ns-3 Training

ns-3 training, June 2018

ns-3
NETWORK SIMULATOR

Outline

* Experience from several recent personal
use cases with ns-3

— LAA/Wi-Fi Coexistence

—Smart Grid networks

— AQM performance

— Public-safety based LTE networks

NETwo!:lsﬁ;mBR ns-3 training, June 2018

LTE/Wi-Fi Coexistence

case study

NETWO!JS%;T?R ns-3 training, June 2018

Use case: LAA Wi-Fi Coexistence

* ns-3 has been extended to support scenarios for
LTE LAA/Wi-Fi Coexistence

* Methodology defined in 3GPP Technical Report
TR36.889

* Enhancements needed:

— Wireless models (LBT access manager,
SpectrumWifiPhy, propagation/fading models)

— Scenario support (traffic models)
— Output data processing

NETWOQS%L-A% ns-3 training, June 2018

Indoor 3GPP scenario

120 m
< <

A .
5 UEs/STAs per cell 4 co-channel cells Downlink on
per operator (40 total) per operator (eNB shared channel;
randomly dropped D or Wi-Fi AP) LAA has separate

D D \ licensed uplink
D D D .D/AA (o)) (€D
50m

Step 1: Both operators A and B are Wi-Fi
co-channel on separate SSID

Non-mobile indoor .
. Idealized
V| Step2 (depicted) Replace operator A network with LTE LAA >cenario backhaul to
traffic sources

NETWORK SIMULATOR

ns-3 training, June 2018

Indoor scenario details

ll'llnS-B

NETWORK SIMULATOR

System bandwidth
Carrier frequenc
Number of carriers

Total Base Station (BS) transmission
power

Distance dependent path loss,
shadowing and fading

UE Dropping

Traffic Model

UE noise fi
Cell selection

Network synchronization

R 36.88

Indoor scenario

20 MHz

5 GHz
1, 4 (to be shared between two
operators)

1 for evaluations with DL+UL Wi-Fi
coexisting with DL-only LAA

18/24 dBm

Total User equipment (UE) 18 dBm for unlicensed spectrum
transmission power

ITU InH

2D Omni-directional
6m

1.5m

5 dBi

0 dBi

10 UEs per unlicensed band carrier per
operator for DL-only

10 UEs per unlicensed band carrier per
operator for DL-only for four unlicensed
carriers.

20 UEs per unlicensed band carrier per
operator for DL+UL for single
unlicensed carrier.

20 UEs per unlicensed band carrier per
operator for DL+UL Wi-Fi coexisting
with DL-only LAA

All UEs should be randomly dropped
and be within coverage of the small cell
in the unlicensed band.

FTP Model 1 and 3 based on TR
36.814 FTP model file size: 0.5 Mbytes.
Optional: VolP model based on
TR36.889

9dB
For LAA UEs, cell selectionis based on
RSRP (Reference Signal Received
Power.

For WiFi stations (STAs), cell
selection is based on RSS (Received
signal power strength) of WiFi Access
Points (APs). RSS threshold is -82 dBm.
For the same operator, the network can
be synchronized. Small cells of different
operators are not synchronized.

1 HPDISINENLALION]
Indoor scenario
20 MHz
5 GHz (channel 36, tunable)
1 for evaluations with DL+UL Wi-Fi
coexisting with DL-only LAA

18/24 dBm
Simulations herein consider 18 dBm
dBm

802.11ax indoor model

2D Omni-directional
6 m (LAA, not modelled for Wi-Fi)
1.5 m (LAA, not modelled for Wi-Fi)
5dBi
0dBi
Supports all the configurations in TR
36.889. Simulations herein consider the
case of 20 UEs per unlicensed band
carrier per operator for DL LAA
coexistence evaluations for single
unlicensed carrier.

Randomly dropped and within small cell
coverage.

FTP Model 1 as in TR36.814.
FTP modelfile size: 0.5 Mbytes
Voice model: DL only

9dB
RSRP for LAA UEs and RSS for Wi-Fi
STAs

Small cells are synchronized, different
operators are not synchronized.

ns-3 training, June 2018

Outdoor 3GPP scenario

Outdoor layout: hexagonal macrocell layout. 7 macro sites and 3 cells per site. 1
Cluster per cell. 4 small cells per operator per cluster, uniformly dropped. ITU UMi
channel model.

