NetAlGym: Democratizing “Network Al” Research &
Development via Simulation-as-a-Service

Jing Zhu and Menglei Zhang
Intel Labs, June 2023

Contributor: Pinyarash Pinyoanuntapong (UNCC)
University Collaborators: Kun Yang (UVA) and Momin Haider (UCSB)

in tel . Acknowledge: Shu-ping Yeh

Motivation: Where is “Data” ?

Customer & Industry Driven

Define Use-cases & Deploy Al Model in Real
Requirements World

t

“Network Al” Model/Algorithm Development Cycle

Train & Validate Al

Develop Al Model & Algo Model via Synthetic >
4 Data/Simulation

Training & Optimization in Real
World (PoC/Trial)

Our Focus for NetAlGym “Research” Phase “Development” Phase

= Network Al Developer Challenges (Why NetAlGym ?)
» real-world dataset controlled by network operator, difficult to acquire, not aligned with specific usage or requirement
« “dataset” by itself not enough, also need “environment” to train/test Al models, e.g. Reinforcement Learning, etc.

« network simulation tools (e.g. ns3, etc.) often very complex and difficult to use, especially for Network Al researcher & developer

Gap: lack of common “Simulation” environment with simple “APIs” to develop,

evaluate, and benchmark “Network Al” models & algos

Intel Labs | The Future Begins Here

Related Work: OpenAl Gym / Gymnasium

@ github.com/Farama-Foundation/Gymn:
tolizing a BIld E.. @ GC: WifiStateMachi y 0-hop protocol (B} Step 3: Activate Mo.. @) MyDevices € Addyour mobilep.. @ Step 8:SetUplintel.. [Chap2.techannel.. %% 3GPP meeting details &7 Home - Ciccult [For.. @ CLanguage Exa
B LICENSE License.txt -> License (#59) 6 months ago
[README.md Update comet section readme (#437) 3 weeks ago
[gymnasium-text.png Add files via upload 6 months ago
¥ pyproject.toml Pin MuJoCo 2.3.3 (#463) 4 days ago
Y setup.py Add back long description to setup (#243) 3 months ago

README.md

iii

€ pre-commit ‘enabled | code style black

& Gymnasium

Gymnasium is an open source Python library for developing and comparing reinforcement learning algorithms by
providing a standard API to communicate between learning algorithms and environments, as well as a standard set of
environments compliant with that API. This is a fork of OpenAl's Gym library by it's maintainers (OpenAl handed over
maintenance a few years ago to an outside team), and is where future maintenance will occur going forward.

The documentation website is at gymnasium.farama.org, and we have a public discord server (which we also use to
coordinate development work) that you can join here: https://discord.gg/bnJ6kubTg6

Source: https://gymnasium.farama.org/

Gymnasium is a standard API for
reinforcement |
collection of| reference environments

Gymnasium is a maintained fork of OpenAl’s Gym library. The Gymnasium interface is simple,
pythonic, and capable of representing general RL problems, and has a compatibility wrapper for
old Gym environments:

import gymnasium as gym

env = gym.make("LunarLander-v2", render_mode="human")

observation, info = env.reset(seed=42)

for _ in range(lee@):
action = env.action_space.sample() # this is where you would insert your policy
observation, reward, terminated, truncated, infe = env.step(action)

if terminated or truncated:
observation, info = env.reset()
env.close()

“Environment” is as important as “Data” (if not more) for Network Al R&D

Intel Labs | The Future Begins Here

intel labs

NetAlGym: An Open “Network Al” Simulation-aaS Framework

Network Intelligence Controller (Algorithm)
(Traffic Management, RAN slicing, Energy Saving, etc.)

Reference
based ML/AI ML/AI
Models/Algos Models/Algos Models/Algos

Rule/Policy

Configur (lm on Action Observation/Data
(use-case, topology, (State, Reward)

traffic, etc.)

ns3-based Full-Stack e2e Network Simulator (Environment)

e padio link > Packet-level network simulation: The main unit of modeling is the packet
and entities that exchange packets.

