around the world, out of which 18 papers were
selected for presentation and publication. Each contribution submitted to the workshop was
reviewed by at least two technical program committee members, with most papers receiving
three reviews. Authors of accepted contributions were encouraged to provide links to code and
scripts that would allow future readers to reproduce the results of their work. Accepted papers
can be categorized into one of three themes: (1) twelve papers focused on the design,
implementation process, and performance evaluation for extensions to ns-3 models, (2) three
papers were primarily concerned with performance analysis, improvements, and testing of ns-3
itself and its Direct Code Execution environment, and (3) three papers described frameworks for
integrating ns-3 with other software frameworks or libraries providing network coding, power grid
planning and modeling, and software-defined networking.

We thank the WNS3 2016 members of the program committee and the organization committee,
invited lectures and speakers, authors, teachers and students, and in general, to all those who
contributed with their valuable support to carry out the successful completion of this important
responsibility, keeping at the highest levels the relevance of WNS3.

Brian Swenson Hajime Tazaki Thomas R. Henderson
Georgia Tech Research Institute [1J Innovation Institute University of Washington
TPC Co-Chair TPC Co-Chair General Chair
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Design and Implementation of the Traffic Control
Module in ns-3

Pasquale Imputato, Stefano Avallone
Universita degli Studi di Napoli “Federico II”
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione
Via Claudio 21, 80125, Napoli

{pasquale.imputato, stefano.avallone}@unina.it

ABSTRACT

The Linux networking subsystem relies on the Traffic Con-
trol infrastructure to process both the incoming and the out-
going packets. One of the most important components of
the Traffic Control is the queueing discipline, whose role is
to store packets waiting for transmission and select the next
packet to pass to the network interface. The Linux Traffic
Control enables to perform scheduling, shaping of the egress
traffic, policing of the ingress traffic, and dropping of both
ingress and egress traffic.

In this paper, we present the design and implementation
of the Traffic Control layer as an additional module in ns-3.
This layer sits in between the netdevices and the network
layer. We also present the design and implementation of
the base class introduced to model a queueing discipline.
Finally, we report a preliminary validation of our work, con-
sisting in a number of tests that properly compare the new
stack to the previous one.

CCS Concepts

eNetworks — Network simulations; Network perfor-
mance modeling;

Keywords

ns-3, Traffic Control, Queueing Discipline, Active Queue
Management, Explicit Congestion Notification

1. INTRODUCTION

The Traffic Control infrastructure [1] of the Linux kernel
enables to perform a number of actions on both outgoing
packets, before they are handed to the netdevice for trans-
mission, and incoming packets, before they are processed
by the network layer protocols. In this paper, we focus
on the transmission path taken by packets. Once the out-
put interface and the next hop for an outgoing packet have
been selected, the packet is enqueued into a queueing disci-
pline (queue disc), which determines how the packet will be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

WNS3, June 15-16, 2016, Seattle, WA, USA
© 2016 ACM. ISBN 978-1-4503-4216-2/16/06. .. $15.00
DOL: http://dx.doi.org/10.1145/2915371.2915382

treated. A number of queue discs have been implemented
in the Linux kernel, including simple FIFO (First In First
Out) schedulers, such as pfifo_fast, fair-queuing schedulers,
such as Deficit Round Robin (DRR) [7], Stochastic Fairness
Queuing (SFQ) [5] and Quick Fair Queuing (QFQ-+) [2],
and Active Queue Management (AQM) algorithms, such
as Random Early Drop (RED) [3] and Controlled Delay
(CoDel) [6]. A queue disc stores the packets waiting for
transmission and decides which packet to pass to the net-
work interface when it is requested to dequeue a packet.

When a queue disc is requested to dequeue a packet de-
pends on the implemented flow control mechanisms. Basi-
cally, enqueuing a packet into a queue disc triggers a number
of consecutive requests of dequeuing a packet. This process
can be halted by the netdevice driver (or by the network
stack itself) by putting its netdevice queue into a stop state.
The netdevice driver usually stops its transmission queue
when it is full or its occupancy is above a given threshold.
When the netdevice is able to receive packets again, the
driver can start its transmission queue. Additionally, the
netdevice driver can wake a queue disc, i.e., request it to
dequeue a packet, when its transmission queue is empty or
its occupancy is below a given threshold.

Currently, ns-3 is lacking an equivalent of the Linux Traf-
fic Control infrastructure. No flow control mechanism is
implemented and packets are only stored in the netdevice
transmission queues. Consequently, AQM algorithms such
as RED and CoDel can only manage the packets stored in
the netdevice queues, which is not what happens in Linux.
This paper presents the work done to introduce an equiv-
alent of the Linux Traffic Control infrastructure into ns-3.
We believe that our work will allow researchers to carry out
more realistic simulations and to evaluate AQM algorithms
more precisely.

The remainder of this paper is organised as follows. In
section 2 we provide an overview of the Linux Traffic Control
and of the current status of ns-3. Section 3 describes the
model and design of the proposed Traffic Control module
for ns-3. Section 4 presents the Traffic Control helper and
some usage examples. Section 5 describes the experiments
we performed with the new architecture and the results we
obtained. In section 6 we conclude our work.

2. BACKGROUND

In this section, we describe the Linux Traffic Control in-
frastructure and the ns-3 queue system.
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2.1 Linux Traffic Control

The Traffic Control is a component of the network subsys-
tem of the Linux kernel. This component supports multiple
operations needed to provide Quality of Service (QoS), in-
cluding:

e shaping and scheduling of egress traffic;
e policing of ingress traffic;
e dropping of both ingress and egress traffic.

The Traffic Control relies on three fundamental compo-
nents to perform the above mentioned operations:

e queue discs;
e classes;

e filters.

A queue disc can be added to every network interface in
the Linux kernel and determines how packets outgoing from
the interface are treated. A simple queue disc is fifo, which
does no processing and is a pure FIFO queue with queue
limit expressed in packets or bytes. It stores a packet when
the network interface cannot handle it immediately. The
default queue disc in Linux is pfifo_fast, which consists of a
three band queue acting as a priority queue. The priority
assigned to each packet may depend on the Type of Service
(ToS) value or Diffserv Codepoint (DSCP) carried by the
packet. More complex queue discs are available in the Traf-
fic Control component. A typical taxonomy divides queue
discs in classful (i.e., support classes) and classless (i.e., do
not support classes). A classful queue disc can contain mul-
tiple classes, each of which has a child queue disc attached.
Each class can be configured with distinct parameter val-
ues, so as to reserve a distinct treatment to different traffic
classes. For instance, the prio queue disc is a container for
a configurable number of classes which are served in order
of priority. A packet filter can be used by a classful queue
disc to classify packets based on different criteria. The most
advanced filter available is u32 that can use anything in the
header for classification.

More recently, after the appearance of multi-queue net-
devices (such as Wifi), some multi-queue aware queue discs
have been introduced. Multi-queue aware queue discs han-
dle as many queues (or queue discs — without using classes)
as the number of transmission queues used by the netdevice
on which the queue disc is installed. An attempt is made,
also, to enqueue each packet in the “same” queue both within
the queue disc and within the netdevice.

2.2 ns-3 Queue System

In this section, we analyze ns-3 for what concerns the
queuing system adopted at the network and netdevice layers.

The network layer has no queuing system. In case the
IPv4 stack is employed (the same holds for the IPv6 stack),
packets generated from the upper layers are passed to the
Ipv4L3Protocol, which determines the right Ipv4Interface
for packet forwarding. Then, the Ipv4Interface passes the
packet to the corresponding netdevice. Thus, it is not pos-
sible to differentiate traffic at this layer and hold packets
whose transmission to the netdevice failed (and are therefore

dropped). Netdevices store the packets waiting for trans-
mission in a queue. Such a queue contains packets with the
data link header already added and is modelled through the
base class Queue. Derived classes are DropTailQueue, RedQueue
and CoDelQueue. DropTailQueue is a classical first in first
out limited queue. The two models of AQM, RedQueue and
CoDelQueue, both presently derive from class Queue and can
be only installed on the Csma and PointToPoint netdevices
but not on Wifi and LTE netdevices. The reason is that
Wifi and LTE do not use subclasses of the base class Queue
to implement their netdevice queues.

The ns-3 netdevices do not support any form of flow con-
trol between the network and netdevice layers. Indeed, net-
devices have no means to request the network layer to stop
sending packets and all the packets passed to the netdevices
when their queues are full are inevitably lost.

The base class Queue does not provide easy visibility of
the IP and transport headers. The non trivial access or
modification of the IP header have hindered the addition of
the Explicit Congestion Notification (ECN) support in ns-
3 [8]. The ns-3 ECN support should remove the L2 header
(of different length for a different netdevice) then remove the
L3 header and apply the ECN policy. Also, the non simple
access to the transport header, e.g. TCP, has hindered the
ns-3 support to the recent internet aware queue discs such
as FlowQueue-CoDel (FQ-CoDel). Those queue discs need
access to the 5-tuple of IP protocol, source and destination
IP addresses and port numbers.

3. DESIGN AND IMPLEMENTATION

In this section, we describe the model of the Traffic Con-
trol module, its design and several challenges that we en-
countered during its implementation.

3.1 Model Description

In order to add support for the features described in the
previous section, we decided to introduce a new layer that
sits above the netdevice and below the IP forwarding layer.
The main consequence is that it requires flow control be-
tween the new Traffic Control layer and each of the netde-
vice queues. For each netdevice queue, it is necessary to
keep a status bit which indicates if further packets can be
passed to the netdevice for the transmission. The netdevice
(or the network layer) can stop the passing of further pack-
ets when a resource becomes unavailable (e.g. the netdevice
queue is full) and wake up the upper layer when the resource
becomes available again.

Packets received by the Traffic Control layer for transmis-
sion to a netdevice can be passed to a queue disc to perform
scheduling and policing. A netdevice can have a single (root)
queue disc installed on it. Installing a queue disc on a netde-
vice is not mandatory. If a netdevice does not have a queue
disc installed on it, the Traffic Control layer sends the pack-
ets directly to the netdevice. This is the case, for instance,
of the loopback netdevice.

As in Linux, a queue disc may contain distinct elements:

e queues, which actually store the packets waiting for
transmission;

e classes, which allow to reserve a different treatment to
different packets;
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Figure 1: The send and receive path on internet
enabled nodes after the introduction of the Traffic
Control layer (IPv4 case).

e filters, which determine the queue or class which a
packet is destined to.

Notice that a child queue disc must be attached to every
class and a packet filter is only able to classify packets of a
single protocol. Also, while in Linux some queue discs (e.g.,
FQ-CoDel) use an internal classifier and do not make use
of packet filters, in ns-3 every queue disc including multiple
queues or multiple classes needs an external filter to classify
packets (this is to avoid having the Traffic Control module
depend on other modules such as internet).

The Traffic Control layer interacts with a queue disc in
a simple manner: after requesting to enqueue a packet, the
Traffic Control layer requests the queue disc to “run”, i.e., to
dequeue a set of packets, until a predefined number (“quota”)
of packets is dequeued or the netdevice stops the queue disc.
A netdevice may stop the queue disc when its transmission
queue(s) is/are (almost) full. Also, a netdevice may wake the
queue disc when its transmission queue(s) is/are (almost)
empty. Waking a queue disc is equivalent to make it run.

3.2 Design

The new internet enabled node stack with Traffic Con-
trol is illustrated in Figure 1 (for the IPv4 case, the IPv6
case is similar). A TrafficControlLayer object is aggregated
to every internet enabled node. The new layer intercepts
packets that transit both in the input and output direc-
tions. Currently, scheduling of outgoing packets is sup-
ported, while policing of incoming packets is not supported
(since the equivalent of the Linux ingress queue disc has
not been implemented yet). The IPv{4,6} interfaces uses
the aggregated TrafficControllLayer object to send packets
down, instead of calling NetDevice::Send() directly. After
the analysis and the process of the packet, when the flow con-
trol mechanism allows it, TrafficControlLayer will call the
Send() method on the right netdevice. The IPv{4,6} inter-
faces call the NetDevice::Send() directly only in the case of
packets destined to the loopback interface. To receive pack-
ets, instead, the callback chain, that (in the past) involved

the node protocol handlers and the netdevice, is extended
to involve TrafficControlLayer.

A TrafficControllLayer object holds a reference (smart
pointer) to the objects representing the queue discs installed
on each netdevice of the node. An abstract base class, class
QueueDisc, is subclassed to implement specific queue discs.
A subclass is required to implement the following methods:

® bool DoEnqueue (Ptr<QueueDiscItem> item): enqueue a
packet;

® Ptr<QueueDiscItem> DoDequeue (void): dequeue a packet;

® Ptr<const QueueDiscItem> DoPeek (void) const: peek a
packet;

® bool CheckConfig (void) comst: check if the configura-
tion is correct.

The base class QueueDisc implements:

e methods to add/get a single queue, class or filter and
methods to get the number of installed queues, classes
or filters;

e a Classify method which classifies a packet by process-
ing the list of filters until a filter able to classify the
packet is found;

e methods to extract multiple packets from the queue
disc, while handling transmission (to the netdevice)
failures by requeuing packets.

The base class QueueDisc holds the list of attached queues,
classes and filter by means of three vectors accessible through
attributes (InternalQueueList, QueueDiscClassList and Pack-
etFilterList).

Internal queues are implemented as (subclasses of) Queue
objects. A Queue stores QueueItem objects, which consist
of just a Ptr<Packet>. Since a queue disc has to store at
least the destination address and the protocol number for
each enqueued packet, a new class, QueueDiscItem, is derived
from QueueItem to store such additional information for each
packet. Thus, internal queues are implemented as Queue ob-
jects storing QueueDiscItem objects. Also, there could be
the need to store further information depending on the net-
work layer protocol of the packet. For instance, for IPv4
and IPv6 packets it is needed to separately store the header
and the payload, so that header fields can be manipulated,
e.g., to support ECN. To this end, Ipv4QueueDiscItem and
Ipv6QueueDiscItem are derived from QueueDiscItem to addi-
tionally store the packet header and provide protocol specific
operations such as ECN marking.

Classes are implemented via the QueueDiscClass class,
which just consists of a pointer to the attached queue disc.
Such a pointer is accessible through the queue disc attribute.
Classful queue discs needing to set parameters for their classes
can subclass QueueDiscClass and add the required parame-
ters as attributes.

An abstract base class, PacketFilter, is subclassed to im-
plement specific filters. Subclasses are required to imple-
ment two virtual private pure methods:

® bool CheckProtocol (Ptr<QueueDiscItem> item) const:
check whether the filter is able to classify packets of
the same protocol as the given packet;
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Figure 2: Queue discs in Traffic Control.

® int32_t DoClassify (Ptr<QueueDiscItem> item) const:
actually classify the packet.

PacketFilter provides a public method, Classify, which
first calls CheckProtocol to check that the protocol of the
packet matches the protocol of the filter and then calls Do-
Classify. Specific filters subclassed from PacketFilter should
not be placed in the Traffic Control module but in the mod-
ule corresponding to the protocol of the classified packets.

In Linux, information about the status of a transmission
queue of a netdevice is stored in the struct netdev_queue,
which includes a qdisc field that is mainly used to solve the
following problems:

e if a netdevice transmission queue is (almost) empty,
identify the queue disc to wake;

e if a packet will be enqueued in a given netdevice trans-
mission queue, identify the queue disc which the packet
must be enqueued into.

The latter problem arises because Linux attempts to de-
termine the netdevice transmission queue which a packet will
be enqueued into before passing the packet to a queue disc.
This is done by calling a specific function of the netdevice
driver, if implemented, or by employing fallback mechanisms
(such as hashing of the addresses) otherwise. The identifier

of the selected netdevice transmission queue is stored in the
queue_mapping field of the struct sk_buff, so that both the
queue disc and the netdevice driver can get the same infor-
mation. In ns-3, such identifier is stored in the m_txq member
of the QueueDiscItem class.

Concerning the qdisc field of the struct netdev_queue in
Linux, such a field cannot be similarly stored in a object
NetDeviceQueue, because it would make the network mod-
ule depend on the Traffic Control module. Instead, this
information is stored in the TrafficControlLayer object ag-
gregated to each node. In particular, a TrafficControlLayer
object holds a map which stores, for each netdevice, a vec-
tor of Ptr<QueueDisc>. The size of such a vector is the num-
ber of netdevice transmission queues and each element of
this vector is a pointer to the queue disc to activate when
the above problems occur. The SetRootQueueDiscOnDevice
method takes care of configuring such a map, based on the
wake mode of the root queue disc. If the wake mode of
the root queue disc is WAKE_ROOT, then all the elements of
the vector are pointers to the root queue disc. If the wake
mode of the root queue disc is WAKE_CHILD, then each ele-
ment of the vector is a pointer to a distinct child queue disc.
This requires that the number of child queue discs matches
the number of netdevice queues. It follows that the wake
mode of a classless queue disc must necessarily be WAKE_ROOT.
These two configurations are illustrated in Figure 2.

Finally, we mention that the queue disc installed on a
netdevice, along with the associated packet filters, classes
and internal queues, can be removed by calling the method
DeleteRootQueueDiscOnDevice of the TrafficControlLayer class.

3.3 Implementation Issues

The Ipv{4,6}Interface add the IP header to the packet
before passing the packet to the underlying layer. Receving
a packet with the IP header already attached makes it ineffi-
cient for the Traffic Control layer to manipulate the header,
e.g., to perform ECN markings. For this reason, we changed
the behavior of the internet stack so that the IP header and
the IP payload of a packet are sent separately to the Traffic
Control layer. This required modifications both to IPv4 (L3
protocol, ARP cache, ARP L3 protocol) and IPv6 (L3 pro-
tocol, extensions, ICMPv6, NDisc cache). The IP header is
now added to the packet after the packet is dequeued from
the queue disc.

The Traffic Control module cannot depend on the internet
module, in order to avoid that future, alternative to internet,
L3 modules have to depend on internet (through the depen-
dency on Traffic Control) and to avoid a circular dependency
(given that internet depends on Traffic Control). As a con-
sequence, the Traffic Control layer cannot manipulate 1P
headers, which is necessary, e.g., to perform ECN marking,
or filter packets based on the content of the IP header. As
described earlier, this problem has been solved by enqueu-
ing packets as (pointer to) QueueDiscItem objects which are
actually either Ipv4QueueDiscItem or Ipv6QueueDiscItem Ob-
jects. Likewise, using an abstract PacketFilter class allowed
us to define protocol specific packet filters in the respective
modules instead of in the Traffic Control module.

Other minor issues needed to be addressed. For instance,
incorrect packet drops may be traced because the queue discs
requeues packets whose transmission to the netdevice failed.
Thus, if a netdevice drops a packet because, e.g., its queue
is full, such a packet is traced as lost while it is actually
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requeued by the queue disc and retransmitted as soon as the
netdevice is ready to receive packets again. A workaround
for this issue is to compute the number of packets that have
been actually dropped as the difference between the number
of dropped packets as reported by the netdevice drop trace
and the number of requeued packets.

4. HELPER

A Traffic Control helper has been designed and imple-
mented which allows to build even complex configurations
(classful queue disc with multiple filters and child queue
discs) and install them on a number of netdevices. Also
a queue disc container has been implemented which allows
to store the queue discs associated with the netdevices.

By default, the InternetStackHelper aggregates a Traffic-
ControlLayer object to every node. The Ipv{4,6}Address-
Helper, besides creating a Ipv{4,6}Interface, installs the de-
fault queue disc, PfifoFastQueueDisc, on every netdevice for
which it creates an Ipv{4,6}Interface, unless a queue disc
has been already installed on the netdevice. Thus, netde-
vices get the default queue disc installed even if they are
added to the node after the internet stack has been installed
on the node.

To install a queue disc other than the default one, it is
necessary to install such queue disc before an IP address is
assigned to the netdevice. Alternatively, the default queue
disc can be removed from the netdevice after assigning an
IP address, by using the convenient Uninstall method of the
TrafficControlHelper class, and then installing a different
queue disc on the netdevice. Clearly, it is also possible to
have no queue disc installed on a netdevice.

The TrafficControlHelper class offers multiple methods:

e AddInternalQueues to add an internal Queue object to
the QueueDisc;

e AddPacketFilter to add a PacketFilter to the QueueDisc;

e AddQueueDiscClasses to add a QueueDiscClass to the
QueueDisc.

The QueueDisc: :CheckConfig is called when the first packet
is enqueued in the queue disc to verify that the queue disc
is correctly configured.

A typical usage pattern is to create a Traffic Control helper
object and to configure type and attributes of queue discs,
queues, classes and filters in a top-down manner (i.e., the
root queue disc is defined first). For example, the default
PfifoFastQueueDisc can be configured as follows:

TrafficControlHelper tch;

uint16_t handle = tch.SetRootQueueDisc
("ns3::PfifoFastQueueDisc");

tch.AddInternalQueues (handle, 3,
"ns3::DropTailQueue", "MaxPackets",
UintegerValue (1000));

tch.AddPacketFilter (handle,
"ns3::PfifoFastIpv4PacketFilter");

QueueDiscContainer qdiscs = tch.Install
(devices) ;

With the above configuration, the config path of the root
queue disc installed on the j-th netdevice of the i-th node is

/NodeList/[i]/$ns3::TrafficControlLayer/
RootQueueDiscList/[j]

100 Mb/s 10 Mbjs
0.1 ms 5 ms

N

Figure 3: The network topology used for the valida-
tion tests.

5. RESULTS

5.1 Simulation Settings

For all of the experiments described hereinafter, the sim-
ple three node topology reported in Figure 3 was used. Nodes
A and B are connected by means of a point-to-point link hav-
ing a data rate of 100 Mb/s and a delay of 0.1 ms. Nodes B
and C are connected by means of a point-to-point bottleneck
link having a data rate of 10 Mb/s and a delay of 5 ms. Two
scenarios have been considered, each of which compares the
current ns-3 stack with the new stack featuring the Traffic
Control layer:

e the first scenario aims, to some extent, to validate the
proposed Traffic Control layer by comparing the re-
sults obtained with the current and the new stacks in
similar configurations. In particular, the current stack
is evaluated by using netdevice queues having a size
of 1000 packets, while the new stack is evaluated by
using queue discs having a size of 1000 packets and
netdevice queues having a size of 1 packet;

e the second scenario aims to highlight that queuing at
the netdevice layer has a non negligible impact on the
performance of AQM algorithms like RED and CoDel
and that such an effect cannot be observed with the
current ns-3 stack. The current stack is evaluated by
using netdevice queues having a size of 100 packets,
while the new stack is evaluated by using queue discs
having a size of 1000 packets and netdevice queues
having a size of 100 packets.

An OnOff traffic generator is installed on node A, while a
packet sink is installed on node C. The OnOff data rate is
100 Mb/s in the TCP simulations and 10 Mb/s in the UDP
simulations. The TCP version is New Reno. The packets
size is 1458 bytes. The generated traffic is not marked with
any QoS information. Three configurations are compared.
For the current stack, we consider DropTail, RED and CoDel
as the types of netdevice queues. For the new stack, we con-
sider PfifoFast, RED and CoDel as the types of queue discs
and DropTail as the type of netdevice queues. RED and
CoDel are configured with the same parameter values when
comparing the current and the new stack. RED is configured
by setting the LinkBandwidth and LinkDelay attributes to
the corresponding values of the bottleneck link, MeanPack-
etSize to the packet size, MinTh to 5 packets, MaxTh to 15
packets, the Gentle parameter to true. CoDel is configured
by setting Interval to 100 ms and Target to 5 ms.

5.2 First Scenario

To evaluate the effects of the introduction of the Traffic
Control module, the current stack (with a netdevice queue
size of 1000 packets) is compared to the new stack (with
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Figure 4: Plots of the first scenario.

a netdevice queue size of 1 packet and a queue disc size
of 1000 packets). When evaluating the new stack, the net-
device queue size is set to 1 packet in order to reduce the
netdevice queueing delay, which is outside the control of
the AQM algorithm, while focusing on the effectiveness of
the AQM algorithm and the interactions between the Traffic
Control layer and the netdevice. Note that this is equivalent
to turn off the hardware offload feature and set the kernel
Byte Queue Limits (BQL) to a maximum of one packet in a
real system [4]. This case, occurring in a real system, could
not be currently modeled in ns-3.

The results are reported in Figure 4. As noted below,
when evaluating the new stack, the queue discs take advan-
tage of the opportunity to deliver two packets to the netde-
vices, one immediately transmitted and another queued in
netdevice queue.

In the case of TCP, the presence of the netdevice queue
leads to a minor dropping activity in the queue discs in the
cases of RED and CoDel (Figure 4a). We also noticed that
the time elapsed between two consecutive packet droppings
is higher when using the new stack and the difference be-
tween these values for the current and the new stack grows
with the progress of the simulation. The dropping appears
smoother in the new stack. Also, the Round Trip Time

(RTT), which takes into account the netdevice queueing de-
lay, is slightly greater when adding the Traffic Control layer,
in the cases of RED and CoDel (Figure 4b). The minor
dropping activity with the Traffic Control layer enables to
achieve higher goodput than the current stack, in the cases of
RED and CoDel (Figure 4c). When using PfifoFast/Drop-
tail, there is no noticeable difference between the current
and the new stacks.

In the case of UDP, the presence of the netdevice queue
being able to accommodate one additional packet makes no
difference, because, contrarily to TCP, UDP does not adapt
its sending rate based on the estimated RTT. The dropping
activity remains substantially unchanged in all three cases
(Figure 4d). We note that no dropping activity occurs due
to the netdevice queue (current stack) or the queue disc (new
stack) being full, because the dropping is null in the Pfifo-
Fast/DropTail case. The delay also remains substantially
unchanged in all three cases (Figure 4e). When using RED,
the delay remains unchanged and is equal to about 20 ms;
when using CoDel, the delay remains unchanged, too, and
is equal to about 10 ms. The goodput remains constant in
all three cases (Figure 4f).

The obtained results show that the new stack, in this sce-
nario, behaves very similarly to the current one.
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Figure 5: Plots of the second scenario.

5.3 Second Scenario

The second scenario aims to evaluate the effectiveness of
some AQM algorithms in the common scenario in which
a netdevice queue introduces a non negligible delay. The
queue management algorithm is unaware of the time spent
in the underlying netdevice queue, which can limit the effec-
tiveness of the AQM algorithm. This is the case of all the
netdevices for which BQL is not available and the sizing of
the netdevice queue is difficult. For instance, this is the case
of Wifi netdevices [4]. This case could not be evaluated in
the current ns-3 stack.

The results are reported in Figure 5. In this case, the
queue disc can send downwards 100 packets (queued in the
netdevice queue) in addition to the packet being transmit-
ted.

In the case of TCP, the netdevice queue limits the benefits
of using an AQM algorithm. The dropping activity reflects
the ability to deliver 100 packets to the netdevice. With
the new stack, the dropping activity of the AQM algorithms
(RED and CoDel) is reduced with respect to the current
stack (Figure 5a). Consequently, the limited effectiveness of
the AQM algorithms leads to a higher RTT, with respect
to the current stack, in the cases of RED and CoDel (Fig-

ure 5b). In these cases, the RTT is about 50 ms. Given the
reduced dropping compared to the current stack, the good-
put improves and it is slightly greater than that achieved
by PfifoFast/DropTail (Figure 5¢). When using PfifoFast/-
Droptail, there is no noticeable difference between the cur-
rent and the new stacks.

In the case of UDP, the dropping activity tends to be
slightly less and more smooth with the new stack, in the
cases of RED and CoDel, while remains unchanged in the
PfifoFast/DropTail case (Figure 5d). We note that no drop-
ping activity occurs due to the netdevice queue (current
stack) or the queue disc (new stack) being full. The de-
lay is affected by queueing in the netdevice (Figure 5e). In
this scenario, the netdevice queue introduces a non negligi-
ble delay. With the new stack, the delay is about 140 ms
and 130 ms when using RED and CoDel, respectively. The
goodput remains substantially unchanged in all three cases
(Figure 5f)

The results obtained, in this scenario, show a behavior
which cannot be observed with the current ns-3 stack. Such
behavior is encountered in real systems where the netdevice
queue introduces a non negligible delay that limit the effec-
tiveness of the AQM algorithms.
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6. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the design, implementation
and a preliminary validation of a Traffic Control module for
ns-3. Our code has been integrated into ns-3 starting from
the ns-3.25 release. We believe that our work will allow re-
searchers to carry out more realistic simulations and to eval-
uate AQM schemes more precisely. One of the advantages of
our Traffic Control infrastructure is that AQM schemes can
now be tested on any netdevice, including, e.g., Wifi and
LTE. However, changes to netdevices are still required to
make them Traffic Control aware and support features such
as flow control. Currently, the PointToPoint netdevice is the
only Traffic Control aware netdevice. Work is in progress to
make Wifi support flow control and the other features of the
Traffic Control module.

Future work includes the implementation of additional
queue discs such as FQ-CoDel and packet filters and of ad-
vanced features such as ECN and BQL, which is used by
Linux to dynamically control the size of the netdevice trans-
mission queues. Additionally, we plan to validate our ns-3
implementation of the Traffic Control layer against real sys-
tems, such as Linux, by exploiting the availability of power-
ful tools such as DCE (Direct Code Execution) or container-
based platforms such as Docker.
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ABSTRACT

This paper proposes a new ns-3 model and presents the
evaluation results for Proportional Integral controller En-
hanced (PIE), a recently designed Active Queue Manage-
ment (AQM) mechanism to address the problem of bufferbloat.
The problem of bufferbloat arises due to the presence of large
unmanaged buffers in routers. This leads to high queuing
latency and significantly degrades the performance of time-
sensitive and interactive traffic. AQM mechanisms that aim
to address the problem of bufferbloat try to achieve an op-
timal trade-off between high link utilization and low mean
queue length. PIE is a lightweight AQM mechanism that
tries to achieve the same. To our knowledge, ns-3 network
simulator does not have a model for simulating PIE. Hence,
in this paper, we implement a ns-3 model for PIE, and show
that the results obtained from it are in line with those ob-
tained from the ns-2 model of PIE, implemented by its au-
thors.

CCS Concepts

e Networks — Network simulations; e Computing
methodologies —+ Model development and analysis;

Keywords

ns-3, Proportional Integral controller Enhanced, Active Queue

Management, Bufferbloat

1. INTRODUCTION

Network buffers play a pivotal role in ensuring proper
link utilization and smoothening of internet traffic, espe-
cially when there are intermittent bursts. Over the period
of time, there has been a sharp increase in the size of net-
work buffers due to the reduced memory cost and the need
to handle large amount of bursts. The importance of man-
aging these buffers has long been emphasized by researchers
because unmanaged buffers (or passive buffers) lead to large
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number of packet drops and increase the queuing latency.
Other known issues with passive buffers are: global synchro-
nization [1], lock-out [2] and bufferbloat [3]. Active Queue
Management (AQM) mechanisms are targeted to solve these
issues by continuously monitoring and managing the router
queues. From an initial goal of avoiding congestion to the
recent most focus on controlling queue latency, AQM mech-
anisms have come a long way in the past two decades. One
among the recent AQM mechanisms is Proportional Inte-
gral controller Enhanced (PIE), a lightweight mechanism to
control the mean queue delay to a desired value [4].

In this paper, we make two contributions: (i) propose a
new model for PIE algorithm in ns-3 network simulator [5],
and discuss its design and implementation. The implemen-
tation presented in this paper is based on the PIE model
in ns-2 [6], implemented by the authors of PIE (ii) validate
the proposed ns-3 PIE model by comparing its results to
those obtained from ns-2 PIE model. Moreover, the results
presented in this paper can be easily reproduced (see ap-
pendix).

The rest of this paper is organized as follows: Section 2
provides a brief theoretical overview of the PIE algorithm.
Section 3 discusses the design and implementation of ns-3
PIE model in detail. Section 4 presents the validation of
ns-3 PIE model by comparing the results obtained from it
to those obtained from the ns-2 PIE model. Lastly, Section
5 summarizes and concludes the paper.

2. BACKGROUND OF PIE

PIE algorithm uses the classic Proportional Integral con-
troller [7] to control the queuing latency, and further extends
it by auto-tuning the control parameters based on the level
of congestion. Moreover, PIE combines the advantages of
two AQM mechanisms: Random Early Detection (RED) [1]
and Controlled Delay (CoDel) [8]; it is simple to deploy like
RED and considers queuing delay as a measure of conges-
tion like CoDel. Adding further, it uses the trends in latency
values i.e., increase or decrease in latency, to determine the
level of congestion.

PIE is designed to improve the performance of time-sensitive
and interactive traffic while maintaining high link utilization
and ensuring network stability. The latter is guaranteed by
adapting its control parameters in small increments, thereby
avoiding the large oscillations that lead to instability. PIE
algorithm comprises following four components:

Random Dropping: PIE algorithm randomly drops pack-
ets depending on the value of drop probability, p which is
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calculated at a regular interval. Like RED, drop probability
calculation is a separate component in PIE.

Drop Probability Calculation: Drop probability is
calculated at a regular interval which is denoted by Tup-
date. The parameters involved in the calculation of drop
probability are:

e cur_del: queuing delay during the current sample. It
is estimated using Little’s law [9].

e old_del: queuing delay during the previous sample.
e ref del: desired queuing delay.

e avg_drate: average departure rate of the queue. It is
a separate component in PIE, and its calculation is
discussed later in the paper.

e « and f: scaling factors.

The difference between cur_del and old_del is used to de-
termine whether the queuing delay is increasing or decreas-
ing. The scaling factor « decides how much this impacts the
drop probability.

Similarly, the difference between cur_del and ref_del helps
to determine whether drop probability has stabilized (a sta-
ble state is when cur_del is equal to ref_del). The scaling
factor B decides whether any adjustments are required to
stabilize the drop probability.

Average Departure Rate Estimation: In order to
account for inaccuracies that may arise due to short inter-
mittent bursts of packets, the avg_drate is calculated only
when the queue is in a measurement cycle i.e., when the
amount of data in the queue is greater than a predeter-
mined value, dq threshold. Once a queue has more than
dg_threshold amount of data, the samples of current depar-
ture rate (dq_rate) are obtained and exponentially averaged
with an averaging constant (¢) to determine the avg_drate.
The time interval between two samples of dq_rate is rep-
resented by dg_int and the amount of data that departed
during dq_int is stored in dq_count.

Burst Allowance Calculation: This component of PIE
ensures that short bursts of packets are allowed to pass suc-
cessfully through the buffers. Two parameters are required
to achieve this: (i) burst_allow; to decide whether burst
should be allowed and (ii) maz_burst; maximum time till
which the burst should be allowed. If burst_allow is false,
packets are randomly dropped with probability p; otherwise
they are enqueued. Initially, burst_allow is set to max_burst
and then decremented by Tupdate in every sample. It is
reset to max_burst when drop probability is 0, and cur_del
and old_del are less than half of ref del. max_burst is a user
configurable parameter, similar to the interval parameter in
CoDel or Adaptive RED (ARED) [10].

3. PIE MODEL IN NS-3

This section provides the details of our implementation
of PIE algorithm in ns-3. Figure 1 illustrates the interac-
tion between the base Queue class in ns-3 and the derived
PieQueue class. In our implementation, the entire PIE algo-
rithm is contained in PieQueue and covers all four compo-
nents of PIE described in Section 2.

Queue

m_nPackets
m_nTotalReceivedPackets
m-_nTotalDroppedPackets

Enqueue()
Dequeue()
Peek()
Drop()

PieQueue

m_burstAllowance
m_burstState
m_inMeasurement
m_rtrsEvent

DoEnqueue()
DoDequeue()
CalculateP()
DropEarly()

Figure 1: Class diagram for PIE model in ns-3.
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Figure 2: Interaction between the core methods of
PIE.