1000 ~

800

600

= .)
- {
> " 5 m
oo g Pt % (@)
: X i
1 "o-dl (9
N
®) i
> 400 . % = ro Node -
: et Cluse 1
? g T RN,
. = £ (\) Ry: radius of small cell dropping within adluster;
Y N S s
S A
—

R;: radius of UE dropping within acluster

200

Figure source: 3GPP TR 36.889 vV13.0.0 (205p

-200

I I
1000 1200

-200

ns-3 ns-3 training, June 2018

NETWORK SIMULATOR

References

* ns-3 WIiki page:
— https://www.nsnam.org/wiki/LAA-WiFi-
Coexistence
 module documentation

* references to various publications
» documentation on reproducing results

 Code:

—git clone https://bitbucket.org/ns3lteu/ns-3-
dev-Ibt

NETWOQS%JM% ns-3 training, June 2018

Sample results

l I I I I I 7 \I T 1 T T ! T T
s S - (/124 B | | | |
$34#2-/0(4156#/0#234#12 (13 (2+#2H(2 . i : g g g g g
08 | - 27II 3“0#8#%3’($#II+(%+I'#%9""II'<'?‘%'0"I)¥""I'"l' """ I """) 0.8 | """"""" """"""" """"""" A DA
5 : : : ' ¥ | .-, (ERHQUI(EFUEER . .
06 o : THFI-T- +0(2%&(/%+ "2 (246 -3HTH : :
S N | """ 1 06 Fo SW@OII’Z#*)’(]G """"""""" A ;' """"" A F
e ol L . ; ' : '
O : O : :
Q o : @]
0 o o 04 b
E g :
;G #II&'()$%#56#/0#23#II3(2+#2+0(2%—27]
0.2 _$()III7,()2 G ,l B 0.2 L L .
) \ ,: :
o era»tﬁrA(\M Fi) ——
0 . ,—cperatorB (Wi F|) —8— 0
0 20 40 60 80 100 120 140 O 20 40 60 80 100 120 140
Throughput [Mbps] Throughput [Mbps]
=4} ; HE6I<i* =004 Ady; +#64Bi*CDD4

ns-3

NETWORK SIMULATOR ns-3 training, June 2018

Lessons learned

« Think about the data and results you want, and work
backwards from there

« As much, or more time, spent on scenario development

than on model development

« Choose the right levels of abstraction in the scenario

« Several rewrites may be needed as project evolves

Problem
Definition

ns-3

NETWORK SIMULATOR

Scenario
Generation

Expenment
Definition

T

V

Execution manager

ns-3
execution

."‘

ns-3 Training, June 2018

N

Output data

management

Key concepts

« Configuration and execution management
« Tracing (gathering output data)

« Design for future sharing of your code
— Good APIs (attributes, trace sources), tests, and documentation

Scenario
Generation

Execution manager
7 N N (7777 py \. .‘ 7 Y N
Problem |\ | Modeling [\ | Experiment ns-3
Definition | / | '/ | Definition execution
v G v, _ !

ns-3

NETWORK SIMULATOR ns-3 Training, June 2018

(777777777
\, | Output data
/ | management

Example

Pass UDP data
(marked as EF
and best effort)
and TCP data
through a
prioritized queue

Plot CDF of data
including
percentiles

Repeat for
different traffic
configurations,
different queue
configurations

ns-3

NETWORK SIMULATOR

CDF of Packet Latency

Latency - Upstream

Web users=0, TCP flows(up/dn)=0/16, DASH flows=0, Duration=10s

1.0 A r
0.8 H
0.6
— TCP
UDP-Default
—— UDP-EF
0.4 - r
UDP-EF UDP-Default TCP
Maximu m 0.82 2.93 3.96
99" percentile 0.71 2.46 2.67
0.2 . 95" Percentile 0.71 1.93 2.19
90" Percentile 0.7 158 1.94
50" percentile 0.61 0.67 0.73
10" Percentile 0.49 0.54 0.46
0.0 1 Minimum 0.45 0.45 0.45
T T T T T T T T
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Latency in ms

ns-3 training, June 2018

Design aspects

What plotting framework am | using?
— Matplotlib can meet requirements

How to manage multiple replications
— Bash script, expose configuration as command line arguments

How to obtain the output data
— Hook SojournTime trace source of the queue?
— Or do | want to also capture device latency?

