
Recent Updates to NR
Sidelink Sensing, Scheduling,
and HARQ Models

Tom Henderson and Samantha Gamboa

ns-3 Annual Meeting
June 26, 2023

License

> The contents of this tutorial are copyright and
licensed by the authors under Creative Commons CC-
BY-SA 4.0 license

> Figures that have been copied from other sources are
not covered by this CC-BY-SA 4.0 license, but are
instead copyright by the various rights holders, and
are reused herein under the fair use doctrine of U.S.
copyright law

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.copyright.gov/title17/92chap1.html
https://www.copyright.gov/title17/92chap1.html

Schedule

> 9am-10:30: Introduction and recent improvements to
NR V2X Mode 2 simulation models
– Presenters: Tom Henderson and Samantha Gamboa

> 10:30-11: Break

> 11-12:30: NR C-V2X Mode 2 Resource Allocation & ns-
3 Implementation
– Presenters: Liu Cao and Collin Brady

> 12:30-1:30: Lunch

> 1:30-3:00: Proximity Services (ProSe) Support for 5G
NR Simulations
– Presenters: Samantha Gamboa and Aziza Ben-Mosbah

> 3:00-3:30: Break

> 3:30-5:30: Panel on next steps for ns-3 sidelink and
3GPP Release 19 standardization

Outline of ns-3 Tutorials

> Introduction and recent improvements to NR V2X
Mode 2 simulation models
– NR V2X/sidelink models for ns-3
– Example-driven tutorial on sidelink data-plane operation at

the NR MAC sublayer (sensing, scheduling, and HARQ)
> NR C-V2X Mode 2 Resource Allocation & ns-3

Implementation
– MAC-level performance analysis of Semi-Persistent

Scheduling (SPS) resource allocation in a vehicular scenario
– Validation of ns-3 NR sidelink MAC models

> Proximity Services (ProSe) Support for 5G NR
Simulations
– Discovery and Layer-3 UE-to-Network Relay models

Terminology

> NR: New Radio
> V2X: Vehicle-to-Everything
> ProSe: Proximity Services
> SL: Sidelink

> Are V2X, ProSe, and SL interchangeable terms?
– V2X refers to a use case enabled by an underlying SL air interface
– ProSe is another vertical sitting on top of SL
– SL refers to communications between UE that do not go through the

network
– Not all SL use cases involve vehicles (e.g., ProSe, public safety)

PC5 interface

Sidelink

V2X ProSe

NR V2X Modes
> Mode 2: Resource allocation

performed without network
assistance

> Analogous to LTE C-V2X Mode
4

> Mode 1: Resource allocation
over the sidelink channel is
managed by the network

> Analogous to LTE C-V2X Mode
2

Acknowledgments

> This tutorial extends last year’s NR-V2X tutorial by Zoraze Ali
(formerly of CTTC)

> CTTC and Zoraze Ali are the primary authors of ns-3 NR V2X/SL
models

> Tom Henderson and Collin Brady (University of Washington), and
Samantha Gamboa and Aziza Ben-Mozbah (Prometheus
Computing/NIST) have been improving and extending the V2X,
ProSe, and SL models

> CTTC’s work and the University of Washington’s work were
funded by the National Institute of Standards and Technology
(NIST), led by Richard Rouil and Wesley Garey

> Thanks are due to both CTTC and NIST for open sourcing their
NR V2X, sidelink, and ProSe models

https://www.nsnam.org/tutorials/consortium22/WNS3-2022-NR-V2X-Tutorial-Zoraze-Ali.pdf

What’s new?

Groupcast, Unicast

Groupcast: blind, feedback-based
Unicast: blind, feedback-based

PSFCH

Other: Sensing: Support for multiple subchannels
 Scheduling: Dynamic grants, multiple logical channels

Roadmap to ns-3 NR V2X/SL software

> ns-3 has moved to a modular codebase, with optional
models supported through the `contrib` directory

contrib

ns-3

src

nr ...

