ns-3 training

Tom Henderson
ns-3 annual meeting 2019

June 17-21, Florence, Italy

UNIVERSITY of WASHINGTON

Agenda and Instructors

> Monday: ns-3 overview (Tom Henderson)
— software overview

— sample program and experiments (M/M/1 queue)

> Tuesday AM: TCP (Tom Henderson)
> Tuesday AM: Wi-Fi (Sebastien Deronne)
> Tuesday PM: LTE (Zoraze Ali)

> Tuesday PM: sensor networks (Tommaso Pecorella
and Davide Magrin)

Wiki: https://www.nsnam.org/wiki/AnnualTraining2019

https://www.nsnam.org/wiki/AnnualTraining2019

Working with training code

> See the wiki page for instructions on how to get and update
the code used in this training

> https://www.nsnam.org/wiki/AnnualTraining2019

https://www.nsnam.org/wiki/AnnualTraining2019

What is ns-3?

> Software to build models of computer networks, to conduct
performance evaluation studies

[Question: Can LTE safely co-exist with Wi-Fi?]

120 m
<< >
A
5 UEs/STAs per cell 4 co-channel cells
per operator (40 total)

Downlink on
per operator (eNB
randomly dropped D

shared channel;
or Wi-Fi AP)

LAA has separate
D D \ licensed uplink
D D ((92) D ,D/% (@) Q)
50 m D D = é D [% %x O
I . a ' @
Step 1: Both operators A and B are Wi-Fi \

co-channel on separate SSID

Non-mobile indoor .
. Idealized
Step 2: (depicted) Replace operator A network with LTE LAA scenario backhaul to
traffic sources

Network Performance Analysis Fundamentals

> Studies are conducted to try to answer questions
> “Can LTE safely co-exist with Wi-Fi?”
— Question is too broad; need to sharpen its focus
> Guideline 1: Clearly state the goals of the study and define
the scope

> Guideline 2: Select performance metrics

> Refined question: “Can a specific unlicensed variant of LTE
(LAA) operate in the same spectrum as a Wi-Fi network,
without impacting Wi-Fi system throughput and latency more
than another co-located Wi-Fi network would impact it?”

W

Network Performance Analysis Fundamentals (cont.)

> What do you mean by “throughput” and “latency”?
— How measured? (precise definition)

— What statistics? (average throughput, 99%th percentile, worst-case,
etc.)?

> Guideline 3: Select system and experimental parameters

N Indoor scenario
20 MHz
5GHz
Number of carriers 1, 4 (to be shared between two
operators)
1 for evaluations with DL+UL Wi-Fi
coexisting with DL-only LAA

et
power
18 dBm for unlicensed spectrum
transmission power

Distance dependent path loss, ITU InH
shadowing and fading

2D Omni-directional

6m

15m

5dBi

0 dBi
10 UEs per unlicensed band carrier per
operator for DL-only

10 UEs per unlicensed band carrier per
operator for DL-only for four unlicensed
carriers.

20 UEs per unlicensed band carrier per
operator for DL+UL for single
unlicensed carrier.

20 UEs per unlicensed band carrier per
operator for DL+UL Wi-Fi coexisting
with DL-only LAA

All UEs should be randomly dropped
and be within coverage of the small cell
in the unlicensed band.

FTP Model 1 and 3 based on TR
36.814 FTP model file size: 0.5 Mbytes.
Optional: VolP model based on
TR36.889

UE Dropping

Traffic Model

9dB
For LAA UEs, cell selection is based on
RSRP (Reference Signal Received
Power.

For WiFi stations (STAs), cell
selection is based on RSS (Received
signal power strength) of WiFi Access
Points (APs). RSS threshold is -82 dBm.
For the same operator, the network can
be synchronized. Small cells of different
operators are not synchronized.

UE noise figure
Cell selection

Network synchronization

Network Performance Analysis Fundamentals (cont.)