The four private methods of class PieQueue, named DoEn-
queue, DoDequeue, DropEarly and CalculateP implement
the required functionality of PIE. DoEnqueue and DoDequeue
are invoked on every packet arrival and departure, respec-
tively. DropEarly is used to decide whether the incoming
packet should be enqueued or dropped, and CalculateP cal-
culates drop probability at a regular interval. Figure 2 de-
picts an interaction diagram between these four methods.
Going forward, we provide the implementation details of ev-
ery PIE component individually.
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3.1 Dropping Packets Randomly

PIE drops the incoming packets randomly during the en-
queue time and hence, this component has been implemented
in DoEnqueue method. The decision to enqueue or drop the
packet is arrived at by invoking DropEarly method, which
returns a boolean value; false indicates enqueue and true
indicates drop. Internally, DropEarly compares the drop
probability, p with a value u, obtained from UniformRan-
domVariable class available in ns-3, and returns false if p is
smaller than wu; else, returns true. Other conditions when
DropEarly method returns false include: (i) cur_del is less
than the half of ref-del and (ii) the queue length is less than
twice the mean packet size.

3.2 Calculation of Drop Probability

This component is implemented in CalculateP method
and it includes: estimating cur_del by using Little’s law,
auto-tuning the scaling factors, calculating drop probabil-
ity, p and updating old_del. All are implemented based on
a set of equations provided in Section IIL.B of [4], respec-
tively. Table 1 provides a list of PIE parameters required to
calculate the drop probability and maps them to their corre-
sponding variable names in ns-3. Among these parameters,
Tupdate and ref_del can be configured by the user whereas
rest of the parameters are internally set and updated by the
PIE algorithm.

Table 1: PIE parameters to calculate p.

PIE parameter | ns-3 variable
Tupdate m_tUpdate
cur_del m_qDelay
old_del m_gDelayOld
ref_del m_qgDelayRef

@ m-a
B8 m_b
avg_drate m_avqDqRate

3.3 Estimation of Average Departure Rate

This component is implemented in DoDequeue method.
As mentioned in Section 2, the avg_drate is calculated only
when the queue is in a measurement cycle. Table 2 provides
a list of PIE parameters required to estimate average depar-
ture rate of a queue and maps them to their corresponding
variable names in ns-3. All listed parameters are internally
set and updated by the PIE algorithm.

Table 2: PIE parameters to estimate avg_drate.

PIE parameter ns-3 variable
glen m_packets / m_bytesInQueue
dq_threshold m_dqThreshold
dq_count m_dqCount
start m_dqgStart
dg_int tmp
€ fixed to 0.5

3.4 Calculation of Burst Allowance

The calculation of burst allowance has a direct impact on
the calculation of drop probability. Thus, the implemen-
tation of this component is coupled with the calculation of

drop probability in CalculateP method. Table 3 provides a
list of PIE parameters required to calculate burst allowance
and maps them to their corresponding variable names in ns-
3. Apart from these parameters, three states of the burst are
also tracked; NO_BURST indicates that the probability based
random dropping should be bypassed, IN_BURST_PROTECTING
indicates that an active burst should be allowed to pass till
burst_allow reaches zero and IN_BURST indicates that ran-
dom dropping should be enabled on the passing burst.

Table 3: PIE parameters to calculate burst_allow.

PIE parameter ns-3 variable
burst_allow m_burstAllowance
maz_burst m_maxBurst
Tupdate m_tUpdate
cur_del m_qgDelay
old_del m_qgDelayOld
ref_del m_qgDelayRef

3.5 Implementation Issues

Besides pro-actively dropping packets, AQM mechanisms
are targeted to work with Explicit Congestion Notification
(ECN) [11] and mark the packets, instead. Our implemen-
tation of PIE does not support marking of packets due to
the unavailability of ECN model in ns-3. Even though there
is an implementation of ECN available for ns-3 [12], it has
not been included in the main distribution yet.

4. MODEL EVALUATION

To evaluate the performance of our PIE implementation,
we first provide a test suite in ns-3. Further, we simulate the
PIE algorithm in ns-3 and ns-2 by configuring scenarios de-
picted in the original paper of PIE [4]. The results obtained
from both the tools are then compared to validate the im-
plementation of our PIE model in ns-3. The performance
metrics used for comparison are:

e instantaneous queue delay,
e throughput, and

e the number of packet drops.

Instructions to reproduce the results presented in this paper
are provided in Appendix.

4.1 Model Verification

As a part of the PIE test suite, we run tests to ensure
the compatibility of our PIE model with ns-3. Simultane-
ously, we also verify for the appropriate setting of attributes
like Queue Limit, parameters o and (3, burst allowance, etc.
We consider a wide range of traffic, ranging from 8 pack-
ets to 3,000,000 packets to confirm the correct functionality
of enqueue and dequeue methods. We also vary the burst
allowance to check if the packet drop behavior changes ac-
cordingly.
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4.2 Functional Verification

This verification is required to confirm that while mini-
mizing the queuing delay, PIE does not affect the overall
link utilization or increase the packet drop rate. We use the
results obtained from the PIE model of ns-2 (implemented
by the authors of PIE) and compare them with the results
obtained from the PIE model of ns-3 to verify the function-
ality of our implementation. The simulation setup details
are listed in Table 4, and are similar to the ones described
in [4] except that, we use TCP Newreno “without” SACK
because ns-3 does not have a model for simulating SACK.
Further, our simulations consist of four different scenarios as
suggested in [4]: (i) light TCP traffic, (ii) heavy TCP traffic,
(iii) mix TCP and UDP traffic, and (iv) bursty UDP traffic.

Table 4: Simulation setup.

Parameter Value
Topology Dumbbell
Bottleneck RTT 100ms
Bottleneck buffer size 200KB
Bottleneck bandwidth 10Mbps
Bottleneck queue PIE
Non-bottleneck RTT 10ms
Non-bottleneck bandwidth | 10Mbps
Non-bottleneck queue DropTail
Mean packet size 1000B
TCP NewReno
ref_del 20ms
Tupdate 30ms
a 0.125Hz
B 1.25Hz
dq_threshold 10KB
maz_burst 100ms
Application start time 0s
Application stop time 99s
Simulation stop time 100s

Scenario 1: Light TCP Traffic
This scenario consists of 5 TCP flows that pass through a
bottleneck link in the dumbbell topology. We start all our
TCP sources at the same time to validate the functionality
of PIE in terms of controlling queue delay around a reference
value and retaining proper link utilization. Other simulation
parameters are same as described in Table 4.

We observe that the results obtained from ns-2 and ns-3
are similar. Fig. 3 presents the instantaneous queue delay
obtained from the PIE model of ns-2 and ns-3. In both ns-2
and ns-3 results, there is a sharp increase in the queue delay
initially because our TCP flows start at the same time and
lead to a sudden burst of traffic. However, we observe that
PIE algorithm successfully brings down the queue delay to a
reference value of 20ms within 1 or 2 seconds and maintains
it performance for the rest of the simulation.

The instantaneous throughput results obtained from ns-
2 and ns-3 are presented in Fig. 4. We observe that link
throughput drops significantly at the beginning of the simu-
lation because PIE aggressively drops packets to bring down
the queue delay from 160ms to a reference value of 20ms (see
Fig. 3). For the rest of the simulation, we observe a TCP

sawtooth behavior sometimes because the number of TCP
senders in this scenario is less and hence, when a few TCP
senders reduce their congestion window (cwnd), the bottle-
neck link utilization reduces.

Scenario 2: Heavy TCP Traffic
This scenario consists of 50 TCP flows that pass through a
bottleneck link in the dumbbell topology. Like in previous
scenario, we start all our TCP sources at the same time
to validate the functionality of PIE in terms of controlling
queue delay and retaining proper link utilization. Other
simulation parameters are same as described in Table 4.

We observe that the results obtained from our PIE model
in ns-3 are similar to those obtained from the PIE model
in ns-2. Fig. 5 presents the instantaneous queue delay ob-
tained from the PIE model of ns-2 and ns-3. We observe
that increasing the amount of traffic has negligible impact
on the performance of PIE as it successfully controls the
queue delay around the reference value, except for the ini-
tial burst caused by starting all the TCP flows at the same
time.

The results for instantaneous throughput obtained from
ns-2 and ns-3 are presented in Fig. 6. Like in Fig. 4, the
link throughput drops at the beginning of the simulation
because of aggressive behavior of PIE. But, for the rest of
the simulation in this scenario, the bottleneck link is fully
utilized because the number of TCP senders are more and
hence, when a few TCP senders reduce their cwnd, other
TCP senders utilize the unused bottleneck link bandwidth.
This also confirms that PIE algorithm does not affect the
bottleneck link utilization while trying to control the queue
delay.

Scenario 3: Mix TCP and UDP Traffic
This scenario consists of 5 TCP and 2 UDP flows that pass
through a bottleneck link in the dumbbell topology. Like in
previous scenarios, all TCP and UDP sources start at the
same time. UDP sources send the data at a rate of 10 Mbps.
Other simulation parameters remain same as described in
Table 4.

Fig. 7 shows that the performance of PIE remains unaf-
fected in the presence of unresponsive UDP traffic, and the
results obtained from our PIE model of ns-3 are inline with
those obtained from the PIE model of ns-2. Similarly, Fig.
8 confirms that PIE successfully regulates the traffic to keep
bottleneck link fully utilized.

Scenario 4: Bursty UDP Traffic
This scenario consists of one UDP flow that passes through
a bottleneck link in the dumbbell topology and generates
the traffic at a rate of 25 Mbps. The main purpose of this
scenario is to functionally verify PIE’s ability to tolerate
bursts by varying the value of max_burst parameter. We
consider two values of maz_burst: (i) Oms, (ii) 100ms while
keeping the burst length fixed to 200ms. The start time of
the flow is 1s and stop time is 1.2s. Mean packet size used
in this scenario is 500B. Other parameters are configured as
mentioned in Table 4.

Fig. 9 shows plots of the number of packet drops as a
function of simulation time, and confirms that the results
obtained from ns-2 and ns-3 are similar. Further, we can ob-
serve that when max_burst is set to Oms, PIE starts dropping
packets from the beginning of the simulation (i.e., 1.04s)
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Figure 9: PIE’s burst control with short lived UDP
traffic.

whereas when max_burst is set to 100ms, it drops the pack-
ets after 1.1s i.e., it allows the burst for 100ms and then
starts dropping the packets.

S. CONCLUSIONS AND FUTURE WORK

In this paper, we present an implementation of PIE AQM
mechanism in ns-3. We provide details for the implemen-
tation of every component of PIE algorithm. Additionally,
we also provide the interactions among different methods
used for implementing PIE. We validate our PIE implemen-
tation in a variety of simulation scenarios that include: light
TCP traffic, heavy TCP traffic, mix TCP and UDP traffic
and bursty UDP traffic. The results show that PIE effec-
tively controls the queuing delay without affecting the bot-
tleneck link utilization. Moreover, we compare the results
obtained from our ns-3 PIE model to those obtained from
ns-2 PIE model, and show that they are similar. Our PIE
implementation is currently under review. We plan to fur-
ther extend our PIE implementation to work with the traffic
control layer which will be available in ns-3 soon, and finally
merge it to the main distribution of ns-3.
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APPENDIX

In this section we provide additional details about reproduc-
ing the simulation scenarios described in this paper.

The latest version of ns-3 at the time of writing this pa-
per is ns-3.24 and the same has been used for implementing
the PIE algorithm. Some initial reviews on our code can be
found here!. For ns-2 simulations, we have used ns-allinone-
2.36.rcl which contains a PIE model implemented by the
authors of PIE. Our source code for ns-2 and ns-3 simula-
tions can be found here?.

Our ns-3 PIE model is implemented in pie-queue {.h,
.cc} and the test suite can be found in pie-queue-test-
suite.cc. Similarly, we modified the existing PIE model

"https://codereview.appspot.com /277610043
https://github.com /mohittahiliani/reproduce-pie-paper
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of ns-2 to enable tracing of queue delay parameter. The
modified code is available in pie {.h, .cc}. Further, the
simulation scripts used to obtain results in this paper are
provided in the directories named ns-2 and ns-3 (see the

github link mentioned above). A README file is also pro-
vided in each directory, which includes stepwise details to
reproduce our simulation results.
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ABSTRACT

Despite the modern advancements in networking, TCP con-
gestion control is still one of the key mechanisms that ensure
the stability of the Internet. Given its principal role, it is
a popular research topic revisited every time TCP and its
variants are studied. Open-source network simulators such
as ns-3 are important tools used by the research community
to gain valuable insight into existing TCP congestion con-
trol algorithms and to develop new variants. However, the
current TCP infrastructure in ns-3 supports only a few con-
gestion control algorithms. As part of the ongoing effort to
extend TCP functionalities in the simulator, we implement
Scalable, Vegas, Veno, and YeAH based on the original lit-
erature and their implementations in the Linux kernel; this
paper presents our implementation details. The paper also
discusses our validation of the added models against the the-
ories to demonstrate their correctness. Through our evalu-
ation, we highlight the key features of each algorithm that
we study.
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eNetworks — Transport protocols; Network simula-
tions;

Keywords
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TCP has been proven to be a crucial component of the In-
ternet due to its ability to sustain its performance (although
not optimal) with the evolution of networking during the
past decades. One of TCP elements that is principal in en-
suring the Internet stability and widely studied with numer-
ous research is its congestion control algorithm. TCP con-
gestion control is revisited on almost every attempt to study
the Internet transport layer. With the modern advance-
ments in networking, comes the emergence of new network
environments such as Gigabit Ethernet or satellite links with
challenging characteristics: high bit-error rate, long propa-
gation delay, high link capacity, and asymmetric channels.
Standard TCP has been enhanced for the Future Internet,
resulting in many variants such as those studied in our pa-
per (Scalable, Vegas, Veno, and YeAH). The current effort to
employ load balancing at the transport layer by incorporat-
ing multi-path feature into TCP producing MPTCP [8] also
requires a thorough understanding of the standard conges-
tion control. This enables design of new algorithms that can
operate efficiently in a more complex system, one with mul-
tiple coexistent, but heterogeneous subflows simultaneously
transferring data through a bottleneck with high congestion
probability.

The study of existing TCP algorithms and the develop-
ment of any new enhancements gain substantial benefits
through the use of open-source network simulators such as
ns-3 [2]. However, the current ns-3 standard release only
consists of NewReno (default), Westwood, Westwood+, Hy-
bla, and HighSpeed congestion control algorithms. In or-
der to extend the supported ns-3 TCP functionalities, we
implement additional protocols, including Scalable, Vegas,
Veno, and YeAH. This paper presents our implementation
details of the added models. The paper also discusses our
validation of these contributions against the original papers
to demonstrate the correctness of the models. Through our
evaluation, we highlight the key features of each algorithm.

The remainder of the paper is organized as follows: Sec-
tion 2 briefly provides the theoretical background of the con-
gestion control algorithms studied in our paper followed by a
short survey on related work. Section 3 explains the imple-
mentations and how the new models interact with the rest of
the TCP framework in ns-3. In Section 4, the correctness of
our implementations is verified. Finally, Section 5 concludes
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our paper with directions for future work.

2. BACKGROUND AND RELATED WORK

This section provides the theoretical background of differ-
ent congestion control algorithms studied in our paper, in-
cluding the standard NewReno, Scalable, Vegas, Veno, and
YeAH, followed by a brief survey of related work.

2.1 TCP Congestion Control Algorithms

TCP congestion control algorithms can be classified into
four categories: loss based, delay based, hybrid, and explicit
notification [5]. Loss-based algorithms treat the occurrence
of a packet loss as an indication of congestion. Delay-based
algorithms infer congestion based on the increasing delay
due to queue build-up when traffic load exceeds network ca-
pacity. Hybrid algorithms take advantage of both loss- and
delay-based mechanisms, while explicit congestion notifica-
tion (ECN) relies on explicit signals from network elements
to learn about congestion. Our paper covers the first three
groups, in that Scalable is a loss-based algorithm, Vegas is
delay-based, and Veno and YeAH are hybrid. The loss-based
NewReno (default TCP in ns-3) is used in our paper as the
baseline for comparison.

Most TCP congestion control variants are derivatives of
the standard defined in RFC 5681 [4], which is known as the
Reno algorithm introduced by Jacobson [13] as a revision of
his original Tahoe [12]. The standard specifies four inter-
twined algorithms that together play a principal role in the
stabilization of the Internet and the prevention of congestion
collapse: slow start, congestion avoidance, fast retransmit,
and fast recovery. The implementation of these algorithms
requires the definition and maintenance of three state vari-
ables: cwnd, rwnd, and ssthresh. Congestion window (cwnd)
determines the amount of data a sender can transmit be-
fore it receives an ACK to prevent network overflow. The
receiver window (rwnd) indicates the amount of data a re-
ceiver is willing to accept. The actual sending window is the
minimum of cwnd and rwnd. Slow start threshold (ssthresh)
provides the transition point between slow start and conges-
tion avoidance phases.

The slow start allows TCP to gradually probe for network
bandwidth when TCP starts its data transmission or after
an expiration of its retransmission timer. The slow start al-
gorithm prevents TCP from suddenly throttling the network
with a large burst of traffic. In addition, slow start initiates
TCP ACK clocking that determines when new data should
be placed into the network to sustain equilibrium during a
connection lifetime. During slow start, cwnd is incremented
by 1 for every new ACK received, resulting in an exponential
increase of the sending rate until a loss happens as shown in
Equation 1.

cwnd = cwnd + 1

(1)

The congestion avoidance algorithm continues to allow
TCP to increase its sending rate (cwnd), but at a slower
speed than when it is in the slow start phase to prevent con-
gestion after the sending rate reaches ssthresh. Specifically,
cwnd is incremented by 1 for every RTT, resulting in a lin-
ear increase over time until the experience of a loss. This is
equivalent to the cwnd modification per Equation 2 upon a
new ACK receipt.

(2)

The fast retransmit algorithm is responsible for promptly
detecting and recovering lost data by observing the number
of received duplicate ACKs (dupACKs), with the arrival of
three dupACKs signifying the loss of a segment. Fast re-
transmit was developed as an alternative to the original re-
transmission timer in detecting packet losses. The fast re-
covery governs data transmission after fast retransmit until
a new ACK arrives informing the recovery of the loss. The
occurrence of a loss requires Reno to halve its slow-start
threshold and sending rate according to Equations 3 and 4,
respectively.

cwnd = cwnd +
cwnd

d
ssthresh = own

®3)

cwnd = ssthresh + 3 (4)

2.1.1 NewReno

NewReno [11] modifies the Reno fast recovery algorithm
explained above by introducing a mechanism for respond-
ing to partial acknowledgments to enhance TCP’s ability by
recovering more efficiently from multiple losses occurring in
a single sending window. NewReno defines an additional
state variable named recover to keep track of the highest
sequence number transmitted before the sender enters fast
retransmit, and it only leaves its fast recovery state upon
the receipt of a full ACK, which is an ACK that acknowl-
edges all sent data up to and including recover. In case a
partial ACK arrives with acknowledgment number less than
recover, the algorithm remains in fast recovery trying to re-
transmit the next in-sequence packet while sending a new
segment if cwnd and rwnd allow. The NewReno algorithm is
an alternate solution for multiple data loss recovery in the
absence of TCP selective acknowledgment (SACK) [16].

2.1.2  Scalable

Scalable (STCP) [14] improves TCP performance for bulk
transfers in high-speed wide-area networks that are charac-
terized by long delay and high link bandwidth, by altering
TCP congestion window update algorithm. The goal is to
shorten TCP recovery time following a transient congestion
by using a different additive increase and multiplicative de-
crease factors from those employed in Reno. While oper-
ating in congestion avoidance phase, STCP increments its
cwnd by 0.01 for every new ACK received until a loss occurs
as shown in Equation 5. On its detection of a congestion, the
ssthresh value is reduced by a factor of 0.125 as in Equation 6
instead of 0.5 as in Reno (Eq. 3).

cwnd = cwnd + 0.01 (5)

ssthresh = cwnd — [0.125 X cwnd] (6)

2.1.3 Vegas

Vegas [6] implements a proactive congestion control al-
gorithm that tries to prevent packet drops by keeping the
backlog at the bottleneck queue small. During a connection
lifetime, Vegas continuously samples the actual throughput
rate and measures the RTT since these metrics reflect the
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network condition when it approaches congestion. The ac-
tual sending rate is computed using Equation 7. The dif-
ference diff (Equation 9) between this throughput value and
the expected throughput calculated in Equation 8 reflects
the number of packets enqueued at the bottleneck, i.e. the
amount of extra data sent because the Vegas sender has
been transmitting at a rate higher than the available net-
work bandwidth. Vegas tries to keep this diff value between
two predefined thresholds, a and S by linearly increasing
and decreasing cwnd during its congestion avoidance phase.
The diff value and another predefined threshold v are used
to determine the transition between slow-start and linear
increase/decrease mode.

cwnd

actual = RTT (7)
cwnd

eXpeCted = m (8)

diff = expected — actual 9)

In Equation 8, BaseRTT represents the minimum RTT
observed during a connection lifetime.

2.1.4 Veno

TCP Veno [9] enhances Reno algorithm to deal with ran-
dom loss in wireless access networks by employing the Ve-
gas algorithm for estimating the current network condition
to identify the actual cause of a loss. Specifically, Veno
does not use the estimated number of packets enqueued
(backlog N calculated in Equation 10) at the bottleneck to
proactively detect congestion, but to distinguish between a
corruption-based loss and a congestion-based loss. When
Veno learns that a loss is non-congestive, instead of halv-
ing ssthresh (Eq. 3), it reduces ssthresh by a smaller amount
using Equation 11. Veno also refines the Reno congestion
avoidance algorithm by increasing the sending rate by 1 ev-
ery 2 RTTs if the backlog exceeds its predefined threshold
B, allowing it to operate longer in the stable state during
which network capacity is fully utilized.

N = actual x (RTT — BaseRTT) = diff x BaseRTT (10)
4
ssthresh = cwnd x g (11)

2.1.5 YeAH

Yet Another Highspeed (YeAH) [5] is a heuristic aimed to
fully exploit the capacity of high bandwidth- x-delay product
(BDP) networks with a small number of induced congestion
events, while trying to balance among various constraints
such as fair competition with standard Reno flows and ro-
bustness to random losses. YeAH-TCP operates between its
Fast and Slow modes. While in the Fast mode when the net-
work link is not yet fully utilized, YeAH increases its cwnd
according to STCP rule (Eq. 5). After full link utilization is
achieved, it switches to Slow mode and behaves as Reno with
a precautionary decongestion algorithm. The transition be-
tween the two modes is determined based on the backlog
at the bottleneck queue calculated in Equation 12 and the
estimated level of network congestion shown in Equation 13.
Note that Equation 12 is basically the same as Equation 10.

cwnd

Q = RTTqucuc xG = (RTTmin - RTTbase) % m

(12)

RTTqueue
RTTbase

To fairly compete with Reno flows, YeAH ensures that it
only executes its decongestion algorithm if its current cwnd
is greater than the cwnd of the competing Reno flows that
it estimates, denoted by countren, in the algorithm.

Upon the receipt of three dupACKs, YeAH adjusts its
ssthresh based on the current value of @ as in Equation 14
if it is not competing with Reno flows. Otherwise, ssthresh
is halved as in Reno.

L= (13)

cwnd cwnd

S I ST

ssthresh = min{max{

2.2 Related Work

There are three ns-3 research works that are most rele-
vant to our paper. The first implements TCP Westwood
and Westwood+ protocols [10] and compares their perfor-
mance against existing variants, including Tahoe, Reno, and
NewReno under some selected network conditions. The sec-
ond presents an implementation of TCP CUBIC [15], which
is the default congestion control algorithm in the Linux ker-
nel. The authors validate their implementation by compar-
ing their model with the one in Linux using Network Simu-
lator Cradle (NSC) and the corresponding implementation
in ns-2 [1]. In the most recent work, Window Scaling and
Timestamp Options together with other congestion control
algorithms including Hybla, Highspeed, BIC, CUBIC, and
Noordwijk are introduced into ns-3 TCP infrastructure [7].

3. IMPLEMENTATIONS

In this section, we first explain the TCP congestion con-
trol classes and their main operations in the new ns-3 TCP
framework. We follow this with the implementation details
of STCP, Vegas, Veno, and YeAH algorithms.

3.1 TCP Congestion Control Classes in ns-3

TCP implementation in ns-3 resides in the Internet mod-
ule and consists of multiple classes interacting with each
other to perform the supported TCP functionalities. The
current standard release contains multiple TCP variants in-
cluding NewReno as the default congestion control algo-
rithm, Hybla, Highspeed, Westwood, and Westwood+. They
are pluggable components implemented as child classes of
TcpNewReno, which is in turn derived from the congestion
control abstract class TcpCongestionOps. The main meth-
ods currently utilized in the base classes are described in ns-
3 documentation [3] and summarized below. An extended
version of this paper with class diagram is available on our
ResiliNets wiki [17] .

e TcpCongestionOps: :GetSsThresh() and
TcpNewReno: : GetSsThresh(): These methods compute
ssthresh after a loss event.

e TcpCongestionOps::IncreaseWindow() and
TcpNewReno: : IncreaseWindow(): These methods de-
termine the current congestion phase by comparing
cwnd and ssthresh and call the corresponding functions.

e TcpNewReno: :SlowStart (): This method adjusts cwnd
during slow-start phase.

http:/ /www.ittc.ku.edu/resilinets /reports/Nguyen-
Gangadhar-Rahman-Sterbenz-2016-extended.pdf
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e TcpNewReno: :CongestionAvoidance(): This method
modifies cwnd during congestion avoidance phase.

e TcpCongestionOps: :PktsAcked(): This method ma-
nipulates timing information carried by received ACKs.

3.2 STCP

TcpScalable is a derived class of TcpNewReno that inher-
its TcpNewReno: : IncreaseWindow() and TcpNewReno: :
SlowStart(). Because STCP modifies NewReno additive
increase and multiplicative decrease factors used in the con-
gestion avoidance and fast retransmit modes, respectively,
TcpScalable replaces TcpNewReno: : CongestionAvoidance ()
and TcpNewReno: :GetSsThresh(). The implementation of
these methods requires three class members to be declared:
m_aiFactor that represents the increase factor with a default
value of 50, m_mdFactor that represents the decrease fac-
tor with a default value of 0.125, and m_ackCnt that keeps
track of the number of segments acknowledged. Following
the Linux implementation of STCP, we use 50 for m_aiFactor
instead of 100 suggested in the literature to account for de-
layed ACKs. Listing 1 shows a code snippet of TcpScal-
able: :CongestionAvoidance().

uint32_t w = std:: min (cwndInSegments,
m_aiFactor);
if (m_ackCnt >= w)

cwndInSegments += m_ackCnt / w; }
cwnd = cwndInSegments * m_segmentSize;

Listing 1: TcpScalable::CongestionAvoidance().

TcpScalable: :GetSsThresh() updates ssthresh after the
receipt of three dupACKs following STCP rule as shown in
Listing 2.

uint32_t ssThresh = std::max (2.0,
cwndInSegments * (1.0 — m_mdFactor)) =
m_segmentSize;

Listing 2: TcpScalable::GetSsThresh().

3.3 Vegas

The key components of our Vegas implementation in
TcpVegas are its RTT sampling performed in TcpVegas: :
PktsAcked() method upon the receipt of an ACK, its cal-
culation of the diff rate based on the RTT measurements
in PktsAcked(), and the implementation of its linear in-
crease/decrease mode. The latter is performed inside TcpVe-
gas: :IncreaseWindow() method, in which a code snippet is
presented in Listing 3.

if (diff > beta)

/% We are going too fast, we need to
slow down by linearly decreasing cwnd
for the next RIT %/
cwnd = cwnd — m_segmentSize; }
else if (diff < alpha)
{
/*x We are going too slow, we need to
speed up by linearly increasing cwnd
for the next RTT x/
cwnd = cwnd + m_segmentSize; }
else

{

/* We are going at the right speed,
* cwnd should not be changed x/ }

Listing 3: TcpVegas::IncreaseWindow ().

3.4 Veno

Similar to Vegas, TcpVeno requires an implementation of
the PktsAcked () method to perform RTT sampling needed
for the calculation of backlog N at the bottleneck queue.
TcpVeno: : IncreaseWindow () modifies cwnd following Veno
additive increase rule as shown in Listing 4, where m_inc is
a boolean variable that is only set to True every other RTT.

if (N < beta)

/* Available bandwidth is not fully
utilized , we increase cwnd by 1 every
RTT as in NewReno */
TcpNewReno :: CongestionAvoidance (tchb,
segmentsAcked); }
else

/% Available bandwidth is fully
utilized , we increase cwnd by 1 every
other RTT =/

if (m_inc)

TcpNewReno:: CongestionAvoidance (
tcb, segmentsAcked); }
else

{

m_inc = true; } }

Listing 4: TcpVeno::IncreaseWindow ().

TcpVeno: :GetSsThresh () implements the Veno multiplica-
tive decrease algorithm as shown in Listing 5.

if (N < beta)

/* Random loss is most likely to have
occurred , we reduce cwnd by only 1/5 x/
return std::max (cwnd * 4 / 5, 2 x
m_segmentSize); }

else

/* Congestion—based loss is most likely
to have occurred, we reduce cwnd by
1/2 as in NewReno x/

return std::max (cwnd / 2, 2 x
m_segmentSize); }

Listing 5: TcpVeno::GetSsThresh().

3.5 YeAH-TCP

TcpYeah also implements the PktsAcked () method to mea-
sure the RTT values required for its calculation of @, which
is used by TcpYeah: : IncreaseWindow () to determine YeAH’s
operation mode (Fast or Slow) during its congestion avoid-
ance phase. A code snippet of TcpYeah: : IncreaseWindow ()
is presented in Listing 6. Following the Linux kernel imple-
mentation of YeAH, we use 80 and 8 as the default values
of the two thresholds maxQ and phy, respectively.

if (Q< maxQ & L < (1 / phy))
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// We are in Fast mode; cwnd is
incremented based on STCP rule

TcpScalable :: CongestionAvoidance (tcb,
segmentsAcked); }
else
{
/% We are in Slow mode, determine if we
need to execute the precautionary
decongestion algorithm x/
if (Q > maxQ && cwndInSegments >
renoCount )
{// Precautionary decongestion
cwndInSegments —= Q;
cwnd = cwndInSegments
m_segmentSize; } }

Listing 6: TcpYeah::IncreaseWindow().

In TcpYeah: :GetSsThresh(), the reduction of cwnd de-
pends on whether YeAH competes with Reno flows as shown
in Listing 7, where the threshold rho is the minimum number
of RTTSs required to consider the presence of Reno flows.

if (doingRenoNow < rho)

{// YeAH does not compete with Reno flows
return std::min (std::max (cwnd / 8,Q),
cwnd / 2); }

else

{// YeAH competes with Reno flows
return std::max (cwnd / 2, 2 x
m_segmentSize); }

Listing 7: Yeah::GetSsThresh().

4. VERIFICATION AND VALIDATION

In addition to writing various unit tests that are manda-
tory in ns-3 to ensure the correctness of our new models be-
fore they can be merged into the standard release, we also
try to simulate them under various network conditions and
validate their performance against the corresponding litera-
ture. Given that the testing scenarios in the original papers
are varied, the exact parameters used are not explicitly de-
scribed in some sources, and to be consistent in our paper,
we use the dumbbell topology illustrated in Figure 1 to fulfill
our validation purpose. The goal of this section is to demon-
strate that despite the simulation topology that we use, our
models still exhibit the key characteristics of the protocols.
Our simulations are conducted with ns-3.24-dev.

4.1 Simulation Topology

At each edge of the dumbbell topology in Figure 1 are two
nodes serving as the sources on one end and the sinks at the
other end. The endpoints communicate through a single bot-
tleneck link that connects two network routers. All traffic
across the network are generated using BulkSendApplica-
tion with an MTU size of 1500 bytes. Drop Tail queues are
used at the bottleneck link with size set to the bandwidth-
x-delay product. Each of the access link that connects an
endpoint with one of the two routers has a bandwidth of 10
Mb/s with a negligible delay of 0.1 ms. The bandwidth and
delay of the bottleneck link are varied depending on the sim-
ulated scenarios. The one-way delay value of this link ranges
from 50 ms to 300 ms to cover the different delays for various
network environments. Given that the protocols studied in

this paper focus on improving the standard NewReno lin-
ear increase and multiplicative decrease phases, we set both
the initial congestion window and slow start threshold to 15
packets to eliminate the slow start phase. Timestamps and
window scaling options are both enabled. The duration of
each simulation is 200 to 400 seconds. We use NewReno as
the baseline for all of our comparisons. Simulation parame-
ters are summarized in Table 1.

TCcP

D TCP sink 1
source 1 =1

TcP bottleneck link

source 2

D TCP sink 2
= =

Figure 1: Simulation topology.

Table 1: Simulation parameters.

Parameter Values
Access link bandwidth 10 Mb/s
Bottleneck link bandwidth varied
Access link delay 0.1 ms
Bottleneck link delay varied
Packet MTU size 1500 B
Delayed ACK count 2 segments
Application type Bulk send application
Queue type Drop tail
Queue size BDP
Simulation time 200 s — 400 s

4.2 Robustness to Random Loss

To study the impact of random packet losses on the con-
gestion control algorithms, we set the bottleneck bandwidth
to 10 Mb/s and delay to 100 ms. Using ns3: :RateErrorModel,
we introduce a packet error rate (PER) of 1072 into the un-
reliable bottleneck link. For a clearer presentation of the
plots, each simulation is run for 200 seconds. We show the
congestion window dynamics of a single connection with one
sender and receiver on each network edge.
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Figure 2: cwnd dynamics of STCP and NewReno.

Figure 2 shows the cwnd of STCP in comparison with
NewReno’s as they evolve over time. Overall, STCP’s cwnd
values are much higher than NewReno’s, resulting in about
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7 times more average throughput than the standard algo-
rithm. As seen in the plot, NewReno takes C/2 seconds
to recover where C' is the cwnd that NewReno reaches fol-
lowing a loss, while the packet loss recovery time for STCP
is independent of the connection’s window size. In addi-
tion, NewReno halves its cwnd upon the receipt of three
dupACKs. STCP, on the other hand, only reduces its win-
dow by bx C' with b equal to 0.125. However, similar to other
loss-based congestion control algorithms that were designed
for high BDP network environments, the high throughput
achieved by STCP comes at a price of higher chance of expe-
riencing multiple retransmission timer timeouts (RTO) due
to its aggressive increasing rule, as shown in the plot at time
between 110 seconds and 160 seconds.
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Figure 3: cwnd dynamics of Vegas and NewReno.
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Figure 4: cwnd dynamics of Veno and NewReno.

Figure 3 shows the cwnd evolution of two versions of Ve-
gas against NewReno. Following the notation used in the
original Vegas paper, Vegas-1,3 sets a to 1 and [ to 3, while
Vegas-2,4 uses 2 and 4 for « and 3, respectively. Overall,
with our setup for this simulation, Vegas-2,4 outperforms
Vegas-1,3, which even has a lower sending rate than the stan-
dard NewReno. Vegas-2,4 is able to achieve a throughput of
4.6 Mb/s, which is 3 times higher than the 1.5 Mb/s through-
put achieved by NewReno. On the other hand, Vegas-1,3 is
unable to utilize the available network capacity, resulting in
a throughput of only 0.7 Mb/s. When we use 1 and 3 for «

and 3 as the default values, most of the time, the calculated
diff rate falls in between the two thresholds, causing Vegas
to remain sending at the same rate without modifying its
cwnd. For Vegas-2,4, the cwnd is increased by 1 segment
size every RTT when the diff value is less than «, resulting
in a linear increase until three dupACKs are received due
to the random packet loss we introduce into the channel,
which causes Vegas to reduce its cwnd by the maximum of
the current ssthresh and 1/4 of congestion window. The lin-
ear increase/decrease mode then governs the sending rate
after the reduction of cwnd. In our other simulations, we
use Vegas-2,4 for a better throughput of Vegas, and this is
also the default Vegas version in the Linux kernel.

Figure 4 shows the cwnd dynamics of Veno and NewReno.
In this case, when the protocols are unable to fully utilize the
available network bandwidth due to packet corruptions, the
Veno increase rule is the same as NewReno. The only dif-
ference is its decreasing algorithm when a loss is detected.
Since Veno is able to distinguish between congestive and
non-congestive losses, for most of the time, Veno only re-
duces its cwnd by 1/5, resulting in a better throughput than
NewReno.
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Figure 5: cwnd dynamics of YeAH and NewReno.

