
6/13/2016

1

ns-3 Training

ns-3 Annual Meeting

June 2016

ns-3 Training, June 2016

Software overview

• ns-3 is written in C++, with bindings available

for Python

– simulation programs are C++ executables or

Python programs

– ~350,000 lines of C++ (cloc estimate)

– almost exclusively C++98, beginning to use C++11

• ns-3 is a GNU GPLv2-licensed project

• ns-3 is mainly supported for Linux, OS X, and

FreeBSD

– Windows Visual Studio port available

• ns-3 is not backwards-compatible with ns-2
ns-3 Training, June 2016

Discrete-event simulation basics

• Simulation time moves in discrete jumps from event to

event

• C++ functions schedule events to occur at specific

simulation times

• A simulation scheduler orders the event execution

• Simulation::Run() executes a single-threaded event list

• Simulation stops at specific time or when events end

Execute a function

(may generate additional events)

Advance the virtual time

to the next event (function)

Virtual time

ns-3 Training, June 2016

6/13/2016

2

The basic ns-3 architecture

Application
Application

Protocol

stack

Node

NetDevice
NetDevice

Application
Application

Protocol
stack

Node

NetDevice
NetDevice

Sockets-like

API

Channel

Channel

Packet(s)

ns-3 Training, June 2016

Software orientation

Key differences from other network

simulators:

1) Command-line, Unix orientation

– vs. Integrated Development Environment

(IDE)

2) Simulations and models written directly in

C++ and Python

– vs. a domain-specific simulation language

ns-3 Training, June 2016

ns-3 does not have a graphical IDE

ns-3 Training, June 2016

Figure source: https://www.comsol.com/comsol-multiphysics

https://www.comsol.com/comsol-multiphysics

6/13/2016

3

ns-3 not written in a high-level language

ns-3 Training, June 2016

Example of OMNeT++ Network Description (NED) language

Figure excerpted from http://www.ewh.ieee.org/soc/es/Nov1999/18/ned.htm

Software organization

• Two levels of ns-3 software and libraries

ns-3Click routingNetanim pybindgen

module

module module

module

module

module

1) Several supporting libraries, not system-installed, can be in parallel to ns-3

2) ns-3 modules exist

within the ns-3 directory

ns-3 Training, June 2016

bridge

csma

emu

point-to-

point

spectrum

tap-bridge

virtual-

net-device

wifi

lte

wimax

devices

uan

mesh

lr-wpan

Current models

core

network

propagation

mobility

mpi

energy

9

nix-vector-

routing

aodv

dsdv

olsr

click

protocols

openflow

flow-monitor

BRITE

topology-

read

utilities

stats

config-

store

netanim

visualizer

Smart pointers

Dynamic types

Attributes

Callbacks

Tracing

Logging

Random Variables Events

Scheduler

Time arithmetic

Packets

Packet Tags

Packet Headers

Pcap/ascii file writing

Node class

NetDevice ABC

Address types

(Ipv4, MAC, etc.)

Queues

Socket ABC

Ipv4 ABCs

Packet sockets

applications

internet

(IPv4/v6)

internet-apps

traffic-control

ns-3 Training, June 2016

http://www.ewh.ieee.org/soc/es/Nov1999/18/ned.htm

6/13/2016

4

Module organization

• models/

• examples/

• tests/

• bindings/

• doc/

• wscript

ns-3 Training, June 2016

ns-3 programs

• ns-3 programs are C++ executables that

link the needed shared libraries

– or Python programs that import the needed

modules

• The ns-3 build tool, called 'waf', can be

used to run programs

• waf will place headers, object files,

libraries, and executables in a 'build'

directory

ns-3 Training, June 2016

Python bindings

• ns-3 uses a program called PyBindGen to

generate Python bindings for all libraries

v

C++

header

v

Intermediate

Python

program

v

C++

bindings

code

v

Python

module

(py)gccxml PyBindGen C++ compiler

ns-3 Training, June 2016

6/13/2016

5

Integrating other tools and libraries

ns-3 Training, June 2016

Other libraries

• more sophisticated scenarios and models

typically leverage other libraries

• ns-3 main distribution uses optional libraries

(libxml2, gsl, mysql) but care is taken to avoid

strict build dependencies

• the 'bake' tool (described later) helps to manage

library dependencies

• users are free to write their own Makefiles or

wscripts to do something special

ns-3 Training, June 2016

Gnuplot

• src/tools/gnuplot.{cc,h}

• C++ wrapper around gnuplot

• classes:

–Gnuplot

–GnuplotDataset

• Gnuplot2dDataset, Gnuplot2dFunction

• Gnuplot3dDataset, Gnuplot3dFunction

ns-3 Training, June 2016

6/13/2016

6

Enabling gnuplot for your code

• examples/wireless/wifi-clear-channel-cmu.cc

one dataset per mode

Add data to dataset

Add dataset to plot

produce a plot file that

will generate an EPS figure

ns-3 Training, June 2016

Matplotlib

• src/core/examples/sample-rng-plot.py

ns-3 Training, June 2016

Click Modular Router

ns-3 Training, June 2016

6/13/2016

7

mininet emulator

ns-3 Training, June 2016

Co-simulation frameworks have emerged

• PNNL's FNCS framework integrates ns-3 with

transmission and distribution simulators

Image source: PNNLgov YouTube video:

Introducing FNCS: Framework for Network Co-Simulationns-3 Training, June 2016

FAQs

• Does ns-3 have a Windows version?

– Yes, for Visual Studio 2012

– http://www.nsnam.org/wiki/Ns-3_on_Visual_Studio_2012

• Does ns-3 support Eclipse or other IDEs?

– Instructions have been contributed by users

– http://www.nsnam.org/wiki/HOWTO_configure_Eclipse_with_ns-3

• Is ns-3 provided in Linux or OS X package

systems (e.g. Debian packages)?

– Not officially, but some package maintainers exist

• Does ns-3 support NRL protolib applications?

– Not yet
ns-3 Training, June 2016

http://www.nsnam.org/wiki/Ns-3_on_Visual_Studio_2012
http://www.nsnam.org/wiki/HOWTO_configure_Eclipse_with_ns-3

6/13/2016

8

Summarizing

• ns-3 models are written in C++ and

compiled into libraries

– Python bindings are optionally created

• ns-3 programs are C++ executables or

Python programs that call the ns-3 public

API and can call other libraries

• ns-3 is oriented towards the command-line

• ns-3 uses no domain specific language

• ns-3 is not compatible with ns-2

ns-3 Training, June 2016

Finding documentation and code

ns-3 Training, June 2016

Resources

Web site:

http://www.nsnam.org

Mailing lists:

https://groups.google.com/forum/#!forum/ns-3-users

http://mailman.isi.edu/mailman/listinfo/ns-developers

Wiki:

http://www.nsnam.org/wiki/

Tutorial:

http://www.nsnam.org/docs/tutorial/tutorial.html

IRC: #ns-3 at freenode.net

ns-3 Training, June 2016

6/13/2016

9

Suggested steps

• Work through the ns-3 tutorial

• Browse the source code and other project

documentation

– manual, model library, Doxygen, wiki

– ns-3 Consortium tutorials (May 2014)

• https://www.nsnam.org/consortium/activities/trainin

g/

• Ask on ns-3-users mailing list if you still

have questions

– We try to answer most questions
ns-3 Training, June 2016

APIs

• Most of the ns-3 API is documented with

Doxygen

– https://www.nsnam.org/doxygen

ns-3 Training, June 2016

Contributed code and

associated projects

ns-3 Training, June 2016

https://www.nsnam.org/consortium/activities/training/
https://www.nsnam.org/doxygen

6/13/2016

10

Reading existing code

• Much insight can be gained from reading ns-3

examples and tests, and running them

yourselves

• Several core features of ns-3 are only

demonstrated in the core test suite

(src/core/test)

• Stepping through code with a debugger is

informative

– callbacks and templates make it more challenging

than usual

• 'find src -name "*.h" | xargs grep "string..." '
ns-3 Training, June 2016

Review

• ns-3 primarily aims to support the networking researcher

• ns-3 is C++ under GPLv2, with Python bindings

• ns-3 is mainly designed for low-level coding, work at the

command line, and composition with other tools

– most users edit or extend the source code

• ns-3 tries to operate according to open source project

best current practices

– everyone is a volunteer

• search for what you need, ask questions when you get

stuck, and think about contributing back to the project

ns-3 Training, June 2016

ns-3 Waf build system

ns-3 Annual Meeting

June 2016

ns-3 Training, June 2016 32

6/13/2016

11

Software introduction

• Download the latest release
– wget http://www.nsnam.org/releases/ns-allinone-

3.19.tar.bz2

– tar xjf ns-allinone-3.19.tar.bz2

• Clone the latest development code
– hg clone http://code.nsnam.org/ns-3-allinone

Q. What is "hg clone"?

A. Mercurial (http://www.selenic.com) is our source

code control tool.

ns-3 Training, June 2016 33

Software building

• Two levels of ns-3 build

ns-3click routing
Network

Simulation

Cradle

pybindgen

module

module module

module

module

module

1) bake (a Python-based build system to control an ordered build of

ns-3 and its libraries)

2) waf, a build system written in Python

3) build.py (a custom Python build script to control an ordered build of

ns-3 and its libraries) <--- may eventually be deprecated

ns-3 Training, June 2016 34

ns-3 uses the 'waf' build system

• Waf is a Python-based framework for

configuring, compiling and installing

applications.

