Recent Updates to NR Sidelink Sensing, Scheduling, and HARQ Models

Tom Henderson and Samantha Gamboa

ns-3 Annual Meeting June 26, 2023

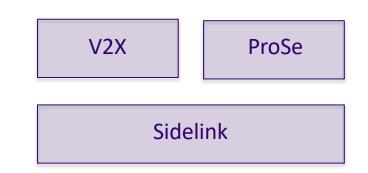
UNIVERSITY of WASHINGTON

License

- > The contents of this tutorial are copyright and licensed by the authors under <u>Creative Commons CC-</u> <u>BY-SA 4.0 license</u>
- > Figures that have been copied from other sources are not covered by this CC-BY-SA 4.0 license, but are instead copyright by the various rights holders, and are reused herein under the <u>fair use doctrine of U.S.</u> <u>copyright law</u>

Schedule

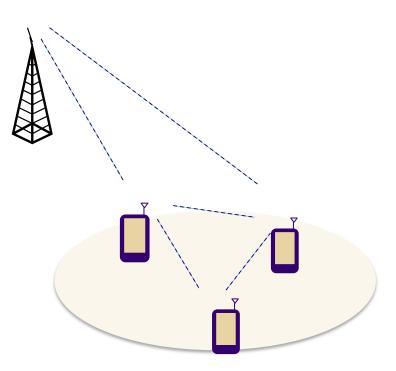
- > 9am-10:30: Introduction and recent improvements to NR V2X Mode 2 simulation models
 - Presenters: Tom Henderson and Samantha Gamboa
- > 10:30-11: Break
- > 11-12:30: NR C-V2X Mode 2 Resource Allocation & ns-3 Implementation
 - Presenters: Liu Cao and Collin Brady
- > 12:30-1:30: Lunch
- > 1:30-3:00: Proximity Services (ProSe) Support for 5G NR Simulations
 - Presenters: Samantha Gamboa and Aziza Ben-Mosbah
- > 3:00-3:30: Break
- > 3:30-5:30: Panel on next steps for ns-3 sidelink and 3GPP Release 19 standardization

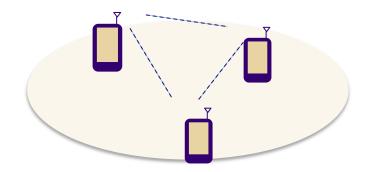

Outline of ns-3 Tutorials

- > Introduction and recent improvements to NR V2X Mode 2 simulation models
 - NR V2X/sidelink models for ns-3
 - Example-driven tutorial on sidelink data-plane operation at the NR MAC sublayer (sensing, scheduling, and HARQ)
- > NR C-V2X Mode 2 Resource Allocation & ns-3 Implementation
 - MAC-level performance analysis of Semi-Persistent
 Scheduling (SPS) resource allocation in a vehicular scenario
 - Validation of ns-3 NR sidelink MAC models
- > Proximity Services (ProSe) Support for 5G NR Simulations
 - Discovery and Layer-3 UE-to-Network Relay models

Terminology

- > NR: New Radio
- > V2X: Vehicle-to-Everything
- > ProSe: Proximity Services
- > SL: Sidelink


- > Are V2X, ProSe, and SL interchangeable terms?
 - V2X refers to a use case enabled by an underlying SL air interface
 - ProSe is another vertical sitting on top of SL
 - SL refers to communications between UE that do not go through the network
 - Not all SL use cases involve vehicles (e.g., ProSe, public safety)



NR V2X Modes

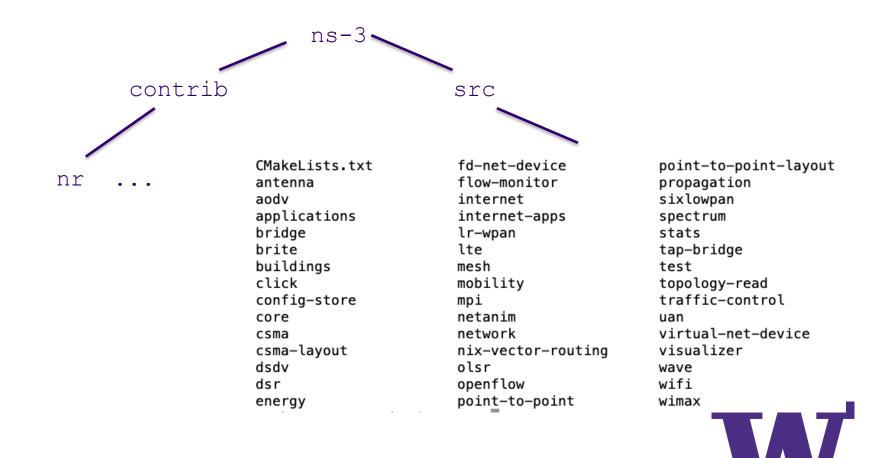
- > Mode 1: Resource allocation over the sidelink channel is managed by the network
- > Analogous to LTE C-V2X Mode 2
- > Mode 2: Resource allocation performed without network assistance
- > Analogous to LTE C-V2X Mode 4

Acknowledgments

- > This tutorial extends <u>last year's NR-V2X tutorial</u> by Zoraze Ali (formerly of CTTC)
- > CTTC and Zoraze Ali are the primary authors of ns-3 NR V2X/SL models
- > Tom Henderson and Collin Brady (University of Washington), and Samantha Gamboa and Aziza Ben-Mozbah (Prometheus Computing/NIST) have been improving and extending the V2X, ProSe, and SL models
- > CTTC's work and the University of Washington's work were funded by the National Institute of Standards and Technology (NIST), led by Richard Rouil and Wesley Garey
- > Thanks are due to both CTTC and NIST for open sourcing their NR V2X, sidelink, and ProSe models

What's new?

	NR V2X standard	NR V2X ns-3
Communication types	Broadcast, Groupcast, Unicast	Broadcast Groupcast, Unicast
MCS	QPSK, 16QAM, 64QAM, 256QAM	QPSK, 16QAM, 64QAM, 256QAM
Waveform	OFDMA	OFDMA
Frequency range	sub-6 GHz, mmWave	sub-6 GHz, mmWave
Subcarrier spacing	sub-6 GHz: 30, 60 kHz mmWave: 60, 120 kHz	sub-6 GHz: 30, 60 kHz mmWave: 60, 120 kHz
Duplexing mode	FDD, TDD	TDD
Retransmissions	Broadcast: blind, Groupcast: blind, feedback-based Unicast: blind, feedback-based	Broadcast: blind Groupcast: blind, feedback-based Unicast: blind, feedback-based
PHY channels	PSCCH, PSSCH, PSBCH, PSFCH	PSCCH, PSSCH PSFCH
Control and data multiplexing	Frequency, Time	Time
Scheduling interval	1 slot	1 slot
Sidelink mode	MODE 1, MODE 2	MODE 2
Channel models	V2V highway, V2V Urban	V2V highway, V2V Urban

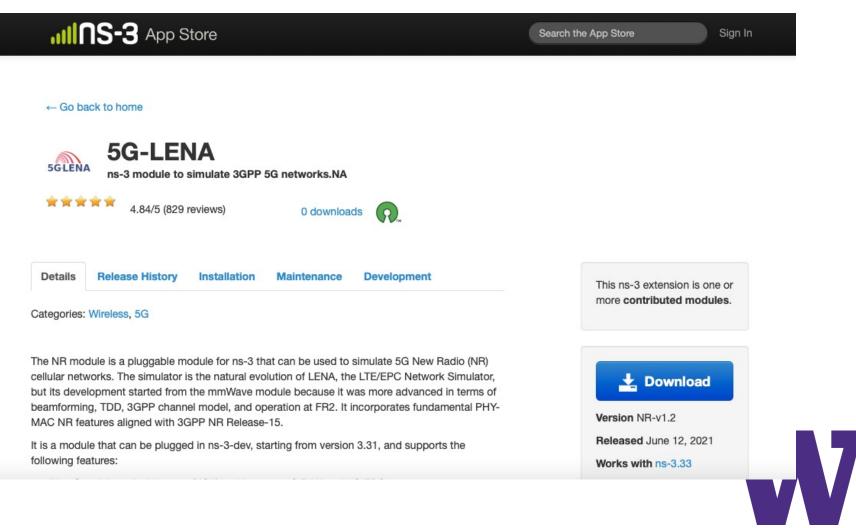

Z. Ali, S. Lagén, L. Giupponi and R. Rouil, "3GPP NR V2X Mode 2: Overview, Models and System-Level Evaluation" in IEEE Access

Other: Sensing: Support for multiple subchannels Scheduling: Dynamic grants, multiple logical channels

Roadmap to ns-3 NR V2X/SL software

> ns-3 has moved to a modular codebase, with optional models supported through the `contrib` directory

nr module from CTTC's OpenSim

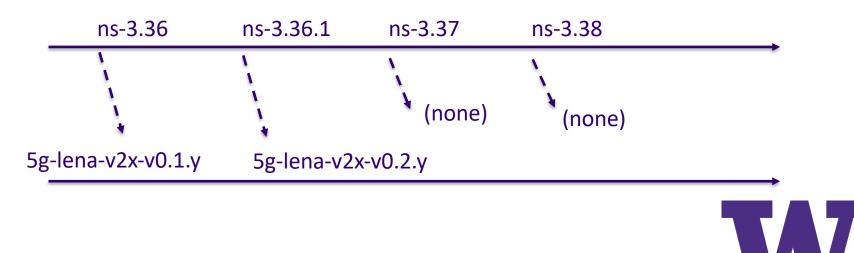

> The public nr module is available at on GitLab.com: <u>https://gitlab.com/cttc-lena/nr.git</u>

About GitLab 🗸 Pricing	Talk to an expert Q Search GitLab		@ [●] ~ ≡ Register Sign in
sellna nr	OpenSim > 🚇 nr		
 Project information Project information Repository Issues Merge requests Merge requests CI/CD Deployments 	SGLENA nr ⊕ Project ID: 9684684 1 -> 1,871 Commits 1 16 Branches 2 NR ns-3 module	🗔 737.3 MB Project Storage 🖉 2 Releases	☆ Star 82
 Peppoyments Packages and registries Wiki 	doc: Add DOI in RELEASE_NOTES.md Katerina Koutlia authored 1 month ago		aaa7c4fb
X Snippets	master ~ nr PREADME CHANGELOG		Find file
	Name	Last commit	Last update
		reuse: Add REUSE license to all source (non-bi	2 months ago

ns-3 App Store

- > ns-3 extensions also have a public page on the App Store:
 - <u>https://apps.nsnam.org/app/nr/</u>

ns-3 and nr module synchronization


- > Contrib modules must be paired with compatible ns-3 release versions
- > CTTC makes an 'nr' module release after every ns-3 release
- > nr modules are self-contained; require no ns-3 modifications

ns-3.36	ns-3.36.1	ns-3.37	ns-3.38	
	N.	N.	N.	
Ň	N.	λ	1	
*	*	\ *	N N	
nr-2.1	nr-2.2	nr-2.3	nr-2.4	

NR V2X differences

- > V2X/SL extensions are not maintained in the `nr` master branch but in a separate `nr-v2x-dev` branch
- > They also require a special (patched) version of ns-3
- > This special version of ns-3 is maintained in another CTTC repository and branch:
 - <u>https://gitlab.com/cttc-lena/ns-3-dev/-/tree/v2x-lte-dev</u>
 - Currently, it lags ns-3-dev-- it is only up to ns-3.36.1 release