Figure 5 shows the cwnd dynamics of YeAH and NewReno.
The congestion avoidance phase of YeAH is the switching
between its Fast and Slow mode. With our simulation pa-
rameters and the default value of maxQ set to 80 segments,
YeAH does not execute its precautionary decongestion algo-
rithm because @ is less than maxQ although it detects that
it does not compete with “greedy” Reno flows. Thus, the
cwnd is only updated when YeAH enters its Fast mode. The
increment rule during Fast mode follows STCP, but at a
slower speed than the result for STCP presented in Figure 2
because we set m_aiFactor to 100 for YeAH implementation.
Upon the detection of a loss through the receipt of three
dupACKs before the occurrence of several RTOs, YeAH re-
duces its window by 1/8. The RTOs trigger a false alarm
of the presence of Reno flows, which causes YeAH to halve
its window afterward. All of these factors result in a low
throughput of YeAH when comparing with STCP.

4.3 Friendliness to NewReno

For a new TCP congestion control algorithm to be widely
deployed in practice, it must be friendly with the standard
Reno traffic. When it shares the network capacity with Reno
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Figure 7: Instantaneous throughput with second flow using same algorithm.

flows, it should avoid starving the competing flows while be-
ing able to exploit the link bandwidth. So, in our second sce-
nario, we study the friendliness of STCP, Vegas, Veno, and
YeAH. We use the same dumbbell topology, but with two
senders and two receivers at each network edge. Each 400-
second simulation generates two traffic flows; one of them is
NewReno while the other is one of the protocols studied in
the paper. The bottleneck link has a bandwidth of 6 Mb/s
and a delay of 100 ms with no random losses. The NewReno
flow starts 10 seconds later than the other one.

Figure 6 shows the instantaneous throughput of each vari-
ant against NewReno’s. Overall, Veno is the most TCP-
friendly among all algorithms. The aggressive STCP puts
the NewReno flow in starvation with the ratio of STCP
throughput to NewReno throughput being 3.26:0.5 Mb/s.
Basically, STCP is a NewReno derivative with higher in-
crease, but smaller decrease factor than the standard algo-
rithm’s. Vegas exhibits its well-known behavior of a pure
delay based algorithm as being the least aggressive among
all protocols studied in our paper. While NewReno contin-
ues to increase its cwnd until a packet loss occurs, Vegas
executes its proactive window adjustment that tries to send
data at a moderate rate to prevent any packet drops at the
bottleneck queue. As soon as the Reno flow enters the net-
work, Vegas throughput starts to reduce. NewReno quickly
obtains the same throughput as Vegas about 40 seconds af-
ter it starts and continues to steal the network bandwidth
away from Vegas. Unlike Vegas, Veno does not use the ex-
tra number of packets at the bottleneck queue to control
its sending rate. When the available bandwidth is not fully
utilized and no random loss presents, Veno behaves exactly
as NewReno during its additive increase and multiplicative
decrease phase, resulting in a fair share of network capacity
at 200 seconds. Because YeAH does not execute its pre-
cautionary decongestion control algorithm due to the pres-

ence of NewReno flow, it behaves like STCP during conges-
tion avoidance. The ratio of YeAH to NewReno through-
put is 3.47:2.17, which is smaller than the ratio of STCP to
NewReno due to the higher m_aiFactor used in YeAH imple-
mentation as explained previously.

4.4 Intra Fairness

In addition to TCP friendliness, a congestion control algo-
rithm is required to be internally fair: it should be friendly
to itself. We study intra fairness of the protocols by simu-
lating the same scenario as in Section 4.3, except that the
second flow uses the same TCP variant as the first flow.

Figure 7 plots the instantaneous throughput of each vari-
ant in the competition with a second flow. While STCP,
Veno, and YeAH try to converge to a fair share of the net-
work resource after some time, Vegas maintains a constant
gap between the throughput values of its two flows through-
out the whole simulation period. This is because both Ve-
gas flows have the tendency of attempting to prevent any
queue drops. The first flow has the advantage of entering
the network 10 seconds before the other, so it can obtain
more bandwidth. By the time the second flow starts, it just
attempts to utilize the remaining capacity.

4.5 Impact of Channel Delay

In this scenario, we study the impact of link delay on the
performance of our congestion control algorithms. Each sim-
ulation generates a single flow of traffic through the bottle-
neck link that has a bandwidth of 6 Mb/s and delay varying
from 50 ms to 300 ms. No random losses are introduced into
the link.

Figure 8 plots the average throughput achieved by each
algorithm when the bottleneck delay is varied. Overall, all
variants are affected by high link delay, resulting in a de-
creasing of throughput with increasing RTT. STCP exhibits
the most interesting behavior as it initially performs worse
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Figure 8: Average throughput vs. increasing delay.

than Vegas and YeAH, but starts to improve the through-
put at the 150-second delay. Considering Vegas and its vari-
ants (Veno and YeAH), Vegas performs the best while Veno
performs the worst. As explained above, with no random
loss and available bandwidth not fully utilized (the high
delays prevent all protocols from efficiently exploiting net-
work capacity), Veno behaves exactly like NewReno. The
non-aggressive behavior of the pure delay-based Vegas is an
advantage in this case as its sending rate is more stable,
resulting in fewer RT'O occurrences.

5. CONCLUSIONS

We have presented our implementations of STCP, Vegas,
Veno, and YeAH congestion control algorithms in ns-3 and
studies of their behavior under various network conditions
using a variety of metrics (robustness to random loss, TCP
friendliness, intra-protocol fairness, and the impact of link
delay) while verifying the correctness of the models. The
results show that STCP is the most robust to random bit er-
rors, and Vegas outperforms Veno and YeAH in the presence
of non-congestive packet drops. While STCP and YeAH are
the most aggressive algorithms, Vegas is the least when they
have to share the bottleneck link capacity with a standard
NewReno flow. The proactive congestion control mecha-
nism that Vegas employs also prevents it from achieving
intra fairness, although the same mechanism helps Vegas to
better sustain its throughput than other protocols in a high
propagation delay network.

For future work, we plan to study these variants under ad-
ditional network scenarios to have a more complete picture
of the algorithms’ characteristics. We are also interested in
experimenting with different values for the thresholds used
in our implementations as we have seen from Section 4 that
the different default values for a and g affect Vegas perfor-
mance. In addition, we plan to continue to contribute to the
ns-3 community with more TCP models, inclduing CTCP.

6. ACKNOWLEDGMENTS

We would like to acknowledge the members of the Resi-
liNets research group for their useful discussions and sugges-
tions that helped us with this implementation. We would
like to thank the anonymous reviewers for their helpful feed-
back on this paper. Finally, we would also like to thank
Tom Henderson, Natale Patriciello, and the ns-3 develop-
ment team for their timely responsiveness to guidance and
issues with the ns-3 platform. This work was funded in part
by NSF grant CNS-1219028 (Resilient Network Design for
Massive Failures and Attacks).

7.
1]

2]
3]

[4]

7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

REFERENCES

The Network Simulator: ns-2.
http://www.isi.edu/nsnam/ns, December 2007.

The ns-3 Network Simulator. http://www.nsnam.org,
July 2009.

The ns-3 Network Simulator Doxygen Documentation.
http://www.nsnam.org/doxygen, July 2012.

M. Allman, V. Paxson, and E. Blanton. TCP
Congestion Control. RFC 5681 (Draft Standard),
Sept. 2009.

A. Baiocchi, A. P. Castellani, and F. Vacirca.
YeAH-TCP: yet another highspeed TCP. In Proc.
PFLDnet, volume 7, pages 37-42, 2007.

L. S. Brakmo, S. W. O’Malley, and L. L. Peterson.
TCP Vegas: new techniques for congestion detection
and avoidance. SIGCOMM Comput. Commun. Rev.,
24(4):24-35, 1994,

M. Casoni, C. A. Grazia, M. Klapez, and

N. Patriciello. Implementation and Validation of TCP
Options and Congestion Control Algorithms for ns-3.
In Proceedings of the 2015 Workshop on ns-3, WNS3
'15, pages 112-119, New York, NY, USA, 2015. ACM.
A. Ford, C. Raiciu, M. Handley, and O. Bonaventure.
TCP Extensions for Multipath Operation with
Multiple Addresses. RFC 6824 (Experimental), Jan.
2013.

C. P. Fu and S. Liew. TCP Veno: TCP enhancement
for transmission over wireless access networks. IEEE
Journal on Selected Areas in Communications
(JSAC), 21(2):216-228, 2003.

S. Gangadhar, T. A. N. Nguyen, G. Umapathi, and
J. P. Sterbenz. TCP Westwood Protocol
Implementation in ns-3. In Proceedings of the ICST
SIMUTools Workshop on ns-3 (WNS8), Cannes,
France, March 2013.

T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida.
The NewReno Modification to TCP’s Fast Recovery
Algorithm. RFC 6582 (Standards Track), 2012.

V. Jacobson. Congestion avoidance and control.
SIGCOMM Comput. Commun. Rev., 18(4):314-329,
1988.

V. Jacobson. Modified TCP congestion avoidance
algorithm, April 1990.

T. Kelly. Scalable TCP: Improving performance in
highspeed wide area networks. ACM SIGCOMM
Computer Communication Review (CCR), 33(2):83,
Apr. 2003.

B. Levasseur, M. Claypool, and R. Kinicki. A TCP
CUBIC Implementation in ns-3. In Proceedings of the
2014 Workshop on ns-3, WNS3 '14, pages 3:1-3:8,
New York, NY, USA, 2014. ACM.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow.
TCP Selective Acknowledgment Options. RFC 2018
(Proposed Standard), Oct. 1996.

T. A. N. Nguyen, S. Gangadhar, M. M. Rahman, and
J. P. Sterbenz. An Implementation of Scalable, Vegas,
Veno, and YeAH Congestion Control Algorithms in
ns-3 (extended). ITTC Technical Report
ITTC-FY2016-TR-69921-04, The University of
Kansas, Lawrence, KS, April 2016.

24



Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

TCP Evaluation Suite for ns-3

Dharmendra Kumar Mishra, Pranav Vankar and Mohit P. Tahiliani
Wireless Information Networking Group (WiNG)
NITK Surathkal, Mangalore, India, 575025
dharmendra.nitk@gmail.com, pranavvankar442@gmail.com, tahiliani@nitk.ac.in

ABSTRACT

Congestion Control (CC) algorithms are essential to quickly
restore the network performance back to stable whenever
congestion occurs. A majority of the existing CC algo-
rithms are implemented at the transport layer, mostly cou-
pled with TCP. Over the past three decades, CC algorithms
have incrementally evolved, resulting in many extensions of
TCP. A thorough evaluation of a new TCP extension is a
huge task. Hence, the Internet Congestion Control Research
Group (ICCRG) has proposed a common TCP evaluation
suite that helps researchers to gain an initial insight into
the working of their proposed TCP extension.

This paper presents an implementation of the TCP eval-
uation suite in ns-3, that automates the simulation setup,
topology creation, traffic generation, execution, and results
collection. We also describe the internals of our implemen-
tation and demonstrate its usage for evaluating the perfor-
mance of five TCP extensions available in ns-3, by automati-
cally setting up the following simulation scenarios: (i) single
and multiple bottleneck topologies, (ii) varying bottleneck
bandwidth, (iii) varying bottleneck RTT and (iv) varying
the number of long flows.

CCS Concepts

eNetworks — Transport protocols; Network simula-
tions; eComputing methodologies — Simulation envi-
ronments;

Keywords
ns-3, Congestion Control, TCP Evaluation

1. INTRODUCTION

Congestion Control (CC) algorithms implemented in TCP
play a vital role in ensuring proper functioning of the Inter-
net. Over the period of time, as CC algorithms continue to
evolve, a lot of new TCP extensions are frequently proposed.
Evaluating the performance of new TCP extensions is not
trivial because there is a lack of agreed set of performance
metrics, because of which, each study highlights only a par-
ticular aspect of TCP while leaving some of the most impor-
tant ones. Due to a high volume of research being carried
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out in this area, there is a need for systematically screening
every new TCP extension and identifying the suitable ones
for detailed evaluation.

To address this problem, the Internet Congestion Control
Research Group (ICCRG) [1] provides information regarding
a common test suite for evaluating new TCP extensions.
This suite is not framed to ezhaustively evaluate a new TCP
extension; instead, it focuses to help the researchers to easily
and quickly derive initial results of their work.

In this paper, we present an implementation of TCP eval-
uation suite in ns-3 [2]. We also highlight some additions
that were required in existing models of ns-3 to success-
fully implement the suite. Our implementation can be used
to automate the work cycle from setting up the simulation
environment to collecting results. Moreover, our implemen-
tation provides support for automatically configuring many
Internet-like scenarios such as scenarios with single and mul-
tiple bottleneck links, scenarios with different traffic mix and
scenarios with varying bottleneck attributes. Nevertheless,
our implementation is only a part of the evaluation suite de-
signed by ICCRG [1]. Implementing the entire suite requires
significant changes to existing models in ns-3 and is beyond
the scope of this paper.

The rest of this paper is organized as follows: Section 2
provides a review of similar benchmark proposals for TCP
evaluation and their implementation details. Section 3 dis-
cusses the design choices and our proposed architecture of
TCP evaluation suite in ns-3. Section 4 demonstrates the us-
age of our suite to compare existing TCP extensions in ns-3
by automatically configuring different simulation scenarios.
Lastly, Section 5 summarizes and concludes the paper.

2. RELATED WORK

The design of TCP evaluation suite dates back from a pa-
per in 2007 to an internet draft in 2014, as shown in Table
1. All proposals have been implemented using ns-2 [7]. Al-
though both, proposal 1 and 3, are targeted towards evaluat-
ing High-Speed TCPs, each adopts a different approach for
implementing it. Proposal 4 is an enhancement of proposal
2, both being the internet drafts. Moreover, they adopt a
similar approach for implementation in ns-2; in fact, pro-
posal 4 extends the implementation of proposal 2.

The design and implementation of TCP evaluation suite
presented in this paper is partially adopted from the ap-
proach followed by proposals 2 and 4. We found that the
implementation of TCP evaluation suite in ns-3 is relatively
simpler, thanks to the topology helper classes provided.

3. DESIGN AND IMPLEMENTATION

TCP evaluation suite is implemented as a separate model
called tcp-eval, under the src directory in ns-3. This sec-
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Table 1: Different implementations of TCP Evalua-
tion Suite.

No. | Details of proposals Tools used

1 Shimonishi, Hideyuki, M. Y.
Sanadidi, and Tutomu Murase.
“Assessing Interactions among
Legacy and High-Speed TCPs.”
PFLDnet 2007 (2007).

ns-2. Download
link [3]

2 Internet draft: “An NS-2 TCP
Evaluation Tool”, Gang wang,
Yong Xia, David Harrison (April
2007)

ns-2. Code was
released in two
versions. Down-
load link of sec-
ond version [4]

ns-2. Download
link [5]

3 Li, Yee-Ting, Douglas Leith, and
Robert N. Shorten. “Experi-
mental evaluation of TCP pro-
tocols for high-speed networks.”
Networking, IEEE/ACM Trans-
actions on 15.5 (2007): 1109-1122.

ns-2. Download
link [6]

4 Internet draft: “Common TCP
Evaluation Suite”, D. Hayes, D.
Ros, L. Andrew, S. Floyd (July
2014)

tion describes the core design decisions made for the develop-
ment of the TCP evaluation suite model, along with several
additions that were required in the existing models of ns-3.
Table 2 highlights different elements that are supported in
our implementation of tcp-eval. Figure 1 depicts the in-
teractions among different classes implemented in tcp-eval,
and with other existing classes of ns-3.

Table 2: Different elements supported by tcp-eval.

Topologies Types of traffic | Performance
metrics

Dumbbell (single | Long-lived FTP | Aggregate  link

bottleneck) (TCP) utilization

Parking lot (mul- | Streaming video | Mean queue

tiple bottleneck) | (UDP) length
Interactive voice | Packet drop rate
(UDP)

The tcp-eval model comprises three primary classes:

3.1 ConfigureTopology

This class is used for configuring the simulation param-
eters such as setting bottleneck bandwidth and bottleneck
delay, setting the parameters for Random Early Detection
(RED) algorithm [8], etc. It acts as a base class to configure
parameters for dumbbell and parking lot topologies.

3.2 CreateTraffic

This class generates different traffic patterns for the sim-
ulation, as listed in Table 2.

Long-lived FTP traffic: It runs on top of TCP and is
generated by using the BulkSend Application provided in
ns-3. It generates a stream of packets, each of size 512 bytes,
till the end of simulation. Moreover, this traffic can be gen-
erated in forward, reverse and cross directions. Cross FTP

traffic is generated only for parking lot topology.

Streaming video traffic: It runs on top of UDP and is
generated by using the On0ff Application provided in ns-3.
The default packet size is set to 840 bytes and the streaming
rate is set to a default value of 640 Kbps [4]. The packet
size and streaming rate can be explicitly configured by the
user through command line arguments. This traffic can be
generated in forward and reverse directions.

Interactive voice traffic: This traffic also runs on top
of UDP and is generated by using the On0ff Application
provided in ns-3. The default packet size is set to 172 bytes
and the data rate is set to a default value of 64 Kbps [4].
This is a two-way traffic between the caller and the callee.

3.3 EvalStats

This class is used for collecting post simulation results and
store them in files, which are later used to plot graphs. All
the performance metrics listed in Table 2 are calculated in
this class.

Aggregate Link Utilization: This metric specifies the
ratio of current network traffic to the maximum available
bandwidth. It is important for a new TCP extension to
maximize the bandwidth utilization, while ensuring fairness
with other TCP flows.

Mean Queue Length: Maintaining a steady queue length
is important to avoid variations in delay. Large variations
in delay affect the user perceived application behaviour, es-
pecially in the case of interactive voice applications and
streaming applications. This metric is important to anal-
yse the stability of a new TCP extension.

Average Packet Drop Rate: This metric is crucial to
analyse the performance of TCP in the presence of bursty
background traffic. High packet drop rate hurts the perfor-
mance of time sensitive traffic like Google search, etc.

3.4 Other Classes in tcp-eval

TrafficParameters: This class provides setters and getters
for configuring the traffic related parameters like:

e Number of forward FTP flows
e Number of reverse FTP flows

e Number of cross FTP flows

Number of two-way voice flows
e Number of forward streaming flows
e Number of reverse streaming flows

DumbbellTopology: This class sets up a dumbbell sim-
ulation scenario, and is placed in a file called dumbbell-
topology.cc in tcp-eval model. First, it creates a dumb-
bell topology by invoking PointToPointDumbbellHelper class
which is already available in ns-3. Next, it obtains the
simulation parameters from ConfigureTopology, generates
the traffic using CreateTraffic, and finally calculates and
stores the results using EvalStats. Figure 2 shows user’s
interaction with tcp-eval model for simulating dumbbell
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PointToPointDumbbellHelper

ConfigureTopology

m_leftLeaf

m_bottleneckBandwidth

PointToPointParkingLotHelper

m_rightLeaf m_nBottienecks
m_rttp
GetlLeft {) SetTopologyParameters ()

Assignipv4Addresses ()

SetRedParameters ()

m_routers
m_crossSources
m_crossSinks

GetCrossSourcelpvdAddress ()
Assignipvd4Addresses ()

T

DumbbeliTopology ParkingLotTopology
-------- m_crossLinkDelay
CreateDumbbellTopology () CreateParkingLotTopology ()
Vi W W

TrafficParameters CreateTraffic EvalStats

m_nFwdFtpFlows m_randVar m_totalUtilization
m_nVoiceFlows m_totalDroppedPacketRate
m_nFwdStreamingFlows m_totalQueueSize
SetNumOfVoiceFlows () CreateFwdFtpTraffic () ComputeMetrics ()

SetStreamingRate ()
SetStreamingPacketSize ()

CreateVoiceTraffic ()
CreateFwdStreaming Traffic ()

AggregateOverinterval ()
AggregateQueue ()

Figure 1: Class diagram of TCP Evaluation Suite in ns-3.

1
drive-dumbbell.cc traffic-parameters.cc
3
configure-topology.cc
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| |
dumbbell-topology.cCle— — — — — — —| | point-to-point-dumbbell.cc |
I I
| e o e e e e 1
7
5
create-traffic.cc
6
eval-stats.cc
Legends

D Core modules

8
D Configuration module

Figure 2: User interaction diagram of tcp-eval for dumbbell scenario.

i:] Supporting module

scenarios. drive-dumbbell.cc creates an object of Traf-
ficParameters, before creating an object of this class.

parking lot scenarios, even without the tcp-eval model.

The functionality of ParkingLotTopology class is equiva-
lent to that of DumbbellTopology, except that it is respon-
sible to set up a parking lot simulation scenario. This class
is placed in a file called parking-lot-topology.cc in tcp-
eval model. Figure 3 shows user’s interaction with tcp-eval
model for simulating parking lot scenarios. drive-parking-
lot.cc creates an object of TrafficParameters, before cre-
ating an object of this class.

ParkingLotTopology: While implementing this class we
found that a helper for creating multiple bottleneck topol-
ogy, like parking lot topology, is not available in ns-3. Hence,
we implemented a class called PointToPointParkingLotHelper
and included it in the point-to-point-layout model of ns-
3. This helper is a stand-alone implementation and not
closely linked to tcp-eval model. It can be used to simulate
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1

drive-parking-lot.cc —| traffic-parameters.cc
3
configure-topology.cc
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parking-lot-topology.cC ¢~ ——————— | point-to-point-parking-lot.ccl
| |
' e ___ I
7
5
create-traffic.cc
6
eval-stats.cc
Legends
D Core modules
8
D Configuration module

r Supporting module

Figure 3: User interaction diagram of tcp-eval for parking lot scenario.

4. NS-3 TCP EVALUATION USING TCP-EVAL

In this section, we compare the performance of five TCP
extensions available in ns-3 by using our implementation of
the suite. We provide a set of six shell scripts that run a se-
ries of simulations by varying the following three parameters:
bottleneck bandwidth, bottleneck RTT and the number of
forward FTP flows in two topologies: dumbbell and parking
lot. Once the results are collected in respective files for ev-
ery scenario, shell scripts convert those textual results into
graphical form. Further, a PDF file containing graphs for
each scenario is created automatically if LaTex is installed.

As suggested by ICCRG, we randomize the start times of
all traffic flows to model the real traffic behaviour. More-
over, our implementation provides support for simulating
RED algorithm [8] at bottleneck routers. We have used the
traditional droptail mechanism in our scenarios, however, to
keep the analysis simple. The bottleneck routers can be eas-
ily configured to use RED algorithm by passing command
line arguments. No further changes are required.

Table 3: Default simulation parameters.

Simulation Parameters Values
Bottleneck bandwidth 10 Mbps
Round Trip Time 80 ms
Number of forward FTP flows 5
Number of reverse FTP flows 5
Number of voice flows 5
Number of forward streaming flows 5
Number of reverse streaming flows 5
Simulation time 100 seconds
Streaming rate 640 Kbps
Streaming packet size 840 bytes

4.1 Varying Bottleneck Bandwidth

In this scenario, the bottleneck bandwidth is varied from
1 Mbps to 100 Mbps. Other parameters shown in Table 3
remain fixed. For every TCP extension, simulation runs till
the specified duration for a collection of bandwidth values.

Varying the bottleneck bandwidth provides an estimate
of TCP’s performance under the same traffic load, but dif-
ferent bottleneck capacity. Figure 4 and 5 depict the simu-
lation results obtained by varying bottleneck bandwidth in
dumbbell and parking lot topologies, respectively. It can
be observed that the bottleneck link occupancy in both the
figures is close to 100% for all TCP extensions when the
bandwidth values are relatively low, and it gradually de-
creases with the increase in the bandwidth. It is important
for any TCP extension to adapt its congestion window to
ensure that bottleneck bandwidth remains fully utilized.

4.2 Varying RTT

In real internet scenarios, the hosts can be distributed over
the large span of geographical area. Such hosts can be mod-
elled by varying the propagation delays between the nodes
in the simulation environment. Hence, in this scenario, we
change the RTT values between the bottleneck routers from
10 milliseconds to 1 second, while keeping other values fixed
as shown in Table 3.

Figure 6 and 7 depict the simulation results obtained by
varying the RTT values between the bottleneck routers in
dumbbell and parking lot topology. The results clearly de-
pict the performance of each TCP extension, and how its
behavior differs from other TCP extensions.

4.3 Varying the Number of FTP Flows

This scenario is designed to test the performance of TCP
extensions by varying the traffic load. We run a series of
simulations by varying the number of forward FTP flows
from 1 to 100. Other simulation parameters listed in Ta-
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Link Utilization with Bandwidth Changes
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Figure 4: TCP performance results for changing
bandwidth for dumbbell topology.
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ble 3 remain fixed. Figure 8 and 9 depict the simulation
results obtained for dumbbell and parking lot topology re-
spectively. The bottleneck link utilization remains close to
90% for small number of FTP flows, and as expected, grad-
ually increases with the increase in traffic load.

All graphs presented for this scenario and previous two
scenarios are automatically generated using the shell scripts.
Instructions to reproduce these results are provided in the
Appendix.

5. CONCLUSION AND FUTURE WORK

In this paper, we present an implementation of TCP eval-
uation suite as a separate model in ns-3. We provide the
implementation details for every class and highlight the in-
teractions among them. Additionally, we demonstrate the
usage of our TCP evaluation model by comparing five TCP
extensions available in ns-3 in benchmark scenarios stated in
the internet drafts. The results are collected for aggregate
link utilization, mean queue length and packet drop rate,
and the statistics are generated in textual and graphical for-
mats.

We plan to further extend our implementation and add
other features suggested in the draft of ICCRG. We have
completed porting Tmix traffic generator to work with the
latest version of ns-3. The next step would be to integrate it
with our implementation and provide flexibility in terms of
using realistic traffic patterns for evaluating the performance
of TCP extensions.
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APPENDIX

In this section, we provide additional details about repro-
ducing the simulation scenarios described in this paper.

The latest version of ns-3 at the time of writing this paper
is ns-3.24 and the same has been used for implementing the
TCP evaluation suite. The modified ns-3.24 that contains
our TCP evaluation suite implementation can be obtained
from here'. All the results obtained from our suite get stored
in a new directory called tcp-eval-results in ns-3.24 di-
rectory.

TCP evaluation suite is implemented in src/tcp-eval
and its the classes can be found at src/tcp-eval/model.
The helper for point to point parking lot topology
is located at src/point-to-point-layout/model/point-
to-point-parking-lot{.h, .cc}. drive-dumbbell.cc
and drive-parking-lot.cc are available at src/tcp-
eval/examples. Several command line arguments can be
passed to both; more details can be found in the respective
files. Lastly, six shell scripts are provided in ns-3.24 direc-
tory that reproduce the graphs presented in Section 4 of this
paper. Each shell script produces three graphs, and if La-
Tex is found installed on the machine, it places the graphs
in respective PDF files on successful completion.

"https://github.com/dharmendra-mishra/wns3-2016
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ABSTRACT

The world is witnessing the rapid evolution of communica-
tion technologies, and meeting current market requirements
is virtually impossible with traditional network architec-
tures. Many works point to the use of Software Defined
Networking (SDN) paradigm and the OpenFlow protocol as
enabling solutions to overcome current limitations. Despite
the fact that the Network Simulator 3 (ns-3) already has
a module that supports OpenFlow simulations, it is pos-
sible to note that the available implementation provides a
very outdated protocol version (0.8.9). As many new ma-
jor features were introduced up to the latest versions, it is
interesting to have some of them available for use. In this
context, this paper presents the 0FSwitch13: a module to
enhance the ns-3 with OpenFlow 1.3 technology support.
This module provides both an OpenFlow 1.3 switch device
and a controller application interface. Details about mod-
ule design and implementation are discussed throughout this
paper, and a case study scenario is used to illustrate some
of the available OFSwitch13 module features.

CCS Concepts

eComputing methodologies — Model development
and analysis; Simulation support systems; Simula-
tion environments; Discrete-event simulation; eNetworks
— Network simulations;

Keywords
SDN, OpenFlow 1.3, Network Simulator 3 (ns-3)

1. INTRODUCTION

As stated by the Open Networking Foundation (ONF),
network operators are facing challenges as the number of
connected devices increases [14]. Meeting current market
requirements is virtually impossible with traditional network
architectures, where the vendor dependence and lack of open
interfaces limit the ability of network operators to tailor the
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network to their individual environments. In this context,
SDN has emerged as a network architecture where network
control is decoupled from packet forwarding, enabling more
agile and flexible networks [14]. The OpenFlow protocol [12]
is the first standard technology designed specifically for SDN
and has been adopted by a number of networking vendors
and by the research community.

As is known, it is very costly to deploy a complete testbed
containing multiple networked computers, routers, switches
and data links to validate and verify a certain network proto-
col or a specific network algorithm. In these circumstances,
software tools save a lot of money and time in accomplish-
ing this task. When talking about OpenFlow, the straight-
forward software tool is Mininet [6]. It is an open-source
emulator that provides a quick and easy way to prototype
and evaluate SDN networks. It creates user-space or kernel
full-compliant OpenFlow switches, allowing the use of real
controllers and softwares. However, Mininet suffers from the
maximum link bandwidth limited by hardware processing
power and no time dilation, which prevents it from carry-
ing out emulations when computational demand is higher
than the real-time processing capacity. When it comes to
the experimentation of the OpenFlow protocol in wireless
networks, these shortcomings become more worrisome [3].

A reasonable choice would be using a simulated environ-
ment to this end, such as the Network Simulator 3 (ns-3) [7].
It is a discrete-event simulator, targeted primarily for re-
search and educational use, and distributed as free software.
ns-8 simulations can model OpenFlow switches via the ex-
isting OpenFlow module [4], which relies on an external
OpenFlow switch library linked to the simulator. This mod-
ule implements a very outdated OpenFlow protocol (ver-
sion 0.8.9 [16]), and too many new major features were in-
troduced up to the latest versions. Among these new fea-
tures, it is possible to cite multiple tables in the pipeline,
group tables, virtual ports, extensible match support, IPv6
support, per flow meters, auxiliary connections, and support
for multiple controllers.

To overcome this shortage, this paper introduces the 0F-
Switch13 module for ns-3 [8]. This module provides sup-
port for OpenFlow protocol version 1.3 [17], bringing both
a switch device and a controller application interface to the
simulator, as depicted in Figure 1. With this module, it is
possible to interconnect ns-3 nodes to send and receive traf-
fic using the existing Carrier Sense Multiple Access (CSMA)
network devices and channels. To orchestrate the network,
the controller application interface can be extended to im-
plement any desired control logic. The communication be-
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Figure 1: The OFSwitch13 module overview.

tween the controller and the switch is realized over standard
ns-3 protocol stack, devices and channels. The module also
relies on an external library (ofsoftswitchi13) [11] that pro-
vides the switch datapath implementation, the dpctl utility
tool used to create OpenFlow messages from command lines
with simple syntax, and the code for converting OpenFlow
messages to and from wire format.

The remainder of this paper describes the SDN paradigm,
the module design and implementation, and an illustrative
case study scenario. It is organized as follows: Section 2
examines the SDN paradigm and the OpenFlow protocol
while Section 3 describes the module design and implemen-
tation. Section 4 presents a case study scenario that is used
to demonstrate some of the OpenFlow 1.3 module features.
Section 5 concludes by summarizing the work described in
this paper and looking toward future endeavors.

2. SOFTWARE-DEFINED NETWORKING

Software Defined Networking (SDN) is a paradigm that
has been designed to enable more agile and cost-effective
networks. In the SDN architecture, the control and data
planes are decoupled, network intelligence and state are log-
ically centralized, and the underlying network infrastructure
is abstracted from the applications. By centralizing network
intelligence, decision-making is facilitated based on a global
(or domain) view of the network, as opposed to today’s net-
works, which are built on an autonomous system view where
nodes are unaware of the overall state of the network [15].
To better understand this paradigm, Subsection 2.1 presents
the classical SDN architecture while Subsection 2.2 describes
some of the main OpenFlow protocol features.

2.1 SDN Architecture

The ONF is taking the lead in SDN standardization and
has defined the architecture depicted in Figure 2. This SDN
architecture consists of three distinct layers that are acces-
sible through open Application Program Interfaces (APIs):

e The Application Layer consists of the end-user applica-
tions that consume the SDN communications services.
The boundary between the Application Layer and the
Control Layer is traversed by the northbound API.

APPLICATION LAYER

Business Applications

CONTROL LAYER Network

Services

Network Services .
C OpenFlow

INFRASTRUCTURE
LAYER

Figure 2: The ONF/SDN architecture [15].

e The Control Layer provides the consolidated control
functionality that supervises the network forwarding
behavior through the southbound API.

e The Infrastructure Layer consists of the simplified net-
work elements and devices that provide packet switch-
ing and forwarding.

Network intelligence is centralized at control layer, in a
software-based controller. The controller can maintain a
network global view, providing real-time information, fast
optimized routing, etc. By centralizing network state, SDN
gives network managers the flexibility to configure, man-
age, secure, and optimize network resources via dynamic,
automated SDN programs. Such programmability enables
network configuration to be automated, influenced by the
rapid adoption of the cloud. By providing open APIs for ap-
plications to interact with the network, SDN networks can
achieve unprecedented innovation and differentiation [15].
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2.2 OpenFlow Protocol

The OpenFlow protocol [12] is the first southbound inter-
face designed for SDN networks, providing high-performance
and granular traffic control across multiple network devices
from different vendors. OpenFlow uses the concept of flows
to identify network traffic based on predefined match rules
that can be programmed by the SDN controller. The Open-
Flow protocol is implemented on both sides of the interface
between infrastructure devices and the SDN control soft-
ware. The current specification covers the components and
the basic functions of the switch, and the OpenFlow proto-
col to manage a switch from a remote controller. Figure 3
shows the main components of an OpenFlow switch.

The OpenFlow channel is the interface that connects each
OpenFlow switch to an OpenFlow controller. Through this
interface, the controller configures and manages the switch,
receives events and sends packets out to the network. The
control channel of the switch may support a single Open-
Flow channel with a single controller, or multiple OpenFlow
channels enabling multiple controllers to share management
of the switch. All OpenFlow channel messages must be for-
matted according to the OpenFlow protocol. The OpenFlow
channel is usually encrypted using Transport Layer Secu-
rity (TLS), but may be run directly over plain Transmission
Control Protocol (TCP).

The OpenFlow switch datapath consists of a pipeline of
one or more flow tables, which perform packet lookups and
forwarding, based on flow entries configured by the con-
troller. Each flow entry consists of OpenFlow eXtensible
Match (OXM) Type-Length-Value (TLV) fields to identify
the flow, counters, and a set of instructions to apply to
matching packets. The matching starts at the first pipeline
flow table, following order of priority, and may continue to
next tables. If a matching entry is found, the instructions
associated with the specific flow entry are applied. Instruc-
tions can modify the pipeline processing, sending the packet
to one of the following tables, or can contain actions that
describe packet forwarding, packet modification, and group
table processing. The most common action is the output,
which forwards the packet to an output port. Another ac-
tion is the group action, which directs the packets to another
switch datapath element that is called group table. Groups
represent sets of actions for flooding, as well as more complex
forwarding semantics. The switch can also send unmatched
packets to the controller, or simply drop the packet.

Controller Controller

S
N\ OpenFlow Protocol
OpenFlow Switch

L/ _Z ! Datapath
OpenFlow | | OpenFlow :
Channel Channel : Group | | Meter
Control Channel | Table | | Table
Port Port
Flow Flow Flow
Table [ 7| Table [> """ Table
Port Broali Port
ipeline

Figure 3: The OpenFlow switch architecture [18].

Another OpenFlow switch datapath element is the meter
table, consisted of entries defining per-flow meters. Per-flow
meters enable OpenFlow to implement rate-limiting, a sim-
ple Quality of Service (QoS) operation constraining a set of
flows to a chosen bandwidth. A switch can also optionally
have one or more queues attached to a specific output port,
and in many cases, those two features can be combined to
implement complex work conserving QoS frameworks, such
as Differentiated Services (DiffServ). The reader can re-
fer to the OpenFlow Switch specification [18] for details on
the protocol operation. Note that the Appendix B of the
specification contains the release notes highlighting the main
changes between major versions of the OpenFlow protocol.

