ns-3 Training

ns-3 Annual Meeting
June 2016

Wﬂ%:ﬁ ns-3 Training, June 2016

Software overview

* ns-3 is written in C++, with bindings available
for Python

— simulation programs are C++ executables or
Python programs

—~350,000 lines of C++ (cloc estimate)
— almost exclusively C++98, beginning to use C++11
* ns-3is a GNU GPLv2-licensed project
* ns-3 is mainly supported for Linux, OS X, and
FreeBSD
— Windows Visual Studio port available

* ns-3 is not backwards-compatible with ns-2

Wﬂ%:ﬁ ns-3 Training, June 2016

Discrete-event simulation basics

» Simulation time moves in discrete jumps from event to
event

« C++ functions schedule events to occur at specific
simulation times

» A simulation scheduler orders the event execution
» Simulation::Run() executes a single-threaded event list
» Simulation stops at specific time or when events end

Execute a function
W (may generate additional events)
PR

~

\/ Advance the virtual time
tothe next event (function)

LinNs-3 ns-3 Training, June 2016

The basic ns-3 architecture

ication|” Application
/ Sockets-like
= API

{ : {
Profocol | ! Protocal |
| sthek i D Packet(s) | stack §

| —

ns-3 Training, June 2016

Software orientation

Key differences from other network
simulators:

1) Command-line, Unix orientation

—vs. Integrated Development Environment
(IDE)

2) Simulations and models written directly in
C++ and Python

— vs. a domain-specific simulation language

Wﬂ%:ﬁ ns-3 Training, June 2016

ns-3 does not have a graphical IDE

Figure source: https://www.comsol.com/comsol-multiphysics
5-3_ ns-3 Training, June 2016

https://www.comsol.com/comsol-multiphysics

ns-3 not written in a high-level language

Submedule vecsors, gate vectors snd multsple connzctions are lhistrated m the following sxample
staple b
P

outport(];

endsizple

endsodule

The sesult of the ab

e s depicted in Fig &

~JStation)

hub 5

Example of OMNeT++ Network Description (NED) language
Figure excerpted from http://www.ewh.ieee.org/soc/es/Nov1999/18/ned.htm

s Q% § ns-3 Training, June 2016

Software organization

» Two levels of ns-3 software and libraries

1) Several supporting libraries, not system-installed, can be in parallel to ns-3

{Netanim J [pybindgen]

2) ns-3 modules exist { moduIeJ [modme] [module]

within the ns-3 directory ° Y
module module module

Click routingﬂ [X X)

s Q% § ns-3 Training, June 2016

utilities
Current models
devices protocols visualizer
_ _

E"
Node class

NetDevice A
Address types
Sl (Ipv4, MAC, etc.

Queues
Socket ABC

Ipv4 ABCs Packets
Packet socket) Packet T
te PACKELSOSKES i atfic-control] packet Headers olsr
Peap/ascii file writing
(e [J

] \
Smart pointers Callbacks

Dynamic types Tracing md

Attributes Loggin "
Raﬂgorg Variables Events nix-vector- topology-
Scheduler routing read
Time arithmeti
PIop
[Ir—wpan } [wifi J [core] l J | openflow

2iNs-3 ns-3 Training, June 2016 0

internet-apps

energy

http://www.ewh.ieee.org/soc/es/Nov1999/18/ned.htm

Module organization

* models/

» examples/
* tests/

* bindings/
» doc/

+ wscript

w,ﬂ%:?; ns-3 Training, June 2016

ns-3 programs

* ns-3 programs are C++ executables that
link the needed shared libraries

— or Python programs that import the needed
modules

* The ns-3 build tool, called ‘'waf', can be
used to run programs

« waf will place headers, object files,
libraries, and executables in a 'build’
directory

qmﬂﬁ-‘% ns-3 Training, June 2016

Python bindings

* ns-3 uses a program called PyBindGen to
generate Python bindings for all libraries

Intermedigte C++ Python
Et:;der I:> Python I:> bindings |:> module
program code
(py)geexml PyBindGen C++ compiler

LinNs-3 ns-3 Training, June 2016

Integrating other tools and libraries

q,ﬂ,ﬂg:?; ns-3 Training, June 2016

Other libraries

* more sophisticated scenarios and models
typically leverage other libraries

* ns-3 main distribution uses optional libraries

(libxml2, gsl, mysql) but care is taken to avoid

strict build dependencies

the 'bake' tool (described later) helps to manage

library dependencies

users are free to write their own Makefiles or
wscripts to do something special

q.mﬂﬁ-‘?; ns-3 Training, June 2016

Gnuplot

e src/tools/gnuplot.{cc,h}
» C++ wrapper around gnuplot
* classes:
—Gnuplot
—GnuplotDataset

* Gnuplot2dDataset, Gnuplot2dFunction
* Gnuplot3dDataset, Gnuplot3dFunction

LinNs-3 ns-3 Training, June 2016

Enabling gnuplot for your code

¢ examples/wireless/wifi-clear-channel-cmu.cc

CommandLine cmd;

cmd.Parse (argc, argv);

Gnuplot gnuplot = Gnuplot ("clear-channel.eps™); -----
for (uint32_t 1 = 0; 1 < modes.size (); 1++)

std::cout << modes[1] << std::endl;
Gruplot2dDataset dataset! (modes(L])s --------------