' N
- T internet 3
S5 sGl f
i .
interface interface —_ 7/¢_’/

SGW PGW

EPC model

Intel Labs | The Future Begins Here

@ Open Toolkit (Library, Models,

Examples, etc.) for Network Al
algorithm development

* NetAlClient

Open API for collecting data and
interacting with the simulated
network environment

* NetAlGymAPI

Open Network Simulator

Leverage open-source network simulation tools,
e.g. ns3; Enhance it with customized capabilities &
use-cases, e.g. Traffic Steering, Network Slicing,
Distributed Compute, Dynamic QoS, Energy
Saving, etc.

e NetAlServer
e NetAlSim

intel labs

4

NetAlGym PoC: “Sim-aaS” E2E Infrastructure via vLab

NetAlClient 1

Al Agent

Stable-baselines3
RL model

NetAlClient 2

Al Agent

User customizable
RL model (CleanRL)

NetAlClient 3

None-Al Agent

System default
algorithm

NetAlClient 4

None-Al Agent

User customizable
algorithm

Public Internet

NetAlClient 5

F

NetAlServer

—

Env 1

https://www.nsnam.org/

— ~—

Env 2

V

ZeroMQ

https://zeromq.org/

Internal API

vLab @ Intel Labs

Env 3

—

Env 4

NetAISim NetAISim NetAlISim

Intel Labs | The Future Begins Here

NetAlClient
Database

https://wandb.ai/

NetAlGym Open API

NetAlClient Repo: https://github.com/pinyaras/GMAClient

intel labs

NetAlGym Sim-aaS E2E Workflow

NetAlGym Open API

NetAlsim T VNetAlServer T I /\
: J1SON 1)

Python

{ Measurement
Relay
Action A
Relay

Configure
Simulation

JSON

A

Measurement
User

Measurement
Provider

JSON
Algo Agent

Action

Provider 4) Python

JSON
R S R R R R R R o

1) NetAlClient sends a JSON configure file to NetAlServer to launch a ns-3 simulation.

2) NetAISim collects and sends measurement metrics to NetAlServer.

3) Algorithm Agent computes an action based on the measurements, and stores data in WandB.
4) NetAlClient transmits the action to the NetAlSim via the NetAIGym Open API.

5) The measurement history can be visualized via the Web-based WanDB.

Intel Labs | The Future Begins Here intel |abS 6

A List of Supported

Measurement Metrics

Measurement

Description

max_rate mbps LTE/Wi-Fi link capacity measured by each user

load mbps input traffic throughput measured by each user

rate mbps output traffic throughput measured by each user, including LTE, Wi-Fi, and ALL
qos_rate mbps output traffic throughput that meets the QoS requirement, including LTE, Wi-Fi, and ALL
owd ms one-way delay measured by each user, including LTE, Wi-Fi, and ALL

tsu traffic split ratio measured by each user, including LTE, Wi-Fi

ap_id access-point/cell ID measured by each user, including LTE and Wi-Fi

slice_id (LTE) slice ID measured by each user

rb_usage % (LTE) resource block usage measured by each user

delay_violation % one-way delay violation percentage (%) measured by each user

Intel Labs | The Future Begins Here

intel labs

7

A List of Supported Use

Cases and Actions

Use-Case Action Description

Multi-Access (MX) —

Traffic Splitting Traffic Splitting update traffic split ratio of a flow over Wi-Fiand LTE
QoS—z.;\ware MX Traffic Traffic Steering steer traffic over Wi-Fi or LTE for a flow

Steering

Cellular RAN Slicing Resource Allocation update LTE resource block allocation ratio for a slice

Intel Labs | The Future Begins Here intel |abS

8

NetAlGym Example: Multi-Access (MX) Traffic Splitting

Multi-Access Virtualization Framework: GMA
Distributed Traffic Management API [1]:
loT App (TSN, etc) app/flow/pkt QoS requirements (delay,

Apps latency, loss, etc.)

eMBB URLLC mMTC

App App App

Virtual Interface (IP, Ethernet)
Edge Generic Multi-Access (GMA)

convergence

Programmable Data-Plane
(HQoS, INT, AQM, etc.)

Access
(Eig“éag) Radio Network Info API [2] [3]: link
: quality / measurement info, queue

status, load/utilization, etc.