1 NPISNEenNiatliofn
Indoor scenario
20 MHz
5 GHz (channel 36, tunable)
1 for evaluations with DL+UL Wi-Fi
coexisting with DL-only LAA

18/24 dBm
Simulations herein consider 18 dBm
18 dBm

802.11ax indoor model

2D Omni-directional
6 m (LAA, not modelled for Wi-Fi)
1.5 m (LAA, not modelled for Wi-Fi)
5dBi
0 dBi
Supports all the configurations in TR
36.889. Simulations herein consider the
case of 20 UEs per unlicensed band
carrier per operator for DL LAA
coexistence evaluations for single
unlicensed carrier.

Randomly dropped and within small cell
coverage.

FTP Model 1 as in TR36.814.
FTP modelfile size: 0.5 Mbytes
Voice model: DL only

9dB
RSRP for LAA UEs and RSS for Wi-Fi
STAs

Small cells are synchronized, different
operators are not synchronized.

Figure from: http://arxiv.org/abs/1604.06826

http://arxiv.org/abs/1604.06826

Network Performance Analysis Fundamentals (cont.)

> Guideline 4: Design experiments
— Select evaluation techniques
— Select factors and their values

> Example: Place two Wi-Fi networks in same region, fully load
the system, and plot a CDF of observed throughputs per
station. Repeat by replacing one Wi-Fi network with LAA.

CDF

o
o g

Thefse flows Cthe majoirity in thé
scenario) experience no contention

o8t o R

%Small arﬁount of ithroughpiut ; ; |
06 - degradation for the non-replaced : ;
D W|F|nectwork """"""" S Y A EE

5 T
o 3 : : : : : 3
04 b o 5 A
Some iflows exﬁerience éontentioh and g4 ‘ : : : : ‘
| stowdown : 02 fo M
: 3 : ; PR : ? : : : : g ‘
: 3 . erator A (Wi-Fi) —5—
. 0 s HEEReE . ; ! ! ‘
20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Throughput [Mbps] Throughput [Mbps]
a) Step 1 (Wi-Fi) b) Step 2 (LAA)

Aside: What is a ‘CDF’?

> A cumulative distribution function measures the probability that samples
fall below a specified value: For random variable X, F(x) = P(X <= x)

Wi-Fi throughput

measurements
LAA throughput

measurements

Small amount of throughput
degradation for the non-replaced
Wi-Fi network

40 % of Wi-Fi
throughputs
are below 80 Mb/s

ANCLIZARLE Y ops

b) Step 2 (LAA)
Why interesting?

— Many networked systems are designed with concerns about worst-case
behavior

— A CDF provides a sense of the spread of the data samples ' '

Network Performance Analysis Fundamentals (cont.)

> Guideline 5: Analyze and interpret data, and iterate
— Almost never a one-shot process

— Often need to dig deeper into model or scenario, to mine it for fine-
grained detail

> Guideline 6: Make your results easy to reproduce
— For others, and by yourself (at a later date)

10

What is ns-3?

> We have just hinted at a workflow:

Scenario

Generation
Problem Modeling Experiment
Definition Definition

Execution manager

ns-3 Output data
execution management

11

12

Performance evaluation alternatives

> Mathematical analysis

> Numerical computing packages (e.g., MATLAB)
> Packet-level simulators

> System-level simulators

> Testbeds, prototypes

> Field trials

What is ns-3? (cont.)

> ns-3 also has modes of operation that allows it to interact
with real-world software and networks

Direct Code Emulation

-3 i d
ns core\ Execu\t‘lon \A\, ‘// mo 243

Test and evaluation options

Spread- Pure Simulation Virtual/Physical Field Live
sheets simulation cradles test beds experiments networks

Increasing realism

Increasing complexity

What is ns-3? (cont.)