- produce a plot file that
will generate an EPS figure

- one dataset per mode

dataset.Add (rss, pktsRecvd);

gnuplot.AddDataset (dataset); ~-__

Uint32_t pktsRecvd = experiment.Run (Wifl, wifiPhy, wifiMac, wifichannel); I

Add data to dataset

S-3 ns-3 Training, June 2016

Matplotlib

Add dataset to plot

* src/core/examples/sample-rng-plot.py

Demonstrate use of ns-3 as a randon nuaber generatar integrated
plotting tools; adapted from Gustavo Carneiro’s ns-3 tutorial

import numpy as np
tmport matplotlib.pyplot as plt
import ns.core

nu, var = 188, 225
rag = ns.core.hornalvariable(18e.e, 225.0)
x = [rng.Getvalue() for t in range(18086)]

the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g’,
plt.title('ns-3 histogran')

plt.text(60, .025, r'S\mu=108,\ \signa=155')

plt.axis([48, 168, 6, 0.03])

plt.grid(True)

plt.show()

5-3

ns-3 Training, June 2016

Click Modular Router

200+

alpha=0.75)

St pagesoirce | O revtis

Pt} e

The Click Modular Router Project

sghambar 24, 2011k Clisk 2.

for the Click modular Toutse. Click wes orgmslly dersloped at M

Gtemap | mmcest s

was November 23.24, 2009, Ghent, Belgium! A= excelont tms was kad Vidos of the presantations & now

With subsscquant devslapmant st ez Natwarks’ [CTR

5-3

ns-3 Training, June 2016

mininet emulator

GitHub et - Exprs rese Enpin B Bl -

mininet / mininet s prem
Link modeling using ns 3 Page skry | Cionn UL
Contents

ainNs-3 ns-3 Training, June 2016

Co-simulation frameworks have emerged

* PNNL's FNCS framework integrates ns-3 with
transmission and distribution simulators

Image source: PNNLgov YouTube video:
ns-3 Introducing FNGS; Framewark. ey, Network Co-Simulation

FAQs

» Does ns-3 have a Windows version?
— Yes, for Visual Studio 2012
— http://www.nsnam.org/wiki/Ns-3 on_Visual Studio 2012
» Does ns-3 support Eclipse or other IDEs?
— Instructions have been contributed by users
— http://www.nsnam.org/wikiHOWTO_configure_Eclipse_with_ns-3
* Is ns-3 provided in Linux or OS X package
systems (e.g. Debian packages)?
— Not officially, but some package maintainers exist
» Does ns-3 support NRL protolib applications?
— Not yet
S-3

TSR TR ns-3 Training, June 2016

http://www.nsnam.org/wiki/Ns-3_on_Visual_Studio_2012
http://www.nsnam.org/wiki/HOWTO_configure_Eclipse_with_ns-3

Summarizing

* ns-3 models are written in C++ and

compiled into libraries
—Python bindings are optionally created

* ns-3 programs are C++ executables or
Python programs that call the ns-3 public
API and can call other libraries

* ns-3 is oriented towards the command-line

* ns-3 uses no domain specific language

* ns-3 is not compatible with ns-2

L

e ns-3 Training, June 2016

Finding documentation and code

ns-3 Training, June 2016

Resources

Web site:
http://www.nsnam.org
Mailing lists:
https://groups.google.com/forum/#!forum/ns-3-users
http://mailman.isi.edu/mailman/listinfo/ns-developers
Wiki:
http://www.nsnam.org/wiki/
Tutorial:
http://www.nsnam.org/docs/tutorial/tutorial.html
IRC: #ns-3 at freenode.net

LinNs-3 ns-3 Training, June 2016

Suggested steps

» Work through the ns-3 tutorial
» Browse the source code and other project
documentation
—manual, model library, Doxygen, wiki
—ns-3 Consortium tutorials (May 2014)
* https://www.nsnam.org/consortium/activities/trainin
al
» Ask on ns-3-users mailing list if you still
have questions
—We try to answer most questions

L. Q§:§ ns-3 Training, June 2016

APls

* Most of the ns-3 API is documented with
Doxygen

— https://www.nsnam.org/doxygen

rs-3 ns-3 Training, June 2016

Contributed code and
associated projects

3 mptep-ns3

LinNs-3 ns-3 Training, June 2016

https://www.nsnam.org/consortium/activities/training/
https://www.nsnam.org/doxygen

Reading existing code

Much insight can be gained from reading ns-3
examples and tests, and running them
yourselves

» Several core features of ns-3 are only
demonstrated in the core test suite

(src/corel/test)

» Stepping through code with a debugger is
informative
— callbacks and templates make it more challenging

than usual
« 'find src -name "*.h" | xargs grep "string..." '
q,ﬂ,ﬂg:?; ns-3 Training, June 2016
Review