Other design questions
— What flavor of TCP?
— How long should simulation trials run for?

— etc.

ns-3 ns-3 training, June 2018

NETWORK SIMULATOR

Simulator core

» Simulation time

* Events

» Simulator and Scheduler
« Command line arguments
« Random variables

Execute a function
* (may generate additional events)
A VS
1

~
\\A

\/ Advance the virtual time
to the next event (function)

- O!lﬁ;g ns-3 training, June 2019

14

Simulator example

#include <iostream>

#include "ns3/simulator.h”

#include "ns3/nstime.h"

#include "ns3/command-line.h"

#include "ns3/double.h”

#include "ns3/random-variable-stream.h"

using namespace ns3;

{

Simulator::
Simulator::

EventId id
Simulator::

Simulator:

Simulator:

}

int main (int argc, char *argv[])

CommandLine cmd;
cmd.Parse (argc, argv);

MyModel model;

Ptr<UniformRandomVariable> v = CreateObject<UniformRandomvariable> ();
v->SetAttribute ("Min", Doublevalue (10));

v->SetAttribute ("Max", Doublevalue (20));

Schedule (Seconds (10.0), &ExampleFunction, &model);
Schedule (Seconds (v->GetValue ()), &RandomFunction);

= Simulator::Schedule (Seconds (30.0), &CancelledEvent);
Cancel (id);

:Run ();

:Destroy ();

ArS-3

NETWORK SIMULATOR

ns-3 training, June 2018

15

Simulator example (in Python)

bk Python version of sample-simulator.cc

import ns.core

model =

ns.core.
ns.core.

id = ns.
ns.core.

ns.core.
ns.core.

if _ _name__

def main(dummy_argv):

MyModel()

v = ns.core.UniformRandomvVariable()
v.SetAttribute("Min", ns.core.DoublevValue (10))
v.SetAttribute("Max", ns.core.Doublevalue (20))

Simulator.Schedule(ns.core.Seconds(10.0), ExampleFunction, model)
Simulator.Schedule(ns.core.Seconds(v.Getvalue()), RandomFunction, model)

core.Simulator.Schedule(ns.core.Seconds(30.0), CancelledEvent)
Simulator.Cancel(id)

Simulator.Run()
Simulator.Destroy()

== "'__main__"':

import sys
main(sys.argv)

ns-3

NETWORK SIMULATOR

ns-3 training, June 2018

16

Simulation program flow

Handle program inputs

o

Configure topology

o

Run simulation

o

Process outputs

ns-3

NETWORK SIMULATOR

ns-3 training, June 2018

17

Command-line arguments

« Add CommandLine to your program if you want
command-line argument parsing

int main (int argc, char *argv[])

{

CommandLine cmd;
cmd.Parse (argc, argv);

» Passing --PrintHelp to programs will display command
line options, if CommandLine is enabled

./waf --run "sample-simulator --PrintHelp"

--PrintHelp: Print this help message.

--PrintGroups: Print the list of groups.

--PrintTypelds: Print all Typelds.

--PrintGroup=[group]: Print all Typelds of group.
--PrintAttributes=[typeid]: Print all attributes of typeid.
--PrintGlobals: Print the list of globals.

ns-3 ns-3 training, June 2018

NETWORK SIMULATOR

18

Time in ns-3

« Time is stored as a large integer in ns-3
— Minimize floating point discrepancies across platforms

« Special Time classes are provided to manipulate time
(such as standard operators)

 Default time resolution is nanoseconds, but can be set to
other resolutions

— Note: Changing resolution is not well used/tested
« Time objects can be set by floating-point values and can
export floating-point values
double timeDouble = t.GetSeconds ()