– It is a replacement for other tools such as

Autotools, Scons, CMake or Ant

– http://code.google.com/p/waf/

• For those familiar with autotools:

• configure ./waf configure

• make ./waf build

ns-3 Training, June 2016 35

6/13/2016

12

waf configuration

• Key waf configuration examples

./waf configure

--enable-examples

--enable-tests

--disable-python

--enable-modules

• Whenever build scripts change, need to

reconfigure

Demo: ./waf --help
./waf configure --enable-examples --

enable-tests --enable-modules='core'

Look at: build/c4che/_cache.py

ns-3 Training, June 2016 36

wscript example

-*- Mode: python; py-indent-offset: 4; indent-tabs-mode: nil; coding: utf-8; -*-

def build(bld):

obj = bld.create_ns3_module('csma', ['network', 'applications'])

obj.source = [

'model/backoff.cc',

'model/csma-net-device.cc',

'model/csma-channel.cc',

'helper/csma-helper.cc',

]

headers = bld.new_task_gen(features=['ns3header'])

headers.module = 'csma'

headers.source = [

'model/backoff.h',

'model/csma-net-device.h',

'model/csma-channel.h',

'helper/csma-helper.h',

]

if bld.env['ENABLE_EXAMPLES']:

bld.add_subdirs('examples')

bld.ns3_python_bindings()

ns-3 Training, June 2016 37

waf build

• Once project is configured, can build via
./waf build or ./waf

• waf will build in parallel on multiple cores

• waf displays modules built at end of build

Demo: ./waf build

Look at: build/ libraries and executables

ns-3 Training, June 2016 38

6/13/2016

13

Running programs

• ./waf shell provides a special shell for

running programs

– Sets key environment variables

./waf --run sample-simulator

./waf --pyrun src/core/examples/sample-

simulator.py

ns-3 Training, June 2016 39

Build variations

• Configuring a build type is done at waf

configuration time

• debug build (default): all asserts and

debugging code enabled
./waf -d debug configure

• optimized
./waf -d optimized configure

• static libraries
./waf --enable-static configure

ns-3 Training, June 2016 40

Controlling the modular build

• One way to disable modules:

– ./waf configure --enable-modules='a','b','c'

• The .ns3rc file (found in utils/ directory) can be used to

control the modules built

• Precedence in controlling build

1) command line arguments

2) .ns3rc in ns-3 top level directory

3) .ns3rc in user's home directory

Demo how .ns3rc works

ns-3 Training, June 2016 41

6/13/2016

14

Building without wscript

• The scratch/ directory can be used to build

programs without wscripts

Demo how programs can be built without wscripts

ns-3 Training, June 2016 42

Simulator core

ns-3 training, June 2016

43

ns-3 Training

Simulator core

• Simulation time

• Events

• Simulator and Scheduler

• Command line arguments

• Random variables

Execute a function

(may generate additional events)

Advance the virtual time

to the next event (function)

Virtual time

ns-3 training, June 2016 44

6/13/2016

15

Simulator example

45
ns-3 training, June 2016

Simulator example (in Python)

46
ns-3 training, June 2016

Simulation program flow

Handle program inputs

Configure topology

Run simulation

Process outputs

ns-3 training, June 2016 47

6/13/2016

16

Command-line arguments

• Add CommandLine to your program if you want

command-line argument parsing

• Passing --PrintHelp to programs will display command

line options, if CommandLine is enabled

./waf --run "sample-simulator --PrintHelp"

48
ns-3 training, June 2016

Time in ns-3

• Time is stored as a large integer in ns-3

– Minimize floating point discrepancies across platforms

• Special Time classes are provided to manipulate time

(such as standard operators)

• Default time resolution is nanoseconds, but can be set to

other resolutions

– Note: Changing resolution is not well used/tested

• Time objects can be set by floating-point values and can

export floating-point values

double timeDouble = t.GetSeconds();

– Best practice is to avoid floating point conversions where
possible

49
ns-3 training, June 2016

Events in ns-3

• Events are just function calls that execute

at a simulated time

– i.e. callbacks

– this is another difference compared to other

simulators, which often use special "event

handlers" in each model

• Events have IDs to allow them to be

cancelled or to test their status

50
ns-3 training, June 2016

6/13/2016

17

Simulator and Schedulers

• The Simulator class holds a scheduler,

and provides the API to schedule events,

start, stop, and cleanup memory

• Several scheduler data structures

(calendar, heap, list, map) are possible

• "RealTime" simulation implementation

aligns the simulation time to wall-clock

time

– two policies (hard and soft limit) available

when the simulation and real time diverge
51

ns-3 training, June 2016

Random Variables

• Currently implemented distributions
– Uniform: values uniformly distributed in an interval
– Constant: value is always the same (not really random)
– Sequential: return a sequential list of predefined values
– Exponential: exponential distribution (poisson process)
– Normal (gaussian), Log-Normal, Pareto, Weibull, triangular

52

from src/core/examples/sample-rng-plot.py

ns-3 training, June 2016

Random variables and independent

replications

• Many simulation uses involve running a

number of independent replications of the

same scenario

• In ns-3, this is typically performed by

incrementing the simulation run number

– not by changing seeds

53
ns-3 training, June 2016

6/13/2016

18

ns-3 random number generator

• Uses the MRG32k3a generator from Pierre
L'Ecuyer

– http://www.iro.umontreal.ca/~lecuyer/myftp/papers/str
eams00.pdf

– Period of PRNG is 3.1x10^57

• Partitions a pseudo-random number generator
into uncorrelated streams and substreams

– Each RandomVariableStream gets its own stream

– This stream partitioned into substreams

54
ns-3 training, June 2016

Key Terminology

• Seed: A set of values that generates an entirely

new PRNG sequence

• Stream: The PRNG sequence is divided into

non-overlapping intervals called streams

• Run Number (substream): Each stream is

further divided to substreams, indexed by a

variable called the run number.

ns-3 training, June 2016 55

Streams and Substreams

ns-3 training, June 2016

Incrementing the

Run Number will move

all streams to a new

substream

Each ns-3

RandomVariableStream

object is assigned to a

stream (by default,

randomly)

Figure source: Pierre L’Ecuyer, Richard Simard, E. Jack Chen, and W. David Kelton.

An object-oriented random number package with many long streams and substreams. Operations Research, 2001.

56

6/13/2016

19

Run number vs. seed

• If you increment the seed of the PRNG, the

streams of random variable objects across

different runs are not guaranteed to be

uncorrelated

• If you fix the seed, but increment the run

number, you will get uncorrelated streams

57
ns-3 training, June 2016

Setting the stream number

• The ns-3 implementation provides access to 2^64

streams

• 2^63 are placed in a pool for automatic assignment, and

2^63 are reserved for fixed assignment

• Users may optionally assign a stream number index to a
random variable using the SetStream () method.

– This allows better control over selected random variables

– Many helpers have AssignStreams () methods to do this across

many such random variables

ns-3 training, June 2016 58

Putting it together

• Example of scheduled event

59

Demo real-time, command-line, random variables...

ns-3 training, June 2016

6/13/2016

20

Node, Stacks, and Devices

ns-3 training, June 2016

60

ns-3 Training

Example walkthrough

• This section progressively builds up a

simple ns-3 example, explaining concepts

along the way

• Files for these programs are available on

the ns-3 wiki

ns-3 training, June 2016 61

Example program

• wns3-version1.cc

– Link found on wiki page

– Place program in scratch/ folder

62

Application
Application

Protocol

stack

Node

NetDevice
NetDevice

Application
Application

Protocol
stack

Node

NetDevice
NetDevice

Sockets-like

API

Channel

Channel

Packet(s)

ns-3 training, June 2016

6/13/2016

21

Fundamentals

Key objects in the simulator are Nodes,

Packets, and Channels

Nodes contain Applications, “stacks”, and

NetDevices

63
ns-3 training, June 2016

Node basics

A Node is a shell of a computer to which

applications, stacks, and NICs are added

64

Application
Application

Application

“DTN”

ns-3 training, June 2016

NetDevices and Channels

NetDevices are strongly bound to Channels of a

matching type

• ns-3 Spectrum models relax this assumption

Nodes are architected for multiple interfaces
65

WifiNetDevice

WifiChannel

ns-3 training, June 2016

6/13/2016

22

Internet Stack

• Internet Stack

– Provides IPv4 and some IPv6 models

currently

• No non-IP stacks ns-3 existed until

802.15.4 was introduced in ns-3.20

– but no dependency on IP in the devices, Node

object, Packet object, etc. (partly due to the

object aggregation system)

66
ns-3 training, June 2016

Other basic models in ns-3

• Devices

– WiFi, WiMAX, CSMA, Point-to-point, ...

• Error models and queues

• Applications

– echo servers, traffic generator

• Mobility models

• Packet routing

– OLSR, AODV, DSR, DSDV, Static, Nix-
Vector, Global (link state)

67
ns-3 training, June 2016

Structure of an ns-3 program

int main (int argc, char *argv[])

{

// Set default attribute values

// Parse command-line arguments

// Configure the topology; nodes, channels, devices, mobility

// Add (Internet) stack to nodes

// Configure IP addressing and routing

// Add and configure applications

// Configure tracing

// Run simulation

}

68
ns-3 training, June 2016

6/13/2016

23

Helper API

• The ns-3 “helper API” provides a set of classes

and methods that make common operations

easier than using the low-level API

• Consists of:

– container objects

– helper classes

• The helper API is implemented using the low-

level API

• Users are encouraged to contribute or propose

improvements to the ns-3 helper API

69
ns-3 training, June 2016

Containers

• Containers are part of the ns-3 “helper

API”

• Containers group similar objects, for

convenience

– They are often implemented using C++ std

containers

• Container objects also are intended to

provide more basic (typical) API

70
ns-3 training, June 2016

The Helper API (vs. low-level API)

• Is not generic

• Does not try to allow code reuse

• Provides simple 'syntactical sugar' to make

simulation scripts look nicer and easier to

read for network researchers

• Each function applies a single operation on

a ''set of same objects”

• A typical operation is "Install()"

71
ns-3 training, June 2016

6/13/2016

24

Helper Objects

• NodeContainer: vector of Ptr<Node>

• NetDeviceContainer: vector of Ptr<NetDevice>

• InternetStackHelper

• WifiHelper

• MobilityHelper

• OlsrHelper

• ... Each model provides a helper class

72
ns-3 training, June 2016

Installation onto containers

• Installing models into containers, and

handling containers, is a key API theme

NodeContainer c;

c.Create (numNodes);

...

mobility.Install (c);

...

internet.Install (c);

...

73
ns-3 training, June 2016

Native IP models

• IPv4 stack with ARP, ICMP, UDP, and

TCP

• IPv6 with ND, ICMPv6, IPv6 extension

headers, TCP, UDP

• IPv4 routing: RIPv2, static, global,

NixVector, OLSR, AODV, DSR, DSDV

• IPv6 routing: RIPng, static

ns-3 training, June 2016 74

6/13/2016

25

ns-3 training, June 2016

IP address configuration

• An Ipv4 (or Ipv6) address helper can

assign addresses to devices in a

NetDevice container

Ipv4AddressHelper ipv4;

ipv4.SetBase ("10.1.1.0", "255.255.255.0");

csmaInterfaces = ipv4.Assign (csmaDevices);

...

ipv4.NewNetwork (); // bumps network to 10.1.2.0

otherCsmaInterfaces = ipv4.Assign (otherCsmaDevices);

75

Internet stack

76

• The public interface of

the Internet stack is

defined (abstract base

classes) in

src/network/model

directory

• The intent is to support

multiple implementations

• The default ns-3 Internet

stack is implemented in

src/internet-stack

ns-3 training, June 2016

ns-3 TCP

• Four options exist:

– native ns-3 TCP

– TCP simulation cradle (NSC)

– Direct code execution (Linux/FreeBSD library)

– Use of virtual machines

• To enable NSC:

internetStack.SetNscStack ("liblinux2.6.26.so");

ns-3 training, June 2016 77

6/13/2016

26

Native TCP models

• TCP NewReno is baseline

– TCP SACK under review for ns-3.26

• TCP congestion control recently refactored, and

many TCP variants are under finalization

– Present: BIC, Highspeed, Hybla, Illinois, Scalable,

Vegas, Veno, Westwood, YeAH

– Pending: CUBIC, H-TCP, SACK

• MP-TCP is under development from past

summer project (for ns-3.27?)

ns-3 training, June 2016 78

ns-3 training, June 2016

ns-3 simulation cradle

• Port by Florian Westphal of Sam Jansen’s Ph.D. work

Figure reference: S. Jansen, Performance, validation and testing with the Network

Simulation Cradle. MASCOTS 2006.