> ns-3is a leading open source, packet-level network simulator oriented
towards network research, featuring a high-performance core enabling
parallelization across a cluster (for large scenarios), ability to run real
code, and interaction with testbeds

Runs on a
single machine

14

coal anali

ations

real applications

Native ns-3
models of these
layers

—

real applications
via Direct Code

=

Transport
* High fidelity '
models of ;
LTE, Wi-Fi
* Support for
802.15.4,
mobility, Phy/ChanneI

propagation,

energy

Execution
, modular
: interconnections
run Linux
Linux kernel code
stack via Direct
Code Execution
. modular
: interconnections
packets can
be sent out
Q\ over real NICs
in testbeds
(realtime
scheduler)

- via Direct Code
Execution

ctions

run Linux
kernel code

via Direct

Code Execution

tions

packets can
be sent out

__ over real NICs
in testbeds
(realtime
scheduler)

Code

e

cution

an
ut
NICs
ds

r)

or partitioned
across a cluster

[HEY
92

What is ns-3? (cont.)

> Packet-level network simulation: The main unit of modeling is the packet
and entities that exchange packets.

S
" — — o — — N — — I __________ l -- -
5 : ve I eNB ! ' SGW/PGW | | remote host !
® I I I
O I |1
— | -to- icati |
o 8 | APP 1I end-to-end appllcatllbri I} APP
> © : ' ' | |
| to- i | I
TCP/UDP | end-to-end TCP/UDP socket cdnhectlon } TCP/UDP
I | I |] | |
| . | |
L end-to-end IP connectibn |
C IP IP ﬁ IP
O 1I TIIH-FH-J‘-HHI 1H'|-|-|L'|-|-H'IIII | I
e | Ul ol o] o o A o o
B ¢ 1 =s "| . I !
= - I = l - '
¢ @ : N =s L = | !
o9 S| R)] R || woe fy | DR S |l |
= N == by - | !
-l MAC MAC - |P |P - |
- N - i z ' !
S :I PHY H PHY E I I : | I
s §i I i ! 5 X |
8 (=) By S —— E—-U [N [P [T [[I E—
O = - = -
T = LTE Radio Protocol stack == S1-U protocol stack -
§ _Q AR R R R R R R RRERRERERRRRRRR R R R SRR RS
®

16

ns-3 from the ground up

> ns-3is written in C++

— most code conforms to C++98 standard (starting to use C++11), and
makes use of the STL (standard template library)

— ns-3 makes use of a collection of C++ design patterns and
enhancements with applicability to network simulation

— ns-3 experiments can be written in Python (more on that later)
> ns-3 programs make use of standard C++, ns-3 libraries
written in C++, and (optionally) third-party C++ libraries
> ns-3’s build system requires a working Python (soon to
require Python 3)

> Various other tools can be used to handle output data
— We'll focus on Python matplotlib and Gnuplot

Example ns-3 program

> Located in scratch/ns3-hello-world.cc

This is basic C++, except:

1) we are using methods
defined in an ‘ns3’ /

namespace
2) The object ‘cmd’ is an —_—
instance of the
CommandLine C++ class.
CommandLine exists in C++
namespace ‘ns3’.
CommandLine objects
process command-line
arguments.

17

#include <iostream>
#include "ns3/command-1line.h"

using namespace ns3;

int main (int argc, char *argv[])

{
std::string language = "English";
std::string phrase;

CommandLine cmd;
cmd.AddValue ("language", "Specify language", language);
cmd.Parse (argc, argv);

if (language == "English")
{

phrase = "Hello world";
}
else if (language == "Italian")
{

phrase =

}

else

{

phrase

}

"Ciao mundo";

"That language is not spoken here";

std::cout << phrase << std::endl;

18

ns-3 from the top down

> Rather than (just) CommandLine objects, ns-3 combines
objects like ‘Packets’, ‘Nodes’, ‘Applications’, etc.

