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Agenda and Instructors

>Monday:  ns-3 overview (Tom Henderson)
– software overview
– sample program and experiments (M/M/1 queue)

> Tuesday AM:  TCP  (Tom Henderson)
> Tuesday AM:  Wi-Fi (Sebastien Deronne)
> Tuesday PM:  LTE (Zoraze Ali)
> Tuesday PM:  sensor networks (Tommaso Pecorella

and Davide Magrin)

Wiki:  https://www.nsnam.org/wiki/AnnualTraining2019

https://www.nsnam.org/wiki/AnnualTraining2019
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Working with training code

> See the wiki page for instructions on how to get and update 
the code used in this training

> https://www.nsnam.org/wiki/AnnualTraining2019

https://www.nsnam.org/wiki/AnnualTraining2019
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What is ns-3?

> Software to build models of computer networks, to conduct 
performance evaluation studies

120 m

50 m

4 co-channel cells
per operator (eNB
or Wi-Fi AP)

5 UEs/STAs per cell
per operator (40 total)
randomly dropped

Non-mobile indoor
scenario 

Downlink on
shared channel;
LAA has separate
licensed uplink

Step 1:  Both operators A and B are Wi-Fi
co-channel on separate SSID
Step 2:  (depicted) Replace operator A network with LTE LAA

Idealized
backhaul to
traffic sources

Question:  Can LTE safely co-exist with Wi-Fi?
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Network Performance Analysis Fundamentals

> Studies are conducted to try to answer questions
> “Can LTE safely co-exist with Wi-Fi?”

– Question is too broad; need to sharpen its focus

> Guideline 1: Clearly state the goals of the study and define 
the scope

> Guideline 2:  Select performance metrics

> Refined question:  ”Can a specific unlicensed variant of LTE 
(LAA) operate in the same spectrum as a Wi-Fi network, 
without impacting Wi-Fi system throughput and latency more 
than another co-located Wi-Fi network would impact it?”
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Network Performance Analysis Fundamentals (cont.)

> What do you mean by “throughput” and “latency”?
– How measured? (precise definition)
– What statistics? (average throughput, 99%th percentile, worst-case, 

etc.)?

> Guideline 3:  Select system and experimental parameters



7

Network Performance Analysis Fundamentals (cont.)

Figure from: http://arxiv.org/abs/1604.06826

http://arxiv.org/abs/1604.06826
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Network Performance Analysis Fundamentals (cont.)

> Guideline 4:  Design experiments
– Select evaluation techniques
– Select factors and their values

> Example:  Place two Wi-Fi networks in same region, fully load 
the system, and plot a CDF of observed throughputs per 
station.  Repeat by replacing one Wi-Fi network with LAA.

These flows (the majority in the
scenario) experience no contention
and achieve close to the MCS 15 limit

Some flows experience contention and
slow down

a) Step 1 (Wi-Fi) b) Step 2 (LAA)

Small amount of throughput 
degradation for the non-replaced 
Wi-Fi network
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Aside:  What is a ‘CDF’?

> A cumulative distribution function measures the probability that samples 
fall below a specified value:  For random variable X, F(x) = P(X <= x)

Why interesting?  
– Many networked systems are designed with concerns about worst-case 

behavior
– A CDF provides a sense of the spread of the data samples

Wi-Fi throughput
measurements

40 % of Wi-Fi
throughputs
are below 80 Mb/s 

LAA throughput
measurements
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Network Performance Analysis Fundamentals (cont.)

> Guideline 5:  Analyze and interpret data, and iterate
– Almost never a one-shot process
– Often need to dig deeper into model or scenario, to mine it for fine-

grained detail

> Guideline 6:  Make your results easy to reproduce
– For others, and by yourself (at a later date)
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What is ns-3?

> We have just hinted at a workflow:
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Performance evaluation alternatives

> Mathematical analysis
> Numerical computing packages (e.g., MATLAB)
> Packet-level simulators
> System-level simulators
> Testbeds, prototypes
> Field trials
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What is ns-3? (cont.)

> ns-3 also has modes of operation that allows it to interact 
with real-world software and networks

ns-3 core
Direct Code
Execution

Emulation
modes

Increasing realism

Increasing complexity

Pure
simulation

Simulation
cradles

Virtual/Physical
test beds

Field
experiments

Live
networks

Test and evaluation options

Spread-
sheets
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What is ns-3? (cont.)

> ns-3 is a leading open source, packet-level network simulator oriented 
towards network research, featuring a high-performance core enabling 
parallelization across a cluster (for large scenarios), ability to run real 
code, and interaction with testbeds

Runs	on	a
single	machine

or	partitioned
across	a	cluster
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What is ns-3? (cont.)