3. OFSWITCHI3 MODULE

This section describes the OFSwitch13 module design and
implementation. Subsection 3.1 brings the description of
the switch device, followed by the controller application in-
terface at Subsection 3.2. The OpenFlow channel, used for
interconnecting the controller to the switches, is described
in Subsection 3.3. The external ofsoftswitchi13 library is
presented in Subsection 3.4, and the current module limi-
tations are listed in Subsection 3.5. For details in classes
design, please refer to the code API documentation [9].

3.1 OpenFlow 1.3 Switch Device

The OpenFlow 1.3 switch device (hereinafter referred to as
switch device) can be used to interconnect ns-3 nodes using
the existing CSMA network devices and channels. Figure 4
shows the internal switch device structure. The switch de-
vice takes a collection of ports, each one associated with a
ns-3 underlying CSMA network device. It acts as the inter-
mediary between the ports, receiving a packet from one port
and forwarding it to another. The OpenFlow switch data-
path implementation (flow tables, group table, and meter
table) is provided by the ofsoftswitch13 library. For this
reason, packets entering the switch are sent to the library
for OpenFlow pipeline processing before being forwarded to
the correct output port(s). Messages received from the con-
troller are also sent to the library for datapath configuration.

A packet enters the switch device through a new Open-
Flow receive callback in the CSMA network device that is
invoked for packets successfully received by the network de-
vice. This is a promiscuous receive callback, but in contrast
to a promiscuous protocol handler, the packet sent to this
callback also includes the Ethernet header, which is neces-
sary for pipeline processing. This is the only required modi-
fication to the ns-3 source code for OFSwitch13 integration.

OpenFlow 1.3 switch device

Output packet
(from the library)

Input packet
(to the library)
A

OpenFlow channel
(controller communication)

OpenFlow port ofsoftswitch13
library
CSMA network device
OpenFlow OpenFlow —r_r X |\ ___
queue RX callback <):| ’W ’W \W w

OpenFlow ports

Figure 4: The OFSwitch13 switch device structure.
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Figure 5: The OFSwitchl3 queue structure.

To model OpenFlow hardware operations, the 0FSwitch13
module considers the concept of virtual Ternary Content-
Addressable Memory (TCAM) to estimate the average flow
table search time [4]. This search time is used to postpone
the pipeline processing at the library. To provide a more
realistic delay, the module considers that real OpenFlow im-
plementations use sophisticated search algorithms for packet
classification and matching. As most of these algorithms are
based on binary search trees, the equation k*logs(n) is used
for delay estimation, where k is the constant attribute set
to the time for a single TCAM hardware operation and n is
the current number of flow entries in the pipeline.

Packets coming back from the library for output action
are sent to the OpenFlow queue. An OpenFlow switch pro-
vides limited QoS support by means of a simple queuing
mechanism, where one or more queues can attach to a port
and be used to map flow entries on it. The OpenFlow queue
extends the ns-3 queue interface to allow compatibility with
the CSMA network devices. Figure 5 shows its internal
structure. It can hold a collection of other queues, each one
identified by a unique ID. Packets sent to the OpenFlow
queue for transmission are expected to carry a queue tag,
which is used to identify the internal queue that will hold
the packet. Then, the output scheduling algorithm decides
from which queue to get packets during dequeue procedures.

3.2 OpenFlow 1.3 Controller Interface

The OpenFlow 1.3 controller application interface (here-
inafter referred to as controller interface) provides the basic
functionalities for controller implementation. As illustrated
in Figure 6, it can manage a collection of OpenFlow switches.
For constructing OpenFlow messages and sending them to
the switches, the controller interface relies on the dpctl util-
ity provided by the ofsoftswitch13 library. With a simple
command-line syntax, this utility can be used to add flows
to the pipeline, query for switch features and status, and
change other configurations. For OpenFlow messages com-
ing from the switches, the internal collection of handlers are
used to deal with the different types of messages. Some han-
dlers can not be modified, as they must behave as already
implemented. Other handlers can be overridden by derived
controllers to implement the desired control logic.

The OFSwitch13 module brings a learning controller that
implements the controller interface to work as a learning
bridge device without the Spanning Tree Protocol (STP)
implementation [5]. It instructs OpenFlow switches to for-
ward incoming unicast frames from one port to the correct
output port whenever possible (as in the BridgeNetDevice).

OpenFlow 1.3 controller application interface

() ofsoftswitch13
m dpctl commands | library
“flow-mod add ...” / f x\

OpenFlow channel
(switch communication)

Internal handlers

. J

Figure 6: The OFSwitchl3 controller structure.

3.3 OpenFlow Channel

The OpenFlow channel is the interface that connects each
switch to an OpenFlow controller. Through this interface,
the controller configures and manages the switch, receives
events from the switch, and sends packets out the switch. In
the OFSwitch13 module, the controller interface can manage
the switch devices remotely over a separate dedicated net-
work (out-of-band controller connection). It is possible to
use standard ms-8 channels and devices to create an Open-
Flow channel using a single shared channel or individual
connections between the controller interface and each switch
device. This model provides realistic control plane connec-
tions, including communication delay and, optionally, error
models. It also simplifies the OpenFlow protocol analysis,
as the ms-8 tracing subsystem can be used for outputting
PCAP files to be read by third-party software.

Considering that the OpenFlow messages traversing the
OpenFlow channel follow the standard wire format, it is
also possible to use the ns-3 TapBridge to allow an exter-
nal OpenFlow controller, running on the local machine, to
interact with the simulated environment over this control
channel. This would allow the use of real controller imple-
mentations to manage simulated OpenFlow switches. How-
ever, note that this use case has not been validated yet.

3.4 ofsoftswitch13 Library

The OFSwitch13 module was designed to work together
with the ofsoftswitch13 user-space software switch com-
piled as a library [2, 10]. The original implementation was
forked and slightly modified for proper integration with the
OFSwitch13 module [11]. The code does not modify the dat-
apath implementation, which is currently maintained in the
original repository and regularly synced to the modified one.

Figure 7 shows the library architecture and highlights the
OFSwitch13 interconnection points. The library provides
the complete OpenFlow switch datapath implementation,
including input and output ports, the flow-table pipeline for
packet matching, the group table, and the meter table. It
also provides the OFLib library that is used for converting in-
ternal messages to and from OpenFlow 1.3 wire format, and
the dpctl utility for converting text commands into internal
messages. The NetBee library [13] is used for packet decod-
ing and parsing, based on the NetPDL XML-based language
for packet header description [19].

For proper ns-8 integration, the switch ports were set
aside, and the library was modified to receive and send pack-
ets directly to the ns-3 environment. To accomplish this
task, all library functions related to sending and receiving
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Figure 7: The ofsoftswitch13 library architecture (adapted from [2]).

packets over ports were annotated as weak symbols, allowing
the module to override them at link time. This same strat-
egy was used for overriding time-related functions, ensuring
time consistency between the library and the simulator. The
integration also relies on callbacks, which are used by the li-
brary to notify the module about internal packet events,
like packets dropped by meter bands, packet content mod-
ifications by pipeline instructions, packets cloned by group
actions, and buffered packets sent to the controller.

One potential performance drawback is the conversion
between the ns-3 packet representation and the serialized
packet buffer used by the library. This is even more criti-
cal for empty packets, as ns-3 provides optimized internal
representation for them. To improve the performance, when
a packet is sent to the library for pipeline processing, the
module keeps track of its original ns-3 packet. For pack-
ets processed by the pipeline without content changes, the
switch device forwards the original ns-3 packet to the spec-
ified output port. In the face of content changes, the switch
device creates a new ns-3 packet with the modified content
(eventually copying all packet and byte tags from the origi-
nal packet to the new one). This approach is more expensive
than the previous one but is far more simple than identifying
which changes were performed in the packet by the library
to modify the original ns-3 packets.

3.5 Current Limitations

These are the major limitations of the available module
in current implementation:

e Platform support: The module implementation is only
available for GNU/Linux platforms, and must be com-
piled with the GNU Compiler Collection (GCC).

Auziliary connections: Only a single connection be-
tween the switch and the controller is available. Ac-
cording to the OpenFlow specifications, auxiliary con-
nections could be created by the switch and are helpful
to improve the switch processing performance and ex-
ploit the parallelism of most switch implementations.

o Multiple controllers: Each switch can only be man-
aged by a single controller. According to the Open-
Flow specifications, having multiple controllers would
improve reliability as the switch can continue to oper-
ate if one controller or controller connection fails.

OpenFlow channel encryption: The switch and con-
troller may communicate through a TLS connection to
provide authentication and encryption of the connec-
tion. However, as there is no straightforward TLS sup-
port on ns-3, the OpenFlow channel is implemented
over a plain TCP connection, without encryption.

In-band control: The OpenFlow controller manages
the switches remotely over a separate dedicated net-
work (out-of-band controller connection), as the switch
port representing the switch’s local networking stack
and its management stack is not implemented.

4. CASE STUDY SCENARIO

The network topology proposed for this case study sce-
nario is described in Subsection 4.1, and it is used to demon-
strate how some of the OpenFlow 1.3 module features can
be exercised to improve network management. Specifically,
a link aggregation, a load balancing, and QoS per-flow me-
tering solutions for this network topology are detailed in
Subsections 4.2, 4.3, and 4.4, respectively.

4.1 Network Topology

Figure 8 shows the network topology used for this case
study scenario. It represents the internal network of an orga-
nization, where servers and client nodes are located far from
each other (e.g. in separated buildings). The “long-distance”
connection between the sites is via two links of 10 Mbps each,
while all the other local connections are 100 Mbps. On the
server side, the OpenFlow border switch acts as a border
router element: it is responsible for handling connection re-
quests coming from the clients, and redirecting them to the
appropriate internal server. On the client side, the Open-
Flow client switch is used to interconnect all clients in a star
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Figure 8: The network topology for the case study scenario.

topology. Between these two switches, there is the OpenFlow
aggregation switch, located at the border of the client side
and used to provide long-distance improved communication.
The default learning controller is used to manage the client
switch, whereas the new OpenFlow QoS controller is used
to manage the other two switches. The latter controller im-
plements some QoS functionalities exploiting OpenFlow 1.3
features, as described in the following subsections.

For this case study scenario, a total number of 4 client
nodes was used during simulations. Each client opens a
single TCP connection with one of the 2 available servers,
and sends packets in uplink direction as much as possible,
trying to fill the available bandwidth. TCP segment size is
set to 1400 bytes and the length of the simulation is set to
100 seconds. The ns-& simulation scripts for this case study
scenario are available under the examples/qos-controller/
directory at the OFSwitch13 source code.

4.2 Link Aggregation

The link aggregation can be used to combine multiple net-
work connections in parallel in order to increase throughput
beyond what a single connection could sustain. To imple-
ment the link aggregation, the OpenFlow group table can
be used to split the traffic.

OpenFlow groups were introduced in OpenFlow 1.1 as a
way to perform more complex operations on packets that
cannot be defined within a flow alone. Each group receives
packets as input and performs any OpenFlow actions on
these packets. The power of a group is that it contains sep-
arate lists of actions, and each individual action list is re-
ferred to as an OpenFlow bucket. There are different types
of groups, and the select group type can be used to per-
form link aggregation. Each bucket in a select group has
an assigned weight, and each packet that enters the group
is sent to a single bucket. The bucket selection algorithm
is undefined and is dependent on the switch’s implementa-
tion (the ofsoftswitch13 library implements the weighted
round robin algorithm).

In the network topology, the QoS controller configures
both the border and the aggregation switches to perform link
aggregation over the two narrowband long-distance connec-
tions, providing a 20 Mbps connection between servers and
clients. Each OpenFlow bucket has the same weight in the
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Figure 9: Link aggregation mechanism.

select group, so the load is evenly distributed over the links.

Figure 9 shows the network aggregated throughput, mea-
sured at the aggregation switch, for simulations with and
without link aggregation. In the case of no link aggregation,
only one of the two long-distance links are used, limiting
the available bandwidth to 10 Mbps. With the link aggre-
gation, TCP connections can fill all the available bandwidth
for both links, coming to 20 Mbps throughput.

4.3 Load Balancing

A load balancing mechanism can be used to distribute
workloads across multiple servers. Among many goals, it
aims to optimize resource use and avoid overload of any
single server. One of the most commonly used applications
of load balancing is to provide a single Internet service from
multiple servers, sometimes known as a server farm.

In the network topology, the OpenFlow QoS controller
configures the border switch to listen for new requests on
the Internet Protocol (IP) and port where external clients
connect to access the servers. The switch forwards the new
request to the controller, which will decide which of the in-
ternal servers must take care of this connection. Then, it
install the match rules into border switch to forward the
subsequent packets from the same connection directly to the
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Figure 10: Server load balancing mechanism.

chosen server. All this happen without the client ever know-
ing about the internal separation of functions.

To implement this load balancing mechanism, the QoS
controller depends on the extensible match support intro-
duced in OpenFlow 1.2. Prior versions of the OpenFlow
specification used a static fixed length structure to specify
matches, which prevents flexible expression of matches and
prevents the inclusion of new match fields. The extensible
match support allows the switch to match Address Resolu-
tion Protocol (ARP) request messages looking for the server
IP address and redirect them to the controller, which will
create the ARP reply message and send it back to the net-
work. The set-field action is used by the border switch to
rewrite packet headers, replacing source/destinations IP ad-
dresses for packets leaving/entering the server farm.

Figure 10 compares the server load balancing in terms
of data arrival throughput from uplink TCP connections.
In this case study, the QoS controller uses the round robin
algorithm to perform load balancing among the two available
servers, redirecting half of TCP connections to each one.
The link aggregation was enabled during the simulation.

4.4 Per-Flow Meters

OpenFlow meter table, introduced in OpenFlow 1.3, en-
ables the switch to implement various simple QoS opera-
tions. A meter measures the rate of packets assigned to it
and enables controlling the rate of those packets. The meter
triggers a meter band if the packet rate or byte rate passing
through the meter exceeds a predefined threshold. If the
meter band drops the packet, it is called a rate limiter.

To illustrate the meter table usage, the OpenFlow QoS
controller can optionally limit each connection throughput
to a predefined data rate threshold, installing meter rules at
the border switch along with the load balancing flow entries.

Figure 11 compares the smoothed throughput of all 4 TCP
connections for simulations with and without per-flow meter
entries. The link aggregation was enabled during the sim-
ulation, and all meter bands were configured to limit each
individual connections at 1 Mbps. It is possible to observe
that TCP connection throughput grows up to the available
bandwidth for simulations without per-flow meter entries
(near 5 Mbps for each connection). With meter entries, the
throughput of all TCP connections is limited to 1 Mbps, re-
gardless of the available bandwidth.
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Figure 11: Per-flow metering mechanism.

S. CONCLUSIONS AND FUTURE WORK

SDN represents an important paradigm shift that will en-
able future networks to be more simple and flexible. Tar-
geting scientific research in this area, this paper introduced
the OFSwitch13: a module to enhance the ns-& simula-
tor with OpenFlow 1.3 technology support. The module
design and implementation were presented in the paper,
highlighting the available features and listing current lim-
itations. The 0FSwitch13 module is available as free soft-
ware, and its usage requires minimal changes to the ns-3
source code. Interested users can visit the project homepage
at http://www.lrc.ic.unicamp.br/ofswitch13, which contains
links to the code repository and module documentation.

A case study scenario was used to illustrate some of the
OpenFlow 1.3 module features: group tables used to per-
form link aggregation; extensible match support used for
fine-grained packet matching, server farm implementation,
and load balancing solution; and meter table used for im-
plementing QoS rate-limiting mechanism. The 0OFSwitchi13
module was also used for ns-3 simulations integrating Open-
Flow and Long Term Evolution (LTE) networks, which are
described in another work of the same authors [1].

As future work, it is intended to improve the module with
new features to overcome current limitations. Especial at-
tention will be dedicated to the support of auxiliary con-
nections and multiple controllers, which are considered as
important features of OpenFlow version 1.3. In addition, it
is intended to create a set of ns-3 tests to endorse the mod-
ule validation, and also to evaluate its scalability in terms
of the size of the simulated topology.

As OFSwitch13 is free software, contributions can also be
made by interested developers and users. Note that the
module offers support to OpenFlow 1.3 as a result of the of-
softswitch13 library datapath implemented version. Once
the library is updated to a newer OpenFlow protocol ver-
sion (the latest version is 1.5.1 [18]), it would be possible to
update de module to support the recent features.
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ABSTRACT

In the context of network simulation, directly executing the
code for new protocols and applications can add a sense of
realism to the simulation while saving time that would have
been required for development and validation of sufficiently
representative models. Direct Code Execution (DCE) in ns-
3 provides this functionality for debugging and analyzing
new network applications directly in simulation. However,
DCE currently requires that these applications are executed
as native code that has been compiled from source code writ-
ten in C or C++. This work exploits the fact that languages
such as Python and Java launch their applications through
native code that ultimately translates their source code into
instructions that the underlying system understands. The
efforts of this study provide a framework for allowing appli-
cations written in Python or Java to be executed within the
simulated environment similarly to how DCE currently al-
lows applications written in C or C++ to be introduced into
simulation. This framework is tested on multiple simulated
topologies for a variety of applications, and its overhead is
examined in the context of memory usage and wallclock ex-
ecution time.

CCS Concepts

eComputing methodologies — Discrete-event simu-
lation; Simulation evaluation; eSoftware and its engi-
neering — Object oriented languages;

Keywords

Network Simulation, ns-3, Direct Code Execution, Program-
ming Languages, C/C++, Java, Python

1. INTRODUCTION

The field of network communications is constantly evolv-
ing and expanding with the introduction of new technologies
and protocols aimed at providing greater quality, resiliency,
and security to the vast amounts of data traversing current
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networks. In this ever-changing field, modeling and sim-
ulation provide an avenue for examining the traffic within
new or existing network topologies. In simulating a net-
work, characteristics and metrics of the topology may be
derived without interfering with the existing framework or
incurring an immediate hardware or software cost. Popular
network simulators such as ns-3 are effective tools for study-
ing these network behaviors. However, adequate coverage of
new network programs and protocols within simulation re-
quires that models of these new applications are ported by
developers into the simulators. These efforts require a sig-
nificant amount of time in terms of simply writing the code
but also in testing its validity against real-world behaviors.
Instead, a mechanism for directly deploying real-world net-
work applications within a simulated environment can al-
leviate these issues while supplying an air of realism. The
Direct Code Execution (DCE) framework in ns-3 can deliver
this functionality. It allows real-world protocols and applica-
tions to be installed and executed directly on the simulated
nodes of a topology created in ns-3.

The concept of direct code execution is primarily con-
strained to network applications and protocols written in
the programming language of the employed simulator. For
DCE in ns-3 and some similar network simulators, prior
work has demonstrated their effective use for applications
written in C or C++, which is conveniently accomplished
because these simulators are written in C++. The Python-
based flow simulator fs includes extensions that can connect
it to external applications simply because those applications
are also written in Python[l]. The efforts of this work in-
troduce a framework for allowing DCE to accommodate and
execute code for network applications written in languages
other than C or C++, specifically Python and Java. The
executables that launch applications written in these lan-
guages are simply native code binaries that are built from
C/C++ source code. This work exploits this fact in order
to launch Python and Java applications within the DCE en-
vironment, allowing their source code to be interpreted line
by line from within the context of the simulation. In this
way, entirely new sets of network applications can be con-
veniently examined through the DCE environment without
source code modification or the need for a translated port
to the languages that DCE understands.

The remainder of this paper is organized into the follow-
ing sections. Section 2 briefly describes ns-3 and provides
detailed information on DCE. The programming languages
C/C++, Python, and Java as well as considerations required
for their usage in DCE are discussed in section 3. Section
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4 details the applications, topologies, and experiments ex-
amined for each programming language. The results are ex-
amined and discussed in section 5. Section 6 outlines prior
work and use cases of DCE and similar libraries. Section
7 concludes the work and provides potential directions for
future research.

2. NETWORK SIMULATOR NS-3

This work uses the network simulator ns-3, a popular dis-
crete event network simulator written in C++. It is used
for a variety of educational and research-oriented purposes
within the field of computer networking. ns-3 provides sim-
ulation and emulation frameworks for developing network
topologies and analyzing their network characteristics. In
creating network simulations, users of ns-3 have the choice
of accessing its libraries by programming in C++ or through
Python bindings. Stock or user-created applications may be
installed on the nodes of simulated topologies in ns-3, gener-
ating and monitoring packets within the simulated network.
Data may be collected from the artifacts of these network
simulations in order to better understand and gauge the per-
formance of existing and proposed real-world networks.

2.1 Direct Code Execution

DCE is an additional module for ns-3 that can test real-
world network applications within the ns-3 environment. It
provides the capability to execute userspace and kernelspace
network protocols and applications directly within an ns-3
simulation to provide additional realism to the simulated
network. These real-world applications are installed on spec-
ified nodes within the simulated topology in a similar man-
ner to the stock applications in the ns-3 baseline. The ap-
plications themselves typically require no modifications, but
they must be rebuilt such that they can act as dynamic bi-
naries rather than static executables. This procedure simply
requires that some additional configuration flags are added
to the compile and link instructions. Once installed on a
node, the applications can interact with the rest of the sim-
ulated network through either the ns-3 simulated network
stack or the Linux kernel stack. DCE interacts with the in-
stalled binary similarly to how an actual operating system
would. DCE applications are executed within the simulated
environment under a single-process model such that all ap-
plications inside their own simulated processes are managed
by a single process on the underlying system. This single-
process approach provides a convenient debugging alterna-
tive to complex, distributed debuggers.

DCE is composed of three layers: the core, the kernel, and
a POSIX layer. The core layer provides virtualization mech-
anisms to coordinate the actions of the simulated processes
within the context of the ns-3 event scheduler. At this layer,
global variables are loaded in physical pages on the under-
lying single process to be shared by the multiple simulated
processes. Threads, stack space, and the heap for each par-
ticular process are managed in the core layer as well. The
kernel layer connects the real-world Linux TCP/IP stack to
the simulated physical layer (L2) of ns-3. Traffic from the in-
stalled applications can then traverse this hybrid simulated
stack from application-level socket function calls.

The POSIX layer of DCE replaces the real GNU C Li-
brary (glibc), the standard library for the C programming
language. Calls to glibc functions are caught by this layer
to determine how they should be handled. In many cases,

DCE does not need to manage the interactions and results of
certain glibc calls within the context of the simulation. Calls
to functions in string.h or math.h, for example, can sim-
ply be passed to the glibc of the underlying system. Time-
related functions return information about the simulated
time rather than the wallclock time. Socket function calls
are effectively wrappers to the simulated sockets in relation
to the ns-3 stack. Subprocess and threading functions are
also handled by this layer to appropriately manage their con-
texts. Local files are managed in the POSIX layer relative
to specific file space for each node running DCE-configured
applications. The file space holds all output generated by
the application and may also be used to hold any runtime
file dependencies|2, 3, 4].

3. PROGRAMMING LANGUAGES

This section provides a simple historical and technical
overview of the programming languages examined in this
work. It begins by examining the languages for which DCE
was originally intended to be compatible, namely C and
C++. Through extensions for DCE performed in this work,
two additional languages have been made operable within
the ns-3/DCE environment. The interpreted language Python
and its predominant runtime library CPython are described.
Additionally, the Java programming language and its run-
time environment, the Java Virtual Machine (JVM), are dis-
cussed.

3.1 C/C++

The C programming language is considered one of the
first mainstream, general-purpose programming languages.
It was developed by Dennis Ritchie from 1969 to 1973 at Bell
Telephone Laboratories (now AT&T Bell Labs). It is a stat-
ically typed, procedural language that has been adopted for
use in a variety of systems. It is one of the “lower” high level
languages available with many newer languages, including
C++, Java, and Python, employing it as an intermediary at
some point in their respective compiler/runtime pipelines.
As stated in section 2.1, the standard library for the C pro-
gramming language, referred to as glibc, provides a substan-
tial level of functionality. String and memory manipulation,
mathematical functions, system time information, file and
socket handling, parallel processing, and a variety of other
capabilities are available in glibc.

The C++ programming language, created by Bjarne Strous-
trup at AT&T Bell Labs in 1983, was originally intended as
an object-oriented enhancement to C. In addition to simi-
lar features as C, C++ enables class creation complete with
abstraction, encapsulation, inheritance, and polymorphism,
templates, and operator overloading. A standard API is pro-
vided by the C++ Standard Library, which glibc currently
supports. Both C and C++ are compiled to native code that
an underlying computer system can recognize equivalently.
This characteristic results in them being effectively identical
from the viewpoint of the DCE environment.

To operate as DCE applications, programs written in C or
C++ must be recompiled such that DCE recognizes them as
dynamic libraries rather than static executables. In this way,
DCE can load the main function of a particular program as if
it was just another addressed symbol in the memory space of
the dynamically loaded library. Compiling the source code
into position-independent code with the fPIC flag allows it
to be loaded similarly to a shared object library. Subse-

42



Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

quently, linking with pie produces a position-independent
executable and rdynamic ensures that all of its symbols will
be loaded into the dynamic symbol table. Regarding oper-
ability within DCE, the addition of these flags to the compile
and link steps is generally the only modification required for
building a target application for execution in DCE. However,
additional considerations may be necessary if certain func-
tions used by the application are not currently implemented
in the glibc coverage of the DCE baseline.

3.2 Python

The Python programming language is a multi-paradigm,
general-purpose, high-level language that aims to be more
readable than other general-purpose, object-oriented lan-
guages, such as C++ or Java. It was developed by Guido
van Rossum and initially released in 1991. Today, program-
ming in Python is available in two versions: Python 2 (most
recently 2.7) and the backwards-incompatible Python 3 (cur-
rently 3.5). The reference implementation for both versions
is CPython, whose source is written in C. CPython acts as
a source code interpreter more so than a compiler. When
Python programs (or scripts) are provided as inputs to the
python command, the code will be read and directly exe-
cuted by the Python runtime. This fact suggests that, with
the proper configuration, the python command can be built
to operate in the DCE environment. In this way, when it
is provided a Python script, the source lines will be inter-
preted, and the underlying glibc calls can be handled by
DCE. The focus of this work is the CPython implementa-
tion of Python 2.7.

The CPython source code did not require any modifica-
tions. In building it into the python executable and libraries,
it required the typical flags such that DCE could recognize
and load it, i.e. fPIC for compile and pie and rdynamic
for linking. Similarly to glibc, Python is equipped with the
Python Standard Library (PSL), a set of objects and APIs
written in Python that provide a standardized baseline of
Python programming capabilities. Because the PSL is writ-
ten as Python scripts and not a “built” library in the same
sense as glibe, it is loaded in a different way. A Python script
is generally “imported” into the Python runtime through the
python command. In the context of DCE, this step occurs
after the python executable is loaded and executed. In this
way, the effective kernel space has transitioned into simula-
tion. At this point, the location of the user-defined Python
application and baseline Python scripts in the PSL such as
os, socket, and string must be placed where the DCE-
enabled node can “see” them. To make the files visible to
the simulated node, the user-defined script is copied into the
filespace for the node, and the PSL is symbolically linked
under this filespace as well.

Integrating CPython into the DCE framework is relatively
straightforward and follows the typical process for installing
and testing new programs on DCE-enabled nodes in an ns-
3 topology. Code within new programs that is currently
not recognized by the POSIX layer of DCE can be marked
to use the system glibc library with the NATIVE macro. A
number of math.h functions are needed within the Python
library such as exp, log, pow, __isnan, __isinf, etc. Some
pthread attribute functions are set to execute natively as well
such as pthread_attr_init, pthread_attr_setscope, and
pthread_attr_destroy. Since these functions only handle
pthread attributes and not the actual threads, they can be

manipulated natively with relatively low risk. For a function
that cannot be run natively, the DCE macro can be utilized to
either override the function behavior or wrap it within the
context of the simulation. Conveniently, the Python library
required relatively few functions needing the DCE macro.
One example is sendfile which is intended to move data
between file descriptors more quickly than a combination of
read and write. In the context of simulation, this efficiency
is less of a requirement, and as such, its DCE version can
simply be the read-write combination. Another function
— __rawmemchr — is only available in the binary standard
rather than the source standard in the glibc base. Hence,
DCE cannot recognize it natively. Instead, __rawmemchr
must be forward-declared and wrapped around a simpler call
to strchr as a workaround. Furthermore, a patch providing
epoll support is incorporated as well from [5].

3.3 Java

Java is a general-purpose, object-oriented programming
language similar in some ways to C++. It was created by
James Gosling and released in 1995 through Sun MicroSys-
tems (acquired by Oracle). Java applications are compiled
but not to native code. Instead, they are converted to Java
bytecode which can be executed on the JVM. The JVM
along with the standard Java Class Library (JCL) com-
prises the Java Runtime Environment (JRE) which provides
the APIs and executable environment for running Java pro-
grams. When running a compiled Java program, the JRE
will initialize the environment, and then the JVM will in-
terpret the provided bytecode into native code that the un-
derlying system can understand. One version of the JVM,
HotSpot, provides performance optimizations such as adap-
tive compilation as well as efficient heap management and
garbage collection. Development of Java programs is en-
abled through the Java Development Kit (JDK), which al-
lows the applications to be compiled and packaged.

The OpenJDK library, an open-source implementation of
the Java Standard Edition (SE) Platform, provides a config-
urable mechanism to build an interface between DCE and
the Java programming language. The JRE and JDK pro-
vided by Oracle is only distributed as binaries such that
they are only available in specific build configurations. In
contrast, OpenJDK is available as source code that can be
built — compiled and linked — with the position-independent
and dynamic flags that allow DCE to load its programs into
simulation. The “program” of specific interest is the java
command. The source code that produces the command
and the JRE and JVM libraries that it calls to configure
and execute the Java environment are all written in C. In
this way, applications written in Java that are compiled to
class files that the java command will accept will ultimately
be interpreted to glibc symbols. These symbols can then be
loaded and executed by the DCE environment. The imple-
mentation of OpenJDK used by this work is OpenJDK 8.

The JRE, designed around the JVM, requires additional
considerations beyond simply addressing glibc symbols that
the DCE baseline has yet to include. This process did
require the inclusion of additional symbols, some related
to determining the process location for newly created Java
threads within virtual memory. However, accommodating
the JVM also needed to address determining networking
interfaces for the DCE-enabled nodes. Under the baseline
OpenJDK source code, information about network interfaces
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and next-hop routes for a system running the JVM is gath-

ered from the /proc/net/if _inet6 and /proc/net/ipv6_route

files, respectively. (The JVM handles translating addresses
between IPv4 and IPv6 schemes.) The information in these
files is relatively easy to gather. However, an interesting is-
sue presents itself in the form of buffer limitations for stan-
dard I/O methods such as sscanf within the DCE environ-
ment. Limitations are implicitly imposed by DCE on the
applications it manages simply due to the nature of handling
virtual kernel space inside of a simulation. To model the en-
vironment the JVM expects as closely as possible, filespace
for a DCE-enabled node is created with the /proc/net direc-
tory in place. However, to accommodate the noted buffer is-
sues, modified versions of the if _inet6 and ipv6_route files
are written that only hold the information that the JVM
needs. For if_inet6, this information is the hexadecimal
representations of the IPv6 addresses for a node as well as
their indexes and device names. The ipv6_route file that
is responsible for configuring routes for the node holds the
base IPv6 addresses as 32-character hexadecimal values, the
hexadecimal prefix length (similar to the IPv4 subnet mask),
configuration flags, and the device names.

4. EXPERIMENTS

This section describes three sets of experiments that have
been performed to confirm — and in the case of C/C++
applications reaffirm — the relative range of functionality
DCE provides for a variety of applications. Since both C
and C++ programs would compile to roughly similar native
code representations, only C programs have been examined.
Alternatively, the choice of compiler between the GNU C
Compiler (GCC) and the Clang frontend for LLVM is in-
troduced for examination to gauge potential differences in
compiler optimizations. In one set of experiments, a single
node is tasked to perform some simple applications written
in each language. In the second set of experiments, a sim-
ple dumbbell topology tests basic networking functionality
for client/server-style applications written in each language.
The final experiments task a host to ping every other end
host in a ring topology multiple times to examine the scal-
ability of the simulations when handling multiple DCE ap-
plications. All experiments have been performed using the
baseline ns-3.24.1 and a modified version of DCE 1.7 that
implements the described updates from section 3. Perfor-
mance is examined against the unoptimized builds of ns-3
and DCE as they are the defaults and typically provide the
lowest risk for interference with DCE applications.

4.1 Performance Benchmarks

The first set of experiments installs programs written in C,
Java, and Python on a single DCE-enabled node. These pro-
grams provide computational workload through some sim-
ple algorithms to confirm basic language capability in terms
of data types and operators. They also test simple func-
tionality in threading and local (loopback) networking, two
relatively common features in networking applications.

4.1.1 Matrix Multiplication and Digits of Pi

The matrix multiplication applications for each language
create a 1000-by-1000 array of integers and populate all
columns in each row with the row index, e.g. array[0] =
[00 .. 0], array[1] = [1 1 ... 1], etc. The program then
performs matrix multiplication of the array with itself and

inserts the corresponding values in a separate 1000-by-1000
array. Although it is not algorithmically complex, the ma-
trix multiplication example demonstrates successful mem-
ory allocation, basic operand functionality, and simple con-
trol statement behavior in each language within the context
of DCE. Furthermore, while the matrix multiplication ap-
plications in C and Java simply use nested for loop con-
structs, the Python application administers array allocation
and multiplication “Pythonically” using the following con-
struct:

[[x for y in range(0,1000)] for x in range(0,1000)]

An application to display 100,000 digits of 7 is written
for each language based on the spigot algorithm in [6]. This
application tests control statements similarly to the matrix
multiplication program. However, additional mathematical
complexity is administered, and string formatting is tested
as well.

4.1.2 Simple Threading

A threaded application is examined to confirm success-
ful import and usage of threads in Python and Java. The
application written for this benchmark creates 500 threads.
When each thread executes, it simply iterates 1,000 times
printing a string. Threading capabilities using pthreads in C
are already available in the DCE baseline. Since Python and
Java threading functionality ultimately encapsulates calls to
pthreads methods, it is expected that similar functionality
can be achieved in these languages, most likely with some
processing overhead. Java implements a Thread class for
handling thread-based parallelism. In Python, threads are
created and managed by importing the threading library.

4.1.3 Local Ping

An application to test local networking functionality per-
forms an Internet Control Message Protocol (ICMP) echo
request 1,000 times to the localhost (127.0.0.1) address and
determines if ICMP echo replies are returned. For C, the
source code for the original PING application[7] is recom-
piled for DCE. In Java, an InetAddress object is created
using the getLocalHost method. Then, the isReachable
method is called to determine the reachability of the ad-
dress. For the Python application, ping functionality uses
a library that mimics the C version of PING through raw
sockets sending ICMP echo requests]8].

4.2 Simple Topology

A simple dumbbell topology is constructed to confirm
successful networking capabilities are achieved in C/C++,
Java, and Python. The dumbbell consists of two inner nodes
acting as routers that are connected by a point-to-point link
with a data rate of 100Mbps and a speed-of-light delay of
1ms. The outer 2 nodes each connect to one router with a
10Mbps link with 1ms delays. Additionally, network inter-
faces for the links are configured on different 255.255.255.0
subnets (CIDR, /24) to confirm packet transmission occurs
through successful L3 routing and not simply ARP requests.

Both end hosts in the described topology are enabled for
installation of DCE applications. One end host is installed
with a DCE application that acts as a client pushing data
to the other end host. The client will create a TCP socket,
establishing a connection with the other end host. Follow-
ing successful connections, the client allocates 65,536 bytes
for transmission. This amount is selected to ensure that
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Figure 1: The simple dumbbell topology is used to confirm successful socket handling and data transmission
and reception for C/C++, Java, and Python. The topology consists of 4 nodes connected linearly with the
outer 2 nodes acting as end hosts and the inner 2 acting as routers.

the socket connection will accommodate multiple segments
(based on the ns-3 default segment size of 536 bytes) without
encountering congestion control, a process of the simulated
stack rather than the examined program. These allocated
bytes will be transmitted iteratively multiple times to exam-
ine the processing overhead of socket writes for the different
programming languages. Upon completion of the specified
number of transmission iterations, the client program will
exit.