79

ns-3 training, June 2016

ns-3 simulation cradle

For ns-3:

• Linux 2.6.18

• Linux 2.6.26

• Linux 2.6.28

Others:

• FreeBSD 5

• lwip 1.3

• OpenBSD 3

Other simulators:

• ns-2

• OmNET++

Figure reference: S. Jansen, Performance, validation and testing with the Network

Simulation Cradle. MASCOTS 2006.

80

6/13/2016

27

ns-3 training, June 2016

Review of sample program (cont.)

ApplicationContainer apps;

OnOffHelper onoff ("ns3::UdpSocketFactory",

InetSocketAddress ("10.1.2.2", 1025));

onoff.SetAttribute ("OnTime", StringValue ("Constant:1.0"));

onoff.SetAttribute ("OffTime", StringValue ("Constant:0.0"));

apps = onoff.Install (csmaNodes.Get (0));

apps.Start (Seconds (1.0));

apps.Stop (Seconds (4.0));

PacketSinkHelper sink ("ns3::UdpSocketFactory",

InetSocketAddress ("10.1.2.2", 1025));

apps = sink.Install (wifiNodes.Get (1));

apps.Start (Seconds (0.0));

apps.Stop (Seconds (4.0));

Traffic generator

Traffic receiver

81

ns-3 training, June 2016

Applications and sockets

• In general, applications in ns-3 derive from

the ns3::Application base class

– A list of applications is stored in the ns3::Node

– Applications are like processes

• Applications make use of a sockets-like

API

– Application::Start () may call

ns3::Socket::SendMsg() at a lower layer

82

ns-3 training, June 2016

Sockets API

Plain C sockets

int sk;

sk = socket(PF_INET, SOCK_DGRAM, 0);

struct sockaddr_in src;

inet_pton(AF_INET,”0.0.0.0”,&src.sin_ad

dr);

src.sin_port = htons(80);

bind(sk, (struct sockaddr *) &src,

sizeof(src));

struct sockaddr_in dest;

inet_pton(AF_INET,”10.0.0.1”,&dest.sin_

addr);

dest.sin_port = htons(80);

sendto(sk, ”hello”, 6, 0, (struct

sockaddr *) &dest, sizeof(dest));

char buf[6];

recv(sk, buf, 6, 0);

}

ns-3 sockets

Ptr<Socket> sk =

udpFactory->CreateSocket ();

sk->Bind (InetSocketAddress (80));

sk->SendTo (InetSocketAddress (Ipv4Address

(”10.0.0.1”), 80), Create<Packet>

(”hello”, 6));

sk->SetReceiveCallback (MakeCallback

(MySocketReceive));

• […] (Simulator::Run ())

void MySocketReceive (Ptr<Socket> sk,

Ptr<Packet> packet)

{

...

}
83

6/13/2016

28

New in ns-3.25: traffic control

• Patterned after Linux traffic control, allows

insertion of software-based priority queues

between the IP layer and device layer

– pfifo_fast, RED, Adaptive RED, CoDel

– planned for ns-3.26: FQ-CoDel, PIE, Byte

Queue Limits (BQL)

ns-3 training, June 2016 84

NetDevice trace hooks

• Example: CsmaNetDevice

85

CsmaNetDevice::Send ()

CsmaNetDevice::

TransmitStart()

CsmaNetDevice::

Receive()

CsmaChannel

NetDevice::

ReceiveCallback

queue

MacRx

MacDrop
MacTx

MacTxBackoff

PhyTxBegin

PhyTxEnd
PhyTxDrop

Sniffer

PromiscSniffer

PhyRxEnd

PhyRxDrop

ns-3 training, June 2016

Nodes, Mobility, and Position

• ALL nodes have to be created before simulation
starts

• Position Allocators setup initial position of nodes
– List, Grid, Random position…

• Mobility models specify how nodes will move
– Constant position, constant velocity/acceleration,

waypoint…

– Trace-file based from mobility tools such as SUMO,
BonnMotion (using NS2 format)

– Routes Mobility using Google API (*)

ns-3 training, June 2016
86

(*) Presented in WNS3 - 2015

6/13/2016

29

Position Allocation Examples

• List
MobilityHelper mobility;
// place two nodes at specific positions (100,0) and (0,100)
Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator> ();
positionAlloc->Add (Vector (100, 0, 0));
positionAlloc->Add (Vector (0, 100, 0));
mobility.SetPositionAllocator(positionAlloc);

• Grid Position

MobilityHelper mobility;

// setup the grid itself: nodes are laid out started from (-100,-100) with 20 per row, the x

// interval between each object is 5 meters and the y interval between each object is 20 meters

mobility.SetPositionAllocator ("ns3::GridPositionAllocator",

"MinX", DoubleValue (-100.0),

"MinY", DoubleValue (-100.0),

"DeltaX", DoubleValue (5.0),

"DeltaY", DoubleValue (20.0),

"GridWidth", UintegerValue (20),

"LayoutType", StringValue ("RowFirst"));

• Random Rectangle Position

// place nodes uniformly on a straight line from (0, 1000)

MobilityHelper mobility;

Ptr<RandomRectanglePositionAllocator> positionAloc = CreateObject<RandomRectanglePositionAllocator>();

positionAloc->SetAttribute("X", StringValue("ns3::UniformRandomVariable[Min=0.0|Max=100.0]"));

positionAloc->SetAttribute("Y", StringValue("ns3::ConstantRandomVariable[Constant=50.0]"));

mobility.SetPositionAllocator(positionAloc);

ns-3 training, June

2016
87

Mobility Model Example

• Constant Position

MobilityHelper mobility;

mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");

mobility.Install (nodes);

• Constant Speed

MobilityHelper mobility;

mobility.SetMobilityModel ("ns3::ConstantVelocityMobilityModel");

mobility.Install (nodes);

Ptr<UniformRandomVariable> rvar = CreateObject<UniformRandomVariable>();

for (NodeContainer::Iterator i = nodes.Begin (); i != nodes.End (); ++i){

Ptr<Node> node = (*i);

double speed = rvar->GetValue(15, 25);

node->GetObject<ConstantVelocityMobilityModel>()->SetVelocity(Vector(speed,0,0));

}

• Trace-file based

std::string traceFile = “mobility_trace.txt”;

// Create Ns2MobilityHelper with the specified trace log file as parameter

Ns2MobilityHelper ns2 = Ns2MobilityHelper (traceFile);

ns2.Install (); // configure movements for each node, while reading trace file
88

Interesting ns-3 extensions

• ns-3-highway-mobility (https://code.google.com/p/ns-
3-highway-mobility/)
– Implement IDM and MOBIL change lane, highway class,

traffic-lights.

– Based on ns-3.8

– No longer maintained

• Virtual Traffic Lights (PROMELA)
(https://dsn.tm.kit.edu/misc_3434.php)
– Manhattan IDM mobility model

– NLOS propagation loss models

– (Virtual) Traffic Light applications

ns-3 training, June 201689

https://code.google.com/p/ns-3-highway-mobility/
https://dsn.tm.kit.edu/misc_3434.php

6/13/2016

30

Propagation Models

• Propagation Loss

– ITUR1411, LogDistance, ThreeLogDistance, Range,
TwoRayGround, Friis

– Nakagami, Jakes

– Obstacle model (*)

• Propagation Delay

– Constant Speed

– Random

• Be careful when using
YansWifiChannelHelper::Default() the LogDistance
propagation model is added. Calling AddPropagationLoss()
again will add a second propagation loss model.

ns-3 training, June 2016 90

(*) Presented in WNS3 2015

Communication Range

• Depends on many factors

– Propagation loss model and PHY configuration

– Frame size (big vs small)

– Transmission mode (6Mbps vs 54 Mbps)

ns-3 training, June

2016
91

Example program iterations

• Walk through four additional revisions of

the example program
– wns3-version2.cc

– wns3-version3.cc

– wns3-version4.cc

ns-3 training, June 2016 92

6/13/2016

31

ns-3 Annual meeting

June 2016

93

ns-3 Training: Packets

ns-3 Packet

• Packet is an advanced data structure with

the following capabilities

– Supports fragmentation and reassembly

– Supports real or virtual application data

– Extensible

– Serializable (for emulation)

– Supports pretty-printing

– Efficient (copy-on-write semantics)

94
ns-3 Annual meeting June

2016

ns-3 Packet structure

• Analogous to an mbuf/skbuff

95
ns-3 Annual meeting June

2016

6/13/2016

32

Copy-on-write

• Copy data bytes only as needed

96Figure source: Mathieu Lacage's Ph.D. thesis
ns-3 Annual meeting June

2016

Headers and trailers

• Most operations on packet involve adding

and removing an ns3::Header

• class ns3::Header must implement four

methods:
Serialize()

Deserialize()

GetSerializedSize()

Print()

ns-3 Annual meeting June

2016

97

Headers and trailers (cont.)