* ns-3 primarily aims to support the networking researcher
* ns-3is C++ under GPLv2, with Python bindings
» ns-3 is mainly designed for low-level coding, work at the
command line, and composition with other tools
— most users edit or extend the source code
» ns-3 tries to operate according to open source project
best current practices
— everyone is a volunteer
« search for what you need, ask questions when you get
stuck, and think about contributing back to the project

q.mﬂﬁ-‘?; ns-3 Training, June 2016

ns-3 Waf build system

ns-3 Annual Meeting
June 2016

q.mﬂﬁ-‘?; ns-3 Training, June 2016 32

Software introduction

* Download the latest release

— wget http://www.nsnam.org/releases/ns-allinone-
3.19.tar.bz2

— tar xjf ns-allinone-3.19.tar.bz2

+ Clone the latest development code

— hg clone http://code.nsnam.org/ns-3-allinone

Q. Whatis "hg clone"?
A. Mercurial (http://www.selenic.com) is our source
code control tool.

Wﬂ%:ﬁ ns-3 Training, June 2016

Software building

33

« Two levels of ns-3 build

1) bake (a Python-based build system to control an ordered build of
ns-3 and its libraries

)
Network
Simulation pybindgen click routing XX] ns-3
Cradle -

A
\
\

\
\
N

2) waf, a build system written in Python | module| | module module
[N N J

3) build.py (a custom Python build script to control an ordered build of
ns-3 and its libraries) <--- may eventually be deprecated
WINS-3

ns-3 Training, June 2016

ns-3 uses the 'waf' build system

34

» Waf is a Python-based framework for
configuring, compiling and installing
applications.

—Itis a replacement for other tools such as
Autotools, Scons, CMake or Ant

—http://code.google.com/p/waf/
* For those familiar with autotools:

* configure —_ ./waf configure
+ make —> . /waf build

S-3 ns-3 Training, June 2016

35

waf configuration

« Key waf configuration examples
./waf configure
—--enable-examples
--enable-tests
--disable-python
--enable-modules

» Whenever build scripts change, need to
reconfigure

Demo: ./waf --help

./waf configure --enable-examples --
enable-tests --enable-modules='core'

Look at: build/c4che/ cache.py

W!l,. = ns-3 Training, June 2016

wscript example

#4 -*- Mode: python; py-indent-offset: 4; indent-tabs-mode: nil; coding: utf-8; -+-
def build(bld):

', ['network', 'applications'l)

headers = bld.new_ta
headers.module = ‘csma®

"model. -net-device.h',
'model/csma-channel.h',
'helper/csma-helper.h',

1

if bld.env['ENABLE_EXAMPLES']:
bld.add_subdirs ('examples')

bld.ns3_python_binding

ns-3

R Pt ns-3 Training, June 2016

waf build

» Once project is configured, can build via
./waf build Of ./waf

« waf will build in parallel on multiple cores
» waf displays modules built at end of build

Demo: ./waf build

Look at: build/ libraries and executables

ns-3

TR AR TR ns-3 Training, June 2016

Running programs

- ./waf shell provides a special shell for
running programs
—Sets key environment variables

./waf --run sample-simulator

./waf --pyrun src/core/examples/sample-
simulator.py

q,ﬂ,ﬂg:?; ns-3 Training, June 2016

Build variations

39

» Configuring a build type is done at waf
configuration time

* debug build (default): all asserts and
debugging code enabled

./waf -d debug configure
* optimized

./waf -d optimized configure
» static libraries

./waf --enable-static configure

q.mﬂﬁ-‘?; ns-3 Training, June 2016

Controlling the modular build

40

* One way to disable modules:
— ./waf configure --enable-modules='a','b',6'c"'
* The .ns3rc file (found in utils/ directory) can be used to
control the modules built
« Precedence in controlling build
1) command line arguments
2) .ns3rc in ns-3 top level directory
3) .ns3rc in user's home directory

[Demo how .ns3rc works]

LinNs-3 ns-3 Training, June 2016

41

Building without wscript

« The scratch/ directory can be used to build
programs without wscripts

Demo how programs can be built without wscripts

L. Q%:YS, ns-3 Training, June 2016 42
ns-3 Training
Simulator core
ns-3 training, June 2016

43

Simulator core

+ Simulation time

* Events

 Simulator and Scheduler
Command line arguments
Random variables

Execute a function
M (mey generate additonal events)
PR

.

\/ Advance the virtual time
to the next event (function)

ns-3 training, June 2016 44

Simulator example

Jinclude <iostrears
fatncluge "ns3jstnutater bt

[etnclude “ns3/double b
frinclude "ns3/randon-varisble-strezn.h®

using namespace ns3;

tnt matn (int argc, char *argv(])

CormandLine cnd;
end.Parse (argc, argv);

Myrodel model;

Ptr<UniformRandonvariable> v = CreateObject<UnifornRandonvartables ();
v->Setattribute (“Kin", Doublevalue (10));
v->Setattribute (“Max", Doublevalue (20));

Sinulator::Schedule (Seconds (10.0), &ExampleFunction, &model);

Simulator::Schedule (Seconds (v->Getvalue ()), &RandomFunction);

EventId 1d

stnulator::schedule (seconds (36.6), &CancelledEvent);
stmulator

ancel (1d);

Stimulator::Run ();