((
_— n
[Apphcatlonjo_] [Applicatio
Sockets-like

P

S © e AP

~
\

Protocol

sthek Packet(s)

~
e ————

[NetDe ice [(Channi]

~~~~~ Channel

|




19

Discrete-event simulation basics

We are trying to represent the operation of a network within a
single C++ program

> We need a notion of virtual time and of events that occur at
specified (virtual) times

> We need a data structure (scheduler) to hold all of these
events in temporal order

> We need an object (simulator) to walk the list of events and
execute them at the correct virtual time

> We can choose to ignore things that conceptually might occur
between our events of interest, focusing only on the

(discrete) times with interesting events



Discrete-event simulation basics (cont.)

* Simulation time moves in discrete jumps from event to event

* C++ functions schedule events to occur at specific simulation
times

* A simulation scheduler orders the event execution
* Simulation::Run() executes a single-threaded event list
* Simulation stops at specified time or when events end

Execute a function

(may generate additional events)
A AN ~
1 v SS
I ~

\ S o

RN l

\/ Advance the virtual time
to the next event (function)

20



ns-3 simulation basics and terminology

> A simulation ‘run’ or ‘replication’” usually consists of the
following workflow

1. Before the notional ‘time O’, create the scenario objects and pre-
populate the scheduler with some initial events

2. Define stopping criteria; either a specific future virtual time, or
when certain criteria are met

3. Start the simulation (which initializes objects, at ‘time 0’)

Execute a function
* (may generate additional events)
A\~
\ SS

|
| \ ~
|

Before time 0,

create and configure
objects, and insert ~ _
some events into B

the schedule \/ Advance the virtual time
i> to the next event (function) f

Time 0 Stop at time 60

~

Sa

21



22

Virtual time in ns-3

> Time is stored as a large integer in ns-3
— Minimize floating point discrepancies across platforms

> Special Time classes are provided to manipulate time (such as
standard operators)

> Default time resolution is nanoseconds, but can be set to
other resolutions
— Note: Changing resolution is not well used/tested
> Time objects can be set by floating-point values and can

export floating-point values
double timeDouble = t.GetSeconds () ;

— Best practice is to avoid floating point conversions where possible and
use Time arithmetic operators




23

Key building blocks: Callback and function pointer

> C++ methods are often invoked directly on objects

#include <iostream>
#include "ns3/command-line.h"

using namespace ns3; Unlike CommandLine.AddValue(),
{mt main (int argc, char *argv[]) we more generally need to
std::string language = "English"; call functions at some

std::string phrase;

ommandtine. cmd;
md.AddValue’ ("language", "Specify language", language);

cmd.Parse (argc, argv);

future (virtual) time.

Some program element

if{“a"guage == "English") could assign a function
) phrase = "Hello world"; pointer, and a (later)
elz’c if (language == “Italian") program statement could call
phrase = "Ciao mundo"; (execute) the method
}
else
{
phrase = "That language is not spoken here";

}

std::cout << phrase << std::endl;




24

Events in ns-3

> Events are just functions (callbacks) that execute at a
simulated time

— nothing is special about functions or class methods that
can be used as events

> Events have IDs to allow them to be cancelled or to
test their status

W



25

Simulator and Scheduler

> The Simulator class holds a scheduler, and provides

the API to schedule events, start, stop, and cleanup
memory

> Several scheduler data structures (calendar, heap,
list, map) are possible

> "Realtime" simulation implementation aligns the
simulation time to wall-clock time

— two policies (hard and soft limit) available when the

simulation and real time diverge



26

Simulator core

> Simulation time (V)
> Events (V)

> Simulator and Scheduler (V)
> Command line arguments

> Random variables
> Example program walkthrough

Execute a function

~
| \ ~
I ~

* (may generate additional events)
~
| i S a '

A A ~
\ ~
\/ Advance the virtual time
to the next event (function)




27

CommandLine arguments

> Add CommandLine to your program if you want command-
line argument parsing

int main (int argc, char *argv[])

{

CommandLine cmd;

cmd.Parse (argc, argv);

> Passing --PrintHelp to programs will display command line
