ns-3 training

Tom Henderson
ns-3 annual meeting 2019

June 17-21, Florence, Italy

UNIVERSITY of WASHINGTON

ns-3 Packet

 Packet is an advanced data structure with
the following capabilities

— Supports fragmentation and reassembly
—Supports real or virtual application data
— Extensible

— Serializable (for emulation)

— Supports pretty-printing

— Efficient (copy-on-write semantics)

NETWO!JSﬁ;mBR ns-3 Annual meeting June 2019

ns-3 Packet structure

* Analogous to an mbuf/skbuff

class Packet

public functions: . class Buffer
- constructors
- add/remove/peek at Headeys
- add/remove/peek at Tags | .
- fragmentation & reasserr)py

public functions:

- Iterators to move byte buffg
pointers forward or backward
- functions to read and write
data of various sized chunks

private data:
- Buffer object’
- PacketMetadata object - struct BufferData, a

i :::: g: "ZiieTf?as o dynamically varying byte
E g - buffer to which data can be
k prepended or appended

private data:

",
.
‘e
.

.
‘.
.
.,

class Tags: .
g% class PacketMetadata

public functions: public functions:

- constructors - static void Enable (void);

- templates to add, remove - static void EnableChecking)

or peek at Tags of various

types - methods to add/remove
headers and trailers

private data:

- singly linked list of TagDat
structures, with a reference
count

o

ns-3 ns-3 Annual meeting June 2019

NETWORK SIMULATOR

Copy-on-write

» Copy data bytes only as needed

Packet 1 Zoro Arca
— —
— /
Court
Packet 2 = Tce

Zoro Area
Packet 1 b C.:.-(-——_——Tcz —
e 5
Packetz Ly c.i:n ——-_n——::’:’ ——

Figure 3.9: The IP stack inserts the IP header, triggers an un-share operation, completes
the insertion.

Figure source: Mathieu Lacage's Ph.D. thesis
ns-3 ns-3 Annual meeting June 2019

NETWORK SIMULATOR

Headers and trailers

* Most operations on packet involve adding and
removing an ns3::Header

 class ns3::Header must implement four
methods:

Serialize ()
Deserialize ()
GetSerializedSize ()

Print ()

ns-3 ns-3 Annual meeting June 2019

NETWORK SIMULATOR

Headers and trailers (cont.)

* Headers are serialized into the packet byte
buffer with Packet::AddHeader() and removed
with Packet::RemoveHeader()

» Headers can also be 'Peeked’ without removal
Ptr<Packet> pkt = Create<bPacket> ();

UdpHeader hdr; // Note: not heap allocated
pkt->AddHeader (hdr);

ITpv4Header 1phdr;

pkt->AddHeader (iphdr);

ns-3 ns-3 Annual meeting June 2019

NETWORK SIMULATOR

Packet tags

» Packet tag objects allow packets to carry around
simulator-specific metadata

— Such as a "unique ID" for packets or cross-layer info
« Tags may associate with byte ranges of data, or
with the whole packet

— Distinction is important when packets are fragmented
and reassembled

» Tags presently are not preserved across
serialization boundaries (e.g. MPI)

NETWORK SIMULATOR

ns-3 Annual meeting June 2019

PacketTag vs. ByteTag

* Two tag types are available: PacketTag and
ByteTag
— ByteTags run with bytes
— PacketTags run with packets

 When Packet is fragmented, both copies of
Packet get copies of PacketTags

* When two Packets are merged, only the
PacketTags of the first are preserved

* PacketTags may be removed individually;
ByteTags may be removed all at once

NETWORK SIMULATOR

ns-3 Annual meeting June 2019

Tag example

« Here is a simple example illustrating the use of tags from the code in
src/internet/model/udp-socket-impl.cc:

Ptr<Packet> p; // pointer to a pre-existing packet

SocketIpTtlTag tag
tag.SetTtl (m ipMulticastTtl); // Convey the TTL from

UDP layer to IP layer
p->AddPacketTag (taqg):;

« This tag is read at the IP layer, then stripped
(src/internet/model/ipv4-13-protocol.cc):

uint8 t ttl = m defaultTtl;

SocketIpTtlTag tag;

bool found = packet->RemovePacketTag (tag);
if (found)

{
ttl = tag.GetTtl ()

ns-3 ns-3 Annual meeting June 2019

NETWORK SIMULATOR

Packet metadata

» Packets may optionally carry metadata
— record every operation on a packet's buffer

— implementation of Packet::Print for pretty-printing of
the packet

— sanity check that when a Header is removed, the
Header was actually present to begin with

* Not enabled by default, for performance reasons

 To enable, insert one or both statements:
Packet::EnablePrinting () ;

Packet: :EnableChecking () ;

’ !Jﬁfmaﬁ ns-3 Annual meeting June 2019

NETWORK S

10

Ptr<Packet>

» Packets are reference counted objects that
support the smart pointer class pPtr

« Use a templated "Create" method instead of
CreateObject for ns3::Objects

» Typical creation:
— Ptr<Packet> pkt = Create<Packet> ()

* In model code, Packet pointers may be const or
non-const; often Packet::Copy() is used to obtain

non-const from const
— Ptr<const Packet> cpkt = ...;
— Ptr<Packet> p = cpkt->Copy ()

ns'g ns-3 Annual meeting June 2019

NETWORK SIMULAT:!