Instructions to obtain CTTC's NR V2X dev version

- \$ git clone https://gitlab.com/cttc-lena/ns-3-dev.git
- \$ cd ns-3-dev
- \$ git checkout -b v2x-lte-dev origin/v2x-lte-dev
- \$ cd contrib
- \$ git clone https://gitlab.com/cttc-lena/nr.git
- \$ cd nr
- \$ git checkout -b nr-v2x-dev origin/nr-v2x-dev

Software in use today

- > Three tutorial presentations are using customizations of the CTTC NR V2X branches
- 1. This introductory tutorial uses the following branches
 - 1. <u>https://gitlab.com/tomhenderson/ns-3-dev.git</u>, branch wns3-2023-tutorial
 - 2. <u>https://gitlab.com/tomhenderson/nr.git</u>, branch wns3-2023tutorial
- 2. The resource allocation tutorial is based on Collin Brady's extensions (see next tutorial)
- 3. The ProSe tutorial uses a special branch available at NIST's GitHub repository (see afternoon tutorial)

Instructions to obtain this tutorial's code

- \$ git clone https://gitlab.com/tomhenderson/ns-3-dev.git
- \$ cd ns-3-dev
- \$ git checkout -b wns3-2023-tutorial origin/wns3-2023tutorial
- \$ cd contrib
- \$ git clone https://gitlab.com/tomhenderson/nr.git
- \$ cd nr
- \$ git checkout -b wns3-2023-tutorial origin/wns3-2023tutorial

Differences with respect to upstream CTTC instructions are depicted in red

- git commit hash of ns-3-dev branch: fe082b36 (June 15, 2023)
- git commit hash of nr branch: 69d1eed4 (June 25, 2023)

This code will be upstreamed to CTTC's repositories once documentation and testing are completed

Remainder of this tutorial

- > We will work directly with recently created example programs (nr-v2x-simple-multi-lc, sidelink-harqexample) to highlight the MAC operation and recent changes to the model
- > Topics covered:
 - SL resources and terminology: symbols, slots, PRBs, subchannels, resource pools, sidelink bitmaps
 - How traffic from different applications is routed to different logical channels
 - How the scheduler prioritizes between different logical channels
 - How the scheduler is triggered to select resources, for either semipersistent or dynamic granting
 - How the sensing process (TS 38.214 Section 8.1.4) is implemented and consulted
 - How the HARQ and PSFCH feedback channel operate

Terminology, Architecture, References

> <u>3GPP TS 38.300</u> is a good overview reference for 5G NR

– Sections 5.7 and 16.9 pertain to sidelink

3GPP TS 38.300 V17.4.0 (2023-03)

Technical Specification

3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; NR and NG-RAN Overall Description; Stage 2 (Release 17)

NG-RAN architecture

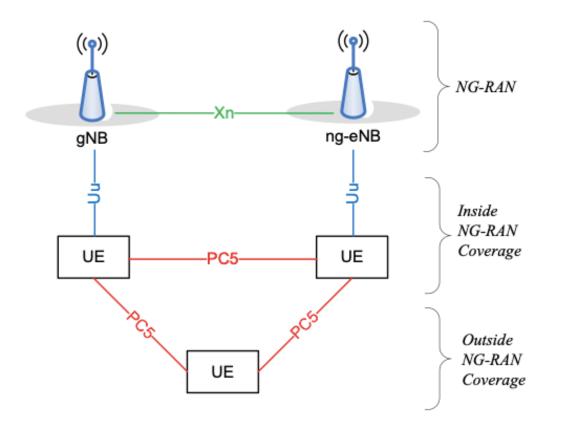


Figure 16.9.1-1: NG-RAN Architecture supporting the PC5 interface

Protocol stack architecture

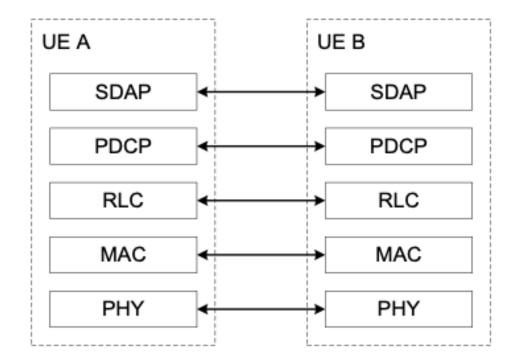


Figure 16.9.2.1-4: User plane protocol stack for STCH.

Layer 2 architecture

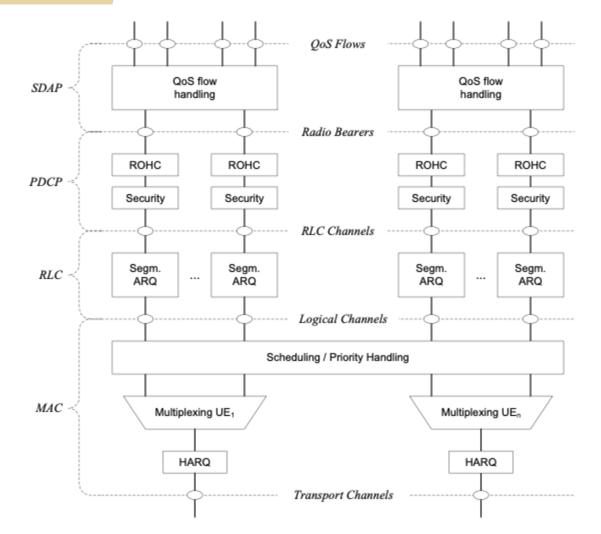
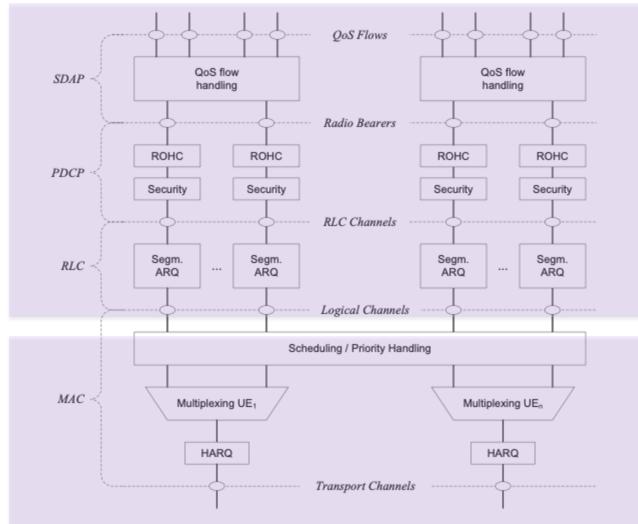


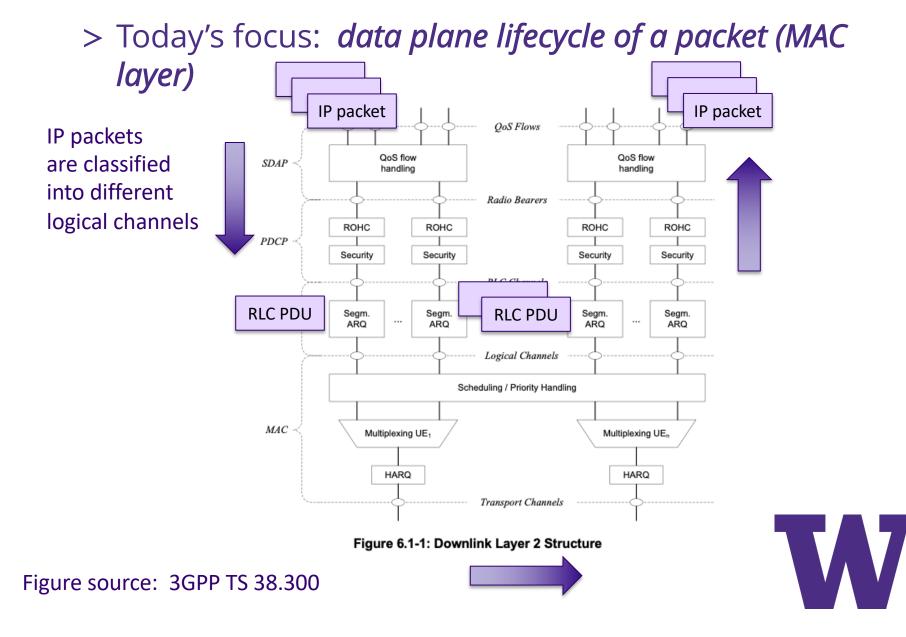
Figure 6.1-1: Downlink Layer 2 Structure

For more information

- > Last year's NR-V2X tutorial by Zoraze Ali (and NR overview by Biljana Bojovic) provides more background overview on this ns-3 model:
 - <u>https://www.nsnam.org/research/wns3/wns3-2022/tutorials/</u>
- > IEEE Access article on the ns-3 NR V2X extensions, by Ali, Lagen, Giupponi, and Rouil
 - <u>https://ieeexplore.ieee.org/document/9461188</u>
- > Thorough tutorial article on NR V2X in general, in IEEE Communications Surveys and Tutorials by Garcia et al:
 - <u>https://ieeexplore.ieee.org/document/9345798</u>

Current software organization




Figure 6.1-1: Downlink Layer 2 Structure

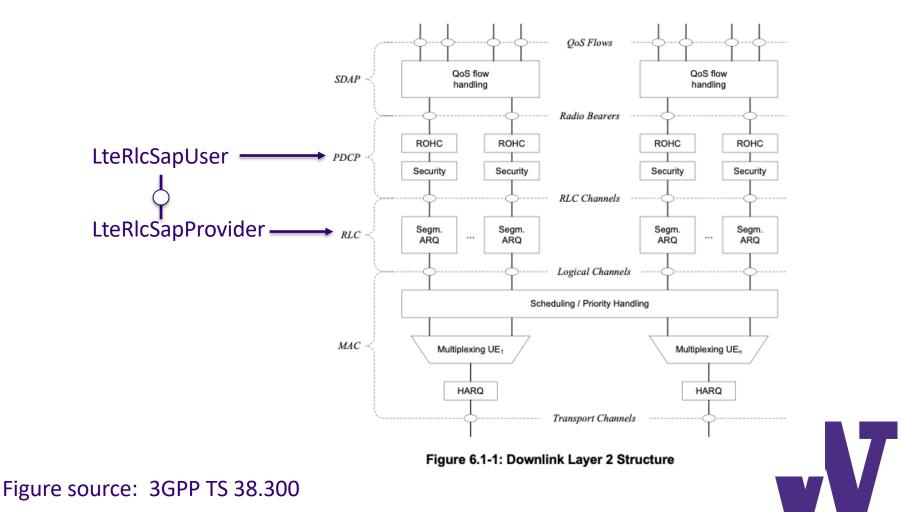
These layers reside in the src/lte directory