nr module from CTTC’s OpenSim

> The public nr module is available at on GitLab.com:
– https://gitlab.com/cttc-lena/nr.git

https://gitlab.com/cttc-lena/nr.git

ns-3 App Store

> ns-3 extensions also have a public page on the App Store:
– https://apps.nsnam.org/app/nr/

https://apps.nsnam.org/app/nr/

ns-3 and nr module synchronization

> Contrib modules must be paired with compatible ns-3 release
versions

> CTTC makes an ’nr’ module release after every ns-3 release
> nr modules are self-contained; require no ns-3 modifications

ns-3.36 ns-3.36.1 ns-3.37 ns-3.38

nr-2.1 nr-2.2 nr-2.3 nr-2.4

NR V2X differences

> V2X/SL extensions are not maintained in the `nr`
master branch but in a separate `nr-v2x-dev` branch

> They also require a special (patched) version of ns-3
> This special version of ns-3 is maintained in another

CTTC repository and branch:
– https://gitlab.com/cttc-lena/ns-3-dev/-/tree/v2x-lte-dev
– Currently, it lags ns-3-dev-- it is only up to ns-3.36.1 release

ns-3.36 ns-3.36.1 ns-3.37 ns-3.38

5g-lena-v2x-v0.1.y 5g-lena-v2x-v0.2.y

(none) (none)

https://gitlab.com/cttc-lena/ns-3-dev/-/tree/v2x-lte-dev

Instructions to obtain CTTC’s NR V2X dev version

$ git clone https://gitlab.com/cttc-lena/ns-3-dev.git
$ cd ns-3-dev

$ git checkout -b v2x-lte-dev origin/v2x-lte-dev
$ cd contrib

$ git clone https://gitlab.com/cttc-lena/nr.git
$ cd nr

$ git checkout -b nr-v2x-dev origin/nr-v2x-dev

https://gitlab.com/cttc-lena/ns-3-dev.git
https://gitlab.com/cttc-lena/nr.git

Software in use today

> Three tutorial presentations are using customizations
of the CTTC NR V2X branches

1. This introductory tutorial uses the following
branches
1. https://gitlab.com/tomhenderson/ns-3-dev.git, branch wns3-

2023-tutorial
2. https://gitlab.com/tomhenderson/nr.git, branch wns3-2023-

tutorial

2. The resource allocation tutorial is based on Collin
Brady’s extensions (see next tutorial)

3. The ProSe tutorial uses a special branch available at
NIST’s GitHub repository (see afternoon tutorial)

https://gitlab.com/tomhenderson/ns-3-dev.git
https://gitlab.com/tomhenderson/nr.git

Instructions to obtain this tutorial’s code

$ git clone https://gitlab.com/tomhenderson/ns-3-dev.git
$ cd ns-3-dev

$ git checkout -b wns3-2023-tutorial origin/wns3-2023-
tutorial

$ cd contrib
$ git clone https://gitlab.com/tomhenderson/nr.git

$ cd nr
$ git checkout -b wns3-2023-tutorial origin/wns3-2023-
tutorial

Differences with respect to upstream CTTC instructions are depicted in red
• git commit hash of ns-3-dev branch: fe082b36 (June 15, 2023)
• git commit hash of nr branch: 69d1eed4 (June 25, 2023)

This code will be upstreamed to CTTC’s repositories once documentation
and testing are completed

https://gitlab.com/tomhenderson/ns-3-dev.git
https://gitlab.com/tomhenderson/nr.git

Remainder of this tutorial

> We will work directly with recently created example
programs (nr-v2x-simple-multi-lc, sidelink-harq-
example) to highlight the MAC operation and recent
changes to the model

> Topics covered:
– SL resources and terminology: symbols, slots, PRBs, subchannels,

resource pools, sidelink bitmaps
– How traffic from different applications is routed to different logical

channels
– How the scheduler prioritizes between different logical channels
– How the scheduler is triggered to select resources, for either semi-

persistent or dynamic granting
– How the sensing process (TS 38.214 Section 8.1.4) is implemented

and consulted
– How the HARQ and PSFCH feedback channel operate

Terminology, Architecture, References

> 3GPP TS 38.300 is a good overview reference for 5G
NR
– Sections 5.7 and 16.9 pertain to sidelink