— Best practice is to avoid floating point conversions where
possible and use Time arithmetic operators

_ 19
ns-3 ns-3 training, June 2018

NETWORK SIMULATOR

Events in ns-3

* Events are just function calls that execute at a
simulated time
— I.e. callbacks

— this is another difference compared to other
simulators, which often use special "event handlers”
In each model

« Events have IDs to allow them to be cancelled or
to test their status

- 20
NETWO!K.'SﬁLmBR ns-3 training, June 2018

Simulator and Schedulers

 The Simulator class holds a scheduler, and

provides the API to schedule events, start, stop,
and cleanup memory

« Several scheduler data structures (calendar,
heap, list, map) are possible

» "RealTime" simulation implementation aligns the
simulation time to wall-clock time

— two policies (hard and soft limit) available when the
simulation and real time diverge

- 21
NETWO!K.'SﬁLmBR ns-3 training, June 2018

from src/core/examples/sample-rng-plot.py

Random Variables

« Currently implemented distributions
— Uniform: values uniformly distributed in an interval
— Constant: value is always the same (not really random)
— Sequential: return a sequential list of predefined values
— Exponential: exponential distribution (poisson process)
— Normal (gaussian), Log-Normal, Pareto, Weibull, triangular

oy

t Demonstrate use of ns-3 as a random number generator integrated with
plotting tools; adapted from Gustavo Carneiro's ns-3 tutorial ns-3 histogram

import numpy as np

import matplotlib.pyplot as plt 0.025 n=100,7=15
import ns.core

l# mu, var = 100, 225

rng = ns.core.Normalvariable(100.0, 225.0)
x = [rng.Getvalue() for t in range(10000)]

0.015
the histogram of the data

n, bins, patches = plt.hist(x, 50, normed=1, facecolor='q', alpha=0.75)
0.010
plt.title('ns-3 histogram')

plt.text(60, .025, r'$\mu=100,\ \sigma=15$"')
plt.axis([40, 160, 6, 0.03]) 0.005
plt.grid(True)
plt.show()

0.000‘,‘0 60 0

2/o/o/+ - /s/@
ns-3 22

NETWORK SIMULATOR ns-3 training, June 2018

Random variables and independent
replications

* Many simulation uses involve running a
number of "#$%%$"#3$"&'($%)!*+&!,"-of the
same scenario

* In ns-3, this is typically performed by
incrementing the simulation (.""./0$(

—",&'01%*2+"3!"3-$5#-

- 23
NETWO!K.'SﬁLmBR ns-3 training, June 2018

ns-3 random number generator

+ Uses the MRG32k3a generator from Pierre
L'Ecuyer
— http://www.iro.umontreal.ca/~lecuyer/myftp/papers/str

eams00.pdf

— Period of PRNG is 3.1x10757

» Partitions a pseudo-random number generator
into uncorrelated -&($+/- and -.0-&($+/-
— Each RandomVariableStream gets its own stream
— This stream partitioned into substreams

- 24
NETWO!K.'SﬁLmBR ns-3 training, June 2018

Key Terminology

 Seed: A set of values that generates an entirely
new PRNG sequence

« Stream: The PRNG sequence is divided into
non-overlapping intervals called streams

 Run Number (substream): Each stream is
further divided to substreams, indexed by a
variable called the run number.

NETWO!;%;% ns-3 training, June 2018

25

Streams and Substreams

2191-
057 1 Length
e D e S Y
/\’— ------- {21l Incrementing the

I"" streams to a new

N i 7 Run Number will move
/=

o substream
;.",..
Substream Length =
276 = 7.6x10% Stream
i=2 Substream j =2°!
=23x10"%
Stream
=3 Each ns-3

RandomVariableStream
object is assigned to a
stream (by default,
randomly)

Figure source: Pierre L'Ecuyer, Richard Simard, E. Jack Chen, and W. David Kelton.
An object-oriented random number package with many long streams and substreams. Operations Research, 2001.

ns-3 ns-3 training, June 2018 26

NETWORK SIMULATOR

Run number vs. seed

* If you increment the seed of the PRNG, the
streams of random variable objects across
different runs are not guaranteed to be

uncorrelated

* If you fix the seed, but increment the run
number, you will get uncorrelated streams

NETWOQS%L-A% ns-3 training, June 2018

27

Setting the stream number

« The ns-3 implementation provides access to 264
streams

« 2763 are placed in a pool for automatic assignment, and
2763 are reserved for fixed assignment

it et et >
stream @ stream (2”63 - 1) stream 2763 stream (2764 - 1)
<- automatically assigned ----------- >¢- assigned by user ----------------- >

» Users may optionally assign a stream number index to a
random variable using the SetStream () method.