Queues in ns-3

* Queues are objects for storing packets

Enqueue ‘ ‘ Dequeue

Common operations: GetNBytes (); GetNPackets (); etc.

* A templated Queue class exists to support a few
use cases

— simple queues such as a DropTail
— WifiMacQueue
— a Linux-like QueueDisc class

ns-3 ns-3 training, June 2019

NETWORK SIMULATOR

Linux-like TC architecture in ns-3

* Figure source: Stefo Avallone (2017 training)

1 packet enqueued -
multiple packets dequeued

" — * Device driver
Qmm}@i - Packet received: if there is
— no room for another packet,

IP

then stop the queue

St - Notification received from

op/ the device: | -

Wake e device: if there is room
5 / for another packet, then

Network device wake the queue

| driver * The size of the transmission

ring can be dynamically

adjusted by BQL

. * Interrupt mitigation techniques
Transfer or polling to reduce overhead
.. complete

x interface

WNS3 2017 Training — Porto, June 12
AINS-3 ns-3 training, June 2019

NETWORK SIMULATOR

Debugging support

« Assertions: NS_ASSERT (expression);
— Aborts the program if expression evaluates to false
— Includes source file name and line number

« Unconditional Breakpoints: NS BREAKPOINT ();
— Forces an unconditional breakpoint, compiled in

« Debug Logging (not to be confused with tracing!)

— Purpose
» Used to trace code execution logic
» For debugging, not to extract results!
— Properties
 NS_LOG* macros work with C++ |0 streams
 E.g.: NS _LOG_UNCOND ("I have received ” << p->GetSize () << ” bytes”);
« NS_LOG macros evaluate to nothing in optimized builds

« When debugging is done, logging does not get in the way of execution
performance

ns-3 ns-3 training, June 2019

NETWORK SIMULATOR

14

Debugging support (cont.)

* Logging levels:

— NS _LOG_ERROR (...): serious error messages only

— NS_LOG_WARN (...): warning messages

— NS _LOG DEBUG (...): rare ad-hoc debug messages

— NS_LOG_INFO (...): informational messages (eg. banners)

— NS_LOG_FUNCTION (...):function tracing

— NS_LOG_PARAM (...): parameters to functions

— NS_LOG_LOGIC (...): control flow tracing within functions
« Logging "components”

— Logging messages organized by components

— Usually one component is one .cc source file

— NS_LOG_COMPONENT_DEFINE ("OlsrAgent");
* Displaying log messages. Two ways:

— Programatically:

« LogComponentEnable("OlsrAgent", LOG_LEVEL ALL);

— From the environment;:
« NS_LOG="OlsrAgent" ./my-program

ns-3

NETWORK SIMULATOR ns-3 training, June 2019

15

Running C++ programs through gdb

* The gdb debugger can be used directly on
binaries in the build directory

* An easier way is to use a waf shortcut

./waf --command-template="gdb %$s" --run <program-
name>

T Qﬁ;ﬁ ns-3 training, June 2019

NETWORK S

16

Running C++ programs through valgrind

* valgrind memcheck can be used directly on
binaries in the build directory

* An easier way is to use a waf shortcut

./waf --command-template="valgrind %s" --run
<program-name>

* Note: disable GTK at configure time when
running valgrind (to suppress spurious reports)

./waf configure --disable-gtk --enable-tests ...

TWORK SIMULATOR

NETWORK S ns-3 training, June 2019

17

Testing

* ns-3 models need tests verifiable by others
(often overlooked)

- Onus is on the simulation project to validate and
document results

- Onus is also on the researcher to verify results

* ns-3 strategies:

— regression tests
 Aim for event-based rather than trace-based

— unit tests for verification
— validation of models on testbeds where possible
— reuse of code

11070 ns-3 training, June 2019

NETWORK SIMULATOR

18

Test framework

* ns-3-dev is checked nightly on multiple platforms

— Linux gcc-4.x, 1386 and x86 64, OS X, FreeBSD
clang, and Cygwin (occasionally)

- ./test.py WIll run regression tests

/
Walk through test code, test terminology (suite, case),

and examples of how tests are run

o /

NETWO!JSﬁ;mBR ns-3 training, June 2019

19

Improving performance

* Debug vs optimized builds
— ./waf -d debug configure
— ./waf -d debug optimized

 Build ns-3 with static libraries
— ./waf --enable-static

« Use different compilers (icc)
— has been done in past, not regularly tested

NETWO!lﬁL:WBR ns-3 training, June 2019

20