• Headers are serialized into the packet byte

buffer with Packet::AddHeader() and

removed with Packet::RemoveHeader()

• Headers can also be 'Peeked' without

removal
Ptr<Packet> pkt = Create<Packet> ();

UdpHeader hdr; // Note: not heap allocated

pkt->AddHeader (hdr);

Ipv4Header iphdr;

pkt->AddHeader (iphdr);

ns-3 Annual meeting June

2016

98

6/13/2016

33

Packet tags

• Packet tag objects allow packets to carry around

simulator-specific metadata

– Such as a "unique ID" for packets or

• Tags may associate with byte ranges of data, or

with the whole packet

– Distinction is important when packets are fragmented

and reassembled

• Tags presently are not preserved across

serialization boundaries (e.g. MPI)

ns-3 Annual meeting June

2016

99

PacketTag vs. ByteTag

• Two tag types are available: PacketTag and

ByteTag

– ByteTags run with bytes

– PacketTags run with packets

• When Packet is fragmented, both copies of

Packet get copies of PacketTags

• When two Packets are merged, only the

PacketTags of the first are preserved

• PacketTags may be removed individually;

ByteTags may be removed all at once

ns-3 Annual meeting June

2016

100

Tag example

• Here is a simple example illustrating the use of tags from the code in

src/internet/model/udp-socket-impl.cc:

Ptr<Packet> p; // pointer to a pre-existing packet

SocketIpTtlTag tag

tag.SetTtl (m_ipMulticastTtl); // Convey the TTL from

UDP layer to IP layer

p->AddPacketTag (tag);

• This tag is read at the IP layer, then stripped

(src/internet/model/ipv4-l3-protocol.cc):

uint8_t ttl = m_defaultTtl;

SocketIpTtlTag tag;

bool found = packet->RemovePacketTag (tag);

if (found)

{

ttl = tag.GetTtl ();

}

ns-3 Annual meeting June

2016

101

6/13/2016

34

Packet metadata

• Packets may optionally carry metadata

– record every operation on a packet's buffer

– implementation of Packet::Print for pretty-printing of

the packet

– sanity check that when a Header is removed, the

Header was actually present to begin with

• Not enabled by default, for performance reasons

• To enable, insert one or both statements:
Packet::EnablePrinting ();

Packet::EnableChecking ();

ns-3 Annual meeting June

2016

102

Ptr<Packet>

• Packets are reference counted objects that
support the smart pointer class Ptr

• Use a templated "Create" method instead of

CreateObject for ns3::Objects

• Typical creation:
– Ptr<Packet> pkt = Create<Packet> ();

• In model code, Packet pointers may be const or

non-const; often Packet::Copy() is used to obtain

non-const from const
– Ptr<const Packet> cpkt = ...;

– Ptr<Packet> p = cpkt->Copy ();

ns-3 Annual meeting June

2016

103

ns-3 Objects

ns-3 training, June 2016

104

ns-3 Training

6/13/2016

35

Object metadata system

• ns-3 is, at heart, a C++ object system

• ns-3 objects that inherit from base class

ns3::Object get several additional features

– smart-pointer memory management (Class

Ptr)

– dynamic run-time object aggregation

– an attribute system

105
ns-3 training, June 2016

Smart pointers

• Smart pointers in ns-3 use reference counting to

improve memory management

• The class ns3::Ptr is semantically similar to a

traditional pointer, but the object pointed to will

be deleted when all references to the pointer are

gone

• ns-3 heap-allocated objects should use the

templated Create<>() or CreateObject<> ()

methods

ns-3 training, June 2016 106

Examples

Ptr<WifiNetDevice> dev =

CreateObject<WifiNetDevice> ();

Ptr<Packet> pkt = Create<Packet> ();

(instead of Packet* = new Packet;)

why Create<> vs CreateObject<>?

• two different base classes; generally use

CreateObject<>(), but Create<> for Packet

ns-3 training, June 2016 107

6/13/2016

36

Dynamic run-time object aggregation

• This feature is similar to "Component

Object Model (COM)"-- allows interfaces

(objects) to be aggregated at run-time

instead of at compile time

• Useful for binding dissimilar objects

together without adding pointers to each

other in the classes

ns-3 training, June 2016 108

Usage

• ns-3 Node protocol stacks are added via

aggregation

– The IP stack can be found from a Node

pointer without class Node knowing about it

• Energy models are typically aggregated to

nodes

• To find interfaces, use GetObject<>(); e.g.

Ptr<Ipv4> ipv4 = m_node->GetObject<Ipv4> ();

ns-3 training, June 2016 109

Attributes and default values

110
ns-3 training, June 2016

6/13/2016

37

ns-3 attribute system

Problem: Researchers want to identify all of the values
affecting the results of their simulations

– and configure them easily

ns-3 solution: Each ns-3 object has a set of attributes:

– A name, help text

– A type

– An initial value

• Control all simulation parameters for static objects

• Dump and read them all in configuration files

• Visualize them in a GUI

• Makes it easy to verify the parameters of a simulation

111
ns-3 training, June 2016

Short digression: Object metadata

system

• ns-3 is, at heart, a C++ object system

• ns-3 objects that inherit from base class

ns3::Object get several additional features

– dynamic run-time object aggregation

– an attribute system

– smart-pointer memory management (Class

Ptr)

112

We focus here on the attribute system

ns-3 training, June 2016

Use cases for attributes

• An Attribute represents a value in our

system

• An Attribute can be connected to an

underlying variable or function

– e.g. TcpSocket::m_cwnd;

– or a trace source

113
ns-3 training, June 2016

6/13/2016

38

Use cases for attributes (cont.)

• What would users like to do?

– Know what are all the attributes that affect the

simulation at run time

– Set a default initial value for a variable

– Set or get the current value of a variable

– Initialize the value of a variable when a

constructor is called

• The attribute system is a unified way of

handling these functions
114

ns-3 training, June 2016

How to handle attributes

• The traditional C++ way:

– export attributes as part of a class's public API

– walk pointer chains (and iterators, when

needed) to find what you need

– use static variables for defaults

• The attribute system provides a more

convenient API to the user to do these

things

115
ns-3 training, June 2016

Navigating the attributes

• Attributes are exported into a string-based

namespace, with filesystem-like paths

– namespace supports regular expressions

• Attributes also can be used without the

paths

– e.g. “ns3::WifiPhy::TxGain”

• A Config class allows users to manipulate

the attributes

116
ns-3 training, June 2016

6/13/2016

39

Attribute namespace

• strings are used

to describe paths

through the

namespace

117

Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipv4.tcp_sack", StringValue ("0"));

ns-3 training, June 2016

Navigating the attributes using paths

• Examples:

– Nodes with NodeIds 1, 3, 4, 5, 8, 9, 10, 11:

“/NodeList/[3-5]|[8-11]|1”

– UdpL4Protocol object instance aggregated to

matching nodes:

“/$ns3::UdpL4Protocol”

118
ns-3 training, June 2016

What users will do

• e.g.: Set a default initial value for a

variable
Config::Set (“ns3::YansWifiPhy::TxGain”,

DoubleValue (1.0));

• Syntax also supports string values:
Config::Set (“YansWifiPhy::TxGain”,

StringValue (“1.0”));

119

Attribute
Value

ns-3 training, June 2016

6/13/2016

40

Fine-grained attribute handling

• Set or get the current value of a variable

– Here, one needs the path in the namespace to

the right instance of the object
Config::SetAttribute(“/NodeList/5/DeviceList/3/$n

s3::WifiNetDevice/Phy/$ns3::YansWifiPhy/TxGain”,

DoubleValue(1.0));

DoubleValue d; nodePtr->GetAttribute (

“/NodeList/5/NetDevice/3/$ns3::WifiNetDevice/Phy

/$ns3::YansWifiPhy/TxGain”, d);

• Users can get Ptrs to instances also, and

Ptrs to trace sources, in the same way
120

ns-3 training, June 2016

Attribute documentation

121
ns-3 training, June 2016

Options to manipulate attributes

• Individual object attributes often derive from default values

– Setting the default value will affect all subsequently created objects

– Ability to configure attributes on a per-object basis

• Set the default value of an attribute from the command-line:

CommandLine cmd;

cmd.Parse (argc, argv);

• Set the default value of an attribute with NS_ATTRIBUTE_DEFAULT

• Set the default value of an attribute in C++:

Config::SetDefault ("ns3::Ipv4L3Protocol::CalcChecksum",

BooleanValue (true));

• Set an attribute directly on a specic object:

Ptr<CsmaChannel> csmaChannel = ...;

csmaChannel->SetAttribute ("DataRate",

StringValue ("5Mbps"));

122
ns-3 training, June 2016

6/13/2016

41

Summary on ns-3 objects

• ns-3 objects that inherit from base class

ns3::Object get several additional features

1. smart-pointer memory management (Class

Ptr)

2. dynamic run-time object aggregation

3. an attribute system

• These types of objects are allocated on the

heap, not on the stack
123

ns-3 training, June 2016

Debugging support

ns-3 training, June 2016

124

ns-3 Training

Writing and debugging new programs

• Choosing between Python and C++

• Reading existing code

• Understanding and controlling logging code

• Error conditions

• Running programs through a debugger

ns-3 training, June 2016 125

6/13/2016

42

Python bindings

• ns-3 uses the 'pybindgen' tool to generate

Python bindings for the underlying C++ libraries

• Existing bindings are typically found in the

bindings/ directory of a module

• Some methods are not provided in Python (e.g.

hooking trace sources)

• Generating new bindings requires a toolchain

documented on the ns-3 web site

ns-3 training, June 2016 126

Debugging support

• Assertions: NS_ASSERT (expression);

– Aborts the program if expression evaluates to false

– Includes source file name and line number

• Unconditional Breakpoints: NS_BREAKPOINT ();

– Forces an unconditional breakpoint, compiled in

• Debug Logging (not to be confused with tracing!)

– Purpose

• Used to trace code execution logic

• For debugging, not to extract results!

– Properties

• NS_LOG* macros work with C++ IO streams

• E.g.: NS_LOG_UNCOND (”I have received ” << p->GetSize () << ” bytes”);

• NS_LOG macros evaluate to nothing in optimized builds

• When debugging is done, logging does not get in the way of execution
performance

ns-3 training, June 2016 127

Debugging support (cont.)