At the other end host, a hybrid server/client program is
installed. The server aspect of the program binds a TCP
socket to the host and sets it to listen on the same port
that the client on the other host will attempt to connect.
When the client makes a connection to the server, the server
program will accept the connection and reads bytes from the
socket until the client closes the connection. Upon closing
the initial socket connection, the server program will store
the number of received bytes, increment the port number,
and relay the same amount of bytes back to the first end
host on a new TCP connection. Ready to accept packets on
this new port is an ns-3 PacketSink application ready to call
the Simulator: :Stop method when it receives the expected
number of bytes. The server-turned-client will iteratively
transmit 1,024 bytes until it has transmitted as many bytes
as it originally received.

4.3 Ping Ring

A ring topology is simulated to examine the scalability of
ns-3 when it must handle multiple DCE applications. The
ring consists of a variable number of routers connected to one
another in a circle. Point-to-point links connect the routers
with a data rate of 100Mbps and 1ms delays. Each router is
connected to an end host through a separate point-to-point
link with 10Mbps rates and 1ms delays. Network interfaces
for all links are configured similarly to those in the dumb-
bell topology using different 255.255.255.0 subnets (CIDR
/24) to again confirm packet transmission occurs through
successful L3 routing and not simply ARP requests.

Within the topology, one end host is selected for DCE
application installations. The applications are the same ap-
plications described in 4.1.3. However, instead of testing for
the localhost address, the end host attempts to reach every
other end host in the topology. Pings are sent 1,000 times for
each end host to inflate the amount of processing required
for each DCE application.

5. RESULTS AND DISCUSSION

All of the described experiments have been performed on
a system running 64-bit Linux Mint 17.3 with a 2.5GHz
dual-core Intel i5-3210M processor with 8GB of memory.
Simulations are executed 10 times for each set of parame-

. —100Mbps, 1ms delay

DCE: ping all hosts ‘q ‘q --- 10Mbps, 1ms delay
3

Figure 2: The ring topology is used to examine the
scalability of ns-3 simulations when handling mul-
tiple DCE applications. The network is comprised
of a variable number of router nodes connected in a
ring with an end host connected to each one. One
host is tasked to ping every other end host a specific
number of times.

ters to obtain the average total memory usage in MB and
average wallclock execution time. Gathering memory usage
is accomplished through the ps_mem Python utility, which
determines the core memory usage for a running process[9].
During each simulation run, this tool is called periodically to
record the maximum usage realized by the ns-3/DCE simu-
lation at any point in execution. This statistic is important
as insufficient memory any time during the life of a program
would inhibit successful simulation completion.

The benchmark results are shown in Figures 3 and 4 along-
side results of each application executed natively in the real
Linux environment rather than the ns-3/DCE simulated en-
vironment. (The local ping benchmarks are not compared
against native versions due to timing differences in the ap-
plication designs in each programming language.) Java is
run both regularly and with the -Xint flag to allow it to run
in interpreted mode without some of the “performance bene-
fits” of the HotSpot JVM. The programs compiled with GCC
and Clang required roughly the same amount of memory and
produced similar time results. Based on the programs used
in the benchmark simulations, the resource results are as ex-
pected. Most of the variables in the C programs had been al-
located with stack memory and relatively few variables were
utilized, providing little room for any significant compiler
optimizations. Interestingly, the Clang-compiled executable
for matrix multiplication produced a slight timing improve-
ment over its GCC-built counterpart. This result may sug-
gest that Clang realized some compiler optimizations such as
loop unrolling that GCC may not have attempted. Even so,
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the timing discrepancies between the two compiler versions
are still relatively negligible when compared to the Python
and Java versions of the applications. Based on the notion
that both Python and Java are effectively invoking C/C++
calls within their underlying libraries, a certain amount of
computational overhead is expected. In most of the bench-
mark tests, a tradeoff appears between lower memory us-
age with higher wallclock times in Python versus higher re-
source requirements with quicker execution performance in
Java. The printing of the digits of m as well as the threading
test produced a relatively significant discrepancy between re-
source usage and execution timing. However, this tradeoff is
actually not realized for the matrix multiplication program.
This result suggests that dynamically typed 1ist allocation
and assignment for the Python arrays incurs both a resource
and performance cost compared to the statically typed in-
teger array in Java. Additionally, within the DCE environ-
ment, the “performance benefits” of the HotSpot JVM ap-
pear to provide some level of speed-up to interpreted-only
Java. However, these benefits come with increased memory
usage in some cases. Threading appears to be one of the
few cases that benefit in terms of memory and time from
full access to the JVM. The local ping results are relatively
flat compared to the other benchmarks most likely imply-
ing that the overall program ultimately lacked a significant
amount of processing.

Simple dumbbell topology results are graphed in Figures
5 and 6. For the applications written in C, memory remains
approximately constant as address space is simply and ex-
plicitly reused while performance intuitively requires more
processing time as more processing is required. The Java
versions of the programs had to be run in interpreted mode
in order to complete. Full usage of the HotSpot JVM in this
context is prevented due to its alternation between periods
of optimization and deoptimization for profiling and debug-
ging. In testing the framework, it was determined that this
feature actually presented conflicts for the addressable space
that DCE maintains. Again, an overhead is noted for the
interpreted Java and Python programs compared to the C
versions. However, interpreted Java memory usage appears
to approach a limit suggesting potential memory reuse and
adequate garbage collection. On the other hand, Python
continues to require more memory with more transmission
iterations. One possible reason behind this result may be
that Python will continue to dynamically allocate memory
as its applications transmit and receive data without reach-
ing a point where garbage collection is deemed appropriate
by the interpreter.

Figures 7 and 8 display the results of the ring topology
experiments. Starting multiple ping applications for the na-
tive code did not require significant overhead in terms of
memory or time. In this set of experiments, Python pro-
duced wallclock times between Java and interpreted-only
Java. However, its memory usage was significantly lower
than the dumbbell topology results. The Java program ben-
efited from the -Xint flag in this set of experiments, produc-
ing lower wallclock times than the Python version with a
slight memory usage improvement over the full JVM. How-
ever, both experimental runs of the Java program produced
significantly higher resource usage than the other programs.
This memory usage trend may have been a consequence of
starting and stopping the JVM multiple times.

During testing of the OpenJDK within DCE, multiple ap-

plications running simultaneously within the limited address
space of DCE made it difficult for the JVM to find free space
for its code heap. Two Java applications running at the same
time as in the dumbbell topology experiments appeared to
be the stable limit while more than two simultaneous appli-
cations produced inconsistent successful results. DCE ap-
plications within the ring topology experiments were given
staggered start times such that one would complete before
another began. When Java applications had dedicated in-
dividual access to the Java runtime as in the ring topol-
ogy experiments, the JVM resources could be successfully
launched and deconstructed without interference. Testing
for potential solutions to the simultaneous usage issue is on-
going. However, sufficient use cases are available to advocate
for usage of the current framework.

6. RELATED WORK

DCE has previously been used in numerous experiments
to enhance the realism of network simulations. Demonstra-
tions of DCE in literature have primarily focused on the
fields of mobile and wireless networks where updated proto-
cols are introduced frequently as the technology improves.
Rather than constantly porting and modifying these pro-
cedures into simulation, it can be much quicker to simply
introduce these protocol implementations into simulation
via DCE. In [10], a comparison of the ns-3 Optimized Link
State Routing (OLSR) model with an actual OLSR dae-
mon in DCE uncovered deficiencies in both programs. Ad-
dressing tuning issues in the simulated model and the dae-
mon program allowed them to be updated to better fit the
OLSR RFC. Demonstrations of content-centric networking
(CCN) over mobile ad-hoc networks (MANETSs) and multi-
path TCP over LTE and wireless in [11, 12] provide examples
of additional use cases for DCE that required no modifica-
tions to the original implementations. However, these ex-
amples are limited to software binaries that originated from
C/C++ source code whereas this work has provided a proof
of concept and framework for testing protocols in Java and
Python in addition to C/C++.

The rise of software-defined networking (SDN) in the net-
work communications field over the past few years has pro-
vided another valuable avenue for utilizing DCE. In separat-
ing the control and forwarding planes of a network, SDN em-
ploys a separate controller process for handling the routing
decisions of a network. These controller processes are im-
plemented as libraries, such as NOX (C++), POX and Ryu
(Python), Floodlight and OpenDaylight (Java), etc. NOX
and the Open vSwitch virtual switch kernel have already
been demonstrated successfully in [13] for use cases in both
wired and wireless networks. The framework discussed in
this work will surely benefit the testing of controller appli-
cations written for some of these other libraries as well.

The Open Network Emulator (ONE) [14] is another net-
work simulator providing direct code execution functional-
ity. It provides a compiler framework that converts real-
world network applications into modules that can be inte-
grated into simulated network stacks. The source code for
these applications requires no modification prior to compi-
lation within the ONE framework. Applications compiled
for ONE are built with LLVM into the LLVM intermediate
representation (IR)[15]. This notion provides the claim that
ONE modules can be language and architecture indepen-
dent. However, the published literature on ONE and its dis-
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Figure 3: Performance benchmark total memory us-
age in MB for a single DCE-enabled node and native
equivalents for the various programming languages,
compilers, and configurations. All data have stan-
dard errors that are less than 2% of their respective
reported values.
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Figure 4: Performance benchmark wallclock execu-
tion time for a single DCE-enabled node and native
equivalents for the various programming languages,
compilers, and configurations. All data have stan-
dard errors that are less than 2% of their respective
reported values except the GCC and Clang versions
of the simple thread test. Their standard errors are
6% of their reported values.
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Figure 5: Total memory usage in MB for the simple
dumbbell topology for the programming languages,
compilers and configurations. Standard error bars
are displayed for each data point.
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Figure 6: Wallclock execution time for the simple
dumbbell topology for the programming languages,
compilers and configurations. Standard error bars
are displayed for each data point and noted as neg-
ligible.
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played for each data point and noted as negligible.
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tributed descendant[16] only examine applications written in
C and C++. Based on the subprojects for LLVM][17], these
applications are most likely compiled with Clang. For other
languages, the DragonEgg plugin allows LLVM to interface
with GCC parsers. One such parser, GCJ[18], allows Java
source code to be compiled directly to native code. However,
it utilizes segmentation fault signals to determine the limits
of addressable memory, making it difficult to integrate with
DCE.

7. CONCLUSIONS AND FUTURE WORK

This work has described and analyzed a framework using
DCE for examining network applications written in Python
or Java within simulated topologies in ns-3. This frame-
work provides a convenient way to test entirely new sets of
applications written in Python or Java that were not previ-
ously compatible to the DCE environment. The framework
itself exploits the fact that Python and Java applications
are launched and translated ultimately via native code with
which DCE can interface. Parts of the underlying language
libraries that required modification for successful DCE inter-
action have been discussed. Multiple applications on topolo-
gies of varying complexity have been studied to confirm suc-
cessful operation of the framework. The resource usage and
wallclock execution time of multiple applications written in
C, Java, and Python have been gathered and studied to
gauge the overhead required to run these applications within
simulation.

Future work will continue to enhance the framework to
automate some of the discussed environment and library
modifications. Efforts to test SDN libraries such as POX
and Ryu within the DCE framework have already had pre-
liminary success. Testing will be expanded to determine
how well Java controller libraries such as Floodlight and
OpenDaylight integrate into the discussed framework. Fur-
thermore, attempts to address the GCJ issue discussed in
section 6 will continue in order to better gauge the benefits
and shortcomings of the described framework against simply
compiling the applications to native code.
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ABSTRACT

IEEE 802.11ah or HaLow is a new Wi-Fi standard for sub-
1Ghz communications, aiming to address the major chal-
lenges of the Internet of Things: connectivity among a large
number of power-constrained stations deployed over a wide
area. Existing research on the performance evaluation of
802.11ah is generally based on analytical models, which does
not accurately represent real network dynamics and is hard
to adjust to different network conditions. To address this
hiatus, we implemented the 802.11ah physical and MAC
layer in the ns-3 network simulator, which, compared to ana-
lytical models, more closely reflects actual protocol behavior
and can more easily be adapted to evaluate a broad range of
network and traffic conditions. In this paper, we present
the details of our implementation, including a sub-1Ghz
physical layer model and several novel MAC layer features.
Moreover, simulations based on the implemented model are
conducted to evaluate performance of the novel features of
TEEE 802.11ah.

CCS Concepts

eNetworks — Wireless access networks; eComputing
methodologies — Model development and analysis;
Simulation evaluation;

Keywords

IEEE 802.11ah, Wi-Fi HalLow, ns-3, Fast Association, Re-
stricted Access Window

1. INTRODUCTION

The Internet of Things (IoT) consists of millions of con-
strained devices addressable over the Internet. Existing low-
power wireless network technologies for connecting such de-
vices can be categorized into two groups: (i) wireless per-
sonal area networking (WPAN) technologies that provide
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Figure 1: Position of IEEE 802.11ah compared to ex-
isting WPAN and LPWAN technologies, promising
considerably extended range compared to WPAN
and higher bitrate than LPWAN.

connectivity up to tens of meters (e.g., ZigBee, Bluetooth
Low Energy) and (ii) low-power wide-area networking (LP-
WAN) technologies that offer an extended range up to sev-
eral kilometers but sacrifice in terms of throughput (e.g.,
LoRaWAN;, Sigfox, DASH-7). As such, a gap still exists
for a low-power communication technology that offers both
extended range and higher throughput.

The new IEEE 802.11ah standard, marketed as Wi-Fi
HaLow, fills this gap, combining the advantages of Wi-Fi
and low-power communication technologies (cf. Figure 1).
IEEE 802.11ah is a wireless communication PHY and MAC
layer protocol that operates in the unlicensed sub-1Ghz fre-
quency bands (e.g., 863-868 Mhz in Europe and 902-928 Mhz
in North-America). It was designed to provide communica-
tions at a range of up to 1 kilometer while maintaining a data
rate of 150 Kbps, offering a much greater coverage than ex-
isting WPAN and considerably higher throughput than LP-
WAN technologies. In the MAC layer, 802.11ah introduces
mechanisms such as hierarchical organization, short MAC
header, fast association, restricted access window (RAW),
traffic indication map (TIM) segmentation and target wake
time (TWT) to support densely deployed energy-constrained
stations.

Even though the IEEE 802.11ah standard has only been
officially released since January 2016, researchers have been
investigating it already for a few years. Several recent stud-
ies investigate physical layer aspects of IEEE 802.11ah specif-
ically and sub-1Ghz communications generally [5, 3, 2, 4].
Hazmi et al. [5] study link budget, achievable data rate and
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Table 1: 802.11ah MCSs for 1, 2 MHz, NSS=1,
GI=8 pus.
MCS . Codin Data rate (Kbps
Index Modulation rate ¢ 1 Mhz (2 Mhz)
0 BPSK 1/2 300 650
1 QPSK 1/2 600 1300
2 QPSK 3/4 900 1950
3 16-QAM 1/2 1200 2600
4 16-QAM 3/4 1800 3900
5 64-QAM 2/3 2400 5200
6 64-QAM 3/4 2700 5850
7 64-QAM 5/6 3000 6500
8 256-QAM 3/4 3600 7800
9 256-QAM 5/6 4000  Not valid
10 BpSK /2 Wh 25 ot valid
repetition

the influence of packet size in different scenarios. Moreover,
a few studies of the IEEE 802.11ah physical layer have been
performed using an implementation based on Software De-
fined Radios (SDRs) [3, 2, 4]. Current research on the MAC
layer of 802.11ah mainly focuses on performance of the RAW
mechanism [11, 7, 16, 12, 13, 9, 8]. Nearly all of this research
is based on analytical modelling of the saturated network
state. Such models do not accurately capture real network
behavior and are hard to adapt to non-saturated network
conditions. Only Raeesi et al. [12] performed actual simula-
tions using OMNeT++.

To address this hiatus, we have implemented the 802.11ah
standard in the ns-3 network simulator. Our implementa-
tion builds upon existing 802.11 implementations in ns-3 and
extends them with a physical layer model for sub-1Ghz radio
communications and a subset of the new MAC layer features
of the standard. The implementation is modular, allowing it
to be easily extended with additional 802.11ah-specific fea-
tures. Moreover, it has been made available as open source
for other researchers to experiment with®.

Our simulation model has several benefits compared to
the OMNeT++ model implemented by Raeesi et al. [12].
Specifically, their RAW implementation does not support
grouping. Moreover, we have implemented the fast asso-
ciation and two-stage back-off mechanisms. Finally, their
implementation, in contrast to ours, is not publicly avail-
able.

The contributions of this paper are twofold. First, we
outline our implementation, its features, and its integration
into ns-3. Second, we have conducted an in-depth simulation
study to validate our implementation.

The remainder of this paper is structured as follows. Sec-
tion 2 provides an overview of the most prominent 802.11ah
features, both on the PHY and MAC layer. Details on the
ns-3 implementation model are provided in Section 3. In
Section 4, we validate both the physical and MAC layer of
the implemented model. The planned future extensions to
our implementation are detailed in Section 5. Finally, con-
clusions are discussed in Section 6.

2. OVERVIEW OF THE IEEE 802.11AH
IEEE 802.11ah operates at sub-1GHz, supporting long

"https://www.uantwerpen.be/en/rg/mosaic/projects/icce-
802-11ah)/

distance transmission, 8192 nodes connected to a single AP
and high energy efficiency. These features make it an at-
tractive standard for long-range IoT applications, such as
sensor-based monitoring, smart meters and home automa-
tion. Throughout this section we highlight aspects of the
standard that are important for our implementation. For a
more detailed overview of the standard, the reader is referred
to existing literature [6, 1].

2.1 PHY Layer

The IEEE 802.11ah PHY layer inherits characteristics from
IEEE 802.11ac and adapts them to sub-1Ghz frequencies.
Its channel bandwidths range from 1 to 16 MHz, with 1
and 2 MHz support being mandatory. Operating at low
frequency and narrow bandwidth allows it to transmit at
longer ranges (up to 1 km or more in theory) with consid-
erably less power consumption than traditional Wi-Fi tech-
nologies, which use frequencies in the 2.4 and 5 GHz bands.

For different data rates and bandwidths, 802.11ah utilizes
different sets of modulation and coding schemes (MCSs),
number of spatial streams (NSS) and duration of the guard
interval (GI). Coding schemes include binary conventional
coding (BCC), which is mandatory, as well as the optional
low density parity check (LDPC). Table 1 lists data rates and
their MCSs when GI and NSS are 8 us and 1 respectively
for 1 and 2 MHz bandwidth.

2.2 MAC Layer

The MAC layer of IEEE 802.11ah consists of several novel
features, such as fast association and authentication, RAW,
TIM segmentation and TW'T, aiming to address the require-
ments of dense IoT networks. Details of the those features
are described as follows.

2.2.1 Fast Authentication and Association

When an AP is deployed or after a power outage, a large
number of stations are simultaneously trying to associate,
this process could take a long time due to collisions. Two
more effective fast authentication and association control
mechanisms (i.e., centralized and distributed), are proposed
for IEEE 802.11ah. In centralized authentication, the AP
sets a threshold in authentication control elements attached
to a beacon. When a station is initialized, it generates a
random value from the interval [0,1022] and send authenti-
cation/association requests to the AP if the random value is
smaller than the threshold obtained from the received bea-
con, otherwise postpone authentication/association until the
next beacon. The threshold should be adjusted dynamically
by the AP to allow all stations to get associated eventually.
Distributed authentication is based on the truncated binary
exponential back-off, each beacon interval is divided into
slots of equal duration, stations randomly select one slot to
send their association request.

2.2.2  Restricted Access Window (RAW)

The RAW mechanism aims to reduce collisions and im-
prove throughput when hundreds or even thousands of sta-
tions are simultaneously contending for channel access. It
restricts the number of stations that can simultaneously ac-
cess the channel by splitting them into groups and only al-
lowing stations that belong to a certain group to access the
channel at specific times. Figure 2 schematically depicts how
RAW works. Specifically, the airtime is split into intervals,
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Figure 2:
mechanism.

each of which is assigned to one RAW group. Each interval
is preceded by a beacon that carries a RAW parameter set
(RPS) information element that specifies the stations that
belong to the group, as well as the interval start time. More-
over, each RAW interval consists of one or more slots, over
which the stations in the RAW group are split evenly. As
such, the RPS also contains the number of slots, slot format
and slot duration count sub-fields which jointly determine
the RAW slot duration as follows:

D =500 pus 4+ C x 120 ps (1)

Where C' represents slot duration count sub-field, which is
either y = 11 or y = 8 bits long if the slot format sub-field is
set to respectively 1 or 0. The number of slots field is 14 —y
bits long.

Different from previous IEEE 802.11 technologies, each
station uses two back-off states of enhanced distributed chan-
nel access (EDCA) to manage transmission inside and out-
side its assigned RAW slot respectively. The first back-off
function state is used outside RAW and the second is used
inside RAW slots. For the first back-off state, the station
suspends its back-off at the start of each RAW and stores
the back-off states, then restores them and resumes back-
off at the end of the RAW. For the second back-off state,
stations start back-off with initial back-off state inside their
own RAW slot, and disregard the back-off state at the end
of their RAW slot. As shown in Figure 3, station 1 is inside
the RAW group and assigned to slot 1, while station 2 is not
included in this RAW group. Therefore, station 1 uses the
first back-off state outside its RAW slot period and the sec-
ond back-off state inside its RAW slot, while station 2 only
uses the first back-off state outside the RAW group period
and goes into a sleep state inside the RAW group period.

2.2.3  Power Saving Mechanisms

In the current 802.11 standards, beacons trigger power
saving (PS) station contention for the channel, which is
the bottleneck of the whole power management framework
since stations have to wake up to listen to every beacon.
IEEE 802.11ah introduces the TIM segmentation mecha-
nism to split information transmitted in the TIM into sev-
eral segments and transmit them separately. In addition to
using TIM beacons for station-level signaling, as shown in
Figure 4, it also uses delivery traffic indication map (DTIM)
beacons for TIM group-level signaling. The AP uses the
DTIM beacon to broadcast to stations which TIM segments
have pending data, stations only need wake up to listen to

A
Beacon Beacon
arrying RPS carrying RPS
RAW
slot 0 | Slot 1 I ...... I Slot Npay-1
1st back 2" back 1st back
| off function | Doze state I off function Doze state off function |

Station 1, assigned to RAW slot 1

1st back Doze state 1st back
off function off function

Station 2, not belongs to current RAW group

Figure 3: Back-off procedure for the IEEE 802.11ah
RAW mechanism.

[ Receiving Contenting == Sleeping

Station #1538 [
And #1539

Other TIM,
station

Rest of 1
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S N A A A A A

TIMI TIM2 TIM3 TIM4 TIM5 TIM6 TIM7 TIM8 TIM1

TIM1 | TIM2 | TIM3 | TIM4 | TIM5 | TIM6 | TIM7 | TIM8 1537 | 1538 | 1539
0 0 0 0 0 0 1 0 0 1 1

Figure 4: Example of the TIM segmentation mech-
anism (source: Adame et al. [1]).

their corresponding TIM beacon, thus they can maintain a
longer power-saving state. Power consumption can be fur-
ther reduced by TWT for stations transmitting data rarely.
TWT stations can negotiate a time slot with the AP when
they should wake up to exchange frames, therefore they can
stay in a power-saving state for very long periods of time
during their TWT intervals.

3. IMPLEMENTATION

Currently, ns-3 comes with support for several IEEE 802.11
standards, including 802.11a, 802.11b, 802.11g, 802.11n and
since recently 802.11ac. As Figure 5 shows, the components
of the ns-3 Wi-Fi PHY and MAC models consist of 4 main
components:

e WifiChannel: An analytical approximation of the phys-
ical medium over which data is transmitted (i.e., the
air in case of Wi-F1i), consisting of propagation loss and
delay models.

e WifiPhy: The PHY part of the protocol, takes care of
sending and receiving frames and determining loss due
to interference.

e MacLow: Implements RTS/CTS/DATA/ACK trans-
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Figure 5: ns-3 Wi-Fi models and interactions; grey
background denotes changed components in our im-
plementation.

actions, the distributed coordination function (DCF')
and enhanced distributed channel access (EDCA), packet
queues, fragmentation, re-transmission and rate con-
trol.

e MacHigh: Implements management functions such as
beacon generation, probing, association.

The remainder of this section outlines how we adapted the
above models to support 802.11ah. Our implementation is
based on ns-3 version 3.23.

3.1 PHY Layer

Our work in implementing 802.11ah PHY model focused
on the components marked in Figure 5: InterferenceHelper,
ErrorRateModel, WifiPhy, YansWifiPhy and Propagation-
LossModel.

3.1.1 WifiPhy and YansWifiPhy

In the WifiPhy class, the modulation and coding schemes
MCSO0 to MCS9 for channel bandwidths 1, 2, 4, 8 and 16 Mhz
(cf. Table 1) are defined, while MCS10 is currently not
supported by our implementation. Moreover, header and
preamble formats of IEEE 802.11ah as well as the way of cal-
culating sending/receiving duration of the preamble, header
and payload are implemented. The ConfigureStandard(),
WifiModeToMcs (), and McsToWifiMode () functions in Yan-
sWifiPhy are modified to support the 802.11ah configuration
and the conversion between Wi-Fi mode and MCS.

3.1.2 InterferenceHelper and ErrorRateModel

Since 802.11ah defines new header formats, the Calcu-
latePlcpPayloadPer () and CalculatePlcpHeaderPer () func-
tions in the InterferenceHelper class are revised to calculate
the length of received 802.11ah packets, which is required
for the packet error rate calculation. Additionally, the Nis-
tErrorRate and YansErrorRate classes are modified to be
capable of calculating the packet error rate of 802.11ah with
support for the QAM256 modulation scheme. It is worth
noting that YansErrorRate mode is known to be too op-
timistic, while NistErrorRatemodel better matches experi-
mental results according to Pei and Henderson [10].

ApWifiMac class

SendOneBeacon ()

. Adjust Authencation
‘ Add RAW attributes Threshold

A 4 l

‘ Create AuthenCirl

Create RPS element element

‘ Add RPS element into Beacon ‘

SendAssocResp ()
Assign AID to
stations

Figure 6: New funcationality in ApWifiMac class.

3.1.3 PropagationLossModel

This model determines the signal strength in the wireless
medium based on the distance between sender and receiver.
We implemented the indoor and outdoor propagation loss
models for 802.11ah developed by Hazmi et al. [5]. They
proposed two different outdoor models, one for macro de-
ployments and one for pico or hotzone deployments. The
macro deployment model assumes an antenna height of 15
meters above a rooftop, with the propagation loss (in dB)
given as follows:

_ f
L (d) =8+ 37.6log,, (d) + 211log,, <900MHZ (2)

The pico deployment model is assumed to be at rooftop
height, with the propagation loss (in dB) given as follows:

L(d) = 23.3 + 36.7log,,(d) + 21log,, (ﬁ) (3)

Finally, the indoor propagation loss model is the same as
that of 802.11n, and consists of the free space loss (FSL)
with a slope of 2 up to a breakpoint distance and a slope of
3.5 after this breakpoint:

@) = 20log,, (242L) d<dpp
201og,, (4dc7rf) + 35log, (ﬁ) d>dpp

With d, f, ¢ and dgp the transmit-receive distance in me-
ters, carrier frequency, speed of light and breakpoint dis-
tance respectively.

3.2 MAC Layer

Among the new features of IEEE 802.11ah listed in Sec-
tion 2, our simulator currently supports fast association and
RAW, the implementation mainly focuses on the MacHigh,
DcaTxop, EdcaTxopN and DcfManager components. The
implementation of the power-saving features (e.g., TIM seg-
mentation and TWT) is planned as future work.

3.2.1 MacHigh

As shown in Figures 6 and 7, new functionality is added
in both ApWifiMac and StaWifiMac in order to support fast
association and RAW.

For the ApWifiMac class, RAW related attributes, as listed
in Table 2, are added in order to allow user configuration.
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Figure 7: New funcationality in StaWifiMac class.

Table 2: 802.11ah attributes in ApWifiMac class.

Parameter Description
NRawGroupStas Stations per RAW group
NRawStations Stations supporting RAW
SlotFormat Slot format
SlotDurationCount Slot duration count
NRawSlotNum Slots per RAW group

The RPS and AuthentCtrl elements, which carry RAW group
and association information, are defined in a new classes,

and are generated and attached to beacons based on the
values of the newly defined attributes. A mechanism for ad-

justing the association threshold is implemented as well, to
allow changing the threshold dynamically. Besides that, the
AID assignment scheme is added in the SendAssocResp()

function to allows the AP to assign an AID to stations dur-

ing the association exchange.

For the StaWifiMac class, the station receives an associ-
ation threshold and RAW information from the RPS and
AuthentCtrl elements carried by the received beacon, and
gets an AID from the association response packet in the re-
ceived() function. Based on the association threshold, the
station determines to send an association request or not.
RAW information and the AID jointly determine the RAW
slot stations belong to and control the two stage back-off,
making sure stations are allowed to access the channel dur-
ing their own RAW slot.

3.2.2 DcaTxopN, EdcaTxopN and DcfManager

The two stage back-off mechanism was implemented in the
DcaTxop, EdcaTxopN and DcfManager classes, supporting
both Quality of Service (QoS) and non-QoS data transmis-
sions. The start and termination of the two stage back-
off is managed by the DcaTxop and EdcaTxopN classes by
sending instructions to the DcfManager class, which is mod-
ified to be able to store and restore back-off related values.
Based on the instructions from the StaWifiMac class, sta-
tions start to contend for the channel in the appropriate
slot with the corresponding back-off state. Additionally, the
WifiRemoteStationManager class is modified as well to store
and restore the re-transmission counter of the two back-off
states.

Table 3: Default physical layer
our experiments.

parameters used in

Parameter Value
Frequency 900 Mhz
Transmission power 0 dBm
Transmission gain 0dB
Reception gain 3 dB
Noise Figure 3dB
Coding method BCC

Propagation loss model
Error Rate Model

Outdoor, macro [5]

NistErrorRate, YansErrorRate

Table 4: Default MAC layer parameters used in our

experiments.
Parameter Value
CWmin 15
CWmax 1023
ATFSN 3
Traffic access categories AC_BE
Payload size 256 bytes

MAC header type
RTS/CTS

legacy header

not enabled

Beacon Interval 0.1s
Cross slot boundary enabled
Station distribution randomly
Wi-Fi mode MCSS8, 2 Mhz
Rate control algorithm constant

4. EVALUATION

In this section we present and discuss our results obtained
using the ns-3 implementation of IEEE 802.11ah. The sim-
ulation setup is described, and the implementation of the
physical layer, fast association and RAW is validated.

4.1 Simulation Setup

We consider an IoT sensor-based monitoring scenario where
a large number of battery-powered sensors send measure-
ments to a back-end server (through the AP) at specific
time intervals. Stations are deployed randomly within a
400 meter diameter around the AP. The default PHY and
MAC layer parameters are shown in Tables 3 and 4 respec-
tively. Note that these are the default parameter values, and
some of them take different values in specific experiments
(e.g., Wi-Fi mode), which is explicitly mentioned. Given the
low-power nature of battery-powered sensors, transmission
power is limited to 0 dBm. Like 802.11ac, 802.11ah uses
forward error correction (FEC) schemes to improve trans-
mission range. With the same physical parameters, we also
test Wi-Fi mode MCSO of 802.11ac, which has a data rate
of 6.5 Mbps for bandwidth of 20 MHz.

4.2 Physical Layer

This section evaluates the physical layer packet error rate
as a function of distance of different 802.11ah Wi-Fi modes
for outdoor macro deployments, using the parameters de-
fined in Table 3. Figure 8 shows the transmission range of
different Wi-Fi modes. When YansErrorRateModel is used,
IEEE 802.11ah can transmit over distances up to 640 m with
a packet error rate below 10% and up to 670 m with an error
rate below 50% using MCS0 with 1 Mhz bandwidth, which
achieves data rates up to 300 kbps. Results also clearly
show that using modes that provide higher data rate signifi-
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Figure 8: Packet error rate as a function of uplink

distance with different ErrorRate Model for vari-

ous IEEE 802.11ah Wi-Fi modes and compared to

IEEE 802.11ac.

cantly reduces the maximum transmission distance. For ex-
ample, MCS9 with 1 Mhz bandwidth and MCS8 with 2 Mhz
bandwidth are capable of achieving data rate up to 4 Mbps
and 7.8 Mbps respectively. They allow error-free transmis-
sion up to 130 and 110 m respectively. For comparison,
IEEE 802.11ac only has a range of up to 60 m with a data
rate of 6.5 Mbps and an error rate of 10% (at an equal 0 dBm
transmission power). As indicated in Section 3.1, the trans-
mission range becomes shorter when NistErrorRateModel is
applied, around 150, 20 and 10 m are lost for Wi-Fi modes
MCSO0 with 1 Mhz, MCS9 with 1 Mhz and MCS8 with 2 Mhz
bandwidth. It should be noted that the 1 km range promised
by 802.11ah could potentially be realized using the MCS10
mode together with LDPC coding, since it is capable of
bridging higher distances. This mode’s implementation is
left for future work.
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Figure 9: Association time comparison between nor-
mal association and fast association.

4.3 Fast Association Mechanism

In this section, we evaluate the fast association mechanism
for a varying number of stations. A threshold adaptation
mechanism proposed by Wang [15] is adopted in this simu-

lation, in which the AP adjusts the association threshold dy-
namically based on its sending queue size. This results in in-
creasing the threshold by 50 when the queue is smaller than
10, otherwise decreasing the threshold by 50. The result is
depicted in Figure 9, which clearly reveals that fast associ-
ation substantially decreases association time, especially for
a large number of stations. It is quite straightforward since
fewer stations are allowed to send association requests si-
multaneously, reducing the collision probability. Association
performance could be further improved with more advanced
threshold adaptation algorithms.

4.4 RAW Mechanism
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Figure 10: Number of active stations and instanta-
neous throughput for a 512 station network.

Figure 10 depicts the active stations (by AID) and through-
put at each instant in time with and without the use of
RAW. Figure 10a clearly shows that the channel is randomly
utilized by stations all the time without the use of RAW. Due
to the density of the network this results in many collisions
and an average throughput of around 0.5 Mbps. In contrast,
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Figure 10b clearly shows that the RAW mechanisms results
in a more controlled channel access manner, only allowing
contention among a limited number of stations. As a re-
sult, collision probability drops and the average throughput
increases by 50% and becomes 0.75 Mbps.

Figure 11 aims to assess the influence of the number of
RAW slots per group, as well as transmit buffer length on
throughput and latency. The reader is referred to our previ-
ous work [14] for the impact of the number of RAW groups.
There is a single RAW group, and each station sends one
packet every 0.1 seconds to the AP with a random starting
time. Due to the relatively small payload size, the max-
imum throughput that can be achieved using MCS8 with
2 Mhz bandwidth is around 1 Mbps. The network becomes
congested when there are more than 50 stations transmit-
ting. In the case of an infinite buffer, no packets are dropped,
while packet loss for the case with a 10 packet buffer is shown
in Figure 12.

Figure 11 clearly shows that the RAW slot parameter
has no effect on performance for a small number of sta-

(c) Latency(queue of 10-packets)
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v
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‘ Create TIM ‘ ‘ Create TWT ‘ * SendPspoll() * * Switchstate( )
element Send ps-poll Sleep state
frame management
v AddAttribute( ) SendTWTRequest( )
Add elements into Beacon? Add TWT Send TWT
attributes request

Figure 13: Future planned implementation of TIM
segmentation and TWT.

tions. However, higher throughput and reduced latency
can be achieved for more stations with a larger number of
slots. This is because splitting stations into RAW slots re-
duces contention, and in turn collision probability and re-
transmissions. However, it should be noted that very many
slots could make the duration of slots too short to be enough
for one packet to be successfully sent.

The use of an infinite transmit buffer obviously results in
a considerable latency increase as congestion increases. On
the other hand, a limited buffer space causes a considerable
amount of packet loss. Finally, the fact that a higher number
of RAW slots results in significantly less packet loss, again
confirms that RAW reduces contention.