Lower layers reside in the contrib/nr directory

Tutorial focus

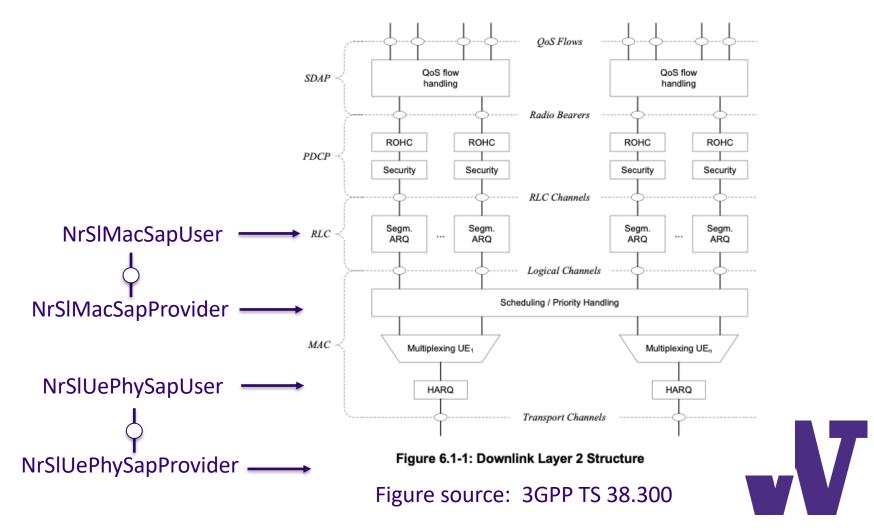
Logical channels

- > Groupings of packets that receive similar service by the MAC layer
 - Destination L2 ID
 - "Cast type" (Unicast, Broadcast, Groupcast)
 - "Hybrid ARQ" (HARQ) type
 - Packet delay budget
 - Scheduling (or resource) type (semi-persistent, or dynamic)
 - Resource Reservation Interval (RRI)
 - Priority
 - Packet Error Rate requirements
- > These are parameters in a SidelinkInfo structure (see next slide)


Mapping of IP packets to logical channels

- > The SidelinkInfo [*] structure is passed to the LTE Sidelink Traffic Flow Template (LteSITft)
 - [*] corresponds to "Sidelink Transmission/Identification/Other Information" defined in TS 38.321.

```
uint32_t dstL2Id = 224;
Ipv4Address groupAddress4 ("225.0.0.0");
                                        //use multicast address as destination
Ipv6Address groupAddress6 ("ff0e::1");
                                          //use multicast address as destination
Ptr<LteSlTft> tft;
SidelinkInfo slInfo;
if (castType == "groupcast")
  {
    slInfo.m_castType = SidelinkInfo::CastType::Groupcast;
else if (castType == "broadcast")
                                                                   code samples from
    slInfo.m_castType = SidelinkInfo::CastType::Broadcast;
  3
                                                                   sidelink-harg-info.cc
else if (castType == "unicast")
    slInfo.m_castType = SidelinkInfo::CastType::Unicast;
slInfo.m_hargEnabled = hargEnabled;
slInfo.m pdb = delayBudget;
slInfo.m dstL2Id = dstL2Id;
slInfo.m_rri = MilliSeconds (100);
 tft = Create<LteSlTft> (LteSlTft::Direction::TRANSMIT, groupAddress4, slInfo);
 nrSlHelper->ActivateNrSlBearer (finalSlBearersActivationTime, transmitDevices, tft);
```


Service Access Points

> In ns-3, several interfaces are expressed formally in terms of a Service Access Point (SAP)

Sidelink RLC/MAC API

> In ns-3, several interfaces are expressed formally in terms of a Service Access Point (SAP)

C++ implementation of NR SAP APIs

- > Model objects (e.g. NrUeMac) include API objects (e.g. NrSIMacSapProvider) that act as forwarding objects
- > Model objects provide and make use of callbacks to access these APIs; these are connected together by the helper classes

```
class NrUeMac : public Object
{
    ...
public:
    ...
    /**
    * \brief Get the PHY SAP User (AKA the MAC representation for the PHY)
    * \return the PHY SAP User (AKA the MAC representation for the PHY)
    */
    NrUePhySapUser* GetPhySapUser ();
    /**
    * \brief Set PHY SAP provider (AKA the PHY representation for the MAC)
    * \param ptr the PHY SAP provider (AKA the PHY representation for the MAC)
    * \param ptr the PHY SAP provider (AKA the PHY representation for the MAC)
    * \param ptr the PHY SAP provider (AKA the PHY representation for the MAC)
    */
    void SetPhySapProvider (NrPhySapProvider* ptr);
```


C++ implementation of NR SAP APIs (cont.)

- > The access to the model object's public API is restricted to those forwarding methods that are implemented in the SAP class
- > The nr-phy-sap.h file defines these interfaces

```
class NrUePhySapUser
{
public:
    ...
    virtual void ReceivePhyPdu (Ptr<Packet> p) = 0;
    virtual void ReceiveControlMessage (Ptr<NrControlMessage> msg) = 0;
    virtual void SlotIndication (SfnSf s) = 0;
    virtual uint8_t GetNumHarqProcess () const = 0;
};
```


C++ implementation of NR SAP APIs (cont.)

> The definition of these interfaces is in the implementation files> Usually, they are just forwarding to public API methods

```
class MacUeMemberPhySapUser : public NrUePhySapUser
ł
public:
 MacUeMemberPhySapUser (NrUeMac* mac);
 virtual void ReceivePhyPdu (Ptr<Packet> p) override;
 virtual void ReceiveControlMessage (Ptr<NrControlMessage> msg) override;
 virtual void SlotIndication (SfnSf sfn) override;
 //virtual void NotifyHarqDeliveryFailure (uint8_t harqId);
 virtual uint8_t GetNumHargProcess () const override;
private:
 NrUeMac* m_mac;
};
}
void
MacUeMemberPhySapUser::ReceivePhyPdu (Ptr<Packet> p)
 m_mac->DoReceivePhyPdu (p);
}
```


Sidelink resources

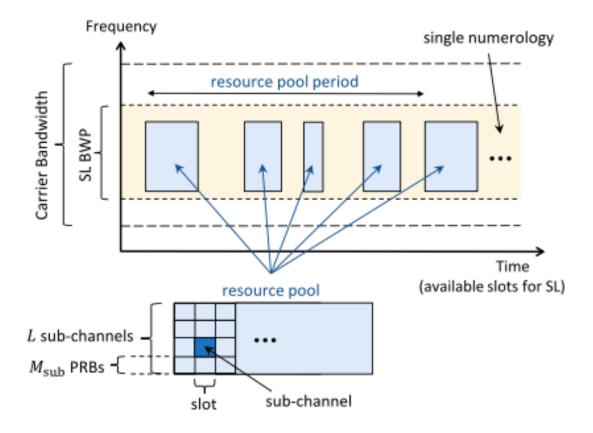
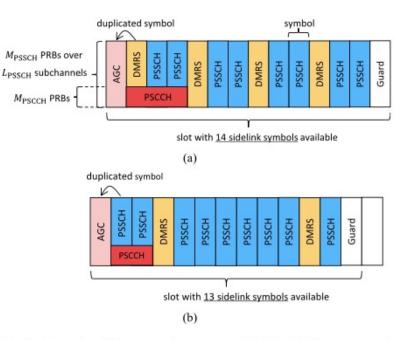
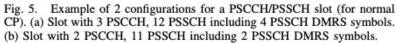
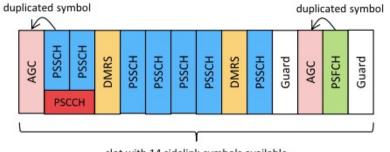



Fig. 4. SL bandwidth part and resource pool for NR V2X sidelink.




Figure source: A Tutorial on 5G NR V2X Communications, Garcia et al.

Slot structure

For the purpose of Transport Block (TB) size determination, the ns-3 code currently assumes that there are nine PSSCH symbols available for data (regardless of PSFCH)

slot with 14 sidelink symbols available

Fig. 6. Example of a PSCCH/PSSCH slot with a PSFCH, 2 PSCCH, 9 PSSCH including 2 PSSCH DMRS symbols (for normal CP).

Figure sources: A Tutorial on 5G NR V2X Communications, Garcia et al.

Sidelink slot pattern

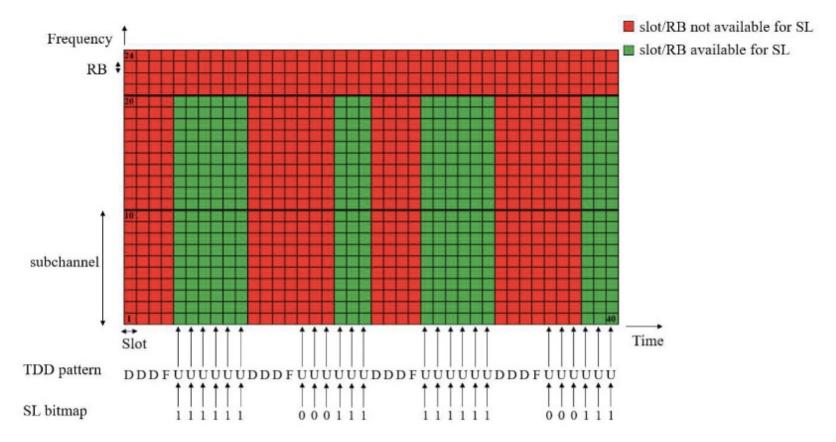


FIGURE 1. Time/frequency frame structure and definition of sidelink resource pool for NR V2X TDD. Example with 2 subchannels of 10 RBs each, using TDD pattern of [D D D F U U U U U] and sidelink bitmap of [1 1 1 1 1 1 0 0 0 1 1 1].

Figure source: 3GPP NR V2X Mode 2: Overview, Models and System-Level Evaluation, Ali, Lagen, Giupponi, Rouil

Sidelink resource definition in ns-3 code

```
uint16_t numerologyBwpSl = 2;
uint16_t slSubchannelSize = 50; // PRBs
```

//Configure the TddUlDlConfigCommon IE
LteRrcSap::TddUlDlConfigCommon tddUlDlConfigCommon;
tddUlDlConfigCommon.tddPattern = "DL|DL|DL|F|UL|UL|UL|UL|UL|UL|";

std::vector <std::bitset<1> > slBitmap = {1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1};

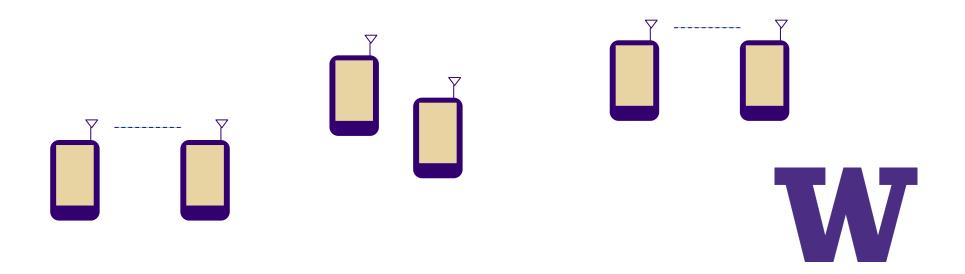
uint16_t bandwidthBandSl = 400; //Multiple of 100 KHz; 400 = 40 MHz

CcBwpCreator::SimpleOperationBandConf bandConfSl (centralFrequencyBandSl, bandwidthBandSl, nu mCcPerBand, BandwidthPartInfo::RMa_LoS);

The combination of these parameters largely defines the resources that the MAC has to work with

Guidance as to what are reasonable values to use In ns-3 simulations would be helpful

Multiple BWP and multiple RP


- > Although not covered in these examples, it is possible to define multiple bandwidth parts (BWP) and multiple resource pools (RP)
 - Different numerologies can be assigned to different BWP
- > In ns-3, mappings are therefore needed between logical channels and BWPs, and multiple instances of NrUeMac
- > This is managed by the BwpManagerAlgorithm class
 - Currently, only a static mapping based on bearer QCI value is implemented
 - It is unclear if this has been tested or exercised much in the current V2X codebase

Resource allocation and scheduling problem

Consider when a new RLC PDU arrives

- > Scheduler must find future resources that
 - 1. do not conflict with its own scheduled transmissions
 - 2. do not conflict with planned receptions
 - 3. are unlikely to collide with other UE transmissions
 - 4. allow for retransmissions and feedback (if configured)
- > Each UE's interference environment can be different
- > Modulation and power control could be factors

Resource allocation and scheduling approach

- > Scheduler takes hints from past receptions in a sensing window to avoid possible future collisions
- > Scheduler selects from available resources in the selection window (and beyond, for semi-persistent scheduling)

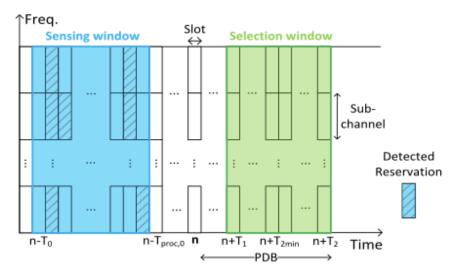
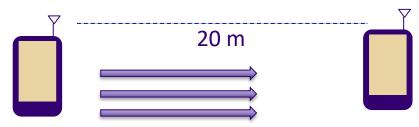


Fig. 18. Sensing and selection windows of NR V2X SL mode 2 when $T_2 = PDB$.

