

innovating communications

The ns-3 LTE module

ns-3 annual meeting 2019 June 17-21, Florence, Italy

CTTC MONET

Centre Tecnològic de Telecomunicacions de Catalunya

The ns-3 LTE module, a.k.a.

LTE-EPC Network simulAtor

- LENA is a simulation platform for LTE/EPC
- LENA project, funded by Ubiquysis (now Cisco), between 2010 and 2013.
- GSoC 2010, 2012, 2013, 2014, 2015, 2017, and 2019
- Other projects:
 - Spectrum Sharing Simulator Program (LLNL) (on going)
 - ID-NRU (on going)
 - Public Safety NIST (LTE D2D)
 - ID 5G NR design in mmWave bands
 - SCALAA Spidercloud Licensed assisted access
 - WALAA 2 WFA Licensed Assisted Access
- Community contributions

LENA: An open source product-oriented LTE/EPC Network Simulator

- A Product-oriented simulator:
 - Designed around an industrial API: the Small Cell Forum MAC Scheduler Interface Specification
 - Full stack, end-to-end
 - Accurate model of the LTE/EPC protocol stack
 - Specific Channel and PHY layer models for LTE macro and small cells
 - An Open source simulator:
 - Helps build confidence and trust on simulation model
 - Candidate reference evaluation platform
 - Based on ns-3
 - Free and open source licensing (GPLv2)
 - Widely validated through test suites, calibration campaigns
 - The most accepted open source LTE packet level simulator in terms of publication counts and citations.

LENA High level requirements

- Support the evaluation of:
 - Radio-level performance
 - End-to-end QoE
- Allow the prototyping of algorithms for:
 - QoS-aware Packet Scheduling
 - Radio Resource Management
 - Inter-cell Interference Coordination
 - Self Organized Networks
 - Cognitive / Dynamic Spectrum Access
- Scalability requirements:
 - Several 10s to a few 100s of eNBs
 - Several 100s to a few 1000s of UEs

(Some) Important Design Choices

- FemtoForum LTE MAC Scheduler API
- Radio signal model granularity: Resource Block
 - Symbol-level model not affordable
 - Simplified Channel & PHY model
- Realistic Data Plane Protocol stack model
 - Realistic RLC, PDCP (real PDUs), S1-U, X2-U
 - Allows for proper interaction with IP networking
 - Allows for end-to-end QoE evaluations
- Simplified Control Plane model:
 - Realistic RRC model
 - Simplified S1-AP, X2-C, S11, and S5 models (UDP)
- Simplified EPC
 - One MME and multiple SGW and PGW nodes (S11, S5 support)
- Simplified UE mode of operation
 - Connected mode (full support)
 - Idle mode (simplified)

A.

LENA model overview

Centre

Tecnològic

de Telecomunicacions de Catalunya

End-to-end Control Plane protocol stack

PHY and Channel architecture

End-to-end Data Plane protocol stack

PHY and Channel architecture: eNB

Radio Propagation Models

- Included new models for enabling 3GPP-like scenarios
 - New path loss models (indoor and outdoor)
 - External & internal wall losses
 - Shadowing
 - Buildings model
 - Add buildings to network topology
 - Antenna models
 - Isotropic, sectorial (cosine & parabolic shape)
 - Fast fading model
 - Pedestrian, vehicular, etc.

Y-coordinate (m)

Antenna models

- LTE supports antenna modeling via ns-3 AntennaModel class.
- Isotropic [default one, for both eNB and UE]
- Sectorial (cosine & parabolic shape)

12 of 47

- Fast fading model based on pre calculated traces for maintaining a low computational complexity
 - Matlab script provided in the code using rayleighchan function
 - 1 fading value per RB and TTI
- Main parameters:
 - Users' speed: relative speed between users (affects the Doppler frequency)
 - Number of taps (and relative power): number of multiple paths considered
 - Time granularity of the trace: sampling time of the trace.
 - Frequency granularity of the trace: number of RB.
 - Length of trace: ideally large as the simulation time, might be reduced by windowing mechanism.