Multi-Access Traffic

Management
(Control-Plane)

(Apps, Edge, Access)

C
@)
=
(0]
&
| -
O
y—
<
(%2}
(%2}
9
&
©
)
V)]

Exchange across layers

[1]: ETSI/MEC TM APIs (https://portal.etsi.org/webapp/WorkProgram/Report_Workltem.asp?WKI_ID=58903) INT: In-band Network Telemetry
[2]: ETSI/MEC RNIS API (https://www.etsi.org/deliver/etsi_gs/MEC/001_099/012/02.01.01_60/gs_mec012v020101p.pdf) AQM: Active Queue Management
[3]: ETSI/MEC WLAN API (https://www.etsi.org/deliver/etsi_gs/MEC/001_099/028/02.01.01_60/gs_MEC028v020101p.pdf) HQoS: Hierarchical Quality of Service

Enable Multi-Access Convergence over ANY Access for ANY Apps

Intel Labs | The Future Begins Here |nte| |abS 10

https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=58903
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/012/02.01.01_60/gs_mec012v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/028/02.01.01_60/gs_MEC028v020101p.pdf

GMA 1.0 Network Reference Architecture

| |

\ ! | \

| GVIA | | GMA |

\
| Control | ITE eNB | Control |
‘ Plane | LTEEPC | Plane |
\ \

| | (S-GW/P-GW) I |

\ ! ! \

} } | NAT/Firewall \

o | q |

| E —J|LTEVE| | Y (GW) |

| 4l o B H 1= : a |

\ (‘ ,) ul| — & = | fc_; \

\ all & o a \ S ‘

=5 £

| 9 2 P = WiFi | : S |

. — < e a. (b ‘

| all = = 2| STA L = |

\ H w = \ \ }

\ ! ! \
| \ A \ A

| GMA Data-Plane | WI-FLAP ' GMA Data-Plane |

; . \

| (Client) " Intel’s GMA Protocols to support Multi-Access | (Server) . |

| Multi-Access Client t | Traffic Management N i Multi-Access Edge Server |

Virtual Connection to Integrate Multiple Physical Connections

IETF RFC & Drafts on GMA Framework & Protocols:

* Multi-Access Management Service, https://www.rfc-editor.org/rfc/rfc8743.txt

* GMA Encapsulation Protocol, https://www.rfc-editor.org/rfc/rfc9188.txt

* GMA Control Protocol , https://www.ietf.org/archive/id/draft-zhu-intarea-gma-control-03.txt
GMA 1.0 Software Release:

GMA server: https://www.intel.com/content/www/us/en/developer/articles/reference-implementation/multi-access-with-private-5g.html
GMA client: https://github.com/IntelLabs/gma

Intel Labs | The Future Begins Here |nte| |abS 1

https://www.intel.com/content/www/us/en/developer/articles/reference-implementation/multi-access-with-private-5g.html
https://github.com/IntelLabs/gma
https://www.rfc-editor.org/rfc/rfc8743.txt
https://www.rfc-editor.org/rfc/rfc9188.txt
https://www.ietf.org/archive/id/draft-zhu-intarea-gma-control-03.txt

Traffic Splitting
Scenario Config

1 LTE Cell: 5MHz(UL) + 5MHz(DL)
= 2 Wi-Fi APs(11ac): 20MHz + 20MHz
= Downlink traffic: TCP Cubic
= UE Number: 4
o with random deployment
» UE Speed: Tm/s (left and right)

= Evaluation Metrics: Throughput,
Delay

o Baseline;: GMA

o Online RL algorithm: PPO and
DDPG

Intel Labs | The Future Begins Here

/ (x,y, z) coordinates

(30,0 3) (40,0,3) (50,0,3)
W| Fil eNodeB Wi-Fi 2
A
1] \ / N\
! \\ ,l \
/ \
,” \\ 4 \\\
1 \
I \
I' \ / \\
User 1 User 2 A | User 3 User 4
= 3¢ —— y[0,10]
x[0,80] -
intel labs