Simulator::Destroy ();

s rl‘lr‘s.. i \:st ns-3 training, June 2016

Simulator example (in Python)

t Python version of sample-simulater.cc

mport ns.core

[def main(dumny_argv):

model = MyModel()

v = ns.core.UnifornRandonVariable()

v.SetAttribute("Min”, ns.core.Doublevalue (10))

v.SetAttribute("Max", ns.core.Doublevalue (20))
ns.core.Sinulator.Schedule(ns.core.Seconds(10.0), ExanpleFunction, model)

ns.core.Simulator.Schedule(ns.core.Seconds(v.Getvalue()), RandomFunction, model)

id = ns.core.Sinulator.Schedule(ns. core.Seconds(30.0), CancelledEvent)
ns. core.Sinulator. Cancel(td)

ns.core.sinulator .Run()
ns.core.sinulator.Destroy()
L __name__

“import sys
matn(sys.argv)

5-3

wl—uﬂn e ns-3 training, June 2016

matn':

Simulation program flow

Handle program inputs

<

Configure topology

L

Run simulation

<

Process outputs

ns-3

=Ryt ns-3 training, June 2016

Command-line arguments

* Add CommandLine to your program if you want
command-line argument parsing

[int main (int argc, char rargv(1)

CommandLine cmd;
cnd.Parse (argc, argv);

Passing --PrintHelp to programs will display command
line options, if CommandLine is enabled

./waf --run "sample-simulator --PrintHelp"

“Printhelp: Print this help message.

PrintGroups: Print the list of groups.

-PrintTypelds: Print all Typelds.

-PrintGroup=[group]: Print all Typelds of group.
PrintAttributes=[typeid]: Print all attributes of typeid.
-PrintGlobals: Print the list of globals.

- 48
q.mﬂﬁ \?; ns-3 training, June 2016

Time in ns-3

» Time is stored as a large integer in ns-3
— Minimize floating point discrepancies across platforms
» Special Time classes are provided to manipulate time
(such as standard operators)
« Default time resolution is nanoseconds, but can be set to
other resolutions
— Note: Changing resolution is not well used/tested

« Time objects can be set by floating-point values and can
export floating-point values
double timeDouble = t.GetSeconds();

— Best practice is to avoid floating point conversions where
possible

ns-3 49

R Pt ns-3 training, June 2016

Events in ns-3

» Events are just function calls that execute
at a simulated time
—i.e. callbacks

—this is another difference compared to other
simulators, which often use special "event
handlers" in each model

» Events have IDs to allow them to be
cancelled or to test their status

ns-3 50

e ns-3 training, June 2016

Simulator and Schedulers

» The Simulator class holds a scheduler,
and provides the API to schedule events,
start, stop, and cleanup memory

» Several scheduler data structures
(calendar, heap, list, map) are possible

» "RealTime" simulation implementation
aligns the simulation time to wall-clock
time

—two policies (hard and soft limit) available

s when the simulation and real time diverge

ns-3 training, June 2016

ns-: 51

from src/core/examples/sample-rng-plot.py

Random Variables

» Currently implemented distributions
— Uniform: values uniformly distributed in an interval
— Constant: value is always the same (not really random)
— Sequential: return a sequential list of predefined values
— Exponential: exponential distribution (poisson process)
— Normal (gaussian), Log-Normal, Pareto, Weibull, triangular

200+ . =@

ns-3 training, June 2016

Random variables and independent
replications

« Many simulation uses involve running a
number of independent replications of the
same scenario

* In ns-3, this is typically performed by
incrementing the simulation run number
—not by changing seeds

L =

ns-3 training, June 2016

ns-3 random number generator

» Uses the MRG32k3a generator from Pierre
L'Ecuyer
— http://www.iro.umontreal.ca/~lecuyer/myftp/papers/str
eams00.pdf
— Period of PRNG is 3.1x10"57
« Partitions a pseudo-random number generator
into uncorrelated streams and substreams
— Each RandomVariableStream gets its own stream
— This stream partitioned into substreams

L *

ns-3 training, June 2016

Key Terminology

* Seed: A set of values that generates an entirely
new PRNG sequence

« Stream: The PRNG sequence is divided into
non-overlapping intervals called streams

* Run Number (substream): Each stream is

further divided to substreams, indexed by a
variable called the run number.

q.mﬂﬁ-‘?; ns-3 training, June 2016 55

Streams and Substreams

191

12
3.1x10% 3, - _

Incrementing the

H Run Number will move
A .-'M - 7 all streams to a new
e wream | =
=201 / substream
- 1.8x10" 7 "\ Subgtream) =2
‘Substream j =2°
=23x101%
Stream
=3 Each ns-3

RandomVariableStream
object is assigned to a
stream (by default,
randomly)

Figure source: Pierre L'Ecuyer, Richard Simard, E. Jack Chen, and W. David Kelton.
An object-oriented random number package with many long streams and substreams. Operations Research, 2001.

ns-3 training, June 2016 56

Run number vs. seed

« If you increment the seed of the PRNG, the
streams of random variable objects across
different runs are not guaranteed to be
uncorrelated

« If you fix the seed, but increment the run
number, you will get uncorrelated streams

N 57
q.mﬂﬁ \?; ns-3 training, June 2016

Setting the stream number

* The ns-3 implementation provides access to 264
streams

» 2763 are placed in a pool for automatic assignment, and
2763 are reserved for fixed assignment

stream @ stream (2°63 - 1) stream 2%63 stream (264 - 1
<- automatically assigned -----------><- assigned by user

» Users may optionally assign a stream number index to a
random variable using the SetStream () method.
— This allows better control over selected random variables