NAS
RRC
PDCP
RLC
MAC
PHY
CTCC Centre Tecnològic de Telecomunicacions de Catalunya

PHY model

- Only FDD is modeled
- Freq domain granularity: RB
- Time domain granularity:
 - 1 TTI (1 ms)
- The subframe is divided in frequency into DL & UL
 - DL part is made of:
 - Control (RS, PCFICH, PDCCH)
 - RS is part of the control
 - Data (PDSCH)
 - UL part is made of:
 - Control and data (PUSCH)
 - SRS (only wideband periodic)

NAS
RRC
PDCP
RLC
MAC
PHY
Centre Tecnològic de Telecomunicacions de Catalunya

Interference and Channel Feedback

- LTE Spectrum model: (f_c, B) identifies the radio spectrum usage
 - f_c: LTE Absolute Radio Frequency Channel Number
 - B: Transmission Bandwidth Configuration in number of RB
 - Supports different frequencies and bandwidths per eNB
 - UE will automatically use the spectrum model of the eNB it is attached to
- Gaussian Interference model
 - Powers of interfering signals (in linear units) are summed up together to determine the overall interference power per RB basis
- CQI feedback
 - Periodic wideband CQIs: single value representative for the whole B.
 - Inband CQIs: a set of value representing the channel state for each RB
 - In DL evaluated according to the SINR of:
 - Control channel (RS, i.e., PDCCH)
 - Data channel when available (PDSCH)
- In UL evaluated according to the SINR of
 - SRS signal periodically sent by the UEs.
 - PUSCH with the actual transmitted data.
- In UL scheduler can filter the CQI according to their nature:
 - SRS_UL_CQI for storing only SRS based CQIs.
 - PUSCH_UL_CQI for storing only PUSCH based CQIs.

f_{c.2}

B₁

B₂

2 3

 $f_{c.1}$

1 2 3

NAS
RRC
PDCP
RLC
MAC
PHY
CTTC Centre Tecnològic de Telecomunicacions de Catalunya

PHY Data error model

- Signal processing not modeled accurately \Rightarrow use error model
- Transport Block error model
- Used for PDSCH and PUSCH
- Based on Link-to-System Mapping
 - SINR measured per Resource Block
 - Mutual Information Effective SINR Mapping (MIESM)
 - BLER curves from dedicated link-level LTE simulations
 - Error probability per codeblock
 - Multiple codeblocks per Transport Block

RRC
PDCP
RLC
MAC
PHY
CTTC Centre Tecnològic de Telecomunicacions de Catalunya

PHY Control error model

- Error model only for downlink, while uplink has an error-free channel
- Based on an evaluation study carried out in the RAN4 (R4-081920)
- In case of error correspondent DCIs are discarded, the data will not be decoded as well

INAS
RRC
PDCP
RLC
MAC
PHY
CTTC Centre Tecnològic de Telecomunicacions de Catalunya

NIAC

MIMO

- ns-3 provides only SISO propagation model
- MIMO has been modeled as SINR gain over SISO according to
 - S. Catreux, L.J. Greenstein, V. Erceg, "Some results and insights on the performance gains of MIMO systems," Selected Areas in Communications, IEEE Journal on, vol.21, no.5, pp. 839- 847, June 2003
- Catreux et al. present the statistical gain of several MIMO solutions wrt the SISO

 ¹/₁ 1x1 SISO
 ¹/₁ 1x2 SIMO-MRC

INA5
RRC
PDCP
RLC
MAC
PHY
CTTC Centre Tecnològic de Telecomunicacions de Catalunya

NIAC

UE Measurements

- UE has to report a set of measurements of the eNBs to the eNB, and together with the associated physical cell identity (PCI)
 - Reference signal received power (RSRP) ~ "average" power across the RBs
 - Reference signal received quality (RSRQ) ~ "average" ratio between the power of the cell and the total power received across all the RBs
- Measurements are performed during the reception of the RS
- PCI is received with the Primary Synchronization Signal (PSS)
- RSRP is reported by PHY layer in dBm while RSRQ in dB every 200 ms.
- Layer 1 filtering is performed by averaging all the measurements collected during the last window slot.

RRC
PDCP
RLC
MAC
PHY
CTTC Centre Tecnològic de Telecomunicacions de Catalunya

NIAQ

HARQ model

- Model implemented is soft combining hybrid IR Full incremental redundancy (also called IR Type II)
- Asynchronous model for DL
 - Dedicated feedback (ideal)
- Synchronous model for UL
 - After 7 ms of the original transmission
- Retransmissions managed by Scheduler
 - Retransmissions are mixed with new one (retx has higher priority)
 - Up to 4 redundancy version (RV) per each HARQ block
- Integrated with error model

RRC
PDCP
RLC
MAC
PHY
CTCC Centre Tecnològic de Telecomunicacions de Catalunya

MAC & Scheduler model

- Resource allocation model:
 - Allocation type 0
 - RBs grouped into RBGs, of different size depending on the bandwidth