12

Per User Throughput Comparison

80

60

40

20 |

100

80

60

40

20

UEO_rate UE1_rate
) SIS NTE YO) B > Reward: throughput - delay.
2 w £ > States: LTE and Wi-Fi Max rate
60
(%, y, 2) coordinates
(30,5/,3) (40,0,3) (50,0,3)

eNodeB

| | \ | I
\ Ll A Wi Y f \
._:'\1\,.3\ ,A.W[\‘w9’"v-a.,mf~;»._, Y\ a«,‘}y‘*./‘) “u,.; »J\vwkul‘n,} WA NNV

Goal: maximize throughput and minimize delay

2k 4k 6k 8k 2k 4k 6k 8k
UE2_rate UE3_rate
— DDPG = PPO = GMA =— DDPG = PPO = GMA

100

Q Qo

e} o]

E £

x[0,80]

80
60

40

f ' ‘ \“ 20

\ i
«JVMJ‘»M‘»;,,M-www.wf Wl "\.A Nt SN b AN M ‘\,“:uw},‘kd‘. whoshety »

2k 4k 6k 8k 2k 4k 6k 8k

Intel Labs | The Future Begins Here

intel labs

13

200

150

100

50

1500

1000

500

mbps

roughput and Delay C

sum_rate
= DDPG = PPO = GMA

- A A I rN) A A | A A R { | A ” N~
' WAV »n}‘\ll'u,\l AN ’«.;uﬁw“\,'.w..;[“,« o\ ;""‘1}""};/1« Su i A \ru..‘.“\-r «J.a-x:(.',]\‘" WA ™ 4 W by .k,H‘wn/k..,,,.,i\? WM <

L]

ria\J

Step

2k 4k 6k 8k

avg_delay, max_delay

= GMA avg_delay == DDPG max_delay == GMA max_delay

== PPO max_delay

@

A 'Lf,'“ul‘

v L W
A M N A AW AT A
M AU W AL WYY 4 MV LA
VI m‘,r W/ ‘M‘r*"f VWb

W i

\
Y

Intel Labs | The Future Begins Here

omparison

Goal: maximize throughput and minimize delay

» Reward: throughput - delay.
> States: LTE and Wi-Fi Max rate

[, v, z) coordinates

»
(30,0,3) (40,0,3) (50,0,3)
= 2
Wi-Fi1 eNodeB Wi-Fi 2

IS AN
7 N, - ~ s N
r p} - ’ Ay ~o Y
/ e\‘f\ ’ \\ ’/(- \

Y

Y
N
Y
~1

v[0,10]

x[0,80]

intel labs

14

Summary

= NetAlGym —an open “Network Al” Simulation-as-a-Service framework
* NetAlSim: ns3-based network simulator with enhanced capabilities, e.g. multi-access, RAN slicing, etc.

* NetAlServer: the NetAlGym server application software to manage connection and interaction between an NetAlGym client
and the NetAlSim worker

* NetAlClient + API: the NetAlGym client application software to configure the simulation and run the “Network Al” algorithms
together with the simulation through open AP|

= A PoC/Trial system available for experiment, support three use-cases: multi-access
traffic splitting, QoS-aware traffic steering, and (cellular) RAN slicing

 limited access available upon request

= How to collaborate and contribute?

* NetAlSim: ns3 modules for new use-cases or capabilities

* NetAlClient: Al algorithms & models for the existing use-cases

“NetAlGym” is a Use-Case driven “Network Al” Sim-aa$S framework, Open for

Contributions from the Community

Intel Labs | The Future Begins Here intel |abS

15

	Slide 1: NetAIGym: Democratizing “Network AI” Research & Development via Simulation-as-a-Service
	Slide 2: Motivation: Where is “Data” ?
	Slide 3: Related Work: OpenAI Gym / Gymnasium
	Slide 4: NetAIGym: An Open “Network AI” Simulation-aaS Framework
	Slide 5: NetAIGym PoC: “Sim-aaS” E2E Infrastructure via vLab
	Slide 6: NetAIGym Sim-aaS E2E Workflow
	Slide 7
	Slide 8
	Slide 9: NetAIGym Example: Multi-Access (MX) Traffic Splitting
	Slide 10: Multi-Access Virtualization Framework: GMA
	Slide 11: GMA 1.0 Network Reference Architecture
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Summary