— Many helpers have AssignStreams () methods to do this across
many such random variables

ns-3

R Pt ns-3 training, June 2016

Putting it together

* Example of scheduled event

Static voud
RandomFunction (void)

std::cout =< “RandomFunction received event at *
<< Simulator::Now ().GetSeconds () <= "s” << std::endl;

i

int matn (int argc, char *argv(])
{

ConmandLine cnd;

cnd.Parse (argc, argv);

Mymodel model;

Ptr<UniformRandonVariable> v = Createobject<UnifornRandomvariable> ();
v->SetAttribute ("Min", Doublevalue (16));

v->SetAttribute (“Max", Doublevalue (20));

Stmulator::Schedule (Seconds (10.0), &ExampleFunction, model);

simulator::schedule (Seconds (v->Getvalue ()), 8RandomFunction);

[Demo real-time, command-line, random variables...]
ns-3 59

e ns-3 training, June 2016

ns-3 Training

Node, Stacks, and Devices
ns-3 training, June 2016

LinNs-3 ns-3 training, June 2016

wins-3 60
Example walkthrough
* This section progressively builds up a
simple ns-3 example, explaining concepts
along the way
* Files for these programs are available on
the ns-3 wiki
w,ﬂ%:?; ns-3 training, June 2016 61
Example program
¢ wns3-versionl.cc
— Link found on wiki page
— Place program in scratch/ folder
Sockets-like a
API e L
Rl D packets) - Prood |
ﬂ
—r
62

Fundamentals

Key objects in the simulator are Nodes,
Packets, and Channels

Nodes contain Applications, “stacks”, and
NetDevices

= 63
s Q% WSF ns-3 training, June 2016

Node basics

A Node is a shell of a computer to which
applications, stacks, and NICs are added

Aprt
=
W = A i “DTN"
. &

N 64
s Q% WSF ns-3 training, June 2016

NetDevices and Channels

NetDevices are strongly bound to Channels of a
matching type

WifiNetDevice

* ns-3 Spectrum models relax this assumption
Nodes are architected for multiple interfaces

ains-3 ns-3 training, June 2016

Internet Stack

* Internet Stack

—Provides IPv4 and some IPv6 models
currently

* No non-IP stacks ns-3 existed until
802.15.4 was introduced in ns-3.20

—but no dependency on IP in the devices, Node
object, Packet object, etc. (partly due to the
object aggregation system)

= 66
q.mﬂﬁ \?; ns-3 training, June 2016

Other basic models in ns-3

* Devices

—WiFi, WIMAX, CSMA, Point-to-point, ...
 Error models and queues
 Applications

—echo servers, traffic generator
* Mobility models
» Packet routing

—OLSR, AODV, DSR, DSDV, Static, Nix-
Vector, Global (link state)

N 67
wﬁu’Uﬂ%\ \?E ns-3 training, June 2016

Structure of an ns-3 program

int main (int argc, char *argv[])

{
// Set default attribute values
// Parse command-line arguments
// Configure the topology; nodes, channels, devices, mobility
// Add (Internet) stack to nodes
// Configure IP addressing and routing
// Add and configure applications
// Configure tracing

// Run simulation

L Be

ns-3 training, June 2016

Helper API

* The ns-3 “helper API” provides a set of classes

and methods that make common operations

easier than using the low-level API

Consists of:

— container objects

— helper classes

* The helper APl is implemented using the low-
level API

« Users are encouraged to contribute or propose
improvements to the ns-3 helper API

= 69
q.mﬂﬁ \?E ns-3 training, June 2016

Containers

» Containers are part of the ns-3 “helper
API”

» Containers group similar objects, for
convenience

—They are often implemented using C++ std
containers

+ Container objects also are intended to
provide more basic (typical) API

ains-3 70

ns-3 training, June 2016

The Helper API (vs. low-level API)

* Is not generic
» Does not try to allow code reuse

* Provides simple 'syntactical sugar' to make
simulation scripts look nicer and easier to
read for network researchers

Each function applies a single operation on
a "set of same objects”

A typical operation is "Install()"

ains-3 71

ns-3 training, June 2016

Helper Objects

» NodeContainer: vector of Ptr<Node>

* NetDeviceContainer: vector of Ptr<NetDevice>
* InternetStackHelper

» WifiHelper

* MobilityHelper

 OlsrHelper

« ... Each model provides a helper class

= 72
q.mﬂﬁ \?; ns-3 training, June 2016

Installation onto containers

* Installing models into containers, and
handling containers, is a key APl theme

NodeContainer c;

c.Create (numNodes);
mobility.Install (c);

internet.Install (c);

= 73
wﬁu’Uﬂ%\ \?E ns-3 training, June 2016

Native IP models

* IPv4 stack with ARP, ICMP, UDP, and
TCP

 IPv6 with ND, ICMPV6, IPv6 extension
headers, TCP, UDP

* IPv4 routing: RIPv2, static, global,
NixVector, OLSR, AODV, DSR, DSDV

* IPv6 routing: RIPng, static

ns-3 training, June 2016

IP address configuration

* An Ipv4 (or Ipv6) address helper can
assign addresses to devices in a
NetDevice container