S. FUTURE IMPLEMENTATION PLANS

Our aim is to implement TIM segmentation and TWT in
ns-3 in the near future. As shown in Figure 13, the imple-
mentation will focus on ApWifiMac and StaWifiMac. For
the ApWifiMac class, TIM and TWT elements will be de-
fined and attached to beacons according to the related at-
tributes. For the StaWifiMac class, functionality such as
reading TIM and TWT elements from received beacons,
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sending ps-poll frames and managing sleep state indicated
by the TIM and TWT elements, is going to be implemented.
Since the TW'T setup can be launched by both stations and
the AP, TWT related attributes and sending TWT requests
will also be implemented in the StaWfiMac class. Moreover,
support for MCS10 Wi-Fi mode will be added by imple-
menting LDPC coding with 2x repetition. On the longer
term, we aim to support other features of 802.11ah, such as
Relays and hierarchical RAW. Finally, work is in progress
to include 802.11ah support in a future ns-3 official release.

6. CONCLUSION

This paper presents an implementation of the IEEE 802.11ah

physical and MAC layer protocol for the ns-3 network sim-
ulator. The implementation and its integration into ns-3
are described in detail. Moreover, the implementation was
evaluated, validated through simulation based on the imple-
mented model. The evaluation confirmed a correct behavior
of the fast association and RAW MAC-layer mechanisms.
Moreover, 802.11ah is shown to be a promising wireless tech-
nology for densely deployed IoT applications, due to its abil-
ity to limit contention using RAW groups and slots.
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ABSTRACT

The IEEE 802.11ad amendment to the 802.11 standard for
multi-gigabit communication at 60 GHz was published sev-
eral years ago, but to date, no precise simulation model
for networking in this band is available. In this paper, we
present a model for IEEE 802.11ad implemented in the net-
work simulator ns-3. We model new techniques that are
essential for IEEE 802.11ad operation such as beamform-
ing training and steering, relay support, and fast session
transfer. We then evaluate by simulation the performance
of IEEE 802.11ad as well as the gains obtained through
the aforementioned techniques. The code for our simulation
model is publicly available.

CCS Concepts

eNetworks — Network simulations; Wireless local
area networks;

Keywords
Millimeter Wave, IEEE 802.11ad, 60 GHz, ns-3

1. INTRODUCTION

With the proliferation of mobile devices with data hun-
gry applications, existing mobile networks and wireless lo-
cal area networks (WLAN) technologies are becoming in-
creasingly congested and overloaded. As a result, mobile
network operators and telecommunications equipment ven-
dors are considering leveraging the underutilized radio spec-
trum available between 30 GHz and 300 GHz, the so called
the millimeter wave (mmWave) band, for next generation
wireless networks. Wireless communication in this band is
highly appealing since it provides extremly high capacity
and thus allows for a several-fold increase in data rates and
lower latencies. However, transmission in this band has spe-
cific signal propagation characteristics compared to existing
technologies working in lower bands and thus requires major
design changes for both medium access control (MAC) and
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physical (PHY) layers. Both the Wireless Gigabit Alliance
(WiGig) and the Wi-Fi Alliance took the initiative to lever-
age this wide spectrum and provide multi-gigabit per second
communication in the 60 GHz unlicensed band. They intro-
duced the WLAN IEEE 802.11ad amendment [2, 9] which
provides very high throughput of up to 7 Gbps for short
range communication for local area networks. This allows
for a range of new high-rate applications, such as wireless
docking stations, wireless storage, and instant file synchro-
nization. Compared to IEEE 802.11ac [3] which is capable
of supporting multi-gigabit throughput by employing high
modulation and coding schemes (MCSs) and advanced phys-
ical layer technologies such as multi-user-multiple-input and
multiple-output (MIMO), IEEE 802.11ad achieves multi-
gigabit throughput by utilizing only the wide channels of
2.16 GHz available at the 60 GHz band.

Experimental evaluation of networking in this band is ex-
tremely costly and available hardware has very limited ca-
pabilities. Current research studies deduce network perfor-
mance from individual 60 GHz links [7, 4, 8] but cannot
evaluate the behavior of an entire network. In such cases,
resorting to network simulation is a very useful alterna-
tive which abstracts implementation details while providing
a good grade of realism. However, there are no publicly
available simulation tools supporting IEEE 802.11ad in the
mmWave band. For these reasons, we provide in this pa-
per a concrete model for simulating IEEE 802.11ad with its
novel techniques such as channel access periods, beamform-
ing training, relay operation, and fast session transfer.

The paper structure is as follows. In Section 2 we provide
background on IEEE 802.11ad accompanied by a survey of
the existing simulation models. Section 3 presents our IEEE
802.11ad implementation in ns-3 and Section 4 presents the
evaluation results for the proposed model for different sce-
narios. Finally, Section 5 concludes the paper.

2. BACKGROUND AND RELATED WORK

In the following subsections, we provide background on
the WLAN IEEE 802.11ad amendment and survey existing
work on network level simulators for mmWave technologies.

2.1 Background on IEEE 802.11ad

Wireless communication in the 60 GHz band has different
characteristics compared to IEEE 802.11 devices operating
in the 2.4 GHz and 5 GHz bands. In the following para-
graphs, we provide a brief description of the major design
changes for both MAC and PHY layers in IEEE 802.11ad
and the intuition behind them.
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2.1.1 802.11ad Physical Layer

Emerging applications using the IEEE 802.11ad multi-
gigabit capability have different constraints and requirements
in terms of power consumption, data rates, processing capa-
bilities and antenna design complexity. For these reasons,
IEEE 802.11ad introduces four different types of PHY layers
to cope with these requirements. Each PHY layer supports
a set of specific MCSs.

e Control PHY: This PHY layer (MCSO0) is dedicated
to low Signal-to-Noise Ratio (SNR) operation with low
throughput communication (27.5 Mbps). It is mainly
used during the Beamforming Training (BF) phase.

e OFDM PHY: This PHY layer (MCS 13-24) pro-
vides the highest data rates of up to 6.76 Gbps. It
adopts Orthogonal Frequency Division Multiplexing
(OFDM) technology which is very efficient in multi-
path environments. However, its implementation is
complex and therefore it targets devices with less strin-
gent power and design constraints, such as docking
stations and wireless streaming devices.

e Single Carrier (SC) PHY: Power limited and low
complexity devices adopt this physical layer which pro-
vides a good trade-off between average throughput and
energy efficiency compared to the OFDM PHY. Mo-
bile phones and tablet devices will most likely adopt
this PHY layer. SC PHY defines MCS 1-12, of which
MCS 1-4 are mandatory modes to be implemented in
all devices for interoperability.

e Low Power (LP)-SC PHY: This PHY layer with
MCS 25-31 is similar to the SC PHY layer, but allows
for further power reduction by using low-density parity
check (LDPC) codes instead of Reed-Solomon codes.

Figure 1 depicts the IEEE 802.11ad frame structure. The
frame starts with the typical IEEE 802.11 fields such as short
training field (STF) and channel estimation field (CEF) which
are used for detecting the type of the PHY layer. These
fields are followed by the PHY header which includes in-
formation such as payload length in bytes and index of the
MCS used in the payload part. This field together with the
MAC header and the MAC payload are protected by a Cyclic
redundancy check (CRC). Finally, IEEE 802.11ad appends
optionally two fields named automatic gain control (AGC)
and training (TRN). These new fields are used during the
BF phase which we describe in section 2.1.3.

2.1.2 DMG Channel Access

IEEE 802.11ad organizes the access to the medium in so-
called Beacon Intervals (Bls). Each BI is further subdivided
into different access periods. An access period has different
access rules and provides certain functionalities to nearby
directional multi-gigabit (DMG) stations (STAs). Figure 2
illustrates a typical BI consisting of Beacon Header Inter-
val (BHI) and Data Transmission Interval (DTI). The BHI
compromises the following three sub-intervals:

e Beacon Transmission Interval (BTI): In this sub-
interval, multiple DMG Beacon frames are transmit-
ted across different sectors by the DMG personal ba-
sic service set control point (PCP)/access point (AP)
to announce the network and provide transmit sector

training towards nearby stations. DMG Beacons are
transmitted using MCS 0 to reach large distances.

e Association Beamforming Training (A-BFT): The
A-BFT is used mainly by DMG STAs to train their
transmit antenna sectors towards the DMG PCP/AP
in a contention based manner.

e Announcement Transmission Interval (ATI): This
sub-interval is used mainly for management frame ex-
change between the PCP/AP and beam-trained STAs.
Since communication takes place with beam-trained
stations, stations can use high MCSs during the ATI
for more efficient communication.

In the DTI period, DMG STAs exchange data frames ei-
ther in the contention-based access period (CBAP) or the
scheduled service period (SP). During the CBAP, DMG
STAs contend for the channel access using the IEEE 802.11

Enhanced Distributed Coordination Function (EDCF), whereas

in SP, DMG STAs access the channel in a contention-free
manner where the channel is reserved for communication

between two dedicated DMG STAs.

2.1.3 Beamforming Training Mechanism

Propagation conditions at 60 GHz band are worse com-
pared to the lower bands due to oxygen absorption [10],
high attenuation, weak signal reflectivity, and quasi-optical
propagation behavior [11]. For these reasons, IEEE 802.11ad
provides a mechanism to establish a directional link through
a beamforming training process to compensate for signal
quality degradation. In this process, stations focus their
energy towards the intended receivers only, which increases
antenna gain and may result in reduced interference, allow-
ing for high spatial reuse. The beamforming training process
in IEEE 802.11ad is divided into the following two phases:

e Sector Level Sweep (SLS) Phase: In this phase,
a DMG STA selects a coarse grain antenna sector for
the initial communication. The phase can be used in
two ways: 1) as transmit sector sweep (TXSS) where
a DMG STA tries to select the best transmit antenna
sector towards a particular DMG STA by sending Sec-
tor Sweep (SSW) frames via each of its antenna sectors
or 2) as a receive sector sweep (RXSS), where a DMG
STA trains its receive antenna sector by requesting a
peer DMG STA to transmit SSW frames using a fixed
antenna pattern while the former is sweeping across its
receive antenna sectors.

e Beam Refinement Protocol (BRP) Phase: IEEE
802.11ad defines multiple optional mechanisms to re-
fine the sectors obtained in the SLS phase. The most
important mechanism is the beam refinement mecha-
nism, which is an iterative process where two DMG
STAs exchange a special BRP packet ending with ei-
ther transmit training (TRN-T) or receive training
(TRN-R) fields. Additionally, the amendment defines
a Beam Tracking (BT) option to keep a track of signal
quality during an ongoing data transmission by adding
the previous TRN fields to the PHY frames.
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Figure 2: IEEE 802.11ad beacon interval with different access periods.

2.1.4  Fast Session Transfer Technique

Since communication in the 60 GHz band is limited in
range and suffers high penetration loss in case of obstacles,
IEEE 802.11ad included a fast session transfer (FST) tech-
nique. With this, an IEEE 802.11 capable device can change
seamlessly its operational band from 60 GHz to 2.4/5 GHz.
As a result, a device can extend its coverage area and main-
tain its current sessions. As an example of this technique, a
user may stream an Ultra High Definition (UHD) video on
his device from a wireless docking station over the 60 GHz
band when he is in the proximity of the docking station.
As the user starts to move a way from the docking station,
signal quality starts to degragade so the docking station de-
cides to transfer the session to a lower band but continues
video streaming using lower video encoding techniques.

2.1.5 DMG Relay Operation

IEEE 802.11ad also introduces a relay mode. In this
mode, two DMG STAs named source Relay Endpoint DMG
STA (REDS) and destination REDS can communicate with
each other with the assistance of a Relay DMG STA (RDS)
which results in coverage area extension, improved link re-
silience against interruptions, and persistent multi-gigabit
throughput. IEEE 802.11ad defines the following two types
of relay operation modes:

e Link Switching Type: In this type, the source REDS
maintains two links to the destination REDS: a direct
link and a relay link through RDS. If the direct link is
disrupted, the source REDS switches its transmission
to the relay link. Communication over the disrupted
link can resume once the direct link is recovered. Un-
der this type, the RDS can operate either in full-duplex
amplify-and-forward (FD-AF) mode or in half-duplex
decode-and-forward (HD-DF) mode. In FD-AF mode,
RDS amplifies the received frames and forwards them
directly to the destination DMG STA. For this rea-
son, the RDS should include at least two RF chains for
sending and receiving frames at the same time. In con-
trast, for the HD-DF mode the RDS receives multiple
frames from the source REDS in one SP and forwards

them to the destination REDS in the following SP.

e Link Cooperating Type: Contrary to the previous
mode, in this mode the source REDS utilizes both di-
rect link and relay link simultaneously to improve re-
ceived signal quality at the destination REDS. Op-
erating in this mode requires the source DMG to be
aware of propagation delays over each link.

2.2 Existing Work

Although wireless networking in the mmWave band is a
hot topic, limited work has been done to provide system
level simulators, particularity for IEEE 802.11ad. For ex-
ample, authors in [7] propose a 5G module in ns-3 based
on the LTE protocol stack. The module provides a chan-
nel model based on extensive channel measurements in the
28 GHz band. However, it does not employ any algorithms
for establishing directional links nor steering antennas ar-
rays. Authors in [4] utilize a IEEE 802.11ad PHY layer to
establish multi-gigabit links in data centers using ns-3. In
their implementation, they use data rates provided for both
SC and OFDM PHY layers in the amendment. Additionally,
since the topology of the data center is stable and known,
they steer their antennas geometrically i.e. they do not sim-
ulate any of the beamforming procedures established in the
standard. Finally, authors in [6] provide an architecture for
simulating IEEE 802.11ad in ns-3 with a general description
on modeling various BF procedures provided in the amend-
ment. However, the implementation is not publicly available
and in the validation section the author does not take into
account the overhead imposed by different access periods in
the BI. All of the previous works simplify the implemen-
tation and do not model essential techniques for MAC and
PHY operation in the mmWave band.

3. IMPLEMENTATION

In the following section, we provide an overview of the
IEEE 802.11 model in ns-3 and how we augmented it to
adhere to the IEEE 802.11ad amendment. The model im-
plementation is available on GitHub [1].
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Figure 3: Our implemented IEEE 802.11ad architecture in ns-3.

3.1 IEEE 802.11 Model in ns-3

The current Wifi model in ns-3 supports different IEEE
802.11 specifications such as a/b/e/g/n/ac with an accu-
rate implementation of the MAC layer. The model can be
divided into the following four layers:

¢ MAC High Layer: It provides some Mac layer man-
agement entity (MLME) functionalities depending on
the underlying network it supports, such as Infrastruc-
ture basic service set (BSS) or Independent BSS.

e MAC Low Layer: This layer takes care of Ready
to Send (RTS)/Clear to Send (CTS)/DATA/Normal
Acknowledgment (ACK)/BlockACK transmission us-
ing the distributed coordination function (DCF) and
Enhanced DCF channel access (EDCA) functions. Ad-
ditionally, it is provides both MAC service data unit
(MSDU)/MAC protocol data unit (MPDU) aggrega-
tion and deaggregation capabilities.

e Physical Layer: It is a simplified model of the real
Wifi PHY layer. This layer handles packet transmis-
sion and reception over the underlying channel. It cal-
culates interference among different STAs and provides
some probabilistic error model for packet reception.

e Channel Layer: This layer interconnects different
PHY layers of different wireless STAs. Additionally,
it simulates and models propagation effects that wire-
less signals encounter in real environments.

The IEEE 802.11 model in ns-3 is well suited for wireless
technologies that use a carrier sense multiple access with col-
lision avoidance (CSMA/CA) scheme with omni-directional
transmission and reception. However, IEEE 802.11ad has
characteristics that require some major changes to this model.
Figure 3 shows the existing ns-3 IEEE 802.11 architecture
together with the new blocks for the mechanisms introduced
in [EEE 802.11ad. An abstract DmgWifiMac class provides

common capabilities and techniques for DMG operation.
From this class, we derive two classes to represent differ-
ent BSS types. The first class DmgSta WifiMac implements
procedures specific to DMG STA such as TXSS in A-BFT,
responding to request frames in the ATI period, and the
association state machine. The second class, DmgAp Wifi-
Mac, represents the DMG AP and provides DMG Beacon-
ing, BRP Setup Subphase, and BRP transaction initiation.

The following subsections provide an in-depth description
of implementation and design assumptions for each block.
Since ns-3 provides packet-level granularity, it was impor-
tant to provide an accurate implementation of the newly
introduced MAC frames and Wifi Information Elements to
support various procedures defined in IEEE 802.11ad. Fur-
thermore, representing the actual frame structure facilitates
packet flow analysis using any network protocol analyzer
that supports the IEEE 802.11ad extension.

3.2 DMG PHY Layer

ns-3 provides a simple PHY layer for the operation of
IEEE 802.11. In this layer, the reception of the Physical
Protocol Data Unit (PPDU) frame is modeled as simula-
tion delay corresponding to the transmission time of this
frame plus propagation delay. To model the multi-gigabit
throughput of IEEE 802.11ad, we provide all the mathe-
matical equations required for the calculation of PHY frame
transmission time including preamble, header and payload
using either control, SC, or OFDM PHYs.

3.3 DMG Access Periods

The DmgAp WifiMac class organizes medium access by ini-
tiating BI through transmission of DMG Beacons across all
its antenna sectors. The remaining time for each access pe-
riod is announced in the duration field of the MAC header.
This allows DMG STAs to synchronize their clocks with the
DMG AP clock. During BTI, the DMG AP ensures the
medium is free before it starts DMG beacon transmission.

60



Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

For this reason, the value of the duration field is calculated
once the DMG AP is granted access to the channel. A
DMG STA that receives at least one DMG beacon from
the DMG AP schedules an event to start the A-BFT ac-
cess period at the end of the current BTI. The DMG APs
divides the A-BFT into slots, where the duration of each
slot is calculated based on the number of SSW frames to
be transmitted. DMG STAs choose one of these slots ran-
domly using a uniform distribution. If two DMG STAs select
the same slot, they will collide and do not receive an SSW-
Feedback (FBCK) frame within a pre-determined period of
time. These two DMG STAs then have to select a new slot
while ensuring that they do not exceed the duration of the
A-BFT. This period is followed by the ATI access period,
where the DMG AP initiates management frame transmis-
sion. Currently, we use this period to perform the BRP
setup phase and exchange BRP transactions. Any packet
that arrives during the previous access periods is queued for
transmission until the beginning of the DTT.

3.4 Directional Antenna Pattern
Unlike the previous IEEE 802.11 specifications which are

able to exploit omni-directional communication, IEEE 802.11ad

requires a directional communication link towards its in-
tended receiver, and thus a directional antenna pattern model.
We provide a generic directional antenna model named Ab-
stractDirectional Antenna which divides the 2D plane into a
user defined number of virtual sectors with equal apertures
and coverage range. Concrete antenna models are inherited
from this base model. In this derived model it is possible to
define the attributes of the radiation pattern such as maxi-
mum gain, side lobe gain, and the gain based on the selected
sector and the geometric angle between the transmitter and
the receiver. In our implementation, we use the antenna
model provided in [5] for evaluating IEEE 802.11ad in a con-
ference room. In this antenna model, the authors provide
a simple mathematical model to characterize a directional
antenna with averaged side lobe. For frame transmission, a
DMG STA should be using one of the predefined antenna
transmit sectors. For reception, the antenna can be either
in omni receive mode or directional receive mode depending
on the current access period.

3.5 DMG Beamforming Operation

We provide a generic implementation for both SLS and
BRP phases in the DmgWifiMac class. The implementation
can be used either as part of the initial BT between DMG
AP and DMG STAs or as a scheduled SP between two DMG
STAs. The DmgWifiMac class has two data structures: one
for storing and mapping antenna sector configurations for
each received frame from a peer DMG STA with its corre-
sponding SNR and another data structure for storing the
best transmit and receive antenna sectors towards a partic-
ular station. The latter is updated at the end of each BF
operation. In the current implementation, all decisions re-
garding the best transmit and receive antenna sectors are
based on SNR measurements. The MacLow class uses the
second data structure to select the antenna sector based on
the receiver address in the MAC header. In the current im-
plementation, we assume DMG STAs perform TXSS in the
A-BFT. In addition, the BRP phase will be utilized to train
antenna receive sectors for all DMG STAs instead of refin-
ing the selected antenna transmit sector. All BF frames are

transmitted using MCS 0.

To model TRN field transmission in ns-3, we modify the
current Physical Layer Convergence Protocol (PLCP) trans-
mission model which handles PHY preamble, header and
payload transmission and reception only. For example, a
MAC frame that requires TRN fields to be appended to its
end pass this information in the TxVector together with the
length and type of the TRN fields to be appended (either
TRN-T or TRN-R). Since each TRN field corresponds to a
unique antenna sector pattern, we schedule the transmission
of each TRN field separately to allow DMG to change its ac-
tive sector. At the end of each TRN field transmission, the
receiver calculates the received SNR value for this particular
field and reports it to the DmgWifiMac. Once all TRN fields
are received, the DmgWifiMac determines the best antenna
sector.

3.6 Fast Session Transfer

IEEE 802.11ad supports multi-band operation for fast ses-
sion transfer (FST). FST operation can be either in trans-
parent or non-transparent mode. In transparent mode, all
MAC sub-layers in the STA expose a single MAC-Service
Access Point (SAP) to the upper layers, i.e., a single MAC
address. In non-transparent mode, each MAC sub-layer ex-
poses its own MAC-SAP to the higher layers which adds
more complexity. In our implementation, we use the trans-
parent mode where we design a new NetDevice named Multi-
BandNetDevice. This new NetDevice encapsulates differ-
ent IEEE 802.11 technologies as depicted in Figure 4. For
each technology, a user defines a WifiMac, WifiPhy, WifiRe-
moteStation and WifiChannel object. One technology should
be active at any point for any pair of devices. A STA that
supports multi-band operation should announce this in its
Beacon, Association Request, Association Response, Probe
Request, Probe Response, and DMG Beacon a MultiBand
Information Element.
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N ya
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Figure 4: MultiBandNetDevice implementation.

Figure 5 illustrates various states a STA goes through
to establish a unique fast session transfer session (FSTS)
ID with a peer STA. At the beginning, each STA is in
the INITIAL_STATE where they communicate in the old
band/channel. A station that wishes to set-up a FSTS is
called FST Initiator and the peer station is FST Responder.
To proceed to the SETUP_COMPLETION_STATE and
obtain a unique FSTS ID, both Initiator and Responder have
to exchange FST Setup Request/Response frames success-
fully. In this new state, STAs keep communicating in the old
band/channel. However, depending on the value of the link
loss timeout (LLT) field in the Session Transfer Information
Element, both STAs shall either transfer their current ses-
sion to the new band/channel immediately if the value of
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LLT is equal to zero, or they shall start a Link Loss count-
down equal to LLT % 32us if LLT > 0. The LLT defines the
amount of time that has to elapse since the initiating STA
received an MPDU frame from the responding STA until
the initiating STA should perform FST. Once the value of
LLT reaches zero, both Initiator and Responder move to
the TRANSITION_DONE_STATE and start communi-
cating in the new band/channel. If the two STAs exchange
normal MPDU frames or FST ACK Request/Response in
the new band/channel successfully, the two STAs move to
the TRANSITION_CONFIRMED_STATE, otherwise
the two STAs move to the INITTAL_STATE and resume
communication in the old band/channel.

3.7 DMG Relay Operation

We implement link switching type relay operating in FD-AF
mode. Figure 6 summarizes different procedures to estab-
lish a relay link with a destination Relay Endpoint DMG
STA (REDS) in a DMG BSS. A STA should acquire the
DMG capabilities of the DMG STA it wishes to establish a
relay operation with before it initiates any relay setup op-
eration. This is done by sending an Information Request
frame to the DMG AP after the DMG STA completes its
association with the DMG AP.

e RDS Discovery Procedure: In this phase, a source
REDS searches for candidates Relay DMG STAs (RDSs)
in the DMG BSS. The DMG AP informs both source
REDS and destination REDS about the available REDS
in the network with their DMG capabilities.

e RDS Selection Procedure: At this point, the DMG
AP schedules several SPs for BF training between all
the available RDSs together with source REDS and
destination REDS consecutively. After that, the source
REDS request for channel measurements with the can-
didates RDSs. Later on, the DMG AP schedules a SP
for BF between source REDS and destination REDS.
After finishing the BF, the source REDS requests des-
tination REDS to send channel measurements with the
available RDSs. As a result, the source REDS will
be aware of all channel states in the network. Based
on this information, the source REDS selects the best
RDS for relaying. In our implementation, we select the
RDS which receives frames from both source REDS
and destination REDS with the highest SNR.

e Relay Link Setup (RLS) Procedure: In this phase,
the source REDS decides to forward its current trans-
mission through the selected REDS in the previous
phase. Thus, it sends an RLS Request frame to the
selected RDS. The selected RDS in return forwards
this frame to the destination REDS. At this point,
the destination REDS replies back to the selected RDS
with an RLS Response with a status equal to Success
if it accepts to communicate through the relay link.
The selected REDS forwards this frame to the source
REDS with a status equal to Success if it accepts to
act as relay. If both destination REDS and RDS ac-
cept to switch the link, the source REDS sends an
announcement frame to the DMG AP regarding the
newly established relay link in the network.

e Relay Teardown Procedure: If the source REDS
decides to terminate its relay link through the selected
RDS, it shall transmit an RLS Tear Down frame to
the selected RDS, destination REDS and DMG AP.

4. MODEL EVALUATION

In this section we provide some evaluation results for our
new IEEE 802.11ad model. In all the experiments, we as-
sume all DMG STAs and DMG AP have one antenna array
with 8 sectors. We use a Friis propagation loss model to
calculate received signal strength (RSS) and UDP as trans-
port protocol. All STAs support both MSDU and MPDU
aggregation, and data transmission is done in CBAP mode.

4.1 Evaluating 802.11ad Beamforming Over-
head and Achievable Throughput

In this experiment, we calculate the amount of time it
takes to establish directional communication between two
DMG STAs. We also demonstrate the obtained throughput
for different MCSs for both SC and OFDM PHY layers.

The setup compromises two nodes: one DMG AP and
one DMG STA. These nodes are spaced 2m apart from
each other. The DMG STA generates a flow of User Data-
gram Protocol (UDP) messages towards the DMG AP. The
announced A-BFT by the DMG AP consists of 8 sector
sweep (SS) slots where each slot contains 8 SSW frames.

From simulations, we find that the two nodes spends al-
most 572 us to complete an SLS phase for TXSS. The
RXSS is performed during the BRP which takes around 396
ps. Figure 7 depicts the obtained throughput for two dif-
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Figure 7: Throughput for different MCSs.

ferent sets of MCSs. The highest throughput achieved for
SC is almost 4 Gbps and for OFDM is 5.2 Gbps. How-
ever, the achieved throughput for OFDM is 1.5 Gbps less
than the theoretical maximum IEEE 802.11ad throughput
of 6.72 Gbps. This is mainly due to the overhead imposed
by the CBAP access mechanism. Besides that, the data
rate reported in the standard assumes a continues stream of
OFDM symbols without any PHY and MAC overhead and
any Interframe Space (IFS).

4.2 Evaluating DMG Relay Operation

Here, we measure how much time it takes to switch a
directional communication link between two REDSs and use
an alternative path through an RDS operating in full-duplex
amplify-and-forward (FD-AF). Additionally, we calculate
the throughput gain we obtain by using this alternative path
compared to the case where we do not have any available
RDS in the DMG network.

The simulation setup shown in Figure 8 contains one DMG
AP with 3 DMG STAs. Two DMG STAs act as REDS and

one DMG STA supports RDS. During the DTT acess period,
all DMG STAs communicate using MCS 24.

()

DMG PCP/AP

Direct Link Path
Relay Link Path

o

Source REDS

4
Destination

REDS

Figure 8: Relay test setup topology.
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Figure 9: Relay setup results.

At the beginning, the two REDSs are able to communicate
with each other over the direct link. At a certain point in
the simulation, we introduce a blockage in the direct link.
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This blockage does not result in a complete link failure. The
source REDS starts to miss some ACKs from the destination
REDS and the achievable application throughput is halved.
As a counter measure, the source REDS decides to perform
an RLS procedure with the selected RDS to obtain a better
link quality with the destination REDS. Figure 9 shows the
received throughput with and without relay support. From
the simulations, we find that it takes around 117 s to switch
from the direct link to the relay link. In addition, using the
relay link results in a throughput gain of 2.5 Gbps.

4.3 Evaluating Fast Session Transfer

In this experiment, we demonstrate the capability of trans-
ferring an on-going data session smoothly from the 60 GHz
band to the 2.4 GHz band. The simulation setup is similar to
the one in Section 4.1 with the addition that the nodes can
communication in the 2.4 GHz band using IEEE 802.11n.
We set the value of LLT to 1000 which corresponds to a
link loss countdown value of 32 ms. After the nodes estab-
lish the directional link, they setup a unique FSTS between
each other.
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=
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s 3000
2.
E)
= 2000
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Figure 10: FST setup results.

A the beginning of the simulation, the nodes communi-
cate with each other normally and the achieved throughput
is around 5 Gbps as shown in Figure 10. After one second,
we introduce a blockage in the link of -45 dBm. This block-
age breaks the link so the nodes starts a link loss countdown.
When the timer expires, the two nodes switch to the 2.4 GHz
band and continue their session. We notice the degradation
in the achieved throughput around 60 Mbps due to the lim-
ited capacity available in the lower frequency band.

5. CONCLUSION AND FUTURE WORK

We provide an architecture for modeling WLAN IEEE
802.11ad with its various enhancements in ns-3. We imple-
ment beamforming training and steering, relay operation,
and fast session transfer. We discuss a range of implementa-
tions details and how the model integrates into ns-3. In the
evaluation section, we demonstrate the overhead required to
establish a directional communication link and the average
throughput achieved for different MCSs for both SC and
OFDM PHY layers. Then, we show that swapping a trans-
mission from a direct link to an alternative link through a
relay takes around 117 ps and the throughput gain is almost
double. Finally, we demonstrate the capability of fast ses-
sion transfer of maintaining an on-going session alive. The
source code of our implementation is publicly available.

IEEE 802.11ad provides many mechanisms to either avoid
communication disruption for certain cases or improves the

achievable data rate. The current implementation consid-
ers only CBAP access period in the DTI and lacks a hybrid
MAC model which provides dynamic channel allocations for
applications with strict Quality of Service (QoS) require-
ments. In our current DMG relay implementation, we model
full-duplex amplify-and-forward relay operation mode only
and we omit the half-duplex decode-and-forward mode. Ad-
ditionally, the standard defines a new type of frame aggrega-
tion named PPDU aggregation. In this aggregation mode, a
DMG STA transmit two or more PPDUs without any sepa-
ration. Next steps in the further development of our model
are to implement these missing features. The current im-
plementation provides all MAC frames and Information El-
ements necessary for modeling missing MAC sublayer func-
tionalities. Besides, our implementation can also serve as a
base line for implementing and evaluating the next genera-
tion 60 GHz WLAN IEEE 802.11ay amendment.
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ABSTRACT

This work presents results based on a critical re-examination
of the current physical layer abstractions for IEEE 802.11
OFDM WLAN in the ns-3 network simulator motivated by
a) the need to improve fidelity of the Layer-1 abstraction es-
sential for a network level simulator, and b) setting the stage
for desired new features (not currently implemented) in the
future. We implement a multi-stage packet reception that ad-
dresses a shortcoming in the current WLAN receiver model,
making it closer to existing hardware, and lays the ground-
work for improvements such as packet capture. Next, we
consider the frame error rate (FER) model in ns-3 which re-
lies on analytical bounds on the bit error probability (BER)
at the output of the convolutional decoder. We demonstrate
key issues with the current approach through detailed link
level simulations using a newly developed Wi-Fi link simula-
tor and look forward to forthcoming fixes being considered.

CCS Concepts

eComputing methodologies — Discrete-event simu-
lation; Modeling methodologies; e Networks — Network
simulations.

Keywords
Wi-Fi, Network Simulator 3 (ns-&)

1. INTRODUCTION

In recent years, simulation tools have played a critical
role in wireless research and development. Standards or-
ganizations such as the 3rd Generation Partnership Project
(3GPP) and the IEEE have relied heavily on simulation sce-
narios to guide the development of cellular and Wi-Fi stan-
dards and evaluate ideas proposed for inclusion. Likewise,
the research community has made extensive use of simu-
lation tools to accompany mathematical analysis. In fact,
in many cases, mathematical analysis is intractable or oth-
erwise cumbersome and simulation tools such as ns-3 have
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become the primary method for evaluating new designs and
performance in specified use-case scenarios. To that end, en-
suring the accuracy and performance of these tools is crucial
to their credibility and ultimately, wider acceptability. One
such tool widely used in academia is the network simulator
3 (ns-3) [2]. ns-3 is an open source packet level simulator,
with the intent to support a growing number of wireless
and wired network stacks. In this paper, we focus exclu-
sively on the current Layer-1 error model abstractions for
ns-3 OFDM Wi-Fi (802.11n); based on a critical examina-
tion, highlight some shortcomings.We first propose some ar-
chitecture modifications that are consistent as a foundation
for future extensions. We then implement a new multi-stage
packet reception framework and evaluate its impact.

1.1 The Simulation Workflow

Network simulation integrates two categories of simulation
tools:

1. Link Simulators These signal level simulators (typi-
cally built in MATLAB) are designed to closely mimic
the physical layer operation of a wireless modem in-
corporating all details of the digital baseband sections
- modulation, demodulation, coding, channel emula-
tion/estimation, and the effect of analog components
such as gain control and digitization. The goal is to
evaluate receiver algorithms (typically as a function of
SNR) to derive bit and ultimately, frame error rates
in a single Wi-Fi link. The run-time complexities of
these simulators limit their suitability to single link
simulations.

2. System Simulators System level simulators are de-
signed to abstract away the effects of the physical layer
into simple quantities such as frame error rate as a
function of SNR. By design, these operate at Layer-2
(frame-in/frame out) and thus require the Link Simu-
lator to provide a frame/packet based link abstraction
(i.e. a table look-up for the FER as a function of all
relevant system parameters, including SNR). By op-
erating at this level of abstraction, system simulators
offer the ability to simulate networks with hundreds
of nodes with reasonable run-time. Hence, they are
an excellent tool for evaluating the full protocol stack
including the effect of application, transport and net-
work layers as well as network topologies.

One important aspect in the usage of system simulators
is the choice of the physical layer abstractions (also referred
to as the link-to-system mapping). The accuracy of this
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Figure 1: (a)The current implementation of Wi-Fi in ns-3 uses a single action point at the end of the frame.
(b)Our newly proposed decision process makes the appropriate decisions at the relevant intermediate points.

mapping (and hence the credibility of the system simulator)
reflect how closely the simulator models effects that occur
in real networks. In the case on ns-3, the Wi-Fi model at
present lacks the ability to accurately depict packet capture
[10]. Also, concerns have been raised over the validity of
the two error models in use; the YANS error model [13]
has been found to be too optimistic for AWGN channels,
while the NIST error model [16] has been found to be too
conservative [12,16]. These concerns motivate detailed look
at the current physical layer abstraction employed in ns-3.

1.2 Preliminaries

We begin by describing the structure of a Wi-Fi packet
as it pertains to the reception process. In this paper, we
consider a Wi-Fi system with a channel width of 20MHz ac-
cording to the 802.11 standard [6]. Since the 802.11g release
of Wi-Fi, OFDM has served as the underlying air interface
technology for a multitude of reasons pertaining to favorable
performance characteristics (e.g. resistance to multi-path
delay spread, ease of equalization, etc.) At the physical
layer, a Wi-Fi frame consists of four major portions® (Fig-
ure 1):

Short Training Field (STF): This portion of the frame
consists of an 800ns signal repeated 10 times. The peri-
odic nature of the signal is meant to assist in frame syn-
chronization and detection using a delayed autocorrelation
method [19]. At the start of the frame, correlating the
incoming signal with a version of itself delayed by 800ns
presents strong peaks that allow the receiver to locate the
start of the frame. In addition, during the STF, the Auto-
matic Gain Control (AGC) at the receiver is adjusted in
order to obtain good quantization performance (dynamic
range) for the remainder of the frame.

