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MACHINE LEARNING CATEGORIES
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SUPERVISED LEARNING

LEARN FUNCTION MAPPING FEATURES (INPUT X) TO LABELS (OUTPUT Y)
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REINFORCEMENT LEARNING

TRAIN AGENT TO LEARN OPTIMAL POLICY TO MAXIMIZE EPISODE’S CUMULATIVE REWARD

REWARD

= Policy: action to take for a given state '
= Maximize episode’s cumulative reward STATE ACTION
= Episode: State - Action = Reward W._

v/ Learn and adapt to scenario dynamics X Learning requires many episodes

v Real-time network performance metrics X Requires realistic interactive environment
— Challenging to train agents in testbeds

v Learn from experience
— ns-3 can serve as environment

] -a P()RT(_) INTEGRATION OF MACHINE LEARNING WITH NS-3: CHALLENGES AND OPPORTUNITIES -
INEsc 3 ittty Eduardo Nuno Almeida | Workshop on ns-3 (WNS3) 2023 n S 3

uuuuuuuuuuuuuuuuu



ML BACKGROUND INTEGRATION OF ML WITH NS-3 TRAIN ML MODELS USING NS-3 CONCLUSIONS

OPENAI GYM

= Standard Python APl for Reinforcement Learning
= Manage interaction between RL agent and environment

= Independent of agent’s implementation
— Allows fair and easy comparison between RL algorithms
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INTEGRATION OF ML WITH NS-3

INTEGRATION WITH ML FRAMEWORKS NATIVE INTEGRATION
" |ntegration via third-party modules = No native integrations

- ns3-gym, ns3-ai - E.g., ONNX framework

v Integration with existing ML frameworks in v Improved computational performance

Python — No overhead due to data exchange

v Reuse existing ML models X Additional dependency to manage

X Computational performance overhead X Tight coupling of ns-3 and ML code
— Due to data exchange between processes — Code recompilation for ML model updates

— ONNX separates runtime from ML model
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NS3-GYM MODULE

= Development of OpenAl Gym RL environments in ns-3
— Execute actions, provide observations and reward in underlying ns-3 simulation
— Data exchanged via protobuf messages over ZMQ, / sockets
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P. Gawtowicz and A. Zubow, “ns-3 meets OpenAl Gym: The playground for machine learning in networking research,” in ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWiM), 2019, pp. 1-6.
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NS3-GYM MODULE ANALYSIS

ADVANTAGES CHALLENGES

Multiple issues reported in GitHub
— No support for matrix values

Seamless integration with OpenAl Gym

Helper scripts to launch ns-3 and RL agent
— No reshaping of Box container

- No check if values are within defined range

Examples provided by the module

Rare updates to module

Community on GitHub and ns-3-users

Documentation only available in the paper
- No quick-start guides or tutorials

Computational overhead due to sockets
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NS3-Al MODULE

" Integration with existing Python ML frameworks
— API to read and write data between ns-3 and ML process
— Data exchange via shared memory

ns-3 i T O

NS-3 DATA SHARED DATA ML PYTHON
SIMULATOR MEMORY FRAMEWORK

H. Yin et al., “NS3-Al: Fostering artificial intelligence algorithms for networking research,” in Proceedings of the 2020 Workshop on ns-3, 2020, pp. 57-64.
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NS3-Al MODULE ANALYSIS

ADVANTAGES CHALLENGES

Easy integration with ML frameworks and ns-3 = Ongoing fixes / improvements to main issues

Flexible and powerful data exchange

mechanism = No integration with applications other than
— Can be extended beyond Al applications Python

Ongoing GSoC 2023 to improve ns3-ai

- OpenAl Gym interface, performance, ... _
P y P = No helper scripts to launch ns-3 and ML

Good documentation and examples application

Community on GitHub and ns-3-users

GSoC 23 ns3-ai. https://www.nsnam.org/wiki/GSOC2023ns3-ai
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NS3-Al ADDITIONAL USE CASES

= Shared memory mechanism can be used in scenarios beyond Al

" Enables integration with any external Python application
— Optimization solvers
— Real applications (e.g., network controllers)

ns-3 (-qi) A

NS-3 DATA SHARED DATA PYTHON
SIMULATOR MEMORY APPLICATION

] -a P()RT(_) INTEGRATION OF MACHINE LEARNING WITH NS-3: CHALLENGES AND OPPORTUNITIES -
INESC 3 PP R DADE 60 et Eduardo Nuno Almeida | Workshop on ns-3 (WNS3) 2023 n S 3



ML BACKGROUND INTEGRATION OF ML WITH NS-3 TRAIN ML MODELS USING NS-3 CONCLUSIONS

INTEGRATION OF SOLVERS WITH NS3-Al

OFFLINE METHODOLOGY ONLINE METHODOLOGY

I
INPUT EXTERNAL FILE WITH N exTernAL [
DATA PYTHON SOLVER , : PYTHON ,
SOLVER OUTPUT L : SOLVER | il
I
I
N INPUT l
— | —> RESULTS
@ i DATA @ |
| I
RECREATE I l
SCENARIO ——> NS-3 —— ResuLTS l ns-3 :
FROM FILE L a
No Interaction between Solver and ns-3. Real-time Interaction between Solver and ns-3.
Create Offline Simulation Replicating Solver Output. Dynamic Simulations Based on Solver Output.
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ONNX FRAMEWORK