System Bandwidth	RBG Size
$N_{\rm RB}^{\rm DL}$	(P)
≤10	1
11 – 26	2
27 – 63	3
64 – 110	4

- Transport Block model
 - Mimics 3GPP structure
 - mux RLC PDU onto MAC PDU
 - Virtual MAC Headers and CEs (no real bits)
 - MAC overhead not modeled
- Modeled processing delay for both DL and UL

RRC

PDCP

RLC

MAC

PHY

Adaptive Modulation and Coding (AMC)

- Two algorithms working on reported CQI feedback
 - Piro model: based on analytical BER (very conservative)

$$BER = 0.00005$$

$$\Gamma = \frac{-\ln (5 * BER)}{1.5} \qquad \gamma_i \text{ SINR of UE i}$$

$$\eta_i = \log_2 \left(1 + \frac{\gamma_i}{\Gamma}\right)$$

- Vienna model: aim at max 10% BLER as defined in TS 36.213 based on error model curves
 - The scheme adapts the MCS to the actual PHY performance, based on CQI report.
 - It selects the highest MCS that has a BLER below 10%.

RRC
PDCP
RLC
MAC
PHY
CTTC Centre Tecnològic de Telecomunicacions de Catalunya

MAC Scheduler implementations

- Round Robin (RR) Proportional Fair (PF) ٠
- Maximum Throughput (MT)
- Throughput to Average (TTA)
- **GSoC 2012** Blind Average Throughput (BET)
 - Token Bank Fair Queue (TBFQ)
- Priority Set Scheduler (PSS)
- Channel and QoS Aware Scheduler (CQA)
 - B. Bojovic, N. Baldo, A new Channel and QoS Aware Scheduler to enhance the capacity of Voice over LTE systems, In Proceedings of 11th SSD, Feb 2014, Castelldefels (Spain)
- All implementations based on the FemtoForum API
- The above algorithms are for downlink only
- For uplink, all current implementations use the same Round • **Robin algorithm**
- Assumption: HARQ has always higher priority wrt new data •

RRC
PDCP
RLC
MAC
PHY
CTTC Centre Tecnològic de Telecomunicacions de Catalunya

RLC Model

- Supported modes:
 - RLC TM, UM, AM as per 3GPP specs
 - RLC SM: simplified full-buffer model
- Features
 - PDUs and headers with real bits (following 3GPP specs)
 - Segmentation
 - Fragmentation
 - Reassembly
 - SDU discard
 - Status PDU (AM only)
 - PDU retx (AM only)
- Unsupported features
 - Fragmentation of ReTx PDUs (resegmentation)

RRC
PDCP
RLC
MAC
PHY
CTTC Centre Tecnològic de Telecomunicacions de Catalunya

PDCP model

- Simplified model supporting the following:
 - Headers with real bytes following 3GPP specs
 - Transfer of data (both user and control plane)
 - Maintenance of PDCP SNs (sequence numbers)
 - Transfer of SN status (for handover)
- Unsupported features
 - Header compression and decompression using ROHC
 - In-sequence delivery of upper layer PDUs at re-establishment of lower layers
 - Duplicate elimination of lower layer SDUs at re-establishment of lower layers for radio bearers mapped on RLC AM
 - Ciphering and deciphering of user plane data and control plane data
 - Integrity protection and integrity verification of control plane data
 - Timer based discard

NAS
RRC
PDCP
RLC
MAC
PHY
CTTC Centre Tecnològic de Telecomunicacio de Catalunya

RRC Model features

- Initial cell selection
 - Cell search (based on RSRP of the received PSS)
 - Broadcast of system information (MIB, SIB1, SIB2)
 - Cell selection evaluation
 - Simplified RLF model (detection at the UE)
- RRC Connection Establishment
- RRC Connection Reconfiguration, supporting:
 - SRB1 and DRB setup
 - SRS configuration index reconfiguration
 - PHY TX mode (MIMO) reconfiguration
 - Mobility Control Info (handover)
 - Secondary carrier configuration
- UE Measurements
 - Event-based triggering supported (events A1 to A5)
 - Assumption: 1-to-1 PCI to EGCI mapping
 - Only E-UTRA intra-frequency; no measurement gaps

NAS	
RRC	
PDCP	
RLC	
MAC	
PHY	

RRC Model architecture

- LteUeRrc: UE RRC logic
- LteEnbRrc + UeManager: eNB RRC logic
- Two models for RRC messages
 - Ideal RRC
 - SRBs not used, no resources consumed, no errors
 - Real RRC
 - Actual RRC PDUs transmitted over SRBs
 - ASN.1 encoding