> Packet-level network simulation:  The main unit of modeling is the packet
and entities that exchange packets.
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ns-3 from the ground up

> ns-3 is written in C++
– most code conforms to C++98 standard (starting to use C++11), and 

makes use of the STL (standard template library)

– ns-3 makes use of a collection of C++ design patterns and 
enhancements with applicability to network simulation

– ns-3 experiments can be written in Python (more on that later)

> ns-3 programs make use of standard C++, ns-3 libraries 
written in C++, and (optionally) third-party C++ libraries

> ns-3’s build system requires a working Python (soon to 
require Python 3)

> Various other tools can be used to handle output data
– We’ll focus on Python matplotlib and Gnuplot
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Example ns-3 program

> Located in scratch/ns3-hello-world.cc

This is basic C++, except:

1) we are using methods
defined in an ‘ns3’
namespace

2) The object ‘cmd’ is an 
instance of the 
CommandLine C++ class.

CommandLine exists in C++ 
namespace ‘ns3’.  

CommandLine objects 
process command-line 
arguments.
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ns-3 from the top down

> Rather than (just) CommandLine objects, ns-3 combines 
objects like ‘Packets’, ‘Nodes’, ‘Applications’, etc.

ApplicationApplication

Protocol
stack

Node

NetDeviceNetDevice

ApplicationApplication

Protocol
stack

Node

NetDeviceNetDevice

Sockets-like
API

Channel

Channel

Packet(s)
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Discrete-event simulation basics

We are trying to represent the operation of a network within a 
single C++ program
> We need a notion of virtual time and of events that occur at 

specified (virtual) times
> We need a data structure (scheduler) to hold all of these 

events in temporal order
> We need an object (simulator) to walk the list of events and 

execute them at the correct virtual time
> We can choose to ignore things that conceptually might occur 

between our events of interest, focusing only on the 
(discrete) times with interesting events
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Discrete-event simulation basics (cont.)

• Simulation time moves in discrete jumps from event to event
• C++ functions schedule events to occur at specific simulation 

times
• A simulation scheduler orders the event execution
• Simulation::Run() executes a single-threaded event list
• Simulation stops at specified time or when events end

Execute a function
(may generate additional events)

Advance the virtual time
to the next event (function)

Virtual time
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ns-3 simulation basics and terminology

> A simulation ‘run’ or ‘replication’ usually consists of the 
following workflow
1. Before the notional ‘time 0’, create the scenario objects and pre-

populate the scheduler with some initial events

2. Define stopping criteria; either a specific future virtual time, or 
when certain criteria are met

3. Start the simulation (which initializes objects, at ‘time 0’)

Execute a function
(may generate additional events)

Advance the virtual time
to the next event (function)

Virtual time

Time 0 Stop at time 60

Before time 0,
create and configure
objects, and insert
some events into
the schedule
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Virtual time in ns-3

> Time is stored as a large integer in ns-3
– Minimize floating point discrepancies across platforms

> Special Time classes are provided to manipulate time (such as 
standard operators)

> Default time resolution is nanoseconds, but can be set to 
other resolutions
– Note:  Changing resolution is not well used/tested

> Time objects can be set by floating-point values and can 
export floating-point values
double timeDouble = t.GetSeconds();
– Best practice is to avoid floating point conversions where possible and 

use Time arithmetic operators
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Key building blocks:  Callback and function pointer

> C++ methods are often invoked directly on objects

Unlike CommandLine.AddValue(), 
we more generally need to
call functions at some
future (virtual) time.

Some program element
could assign a function
pointer, and a (later)
program statement could call
(execute) the method
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Events in ns-3

> Events are just functions (callbacks) that execute at a 
simulated time
– nothing is special about functions or class methods that 

can be used as events
> Events have IDs to allow them to be cancelled or to 

test their status
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Simulator and Scheduler

> The Simulator class holds a scheduler, and provides 
the API to schedule events, start, stop, and cleanup 
memory

> Several scheduler data structures (calendar, heap, 
list, map) are possible

> "Realtime" simulation implementation aligns the 
simulation time to wall-clock time
– two policies (hard and soft limit) available when the 

simulation and real time diverge
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Simulator core

> Simulation time  (✓)
> Events (✓)
> Simulator and Scheduler (✓)
> Command line arguments
> Random variables
> Example program walkthrough

Execute a function
(may generate additional events)

Advance the virtual time
to the next event (function)

Virtual time
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CommandLine arguments

> Add CommandLine to your program if you want command-
line argument parsing

> Passing --PrintHelp to programs will display command line 
options, if CommandLine is enabled

./waf --run ”ns3-hello-world --PrintHelp"
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Random Variables and Run Number

• Many ns-3 objects use random variables to model random 
behavior of a model, or to force randomness in a protocol
• e.g. random placement of nodes in a topology