IpvihddressHelper ipvd;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
csmalnterfaces = ipvd.Assign (csmaDevices);

ipv4.NewNetwork (); // bumps network to 10.1.2.0
otherCsmalnterfaces = ipv4.Assign (otherCsmaDevices);

ns-3 ns-3 training, June 2016

Internet stack

Corresponding
public interface

UdpSocketmpl

« The public interface of

the Internet stack is

defined (abstract base

send)

classes) in
src/network/model
send () directory

« The intent is to support
multiple implementations

) * The default ns-3 Internet
stack is implemented in
src/internet-stack

IpvaLsprotocl

Send I

Send)

NetDevice

= 76
ns-3 ns-3 training, June 2016

ns-3 TCP

* Four options exist:
—native ns-3 TCP
—TCP simulation cradle (NSC)
—Direct code execution (Linux/FreeBSD library)
—Use of virtual machines
* To enable NSC:

internetStack.SetNscStack ("liblinux2.6.26.s0");

S-3 ns-3 training, June 2016

Native TCP models

* TCP NewReno is baseline
— TCP SACK under review for ns-3.26

» TCP congestion control recently refactored, and
many TCP variants are under finalization

— Present: BIC, Highspeed, Hybla, lllinois, Scalable,
Vegas, Veno, Westwood, YeAH

— Pending: CUBIC, H-TCP, SACK

¢ MP-TCP is under development from past
summer project (for ns-3.277)

wr\zﬂn = ns-3 training, June 2016

ns-3 simulation cradle

» Port by Florian Westphal of Sam Jansen’s Ph.D. work
Architecture

NSC TCP
madel
TGP

-
\

Network.
ainmulaton Network Stack
(ns-2) comnect

o,

packel received,

timer, road

Figure reference: S. Jansen, Performance, validation and testing with the Network
wa~2| Simulation Cradle. MASCOTS 2006.

S-3 ns-3 training, June 2016

ns-3 simulation cradle

For ns-3:
* Linux 2.6.18
*Have shown NSC to be very accurate — able to produce + Linux 2.6.26

packet traces that are almost identical to traces measured * Linux 2.6.28
from a test network

[Accuracy

Others:
™ — T * FreeBSD 5
—_— _,:—-_’_"_!_' *lwip 1.3
. + OpenBSD 3

Other simulators:
= * ns-2
| * OMNET++

Figure reference: S. Jansen, Performance, validation and testing with the Network
i ion Cradle. MASCOTS 2006.

ns-3 ns-3 training, June 2016

Review of sample program (cont.)

ApplicationContainer apps;
OnOffHelper onoff ("ns3::UdpSocketFactory",

InetSocketAddress ("10.1.2.2", 1025));
onoff.SetAttribute ("OnTime", StringValue ("Constant:1.0"));
onoff.SetAttribute ("OffTime", StringValue ("Constant:0.0"));
apps = onoff.Install (csmaNodes.Get (0));
apps.Start (Seconds (
apps.Stop (Seconds (4.0));

PacketSinkHelper sink ("ns3::UdpSocketFactory",
InetSocketAddress ("10.1.2.2", 1025));

apps = sink.Install (wifiNodes.Get (1)); Traffic receiver

apps.Start (Seconds (0.0));
apps.Stop (Seconds (4.0));

-3 ns-3 training, June 2016

Applications and sockets

1.00); Traffic generator

81

* In general, applications in ns-3 derive from

the ns3::Application base class

—A list of applications is stored in the ns3::Node

—Applications are like processes

» Applications make use of a sockets-like

API

—Application::Start () may call
ns3::Socket::SendMsg() at a lower layer

ns-3 training, June 2016

Sockets API

82

Plain C sockets ns-3 sockets

Prr<socket> sk =
SOCK_DGRAM, 0) ; udpFactory->CreateSocket () ;

.0.0”,&src.sin_ad

htons (80) ;
sockaddr *) &src,

sk->Bind (InetSocketAddress (80));

char buf[6];
recv(sk, buf, 6, 0);

1

ckethddress (IpvdAddress
, 80), Create<Packet>

sk->SendTo (In
.sin_ 1

0.0.
(“hello”, 6));

htons (80) ;
ello”, 6, 0, (struct

sk->SetReceiveCallback (MakeCallback
(MySocketReceive)) ;
[.] (Simulator::Run ())

void MySocketReceive (Ptr<Socket> sk,
Ptr<Packet> packet)

{

S-3 ns-3 training, Z]une 2016

New in ns-3.25: traffic control

 Patterned after Linux traffic control, allows
insertion of software-based priority queues
between the IP layer and device layer
—pfifo_fast, RED, Adaptive RED, CoDel

—planned for ns-3.26: FQ-CoDel, PIE, Byte
Queue Limits (BQL)

q.mﬂﬁ-\?; ns-3 training, June 2016

NetDevice trace hooks

« Example: CsmaNetDevice icipevice::

CsmaNetDevice::Send () ReceiveCallback
l MacTx MacRx
MacDrop
w queue Sniffer
4 PromiscSniffer
MacTxBackoff
PhyTxBegin l PhyRxEnd
PhyTxEnd PhyTxDrop PhyRxDrop
CsmaNetDevice:: CsmaNetDevice::
TransmitStart () Receive ()
(CsmaChannel 0
w,ﬂ%:?; ns-3 training, June 2016 85

Nodes, Mobility, and Position

» ALL nodes have to be created before simulation
starts

+ Position Allocators setup initial position of nodes
— List, Grid, Random position...