RRC
PDCP
RLC
MAC
PHY
CTTC CEntre Tecnològic de Telecomunicacions de Catalunya

Random Access model

- Random Access preamble transmission
 - Ideal model: no propagation / error model
 - Simplified collision detection
 - No capture effect
- Random Access Response (RAR)
 - Consumes no resources
 - Modeled as control message, subject to error model
 - In real system is a special PDU sent on DL-SCH
 - Resource consumption can be modeled by enhanced scheduler
- Message3 RRC connection request
 - UL grant allocated by Scheduler
 - RLC TM PDU with actual bytes, subject to error model
- Contention resolution is not modeled

NAS
RRC
PDCP
RLC
MAC
PHY
CTCC Centre Tecnològic de Telecomunicacions de Catalunya

Random Access model

- Supported modes:
 - Contention based (for connection establishment)
 - Non-contention based (for handover)

RRC
PDCP
RLC
MAC
PHY
CTTC Centre Tecnològic de Telecomunicacions de Catalunya

NAS model

- It is a protocol which allows UE to talk to MME
- Supported NAS states
 - EMM (EPS Mobility management) Registered, ECM (EPS connection management) connected, RRC connected
 - EMM Registered, ECM idle, RRC idle
- Logical interaction with RRC
 - NAS PDUs not implemented
- Functionality
 - UE Attachment (transition to NAS Active state)
 - UE Removal (transition to NAS OFF state)
 - EPS Bearer activation
 - Multiplexing of data onto active EPS Bearers
 - Based on Traffic Flow Templates
 - Both UDP and TCP over IPv4 and IPV6 are supported

RRC
PDCP
RLC
MAC
PHY
CTTC C Centre Tecnològic de Telecomunicacions de Catalunya

NAS model

- Unsupported features
 - PLMN and CSG selection
 - Tracking area update, paging

Handover Support

- API for Handover Algorithms (GSoC 2013)
 - Measurement configuration
 - Measurement report handling
 - Handover triggering
- Available handover algorithms:
 - No-op
 - A2-A4-RSRQ
 - Strongest cell handover (A3-based)
 - <your algorithm here>

FFR Algorithms

• GSoC 2014

Centre Tecnològic

de Catalunva

de Telecomunicacions

- FFR algorithms fit in Self Organized Network algorithms
- The LTE standard does not provide the design of FFR algorithms (left to vendor)
- Usually eNB uses same carrier frequency and system bandwidth to serve all of its users: FFR= 1
- FFR divides available bandwidth into sub-bands with different FFR and different TX power setting
 - Combination of scheduling and power control functionalities
- Currently 7 FFR algorithms are implemented

Carrier Aggregation

- Funded and initiated through GSoC2015, finalized with Spidercloud Wireless support.
- Supported for downlink only
- Component Carriers are divided in:
 - 1 Primary Component Carrier (PCC)
 - Several Secondary Component Carriers (SCCs)
- The SCCs include the legacy LTE stack from MAC to PHY layer
- SCCs can be created only in LTE bands
- LteEnbComponentCarrierManager API is in charge of dispatching data among CCs:
 - Load balancing procedures among CCs can be implemented

Centre Tecnològic de Telecomunicacions de Catalunya

Simulation Ouput

- Lots of KPIs available at different levels:
 - Channel
 - SINR maps
 - pathloss traces
 - PHY
 - TB tx / rx traces
 - RSRP/RSRQ traces
 - MAC
 - UL/DL scheduling traces
 - RLC and PDCP
 - Time-averaged PDU tx / rx stats
 - IP and application stats
 - FlowMonitor, PCAP traces (P2P links only), get stats directly from app, etc.

Example: 3GPP dual stripe scenario

- Points are modelled as nodes
- SINR is evaluated considering the strongest signal as the one of the serving eNB

Tecnològic

de Telecomunicacions de Catalunya

- Huge effort in testing:
 - Unit tests
 - Checking that a specific module works properly
 - System test
 - Checking that the whole LTE model works properly
 - Validation tests
 - Validating simulation output against theoretical performance in a set of known cases
 - Valgrind test coverage
 - Systematically check for memory errors
 - memory corruption, leaks, etc. due to programming errors
 - Test code build
 - Provided by ns-3 project for stable LTE code
 - Verify correct build with all supported compilers and platforms using GitLab CI
 - https://gitlab.com/nsnam/ns-3-dev/tree/master/utils/tests