options, if CommandLine is enabled

./waf —--run ”“ns3-hello-world --PrintHelp"

--PrintHelp: Print this help message.

--PrintGroups: Print the list of groups.

--PrintTypelds: Print all Typelds.

--PrintGroup=[group]: Print all Typelds of group.
--PrintAttributes=[typeid]: Print all attributes of typeid.
--PrintGlobals: Print the list of globals.




Random Variables and Run Number

* Many ns-3 objects use random variables to model random
behavior of a model, or to force randomness in a protocol
 e.g.random placement of nodes in a topology

* Many simulation uses involve running a number of
independent replications of the same scenario, by changing
the random variable streams in use

— In ns-3, this is typically performed by incrementing the simulation run
number

28



Random Variables

* Currently implemented distributions
— Uniform: values uniformly distributed in an interval
— Constant: value is always the same (not really random)
— Sequential: return a sequential list of predefined values
— Exponential: exponential distribution (poisson process)

— Normal (gaussian), Log-Normal, Pareto, Weibull, Triangular, Zipf, Zeta,
Deterministic, Empirical

t Demonstrate use of ns-3 as a random number generator integrated with

plotting tools; adapted from Gustavo Carneiro's ns-3 tutorial T ns-3 histogram

import numpy as np
import matplotlib.pyplot as plt
import ns.core

0.025 n=100, 7 =15

# mu, var = 100, 225 0.020
rng = ns.core.Normalvariable(100.0, 225.0)
x = [rng.GetValue() for t in range(10000)]

0.015
the histogram of the data

n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75)
0.010
plt.title('ns-3 histogram')

plt.text(60, .025, r'S$\mu=100,\ \sigma=15$"')
plt.axis([40, 160, 0, 0.03]) 0005~
plt.grid(True)
plt.show()

0.00040 60 0

200+« &l

from src/core/examples/sample-rng-plot.py
29




30

Key terminology

> Seed: A set of values that generates an entirely new PRNG
sequence

> Stream: The PRNG sequence is divided into non-overlapping
intervals called streams

> Run Number (substream): Each stream is further divided to
substreams, indexed by a variable called the run number.

W



Streams and Substreams

2191

3.1x10%7

/&r_..

-

Incrementing the

Run Number will move
all streams to a new
substream

=3 Each ns-3
RandomVariableStream
object is assigned to a
stream (by default,
randomly)

Figure source: Pierre LEcuyer, Richard Simard, E. Jack Chen, and W. David Kelton.
An object-oriented random number package with many long streams and substreams. Operations Research, 2001

31



Setting the stream number

> The ns-3 implementation provides access to 2264 streams

> 2763 are placed in a pool for automatic assignment, and 2263
are reserved for fixed assignment

stream @ stream (2"63 - 1) stream 2763 stream (2764 - 1)
<- automatically assigned ----------- ><- assigned by user ----------------- >

> Users may optionally assign a stream number index to a
random variable using the SetStream () method.

— This allows better control over selected random variables

— Many helpers have AssignStreams () methods to do this across many
such random variables

32




33

Run number vs. seed

* |f youincrement the seed of the PRNG, the streams of
random variable objects across different runs are not
guaranteed to be uncorrelated

* |f you fix the seed, but increment the run number, you will get
uncorrelated streams

Set RngRun, not RngSeed!

W



Example walk-through

> Example program: src/core/examples/sample-simulator.cc

static void
RandomFunction (void)

{

std::cout << "RandomFunction received event at "
<< Simulator::Now ().GetSeconds () << "s" << std::endl;

int main (int argc, char *argv[])

{

CommandLine cmd;
cmd.Parse (argc, argv);

MyModel model;

Ptr<UniformRandomVariable> v = CreateObject<UniformRandomvariable> ();
v->SetAttribute ("Min", Doublevalue (10));

v->SetAttribute ("Max", Doublevalue (20));

Simulator::Schedule (Seconds (10.0), &ExampleFunction, &model);

Simulator::Schedule (Seconds (v->GetValue ()), &RandomFunction);

Demo command line usage, event scheduling, random variables

34




Node basics

> An ns-3 Node is a shell of a computer, to which applications,
protocol stacks, and NetDevices are added

Appli~

Application




36

ns-3 example scenario

> Most simulations involve packet exchanges such as depicted
below

( (
. n
[Apphcatlon}o_] [ApplicationE]
Sockets-like

S © e AP

~
\

Projocol
sthck

[NetDe ice [ ( Channi]