» Mobility models specify how nodes will move

— Constant position, constant velocity/acceleration,
waypoint...

— Trace-file based from mobility tools such as SUMO,
BonnMotion (using NS2 format)

— Routes Mobility using Google API (*)

al Q%:?: ns-3 training, June 2016 86

Position Allocation Examples

List

MobilityHelper mobility;

// place two nodes at specific positions (100,) and (9,100)

P Tlocators positiondlloc = CreateObject<listPositionAllocator> ();
positi 4’ (Vector (100, @

positio r (8,

mobility. SetPositionAllocator(: %

+ Grid Position
MobilityHelper mobility;
/1 setup the grid itself: nodes are laid out started from (-100,-100) with 20 per row, the x

// interval betueen each object is 5 meters and the y interval between each object is 20 meters
mobility.SetPositionallocator (

Random Rectangle Position

1/ place nodes unifornly on a straight line from (9, 1000
Mobilityhelper mobility;

ptrcRandonRect.

glepositionallocator> positionAloc = Creat
Attribute("X", Stringval

e0bject<RandonRect

glepositionallocator>();

53: :Uni formRandonVariable M

Attribute("v", Stringval
nobi1ity. SetPositionallocator (positionalo

ns- ns-3 training, June
PR 2016

ConstantRandonvariable [Constant:

87

Mobility Model Example

= Constant Position
MobilityHelper mobility;
mobility.SetMobilityModel
mobility. ;

+ Constant Speed
MobilityHelper mobility;
mobility.SetMobilityModel (“ns3::ConstantVelocityMobilityModel");

mobility. 5

for (NodeContainer::Iterator i = nodes.Begin (); i != nodes.End (); ++1){
PtreNode> node = (*1);

node->GetObject< >()-> (Vector(,0,0));
}

+ Trace-file based
std::string traceFile = “mobility_trace.txt”;
// Create Ns2MobilityHelper with the specified trace log file as parameter
Ns2MobilityHelper ns2 = Ns2MobilityHelper (traceFile);

gy el (); // configure movements for each node, while reading trace file

88

Interesting ns-3 extensions

* ns-3-highway-mobility (https://code.google.com/p/ns-
3-highway-mobility/)

— Implement IDM and MOBIL change lane, highway class,
traffic-lights.

— Based on ns-3.8
— No longer maintained

* Virtual Traffic Lights (PROMELA)
(https://dsn.tm.kit.edu/misc_3434.php)
— Manhattan IDM mobility model
— NLOS propagation loss models
— (Virtual) Traffic Light applications

ns-3 training, Jur@92016

https://code.google.com/p/ns-3-highway-mobility/
https://dsn.tm.kit.edu/misc_3434.php

Propagation Models

* Propagation Loss

— ITUR1411, LogDistance, ThreeLogDistance, Range,
TwoRayGround, Friis

— Nakagami, Jakes
— Obstacle model (*)
(*) Presented in WNS3 2015
* Propagation Delay
— Constant Speed
— Random

» Be careful when using

the LogDistance
propagation model is added. Calling AddPropagationLoss
again will add a second propagation loss model.

ail !"'Iﬁ-‘?r ns-3 training, June 2016 %0

Communication Range

» Depends on many factors
— Propagation loss model and PHY configuration
— Frame size (big vs small)
— Transmission mode (6Mbps vs 54 Mbps)

SaMops 12Mipe

— 12Bbwes - 1920 byies

ns-3 training, June o1
2016

Example program iterations

» Walk through four additional revisions of
the example program
—wns3-version2.cc
—wns3-version3.cc

—wns3-versionéd.cc

ns-3 training, June 2016 92

ns-3 Training: Packets

ns-3 Annual meeting
June 2016

L o

ns-3 Packet

» Packet is an advanced data structure with
the following capabilities
—Supports fragmentation and reassembly
—Supports real or virtual application data
—Extensible
— Serializable (for emulation)
—Supports pretty-printing
— Efficient (copy-on-write semantics)

- 9
Wﬂ% ‘?n ns-3 Annual meeting June

ns-3 Packet structure

» Analogous to an mbuf/skbuff

95

ns-3 Annual meeting June
2016

Copy-on-write

» Copy data bytes only as needed

Figure 3.8 The TCP and the IP stacks hold references to a shared baffer.
P stack inserts the 1P header, triggers an wi-share operaticn, completes
ns-3 Figure source: Mathieu Lacage's Ph.D. thesis 96
P ns-3 Annual meeting June
2016

Headers and trailers

* Most operations on packet involve adding
and removing an ns3::Header

* class ns3::Header must implement four
methods:

Serialize ()

Deserialize ()

GetSerializedSize ()

Print ()

q.mﬂﬁ-‘?; ns-3 Annual meeting June

Headers and trailers (cont.)