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3191

NG-RAN architecture

Figure source: 3GPP TS 38.300

Protocol stack architecture

Figure source: 3GPP TS 38.300

Layer 2 architecture

Figure source: 3GPP TS 38.300

For more information

> Last year’s NR-V2X tutorial by Zoraze Ali (and NR
overview by Biljana Bojovic) provides more
background overview on this ns-3 model:
– https://www.nsnam.org/research/wns3/wns3-2022/tutorials/

> IEEE Access article on the ns-3 NR V2X extensions, by
Ali, Lagen, Giupponi, and Rouil
– https://ieeexplore.ieee.org/document/9461188

> Thorough tutorial article on NR V2X in general, in IEEE
Communications Surveys and Tutorials by Garcia et
al:
– https://ieeexplore.ieee.org/document/9345798

https://www.nsnam.org/research/wns3/wns3-2022/tutorials/
https://ieeexplore.ieee.org/document/9461188
https://ieeexplore.ieee.org/document/9345798

Current software organization

Figure source: 3GPP TS 38.300

These layers
reside in
the src/lte
directory

Lower layers
reside in
the contrib/nr
directory

Tutorial focus

> Today’s focus: data plane lifecycle of a packet (MAC
layer)

Figure source: 3GPP TS 38.300

IP packetIP packet

RLC PDU RLC PDU

IP packets
are classified
into different
logical channels

Logical channels

> Groupings of packets that receive similar service by
the MAC layer
– Destination L2 ID
– “Cast type” (Unicast, Broadcast, Groupcast)
– “Hybrid ARQ” (HARQ) type
– Packet delay budget
– Scheduling (or resource) type (semi-persistent, or dynamic)
– Resource Reservation Interval (RRI)
– Priority
– Packet Error Rate requirements

> These are parameters in a SidelinkInfo structure (see
next slide)

Mapping of IP packets to logical channels

> The SidelinkInfo [*] structure is passed to the LTE Sidelink Traffic
Flow Template (LteSlTft)
– [*] corresponds to "Sidelink Transmission/Identification/Other

Information” defined in TS 38.321.

code samples from
sidelink-harq-info.cc

Service Access Points

> In ns-3, several interfaces are expressed formally in
terms of a Service Access Point (SAP)

LteRlcSapProvider

LteRlcSapUser

Figure source: 3GPP TS 38.300

Sidelink RLC/MAC API

> In ns-3, several interfaces are expressed formally in
terms of a Service Access Point (SAP)

NrSlMacSapProvider

NrSlMacSapUser

Figure source: 3GPP TS 38.300
NrSlUePhySapProvider

NrSlUePhySapUser

C++ implementation of NR SAP APIs

> Model objects (e.g. NrUeMac) include API objects (e.g.
NrSlMacSapProvider) that act as forwarding objects

> Model objects provide and make use of callbacks to access these
APIs; these are connected together by the helper classes

C++ implementation of NR SAP APIs (cont.)

> The access to the model object’s public API is restricted to those
forwarding methods that are implemented in the SAP class

> The nr-phy-sap.h file defines these interfaces

C++ implementation of NR SAP APIs (cont.)

> The definition of these interfaces is in the implementation files
> Usually, they are just forwarding to public API methods

Sidelink resources

Figure source: A Tutorial on 5G NR V2X Communications, Garcia et al.

Slot structure

Figure sources: A Tutorial on 5G NR V2X Communications, Garcia et al.

For the purpose of
Transport Block (TB)
size determination,
the ns-3 code
currently assumes
that there are nine
PSSCH symbols
available for data
(regardless of PSFCH)

Sidelink slot pattern

Figure source: 3GPP NR V2X Mode 2: Overview, Models and System-Level Evaluation,
 Ali, Lagen, Giupponi, Rouil

Sidelink resource definition in ns-3 code

The combination of these parameters largely defines
the resources that the MAC has to work with

Guidance as to what are reasonable values to use
In ns-3 simulations would be helpful

Multiple BWP and multiple RP

> Although not covered in these examples, it is possible to define
multiple bandwidth parts (BWP) and multiple resource pools (RP)
– Different numerologies can be assigned to different BWP

> In ns-3, mappings are therefore needed between logical
channels and BWPs, and multiple instances of NrUeMac