• Logging levels:

– NS_LOG_ERROR (...): serious error messages only

– NS_LOG_WARN (...): warning messages

– NS_LOG_DEBUG (...): rare ad-hoc debug messages

– NS_LOG_INFO (...): informational messages (eg. banners)

– NS_LOG_FUNCTION (...):function tracing

– NS_LOG_PARAM (...): parameters to functions

– NS_LOG_LOGIC (...): control flow tracing within functions

• Logging ”components”

– Logging messages organized by components

– Usually one component is one .cc source file

– NS_LOG_COMPONENT_DEFINE ("OlsrAgent");

• Displaying log messages. Two ways:

– Programatically:

• LogComponentEnable("OlsrAgent", LOG_LEVEL_ALL);

– From the environment:

• NS_LOG="OlsrAgent" ./my-program

ns-3 training, June 2016 128

6/13/2016

43

Running C++ programs through gdb

• The gdb debugger can be used directly on

binaries in the build directory

• An easier way is to use a waf shortcut
./waf --command-template="gdb %s" --run <program-

name>

ns-3 training, June 2016 129

Running C++ programs through valgrind

• valgrind memcheck can be used directly on

binaries in the build directory

• An easier way is to use a waf shortcut
./waf --command-template="valgrind %s" --run

<program-name>

• Note: disable GTK at configure time when

running valgrind (to suppress spurious reports)
• ./waf configure --disable-gtk --enable-tests ...

ns-3 training, June 2016 130

Testing

• ns-3 models need tests verifiable by others

(often overlooked)

- Onus is on the simulation project to validate and

document results

- Onus is also on the researcher to verify results

• ns-3 strategies:

– regression tests

• Aim for event-based rather than trace-based

– unit tests for verification

– validation of models on testbeds where possible

– reuse of code

ns-3 training, June 2016 131

6/13/2016

44

Test framework

• ns-3-dev is checked nightly on multiple platforms

– Linux gcc-4.x, i386 and x86_64, OS X, FreeBSD

clang, and Cygwin (occasionally)

• ./test.py will run regression tests

Walk through test code, test terminology (suite, case),

and examples of how tests are run

ns-3 training, June 2016 132

Improving performance

• Debug vs optimized builds

– ./waf -d debug configure

– ./waf -d debug optimized

• Build ns-3 with static libraries

– ./waf --enable-static

• Use different compilers (icc)

– has been done in past, not regularly tested

ns-3 training, June 2016 133

ns-3 Training

Visualization

ns-3 Annual Meeting

June 2016

ns-3 Training, June 2016 134

6/13/2016

45

Overview

• No preferred visualizer for ns-3

• Several tools have been developed over

the years, with some scope limitations

– Pyviz

– FlowMonitor (statistics with Pyviz linkage)

– NetAnim (George Riley and John Abraham)

ns-3 Training, June 2016 135

PyViz overview

• Developed by Gustavo Carneiro

• Live simulation visualizer (no trace files)

• Useful for debugging

– mobility model behavior

– where are packets being dropped?

• Built-in interactive Python console to debug the

state of running objects

• Works with Python and C++ programs

ns-3 Training, June 2016 136

Pyviz screenshot (Graphviz layout)

ns-3 Training, June 2016 137

6/13/2016

46

Pyviz and FlowMonitor

• src/flow-monitor/examples/wifi-olsr-flowmon.py

ns-3 Training, June 2016 138

Enabling PyViz in your simulations

• Make sure PyViz is enabled in the build

• If program supports CommandLine

parsing, pass the option
--SimulatorImplementationType=

ns3::VisualSimulatorImpl

• Alternatively, pass the "--vis" option

ns-3 Training, June 2016 139

FlowMonitor

• Network monitoring framework found in
src/flow-monitor/

• Goals:

– detect all flows passing through network

– stores metrics for analysis such as bitrates,

duration, delays, packet sizes, packet loss

ratios

G. Carneiro, P. Fortuna, M. Ricardo, "FlowMonitor-- a network monitoring framework

for the Network Simulator ns-3," Proceedings of NSTools 2009.

ns-3 Training, June 2016 140

6/13/2016

47

FlowMonitor architecture

• Basic classes

– FlowMonitor

– FlowProbe

– FlowClassifier

– FlowMonitorHelper

• IPv4 and IPv6

Figure credit: G. Carneiro, P. Fortuna, M. Ricardo, "FlowMonitor-- a network monitoring

framework for the Network Simulator ns-3," Proceedings of NSTools 2009.

ns-3 Training, June 2016 141

FlowMonitor statistics

• Statistics gathered

ns-3 Training, June 2016 142

FlowMonitor configuration

• example/wireless/wifi-hidden-terminal.cc

ns-3 Training, June 2016 143

6/13/2016

48

FlowMonitor output

• This program exports statistics to stdout

• Other examples integrate with PyViz

ns-3 Training, June 2016 144

NetAnim

• "NetAnim" by George Riley and John Abraham

pyviz

ns-3 Training, June 2016 145

NetAnim key features

• Animate packets over wired-links and wireless-

links

– limited support for LTE traces

• Packet timeline with regex filter on packet meta-

data.

• Node position statistics with node trajectory

plotting (path of a mobile node).

• Print brief packet-meta data on packets

ns-3 Training, June 2016 146

6/13/2016

49

Emulation support

ns-3 training, June 2016

147

ns-3 Training

Outline

• Emulation modes

– Tap Bridge

– FdNetDevice

• Direct Code Execution (DCE)

– Applications

– Linux Kernel

– DCE Cradle

ns-3 training, June 2016 148

Emulation support

• Support moving between simulation and testbeds or live

systems

• A real-time scheduler, and support for two modes of

emulation

• Linux is only operating system supported

• Must run simulator in real time
– GlobalValue::Bind (“SimulatorImplementationType”,

StringValue (“ns3::RealTimeSimulatorImpl”));

• Must enable checksum calculations across models

– GlobalValue::Bind (“ChecksumEnabled”, BooleanValue

(true));

• Must run as root

ns-3 training, June 2016 149

6/13/2016

50

ns-3 emulation modes

ns-3 training, June 2016
150

virtual
machine

ns-3

virtual
machine

1) ns-3 interconnects real or virtual

machines

real
machine

ns-3

Testbed

real
machine

ns-3

2) testbeds interconnect ns-3

stacks

real machine

Various hybrids of the above are possible

Example use case: testbeds

ns-3 training, June 2016

• Support for use of Rutgers WINLAB ORBIT radio grid

151

Example use case: PlanetLab

• The PlanetLabFdNetDeviceHelper creates TAP devices

on PlanetLab nodes using specific PlanetLab

mechanisms (i.e. the vsys system), and associates the

TAP device to a FdNetDevice in ns-3.

ns-3 training, June 2016 152

6/13/2016

51

Example use case: mininet

• Mininet is popular in the Software-Defined

Networking (SDN) community

• Mininet uses "TapBridge" integration

• https://github.com/mininet/mininet/wiki/Link-modeling-using-ns-3

ns-3 training, June 2016 153

Emulation Devices

ns-3 training, June 2016 154

Device models

• File Descriptor Net Device (FdNetDevice)

– read and write traffic using a file descriptor

provided by the user

– this file descriptor can be associated to a TAP

device, to a raw socket, to a user space

process generating/consuming traffic, etc.

• Tap Bridge

– Integrate Tun/Tap devices with ns-3 devices

ns-3 training, June 2016 155

https://github.com/mininet/mininet/wiki/Link-modeling-using-ns-3

6/13/2016

52

“TapBridge": netns and ns-3 integration

ns-3 training, June 2016
156

Container

ns-3

Linux

tapX

/dev/tunX

TapBridge

WiFi

ghost node
Wifi

ghost node

tapY

Tap device pushed into namespaces; no bridging needed

/dev/tunY

Container

TapBridge

WiFi

TapBridge modes

• ConfigureLocal (default mode)

– ns-3 configures the tap device

– useful for host to ns-3 interaction

• UseLocal

– user has responsibility for device creation

– ns-3 informed of device using “DeviceName” attribute

• UseBridge

– TapDevice connected to existing Linux bridge

ns-3 training, June 2016 157

ConfigureLocal

ns-3 training, June 2016

ns-3 ensures that Mac addresses

are consistent

158

6/13/2016

53

UseLocal

ns-3 training, June 2016

Mac X spoofed to Mac Y

159

UseBridge

ns-3 training, June 2016

ns-3 devices must support SendFrom()

(i.e. bridging)

160

FdNetDevice

• Unified handling of reading/writing from file

descriptor

• Three supported helper configurations:

– EmuFdNetDeviceHelper (to associate the ns-3 device

with a physical device in the host machine)

– TapFdNetDeviceHelper (to associate the ns-3 device

with the file descriptor from a tap device in the host

machine) (not the same as TapBridge)

– PlanetLabFdNetDeviceHelper (to automate the

creation of tap devices in PlanetLab nodes, enabling

ns-3 simulations that can send and receive traffic

though the Internet using PlanetLab resource.

ns-3 training, June 2016 161

6/13/2016

54

EmuFdNetDeviceHelper

ns-3 training, June 2016

• Device performs MAC spoofing to

separate emulation from host traffic

162

PlanetLabFdNetDeviceHelper

• Special case of TapFdNetDeviceHelper where

Tap devices configured according to PlanetLab

conventions

ns-3 training, June 2016 163

ns-3 over host sockets

• Two publications about how to run ns-3

applications over real hosts and sockets

– "Simulator-agnostic ns-3 Applications", Abraham and

Riley, WNS3 2012

– Gustavo Carneiro, Helder Fontes, Manuel Ricardo,

"Fast prototyping of network protocols through ns-3

simulation model reuse", Simulation Modelling

Practice and Theory (SIMPAT), vol. 19, pp. 2063–

2075, 2011.

ns-3 training, June 2016 164

6/13/2016

55

Generic Emulation Issues

• Ease of use

– Configuration management and coherence

– Information coordination (two sets of state)

• e.g. IP/MAC address coordination

– Output data exists in two domains

– Debugging can be more challenging

• Error-free operation (avoidance of misuse)

– Synchronization, information sharing, exception handling

• Checkpoints for execution bring-up

• Inoperative commands within an execution domain

• Deal with run-time errors

– Soft performance degradation (CPU) and time discontinuities

ns-3 training, June 2016 165

Lawrence Livermore National Laboratory

Tracing in NS-3

DRAFT Version 1

May, 2014

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore

National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Walid Younes

167LLNL-PRES-641412

Chapter 7: Tracing

 Online tutorial:

http://www.nsnam.org/docs/release/3.14/tutorial/singlehtml/index.html#traci

ng

 T. Predojev (2012): http://wikienergy.cttc.es/images/2/2d/Ns-3-tutorial-

complete.pdf

 M. Lacage (2009): http://www.nsnam.org/tutorials/ns-3-tutorial-tunis-

apr09.pdf

 G. Riley (2008): http://www.wns2.org/docs/wns_tutorial-handout.pdf

 S. Kristiansen (2010):

http://www.uio.no/studier/emner/matnat/ifi/INF5090/v11/undervisningsmateri

ale/INF5090-NS-3-Tutorial-2011-Oslo-slides.pdf

Source material:

http://www.nsnam.org/docs/release/3.14/tutorial/singlehtml/index.html#tracing
http://wikienergy.cttc.es/images/2/2d/Ns-3-tutorial-complete.pdf
http://www.nsnam.org/tutorials/ns-3-tutorial-tunis-apr09.pdf
http://www.wns2.org/docs/wns_tutorial-handout.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF5090/v11/undervisningsmateriale/INF5090-NS-3-Tutorial-2011-Oslo-slides.pdf

6/13/2016

56

168LLNL-PRES-641412

More advanced tracing with NS3

 You can use ascii, pcap tracing or logging to get info from your sim

• Need to write code to parse output

• The info you want may not be obtainable by pre-defined mechanisms

 There is another way in NS3

• Add your own traces to events you care about

• Produce output in a convenient form

• Add hooks to the core that can be accessed by other users later

169LLNL-PRES-641412

You could use print statements, but I wouldn’t recommend it

 You may have to dig deep inside the NS3 core to find the info you want

 More print statements ⇒ need way to enable/disable specific ones

• Congratulations! You’ve just re-invented the NS3 logging system!