~~~~~ Channel

Packet(s)

~
e ————

|

37

Simulation setup

> We have already explained the operation of the start of the
program (configuring default values and command line
arguments)

int
main (int argc, char *argv][])
{
DataRate dataRate = DataRate ("100Mbps")

CommandLine cmd;
cmd.AddValue ("distance", "the distance between the two
nodes",distance) ;

cmd.Parse (argc, argv);

38

Nodes and ns-3 Objects

> The next statements create the scenario, usually starting with
the Node objects:

Ptr<Node> senderNode = CreateObject<Node> ()
Ptr<Node> receiverNode = CreateObject<Node> ()
NodeContainer nodes;

nodes.Add (senderNode) ;

nodes.Add (receiverNode) ;

What is CreateObject<Node> ()?
What is a NodeContainer?

class ns3::0Object

* ns-3is, at heart, a C++ object system

* ns-3 objects that inherit from base class ns3::0bject get
several additional features
— smart-pointer memory management (Class Ptr)
— dynamic run-time object aggregation
— an attribute system

Instead of:
Node* senderNode = new Node;

in ns-3, we write Create a new Node object on the heap

[/
Ptr<Node> senderNode = CreateObject<Node> ()

\

Create a smart pointer to hold objects of type Node

39

40

ns-3 attributes

e Attributes are special member variables that the
Object system exposes in a way to facilitate
configuration

* An Attribute can be connected to an underlying
variable or function
— e.g. TcpSocket::m_cwnd;

— Or a trace source

W

41

Helper API

* The ns-3 “helper API” provides a set of classes and methods
that make common operations easier than using the low-level
API

e Consists of:
— container objects
— helper classes

* The helper APl is implemented using the low-level API

e Each function applies a single operation on a "'set of same
objects”
e A typical operation is "Install()"

42

Containers

* Containers are part of the ns-3 “helper API”
* Containers group similar objects, for convenience
— They are often implemented using C++ std containers

* Container objects also are intended to provide more basic
(typical) API

43

Helper APl examples

* NodeContainer: vector of Ptr<Node>

* NetDeviceContainer: vector of Ptr<NetDevice>
* InternetStackHelper

* WifiHelper

* MobilityHelper

e QOlsrHelper

e ...many ns-3 models provide a helper class

44

Installation onto containers

> |nstalling models into containers, and handling containers, is a
key APl theme

NodeContainer c;

c.Create (numNodes) ;
mobility.Install (c);

internet.Install (c);

45

Native IP models

> |Pv4 stack with ARP, ICMP, UDP, and TCP
> |Pv6 with ND, ICMPv6, IPv6 extension headers, TCP, UDP

> |Pv4 routing: RIPv2, static, global, NixVector, OLSR, AODV,
DSR, DSDV

> |Pv6 routing: RIPng, static

W

46

IP address configuration

> An Ipv4 (or lpv6) address helper can assign addresses to
devices in a NetDevice container

Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");

csmalnterfaces = ipv4.Assign (csmaDevices);
ipv4.NewNetwork (); // bumps network to 10.1.2.0
otherCsmalInterfaces = ipv4.Assign (otherCsmaDevices);

47

Applications and sockets

* |n general, applications in ns-3 derive from the
ns3::Application base class
— Alist of applications is stored in the ns3::Node
— Applications are like processes
* Applications make use of a sockets-like API
— Application::Start () may call ns3::Socket::SendMsg() at a lower layer