> This is managed by the BwpManagerAlgorithm class
– Currently, only a static mapping based on bearer QCI value is implemented
– It is unclear if this has been tested or exercised much in the current V2X

codebase

Resource allocation and scheduling problem

Consider when a new RLC PDU arrives
> Scheduler must find future resources that

1. do not conflict with its own scheduled transmissions
2. do not conflict with planned receptions
3. are unlikely to collide with other UE transmissions
4. allow for retransmissions and feedback (if configured)

> Each UE’s interference environment can be different
> Modulation and power control could be factors

Resource allocation and scheduling approach

> Scheduler takes hints from past receptions in a
sensing window to avoid possible future collisions

> Scheduler selects from available resources in the
selection window (and beyond, for semi-persistent
scheduling)

Figure source: A Tutorial on 5G NR V2X Communications, Garcia et al.

Demonstration of ns-3 sidelink operation

> We will use two example programs to demonstrate
how packets are handled by the NR UE MAC layer
– contrib/nr/examples/nr-v2x-examples/nr-sl-
simple-multi-lc.cc (authored by Samantha Gamboa)

– contrib/nr/examples/nr-v2x-examples/sidelink-
harq-example.cc (authored by Tom Henderson)

> Both programs derive from an original program from
Zoraze Ali
– contrib/nr/examples/nr-v2x-examples/cttc-nr-
v2x-demo-simple.cc

$ simulation commands will be depicted in Courier font, enclosed like this

nr-sl-simple-multi-lc.cc overview

> Purpose: Demonstrate how different sidelink traffic profiles can
be configured, and how those affect resource selection

> Topology: Two UEs separated by 20 meters

> Traffic profile parameters varied:
– Scheduling type (semi-persistent scheduling (SPS), or dynamic)
– Destination L2 ID
– Priority (and relative priority to SPS/dynamic)
– Resource reservation interval (RRI)

20 m

• Three traffic flows, configured differently
• Constant bit rate traffic (default 16 Kb/s, 200 byte UDP packets)
• No Hybrid ARQ (HARQ) configured, but blind retransmissions enabled

nr-sl-simple-multi-lc.cc overview (cont)

> Output: Terminal output and a delay trace
– Terminal output: Packets sent and received, and average latency

(measured at application layer) across all flows. Sample:

– Delay trace (NrSlAppRxPacketDelayTrace.txt). Per-packet delay
trace mesured at application layer. Sample:

nr-sl-simple-multi-lc.cc parameter choices

Simulation configuration Resulting traffic profile configuration per flow

Parameter Value Flow 1 Flow 2 Flow 3

schedTypeConfig 1 Dynamic Dynamic Dynamic

schedTypeConfig 2 SPS SPS SPS

schedTypeConfig 3 Dynamic Dynamic SPS

schedTypeConfig 4 SPS SPS Dynamic

dstL2IdConfig 1 255 255 255

dstL2IdConfig 2 255 254 255

dstL2IdConfig 3 254 254 255

priorityConfig 1 1 1 1

priorityConfig 2 1 2 3

priorityConfig 3 2 2 1

priorityConfig 4 1 1 2

rriConfig 1 100 100 100

rriConfig 2 100 50 100

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

NrSlUeMacSchedulerDefault

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

NrSlUeMacSchedulerDefault

1. RLC SDU arrives

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

NrSlUeMacSchedulerDefault

1. RLC SDU arrives

2. Buffer Status Request

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

NrSlUeMacSchedulerDefault

1. RLC SDU arrives

2. Buffer Status Request

3. Buffer Status Request

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

NrSlUeMacSchedulerDefault

1. RLC SDU arrives

2. Buffer Status Request

3. Buffer Status Request
4. Update data structure
corresponding to LC

Log output

$ NS_LOG="NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_func" \
./ns3 run nr-sl-simple-multi-lc > log1.out 2>&1

ns-3 logging can be controlled by C++ statements or by the NS_LOG env. variable

Each logging component is defined in an implementation (.cc) file
Multiple logging components can be separated by colon ’:’

Multiple logging priority levels (warn, info, function, logic, debug) can be selected

A number of logging prefixes can be used to annotate the output

Logging output can be voluminous; I typically redirect to a text file
Logging output is printed to std::cerr, so redirect to std::cout (with the 2>&1 command)

Log output

$ NS_LOG="NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_func" \
./ns3 run nr-sl-simple-multi-lc > log1.out 2>&1