 You could add logging statements to the core

• Remember: NS3 is open-source, evolving system

 Core will bloat to include all possible log messages

 Unwieldy gigantic log files ⇒ effectively useless

 No guarantee specific log messages will survive releases

Logging ≠ Tracing

170LLNL-PRES-641412

The basic idea: trace sources and sinks

 You need:

1. Trace source: signals sim event and provides access to the data

2. Trace sink: consumes the trace info, do something useful with it

3. Mechanism to connect trace source to trace sink

 Note: there can be many sinks connected to the same trace source

Trace source

Trace sink

Trace sink

Trace sink

6/13/2016

57

171LLNL-PRES-641412

A simple low-level example: callbacks

 This is the key to the way tracing works

 In C/C++ you can pass a pointer to a function: callback mechanism

 Trace source maintains a list of callback functions added by the sinks

 When an event of interest happens

• Trace source passes data to the callback functions

• Callback functions are executed

float myFunction(float x)

{

return x*x;

}

⋮
float Integrate(float (*func)(float), float lo, float hi)

{

…

}

⋮
Integrate(&myFunction,0,1);

Ex: a function to

integrate functions

172LLNL-PRES-641412

A simple low-level example: fourth.cc

#include "ns3/object.h"

#include "ns3/uinteger.h"
#include "ns3/traced-value.h"

#include "ns3/trace-source-accessor.h"

#include <iostream>

using namespace ns3;

class MyObject : public Object

{
public:

static TypeId GetTypeId (void)

{
static TypeId tid = TypeId ("MyObject")

.SetParent (Object::GetTypeId ())

.AddConstructor<MyObject> ()

.AddTraceSource ("MyInteger",

"An integer value to trace.",

MakeTraceSourceAccessor (&MyObject::m_myInt));
return tid;

}

MyObject () {}

TracedValue<int32_t> m_myInt;

};

void IntTrace (int32_t oldValue, int32_t newValue)

{
std::cout << "Traced " << oldValue << " to " << newValue << std::endl;

}

int main (int argc, char *argv[])

{

Ptr<MyObject> myObject = CreateObject<MyObject> ();
myObject->TraceConnectWithoutContext ("MyInteger", MakeCallback (&IntTrace));

myObject->m_myInt = 1234;
}

Trace source

Trace sink

Connection

Goal: trace changes made to a variable

• i.e., notify user whenever

• +, ++, =, etc.

173LLNL-PRES-641412

A simple-low level example: the trace source

class MyObject : public Object

{

public:

static TypeId GetTypeId (void)

{

static TypeId tid = TypeId ("MyObject")

.SetParent (Object::GetTypeId ())

.AddConstructor<MyObject> ()

.AddTraceSource ("MyInteger",

"An integer value to trace.",

MakeTraceSourceAccessor (&MyObject::m_myInt));

return tid;

}

MyObject () {}

TracedValue<int32_t> m_myInt;

};

MyObject is derived from Object, inherits public members

always need GetTypeId method

for an object

• provides run-time info on type

• allows objects to located via

path (more on this later)

• provides objects with

attributes

• provides objects with trace

sources

6/13/2016

58

174LLNL-PRES-641412

A simple-low level example: the trace source

class MyObject : public Object

{

public:

static TypeId GetTypeId (void)

{

static TypeId tid = TypeId ("MyObject")

.SetParent (Object::GetTypeId ())

.AddConstructor<MyObject> ()

.AddTraceSource ("MyInteger",

"An integer value to trace.",

MakeTraceSourceAccessor (&MyObject::m_myInt));

return tid;

}

MyObject () {}

TracedValue<int32_t> m_myInt;

};

TypeId class records meta-

information about MyObject

Provides unique identifier

Record TypeId of base class

Default constructor is accessible

Provides hook to connect to

trace source:

• Name of source

• Help string

• Accessor = pointer to connect

Provides infrastructure to

• Overload operators

• Drive callback process

175LLNL-PRES-641412

A simple low-level example: the trace sink

void IntTrace (int32_t oldValue, int32_t newValue)

{

std::cout << "Traced " << oldValue << " to " << newValue << std::endl;

}

A simple void function

• Takes in the old and new values of the traced variable

• Will be supplied by the trace source

• Prints them to the screen

176LLNL-PRES-641412

A low-level example: the main function

int main (int argc, char *argv[])

{

Ptr<MyObject> myObject = CreateObject<MyObject> ();

myObject->TraceConnectWithoutContext ("MyInteger", MakeCallback (&IntTrace));

myObject->m_myInt = 1234;

}

NS3 smart pointers provide garbage collection via reference counting

• Track number of pointers to an object

• Helps avoid memory leaks when you forget to delete an object

Wrapper for C++ “new”

Connecting source to sink

• “MyInteger” = name of source

• Callback made from our sink function

• We’ll talk about “Context” next…

If all goes as planned:

should trigger callback

6/13/2016

59

177LLNL-PRES-641412

A low-level example: running fourth.cc

cp examples/tutorial/fourth.cc scratch/myfourth.cc

./waf --run scratch/myfourth

Traced 0 to 1234

Seems almost anticlimactic, but we’ve illustrated the main steps in tracing

• Define trace source

• Define trace sink

• Connect trace source to trace sink

Assignment in: myObject->m_myInt = 1234;

triggers callback

178LLNL-PRES-641412

Using Config to connect to trace sources

 TraceConnectWithoutContext is not typical way to connect source to sink

 Normally done via the Config subsystem in ns3, by using a config path

• A string that looks like a file path

• Represents chain of objects leading to the desired event (or attribute)

 We encountered this in third.cc

”/NodeList/7/$ns3::MobilityModel/CourseChange"

Provides a path to the “CourseChange” attribute for node index 7

Let’s dissect this config path

179LLNL-PRES-641412

Dissecting the Config path in third.cc

 “NodeList” = predefined namespace in Config, lists all the nodes in the sim

 "NodeList/7" = node 7 (i.e., the eigth node)

 "$" = what follows designates an aggregated object

”/NodeList/7/$ns3::MobilityModel/CourseChange"

Let’s take a short detour to discuss aggregated objects in NS3

6/13/2016

60

180LLNL-PRES-641412

Object aggregation in NS3

 Makes it possible for objects to access each other, and for users to easily

access objects in an aggregation

 Avoids need to modify a base class to provide pointers to all possible

connected objects

• Class definitions would bloat uncontrollably

• Solution: separate functionality belongs to separate classes

node mobility node mobility

Node->AggregateObject(mobility);

Retrieving an aggregated object:

Ptr<MobilityModel> mob = node->GetObject<MobilityModel> ();

181LLNL-PRES-641412

Dissecting the Config path in third.cc

 “NodeList” = predefined namespace in Config, lists all the nodes in the sim

 "NodeList/7" = node 7 (i.e., the eigth node)

 "$" = what follows designates an aggregated object

 "/NodeList/7/$ns3::MobilityModel" = get the mobility model object

aggregated to node 7 in the sim

 "CourseChange" = attribute of MobilityModel we are interested in

 Config will follow the chain of pointers to the attribute you specified

”/NodeList/7/$ns3::MobilityModel/CourseChange"

• Ties the trace source to the trace sink callback function

• Passes the context (= config path) to the callback function

Config::Connect(”/NodeList/7/$ns3::MobilityModel/CourseChange”,MakeCallback(&CourseChange))

182LLNL-PRES-641412

How to Find and Connect Trace Sources, and Discover Callback

Signatures

 What trace sources are available (besides CourseChange)?

 How do I figure out the config path I need to connect to this source?

 What are the return type and arguments of my callback function?

void CourseChange(std::string context,Ptr<const MobilityModel> model)

Void IntTrace (int32_t oldValue, int32_t newValue)

Doxygen and a little detective work will go a long way here

6/13/2016

61

183LLNL-PRES-641412

What trace sources are available?

 Doxygen has the answer!

• Trace sources:

http://www.nsnam.org/docs/release/3.16/doxygen/group___trace_sourc

e_list.html

• Attributes:

http://www.nsnam.org/docs/release/3.16/doxygen/group___attribute_list

.html

• Global values:

http://www.nsnam.org/docs/release/3.16/doxygen/group___global_value

_list.html

184LLNL-PRES-641412

What trace sources are available?

185LLNL-PRES-641412

What string do I use to connect?

 method 1: look for config path in someone else’s code

• find -name "*.cc" | xargs grep CourseChange | grep Connect

• Config path = "/NodeList/*/$ns3::MobilityModel/CourseChange”

 you can use regular expressions in the path, so "*" ⇒ any node

 "/NodeList/[3-5]∣8∣[0-1]" would match node indices 0,1,3,4,5,8

⋮
./src/mobility/examples/main-random-walk.cc: Config::Connect

("/NodeList/*/$ns3::MobilityModel/CourseChange",

⋮

http://www.nsnam.org/docs/release/3.16/doxygen/group___trace_source_list.html
http://www.nsnam.org/docs/release/3.16/doxygen/group___attribute_list.html
http://www.nsnam.org/docs/release/3.16/doxygen/group___global_value_list.html

6/13/2016

62

186LLNL-PRES-641412

What string do I use to connect?

 method 2: Doxygen

RandomWalk2dMobilityModel

187LLNL-PRES-641412

What string do I use to connect?

 method 2: Doxygen

We’re almost there! We found:

"NodeList/7/$ns3::MobilityModel/CourseChange"

Remember: before, we used:

But what’s this bit?

Scroll further down

188LLNL-PRES-641412

What string do I use to connect?

 method 2: Doxygen

This tells you to access the

“CourseChange” attribute

from the parent class, so:

"NodeList/7/$ns3::MobilityModel/CourseChange"

6/13/2016

63

189LLNL-PRES-641412

What are the return value and arguments for the callback

function?

 The easy way: copy someone else’s answer

• find -name "*.cc" | xargs grep CourseChange | grep Connect

• Inside “./src/mobility/examples/main-random-walk.cc”:

• And we then find the header of the “CourseChange” function:

./src/mobility/examples/main-random-walk.cc: Config::Connect

("/NodeList/*/$ns3::MobilityModel/CourseChange”,

Config::Connect ("/NodeList/*/$ns3::MobilityModel/CourseChange",

MakeCallback (&CourseChange));

static void CourseChange (std::string foo, Ptr<const MobilityModel> mobility)

But what if you can’t find what you need in someone else’s code?