= Open Neural Network Exchange (ONNX)

— Open format to represent ML models
- Portable and interoperable among platforms and frameworks

= Use cases
— Build and share of ML models
— Deployment of ML models for inference using ONNX runtime

ns-3
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TRAINING ML MODELS USING NS-3

= 7

GENERATE DATASETS CREATE REALISTIC
FOR SUPERVISED LEARNING RL ENVIRONMENTS

= When experimental data not available Realistic interactive environment for RL

= When insuficient experimental data Train RL agents with offline learning

= Augment / transform existing experimental
dataset

- Collect results for different scenario parameters

Pre-train / improve policies for online learning

Evaluate and compare RL trained policies
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TRAINING ML MODELS USING NS-3

CHALLENGES OPPORTUNITIES
= Existing models in ns-3 may not fully capture " |mprove ns-3 models with trace-based or ML
environment dynamics — Collect experimental data in testbed
— Extreme scenarios — Accurate and customized models
= Non-existent models — Specific to scenario
= Generate realistic datasets with randomness ~ * Trace-based simulation approaches
and noise — Accurate, repeatable and reproducible

- Propagation loss, channel occupancy, rate
adaptation, MIMO, ...

= ML-based models
- ML Propagation Loss (MLPL) model

= Computational performance

P ) P()RT() INTEGRATION OF MACHINE LEARNING WITH NS-3: CHALLENGES AND OPPORTUNITIES -
INESC FEUP N Vemsionot 66 rosro Eduardo Nuno Almeida | Workshop on ns-3 (WNS3) 2023 n S 3



ML BACKGROUND INTEGRATION OF ML WITH NS-3 TRAIN ML MODELS USING NS-3 CONCLUSIONS

TRACE-BASED SIMULATION APPROACH

NETWORK TRACES COLLECTION
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EXPERIMENTS

REPEAT AND REPRODUCE EXACT EXPERIMENTAL CONDITIONS IN NS-3

NETWORK TRACES USAGE

AINS-3 UHUD

EXPERIMENTAL LOAD RUN NS-3
NETWORK TRACES NETWORK TRACES NS-3 SIMULATION RESULTS

H. Fontes, R. Campos, and M. Ricardo, “A Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments”, in Proceedings of the 2017 Workshop on ns-3 (WNS3 ‘17), pp. 118-124
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ML PROPAGATION LOSS (MLPL) MODEL

TRAINING
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TRAIN
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PROPAGATION LOSS

PROPAGATION LOSS

PROPAGATION LOSS FUNCTION

REGRESSION

ML MODEL TRAINED WITH EXPERIMENTAL NETWORK TRACES

ESTIMATION
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TX / RX NODES PROPAGATION LOSS NS-3 PROPAGATION LOSS
COORDINATES FUNCTION SIMULATION VALUES

E. N. Almeida, et al., “Position-Based Machine Learning Propagation Loss Model Enabling Fast Digital Twins of Wireless Networks in ns-3”, in Proceedings of the 2023 Workshop on ns-3 (WNS3 23), pp. 69-77
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TRAINING ML MODELS USING NS-3

ML QUALITY OF SERVICE ESTIMATOR

: * Estimate QoS based on
I R - Users traffic demand
T HR S S . — UAV positions

» Convolutional neural network
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ToT dyn | duss | = Dataset generated in ns-3

E. N. Almeida et al., "A Machine Learning Based Quality of Service Estimator for Aerial Wireless Networks,” in 2019 International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), 2019, pp. 1-6
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TRAINING ML MODELS USING NS-3

DRL TRAFFIC-AWARE UAV PLACEMENT

) = Position FAP
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E. N. Almeida, R. Campos, and M. Ricardo, “Traffic-Aware UAV Placement using a Generalizable Deep Reinforcement Learning Methodology,” in 2022 IEEE Symposium on
Computers and Communications (ISCC), 2022, pp. 1-6
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TRAINING ML MODELS USING NS-3

DRL DATA-DRIVEN WI-FI RATE ADAPTATION

ACTION: MCS

v

= Modulation and Coding

] Scheme (MCS
OBSERVATION: SNR ( )

STA AP

REWARD: SUCCESS RATIO &
THROUGHPUT

a

= According to channel state

= Maximize throughput and
Frame Success Ratio (FSR)

S

MCS,, " Trained and evaluated with
= MCcs, SR, netl..7} ns3-gym + trace-based

R

R. Queirds, E. N. Almeida, H. Fontes, J. Ruela, and R. Campos, “Wi-Fi Rate Adaptation using a Simple Deep Reinforcement Learning Approach,” in 2022 IEEE Symposium on
Computers and Communications (ISCC), 2022, pp. 1-3
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CONCLUSIONS

" Integration of external ML frameworks via ns3-ai and ns3-gym
— Opportunity to improve the modules
— Consider supporting ONNX for deployment of ML models

= ns3-ai powerful tool for applications beyond Al
— Integration with Python applications (e.g., solvers or controllers)

" ns-3 interesting tool to train and evaluate ML models
— Generate training datasets for supervised learning
— Create realistic interactive environments for RL
— Can be enhanced with trace-based or ML-based models
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QUESTIONS?

Integration of Machine Learning with ns-3:
Challenges and Opportunities

Eduardo Nuno Almeida | INESC TEC & FEUP, Portugal

eduardo.n.almeida@inesctec.pt
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