Log output

$ NS_LOG="NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_func" \
./ns3 run nr-sl-simple-multi-lc > log1.out 2>&1

ns-3 logging can be controlled by C++ statements or by the NS_LOG env. variable

Log output

$ NS_LOG="NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_func" \
./ns3 run nr-sl-simple-multi-lc > log1.out 2>&1

ns-3 logging can be controlled by C++ statements or by the NS_LOG env. variable

Each logging component is defined in an implementation (.cc) file
Multiple logging components can be separated by colon ’:’

Log output

$ NS_LOG="NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_func" \
./ns3 run nr-sl-simple-multi-lc > log1.out 2>&1

ns-3 logging can be controlled by C++ statements or by the NS_LOG env. variable

Each logging component is defined in an implementation (.cc) file
Multiple logging components can be separated by colon ’:’

Multiple logging priority levels (warn, info, function, logic, debug) can be selected

Log output

$ NS_LOG="NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_func" \
./ns3 run nr-sl-simple-multi-lc > log1.out 2>&1

ns-3 logging can be controlled by C++ statements or by the NS_LOG env. variable

Each logging component is defined in an implementation (.cc) file
Multiple logging components can be separated by colon ’:’

Multiple logging priority levels (warn, info, function, logic, debug) can be selected

A number of logging prefixes can be used to annotate the output

Log output

$ NS_LOG="NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_func" \
./ns3 run nr-sl-simple-multi-lc > log1.out 2>&1

ns-3 logging can be controlled by C++ statements or by the NS_LOG env. variable

Each logging component is defined in an implementation (.cc) file
Multiple logging components can be separated by colon ’:’

Multiple logging priority levels (warn, info, function, logic, debug) can be selected

A number of logging prefixes can be used to annotate the output

Logging output can be voluminous; I typically redirect to a text file
Logging output is printed to std::cerr, so redirect to std::cout (with the 2>&1 command)

Log output: Buffer Status Request
$
NS_LOG="NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_func:
NrUeMac=info|prefix_time|prefix_node|prefix_func:NrSlUeMacSchedulerLCG=info
|prefix_time|prefix_node|prefix_func" ./ns3 run nr-sl-simple-multi-lc >
log1.out 2>&1

1. RLC SDU arrives

Not shown... in LTE module (logs not cleaned up yet)

2. NrUeMac BufferStatusRequest (line 17)

3. NrSlUeMacSchedulerDefault BufferStatusRequest (line 18)

4. Update LC/DstL2Id structures (line 19)

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

NrSlUeMacSchedulerDefault

1. Slot boundary occurs

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

NrSlUeMacSchedulerDefault

1. Slot boundary occurs
2. Trigger Request

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

NrSlUeMacSchedulerDefault

1. Slot boundary occurs
2. Trigger Request

3. Determine and
prioritize which
LCs need servicing

Logical channel prioritization

> When multiple LCs need to be scheduled at the same time, some
prioritization order is needed

> The explicit priority (QoS) of LCs (encoded in the SidelinkInfo of
the LC) can be used as the primary prioritization

> When LCs have the same QoS priority, other priortization
heuristics are needed
– e.g., closest deadline to packet delay budget, largest queue, longest

time since allocation, round robin
> Some high priority LCs may not be able to be scheduled if there

is congestion, despite pre-existing grants to lower priority LCs
> A feature called ‘preemption’ (not implemented) can override

Logical channel prioritization (cont.)

The current ns-3 implementation prioritizes first by sorting
destinations, then by LC within each destination:
1. Select the destination:

1. with the LC with the highest priority
2. if multiple destination share the same highest priority, select the

one with the smallest dstL2Id
2. Select the LC to that destination with highest priority
3. Select all LCs with the same grant attributes (scheduling type,

scheduling attributes, and HARQ feedback type) as the LC with
highest priority
1. if multiple LCs with different scheduling type share the same

highest priority, select the one(s) with scheduling type priority
indicated by m_prioToSps attribute

2. if m_prioToSps and multiple LCs with SPS scheduling type and
different RRI share the same highest priority, select the one(s) with
RRI equal to the LC with lowest LcId

