
ns-3 training

Tom Henderson
ns-3 annual meeting 2019
June 17-21, Florence, Italy

ns-3 Packet

• Packet is an advanced data structure with
the following capabilities
– Supports fragmentation and reassembly
– Supports real or virtual application data
– Extensible
– Serializable (for emulation)
– Supports pretty-printing
– Efficient (copy-on-write semantics)

2
ns-3 Annual meeting June 2019

ns-3 Packet structure

• Analogous to an mbuf/skbuff

3
ns-3 Annual meeting June 2019

Copy-on-write

• Copy data bytes only as needed

4
Figure source: Mathieu Lacage's Ph.D. thesis

ns-3 Annual meeting June 2019

Headers and trailers

• Most operations on packet involve adding and
removing an ns3::Header

• class ns3::Header must implement four
methods:

Serialize()
Deserialize()
GetSerializedSize()
Print()

ns-3 Annual meeting June 2019 5

Headers and trailers (cont.)

• Headers are serialized into the packet byte
buffer with Packet::AddHeader() and removed
with Packet::RemoveHeader()

• Headers can also be 'Peeked' without removal
Ptr<Packet> pkt = Create<Packet> ();

UdpHeader hdr; // Note: not heap allocated

pkt->AddHeader (hdr);

Ipv4Header iphdr;

pkt->AddHeader (iphdr);

ns-3 Annual meeting June 2019 6

Packet tags

• Packet tag objects allow packets to carry around
simulator-specific metadata
– Such as a "unique ID" for packets or cross-layer info

• Tags may associate with byte ranges of data, or
with the whole packet
– Distinction is important when packets are fragmented

and reassembled

• Tags presently are not preserved across
serialization boundaries (e.g. MPI)

ns-3 Annual meeting June 2019 7

PacketTag vs. ByteTag

• Two tag types are available: PacketTag and
ByteTag
– ByteTags run with bytes
– PacketTags run with packets

• When Packet is fragmented, both copies of
Packet get copies of PacketTags

• When two Packets are merged, only the
PacketTags of the first are preserved

• PacketTags may be removed individually;
ByteTags may be removed all at once

ns-3 Annual meeting June 2019 8

Tag example

• Here is a simple example illustrating the use of tags from the code in
src/internet/model/udp-socket-impl.cc:
Ptr<Packet> p; // pointer to a pre-existing packet
SocketIpTtlTag tag
tag.SetTtl (m_ipMulticastTtl); // Convey the TTL from
UDP layer to IP layer
p->AddPacketTag (tag);

• This tag is read at the IP layer, then stripped
(src/internet/model/ipv4-l3-protocol.cc):
uint8_t ttl = m_defaultTtl;
SocketIpTtlTag tag;
bool found = packet->RemovePacketTag (tag);
if (found)
{
ttl = tag.GetTtl ();

}

ns-3 Annual meeting June 2019 9

Packet metadata

• Packets may optionally carry metadata
– record every operation on a packet's buffer
– implementation of Packet::Print for pretty-printing of

the packet
– sanity check that when a Header is removed, the

Header was actually present to begin with
• Not enabled by default, for performance reasons
• To enable, insert one or both statements:

Packet::EnablePrinting ();
Packet::EnableChecking ();

ns-3 Annual meeting June 2019 10

Ptr<Packet>

• Packets are reference counted objects that
support the smart pointer class Ptr

• Use a templated "Create" method instead of
CreateObject for ns3::Objects

• Typical creation:
– Ptr<Packet> pkt = Create<Packet> ();

• In model code, Packet pointers may be const or
non-const; often Packet::Copy() is used to obtain
non-const from const

– Ptr<const Packet> cpkt = ...;
– Ptr<Packet> p = cpkt->Copy ();

ns-3 Annual meeting June 2019 11

Queues in ns-3

• Queues are objects for storing packets

• A templated Queue class exists to support a few
use cases
– simple queues such as a DropTail
– WifiMacQueue
– a Linux-like QueueDisc class

ns-3 training, June 2019 12

DequeueEnqueue

Common operations: GetNBytes (); GetNPackets (); etc.

Linux-like TC architecture in ns-3

• Figure source: Stefano Avallone (2017 training)

ns-3 training, June 2019 13

Debugging support
• Assertions: NS_ASSERT (expression);

– Aborts the program if expression evaluates to false
– Includes source file name and line number

• Unconditional Breakpoints: NS_BREAKPOINT ();
– Forces an unconditional breakpoint, compiled in

• Debug Logging (not to be confused with tracing!)
– Purpose

• Used to trace code execution logic
• For debugging, not to extract results!

– Properties
• NS_LOG* macros work with C++ IO streams
• E.g.: NS_LOG_UNCOND (”I have received ” << p->GetSize () << ” bytes”);
• NS_LOG macros evaluate to nothing in optimized builds
• When debugging is done, logging does not get in the way of execution

performance

ns-3 training, June 2019 14

Debugging support (cont.)
• Logging levels:

– NS_LOG_ERROR (...): serious error messages only
– NS_LOG_WARN (...): warning messages
– NS_LOG_DEBUG (...): rare ad-hoc debug messages
– NS_LOG_INFO (...): informational messages (eg. banners)
– NS_LOG_FUNCTION (...):function tracing
– NS_LOG_PARAM (...): parameters to functions
– NS_LOG_LOGIC (...): control flow tracing within functions

• Logging ”components”
– Logging messages organized by components
– Usually one component is one .cc source file
– NS_LOG_COMPONENT_DEFINE ("OlsrAgent");

• Displaying log messages. Two ways:
– Programatically:

• LogComponentEnable("OlsrAgent", LOG_LEVEL_ALL);
– From the environment:

• NS_LOG="OlsrAgent" ./my-program

ns-3 training, June 2019 15

Running C++ programs through gdb

• The gdb debugger can be used directly on
binaries in the build directory

• An easier way is to use a waf shortcut
./waf --command-template="gdb %s" --run <program-
name>

ns-3 training, June 2019 16

Running C++ programs through valgrind

• valgrind memcheck can be used directly on
binaries in the build directory

• An easier way is to use a waf shortcut
./waf --command-template="valgrind %s" --run
<program-name>

• Note: disable GTK at configure time when
running valgrind (to suppress spurious reports)

• ./waf configure --disable-gtk --enable-tests ...

ns-3 training, June 2019 17

Testing

• ns-3 models need tests verifiable by others
(often overlooked)

- Onus is on the simulation project to validate and
document results

- Onus is also on the researcher to verify results

• ns-3 strategies:
– regression tests

• Aim for event-based rather than trace-based

– unit tests for verification
– validation of models on testbeds where possible
– reuse of code

ns-3 training, June 2019 18

Test framework

• ns-3-dev is checked nightly on multiple platforms
– Linux gcc-4.x, i386 and x86_64, OS X, FreeBSD

clang, and Cygwin (occasionally)
• ./test.py will run regression tests

Walk through test code, test terminology (suite, case),
and examples of how tests are run

ns-3 training, June 2019 19

Improving performance

• Debug vs optimized builds
– ./waf -d debug configure
– ./waf -d debug optimized

• Build ns-3 with static libraries
– ./waf --enable-static

• Use different compilers (icc)
– has been done in past, not regularly tested

ns-3 training, June 2019 20