190LLNL-PRES-641412

What return value and arguments for the callback function?

 The somewhat easy way

• The return value is always “void”

• To get the list of formal arguments, look in the ".h" file for the model

 Find the "TracedCallback" declaration

 For ex,in "src/mobility/model/mobility-model.h”

 So for callback using Config::ConnectWithoutContext

 And for callback using Config::Connect

TracedCallback<Ptr<const MobilityModel> > m_courseChangeTrace;

This is the argument we need!

void CourseChange(Ptr<const MobilityModel> model)

void CourseChange(std::string path,Ptr<const MobilityModel> model)

Context (= config path) gets passed here

191LLNL-PRES-641412

What about TracedValue?

 Remember we used the callback function

 How did we guess the right formal arguments to use?

 Find "TracedCallback" declaration in "src/core/model/traced-value.h”

 In fourth.cc, inside the MyObject class, we declared

⇒ T = int32_t

⇒ Two arguments in the callback, both of type T (i.e., int32_t)

void IntTrace(int32_t oldValue, int32_t newValue)

template <typename T> class TracedValue

{

public:

...

private:

T m_v;

TracedCallback<T,T> m_cb;

};

Template class ⇒ you

get to choose its type

TracedValue<int32_t> m_myInt;

6/13/2016

64

192LLNL-PRES-641412

A real example

From W. Richard Stevens, “TCP/IP Illustrated, Vol. I: The Protocols”, Addison-Wesley (1994)

Goal: simulate a TCP congestion window and look at the effect of dropped packets

Congestion window

193LLNL-PRES-641412

Congestion windows 101 (from Wikipedia)

 Congestion collapse occurs at choke points in the network

• Wherever total incoming traffic to a node > outgoing bandwidth

• e.g., connection points between LAN and WAN

 TCP uses network congestion avoidance algorithm

 Congestion window is part of TCP strategy to avoid congestion collapse

• Limits total number of unacknowledged packets that may be in transit

• The size of the window is adjusted dynamically by the sender

 Based on how much congestion between sender and receiver

 If all segments are received and the acks reach the sender on time

 Add a constant to the window (typically 1 MSS = Max Segment Size)

 Otherwise

 Scale back by a set factor (typically 1/2)

Explains “sawtooth” shape of congestion window over time

194LLNL-PRES-641412

Are there trace sources available?

 From Doxygen’s "The list of all trace sources"

Look for “congestion”:

Click on “ns3::TcpNewReno”

to access class info

We have our trace source:

CongestionWindow

6/13/2016

65

195LLNL-PRES-641412

Are there trace sources available?

 From Doxygen’s "The list of all trace sources"

• Click on link to header

file “tcp-newreno.h”

• Look for keyword

“congestion”

196LLNL-PRES-641412

Are there trace sources available?

 From Doxygen’s "The list of all trace sources"

TracedValue<uint32_t> m_cWnd; //< Congestion window

this looks a lot like our

fourth.cc example

we'll need a callback

function of the form

void CwndTrace(uint32_t oldValue,uint32_t newValue)

197LLNL-PRES-641412

How do we get started writing our script?

 The time-honored way: steal from someone else’s code

• find . -name “*.cc” | xargs grep CongestionWindow

• Look, e.g., in “./src/test/ns3tcp/ns3tcp-cwnd-test-suite.cc”

• The connection between trace and source is done by

• We can also copy code from the function

ns3TcpSocket->TraceConnectWithoutContext ("CongestionWindow",

MakeCallback (&Ns3TcpCwndTestCase1::CwndChange, this));

void CwndChange (uint32_t oldCwnd, uint32_t newCwnd)

This is the callback function

void Ns3TcpCwndTestCase1::DoRun (void)

This is how fifth.cc was put together

6/13/2016

66

198LLNL-PRES-641412

Avoiding a common mistake in NS3

 NS3 scripts execute in three separate stages

• Configuration time

• Simulation time (i.e., Simulator::Run)

• Teardown time

 TCP uses sockets to connect nodes

• Sockets are created dynamically during simulation time

 Want to hook the CongestionWindow on the socket of the sender

• Connection to trace sources is established during configuration time

• Can’t put the cart before the horse!

 Solution:

1. Create socket at configuration time

2. Hook trace source then

3. Pass this socket object to system during simulation time

Next: fifth.cc walkthrough

199LLNL-PRES-641412

Overview of fifth.cc

 Dumbbell topology, point-to-point network, like first.cc

 We will create our own application and socket

• So we can access socket at configuration time

• No helper, so we’ll have to do the work manually

• Connect to CongestionWindow trace source in sender socket

 Introduce errors into the channel between nodes

• Dropped packets ⇒ interesting behavior in congestion window

0 1

Sender Receiver

200LLNL-PRES-641412

Creating our own application: the MyApp class

class MyApp : public Application

{

public:

MyApp ();

virtual ~MyApp();

void Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate);

private:

virtual void StartApplication (void);

virtual void StopApplication (void);

void ScheduleTx (void);

void SendPacket (void);

Ptr<Socket> m_socket;

Address m_peer;

uint32_t m_packetSize;

uint32_t m_nPackets;

DataRate m_dataRate;

EventId m_sendEvent;

bool m_running;

uint32_t m_packetsSent;

};

But this is the important bit: we will be able to

• Create socket

• Hook its CongestionWindow trace source

• Pass the socket to the application

All this at configuration time!

Initializes member variables

6/13/2016

67

201LLNL-PRES-641412

Creating our own application: the MyApp class

class MyApp : public Application

{

public:

MyApp ();

virtual ~MyApp();

void Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate);

private:

virtual void StartApplication (void);

virtual void StopApplication (void);

void ScheduleTx (void);

void SendPacket (void);

Ptr<Socket> m_socket;

Address m_peer;

uint32_t m_packetSize;

uint32_t m_nPackets;

DataRate m_dataRate;

EventId m_sendEvent;

bool m_running;

uint32_t m_packetsSent;

};

We also need to override these with our

own implementations that will be called

by the simulator to start and stop

202LLNL-PRES-641412

Creating our own application: the MyApp class

class MyApp : public Application

{

public:

MyApp ();

virtual ~MyApp();

void Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate);

private:

virtual void StartApplication (void);

virtual void StopApplication (void);

void ScheduleTx (void);

void SendPacket (void);

Ptr<Socket> m_socket;

Address m_peer;

uint32_t m_packetSize;

uint32_t m_nPackets;

DataRate m_dataRate;

EventId m_sendEvent;

bool m_running;

uint32_t m_packetsSent;

};

12

3

1. StartApplication calls SendPacket

2. SendPacket calls ScheduleTx

3. ScheduleTx set up next SendPacket call

…

1. Until StopApplication

203LLNL-PRES-641412

The trace sinks

 We want to trace 2 types of events

• Updates to the congestion window:

• Dropped packets

static void CwndChange (uint32_t oldCwnd, uint32_t newCwnd)

{

NS_LOG_UNCOND (Simulator::Now ().GetSeconds () << "\t" << newCwnd);

}

static void RxDrop (Ptr<const Packet> p)

{

NS_LOG_UNCOND ("RxDrop at " << Simulator::Now ().GetSeconds ());

}

6/13/2016

68

204LLNL-PRES-641412

Introducing errors in the channel

Determines which packets are errored corresponding to underlying

• Distribution = random variable

• Rate ↔ mean duration between errors

• Unit = per-bit, per-byte, or per-packet

Ptr<RateErrorModel> em = CreateObjectWithAttributes<RateErrorModel> (

"RanVar", RandomVariableValue (UniformVariable (0., 1.)),

"ErrorRate", DoubleValue (0.00001));

devices.Get (1)->SetAttribute ("ReceiveErrorModel", PointerValue (em));

Will cause randomly dropped packets in the receiver device

205LLNL-PRES-641412

Setting the application on the receiver node

uint16_t sinkPort = 8080;

Address sinkAddress (InetSocketAddress (interfaces.GetAddress (1), sinkPort));

PacketSinkHelper packetSinkHelper ("ns3::TcpSocketFactory",

InetSocketAddress (Ipv4Address::GetAny (), sinkPort));

ApplicationContainer sinkApps = packetSinkHelper.Install (nodes.Get (1));

sinkApps.Start (Seconds (0.));

sinkApps.Stop (Seconds (20.));

• PacketSink receives and consumes traffic generated to an IP address and port

• PacketSinkHelper creates sockets using an “object factory”

• Object factories are used to mass produce similarly configured objects

• Factory method doesn’t require you to know the type of the objects created

206LLNL-PRES-641412

Connecting the sender’s socket, and connecting the trace source

Ptr<Socket> ns3TcpSocket = Socket::CreateSocket (nodes.Get (0), TcpSocketFactory::GetTypeId ());

ns3TcpSocket->TraceConnectWithoutContext ("CongestionWindow", MakeCallback (&CwndChange));

Another way of creating a socket using a socket factory

This should look familiar by now

Because we created our own app and socket at configuration time

we can hook into its CongestionWindow trace source

6/13/2016

69

207LLNL-PRES-641412

Setting up the application on the sender node

Ptr<MyApp> app = CreateObject<MyApp> ();

app->Setup (ns3TcpSocket, sinkAddress, 1040, 1000, DataRate ("1Mbps"));

nodes.Get (0)->AddApplication (app);

app->SetStartTime (Seconds (1.));

app->SetStopTime (Seconds (20.));

Socket object

Address to connect to

Data per send event

Number of send events

Send data rate

208LLNL-PRES-641412

Running fifth.cc: text output

./waf –run scratch/myfifth > cwnd.dat 2>&1

Waf: Entering directory `/mypath/ns-3-dev/build'

Waf: Leaving directory `/mypath/ns-3-dev/build'

'build' finished successfully (1m58.520s)

1 536

1.00919 1072

1.01511 1608

1.02163 2144

1.02995 2680

1.03827 3216

1.04659 3752

1.05491 4288

1.06323 4824

1.07155 5360

1.07987 5896

1.08819 6432

1.09651 6968

1.10483 7504

1.11315 8040

1.12147 8576

1.12979 9112

RxDrop at 1.13692

1.13811 9648

1.15475 2900

1.15563 3436

⋮

Eliminate these lines by hand

209LLNL-PRES-641412

Running fifth.cc: plotting the results

Original by W. Richard Stevens Our result, using gnuplot

6/13/2016

70

210LLNL-PRES-641412

That’s nice, but…

 Remember after

 We had to edit the file by hand to remove “junk” lines…

 But we said tracing gives you control over output format

 Is there a cleaner way to produce the output we need?