Figure source: A Tutorial on 5G NR V2X Communications, Garcia et al.

Demonstration of ns-3 sidelink operation


- > We will use two example programs to demonstrate how packets are handled by the NR UE MAC layer
 - contrib/nr/examples/nr-v2x-examples/nr-slsimple-multi-lc.cc (authored by Samantha Gamboa)
 - contrib/nr/examples/nr-v2x-examples/sidelinkharq-example.cc (authored by Tom Henderson)
- > Both programs derive from an original program from Zoraze Ali
 - contrib/nr/examples/nr-v2x-examples/cttc-nrv2x-demo-simple.cc

\$ simulation commands will be depicted in Courier font, enclosed like this

nr-sl-simple-multi-lc.cc overview

- > Purpose: Demonstrate how different sidelink traffic profiles can be configured, and how those affect resource selection
- > Topology: Two UEs separated by 20 meters

- Three traffic flows, configured differently
- Constant bit rate traffic (default 16 Kb/s, 200 byte UDP packets)
- No Hybrid ARQ (HARQ) configured, but blind retransmissions enabled
- > Traffic profile parameters varied:
 - Scheduling type (semi-persistent scheduling (SPS), or dynamic)
 - Destination L2 ID
 - Priority (and relative priority to SPS/dynamic)
 - Resource reservation interval (RRI)

nr-sl-simple-multi-lc.cc overview (cont)

> Output: Terminal output and a delay trace

 Terminal output: Packets sent and received, and average latency (measured at application layer) across all flows. Sample:

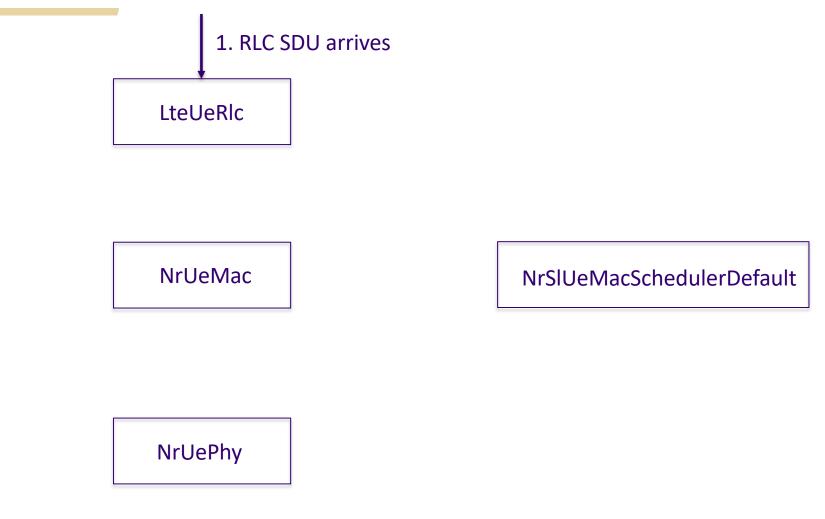
Total Tx packets = 60 Total Rx packets = 60 Average packet delay = 1.74464 ms

> Delay trace (NrSIAppRxPacketDelayTrace.txt). Per-packet delay trace mesured at application layer. Sample:

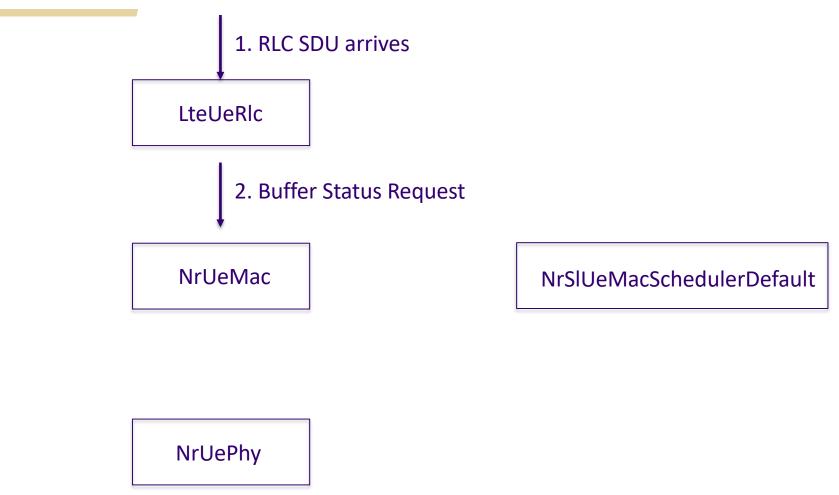
time(s)	<pre>srcIP:port</pre>	dstIP:port	size	seq	delay(ms)
2.10158	7.0.0.2:49155	225.0.0.0:8003	200	Ø	1.58214
2.10158	7.0.0.2:49154	225.0.0.0:8002	200	0	1.58214
2.10158	7.0.0.2:49153	225.0.0.0:8001	200	0	1.58214
2.20183	7.0.0.2:49155	225.0.0.0:8003	200	1	1.83214
2.20183	7.0.0.2:49154	225.0.0.0:8002	200	1	1.83214
2.20183	7.0.0.2:49153	225.0.0.0:8001	200	1	1.83214
2.30183	7.0.0.2:49155	225.0.0.0:8003	200	2	1.83214
2.30183	7.0.0.2:49154	225.0.0.0:8002	200	2	1.83214
2.30183	7.0.0.2:49153	225.0.0.0:8001	200	2	1.83214

nr-sl-simple-multi-lc.cc parameter choices

Simulation config	Resulting traffic profile configuration per flow				
Parameter	Value	Flow 1	Flow 2	Flow 3	
schedTypeConfig	1	Dynamic	Dynamic	Dynamic	
schedTypeConfig	2	SPS	SPS	SPS	
schedTypeConfig	3	Dynamic	Dynamic	SPS	
schedTypeConfig	4	SPS	SPS	Dynamic	
dstL2IdConfig	1	255	255	255	
dstL2IdConfig	2	255	254	255	
dstL2IdConfig	3	254	254	255	
priorityConfig	1	1	1	1	
priorityConfig	2	1	2	3	
priorityConfig	3	2	2	1	
priorityConfig	4	1	1	2	
rriConfig	1	100	100	100	
rriConfig	2	100	50	100	

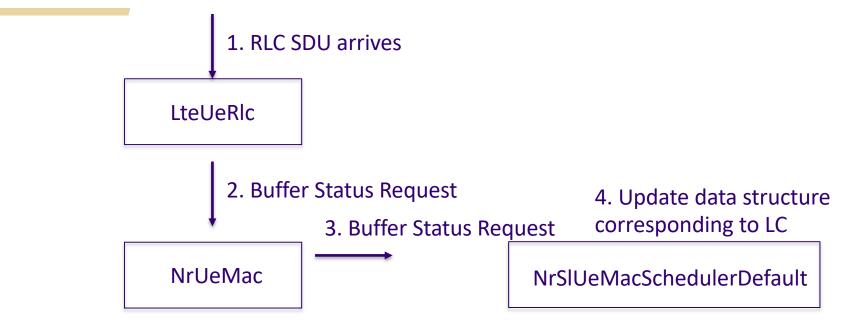

LteUeRlc

NrUeMac


NrSIUeMacSchedulerDefault

NrUePhy





\$ NS LOG= NrSlUeMacSchedulerDefault=info prefix time|prefix_node|prefix_func ./ns3 run nr-sl-simple-multi-lc > log1.out 2>&1

ns-3 logging can be controlled by C++ statements or by the NS_LOG env. variable

Each logging component is defined in an implementation (.cc) file Multiple logging components can be separated by colon ':'

Multiple logging priority levels (warr, info, function, logic, debug) can be selected

A number of logging prefixes can be used to annotate the output

Logging output can be voluminous; I typically redirect to a text file Logging output is printed to std::cerr, so redirect to std::cout (with the 2>&1 command)

\$ NS_LOG="NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_func" \
./ns3 run nr-sl-simple-multi-lc > log1.out 2>&1

\$ NS LOG='NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_func" \
./ns3 run nr-sl-simple-multi-lc > log1.out 2>&1

ns-3 logging can be controlled by C++ statements or by the NS_LOG env. variable

\$ NS_LOG= 'NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_func" \
./ns3 run nr-sl-simple-multi-lc > log1.out 2>&1

ns-3 logging can be controlled by C++ statements or by the NS_LOG env. variable

Each logging component is defined in an implementation (.cc) file Multiple logging components can be separated by colon ':'

\$ NS_LOG="NrSlUeMacSchedulerDefault=info prefix_time|prefix_node|prefix_func"
./ns3 run nr-sl-simple-multi-lc > log1.out 2>&1

ns-3 logging can be controlled by C++ statements or by the NS_LOG env. variable

Each logging component is defined in an implementation (.cc) file Multiple logging components can be separated by colon ':'

Multiple logging priority levels (warn, info, function, logic, debug) can be selected

\$ NS_LOG="NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_fund"
./ns3 run nr-sl-simple-multi-lc > log1.out 2>&1

ns-3 logging can be controlled by C++ statements or by the NS_LOG env. variable

Each logging component is defined in an implementation (.cc) file Multiple logging components can be separated by colon ':'

Multiple logging priority levels (warn, info, function, logic, debug) can be selected

A number of logging prefixes can be used to annotate the output

\$ NS_LOG="NrSlUeMacSchedulerDefault=infolprefix_time|prefix_node|prefix_func" `
./ns3 run nr-sl-simple-multi-lc > log1.out 2>&1

ns-3 logging can be controlled by C++ statements or by the NS_LOG env. variable

Each logging component is defined in an implementation (.cc) file Multiple logging components can be separated by colon ':'

Multiple logging priority levels (warr, info, function, logic, debug) can be selected

A number of logging prefixes can be used to annotate the output

Logging output can be voluminous; I typically redirect to a text file Logging output is printed to std::cerr, so redirect to std::cout (with the 2>&1 command)

Log output: Buffer Status Request

\$

NS_LOG="NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_func: NrUeMac=info|prefix_time|prefix_node|prefix_func:NrSlUeMacSchedulerLCG=info |prefix_time|prefix_node|prefix_func" ./ns3 run nr-sl-simple-multi-lc > log1.out 2>&1

1. RLC SDU arrives

Not shown... in LTE module (logs not cleaned up yet)