Long Training Field (LTF): This portion of the frame
consists of a 4us OFDM symbol repeated twice. The pur-
pose of this portion of the frame is to assist in channel esti-
mation, coarse carrier frequency offset estimation, 1Q imbal-
ance estimation and other signal processing tasks requiring
a reference signal. Errors in the estimate can dramatically
impact decoding of the payload. Typical estimators such as
MMSE or DFT are employed [8].

L-SIG Field: This portion of the frame is modulated as
BPSK with a rate 1/2 convolutional code. It is responsi-
ble for carrying information on how the data field can be
decoded including the modulation scheme, the coding rate,

We omit specifically addressing additional header fields in-
troduced in the HT modes in this work and leave it as a
subject of future work

and the duration of the data. The BPSK symbols are con-
verted into OFDM symbols with the same properties as the
data portion.

Payload: The data field is transmitted using 64 sub-carriers
with a carrier separation of 312.5 kHz. Some sub-carriers
are unused (e.g. DC sub-carrier, 6 on the left and 5 on the
right due to the guard bands) and 4 of the modulated sub-
carriers are allocated as pilots. The remaining 48 data sub-
carriers all use the same modulation which can range from
BPSK/QPSK through 64-QAM (802.11a/n) or 256-QAM
(802.11ac or later). The data is encoded using a convolu-
tional encoder and decoded at the receiver using a Viterbi
decoder. Each OFDM symbol used for data transmission
is of duration 4ps (which includes an 800ns cyclic prefix).
For Modulation Coding Schemes (MCSes) addressed in this
work, Wi-Fi employs a constraint length 7 convolutional en-
coder with rate 1/2 which can be punctured to achieve other
desired rates [6].

1.3 Motivation

The current ns-3 error model for payload reception is
based on analytical results for bit error probabilities (note
that the L-SIG is nothing but a short duration payload).
Specifically, once an expression for P, (the bit error rate) as
a function of SNR is obtained [14], the payload error rate
P, is computed as follows:

P.=1-(1-PF)", (1)

where N is the number of data bits in the payload.
In examining the current physical layer abstraction and
error model in ns-3, we will consider two aspects:

1. Sources of packet/frame error

2. Accuracy of error probabilities as a function of SNR
and payload length

To address the first aspect, we note that in the current im-
plementation of ns-3, a successful packet entails a compu-
tation at the end of the L-SIG for correct reception of the
header, followed by an error rate computation at the end
of the frame to decide on correct reception of the payload.
Although failure of the L-SIG is considered at the end of the
L-SIG field, the model defers any change of state notifica-
tion (i.e. the receiver remains in an RX state) until the end
of the frame. This does not conform to existing hardware
Wi-Fi systems. Lastly, errors during STF/LTF are not even
considered.

But first, we begin our examination with the second facet
of the abstraction by considering the analytical bit/packet
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Figure 2: (a) Block diagram for a single antenna Wi-Fi transmitter. (b) Receiver block diagram for single-

antenna Wi-Fi receiver link simulations.

Table 1: Link Simulation Parameters.

Antenna 1x1 (SISO)

Sampling Rate 100 MHz

AGC Logarithmic Loop
ADC Ideal 12bit
Synchronization Delayed Auto-correlation

Channel Estimation Ideal (AWGN)
Soft Decision (8bit quantization)
Viterbi (128 Traceback)
0dB

> 2048

Demodulator
Decoder
Noise Figure
Iterations

error rates used within ns-3. In the next section, using the
published results from 802.11 standardization as a guide [15],
we take a closer look at these error rates and consider any
factors that may explain the large discrepancies.

2. AWGN PHY LAYER SIMULATIONS

In order to take a critical look at the ns-3 physical layer
error model, we employ a MATLAB based link simulator [5]
and focus on a SISO Wi-Fi system as a natural first step.
Figure 2 shows a block diagram describing operations carried
out in our link simulator. Additionally, the current incar-
nation of ns-3 operates under the assumption of an AWGN
channel exclusively, hence the results we produce make the
same assumption (we hope to address frequency selective
channel models such as TGn Channel D in the future).

On the transmitter side, after the application of a con-
volutional error correcting code [6], the bits are interleaved
and modulated according to the desired constellation (BPSK
through 64QAM) before being transmitted through the chan-
nel. The parameters used for the link simulations are shown
in Table 1. We emphasize that noise figure is set to 0dB
for all the results in this section ensuring a fair comparison.
Non-zero noise figure can easily be accounted for as a simple
additive SNR shift for all results.

The currently employed ns-3 model for frame errors is
described in 1.3 and in particular in (1). The two issues
with this approach which we aim to study in this section:

1. The bit error rate bounds are accurate at higher SNRs,
yet the lower MCSes are typically used at lower SNRs
(where the bound is loose).

2. Computing the frame error rate using (1) makes the
critical assumption that bit errors occur independently

There are two other discrepancies when comparing ns-3
to our simulations as well as those from IEEE Task Group n
(TGn). Firstly, modern WLAN receivers typically use soft
decoding in place of hard decoding due to the 1-2dB gain?
afforded as a result. The 802.11 standard does not require
any specific decoding mechanism, though usage of soft de-
coders has become standard practice.

Another contributing factor in mismatch between ns-3 and
simulations lies in the computation of the SNR (Figure 2b
shows where SNR is measured in the system). Currently,
ns-3 considers noise power over 20MHz while in reality the
noise of interest is limited to the occupied sub-carriers (i.e.
52/64), hence an additional SNR shift must be accounted
for:

P
SNRap = 1010g + 2”
0

52
OMTiz + 101log, 6l (2)

In Figure 3a, we compare our link simulation results to
those produced by the IEEE’s 802.11n task group [15] dur-
ing standardization for MCS0, NCS3 and MCS7 (selected
for simplicity, though all MCSes exhibit the same behavior).
While our link simulation results for frame errors closely
match those of IEEE TGn, ns-3 displays a far more pes-
simistic error rate. We can observe that this disparity is not
merely an SNR shift since the slope of the graphs also differs
(ns-3 exhibits a sharper transition).

Even if we were to adjust for the SNR offset described by
(2), ns-3 retains a 2-3dB gap across the range. This can be
attributed in part to the assumption of independence regard-
ing bit errors which in effect spreads errors amongst multiple
frames when they are actually more concentrated/localized.
In our opinion, this intrinsic assumption makes models that
rely on bit errors less suitable for use in ns-3.

2.1 Packet Error Rates in ns-3: Issues

A possible remedy is for the ns-3 physical layer to move to
a packet error based model that uses link simulation results

2The real system gain is less than the theoretical one due to
quantization and truncation of the log-likelihood ratios
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(a) Comparing simulation and TGn results (see [15] Figure 2-1) to ns-3 reveals a large gap. The
is also more rapid in the case of ns-3. (b) The SNR gap between ns-3 results and those of the link

simulator widens for smaller payloads. No TGn results exist for this payload size.

to decide on packet errors directly. In deriving frame errors
from analytical bounds on bit error rates for coded bits,
we encounter complicating factors that warrant a thorough
examination of mappings from SNR to error rates:

e Effect of frame length on error rates
e The impact of coding on isolated bit errors

It is this second shortcoming which is most problematic. It
is well known within the literature that bit errors occur in
bursts at the output of the Viterbi decoder [9]. Hence, using
the Viterbi bit error rate under the iid assumption (1) results
in a very loose upper bound. While this equality holds for
an uncoded packet, for coded bits, a tighter upper bound
can be obtained by using the first error probability P. in (1)
instead of the bit error probability [17].

Figure 3b compares the error rates for a shorter frame du-
ration (50 bytes) that could represent something like a TCP
acknowledgment message. Clearly, the gap has increased
and the slope has diverged even more in comparison to the
1000 byte packets examined in 3a. Likewise, in the case
of the L-SIG (a 3 byte payload at MCSO0), the difference is
even more stark. In Table 2, we show the required SNR to
decode the L-SIG with various success rates. To achieve a
50% success rate in decoding the L-SIG, ns-3 error models
indicate a required SNR of 1.7dB while our link simulator
can do so at -3.5dB, a difference of more than 5dB.

Then, we must also consider the effect of varying SNR, dur-
ing a frame which is currently tackled in ns-3 by splitting
the frame across bit boundaries (potentially introducing ad-
ditional inaccuracies). And finally, we note that ns-3’s cur-
rent treatment of interference via a unified SINR (whereby
interference is treated as additive noise) has it’s own limita-
tions; but changes to this is deferred to future. We conclude
this section by stating that the need for an improved physi-
cal layer abstraction is clear, and through the proposed im-
provements, we set the stage for subsequent improvements
in ns-3 WLAN/OFDM Phy abstractions in future.

3. WI-FI RECEPTION PROCESS IN NS-3

The existing Wi-Fi reception process in ns-3 works based
on the received SNR at the physical layer [1] and frame

Table 2: Required SNR to achieve given success
rates for SYNC and L-SIG.

ns-3 (SNR)  LinkSim (SNR)
Success Rate 50% 95% 50% 95%
SYNC - -10dB 0.21 dB
SIG 1.7dB 24dB -3.5dB 0.3dB

length. We propose to modify the existing decision process
to the one shown in Figure 1b, with the ability to “drop”
a frame at any of the decision stages, bringing it closer to
actual WLAN implementations [7]. The motivation behind
this modification is two fold: i) helping to account for the
lack of capture effect in existing ns-3 reception, and ii) antic-
ipated low SINR scenarios in future co-existence simulations
within ns-3. Splitting up the reception process requires error
results for the STF/LTF preamble sync, which we generate
from link simulations.

A selection of results for sync are tabulated in Table 2.
A natural question to ask is: what is the significance of the
added stages? At SNRs higher than 5dB, synchronization
is almost always successful, however, keep in mind that ns-3
uses SNR in lieu of SINR, hence it incorporates interference.
While periodically low SINRs at the start of the frame are
expected to occur more frequently in co-existence studies,
they can occur even in the current Wi-Fi only simulations
when accounting for high node densities or hidden nodes
(see Table 3).

As an example, accounting for drops at the LTF/STF
stage can lead to a 5.5% drop in throughput in the case of
10 flows on the network. Conversely, if we consider a hidden
node scenario (described in [3]), we observe that partial col-
lisions within the STF/LTF occur frequently. If the receiver
is locked onto a weak signal through the end of a frame, other
subsequent stronger frames will be ignored. By dropping a
weak packet early, running the same simulation scenarios
yields a throughput gain of up to 16% at high offered loads.

Given this motivation, we modify the Wi-Fi reception in
ns-3. It is pertinent to mention here that inclusion of accu-
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Figure 4: (a) Throughput increase in the hidden node scenario due to multi-stage reception (b) Percentage
of frame drops occurring before the payload captured by multistage reception.

Table 3: Likelihood of Low SNR During Synchro-
nization for 25 Node Ad-Hoc Network [4].

Frequency of Occurrence

Flows < 2dB SINR < 5dB SINR
2 1.5% 2.4%

5 2.47% 4.04%

10 3.56% 5.71%

rate sync error models adds to the fidelity of the reception
process as opposed to relying only on the L-SIG error rates
and assuming perfect synchronization based only on received
power. This will have a greater impact in the case of multiple
possibly heterogeneous interference sources.

We now go on to describe the simulations used to obtain
the synchronization error rates, and the impact of the mul-
tistage reception on existing ns-3 Wi-Fi only simulations.

3.1 Multistage Reception

We use link simulations to provide a synchronization fail-
ure rate (PSYNC) for the newly added stage in ns-3. Aside
from the trivial case of not detecting the start of a frame al-
together, any timing error in the synchronization can prop-
agate through the remainder of the reception process (so
called “soft effects”). In particular, the effective SNR loss
due to synchronization error has some impact on payload
demodulation especially for higher modulation orders (e.g.
64QAM).

We do not propose keeping track of such soft effects at
this time due to the added implementation complexity that
it would entail (though we are considering them for inclusion
in the future). Instead, in order to arrive at a number for
PSYNC we set an acceptable synchronization error threshold
of less than 1 cyclic prefix (i.e. 800ns) within the LinkSim.
If the initial synchronization estimate is within this window,
we consider the timing acquisition (and frame detection) to
have been successful®. Table 2 shows some synchronization
results as a function of SNR for the AWGN channel. Note

3For higher MCSes, a fine grained timing synchronization
step can follow the initial coarse estimate [18].

that if there is significant SNR variation between the syn-
chronization stage and the payload, the soft effects of syn-
chronization will become more apparent, however, we leave
this case for future work.

The implementation has been modified to separate the
preamble and header reception process, with the ability to
drop the packet at either of these stages and, potentially,
commit to another incoming packet. The preamble recep-
tion is compliant with the standard [6, 15.3.6.2]. At the
start of reception, if the PHY is either IDLE or CCA_BUSY,
and there is currently no SYNC being attempted, an end of
preamble event is scheduled. At the LTF, the success rate of
the preamble sync is looked up from LinkSim based results,
and an event for L-SIG header reception is scheduled. If
the preamble has synced successfully, the reception process
moves onto header decode, otherwise the frame is dropped
and the PHY reverts from the reception state. If the header
is decoded successfully, this is followed by payload decode.
Again, if the header fails, the frame is dropped with a cor-
responding change in the PHY state. This model necessi-
tates the addition of a state to indicate whether there is a
preamble sync being attempted, and to ensure that a header
decode is preceded by a successful preamble sync.

4. NS-3 SIMULATION RESULTS

To study the impact of multi-stage reception on Wi-Fi
simulations, a canonical hidden node scenario was studied,
both with and without RTC/CTS enabled [3]. Two nodes,
hidden from each other, transmit to a common access point
placed in the center. The L-SIG was transmitted at MCSO,
with the payload at MCS7 for 1472 byte frames. Constant
bit rate traffic was generated, and the number of frames per
second ranged from 125 (1.47Mbps) to 1800 (21.19Mbps)
for each transmitting station. The default NIST error rate
model was used for both cases, with SYNC results from
LinkSim incorporated for the multi-stage reception.

The original reception process gives lower throughput,
since incoming frames with a high (average) SNR can be
dropped due to the AP’s commitment to receive a frame
from the other station that partially overlaps the incoming
frame. With modified reception, the throughput improves,
with increased effect at higher traffic loads as seen in Fig-
ure 4a. To further illustrate the impact of frame drops at the
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preamble and header stages, the percentage of total drops
occurring at these two stages were tabulated 4b. In the hid-
den node scenario, 8-10% of the total drops happen before
the payload stage. For these cases, the AP is now free to
receive the next incoming frame, instead of being tied to the
last received erroneous frame. In both implementations we
observe that the throughput levels off at increasing offered
load due to built-in MAC layer overheads.

The same experiment was repeated with RTC/CTS en-
abled. Since the data packet collisions decrease significantly,
the throughput for both the multi-stage and original recep-
tion line up. There is still a small difference in the through-
put (0.3Mbps) at the maximum offered load (1800 packets
per second), due to the collision of RTS frames.

When the same simulation scenario is repeated with both
stations visible to each other, the throughput is identical for
both cases. For simulations with multiple flows with no hid-
den nodes, the throughput with multi-stage reception was
lower than the original ns-3 implementation. One example
scenario was an ad-hoc grid [4], where the throughput for
multistage is 0.3% lower for 2 flows, and decreases by 5.5%
for 10 4Mbps flows. This difference results from an overall
greater number of frame drops, a direct consequence of the
newly added sync stage.

The results indicate that in current scenarios, multistage
reception has an impact on the simulation results, albeit in
a limited fashion. However, while our current work does
not explicitly model frame capture, the additional stages
we have introduced set the stage for inclusion of capture
effect in the future which will lead to even greater changes
in throughput (see [11]).

S.  CONCLUSION AND FUTURE WORK

In this paper, we evaluate the ns-3 physical layer abstrac-
tion to improve fidelity and accuracy. We developed a link
simulation tool and show that its results closely match those
published by the IEEE task group charged with Wi-Fi stan-
dardization. We then used our link simulator to examine
possible sources of error in the ns-3 physical layer error
model that support a move away from the default analytical
model. Then, with a eye towards future inclusion of cap-
ture effects in ns-3 as well conforming to existing hardware
implementation, we used results from our link simulator to
introduce a multi-stage reception model for ns-3 with in-
clusion of preamble sync error rates. Finally, we studied
the effect of our modifications in some canonical scenarios
(hidden nodes and RTS/CTS) to ensure that the behavior
conforms to expectations. In this context, we are validating
and developing both analytical error models, and link-sim
results, as well as changes to the physical layer abstraction
to augment the fidelity and range of applicability of ns-3.

Although not finalized yet for submission to the ns-3 main
tree, we have developed modifications to the YansWifiPhy
class to enable the third stage of reception and to provide
a link simulation-based error model for the PLCP preamble
fields. We have also developed a framework that permits
the loading of link simulation-based error models that are
expressed as text files, to replace the analytical error models.
We plan to investigate further with our link simulator how
best to handle situations in which the SNR varies during
the duration of the received frame, including occurrences of
Wi-Fi signal overlap.
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ABSTRACT

Wireless network protocol research typically requires evaluating
performance over a set of controlled wireless link conditions.
Although ns-3 provides wireless models like WiFi and WiMax,
they have dozens of parameters that affect performance and it is
difficult to control link rate, latency, error, and other attributes. To
mitigate this issue, we extended a basic, range-based ns-3 model
called SimpleWireless. Features that were added to this model
include transmission delay, configurable queues that enforce a
data rate, support for differentiation of control and data traffic,
support for several configurable error models, support for
directional networking, support for fixed contention and finally,
support for PCAP packet capture. The goal of these additional
features is to provide network protocol researchers with a basic
yet feature rich wireless model that enables evaluating their
protocol in a controlled wireless environment. In this paper, we
describe the base SimpleWireless model and each feature that has
been developed to enhance that model and create the so called
“LL SimpleWireless” model. Additionally, we provide
information on performance evaluation of the LL SimpleWireless
model to verify functionality of the added features.

CCS Concepts

* Networks — Network performance modeling < Computing
methodologies — Model development and analysis; Discrete
event simulation; Simulation support systems;

Keywords

Modeling; Simulation; ns-3; Wireless

1. INTRODUCTION

Network Simulator Version 3 (ns-3) [6] is a discrete-event
network simulator that provides several models for simulating
wireless environments such as WiFi [11] and WiMax [2][12].
However, these models do not necessarily lend themselves to use
for studying new network protocols in a wireless environment
because they couple medium access control (MAC) protocol
specifics with PHY channel effects. WiFi has limited transmission
range and does not support a large number of nodes. WiMax
overcomes these limitations, but with both wireless technologies,
there are dozens of parameters that affect network performance
and in many situations a user may want a more controlled wireless
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environment. For example, when testing routing protocols, a user
may want a wireless environment that has limited delay and
guaranteed delivery. For these users, a SimpleWireless model is
available as an add-on to ns-3 [10]. Though this model solves the
complexity issues of using WiFi or WiMax, it is perhaps a little
too simple as it only provides propagation delay, receive error and
transmission range features. To enable wireless network protocol
research with tightly controlled MAC/PHY effects, we enhanced
the existing SimpleWireless model to provide a more realistic and
configurable wireless environment while maintaining the
simplicity that makes it a better choice than WiFi and WiMax for
certain simulation applications. In this paper, we present LL
SimpleWireless (LLSW) which extends SimpleWireless to
include transmission delay, configurable queues that enforce a
data rate, support for differentiation of control and data traffic,
support for several configurable error models including range
based error, support for directional networking, fixed contention,
and finally, PCAP [5] packet capture.

Key contributions of the work include:

1. LL SimpleWireless: A simple and configurable ns-3 MAC
model to enable network protocol research

2. Evaluation of the key features and discussions on the
applicability of LL SimpleWireless

The rest of the paper is organized as follows: Section 2 describes
the original SimpleWireless model while Section 3 focuses on the
key enhancements (LL SimpleWireless). Section 4 presents
evaluation results of the enhancements and discusses implications.
Finally, Section 5 concludes the paper and highlights some future
work.

2. SIMPLE WIRELESS MODEL

The ns-3 SimpleWireless model [10] is available as an add-on to
ns-3. It provides a simple range-based on/off model for the
transmission of packets and models a network interface controller
that is not based on any specific protocol but provides a simple
protocol for wireless communication (hence its name). The model
consists of two parts: SimpleWirelessChannel and
SimpleWirelessNetDevice.  Figure 1 shows the base
SimpleWireless model.
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Figure 1. Base ns-3 SimpleWireless Model.

The SimpleWirelessChannel is the physical layer model and is
used to transmit packets within a user specified transmission
range with a propagation delay based on speed of light. When the
SimpleWirelessChannel  receives a  packet from the
SimpleWirelessNetDevice to transmit, it iterates over all devices
attached to the channel to determine if the packet should be sent to
each of these devices. The decision is quite simple: if the
destination is within the specified transmission range of the sender
then delivery of the packet to the destination device is scheduled
in the future with a delay based on propagation time of distance
times the speed of light. This transmission range is all or nothing
— within the range yields 100% delivery and outside the range
yields 0% delivery. Besides the range check, there are no other
limitations on sending the packet to the destination.

The SimpleWirelessNetDevice is the device model and is used to
receive packets based on a user specified error model. When a
packet is received from the channel of a sending node, the user
specified error model is applied to the packet and if the result is a
packet in error, the packet is dropped. Otherwise, the packet is
considered a successful reception. The error model uses ns-3’s
ErrorModel [7] class and thus supports several types of error
models: rate error (error based on a random distribution), list error
(error based on a list of packet IDs), and burst error (error in
random bursts). The available ErrorModel types allow errors to be
applied on a per-packet, per-byte, or per-bit basis.

With this understanding of the SimpleWireless model, its
limitations begin to appear. Though there is support for packet
errors, it is a fixed random distribution. Within the transmission
range, every packet has the same probability of error without
regard to distance from the sender. In reality, a wireless
transmission will have an error rate that is based on distance, that
is, the closer the receiver is to the source, the less errors will occur
and the error rate grows as the distance increases. Thus the error
modeling of the SimpleWireless model is not necessarily
representative of wireless transmission in which distance can
affect the amount of errors a packet experiences. As well, errors
are only applied on the receive side but applying an error to
packets on the send side would reduce simulation overhead
because a packet that is deemed not deliverable is dropped at the
source instead of being retained through to reception. Another
limitation of the SimpleWireless model is that there is no concept
of data rate thus the channel has effectively infinite bandwidth.
Finally, all nodes in the network are considered potential receivers
so there is no support for directional networks.

3. LL SIMPLE WIRELESS

In seeking to overcome the limitations of the SimpleWireless
model and create a more robust model, several features were
added to the SimpleWireless model to create the LL
SimpleWireless (LLSW) model. The following features were
added and are described in the sections that follow:

Error Models (including range based error)

Packet Queuing (including control and data sub-queues)
Transmission delay

Fixed contention

Simulated directional networking

PCAP packet capture

With the exception of the transmission delay, all of these features
are optional and are not required to be enabled. Thus if a user
wants the behavior of the original SimpleWireless model, this can
be accomplished by not enabling the new features and setting the
data rate to a large enough value that the transmission delay is
negligible. Figure 2 shows the LLSW model with some of these
features.

Delivery:0%
Delivery: Based
on error curve pe

0, 9 //
100% Q_q???
‘ S 0%
2 A Lrop agatio,

@

>

ErrorModel

Bandwidth: Queues
enforce data rate at receiver

Control ~ Data

B ﬁue

Figure 2. LLSimpleWireless Model.

3.1 Error Models

In order to enhance the error modeling capabilities and potentially
reduce simulation overhead, LLSW implements several error
models on the send side: Constant Error Rate, Packet Error Rate
Curve, and Stochastic.

The Constant Error Rate model applies a uniform random
distribution for dropping packets. When a packet is to be sent, a
uniform random selection is performed and if the returned value
(which is between 0 and 1) is less than the user configured error
rate then the packet is dropped and not sent. This is quite a simple
error model and in fact has fewer features than the error models
available on the receive side. This error model was added to the
send side simply to provide a quick and easy method for dropping
packets at the source and improving simulation speed.

The Packet Error Rate Curve model applies a user specified curve
of distance versus error for dropping packets which provides a
more realistic transmission distance-based error. As part of
creating a scenario, the user builds this error curve using a set of
<distance, error rate> pairs. When a packet is sent, the distance
between the sender and receiver is used to determine a value from
this curve, linearly interpolating between points on the error curve
to provide the acceptable error rate for the given distance. If a
uniform random selection (values between 0 and 1) yields a value
that exceeds this error rate, the packet is considered in error and is
not sent. Figure 3 shows an example of this type of error model.
Because the user has full control over creating the error curve, this
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error model is very flexible in providing a realistic transmission
range based error.
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Packet Error Rate
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X Packet has 100% error and will be discarded

? Packet has non-zero error; weighted “coin flip” will determine result

The sender uses the distance to each possible destination to
determine a packet error rate base on the PER curve

Figure 3. LL SimpleWireless PER Curve Error.

While these two newly added error models are packet based, that
is, they are used to determine if any one packet is in error, the
third error model, Stochastic, is used to disable the entire channel
between specific sender/receiver pairs. The Stochastic error model
[15] uses two exponential distributions with user specified means
— an “up” distribution and a “down” distribution — to toggle the
state of the channel between each sender/receiver pair in the
network. When the channel is down, all packets for the destination
from the sender are dropped. When the channel is up, all packets
for the destination from the sender are delivered. Figure 4 shows
an example of this type of error model.

The sender has different patterns of link up and
down periods to each possible destination.

Figure 4. LL SimpleWireless Stochastic Error.

The state of the channel is continuously altered between up and
down states based on the randomly selected state durations. The
selection of the channel state occurs when a packet is sent and is
not performed using timers to manage the states. This keeps
simulation overhead to a minimum because only those
source/destination channels that are being used have their states
maintained. Figure 5 shows an example of the channel state
selection. At initialization, the channel state is set to ON and the
random duration of this state is selected. Each time a packet is
sent, the current time is compared to the state end time and if the
state end time has passed, the next state duration is randomly
selected until the end time of the new state is greater than the
current time.

At this TX, time > T,

Select OFF duration.
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Select ON duration, set state to ON and
set new timestamp T

At this TX, time > T,
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Figure 5. LL SimpleWireless Stochastic Error State
Selection.

It is important to note that these error models have all been added
to the send side so that any packet that would not arrive at the
destination were it to be sent is not sent. This reduces simulation
overhead by deleting packets earlier in the processing chain.

3.2 Packet Queuing

In order to provide support for a device data rate, LLSW
implements  queuing of outbound packets at the
SimpleWirelessNetDevice. Queues are always First-In-First-Out
(FIFO) but the method for dropping packets on a full queue is
configurable to be either drop head or drop tail. In addition, there
is support for priority queues which implements separate control
and data sub-queues, each of which can be set independently as
drop head or drop tail. When a priority queue is used, a PCAP
string filter can be configured and is used to differentiate control
and data packets. The control sub-queue operates as strict priority,
meaning it is always serviced first before the data sub-queue.

When queues are used, the SimpleWirelessNetDevice maintains a
transmit state flag to indicate if the device is currently transmitting
or is idle. Figure 6 shows an example of the use of this transmit
state flag. When the SimpleWirelessNetDevice receives a packet
from the upper layer to transmit, it places the packet into the
queue and if currently idle, immediately transmits the packet and
sets the flag to busy. After the transmission is complete, it sets the
flag back to idle and checks the queue to see if there is another
packet waiting to be sent. The transmission time of a packet is
based on the packet size and the user configured data rate.

Tx starts Tx ends Tx ends Txends Txends

Tx time = packet size * data rate

IDLE BUSY

Enqueue
packet — A Transmit ends

Transmit State IDLE | Transmit State is BUSY. Queue not empty
Send immediately | Packets accumulate in queue | Send next packet

BUSY BUSY BUSY

Transmit ends
Queue not empty | Transmit ends
Send next packet | Queue empty

TX State IDLE

RREAN]

[LIITH

(LT

Transmit ends
Queue not empty
Send next packet

Figure 6. LL SimpleWireless Queue Transmit State.

It is important to note that the busy state is set and maintained at
the SimpleWirelessNetDevice without regard to what happens to
the packet when transmitted via the SimpleWirelessChannel. As
indicated previously, the SimpleWirelessChannel does not
actually send a packet that would be delivered in error at the
destination node. Such packets are dropped and not sent over the
channel. However, the device does not know about this and will
still be considered "busy" for the amount of time required to
transmit the packet even if the channel does not actually send it.
This is an important aspect of maintaining a data rate, and despite
packets being dropped instead of being transmitted, the
SimpleWirelessNetDevice still considers the time it would have
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taken to transmit the packet as not available to transmit any other
packet.

Enabling the use of queues is optional and when not used the
behavior is that of the original simple wireless model. The
SimpleWirelessNetDevice immediately sends a packet when it
receives it and does not maintain a busy flag.

3.3 Transmission Delay

Transmission delay is simply the size of the packet times the data
rate of the device. This delay is added to the propagation delay
when the packet delivery is scheduled in  the
SimpleWirelessChannel. The data rate is a newly added attribute
on the SimpleWirelessNetDevice thus the device actually
provides the transmission time value to the channel when a packet
is sent. The data rate is defined on the device because it is also
used to support queuing which is discussed in the previous
section.

3.4 Fixed Contention

Fixed contention is a feature used to account for contention on the
channel. Each device uses the queuing mechanism to maintain the
specified data rate but in reality this bandwidth may actually need
to be shared amongst neighboring nodes. That is, each neighbor
node cannot have 100% of the available bandwidth. The fixed
contention feature is used to simulate the sharing of the channel
among neighbors. Figure 7 shows an example. Each time a
transmission occurs, the model counts the number of neighbor
nodes that could cause contention on the channel and uses that
number to adjust the data rate to a value that would be the
effective data rate based on contention on the channel. A node is
considered to cause contention if it is within a user configurable
“contention range”. This value is a separate value from the
transmission range of the channel but if it is not specified
explicitly by the user and the feature is enabled, the transmission
range will be used as the contention range. Once the count of
neighbors in contention is determined, it is used to reduce the data
rate available to a sending node. The data rate becomes the
original data rate divided by the number of contention neighbors.
The device uses this new, lower data rate when it determines the
transmit time which is used for setting how long to keep the
device’s busy flag set and for transmission time on the channel.
The manner in which the number of neighbors is counted is as
follows: the count first includes the sending device itself. Then
when the channel transmits a packet, it loops over all devices on
the channel. During this loop the number of destination devices
that are within the user specified contention range is counted and
this is the count that is used for the next time that a packet arrives
on the device to be sent. Note that this information is not the exact
number of nodes within contention range at the instant when a
packet is queued but is based on the previous transmit. The
neighbor count could be taken at the start of each transmit but
because the channel already loops over all the devices as part of
its sending, the fixed contention feature was designed to simply
re-use this loop instead of adding a second loop and introducing
overhead to a simulation.

Is it important to note that this method of simulating contention is
best used in scenarios with high volume traffic because that is
when the full number of neighbor nodes would actually cause
contention. When the volume of traffic is low and nodes are able
to transmit when no other neighbor is transmitting, this contention
model would falsely reduce the data rate as though the
transmissions were contested when in fact they were not.
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Figure 7. LL SimpleWireless Fixed Contention.

3.5 Simulated Directional Networking

Although commercial wireless technologies are generally omni-
directional systems, there has been a large push in recent years to
leverage highly directional systems for increased capacity, range,
and reliability [1][3]. Implementation of highly directional radio
systems adds significant complexity due to the need to track
neighbor positions, orientation, and antenna patterns. To provide
basic directional effects to network protocol researchers, LLSW
implements a simple version of directional networks with the use
of a "neighbor list" in the SimpleWirelessNetDevice. In short, the
“neighbor list” is a fixed configuration which identifies the
neighbors that are in view of the node as though there was a
directional antenna. The goal is not to simulate the full details of
directional radio systems, but to give a high level effect to
network layer protocol researchers. Topology management
schemes can be built on top of this feature to dynamically elect
neighbors to connect if necessary. If the directional networking
feature is disabled then all nodes are within view of the node. If
this feature is enabled, then only the nodes listed in the node's
neighbor list are considered in view of the node. When directional
networking is enabled for the device, the
SimpleWirelessNetDevice enqueues outbound packets as follows:

e A broadcast packet is duplicated and enqueued once for
each directional neighbor.

e A unicast packet is enqueued only if the destination is a
directional neighbor.

Note that when the directional network feature is enabled, packets
are enqueued for a specific destination so that when the
SimpleWirelessChannel receives the packet to send, there will be
only one destination device to which the packet will be sent. This
differs from the case without a directional network when only one
packet is enqueued. As an example, suppose a node has nine
neighbors, five of which are considered directional neighbors. If
directional networks are enabled, the device will enqueue and
serially transmit five packets — one for each directional neighbor.
It is assumed that there is just one radio so the transmissions are
serial and not simultaneous. When the channel receives a packet
to send, it will only deliver it to one destination device. This is
equivalent to five serial transmissions using a directional antenna.
The only devices that receive the packet are the five that are
considered directional neighbors; the four neighbors that are not
do not receive the data. If directional networks are not enabled,
the device enqueues one packet. When the channel receives the
packet to send, it will deliver it to all devices in range which
includes the five directional neighbor devices as well as the four
other nodes. This latter case is equivalent to a single transmission
using an omnidirectional antenna. Figure 8 shows the difference
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in LLSW when using the directional network feature to send a
broadcast packet.

The list of directional neighbors is built by the user in the ns-3
scenario. The user needs to add nodes as directional neighbors in
the scenario and if desiring a non-static set of directional
neighbors the user must write the appropriate code to maintain the
list. LLSW provides the methods to add and remove directional
neighbors as well as the infrastructure to use the list once built but
it does not provide an automatic building and maintenance of a
directional neighbor list.

5 packets queued and 5 transmissions
to deliver to directional neighbors only

1 packet queued and 1 transmission
to deliver to all neighbors

@ () () @
® ! “ ° °
L % @)
() ® © @ ® ®
[} @ (] ()
Directional Omni

Figure 8. LLSimpleWireless Model Directional Network
Example for Sending a Broadcast Packet.

3.6 PCAP Packet Capture

PCAP packet capture is a feature that exists on other ns-3 device
models including WiFi and WiMax but was not part of the base
SimpleWireless model. This packet sniffing was added to the
LLSimpleWireless model to capture packets sent and received at
the device. This allows the simple wireless model to be consistent
with other ns-3 models which provide a packet capture capability.

4. EVALUATION

The new features of LLSW were evaluated for correct behavior
and performance. This section describes the testing that was
performed including a description of the scenarios used for
testing, and test results.

4.1 Error Model Test Case

The scenario to test the Error Model had 101 nodes in total placed
within a circle of radius 100. Node 0 was placed at the center of
the circle and nodes 1 through 100 were randomly placed within
the circle. Figure 9 shows the node placement. Node 0 sent
broadcast traffic at a rate of 1Mbps using the ns-3
OnOffApplication [9]. There were no queues used so the
bandwidth of the network was essentially infinite and did not
hinder successful packet delivery. Thus the only reason a packet
would not be received was packet error.

This scenario was executed using the Packet Error Rate (PER)
Curve for the error model with the error curve comprised of the
<distance, error rate pairs> shown in Table 1.

Table 1. Distance, Error Rate Pairs.

Distance | Error Rate Distance | Error Rate
0 0% 60 50%
10 0% 70 60%
20 5% 80 70%
30 7% 90 80%
40 12% 100 100%
50 15%
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Figure 9. Error Model Test Scenario Node Placement.

Figure 10 shows the results of the simulation in terms of the % of
packets dropped versus distance of the destination node from the
source node. These results are overlaid on the PER curve
specified per Table 1. As can be seen from the graph, the % of
packets dropped based on distance matches the PER curve
specified.

Error Rate vs. Distance
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30%
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Packet Error Rate
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Destination Node Distance from Source Node

——&—Specified PER Curve o % Packets Dropped

Figure 10. PER Curve Test Results: Measured packet
errors correctly match the user specified PER curve.