• Many simulation uses involve running a number of 
independent replications of the same scenario, by changing 
the random variable streams in use
– In ns-3, this is typically performed by incrementing the simulation run 

number
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Random Variables

• Currently implemented distributions
– Uniform: values uniformly distributed in an interval
– Constant: value is always the same (not really random)
– Sequential: return a sequential list of predefined values
– Exponential: exponential distribution (poisson process)
– Normal (gaussian), Log-Normal, Pareto, Weibull, Triangular, Zipf, Zeta, 

Deterministic, Empirical

from src/core/examples/sample-rng-plot.py
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Key terminology

> Seed:  A set of values that generates an entirely new PRNG 
sequence

> Stream:  The PRNG sequence is divided into non-overlapping 
intervals called streams

> Run Number (substream):  Each stream is further divided to 
substreams, indexed by a variable called the run number.
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Streams and Substreams

Incrementing the 

Run Number will move

all streams to a new

substream

Each ns-3

RandomVariableStream

object is assigned to a

stream (by default, 

randomly)

Figure source:  Pierre L’Ecuyer, Richard Simard, E. Jack Chen, and  W. David Kelton. 

An object-oriented random number package with  many long streams and substreams. Operations Research, 2001. 
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Setting the stream number

> The ns-3 implementation provides access to 2^64 streams
> 2^63 are placed in a pool for automatic assignment, and 2^63 

are reserved for fixed assignment

> Users may optionally assign a stream number index to a 
random variable using the SetStream () method.
– This allows better control over selected random variables
– Many helpers have AssignStreams () methods to do this across many 

such random variables
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Run number vs. seed

• If you increment the seed of the PRNG, the streams of 
random variable objects across different runs are not 
guaranteed to be uncorrelated

• If you fix the seed, but increment the run number, you will get 
uncorrelated streams

Set RngRun, not RngSeed!
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Example walk-through

> Example program:  src/core/examples/sample-simulator.cc

Demo command line usage, event scheduling, random variables



35

Node basics

> An ns-3 Node is a shell of a computer, to which applications, 
protocol stacks, and NetDevices are added

ApplicationApplicationApplication

“DTN”
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ns-3 example scenario

> Most simulations involve packet exchanges such as depicted 
below

ApplicationApplication

Protocol
stack

Node

NetDeviceNetDevice

ApplicationApplication

Protocol
stack

Node

NetDeviceNetDevice

Sockets-like
API

Channel

Channel

Packet(s)
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Simulation setup

> We have already explained the operation of the start of the 
program (configuring default values and command line 
arguments)

int
main (int argc, char *argv[])
{
DataRate dataRate = DataRate ("100Mbps");
...

CommandLine cmd;
cmd.AddValue("distance","the distance between the two 

nodes",distance);
...
cmd.Parse (argc, argv);
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Nodes and ns-3 Objects

> The next statements create the scenario, usually starting with 
the Node objects:

Ptr<Node> senderNode = CreateObject<Node> ();
Ptr<Node> receiverNode = CreateObject<Node> ();
NodeContainer nodes;
nodes.Add (senderNode);
nodes.Add (receiverNode);

What is CreateObject<Node> ()?
What is a NodeContainer?
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class ns3::Object

• ns-3 is, at heart, a C++ object system
• ns-3 objects that inherit from base class ns3::Object get 

several additional features
– smart-pointer memory management (Class Ptr)
– dynamic run-time object aggregation
– an attribute system

Instead of:
Node* senderNode = new Node;

in ns-3, we write
Ptr<Node> senderNode = CreateObject<Node> ();

Create a smart pointer to hold objects of type Node

Create a new Node object on the heap
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ns-3 attributes

• Attributes are special member variables that the 
Object system exposes in a way to facilitate 
configuration

• An Attribute can be connected to an underlying 
variable or function 
– e.g. TcpSocket::m_cwnd;
– or a trace source
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Helper API

• The ns-3 “helper API” provides a set of classes and methods 
that make common operations easier than using the low-level 
API

• Consists of:
– container objects
– helper classes

• The helper API is implemented using the low-level API
• Each function applies a single operation on a ''set of same 

objects”
• A typical operation is "Install()"
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Containers

• Containers are part of the ns-3 “helper API”
• Containers group similar objects, for convenience

– They are often implemented using C++ std containers
• Container objects also are intended to provide more basic 

(typical) API
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Helper API examples

• NodeContainer: vector of Ptr<Node>
• NetDeviceContainer: vector of Ptr<NetDevice>
• InternetStackHelper
• WifiHelper
• MobilityHelper
• OlsrHelper
• ... many ns-3 models provide a helper class
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Installation onto containers

> Installing models into containers, and handling containers, is a 
key API theme

NodeContainer c;
c.Create (numNodes);
...
mobility.Install (c);
...
internet.Install (c);
...
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Native IP models