48

Sockets API

Plain C sockets ns-3 sockets
int sk; Ptr<Socket> sk =
sk = socket (PF _INET, SOCK DGRAM, O0); udpFactory->CreateSocket ();

struct sockaddr in src;

inet pton(AF INET,”0.0.0.07,&src.sin_ad sk->Bind (InetSocketAddress (80));
dr);
src.sin port = htons (80);

bind(sk, (struct sockaddr *) é&src,

struct sockaddr in dest; sk->SendTo (InetSocketAddress (Ipv4Address
inet pton(AF INET,”10.0.0.1",&dest.sin_ (”10.0.0.1"), 80), Create<Packet>
addr) ; ("hello”, 6));

dest.sin port = htons (80);
sendto (sk, ”“hello”, 6, 0, (struct
sockaddr *) &dest, sizeof (dest));

char buflo]; sk->SetReceiveCallback (MakeCallback
recv (sk, buf, o6, 0); (MySocketReceive)) ;
} . [..] (Simulator::Run ())

void MySocketReceive (Ptr<Socket> sk,
Ptr<Packet> packet)

{

Mobility and position

> The MobilityHelper combines a mobility model and position allocator.
> Position Allocators setup initial position of nodes (only used when
simulation starts):
— List: allocate positions from a deterministic list specified by the user;
— @Grid: allocate positions on a rectangular 2D grid (row first or column first);

— Random position allocators: allocate random positions within a selected form
(rectangle, circle, ...).

> Mobility models specify how nodes will move during the simulation:
— Constant: position, velocity or acceleration;
— Waypoint: specify the location for a given time (time-position pairs);

— Trace-file based: parse files and convert into ns-3 mobility events, support
mobility tools such as SUMO, BonnMotion (using NS2 format) , TraNS

49

Propagation

> Propagation module defines:

— Propagation loss models:
Calculate the Rx signal power considering the Tx signal power and the
respective Rx and Tx antennas positions.

— Propagation delay models:
Calculate the time for signals to travel from the TX antennas to RX
antennas.

> Propagation delay models almost always set to:

— ConstantSpeedPropagationDelayModel: In this model, the signal
travels with constant speed (defaulting to speed of light in vacuum)

50

51

Propagation (cont.)

> Propagation loss models:

— Many propagation loss models are implemented:

v’ Abstract propagation loss models:
FixedRss, Range, Random, Matrix, ...

v’ Deterministic path loss models:
Friis, LogDistance, ThreeLogDistance, TwoRayGround, ...

v’ Stochastic fading models:
Nakagami, Jakes, ...

52

Propagation (cont.)

— A propagation loss model can be “chained” to another

one, making a list. The final Rx power takes into account all
the chained models.

Example: path loss model + shadowing model + fading

model

T

Signal Strength [dB]

Signal Strength [dB)

=
-

.
-

J

W ' "w

R
Signal Strength [dB)

A

-

Distance to Sen?ier

TXPwr— | Friis

» Shadowing

Time Tnme

» Nakagami-m |—— RxPwr

NetDevices and Channels

Some types of NetDevices are strongly bound to Channels of a
matching type

CsmaNetDevice

More recently, NetDevices use a channel allowing multiple signal
types to coexist

> SpectrumChannel

53

NetDevices and traces

> ns-3 TraceSource objects are callbacks that may be hooked to
obtain trace data from the simulator

> Example: CsmaNetDevice NetDevice: :
CsmaNetDevice: :Send () RecelveCallback
l MacTx MacRx
MacDrop
queue Sniffer
PromiscSniffer
MacTxBackoff
PhyTxBegin PhyRxEnd
PhyTxEnd | 1Y TxDrop PhyRxDrop
CsmaNetDevice:: CsmaNetDevice::
TransmitStart () Receive ()

54 (CsmaChannel 0

55

ns-3 program structure

Handle program inputs

o

Configure topology

-

Run simulation

o

Process outputs

56

Placeholder

> Review examples/tutorial/first.cc

57

Next steps

> Code organization and build system

> Documentation system

> Packet objects and queues

> Walkthrough of ‘mm1-queue.cc’ example

— Simple experiment management
— Objects, attributes, tracing
— Logging and debugging