Documentation

- LTE module documentation
- Part of the ns-3 models library docs
- 202 pages, comprises of:
 - Design documentation
 - User documentation
 - Test documentation
 - Profiling documentation
 - https://www.nsnam.org/docs/models/html/lte.html

Centre Tecnològic

de Telecomunicacions de Catalunya

Further branches

- NR
 - Developed in collaboration with Interdigital and CTTC (since 2016)
 - Some features to be discussed during this WS
 - https://5g-lena.cttc.es/
- D2D

Tecnològic

de Telecomunicacions de Catalunya

- Developed by NIST
- Upgraded in collaboration with CTTC/Uni Washington (2017-2019)
- In-coverage and out-of-coverage scenarios supported
- Support for direct communication, synchronization and neighbour discovery features
- https://apps.nsnam.org/app/publicsafetylte/
- Licensed Assisted Access (LAA)
 - Developed in collaboration with WFA and University of Washington (2015-2016)
 - Includes Rel.13 features
 - Support for Supplemental Downlink in unlicensed spectrum
 - Does not support partial subframe
 - Available: http://bitbucket.org/cttc-lena/ns-3-lena-dev-lte-u
- LTE-U
 - Developed in collaboration with Spidercloud Wireless (2015-2016)
 - Includes LTE-U Forum specs
 - Support for Supplemental Downlink in unlicensed spectrum
 - Available: http://bitbucket.org/cttc-lena/ns-3-lena-dev-lte-u

The ns-3 LTE D2D architecture

Centre Tecnològic de Telecomunicacions de Catalunya

The ns-3 LTE D2D architecture

- Four scenarios were identified by 3GPP.
 - 1A. Out-of-Coverage
 - 1B. Partial-Coverage
 - 1C. In-Coverage-Single-Cell
 - 1D. In-Coverage-Multi-Cell
- Fully tested and simulated 1A and 1C
- Aligned with latest ns-3-dev
- Documented following the ns-3 guidelines

de Catalunya

The ns-3 LTE D2D architecture

- Out-of-Coverage scenario
 - Direct communication
 - Resource allocation Mode 2
 - Direct discovery
 - Resource allocation Type 1
 - Synchronization
 - Autonomous

	Direct communication	Direct discovery	Synchronization
Control	>		
Data			

The ns-3 LTE D2D architecture

- In-Coverage scenario
 - Direct communication
 - Resource allocation Mode 1 and 2
 - Direct discovery
 - Resource allocation Type 1
 - Synchronization
 - Network assisted

Source: Richard Rouil, Fernando J. Cintrón, Aziza Ben Mosbah and Samantha Gamboa. Implementation and Validation 45 of 47 of an LTE D2D Model for ns-3 WNS3 2017

Reference papers

- N. Patriciello, S. Lagen, B. Bojovic, L. Giupponi, An E2E Simulator for 5G NR Networks, Elsevier Simulation Modelling Practice and Theory SIMPAT, May 2019.
- Richard Rouil, Fernando J. Cintrón, Aziza Ben Mosbah and Samantha Gamboa. Implementation and Validation of an LTE D2D Model for ns-3 WNS3 2017
- B. Bojovic, M. Danilo Abrignani, M. Miozzo, L. Giupponi, N. Baldo, Towards LTE-Advanced and LTE-A Pro Network Simulations: Implementing Carrier Aggregation in LTE Module of ns-3 WNS3 2017
 - N. Baldo, M. Miozzo, M. Requena, J. Nin, An Open Source Product-Oriented LTE Network Simulator based on ns-3, ACM MSWIM 2011

Reference papers

- N. Baldo, M. Requena, J. Nin, M. Miozzo,
 A new model for the simulation of the LTE-EPC data plane WNS3 2012
- M. Mezzavilla, M. Miozzo, M. Rossi, N. Baldo, M. Zorzi,
 A Lightweight and Accurate Link Abstraction Model for System-Level Simulation of LTE Networks in ns-3 ACM MSWIM 2012
- D. Zhou, N. Baldo, M. Miozzo, Implementation and Validation of LTE Downlink Schedulers for ns-3 WNS3 2013

N. Baldo, M. Requena, M. Miozzo, R. Kwan, An open source model for the simulation of LTE handover scenarios and algorithms in ns-3, ACM MSWiM 2013

Check it out!

http://networks.cttc.es/mobile-networks/software-tools/lena/

https://5g-lena.cttc.es/