97

» Headers are serialized into the packet byte
buffer with Packet::AddHeader() and
removed with Packet::RemoveHeader()

» Headers can also be 'Peeked" without
removal

Ptr<Packet> pkt = Create<Packet> ();

UdpHeader hdr; // Note: not heap allocated

pkt->AddHeader (hdr);

Ipv4Header iphdr;

pkt->AddHeader (iphdr);

mﬂﬁ'\?: ns-3 Annual meeting June
2016

98

Packet tags

» Packet tag objects allow packets to carry around
simulator-specific metadata

— Such as a "unique ID" for packets or

» Tags may associate with byte ranges of data, or
with the whole packet

— Distinction is important when packets are fragmented
and reassembled

+ Tags presently are not preserved across
serialization boundaries (e.g. MPI)

ns-3 Annual meeting June

PacketTag vs. ByteTag

* Two tag types are available: PacketTag and
ByteTag
— ByteTags run with bytes
— PacketTags run with packets
* When Packet is fragmented, both copies of
Packet get copies of PacketTags
* When two Packets are merged, only the
PacketTags of the first are preserved
PacketTags may be removed individually;
ByteTags may be removed all at once

ns-3 Annual meeting June

Tag example

* Here is a simple example illustrating the use of tags from the code in
src/internet/model/udp-socket-impl.cc:
Ptr<Packet> p; // pointer to a pre-existing packet
SocketIpTtlTag tag
tag.SetTtl (m_ipMulticastTtl); // Convey the TTL from
UDP layer to IP layer
p->AddPacketTag (tag);

« This tag is read at the IP layer, then stripped
(src/internet/model/ipv4-13-protocol.cc):
uint8 t ttl = m_defaultTtl;
SocketIpTtlTag tag;
bool found = packet->RemovePacketTag (tag);
if (found)
{
ttl = tag.GetTtl ();

ns-3 Annual meeting June 101
2016

Packet metadata

» Packets may optionally carry metadata
— record every operation on a packet's buffer

— implementation of Packet::Print for pretty-printing of
the packet

— sanity check that when a Header is removed, the
Header was actually present to begin with

« Not enabled by default, for performance reasons

* To enable, insert one or both statements:
Packet::EnablePrinting ();
Packet::EnableChecking ();

w,ﬂ%:?; ns-3 Annual meeting June 102

Ptr<Packet>

» Packets are reference counted objects that
support the smart pointer class ptr

» Use a templated "Create" method instead of
CreateObject for ns3::0Objects

» Typical creation:

— Ptr<Packet> pkt = Create<Packet> ();

* In model code, Packet pointers may be const or
non-const; often Packet::Copy() is used to obtain
non-const from const

— Ptr<const Packet> cpkt = ...;
— Ptr<Packet> p = cpkt->Copy ();

q.mﬂﬁ-‘?; ns-3 Annual meeting June 103

ns-3 Training

ns-3 Objects

ns-3 training, June 2016

L 104

Object metadata system

* ns-3is, at heart, a C++ object system
* ns-3 objects that inherit from base class
ns3::0bject get several additional features

—smart-pointer memory management (Class
Ptr)

—dynamic run-time object aggregation
—an attribute system

= 105
q.mﬂﬁ \?; ns-3 training, June 2016

Smart pointers

* Smart pointers in ns-3 use reference counting to
improve memory management

* The class ns3: : Ptr is semantically similar to a
traditional pointer, but the object pointed to will
be deleted when all references to the pointer are
gone

» ns-3 heap-allocated objects should use the
templated Create<>() or CreateObject<> ()
methods

qmﬂﬁ-‘% ns-3 training, June 2016

Examples

106

Ptr<WifiNetDevice> dev =

CreateObject<WifiNetDevice> ();

Ptr<Packet> pkt = Create<Packet> ();
(instead of packet* = new Packet;)

why Create<> vs CreateObject<>?

« two different base classes; generally use
CreateObject<>(), but Create<> for Packet

ns-3 training, June 2016

107

Dynamic run-time object aggregation

* This feature is similar to "Component
Object Model (COM)"-- allows interfaces
(objects) to be aggregated at run-time
instead of at compile time

+ Useful for binding dissimilar objects
together without adding pointers to each
other in the classes

ns-3 training, June 2016 108
Usage
* ns-3 Node protocol stacks are added via
aggregation
—The IP stack can be found from a Node
pointer without class Node knowing about it
» Energy models are typically aggregated to
nodes
* To find interfaces, use GetObject<>(); e.g.
Ptr<Ipv4> ipv4 = m node->GetObject<Ipvi4> ();
Wﬂ%:ﬁ ns-3 training, June 2016 109

Attributes and default values

// disable fragmentation for frames below 2200 bytes
Config::SetDefault (“ns3::WifiRemotestationManager: :FragmentationThreshold”, stringvalue (22
0°));

/1 turn off RTS/CTS for frames below 2200 bytes
Config::SetDefault (“ns3::WifiRemoteStationHanager: :RtsCtsThreshold”, StringValue ("2200"));
/1 Fix non-unicast data rate to be the same as that of unicast
Config::SetDefault ("ns3::WifiRemoteStationManager::NonUnicastMode",
stringvalue (phyMode));

NodeContatner c;
c.Create (nuniodes);

/] The below set of helpers will help us to put together the wifi NICs we want
WifiHelper wifi;
if (verbose)

wifi.EnableLogComponents (); // Turn on all Wifi logging

YanswiftPhyHelper wifiPhy = YansWifiPhyHelper: :Default ();

// set it to zero; otherwise, gain will be added

WiftPhy.Set ("RxGain™, Doublevalue (-16));

// ns-3 supports RadioTap and Prisa tracing extensions for 802.11b
wifipPhy.SetPcapDatalinkType (YansWifiPh