
ns-3 training

Tom Henderson
ns-3 annual meeting 2019
June 17-21, Florence, Italy

2

Next steps

> Code organization and build system
> Documentation system
> Packet objects and queues
> Walkthrough of ‘mm1-queue.cc’ example

– Simple experiment management
– Objects, attributes, tracing
– Logging and debugging

Software orientation

Key differences from other network simulators:

1) Command-line, Unix orientation
– vs. Integrated Development Environment (IDE)

2) Simulations and models written directly in C++ and
Python

– vs. a domain-specific simulation language

ns-3 Training, June 2019

ns-3 not written in a high-level language

ns-3 Training, June 2019

Example of OMNeT++ Network Description (NED) language
Figure excerpted from http://www.ewh.ieee.org/soc/es/Nov1999/18/ned.htm

http://www.ewh.ieee.org/soc/es/Nov1999/18/ned.htm

ns-3 does not have a graphical IDE

ns-3 Training, June 2019
Figure source: https://www.comsol.com/comsol-multiphysics

https://www.comsol.com/comsol-multiphysics

ns-3 uses outside programs for graphics

ns-3 Training, June 2019

Radio environment map showing
signal strength from eNBs

gnuplot

LTE radio environment
map (REM)

Will experiment with
this on Tuesday

ns-3 users typically write scripts to plot

ns-3 Training, June 2019

EmsVideo_1_Server 942.36392953 RX 1012 1061 U 2395
EmsVideo_1_Client 942.37317727 TX 1012 1061 U 2398
EmsVideo_1_Client 942.377 RX 64 113 U 2397
WebBrowsingGraphics_0_Server 942.38092876 TX 1024 1073 U
2399
WebBrowsingGraphics_0_Client 942.394 RX 1024 1073 U 2399
AvlAssetPerimeter_1_Server 942.42492988 RX 1408 1457 U
2401

Raw trace data generated by ns-3

Animated

Used to measure KPIs

Talk	spurt

PTT Floor	granted

(KPI	1)
Access	time

Release

Talk	spurt

(KPI	3)
Mouth	 to	ear	latency

Receiver

Sender

Visualization

• No preferred visualizer for ns-3
• Two tools have been developed over the years,

with some scope limitations
– Pyviz

• FlowMonitor (statistics with Pyviz linkage)

– NetAnim (George Riley and John Abraham)

• Support is lagging for these tools (help wanted)

ns-3 Training, June 2019 8

PyViz overview

• Developed by Gustavo Carneiro

• Live simulation visualizer (no trace files)

• Useful for debugging
– mobility model behavior

– where are packets being dropped?

• Built-in interactive Python console to debug the state of
running objects

• Works with Python and C++ programs

ns-3 Training, June 2019 9

Pyviz and FlowMonitor

• Example screenshot from:
./waf --run src/flow-monitor/examples/wifi-olsr-flowmon.py
--vis

ns-3 Training, June 2019 10

Enabling PyViz in your simulations

• Make sure PyViz is enabled in the build

• If program supports CommandLine parsing, pass the
option
--SimulatorImplementationType=
ns3::VisualSimulatorImpl

• Alternatively, pass the "--vis" option

ns-3 Training, June 2019 11

FlowMonitor

• Network monitoring framework found in src/flow-
monitor/

• Goals:
– detect all flows passing through network
– stores metrics for analysis such as bitrates, duration,

delays, packet sizes, packet loss ratios

G. Carneiro, P. Fortuna, M. Ricardo, "FlowMonitor-- a network monitoring framework
for the Network Simulator ns-3," Proceedings of NSTools 2009.

ns-3 Training, June 2019 12

Plan to discuss more on Tuesday

NetAnim

• "NetAnim" by George Riley and John Abraham

pyviz

ns-3 Training, June 2019 13

NetAnim key features

• Animate packets over wired-links and wireless-links
– limited support for LTE traces

• Packet timeline with regex filter on packet meta-data.
• Node position statistics with node trajectory plotting (path

of a mobile node).
• Print brief packet-meta data on packets

ns-3 Training, June 2019 14

Software organization

• Two levels of ns-3 software and libraries

ns-3Click routingNetanim pybindgen

module

module module

module

module

module

1) Several supporting libraries, not system-installed, can be in parallel to ns-3

2) ns-3 modules exist
within the ns-3 directory

ns-3 Training, June 2019

Typical module source code organization

model/
examples/
test/
bindings/
doc/
wscript/

ns-3 Training, June 2019 16

17

Modules in ns-3 mainline

applications

internet
(IPv4/v6)

internet-apps

traffic-control

bridge

csma

emu

point-to-
point

spectrum

tap-bridge

virtual-
net-device

wifi

lte

wimax

devices

uan

mesh

lr-wpan core

network

propagation

mobility

mpi

energy

nix-vector-
routing

aodv

dsdv

olsr

click

protocols

openflow

flow-monitor

BRITE

topology-
read

utilities

stats

config-
store

netanim

visualizer

Smart pointers
Dynamic types
Attributes

Callbacks
Tracing
Logging
Random Variables Events

Scheduler
Time arithmetic

Packets
Packet Tags
Packet Headers
Pcap/ascii file writing

Node class
NetDevice ABC
Address types
(Ipv4, MAC, etc.)
Queues
Socket ABC
Ipv4 ABCs
Packet sockets

ns-3 programs

• ns-3 programs are C++ executables that link the
needed shared libraries
– or Python programs that import the needed modules