2. NrUeMac BufferStatusRequest (line 17)

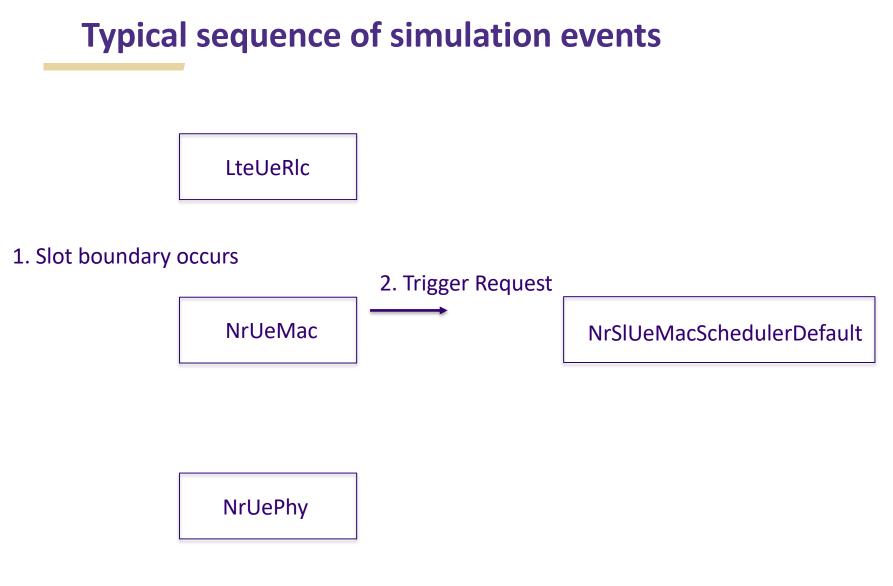
+2.100000000s 0 [CellId 0, bwpId 0, rnti 1] NrUeMac:DoReportNrSlBufferStatus(): Reporting for Sidelink. Tx Queue size = 235

3. NrSIUeMacSchedulerDefault BufferStatusRequest (line 18)

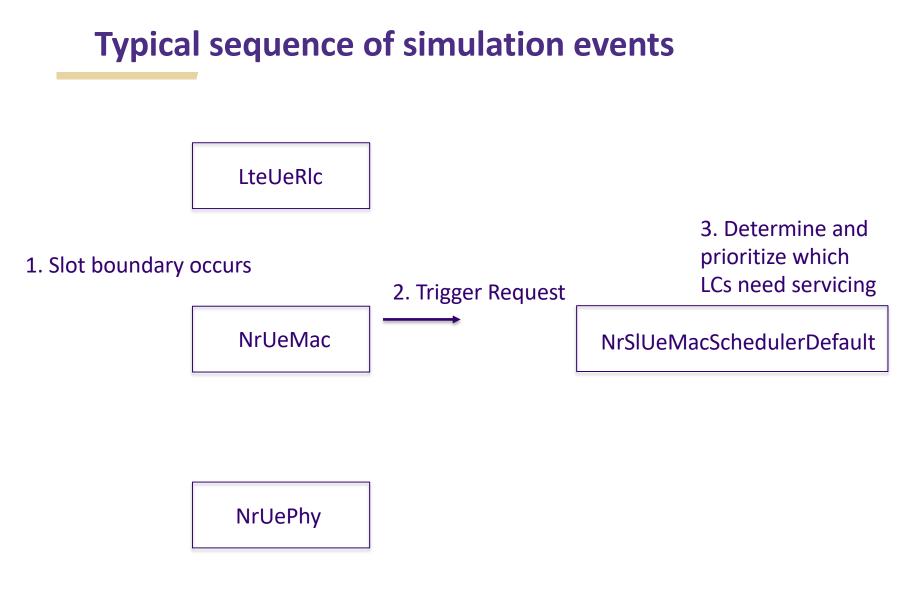
+2.100000000s 0 NrSlUeMacSchedulerDefault:DoSchedUeNrSlRlcBufferReq(): Updating buffer status for LC in LCG: 3 LC: 4 dstL2Id: 255 queue size: 235

4. Update LC/DstL2Id structures (line 19)

+2.1000000000 0 NrSlUeMacSchedulerLCG:UpdateLC(): Updating LC 4 queue size 235 HOL delay (ms) 0 Retx queue size 0 Retx HOL delay (ms) 0 status PDU size 0


1. Slot boundary occurs

NrUeMac


NrSIUeMacSchedulerDefault

NrUePhy

Logical channel prioritization

- > When multiple LCs need to be scheduled at the same time, some prioritization order is needed
- > The explicit priority (QoS) of LCs (encoded in the SidelinkInfo of the LC) can be used as the primary prioritization
- > When LCs have the same QoS priority, other priortization heuristics are needed
 - e.g., closest deadline to packet delay budget, largest queue, longest time since allocation, round robin
- > Some high priority LCs may not be able to be scheduled if there is congestion, despite pre-existing grants to lower priority LCs
- > A feature called 'preemption' (not implemented) can override

Logical channel prioritization (cont.)

The current ns-3 implementation prioritizes first by sorting destinations, then by LC within each destination:

- 1. Select the destination:
 - 1. with the LC with the highest priority
 - 2. if multiple destination share the same highest priority, select the one with the smallest dstL2Id
- 2. Select the LC to that destination with highest priority
- 3. Select all LCs with the same grant attributes (scheduling type, scheduling attributes, and HARQ feedback type) as the LC with highest priority
 - 1. if multiple LCs with different scheduling type share the same highest priority, select the one(s) with scheduling type priority indicated by m_prioToSps attribute
 - 2. if m_prioToSps and multiple LCs with SPS scheduling type and different RRI share the same highest priority, select the one(s) with RRI equal to the LC with lowest LcId

Log output: Trigger request

\$

NS_LOG="NrSlUeMacSchedulerDefault=logic|prefix_time|prefix_node|prefix_func :NrUeMac=debug|prefix_time|prefix_node|prefix_func" ./ns3 run nr-sl-simplemulti-lc > log2.out 2>&1

1. Slot boundary occurs (line 39197)

+2.1000000008 0 [CellId 0, bwpId 0, rnti 1] NrUeMac:DoSlotIndication(): Slot FrameNum: 210 ubFrameNum: 0 SlotNum: 0

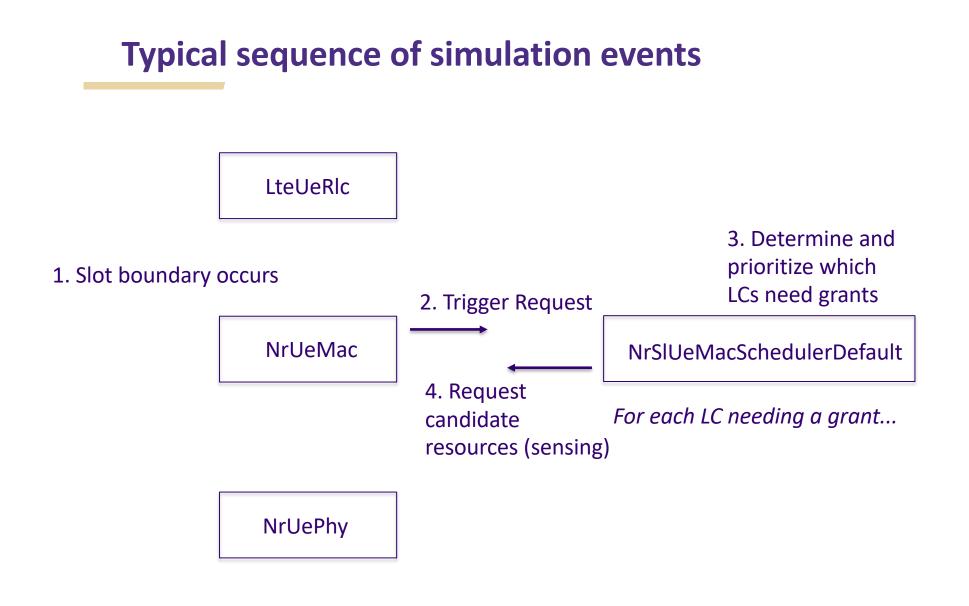
2. Trigger request (line 39205)

+2.100000000s 0 NrSlUeMacSchedulerDefault:DoSchedUeNrSlTriggerReq(): There are 1 destinations needing scheduling

3. Prioritize LCs in scheduler (line 39212-39252)

+2.100000000s 0 NrSlUeMacSchedulerDefault:LogicalChannelPrioritization(): Trying 3 LCs with total buffer size of 705 bytes in 1 subchannels for a TB size of 1333 bytes

. . .

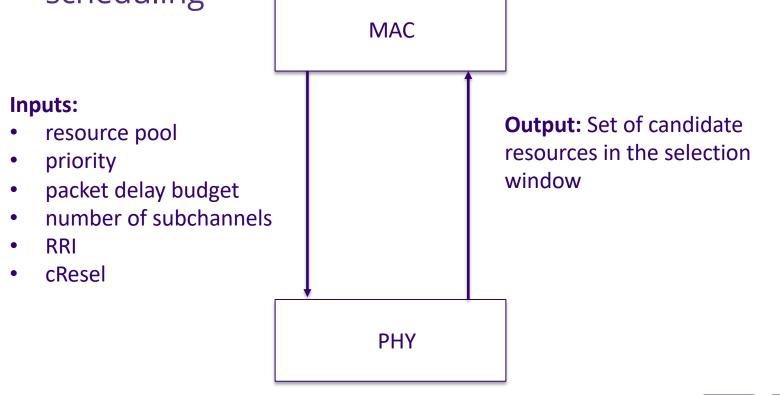

+2.100000000s 0 NrSlUeMacSchedulerDefault:DoSchedUeNrSlTriggerReq(): All logical channels of destination 255 were allocated

nr-sl-simple-multi-lc.cc parameter choices

Simulation config	Resulting traffic profile configuration per flow			
Parameter	Value	Flow 1	Flow 2	Flow 3
schedTypeConfig	1	Dynamic	Dynamic	Dynamic
schedTypeConfig	2	SPS	SPS	SPS
schedTypeConfig	3	Dynamic	Dynamic	SPS
schedTypeConfig	4	SPS	SPS	Dynamic
dstL2IdConfig	1	255	255	255
dstL2IdConfig	2	255	254	255
dstL2IdConfig	3	254	254	255
priorityConfig	1	1	1	1
priorityConfig	2	1	2	3
priorityConfig	3	2	2	1
priorityConfig	4	1	1	2
rriConfig	1	100	100	100
rriConfig	2	100	50	100

All three LCs in this (default) example are scheduled in the same grant, because they each have the same LC properties

TA


Sensing overview

- > Sensing is based on a combination of 1) PSCCH decoded (SCI 1-A), and 2) RSRP measured in the slots within window
- > NR Sidelink is assumed to be a half-duplex device-cannot transmit and receive in the same (time) slot
- > Sensing for NR SL Mode 2 is specified in a six-step algorithm in 3GPP TS 38.214

Sensing overview (cont.)