> IPv4 stack with ARP, ICMP, UDP, and TCP
> IPv6 with ND, ICMPv6, IPv6 extension headers, TCP, UDP
> IPv4 routing:  RIPv2, static, global, NixVector, OLSR, AODV, 

DSR, DSDV
> IPv6 routing:  RIPng, static
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IP address configuration

> An Ipv4 (or Ipv6) address helper can assign addresses to 
devices in a NetDevice container 

Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
csmaInterfaces = ipv4.Assign (csmaDevices);

...

ipv4.NewNetwork ();  // bumps network to 10.1.2.0
otherCsmaInterfaces = ipv4.Assign (otherCsmaDevices);
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Applications and sockets

• In general, applications in ns-3 derive from the 
ns3::Application base class
– A list of applications is stored in the ns3::Node
– Applications are like processes

• Applications make use of a sockets-like API
– Application::Start () may call ns3::Socket::SendMsg() at a lower layer
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Sockets API

Plain C sockets
int sk;
sk = socket(PF_INET, SOCK_DGRAM, 0);

struct sockaddr_in src;
inet_pton(AF_INET,”0.0.0.0”,&src.sin_ad

dr);
src.sin_port = htons(80);
bind(sk, (struct sockaddr *) &src, 

sizeof(src));

struct sockaddr_in dest;
inet_pton(AF_INET,”10.0.0.1”,&dest.sin_

addr);
dest.sin_port = htons(80);
sendto(sk, ”hello”, 6, 0, (struct 

sockaddr *) &dest, sizeof(dest));

char buf[6];
recv(sk, buf, 6, 0);
}

ns-3 sockets
Ptr<Socket> sk = 
udpFactory->CreateSocket ();

sk->Bind (InetSocketAddress (80));

sk->SendTo (InetSocketAddress (Ipv4Address 
(”10.0.0.1”), 80), Create<Packet> 
(”hello”, 6));

sk->SetReceiveCallback (MakeCallback
(MySocketReceive));

• […] (Simulator::Run ())

void MySocketReceive (Ptr<Socket> sk, 
Ptr<Packet> packet)

{
...
}
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Mobility and position

> The MobilityHelper combines a mobility model and position allocator.
> Position Allocators setup initial position of nodes (only used when 

simulation starts):
– List: allocate positions from a deterministic list specified by the user;
– Grid: allocate positions on a rectangular 2D grid (row first or column first);
– Random position allocators: allocate random positions within a selected form 

(rectangle, circle, …).

> Mobility models specify how nodes will move during the simulation:
– Constant: position, velocity or acceleration;
– Waypoint: specify the location for a given time (time-position pairs);
– Trace-file based: parse files and convert into ns-3 mobility events, support 

mobility tools such as SUMO, BonnMotion (using NS2 format) , TraNS
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Propagation

> Propagation module defines:
– Propagation loss models: 

Calculate the Rx signal power considering the Tx signal power and the 
respective Rx and Tx antennas positions.

– Propagation delay models: 
Calculate the time for signals to travel from the TX antennas to RX 
antennas.

> Propagation delay models almost always set to:
– ConstantSpeedPropagationDelayModel: In this model, the signal 

travels with constant speed (defaulting to speed of light in vacuum)
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Propagation (cont.)

> Propagation loss models:
– Many propagation loss models are implemented:

üAbstract propagation loss models:
FixedRss, Range, Random, Matrix, …

üDeterministic path loss models:
Friis, LogDistance, ThreeLogDistance, TwoRayGround, …

üStochastic fading models:
Nakagami, Jakes, …
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Propagation (cont.)

– A propagation loss model can be “chained” to another 
one, making a list. The final Rx power takes into account all 
the chained models. 
Example: path loss model + shadowing model + fading 
model
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NetDevices and Channels

Some types of NetDevices are strongly bound to Channels of a 
matching type

More recently, NetDevices use a channel allowing multiple signal 
types to coexist
> SpectrumChannel

CsmaNetDevice

CsmaChannel
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NetDevices and traces

> ns-3 TraceSource objects are callbacks that may be hooked to 
obtain trace data from the simulator

> Example:  CsmaNetDevice
CsmaNetDevice::Send ()

CsmaNetDevice::
TransmitStart()

CsmaNetDevice::
Receive()

CsmaChannel

NetDevice::
ReceiveCallback

queue

MacRx
MacDrop

MacTx

MacTxBackoff

PhyTxBegin
PhyTxEnd PhyTxDrop

Sniffer
PromiscSniffer

PhyRxEnd
PhyRxDrop
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ns-3 program structure

Handle program inputs

Configure topology

Run simulation

Process outputs
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Placeholder

> Review examples/tutorial/first.cc
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Next steps

> Code organization and build system
> Documentation system
> Packet objects and queues
> Walkthrough of ‘mm1-queue.cc’ example

– Simple experiment management
– Objects, attributes, tracing
– Logging and debugging