• The ns-3 build tool, called 'waf', can be used to
run programs

• waf will place headers, object files, libraries, and
executables in a 'build' directory

ns-3 Training, June 2019

Python bindings

• ns-3 uses a program called PyBindGen to
generate Python bindings for all libraries

v

C++
header

v

Intermediate
Python
program

v

C++
bindings
code

v

Python
module

CastXML
(py)gccxml

PyBindGen C++ compiler

ns-3 Training, June 2019

Python bindings status

• API scanning for Python used to use a tool
called gccxml

• ns-3 has moved to the successor, CastXML
– requires a development installation of clang

• Automated testing currently only for Linux 64-bit
systems
– MacOS API scanning is not tested

ns-3 Training, June 2019

waf operation

• This slide is a placeholder to demonstrate Waf operation
– ‘waf build’ will compile and link source code into

executables
– ‘waf --run’ will run an executable in a special shell that

knows the path to ns-3 libraries
– New option: ‘waf --run-no-build’ will skip the build step

ns-3 Training, June 2019 21

waf configuration

• Key waf configuration examples
./waf configure

--enable-examples
--enable-tests
--disable-python
--enable-modules

• Whenever build scripts change, need to
reconfigure

Demo: ./waf --help
./waf configure --enable-examples --

enable-tests --enable-modules='core'
Look at: build/c4che/_cache.py

ns-3 Training, June 2019 22

wscript example

-*- Mode: python; py-indent-offset: 4; indent-tabs-mode: nil; coding: utf-8; -*-

def build(bld):
obj = bld.create_ns3_module('csma', ['network', 'applications'])
obj.source = [

'model/backoff.cc',
'model/csma-net-device.cc',
'model/csma-channel.cc',
'helper/csma-helper.cc',
]

headers = bld.new_task_gen(features=['ns3header'])
headers.module = 'csma'
headers.source = [

'model/backoff.h',
'model/csma-net-device.h',
'model/csma-channel.h',
'helper/csma-helper.h',
]

if bld.env['ENABLE_EXAMPLES']:
bld.add_subdirs('examples')

bld.ns3_python_bindings()

ns-3 Training, June 2019 23

waf build

• Once project is configured, can build via
./waf build or ./waf

• waf will build in parallel on multiple cores
• waf displays modules built at end of build

Demo: ./waf build

Look at: build/ libraries and executables

ns-3 Training, June 2019 24

Running programs

• ./waf shell provides a special shell for
running programs
– Sets key environment variables

./waf --run sample-simulator

./waf --pyrun src/core/examples/sample-
simulator.py

ns-3 Training, June 2019 25

Build variations

• Configuring a build type is done at waf
configuration time

• debug build (default): all asserts and
debugging code enabled
./waf -d debug configure

• optimized
./waf -d optimized configure

• static libraries
./waf --enable-static configure

ns-3 Training, June 2019 26

Controlling the modular build

• One way to disable modules:
– ./waf configure --enable-modules='a','b','c'

• The .ns3rc file (found in utils/ directory) can be used to
control the modules built

• Precedence in controlling build
1) command line arguments
2) .ns3rc in ns-3 top level directory
3) .ns3rc in user's home directory

Demo how .ns3rc works

ns-3 Training, June 2019 27

Building without wscript

• The scratch/ directory can be used to build
programs without wscripts

Demo how programs can be built without wscripts

ns-3 Training, June 2019 28

Integrating other tools and libraries

ns-3 Training, June 2019

Other libraries

• more sophisticated scenarios and models typically
leverage other libraries

• ns-3 main distribution uses optional libraries (libxml2,
gsl, mysql) but care is taken to avoid strict build
dependencies

– The Waf wscripts can be consulted as examples
– example: sqlite3 in src/stats/wscript

• the 'bake' tool (described later) helps to manage library
dependencies

• users are free to write their own Makefiles or wscripts to
do something special

ns-3 Training, June 2019

CORE emulator

ns-3 Training, June 2019

mininet emulator

ns-3 Training, June 2019

Co-simulation frameworks have emerged

• PNNL's FNCS framework integrates ns-3 with
transmission and distribution simulators

Image source: PNNLgov YouTube video:
Introducing FNCS: Framework for Network Co-Simulation

ns-3 App Store

• Project is migrating away from a centralized repository to
a modular system called the ‘ns-3 App Store’

– https://apps.nsnam.org

ns-3 Training, June 2019 34

https://apps.nsnam.org/

Documentation overview

• Placeholder slide: online browsing of
– Doxygen
– ns-3 manual, model library, tutorial
– wiki
– command-line help

ns-3 Training, June 2019 35