The scenario was executed a second time but with a reduction in
the number of nodes to 21 total and using the Stochastic error
model with an average up time of 15 seconds and an average
down time of 5 seconds. Figure 11 shows the results of the
simulation in terms of packet reception. The x-axis is the
simulation time and the y-axis is receiving node id. Each green
mark represents when a node received a packet. There are gaps in
the reception and these gaps correspond to when the channel
between the source node (Node 0) and the destination node id (y-
axis value) was disabled as part of the stochastic error. The
average error was purposely set to a high value of 5 seconds so
that gaps in reception could be seen on the graph. Note that each
destination has a unique pattern for when the channel is up/down
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which shows how this stochastic error is applied to each specific
source/receiver pair.

Packet Delivery by Node ID

Destination Node ID

ORNWAUIONKLO

5 15 25 35 45 55
Simulation Time, seconds

Figure 11. Stochastic Error Test Results: Each
destination node has a unique random error pattern.

4.2 Queue Test Case

The scenario to test the queue implementation had two nodes.
Node 0 sent data to Node 1 at a rate of 1Mbps using the
OnOffApplication. Optimized Link State Routing (OLSR) [8][14]
was used as the routing protocol which provided control packets.
The data rate of the device was varied to show how the queues
enforce a device data rate. The queue type was also varied to
demonstrate how the queue latency is affected by the type of
queue used. Figure 12 shows the scenario for the queue test.

Node 0
Source ©

1. varying data rate Node 1

Destination
2. varying queue configuration

Data Control
Queue Queue

Drop Tall Drop Head

Figure 12. Queue Test Scenario.

Figure 13 shows the results of the simulations run over a range of
device data rates from 0.1Mbps to 1.1Mbps using DropHead and
DropTail queues. The graph shows two sets of data: percent
packets received and queue latency. DropHead and DropTail
queues have nearly identical packet delivery rates so the values
from the DropHead and DropTail simulations were averaged to
show just one line on the graph. As the data rate increases, the
packet receive rate also increases, reaching 100% at 1.1Mbps,
which is just above the OnOffApplication traffic rate of 1Mbps.
At a device data rate of 1Mbps, 96% of the data packets are
received instead of 100% because some of the bandwidth is
needed for the OLSR overhead. The graph also shows the queue
latency for DropHead and DropTail queues. As expected, the
DropHead queue has a lower latency than DropTail because
DropHead will drop the oldest packet (highest latency) when there
is no room in the queue to enqueue a new packet while the
DropTail will drop the newest packet (lowest latency). Dropping
the newest packet means that the oldest packets remain in the
queue and thus increases the queue latency.

Queue Performance vs. Device Data Rate
o Drop Head vs. Drop Tail with Traffic Rate 1Mbp
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Figure 13. Queue Test Results for Drop Head vs Drop
Tail: Delivery rate increases and queue latency decreases
as device data rate increases.

The scenario was used for a second set of simulations to test the
use of the priority queues to differentiate control and data traffic.
Once again, the device data rate was varied from 0.1Mbps to
1.1Mbps and Node 0 sent 1.0Mbps of data traffic but using a
PriorityTail queue configuration which separates control traffic
and data traffic and only sends data traffic when the control sub-
queue is empty. Figure 14 shows the results of the simulations.
The graph shows two sets of data for control and data traffic: %
packets received and queue latency. The graph shows that control
packets are given preference over data packets. Control packets
have a 100% reception rate and zero queue delay while the data
packets have reception rate and queue delay that vary with the
data rate. At a device data rate of 0.1Mbps, only 10% of the data
packets are delivered and the queue latency is high.

Queue Performance vs. Device Data Rate
Control and Data Sub-queues with Traffic Rate 1Mbps
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Figure 14. Queue Test Results for Control and Data
Sub-queues: Control traffic is appropriately given
priority over data traffic.
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4.3 Fixed Contention Test Case

To test the fixed contention feature, a scenario similar to that used
for testing error models was used. A total of 101 nodes were
placed in a circle of radius 100. Node 0 was placed at the center
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and the other 100 nodes were randomly placed. The node
placement is identical to that shown in Figure 9. Node 0 sent
broadcast traffic at a rate of 1Mbps using the OnOffApplication.
A DropHead queue was used to limit the device data rate to
10Mbps so that the effect of contention could be observed. The
contention range was varied so that the number of contention
neighbors affecting Node 0’s transmissions varied. Figure 15
shows the results. The graphs shows the percentage of packets
received and the percentage of packets dropped at Node 0’s queue
due to queue overflow. Increasing the number of contention
neighbors increases the transmission time of each packet. This in
turn reduces the effective device data rate resulting in poor
throughput and queue congestion as the number of contention
neighbor increases.

Fixed Contention Performance vs. # Contention Nodes
100% \
80%

60%

40%

20%

0% 1 T T T T 1
0 20 40 60 80 100
Number of Nodes in Contention Range

——¢— % Data Received % Packets Dropped at Queue

Figure 15. Fixed Contention Test Results: % Data
received decreases and % packets dropped at queue
increases as contention increases.

4.4 Directional Networking Test Case

The scenario to test the directional networking had 13 nodes.
Node 0 was placed at the center of a circle of radius 50 and the
remaining 12 nodes were placed on the perimeter of the circle in a
clockwise fashion. Figure 16 shows the node placement. The
scenario was configured such that Node 0 had 6 directional
neighbors: Nodes 1, 3, 4, 7, 10, 11. All other nodes were in range
of Node 0 but were not directional neighbors.
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® Directional Neighbors
Other Neighbor Nodes

Figure 16. Directional Network Test Scenario Node Placement.

A DropHead queue was used with a device data rate of 10Mbps.
In the first simulation run using this scenario, Node 0 was the
source of broadcast traffic at a rate of 1Mbps using the
OnOffApplication. As indicated previously, when a directional
network is enabled, a broadcast packet is duplicated and enqueued
once for each directional neighbor. Figure 17 shows the results of
the simulation in terms of the number of packets in the queue
versus simulation time for a small, 0.1 second interval. The time

scale on this graph is small so that the dots on the graph can be
seen. On a larger time scale, it is difficult to see the individual
dots as they appear as a solid line due to their density. Each time a
broadcast packet is sent, the queue occupancy peaks at five
packets then decreases to zero as each packet is transmitted. The
reason there are never six packets in the queue (the number of
directional neighbors) is because the channel is idle when the first
packet is sent and thus it is sent immediately and does not appear
in the queue occupancy statistics. This graph shows how a unique
packet is enqueued for each directional neighbor.

Packets in Queue vs. Time

Number of Packets in Queue

20.72 20.74
Simulation Time, seconds

20.76 20.78 20.8

Figure 17. Directional Networking Queueing: Each
packet sent correctly results in five packets enqueued.

Figure 18 shows the packet delivery statistics for the scenario with
and without the directional network feature enabled. When the
directional networking feature is not enabled, all nodes receive
100% of the broadcast traffic but when directional networking is
enabled only those nodes that are designated as directional
neighbors receive the broadcast traffic.
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Figure 18. Directional Networking Packet Delivery: Only
directional neighbors receive traffic when directional
networking is enabled.

5. CONCLUSION

ns-3 provides several models that can be used to simulate wireless
networks. However, for protocol research and development, the
WiFi and WiMax models can be complex to configure and
difficult to control in terms of packet delivery and performance.
The optional SimpleWireless model overcomes this complexity
but is a bit too simple and has limited features. The
LLSimpleWireless model adds several important features to the
base SimpleWireless model to provide a more realistic and yet
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controlled wireless environment for ns-3 simulations. These
additional features provide queues for enforcing a data rate, range
based error modeling, transmission delay, support for simulating
channel contention and directional networks, and PCAP packet
capture. The goal of the effort is to provide wireless network
protocol researchers a MAC/PHY model that enables tight
controls of MAC/PHY effects to limit uncertainty when
developing network protocols.

Though this new set of features is extensive, there are several
enhancements that could be made as future work, specifically:

e Add full ErrorModel support on the send side. LLSW
includes three types of error models on the send side. The
random error that was added to LLSW only supports uniform
distribution of errors applied to entire packets. This could be
modified to support the ErrorModel class so that additional
random distributions beside uniform can be used and the
error rate can be applied at the bit or byte level in addition to
packet level.

e Add support to the priority queue for user configurable
number of sub-queues. LLSW includes support for queues
but only supports the use of a single queue to hold all packets
or a priority queue with two sub-queues for control and data
packets. The priority queue implementation could be
expanded to allow the user to define N sub-queues each with
a PCAP string filter as well as a user specified de-queueing
order.

e Add support for multiple radios for use in directional
networks. LLSW assumes that there is just one radio and
therefor the directional transmissions are serial. Support for a
multiple radio directional system could be added to the
model to allow for simultaneous directional transmissions.

e Add automatic support for directional networks including
automatic neighbor detection for mobility. LLSW includes
support for directional networking but the user must create
and maintain the list of directional neighbors for each node.
The simplest method is to statically configure this in the
scenario. If mobility is used, then the user must write the
appropriate code in their scenario to manage the list of
directional neighbors. Support for creating and maintaining
lists of directional neighbors based on current neighbors
could be added to the model so that the user does not have to
manually create and maintain the list of directional neighbors
in their scenario.

e Add support for interference. LLSW includes the support for
dropping packets based on an expected error rate at a given
range with the implementation of the PER curve error model.
This type of PER curve would be built from known or
expected performance of the network which could but may
not include the effects of packet interference. Support for
discrete modeling of packet interference could be added to
the model and could be based on existing interference
models such as the YANS WiFiPhy model [4][13].

e Add support for distance based data rate. LLSW includes a
user configurable data rate but this is a constant data rate.
Support for a distance-based data rate could be added to the
model for simulating adaptive coding techniques which
lower the data rate as distance increases in order to improve
bit error rates.
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ABSTRACT

The IEEE 802.15.4 standard defines the physical and media access
control layers for LR-WPANs (Low-Rate Wireless Personal Area
Networks), and is one of the enabling technologies for Wireless
Sensor Networks (WSNs) as well as the emerging Internet of
Things (IoT) applications. The ns-3 network simulator offers
support for simulating LR-WPANs as specified by the IEEE
standard 802.15.4 (2006). However, only the ad-hoc mode is
currently supported and many important features of the MAC such
as radio duty cycle management are missing from the
implementation.

Moreover, at the moment ns-3 does not support simulating the
energy consumption of LR-WPAN devices. Since energy
efficiency is an important consideration for WSN and IoT
applications, support for accurate energy modeling is highly
desirable in order to develop energy-aware protocols for such
applications. In this paper, we present the models developed for
simulating the energy consumption of nodes in LR-WPANSs.
Further we implement the ContikiMAC radio duty cycling protocol
in order to provide a realistic 802.15.4 compliant MAC layer
which supports sleep/wake mechanisms.

CCS Concepts

e Computing methodologies — Model development and
analysis; Discrete-event simulation; Networks — Nerwork
simulations

Keywords
ns-3, energy consumption, IEEE 802.15.4, IoT, WSN, MAC, duty
cycling

1.INTRODUCTION

Wireless sensor networks (WSNs) consist of a large number of
battery-powered wireless sensor nodes required to operate for
years without any human intervention. The Internet of Things
(IoT) is the future of wireless sensor network applications where
any device can be connected to and operated through the Internet.
Since the wireless network nodes in WSN and IoT applications are
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typically battery-powered, they have a limited amount of energy
available. As a result, efficient utilization of the available energy is
essential for continuous operation over long periods of time.
Wireless sensor network research attempts to design network
protocols to meet these energy constraints and increase network
lifetime.

IEEE 802.15.4 is an important standard for wireless sensor
network and Internet of Things applications. The standard specifies
the physical layer and media access control for low-rate wireless
personal area networks (LR-WPANs), and is the underlying
protocol used in a majority of sensor network deployments with
applications such as remote sensing, surveillance and monitoring.
The standard provides an energy efficient and cost effective option
for low latency and high accuracy communication required in these
scenarios, with the ability to survive on battery or harvested power
for extended periods of time.

A number of custom and industry standard networking
protocols have been developed using the services provided by
802.15.4. It is the basis for standards like ZigBee, WirelessHART,
and the IPv6 adaptation protocol 6LoWPAN [4] which further
extend it by specifying the upper layers which are not defined.
When combined with 6LoWPAN, it can be used alongside the
standard Internet protocols to build a wireless embedded Internet
and facilitate the Internet of Things vision.

The 802.15.4 standard is the basis for the LRWPAN model in
ns-3. The model allows simulation of WSN scenarios, though it is
severely limited in its current capabilities. There is no support for
simulating the energy consumption of LRWPAN nodes in the
model. Since, energy efficiency is one of the major concerns for
researchers looking to test their WSN protocols, this is a serious
limitation that needs to be addressed.

Furthermore, the MAC (Media Access Control) layer doesn’t
incorporate sleep/wake mechanisms. As a result, the radio is
always ON, which doesn’t represent the actual deployment
situation. Most WSN nodes when deployed, use some sort of radio
duty cycling mechanism in order to turn off the radio when not in
use. As the radio is the main source of energy consumption on a
node, this is one of the primary methods used to increase energy
efficiency and consequently the network lifetime. Lack of radio
duty cycling therefore prevents users from running realistic
simulations. On one side this increases the performance (delay,
throughput, etc.), and on the other side overestimates the energy
consumption for receiving packets and underestimates the
transmission energy.
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A simulator model that supports modeling energy consumption
of 802.15.4 devices will allow studying the energy consumption of
nodes and thus the energy efficiency and network lifetime of
802.15.4 based protocols. A MAC model that incorporates radio
duty cycling will allow researchers to test their network protocols
under realistic conditions. Thus the developed models are expected
to greatly simplify the future development and evaluation of
protocols for WSN/IoT applications.

In this paper, we present our contributions to ns-3 which are as
follows:

e PHY layer support for modeling energy consumption of
802.15.4 radios

e LRWPAN device energy model that represents the energy
consumption of 802.15.4 devices

e A MAC model that incorporates radio duty cycling, in order
to realistically simulate WSN scenarios in ns-3

The rest of the paper is organized as follows: Section 2 gives an
overview of the IEEE 802.15.4 standard and the existing
implementation in ns-3. Section 3 presents the in detail design and
implementation of the proposed ns-3 energy and MAC models.
Section 4 includes the validation of the developed models. Section
5 discusses possible future work and Section 6 concludes the

paper.

2.1EEE 802.15.4 AND LRWPAN
SIMULATION MODEL IN NS-3

In this section, we give a brief overview of IEEE 802.15.4 and
introduce the relevant features of the standard. We also discuss the
LRWPAN simulation model in ns-3 which is based on the
standard.

2.1 PHY Layer
The 802.15.4 PHY layer provides two services:

1. The PHY data service, which enables the transmission and
reception of PHY protocol data units (PPDUs) across the
physical medium.

2. The PHY management service interfacing to the physical
layer management entity (PLME) service access point (SAP)
(known as PLME-SAP).

The features of the 802.154 PHY are activation and
deactivation of the radio transceiver, transmission and reception of
packets across the wireless channel, as well as performing
additional tasks that may be required by the upper layers, such as
Energy Detection (ED), Clear Channel Assessment (CCA) and
Link Quality Indicator (LQI) measurement for received packets.
ED and CCA operations are required in the Carrier Sense Multiple
Access Collision Avoidance (CSMA-CA) functionality of the
MAC layer.

In ns-3, the Phy model is based on the specification described in
section 6 of IEEE Std 802.15.4-2006. It models the PHY service
specifications, PPDU formats, PHY constants and PIB attributes.

2.2 MAC Layer

The medium access control (MAC) layer enables transmission
of frames through the physical channel.

The 802.15.4 MAC layer provides two services:

1. The MAC data service, which enables the transmission and
reception of MAC protocol data units (MPDUs) across the
PHY data service.

2. The MAC management service interfacing to the MAC layer
management entity (MLME) service access point (SAP)
(known as MLME-SAP).

The features of the 802.154 MAC layer are beacon
management, channel access, GTS management, frame validation,
acknowledged frame delivery, association, and disassociation.

The MAC model in ns-3 is based on the specification described
in section 7 of IEEE Std 802.15.4-2006. The standard allows three
different MAC modes: beacon-enabled, non beacon-enabled (star
and cluster tree modes) and beaconless (ad-hoc mode). However,
the current MAC implementation lacks some features foreseen by
the standard. In particular, there is no active support for
coordinators, association, disassociation and beacon management,
required for beacon-enabled and non beacon-enabled modes of
operation. Only channel access (using unslotted CSMA/CA) and
the basic data transfer API along with acknowledged frame
delivery is currently implemented. Thus, the only mode supported
is ad-hoc mode (i.e., beaconless).

Further, the current ns-3 MAC does not use low power features,
forcing the radio always in an ON state. As a result, it is impossible
to simulate realistic scenarios in which the nodes are assumed to be
duty-cycled spending most of the time with their transceivers
switched off. It must be stressed that the standard specifies only the
sleep management for beacon-enabled MAC, while for the
beaconless case the standard does not give any strict rule.

Due to the lack of beacons and centralized timing in the
beaconless case, the main challenge is to achieve a local
synchronization between two different nodes, because the local
clocks drift does not allow to keep the synchronization if not for
small periods. As a consequence, it is not guaranteed to know
when the receiver node will be awake.

In order to save energy in beaconless mode, many alternative
802.15.4 compliant MAC protocols such as S-MAC, B-MAC, X-
MAC, WiseMAC [9] have been proposed in the literature. Any of
these duty cycling schemes can be used in optimizing the radio
power consumption as required by the application. In our proposed
model, we implement ContikiMAC [10], which is the default radio
duty cycling mechanism in the Contiki OS [11].

2.3 ns-3 Energy Framework

The current ns-3 simulator (since ns-3.9) provides a basic
framework for modeling energy consumption in wireless networks
[5]. The model consists of 2 major components:

1. The Energy source, and

2. The Device energy model

The Energy Source represents the energy supply of a node in
the simulation, while the Device energy model is used to represent
the energy consumption characteristics of a specific device, such as
an 802.11 radio on a node.

The energy framework focuses on modeling radio energy
consumption because the radio is assumed to consume the most
power in a wireless node. The framework also assumes a state-
based model, i.e., the radio is assumed to be in one of several states
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(Receive, Transmit, Idle, etc.) with a corresponding load current
associated with each state. The energy model and energy source
attached to each node keep track of the time spent in a particular
state and the total energy consumed by the node respectively.

The most difficult part in using the energy model is to define the
device states and the transitions, in order to mimic the real device
energy characteristics.

3.DESIGN AND IMPLEMENTATION

3.1 LRWPAN Energy Model

The LRWPAN energy model extends the basic energy framework
in order to model energy consumption of LRWPAN nodes. As
noted in the previous section, it follows a state based approach,
modeling the nodes’ energy consumption as a function of the states
of the radio transceiver. We base our model on the ATS6RF231
[14], which is a typical 802.15.4 compliant radio transceiver.

e

TX_ON

A
v TRX_OFF

RX_ON

S

Figure 1: State transition diagram.

According to the model, the radio can be in one of the following
states:

e TRX_OFF - Transceiver disabled
e TX_ ON - Transmitter enabled

e RX_ON - Receiver enabled

¢ BUSY_TX - Transmitting

* BUSY_RX - Receiving

However, there is no difference between the (TX/RX) ON and
corresponding (TX/RX) BUSY states with respect to the radio
transceiver circuitry. The energy consumed in these states is
approximately the same. Hence, the node's energy consumption
can be modeled as a function of only three states TRX_OFF,
TX_ON and RX_ON.

Most transceiver chips also have an additional shutdown (sleep
in case of AT89RF231) state in which the chip is completely

deactivated. This state can only be entered through external
interrupts and isn’t modeled. The rest of the states can be entered
by sending appropriate commands to the PHY layer through the
PLME. BUSY_RX and BUSY_TX are entered automatically
during frame reception and transmission respectively. Figure 1
illustrates the corresponding radio transceiver states and the
allowed transitions between them. All the transitions are triggered
by MAC events, except for the BUSY states, which correspond to
actual PHY layer events (e.g. preamble detection causes the
transition from RX_ON to BUSY_RX).

A PHY Listener is registered with the Lr-Wpan PHY in order to
notify concerned objects of every PHY state transition.

Energy update algorithm:

The PHY, on each successful transition notifies the Energy
model through the PHY Listener. Correspondingly, the LrWpan-
RadioEnergyModel notifies the EnergySource object to update its
energy. The EnergySource object queries the energy model for the
current draw of the state and uses that to calculate the energy
consumed using the formula:

stateDuration X stateCurrent X supplyVoltage

where, stateDuration represents the time spent in the state,
stateCurrent represents the state’s current draw, and supplyVoltage
is the node’s attached energy source’s supply voltage.

The energy source is then updated with the new value of
remaining energy. When the energy is completely depleted, the
LrWpanRadioEnergyModel is informed by the EnergySource,
using the EnergyDepletionCallback (defined in LrWpanRadio-
EnergyModel).

The node’s attached energy source is also updated periodically
to keep track of the energy consumed even when there are no radio
state transitions.

In most cases, the state transitions in radio transceivers aren’t
immediate. There is a finite time difference between the PHY
receiving a request to change the state, and then issuing a confirm
primitive indicating that the state change is accepted. This
transceiver switching time not only affects the MAC operations,
but also has a significant impact on the total energy consumption
as a result of the very low radio duty cycle in wireless sensor
networks [7]. Hence, it is important to also take into account the
transition time and energy between the states. In the Three States
Model described, six different transitions are possible:

e TRX_OFF -> TX_ON and vice versa.
e TRX_OFF -> RX_ON and vice versa.
e TX_ON ->RX_ON and vice versa.

Motify Energy Motify Energy
SleepWakeup Drained Drained
MAC Layer PHY Layer IE?“;E;: hi‘:grla? il Energy Source
MNaotify TRX Motify TRX Update Energy
State Change State Change Source

Figure 2: Energy model flow diagram.
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Table 1: State transition timing.

Transition Transition Time
TRX_OFF > TX_ON 110 us

TX_ON - TRX_OFF Immediate
TRX_OFF = RX_ON 110 us

RX_ON - TRX_OFF Immediate

TX_ON > RX_ON 8/12 symbol periods* (128/192 us)

RX_ON - TX_ON 8/12 symbol periods* (128/192 us)

* defined by the standard

The transition times have been modeled according to the values
given in the datasheet. Table 1 shows the transition timings of the
AT89RF231 radio transceiver.

When a state change is requested by the MAC through the
PLME, the state machine is put in the transition state. On receiving
confirmation from the PHY that the target state is operative, the
state machine is finally updated with the new state. The state
transition energy is calculated by multiplying the transition time by
the power in the target state. This is a worst-case assumption since
the transition energy has been shown to depend on the power in the
state the transceiver is switching to, multiplied by a parametric
constant (less than 1) [8].

As noted before, the current LrWpanEnergyModel is modeled
based on Atmel’s AT89RF231 transceiver. However, other
802.15.4 compliant transceivers such as TI CC2420 [15] can be
simulated by changing the current draw to appropriate values. For
the CC2420, TRX_OFF, TX_ON and RX_ON correspond to the
chip’s Idle, Transmit and Receive states respectively.

The PHY enumeration values defined in LrWpanPhyEnum-
eration are used to represent the different states of the radio
transceiver, with IEEE_802_15_4 PHY_UNSPECIFIED being
used for the TRANSITION state.

3.2 LRWPAN ContikiMAC Model

ContikiMAC is the default duty cycling mechanism in the
Contiki OS. It is based on the concept of periodic wake-ups in
which nodes sleep most of the time and wake up at regular
intervals to check for radio activity. It uses an asynchronous
sender-initiated radio duty cycling mechanism, i.e. it doesn’t
depend on any a priori synchronization between nodes, and the
sender initiates communication by repeatedly sending the same
packet until a link layer acknowledgment is received. It is simple
to implement, since no signaling messages or additional packet
headers are used. All

ContikiMAC packets are ordinary link layer messages already
being used by the existing 802.15.4 standard.

The primary features of ContikiMAC can be summarized as
follows:

® Periodic sleep/wake mechanism defined by the channel
check rate.

® Stable wake-up interval unaffected by node’s radio activity.

®  Two consecutive CCAs after wake-up to detect packet - stay
awake to receive the packet if energy is detected on the
channel, else sleep if channel is found idle.

® Link layer acknowledgment followed by sleep on packet
reception (transmitter repeatedly sends the frame until an
ACK is received, after which it too returns to sleep).

® Broadcast: Continuous transmission of the data packet by
the transmitter for full length of sleep period — since the
transmission must wake up and deliver the packet to all the
node’s neighbors.

® Fast sleep optimization — To optimize the power at the
receiver side by letting potential receivers go to sleep
earlier if the CCA caused a node to stay awake due to
spurious radio noise instead of an actual packet
transmission.

e Transmission Phase-Lock - sender side optimization to
reduce the power at the transmitter by minimizing the
number of retransmissions.

Note that the retransmissions by the ContikiMAC Radio Duty
Cycle (RDC) is independent of the MAC layer retransmissions
which refers to the number of times a frame is given to the RDC
layer for transmission.

The MAC and RDC mechanisms in the ContikiMAC model
could be split into two separate classes, like in Contiki OS.
However, in order to support multiple MAC protocols and reuse
the code, the ns-3 implementation follows a different approach.

The first choice has been to split the MAC functionalities into a
base, abstract class (LrWpanMac), implementing only the APIs
defined by the 802.15.4 standard and some common elements. The
particular MAC behavior is implemented in two subclasses:
LrWpanNullMac and LrWpanContikiMac. LrWpanNullMac
implements the current behavior, as is the always-on radio with no
sleep or duty cycle. The LrWpanContikiMac is responsible for
duty cycle, sleep wake, and node synchronization. All
ContikiMAC features, with the exception of the Fast sleep
optimization, have been implemented and tested in the proposed
model. Both MAC layers use the LrWpanCsmaCa module to
detect any activity on the channel.

It should be remarked that the new modular architecture enables
an easy integration of new MAC protocols. This is an important
feature, as the future IoT systems could be hindered by the use of
802.15.4-compliant (but mutually incompatible) protocols. As a
matter of fact, even if two protocols are formally following the
standard, different radio duty cycle management policies can make
them very inefficient, leading to high energy consumption.

The LrWpanContikiMac API is identical to LrWpanMac.
Additionally, the user can specify attributes such as the sleep
interval, the interval between the two CCAs, the interval between
each packet retransmission, and the maximum number of retries by
the RDC.

4.VALIDATION AND RESULTS

In this section, validation results of the proposed LRWPAN
energy and MAC models are presented. First, the energy consumed
by the LRWPAN energy model is compared against expected
values obtained through manual calculations. Next, in order to
evaluate the ContikiMAC model, the energy consumption values
of simulated nodes are compared with those obtained from running
the same scenario in the Cooja simulator.

Energy model evaluation

In order to verify the correctness of the energy model, a simple
scenario involving 2 nodes is considered. Node 1 sends a packet of
size 50 bytes to Node 2 and receives an acknowledgement. The
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simulation is run for 10s with both the nodes having their radios
turned on during the first 5s and turned off for the next 5s.

The time spent by both the nodes in each state is shown in Table
2. The currents in TX, RX and OFF states are taken to be 19.5mA,
21.8mA and 1800pA respectively. For a supply voltage of 3.3V,
the energy consumption comes out to be 0.3894 Joules for Node 1
and 0.3895 Joules for Node 2 which agrees with the simulation
results.

Table 2: State timings for simulation scenario.

States Node 1 Nod.e 2
(sender) (receiver)
TX_ON/BUSY_TX 0.002400 0.000544
to TX_ON* 0.000192 0.000192
RX_ON/BUSY_RX 4.997106 4.998962
to RX_ON* 0.000302 0.000302
TRX_OFF 5.000000 5.000000
to TRX_OFF* 0.000000 0.000000

* from any arbitrary state

ns-3 vs. Cooja Comparison

Cooja [12] is a sensor network simulator for the Contiki OS.
The Cooja energy estimation mechanism consists of keeping track
of the time the radio spends in the different transceiver states and
multiplying these times with corresponding power levels to obtain
arough estimate of the energy consumed.

Cooja also separately keeps track of the CPU power
consumption. Apart from the regular CPU mode used during
communication, the nodes can also operate in a Low Power Mode
(LPM) during periods of inactivity. The total consumed energy is
then calculated as the sum of the total time spent in all the states —
similar to how the energy is calculated in our developed model in
ns-3. The state transition energy however isn’t taken into account.
Thus the energy consumed by a node at the end of the simulation is
given by:

E = PrxTrx + PtxTtx + PslpTslp + PlpmTlpm = IrxVrxTrx +
ItxVixTtx + IslpVslpTslp + llpmVIpmTlpm

where rx, tx, slp and [pm refer to the transmit, receive, sleep and
LPM states respectively.

The amount of time spent in each state can be tracked using the
Powertrace [13] tool provided with Cooja. Powertrace outputs four
values: cpu, Ipm, transmit, and listen. These values correspond to
the time spent in each of the four states. transmit and listen
correspond to the “transmitter enabled” and “receiver enabled”
states in our model respectively. The cpu state includes the time
spent in transmit and listen states as well as the “transceiver off”
state. Therefore, the time when TRX is off, but CPU is in its
normal mode is given by cpu — (transmit + listen). I[pm refers to the
state when TRX is off and the node is in its low power mode.
Since, our model only takes into account energy consumed by the
transceiver, we consider cpu with transceiver off and Ipm as one
state by using the same current draw for both states.

For the comparison, we consider a two node scenario with Node
1 sending a packet to Node 2 periodically every 2.5 seconds over a
60 second interval. The channel check rate is set to be 8 Hz, which
corresponds to a sleep interval of 125 ms. The energy consumption
of both the sender and receiver nodes using the original
ContikiMAC implementation and the ns-3 ContikiMAC

implementation is compared in Table 3, while Table 4 compares

the respective NulIMAC implementations.

Table 3: ContikiMAC energy comparison (in Joules).

Protocol Contiki OS ns-3
ContikiMAC ContikiMAC

Sender 0.47945 0.44100

Receiver 0.37694 0.38750

Table 4: NullMAC energy comparison (in Joules).

Protocol Contiki OS ns-3
NullMAC NullMAC

Sender 4.04262 4.28037

Receiver 4.17223 4.28071
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Figure 3: ContikiMAC energy comparison.

In Figure 3 it is evident that the energy consumed by the
receiver nodes in both the implementations is in close agreement,
while there is a slight disagreement in the energy consumption
values of the sender nodes. This can be attributed to the difference
in time both the nodes spend in transmit mode which varies due to
the CSMA-CA random backoff algorithm.

S.FUTURE WORK

In this section, we discuss possible extensions to the proposed
models.

Local Clocks Drift Simulation

One major improvement toward the model precision is to be
done as part of a different ns-3 development: per-node local clocks.
LR-WPAN energy efficiency is highly dependent on how nodes
can keep (or lose) a mutual synchronization. But ns-3 clock is
global, preventing a real evaluation of clock drift effects.

CPU Energy Consumption

Currently, the LRWPAN energy model only considers energy
consumed by the radio transceiver and doesn’t take into account
the energy consumption of the CPU. As described in [5], states
representing computation tasks available on the node can be used
to incorporate CPU energy consumption information into the
simulations.

Another possible development goal is to upgrade the current model
to 802.15.4-2011 standard.
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6. CONCLUSION

In this paper, we presented an energy model for 802.15.4 radio
transceivers, which will enable users to measure the energy
consumption of 802.15.4 nodes in the network and thus allow them
to develop energy-efficient protocols for WSNs using this
information. We also developed a modular and easily extensible
MAC model and implemented the ContikiMAC radio duty cycling
protocol in order to enable realistic simulations of WSN scenarios.
The code is currently under review to be merged into ns-3.
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ABSTRACT

The growing demand for ubiquitous mobile data services
along with the scarcity of spectrum in the sub-6 GHz bands
has given rise to the recent interest in developing wireless
systems that can exploit the large amount of spectrum avail-
able in the millimeter wave (mmWave) frequency range. Due
to its potential for multi-gigabit and ultra-low latency links,
mmWave technology is expected to play a central role in 5th
Generation (5G) cellular networks. Overcoming the poor
radio propagation and sensitivity to blockages at higher fre-
quencies presents major challenges, which is why much of the
current research is focused at the physical layer. However,
innovations will be required at all layers of the protocol stack
to effectively utilize the large air link capacity and provide
the end-to-end performance required by future networks.

Discrete-event network simulation will be an invaluable
tool for researchers to evaluate novel 5G protocols and sys-
tems from an end-to-end perspective. In this work, we
present the first-of-its-kind, open-source framework for mod-
eling mmWave cellular networks in the ns-3 simulator. Chan-
nel models are provided along with a configurable physi-
cal and MAC-layer implementation, which can be interfaced
with the higher-layer protocols and core network model from
the ns-3 LTE module to simulate end-to-end connectivity.
The framework is demonstrated through several example
simulations showing the performance of our custom mmWave
stack.

CCS Concepts

eNetworks — Network performance evaluation; Net-
work simulations; Mobile networks; eGeneral and
reference — Fualuation; Design; Performance;
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1. INTRODUCTION

Millimeter Wave (mmWave) communications promise to
be highly disruptive for both cellular and wireless LAN tech-
nologies due to the potential for multi-gigabit wireless links,
which make use of the gigahertz of contiguous bandwidth
available at mmWave frequencies in combination with high-
dimension antenna arrays for high-gain directional transmis-
sion. Although the mmWave channel is known to suffer from
poor high-frequency propagation loss, advances in physical
layer technology such as adaptive smart antennas, along
with recent work on channel measurements and modeling,
have paved the way for achieving sufficient range and cover-
age in these networks [1, 2]. Nevertheless, before mmWave
technology can be effectively realized in 5G cellular net-
works, there are numerous challenges to be addressed, not
only at the physical layer, but at higher layers of the ra-
dio stack and in the core network as well. For instance,
the extreme susceptibility of mmWave links to shadowing
from blockages will require frequent, near instantaneous han-
dovers between neighboring cells, fast link adaptation, and a
TCP congestion control algorithm that can utilize the large
capacity when available but adapt quickly to rapid channel
fluctuations to avoid congestion. Therefore, the constraints
and characteristics of the mmWave physical layer will re-
quire novel solutions throughout the 5G network and across
all layers of the stack.

Discrete-event network simulators have, for long, been one
of the most powerful tools available to researchers for de-
veloping new protocols and simulating complex networks.
The ns-3 network simulator [3] currently implements a wide
range of protocols in C++, making it especially useful for
cross-layer design and analysis.

In this work, we present the current state of the millimeter
wave module for ns-3, first introduced in [4], which can now
be easily interfaced with the LTE LENA module [5] radio
stack and core network in order to evaluate cross-layer and
end-to-end performance of 5G mmWave networks. We pro-
vide an overview of the module and discuss a number of en-
hancements and added features since the first version, such
as improved statistical channel model derived from 28 GHz
channel measurements as well as a new ray tracing-based
model. Custom implementations of an “LTE-like” Physical
(PHY) and Medium Access Control (MAC) layer are also
provided, which follow the LENA module architecture. The
PHY and MAC classes are parameterized and highly cus-
tomizable in order to be flexible enough for testing different
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designs and numerologies without major modifications to
the source code.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the overall architecture of the mmWave
module framework. We then take a closer look at each com-
ponent, starting with the PHY layer and channel models
in Sections 3. Section 4 follows with a discussion on the
MAC layer, which includes several scheduler classes as well
as support for Adaptive Modulation and Coding (AMC) and
Hybrid Automatic Repeat Request (HARQ). In Section 5,
to demonstrate how the framework can be used for cross-
layer and end-to-end evaluation, we provide some example
simulations showing (i) the capacity of a TDMA mmWave
cell with multiple users and (ii) the performance of TCP for
a single user under varying channel conditions. Finally, we
discuss future work and conclude the paper in Section 6.

2. MMWAVE FRAMEWORK OVERVIEW

Presently, the ns-3 mmWave module is targeted for sim-
ulating LTE-style cellular networks and is based heavily
on the architecture and design patterns of the LTE LENA
module. The main enhancement introduced in this latest
version of the module is the implementation of Service Ac-
cess Points (SAPs) for interfacing with the existing LENA
classes, which enables mmWave classes to leverage the ro-
bust suite of LTE/EPC protocols the LENA module pro-
vides.

In Figure 1, we show the high-level composition of the
MmWaveEnbNet