— This allows better control over selected random variables

— Many helpers have AssignStreams () methods to do this across
many such random variables

ns-3

NETWORK SIMULATOR ns-3 training, June 2018

28

Putting it together

« Example of scheduled event

static void
RandomFunction (void)

{

std::cout << "RandomFunction received event at "
<< Simulator::Now ().GetSeconds () << "s" << std::endl;

int main (int argc, char *argv[])

{

CommandLine cmd;
cmd.Parse (argc, argv);

MyModel model;

Ptr<UniformRandomVariable> v = CreateObject<UniformRandomVariable> ();
v->SetAttribute ("Min", Doublevalue (10));

v->SetAttribute ("Max", Doublevalue (20));

Simulator::Schedule (Seconds (10.0), &ExampleFunction, &model);

Simulator::Schedule (Seconds (v->GetValue ()), &RandomFunction);

Demo real-time, command-line, random variables...

ns3

NETWORK SIMULATOR ns-3 training, June 2018

ns-3
NETWORK SIMULATOR

ns-3 Training: Packets

ns-3 Annual meeting June 2018

30

ns-3 Packet

* Packet is an advanced data structure with
the following capabilities
— Supports fragmentation and reassembly
—Supports real or virtual application data
— Extensible
— Serializable (for emulation)
— Supports pretty-printing
— Efficient (copy-on-write semantics)

- 31
NETWO!K"S%AT?R ns-3 Annual meeting June 2018

ns-3 Packet structure

* Analogous to an mbuf/skbuff

class Packet

public functions: . class Buffer
- constructors
- add/remove/peek at Headeys
- add/remove/peek at Tags | .,
- fragmentation & reassemp Vi

public functions:

- Iterators to move byte buffg
pointers forward or backward
- functions to read and write
data of various sized chunks

private data:
- Buffer object”
- PacketMetadata object - struct BufferData, &

i :::i g: bﬁie?gj o dynamically varying byte
E J - buffer to which data can be
k prepended or appended

private data:

.,
.
.
.
.

.
‘.
.
-,

class Tagsh .
g%, class PacketMetadata

public functions: public functions:

- constructors - static void Enable (void);

- templates to add, remove - static void EnableChecking)

or peek at Tags of various

types - methods to add/remove
headers and trailers

private data:
- singly linked list of TagDatg
structures, with a reference
count

ns-3 ns-3 Annual meeting June 2018

NETWORK SIMULATOR

32

Copy-on-write

» Copy data bytes only as needed

Packet 1 Zero Arca
- —
— -
\--—‘-_ .-”’,
—— —
-~
__-- /
Coure
Packet 2 » > Tce

Figure 3.8: The TCP and the IP stacks hold references to a shared buffer.

Zaoro Arca

Packet 1 N Q:;‘ ——__——Tca - ——
Zoro Area

Packet 2 c.i._r, -—_——:—Tc: —

Figure 3.9: The IP stack inserts the IP header, triggers an un-share operation, completes
the insertion.

Figure source: Mathieu Lacage's Ph.D. thesis -
ns-3 ns-3 Annual meeting June 2018

NETWORK SIMULATOR

Headers and trailers

* Most operations on packet involve adding and
removing an ns3::Header

 class ns3::Header must implement four
methods:

Serialize ()
Deserialize ()
GetSerializedSize ()

Print ()

ns-3 ns-3 Annual meeting June 2018

NETWORK SIMULATOR

34

Headers and trailers (cont.)