> Described as a MAC/PHY interaction in the specification, to obtain candidate resources for scheduling

Sensing implementation in ns-3

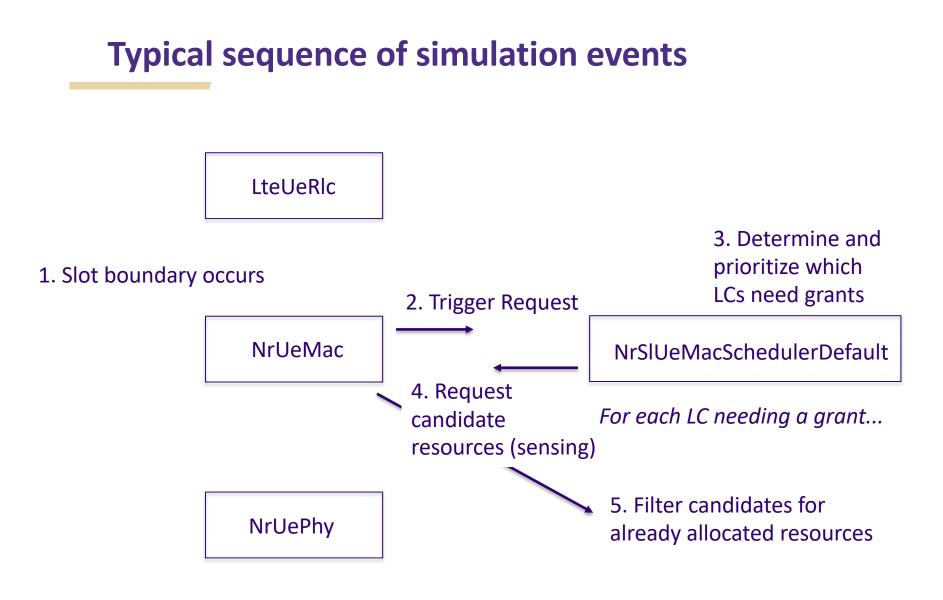
- > NrUeMac::NrUeMac::GetNrSlCandidateResourcesPrivate()
 follows 3GPP TS 38.214 Section 8.1.4 closely
- > Algorithm inputs:

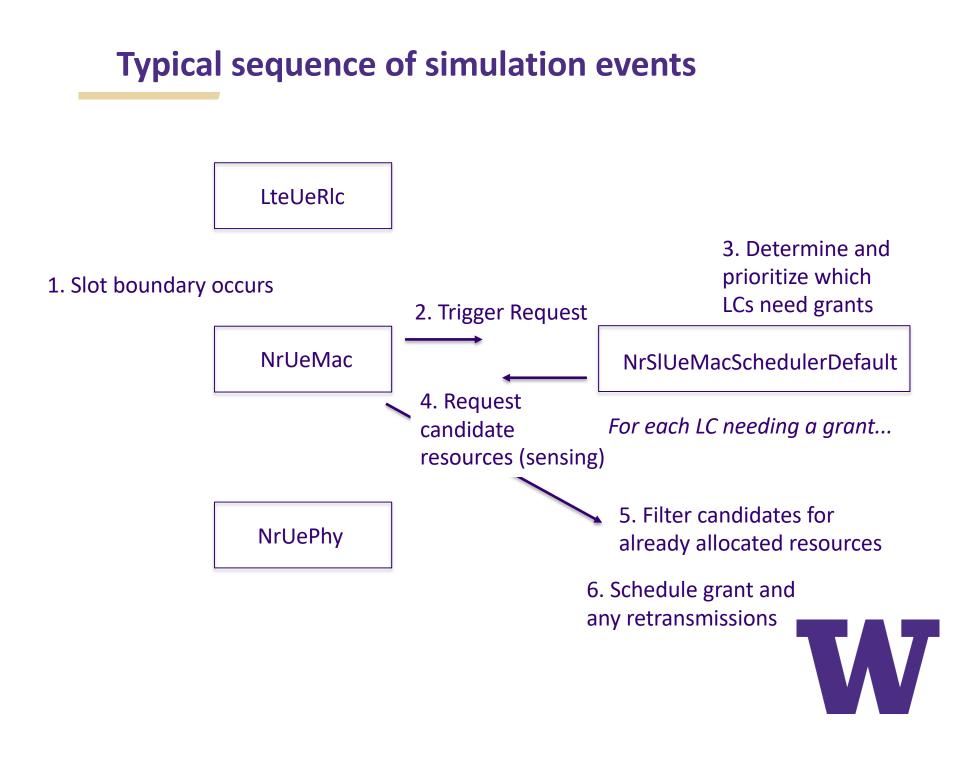
Specification term	ns-3 variable	Definition
Resource pool	m_bwpId, m_poolId	Resource pool to evaluate
L1 priority	params.m_priority	Priority in the SCI format 1-A (from LC prio)
	params.m_packetDelayBudg	
remaining PDB	et	ns-3 uses absolute PDB, not remaining
L_subCH	params.m_lSubch	Size of requested resource in subchannels
P_rsvpTx	params.m_pRsvpTx	Resource reservation interval (RRI) desired
sl-SelectionWindowList	m_t2	ns-3 uses single m_t2, not prioritized list
sl-Thres-RSRP-list	Not supported	ns-3 uses a single threshold
sl-RS-ForSensing	Not supported (uses PSSCH)	Whether to use RSRP from PSSCH or PSCCH
		LIst of possible RRIs of missed SCI-1A (half
sl-ResourceReservePeriodList	Retreived from pool object	duplex)
sl-SensingWindow	m_t0	Left edge of sensing window
sl-TxPercentageList	m_resPercentage	ns-3 uses single value of X, not prioritized list
sl-PreemptionEnable	Not supported	Corresponds to prio_pre priority value

> Algorithm outputs list S_A of all candidate single-slot resources

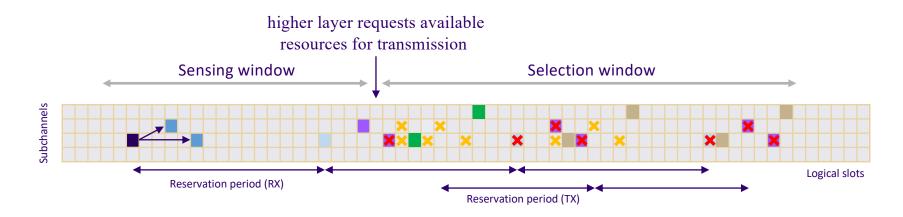
Interpretation of "all candidate resources"

> Candidate resources may overlap with each other> Example request for resource with three subchannels

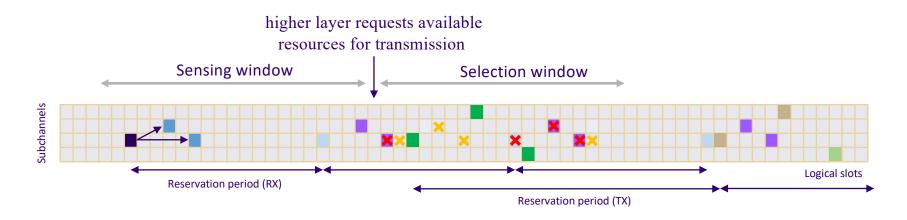



Algorithm summary (TS 38.214 Section 8.1.4)

- > (Step 4) Initialize *S*_A to all candidate resources
- > (Step 5-- *for missed sensing opportunities*) For all resources that were not listened to (due to transmitting in that slot), use the ResourceReservePeriodList to exclude, from S_A, all possible future SPS transmissions that may have been unheard
 - If resulting S_A is less than a threshold percentage (e.g. 50%), restore S_A to its value from Step 4
- > (Step 6-- *for decoded signals*) For all resources known in the sensing window due to received SCI-1A (and PSSCH):
 - If the received RSRP > current RSRP threshold, then exclude future projections of those resources from S_A
- > (Step 7) If resulting S_A is less than a threshold percentage, increase threshold by 3 dB and go to step 4



Sensing and Resource Selection


- Resources indicated by PSCCH (from 1st-stage SCI)
- Resources indicated through reservation period (from 1st-stage SCI)
- Resource excluded due to direct collision
- Resource excluded due to collisions in future transmissions
- Resource randomly selected
- Resource selected through reservation period

Additional factors affecting the sensing and selection process include:

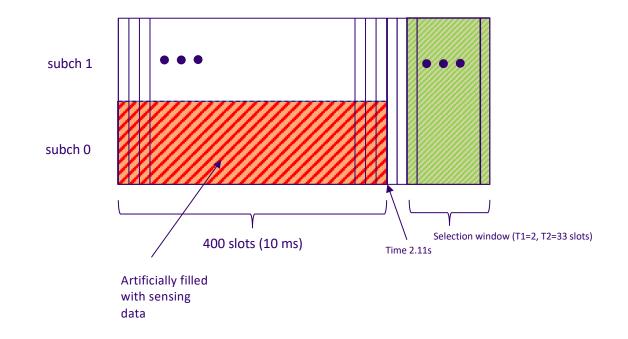
- Priorities of the transmissions
- Preemption capabilities
- Signal strength
- Remaining packet delay budget
- Size of the transmission (i.e., number of subchannels)
- Half duplex mode

NIST

Sensing and Resource Selection

- Resources indicated by PSCCH (from 1st-stage SCI)
- Resources indicated through reservation period (from 1st-stage SCI)
- Resource excluded due to direct collision
- Resource excluded due to collisions in future transmissions
- Resource randomly selected
- Resource selected through reservation period

Additional factors affecting the sensing and selection process include:


- Priorities of the transmissions
- Preemption capabilities
- Signal strength
- Remaining packet delay budget
- Size of the transmission (i.e., number of subchannels)
- Half duplex mode

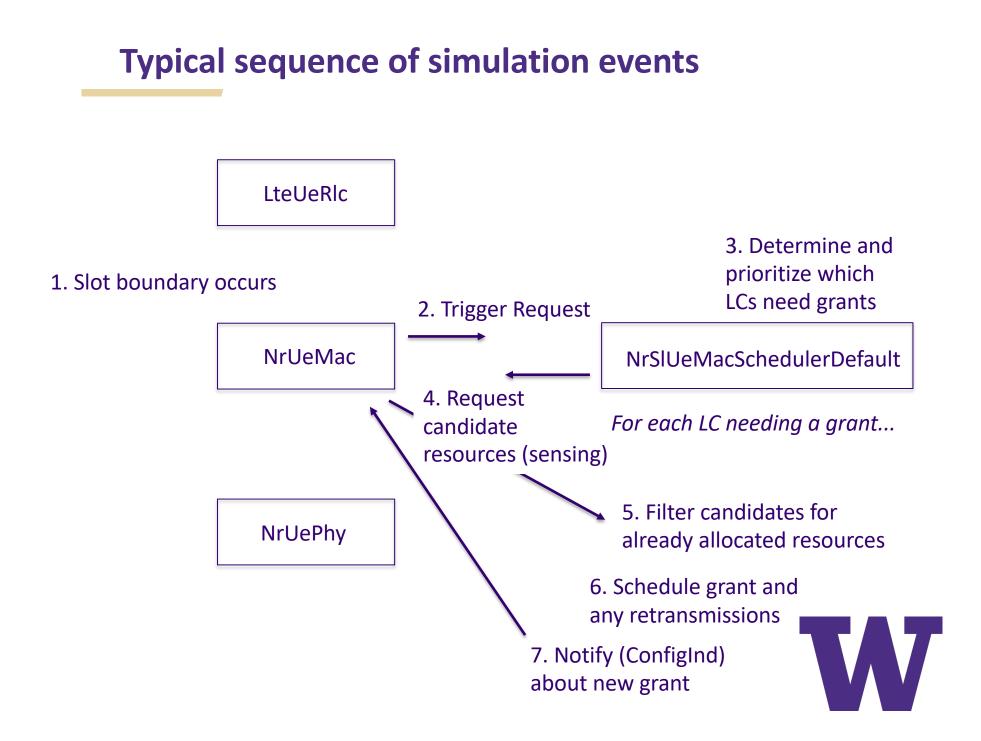
NIST

Recent sensing improvements

- > Current nr-v2x branch code selects candidate 'slots', not candidate 'resources'
- > For simulations with a single subchannel, no difference, but necessary for simulations with multiple subchannels