 Yes! Use trace helpers

./waf –run scratch/myfifth > cwnd.dat 2>&1

Let’s tweak fifth.cc to produce cleaner output ⇒ sixth.cc

211LLNL-PRES-641412

A sixth.cc walkthrough: CwndChange callback

static void CwndChange (Ptr<OutputStreamWrapper> stream, uint32_t oldCwnd, uint32_t newCwnd)

{

NS_LOG_UNCOND (Simulator::Now ().GetSeconds () << "\t" << newCwnd);

*stream->GetStream () << Simulator::Now ().GetSeconds () << "\t" << oldCwnd << "\t" << newCwnd << std::endl;

}

Added to fifth.cc

Modify the callback function:

Add lines in the main to create stream:

Causes the stream argument to be added to the function callback

Formatted output to the stream

AsciiTraceHelper asciiTraceHelper;

Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("sixth.cwnd");

ns3TcpSocket->TraceConnectWithoutContext ("CongestionWindow", MakeBoundCallback (&CwndChange, stream));

Filename attached to stream

212LLNL-PRES-641412

A sixth.cc walkthrough: RxDrop callback

Added to fifth.cc

Modify the callback function:

Add lines in the main to create stream:

Causes the file argument to be added to the function callback

Formatted output to the pcap file

Filename attached to file

static void RxDrop (Ptr<PcapFileWrapper> file, Ptr<const Packet> p)

{

NS_LOG_UNCOND ("RxDrop at " << Simulator::Now ().GetSeconds ());

file->Write (Simulator::Now (), p);

}

PcapHelper pcapHelper;

Ptr<PcapFileWrapper> file = pcapHelper.CreateFile ("sixth.pcap", std::ios::out, PcapHelper::DLT_PPP);

devices.Get (1)->TraceConnectWithoutContext ("PhyRxDrop", MakeBoundCallback (&RxDrop, file));

6/13/2016

71

213LLNL-PRES-641412

Running sixth.cc

./waf –run scratch/mysixth

Waf: Entering directory ̀ …

Waf: Leaving directory ̀ …

'build' finished successfully (6.002s)
1 536

1.00919 1072

1.01511 1608

1.02163 2144

1.02995 2680

1.03827 3216
1.04659 3752

1.05491 4288

1.06323 4824

1.07155 5360

1.07987 5896

1.08819 6432
1.09651 6968

1.10483 7504

1.11315 8040

1.12147 8576

1.12979 9112

RxDrop at 1.13692
1.13811 9648

1.15475 2900

1.15563 3436

⋮

Console
sixth.cwnd

1 0 536

1.00919 536 1072

1.01511 1072 1608
1.02163 1608 2144

1.02995 2144 2680

1.03827 2680 3216

1.04659 3216 3752

1.05491 3752 4288

1.06323 4288 4824
1.07155 4824 5360

1.07987 5360 5896

1.08819 5896 6432

1.09651 6432 6968

1.10483 6968 7504

1.11315 7504 8040
1.12147 8040 8576

1.12979 8576 9112

1.13811 9112 9648

⋮

reading from file sixth.pcap, link-type PPP (PPP)

1.136918 IP 10.1.1.1.49153 > 10.1.1.2.8080: Flags [.], seq 17177:17681, ack 1, win 65535, length 504

1.403158 IP 10.1.1.1.49153 > 10.1.1.2.8080: Flags [.], seq 33280:33784, ack 1, win 65535, length 504
1.440505 IP 10.1.1.1.49153 > 10.1.1.2.8080: Flags [.], seq 37440:37944, ack 1, win 65535, length 504

2.525484 IP 10.1.1.1.49153 > 10.1.1.2.8080: Flags [.], seq 173144:173680, ack 1, win 65535, length 536

2.534678 IP 10.1.1.1.49153 > 10.1.1.2.8080: Flags [.], seq 174720:175224, ack 1, win 65535, length 504

2.977574 IP 10.1.1.1.49153 > 10.1.1.2.8080: Flags [.], seq 180552:181088, ack 1, win 65535, length 536

5.796117 IP 10.1.1.1.49153 > 10.1.1.2.8080: Flags [.], seq 582400:582904, ack 1, win 65535, length 504

6.445077 IP 10.1.1.1.49153 > 10.1.1.2.8080: Flags [.], seq 663520:664024, ack 1, win 65535, length 504
7.359404 IP 10.1.1.1.49153 > 10.1.1.2.8080: Flags [.], seq 777384:777920, ack 1, win 65535, length 536

7.389304 IP 10.1.1.1.49153 > 10.1.1.2.8080: Flags [.], seq 781040:781544, ack 1, win 65535, length 504

8.141483 IP 10.1.1.1.49153 > 10.1.1.2.8080: Flags [.], seq 875144:875680, ack 1, win 65535, length 536

sixth.pcap

214LLNL-PRES-641412

Just for fun: what happens to uncorrupted packets?

PhyRxEnd: Trace source indicating a packet has been completely received by the device

0
2

4
6

8
10

Sim
ulation Tim

e (s)

0

5000

10000

15000

Congestion window

Received
Dropped

Cwnd

215LLNL-PRES-641412

Using trace helpers

 We’ve encountered trace helpers before

 What other trace helpers are available?

 How do we use them?

 What do they have in common?

pointToPoint.EnablePcapAll ("second");

pointToPoint.EnablePcap ("second", p2pNodes.Get (0)->GetId (), 0);

csma.EnablePcap ("third", csmaDevices.Get (0), true);

pointToPoint.EnableAsciiAll (ascii.CreateFileStream ("myfirst.tr"));

6/13/2016

72

216LLNL-PRES-641412

Two categories of trace helpers

 Device helpers

• Trace is enabled for node/device pair(s)

• Both pcap and ascii traces provided

• Conventional filenames: <prefix>-<node id>-<device id>

 Protocol helpers

• Trace is enabled for protocol/interface pair(s)

• Both pcap and ascii traces provided

• Conventional filenames: <prefix>-n<node id>-i<interface id>

 “n” and “i” to avoid filename collisions with node/device traces

217LLNL-PRES-641412

NS3 uses “mixin” classes to ensure tracing works the same way

across all devices or interfaces

 Mixin classes in NS3 (see Doxygen for more info):

 These mixin classes each provide a single virtual method to enable trace

• All device or protocols must implement this method

• All other methods of the mixin class call this one method

• Provides consistent functionality across different devices & interfaces

PCAP ASCII

Device Helper PcapHelperForDevice AsciiTraceHelperForDevice

Protocol Helper PcapHelperForIpv4 AsciiTraceHelperForIpv4

218LLNL-PRES-641412

The PcapHelperForDevice mixin class

 Every device must implement

 All other methods of PcapHelperForDevice call this one

⇒ Consistency across devices

virtual void EnablePcapInternal (std::string prefix,

Ptr<NetDevice> nd,

bool promiscuous,

bool explicitFilename) = 0;

Pcap filename prefix

Device to trace

Type of trace

Override prefix

6/13/2016

73

219LLNL-PRES-641412

Pcap Tracing Device Helper: EnablePcap methods

 EnablePcap for various node/device pair(s)

• Provide Ptr<NetDevice>

• Provide device name using the NS3 object name service

• Provide a NetDeviceContainer

• Provide a NodeContainer

• Provide integer node and device ids

 Enable pcap tracing for all devices in the simulation

Names::Add ("server" ...);

Names::Add ("server/eth0" ...);

...

helper.EnablePcap ("prefix", "server/ath0");

helper.EnablePcapAll ("prefix");

220LLNL-PRES-641412

Pcap Tracing Device Helper: filename selection

 By convention: <prefix>-<node id>-<device id>.pcap

 Can use the NS3 object name service to replace ids with meaningful names

e.g.,

 You can override the naming convention, e.g.

Names::Add(“server”,serverNode);

Names::Add(“server/eth0”,serverDevice);

prefix-21-1.pcap

prefix-server-eth0.pcap

Set this to true

• prefix becomes filename

void EnablePcap(std::string prefix, Ptr<NetDevice> nd, bool promiscuous, bool explicitFilename);

221LLNL-PRES-641412

Ascii Tracing Device Helpers

 The mixin class is AsciiTraceHelperForDevice

• All device implement virtual EnableAsciiInternal method

• All other methods of AsciiTraceHelperForDevice will call this one

 Can provide EnableAscii with Ptr<NetDevice>, string from name service,

NetDeviceContainer, NodeContainer, integer node/device ids

 Or helper.EnableAsciiAll(“prefix”);

 Can also dump ascii traces to a single common file, e.g.,

 So there are twice as many trace methods as for pcap

Ptr<NetDevice> nd1;

Ptr<NetDevice> nd2;

...

Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("trace-file-name.tr");

...

helper.EnableAscii (stream, nd1);

helper.EnableAscii (stream, nd2);

6/13/2016

74

222LLNL-PRES-641412

Ascii Tracing Device Helpers: filename selection

 By convention: <prefix>-<node id>-<device id>.tr

 Using NS3 object name service, can assign names to the id, then e.g.

• "prefix-21-1.tr” → "prefix-server-eth0.tr”

 Many EnableAscii methods offer a explicitFilename option

• set to true ⇒ override naming convention, use your own file name

223LLNL-PRES-641412

Pcap Tracing Protocol Helpers

 The mixin class is PcapHelperForIpv4

• All device implement virtual EnablePcapIpv4Internal method

• All other methods of PcapHelperForIpv4 will call this one

 Can provide EnablePcapIpv4 with Ptr<Ipv4>, string from name service,

Ipv4InterfaceContainer, NodeContainer, integer node/device ids

 Or helper.EnablePcapIpv4All(“prefix”);

 Filename selection

 Convention is <prefix>-n<node id>-i<interface id>.pcap

 Can also use the NS3 object name service clarity

 explicitFilename parameter lets you impose your own filenames

224LLNL-PRES-641412

Ascii Tracing Protocol Helpers

 The mixin class is AsciiTraceHelperForIpv4

• All device implement virtual EnableAsciiIpv4Internal method

• All other methods of AsciiTraceHelperForIpv4 will call this one

 Can provide EnableAsciiIpv4 with Ptr<Ipv4>, string from name service,

Ipv4InterfaceContainer, NodeContainer, integer node/device ids

 Or helper.EnableAsciiIpv4All(“prefix”);

 Can also dump ascii traces to a single common file

 So there are twice as many trace methods as for pcap

 Filename selection

 Convention is <prefix>-n<node id>-i<interface id>.pcap

 Can also use the NS3 object name service clarity

 explicitFilename parameter lets you impose your own filenames

6/13/2016

75

225LLNL-PRES-641412

Conclusion

 NS3 is very powerful/comprehensive

 Lots of tools for you to use

• Helpers

• Containers

• Logging

• Tracing

• Models

 Doxygen is your friend!

Practice! Practice! Practice!