 Headers are serialized into the packet byte
buffer with Packet::AddHeader() and removed
with Packet::RemoveHeader()

* Headers can also be 'Peeked' without removal
Ptr<Packet> pkt = Create<Packet> ();

UdpHeader hdr; // Note: not heap allocated
pkt->AddHeader (hdr);

ITpv4Header 1phdr;

pkt->AddHeader (iphdr);

ns-3 ns-3 Annual meeting June 2018

NETWORK SIMULATOR

35

Packet tags

* Packet tag objects allow packets to carry around
simulator-specific metadata

— Such as a "unique ID" for packets or cross-layer info

« Tags may associate with byte ranges of data, or
with the whole packet

— Distinction is important when packets are fragmented
and reassembled

* Tags presently are not preserved across
serialization boundaries (e.g. MPI)

NETWO!lﬁ;% ns-3 Annual meeting June 2018 36

PacketTag vs. ByteTag

* Two tag types are available: PacketTag and
ByteTag
— ByteTags run with bytes
— PacketTags run with packets

 When Packet is fragmented, both copies of
Packet get copies of PacketTags

 When two Packets are merged, only the
PacketTags of the first are preserved

* PacketTags may be removed individually;
ByteTags may be removed all at once

ns-3
NETWORK SIMULATOR

ns-3 Annual meeting June 2018

Tag example

* Here is a simple example illustrating the use of tags from the code in

src/internet/model/udp-socket-impl.cc:

Ptr<Packet> p; // pointer to a pre-existing packet

SocketIpTtlTag tag

tag.SetTtl (m ipMulticastTtl); // Convey the TTL from

UDP layer to IP layer
p->AddPacketTag (tag);

« This tag is read at the IP layer, then stripped

(src/internet/model/ipv4-I13-protocol.cc):

uint8 t ttl = m defaultTtl;
SocketIpTtlTag tag;

bool found = packet->RemovePacketTag (tag);

if (found)

{
ttl = tag.GetTtl ()

ns-3 ns-3 Annual meeting June 2018

NETWORK SIMULATOR

38

Packet metadata

« Packets may optionally carry metadata
— record every operation on a packet's buffer

— implementation of Packet::Print for pretty-printing of
the packet

— sanity check that when a Header is removed, the
Header was actually present to begin with

* Not enabled by default, for performance reasons

 To enable, insert one or both statements:
Packet::EnablePrinting ()

Packet::EnableChecking ()

NETWO!;%;% ns-3 Annual meeting June 2018

39

Ptr<Packet>

» Packets are reference counted objects that
support the smart pointer class ptr

« Use atemplated "Create"” method instead of
CreateQObiject for ns3::0Objects

» Typical creation:
— Ptr<Packet> pkt = Create<Packet> ();

* |n model code, Packet pointers may be const or
non-const; often Packet::Copy() is used to obtain

non-const from const
— Ptr<const Packet> cpkt = ...;
— Ptr<Packet> p = cpkt->Copy ()

NETWO!;%;% ns-3 Annual meeting June 2018

ns-3 Training

Program Structure

ns-3
NETWORK SIMULATOR

Example program walkthrough

We will use the program at:

« examples/traffic - control/queue - discs -
benchmark.cc

$./ waf -- run'gueue -discs - benchmark’

NETWOQS§;§ ns-3 training, June 2018

Structure of an ns-3 program

int main (int argc, char *argv([])

{

// Set default attribute values

// Parse command-line arguments

// Configure the topology; nodes, channels, devices, mobility
// Add (Internet) stack to nodes

// Configure IP addressing and routing

// Add and configure applications

// Configure tracing

// Run simulation

// Handle any post-simulation data processing

}

ns-3 ns-3 training, June 2018

NETWORK SIMULATOR

Helper API

* The ns-3 “helper API” provides a set of classes
and methods that make common operations
easlier than using the low-level API

* Consists of:

— container objects
— helper classes

* The helper APl is implemented using the low-
level API

* Users are encouraged to contribute or propose
iImprovements to the ns-3 helper API

NETWO!lﬁL:mBR ns-3 training, June 2018

Containers

* Containers are part of the ns-3 “helper
API”