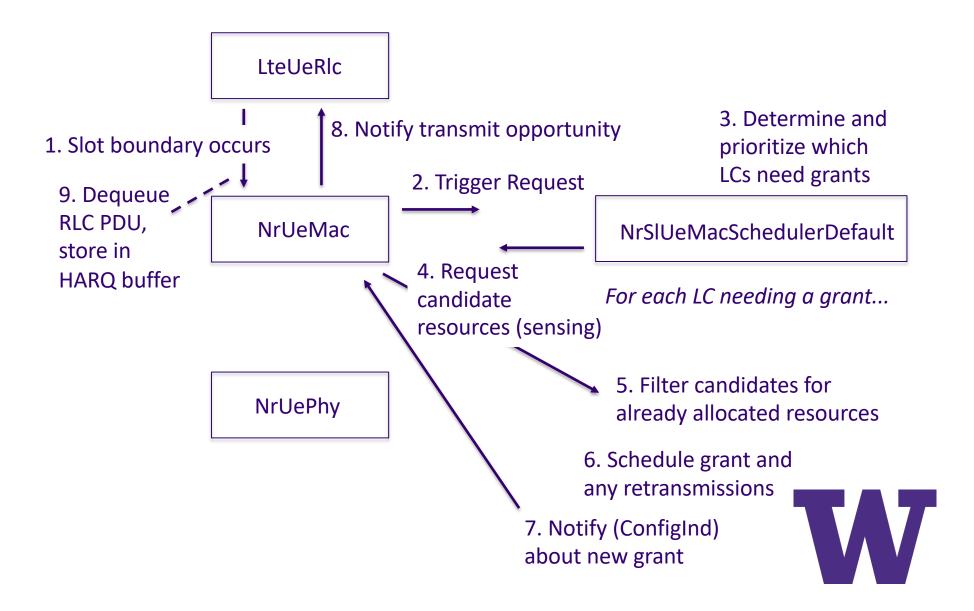
Test scenario to illustrate the difference

Scheduling (resource selection)


- > Previous ns-3 scheduler implementation was called NrSIUeMacSchedulerSimple
 - Capable of semi-persistent scheduling only
 - Capable of handling single LC only
 - Used same assumption of sensing; logic based on slots occupied, not resources occupied (in multi-subchannel case)
 - Only supported blind retransmissions (HARQ-based retransmissions not supported)
- > Proposed new scheduler implementation, NrSIUeMacSchedulerDefault, removes above limitations
- > Schedulers are expected to be an area of active research by users

Scheduling (resource selection)

- > Some features are not implemented
 - Re-evaluation
 - Preemption
 - Handling of differently sized slots (some with PSFCH, some without)
 - > for transport block size calculation, a conservative assumption is made that all slots only have nine symbols available for PSSCH data



Typical sequence of simulation events LteUeRlc 3. Determine and 8. Notify transmit opportunity prioritize which 1. Slot boundary occurs LCs need grants 2. Trigger Request **NrUeMac NrSIUeMacSchedulerDefault** 4. Request For each LC needing a grant... candidate resources (sensing)

NrUePhy

 5. Filter candidates for already allocated resources

6. Schedule grant and any retransmissions
7. Notify (ConfigInd) about new grant

Log output: Publishing grants

\$

NS_LOG="NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_func: NrUeMac=info|prefix_time|prefix_node|prefix_func" ./ns3 run nr-sl-simplemulti-lc > log3.out 2>&1

7. Notify (ConfigInd) about new grant (line 33)

+2.100750000s 0 NrSlUeMacSchedulerDefault:CheckForGrantsToPublish(): Publishing grant to destination 255 HARQ ID 0

8. Notify transmit opportunity (line 34)

+2.100750000s 0 [CellId 0, bwpId 0, rnti 1] NrUeMac:DoSchedUeNrSlConfigInd(): Notifying NR SL RLC of TX opportunity for LC id 6 for TB size 235

9. Dequeue from LC, store in HARQ buffer (line 35)

+2.100750000s 0 [CellId 0, bwpId 0, rnti 1] NrUeMac:DoTransmitNrSlRlcPdu(): Adding packet in HARQ buffer for HARQ ID 0 pkt size 235

Log output: Publishing grants (cont.)

\$

NS_LOG="NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_func: NrUeMac=info|prefix_time|prefix_node|prefix_func" ./ns3 run nr-sl-simplemulti-lc > log3.out 2>&1

7. Notify (ConfigInd) about new grant (more detail: lines 27-32)

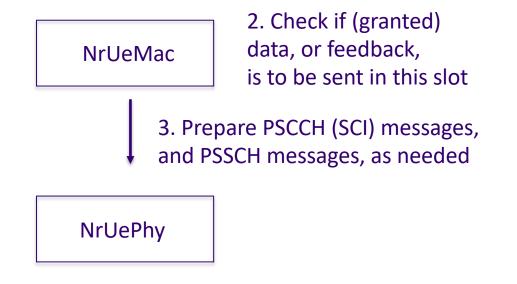
+2.100000008 0 NrSlUeMacSchedulerDefault:CreateSinglePduGrantInfo(): Dynamic NDI scheduled at: Frame = 210 SF = 1 slot = 1 subchannels = 0:0 +2.100000008 0 NrSlUeMacSchedulerDefault:CreateSinglePduGrantInfo(): Dynamic rtx scheduled at: Frame = 210 SF = 2 slot = 1 subchannels = 1:1 +2.100000008 0 NrSlUeMacSchedulerDefault:CreateSinglePduGrantInfo(): Dynamic rtx scheduled at: Frame = 210 SF = 4 slot = 1 subchannels = 0:0 +2.100000008 0 NrSlUeMacSchedulerDefault:CreateSinglePduGrantInfo(): Dynamic rtx scheduled at: Frame = 210 SF = 6 slot = 1 subchannels = 0:0 +2.100000008 0 NrSlUeMacSchedulerDefault:CreateSinglePduGrantInfo(): Dynamic rtx scheduled at: Frame = 210 SF = 6 slot = 1 subchannels = 0:0 +2.100000008 0 NrSlUeMacSchedulerDefault:CreateSinglePduGrantInfo(): Dynamic rtx scheduled at: Frame = 210 SF = 6 slot = 3 subchannels = 1:1 +2.100000008 0 NrSlUeMacSchedulerDefault:CreateSinglePduGrantInfo(): Dynamic rtx scheduled at: Frame = 210 SF = 6 slot = 3 subchannels = 1:1 +2.100000008 0 NrSlUeMacSchedulerDefault:CreateSinglePduGrantInfo():

1. Slot boundary occurs

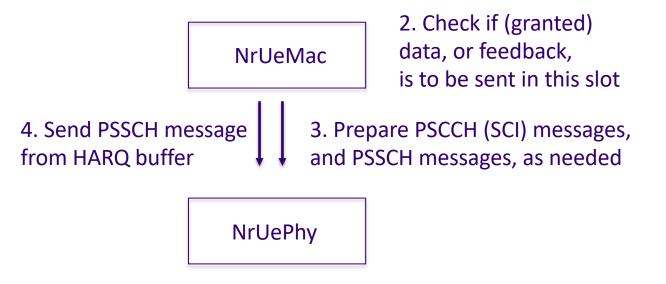
NrUeMac

NrUePhy

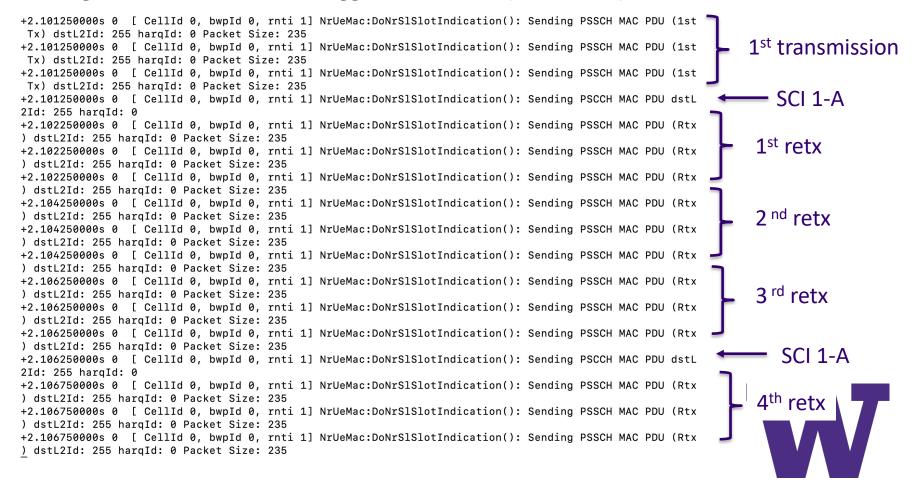
1. Slot boundary occurs


2. Check if (granted) data, or feedback, is to be sent in this slot

1. Slot boundary occurs



1. Slot boundary occurs



Log output: Sending data

\$ NS_LOG="NrUeMac=info|prefix_time|prefix_node|prefix_func" ./ns3 run nrsl-simple-multi-lc > log4.out 2>&1

Only one event on previous slide (#3) captured by logging at INFO level Sending of PSSCH and PSCCH is logged at this level (lines 16-32)

HARQ overview

- > Hybrid Automatic Repeat Request (HARQ) is provided in sidelink for unicast and groupcast
- > ACK or NACK feedback provided from receiver to transmitter
- > Two modes of groupcast HARQ are defined
 - Range-based NACK-only feedback (mode 1)
 - ACK/NACK feedback (mode 2)

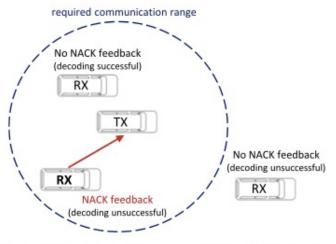


Fig. 9. NACK-only feedback for groupcast NR V2X sidelink (option 1).

In ns-3, only mode 2 is implemented

PSFCH channel

- > The feedback channel is a symbol that is periodically inserted every PsfchPeriod (1, 2, or 4) sidelink slots
- > Feedback is delivered on the next available PSFCH symbol after the 'MinTimeGapPsfch' slots have occurred

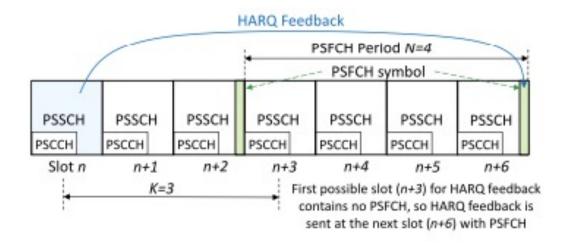


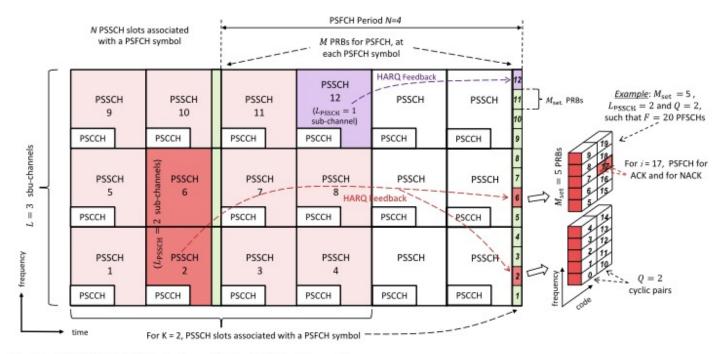
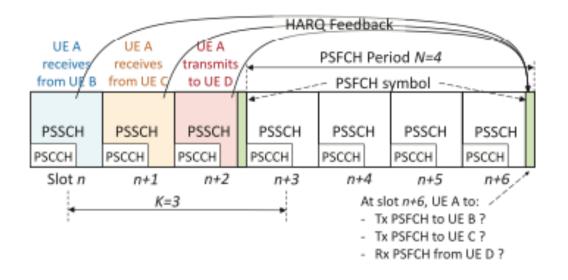
Fig. 10. PSSCH-to-HARQ feedback timing based on at least K = 3 slots. For simplicity, the figure depicts only one sub-channel within the resource pool. We also omit the detailed structure of a PSCCH/PSSCH slot with or without PSFCH including PSSCH DMRS, AGC symbols and guard symbols.