» Containers group similar objects, for
convenience

— They are often implemented using C++ std
containers

» Container objects also are intended to
provide more basic (typical) API

NETWO!;%;% ns-3 training, June 2018

The Helper API (vs. low-level API)

* |Is not generic
* Does not try to allow code reuse

* Provides simple 'syntactical sugar' to make
simulation scripts look nicer and easier to
read for network researchers

» Each function applies a single operation on
a "set of same objects”

A typical operation is "Install()"

N !Jsﬁ;\maﬂ ns-3 training, June 2018

Helper Objects

 NodeContainer: vector of Ptr<Node>
NetDeviceContainer: vector of Ptr<NetDevice>
InternetStackHelper

WifiHelper

MobilityHelper

OlsrHelper

... Each model provides a helper class

NETWOQS%L-A% ns-3 training, June 2018

Installation onto containers

ns-3
NETWORK SIMULATOR

* Installing models into containers, and
handling containers, is a key APl theme

NodeContailiner c;

c.Create (numNodes);
mobility.Install (c);

internet.Install (c);

ns-3 training, June 2018

Native IP models

» |Pv4 stack with ARP, ICMP, UDP, and
TCP

* |[Pv6 with ND, ICMPV6, IPv6 extension
headers, TCP, UDP

* |IPv4 routing: RIPVv2, static, global,
NixVector, OLSR, AODV, DSR, DSDV

* |IPv6 routing: RIPng, static

NETWO!;%;% ns-3 training, June 2018

IP address configuration

* An Ipv4 (or lpv6) address helper can
assign addresses to devices in a
NetDevice container

Tpv4AddressHelper ipv4;
ipv4 .SetBase ("10.1.1.0", "255.255.255.0M);
csmalnterfaces = ipv4.Assign (csmaDevices);

ipv4d .NewNetwork (); // bumps network to 10.1.2.0
otherCsmalnterfaces = ipv4.Assign (otherCsmaDevices) ;

ns-3 ns-3 training, June 2018
NETWORK SIMULATOR

Applications and sockets

* In general, applications in ns-3 derive from
the ns3::Application base class

— A list of applications is stored in the ns3::Node
— Applications are like processes

* Applications make use of a sockets-like
API

— Application::Start () may call
ns3::Socket::SendMsg() at a lower layer

ns-3 ns-3 training, June 2018
NETWORK SIMULATOR

Sockets API

Plain C sockets ns-3 sockets
int sk; Ptr<Socket> sk =
sk = socket (PF INET, SOCK DGRAM, O0); udpFactory->CreateSocket 0);

struct sockaddr_in src;

inet pton (AF INET,”0.0.0.0”,&src.sin ad sk->Bind (InetSocketAddress (80)) ;
dr) ;
src.sin port = htons(80);

bind (sk, (struct sockaddr *) &src,

struct sockaddr in dest; sk->SendTo (InetSocketAddress (Ipv4Address
inet pton (AF INET,”10.0.0.1"”, &dest.sin (710.0.0.17), 80), Create<Packet>
addr) ; (OhelloO, 6)) ;

dest.sin_po;t = htons(SO);
sendto (sk, OhelloO,6 , 0, (struct
sockaddr *) &dest, sizeof (dest));

char buf[6]; sk->SetReceiveCallback (MakeCallback
recv (sk, buf, 6, 0); (MySocketReceive)) ;
} . [..] (Simulator::Run ())

void MySocketReceive (Ptr<Socket> sk,

Ptr<Packet> packet)
{

ns-3

}
NETWORK SIMULATOR ns-3 training, June 2018

NetDevice trace hooks

 Example: CsmaNetDevice jcipevice::

CsmaNetDevice::Send () RecelveCallback

V'

l MacTx MacRx
MacDrop

4.9.$ Sniffer
PromiscSniffer

MacTxBackoff

P\

PhyTxBegin l PhyRxEnd

PhyTxEnd | 1Y TxDrop PhyRxDrop
CsmaNetDevice:: CsmaNetDevice::
TransmitStart () Receive ()

(CsmaChannel 0

ns-3 ns-3 training, June 2018

NETWORK SIMULATOR