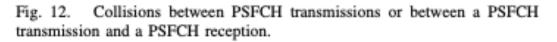
W

PSFCH encoding

> In practice, a complicated encoding exists to convey the feedback for a set of PRBs into the limited PSFCH symbol

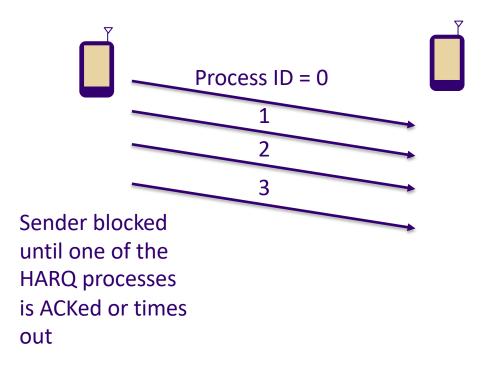
– In ns-3, we currently assume a perfect PSFCH channel

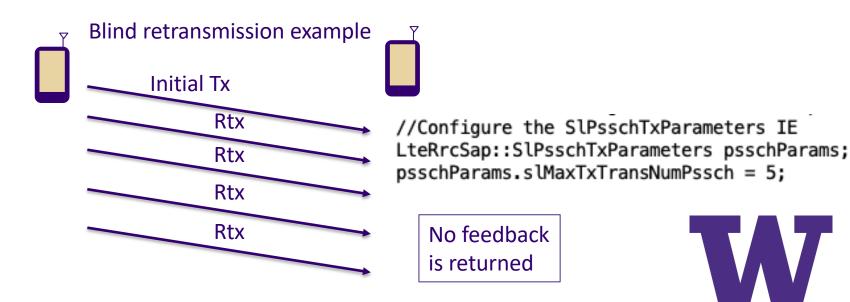

Fig. 11. PSFCHs for HARQ feedback associated with different transmissions.

PSFCH contention

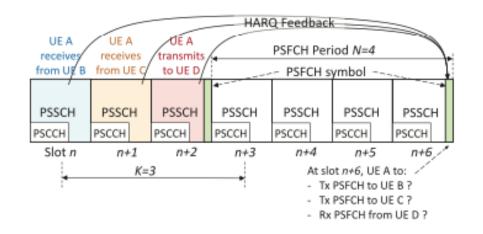
- > UEs may have multiple transmissions to make in the same PSFCH symbol, or may want to transmit *and* receive in the same symbol
 - In ns-3, we do not model PSFCH collisions or contention

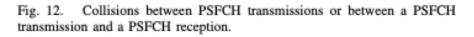


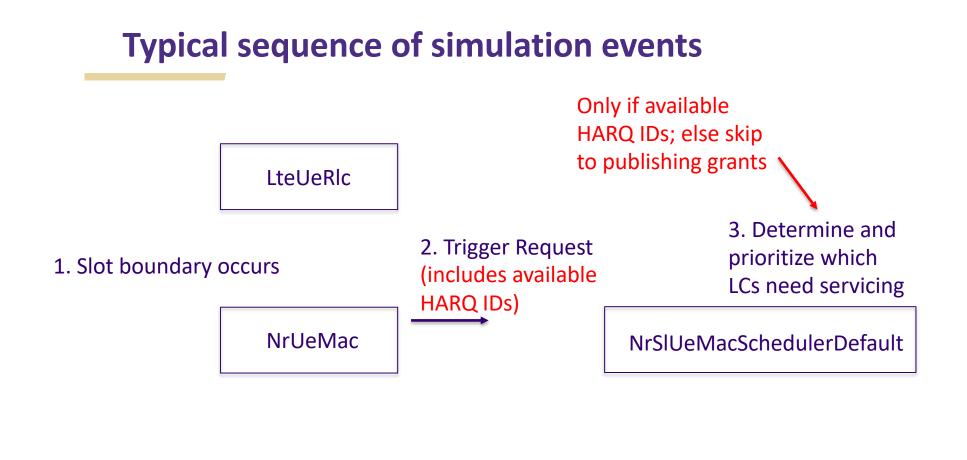
HARQ processes


- > HARQ is a "stop-and-wait" protocol, using a small number of "process IDs"
- > Each process ID corresponds to a transport block (TB)
- > A MAC instance has a maximum of four SL HARQ processes

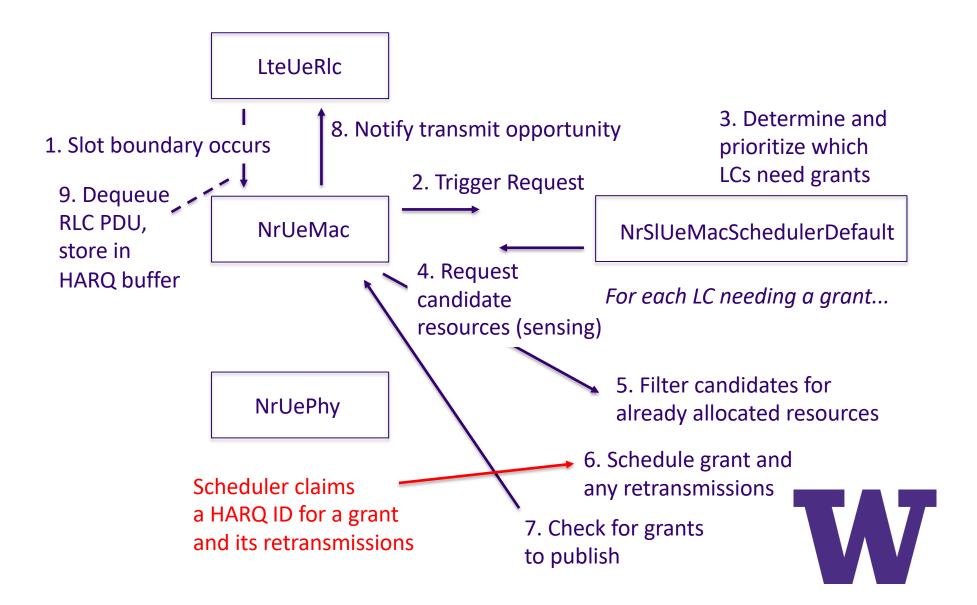
Number of HARQ (and blind) retransmissions

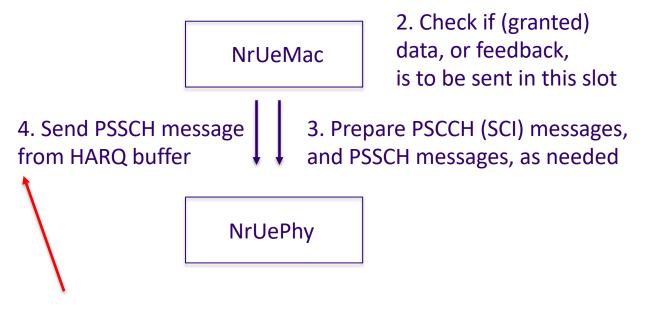

- > A logical channel may be configured from between 1 and 32 transmissions per TB. (ns-3 default is 5 transmissions)
- > In ns-3, blind retransmissions can be configured by enabling HARQ in the SidelinkInfo parameter, and setting PSFCH period to zero (disabling PSFCH)
 - Blind retransmission configuration is not discussed in the standards
- > Blind retransmissions are selected at random within the selection window



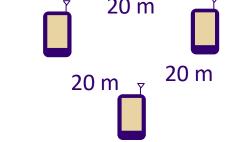

HARQ scheduling implications

- > When HARQ is enabled, TS 38.321 states that retransmission slots must be selected such that there is an opportunity for PSFCH feedback to be returned before retransmission
 - This is implemented in ns-3 in the scheduler (NrSlUeMacSchedulerDefault::IsMinTimeGapSatisfied())
 - This may limit the number of retransmissions available in a selection window




NrUePhy

1. Slot boundary occurs



- Start a timer to free the process ID in case of lack of response
- In case of positive ACK, cancel future retransmissions and timer (and free the process ID)

sidelink-harq-example.cc overview

- > Purpose: Demonstrate/contrast how groupcast mode 2, unicast, and broadcast (blind retransmission) can be configured in a small network
- > Topology: Two-(unicast) or three (groupcast) UEs separated by 20 meters

- One constant bit rate traffic (default 16 Kb/s, 200 byte UDP packets)
- Simulation runs for configured number of transmit packets (default 100)

sidelink-harq-example.cc overview (cont)

> Output: Summary output and detailed terminal output

Summary output: Packets sent and received, average throughput, TR
 Total Tx packets = 100
 Total Rx packets = 200
 Average throughput = 32.00000000 kbps
 Average Packet Inter-Reception (PIR) 0.099000000 sec
 Min/max delay (us) 778.56900000 832.140000000

+2.010750000s 0 allocate; processId 0 dstL2Id 224 timeout 40ms available 0 +2.012464285s 1 tx feedback duration 17855ns +2.012464285s 2 tx feedback duration 17855ns +2.012732140s 0 rx harq; rnti 2 process ID 0 bwpIndex 0 +2.012732140s 0 deallocate; processId 0 available 1 +2.012732140s 0 rx harq; rnti 3 process ID 0 bwpIndex 0

Log output: HARQ events

\$

NS_LOG="NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_func: NrSlUeMacHarq=info|prefix_time|prefix_node|prefix_func" ./ns3 run sidelinkharq-example > log5.out 2>&1

Scheduler claims an unused HARQ ID (line 192)

+2.010000000s 0 NrSlUeMacSchedulerDefault:CreateSpsGrant(): New SPS grant created to new destination 224 with HARQ ID 0 HARQ enabled 1

HARQ process manager later assigns the ID and starts timer of 40 ms (line 194)

+2.010750000s 0 NrSlUeMacHarq:AssignNrSlHarqProcessId(): Calling HARQ allocation trace for ID 0 dstL2Id 224 timeout +40ms size 0

Positive ACK causes HARQ buffer to be flushed (line 199)

+2.012732140s 0 NrSlUeMacHarq:RecvNrSlHarqFeedback(): ACK feedback received for HARQ ID 0; flushing buffer

Summary

- > CTTC's NR V2X branches have been extended for improved sensing, scheduling, and HARQ model operation
- > Some level of abstraction still exists (e.g., PSFCH perfect feedback channel), but sensing, scheduling, and HARQ improvements should support a more accurate latency model for sidelink
- > Updates reviewed in this tutorial will be upstreamed to CTTC's public branches in the next month or two
- > For more information, follow the CTTC-LENA nr branch (and merge requests) evolve this summer
 - User mailing list: <u>5g-lena-users@googlegroups.com</u>
 - Merge requests: <u>https://gitlab.com/cttc-lena/nr/-/merge_requests</u>