Log output: Trigger request
$
NS_LOG="NrSlUeMacSchedulerDefault=logic|prefix_time|prefix_node|prefix_func
:NrUeMac=debug|prefix_time|prefix_node|prefix_func" ./ns3 run nr-sl-simple-
multi-lc > log2.out 2>&1

1. Slot boundary occurs (line 39197)

2. Trigger request (line 39205)

3. Prioritize LCs in scheduler (line 39212-39252)

...

nr-sl-simple-multi-lc.cc parameter choices

Simulation configuration Resulting traffic profile configuration per flow

Parameter Value Flow 1 Flow 2 Flow 3

schedTypeConfig 1 Dynamic Dynamic Dynamic

schedTypeConfig 2 SPS SPS SPS

schedTypeConfig 3 Dynamic Dynamic SPS

schedTypeConfig 4 SPS SPS Dynamic

dstL2IdConfig 1 255 255 255

dstL2IdConfig 2 255 254 255

dstL2IdConfig 3 254 254 255

priorityConfig 1 1 1 1

priorityConfig 2 1 2 3

priorityConfig 3 2 2 1

priorityConfig 4 1 1 2

rriConfig 1 100 100 100

rriConfig 2 100 50 100

All three LCs in this (default) example are scheduled in the same
grant, because they each have the same LC properties

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

NrSlUeMacSchedulerDefault

1. Slot boundary occurs
2. Trigger Request

3. Determine and
prioritize which
LCs need grants

For each LC needing a grant...
4. Request
candidate
resources (sensing)

Sensing overview

> Sensing is based on a combination of 1) PSCCH
decoded (SCI 1-A), and 2) RSRP measured in the slots
within window

> NR Sidelink is assumed to be a half-duplex device--
cannot transmit and receive in the same (time) slot

> Sensing for NR SL Mode 2 is specified in a six-step
algorithm in 3GPP TS 38.214

Sensing overview (cont.)

> Described as a MAC/PHY interaction in the
specification, to obtain candidate resources for
scheduling

Inputs:
• resource pool
• priority
• packet delay budget
• number of subchannels
• RRI
• cResel

Output: Set of candidate
resources in the selection
window

MAC

PHY

Sensing implementation in ns-3

> NrUeMac::NrUeMac::GetNrSlCandidateResourcesPrivate()
follows 3GPP TS 38.214 Section 8.1.4 closely

> Algorithm inputs:

> Algorithm outputs list SA of all candidate single-slot resources

Specification term ns-3 variable Definition
Resource pool m_bwpId, m_poolId Resource pool to evaluate
L1 priority params.m_priority Priority in the SCI format 1-A (from LC prio)

remaining PDB
params.m_packetDelayBudg
et ns-3 uses absolute PDB, not remaining

L_subCH params.m_lSubch Size of requested resource in subchannels
P_rsvpTx params.m_pRsvpTx Resource reservation interval (RRI) desired
sl-SelectionWindowList m_t2 ns-3 uses single m_t2, not prioritized list
sl-Thres-RSRP-list Not supported ns-3 uses a single threshold
sl-RS-ForSensing Not supported (uses PSSCH) Whether to use RSRP from PSSCH or PSCCH

sl-ResourceReservePeriodList Retreived from pool object
LIst of possible RRIs of missed SCI-1A (half
duplex)

sl-SensingWindow m_t0 Left edge of sensing window
sl-TxPercentageList m_resPercentage ns-3 uses single value of X, not prioritized list
sl-PreemptionEnable Not supported Corresponds to prio_pre priority value

Interpretation of ”all candidate resources”

> Candidate resources may overlap with each other
> Example request for resource with three subchannels

su
bc

ha
nn

el
s

slots

There are eight
candidate three-subchannel
single-slot resources (with
overlap)

Algorithm summary (TS 38.214 Section 8.1.4)

> (Step 4) Initialize SA to all candidate resources
> (Step 5-- for missed sensing opportunities) For all resources that

were not listened to (due to transmitting in that slot), use the
ResourceReservePeriodList to exclude, from SA, all possible
future SPS transmissions that may have been unheard
– If resulting SA is less than a threshold percentage (e.g. 50%), restore

SA to its value from Step 4
> (Step 6-- for decoded signals) For all resources known in the

sensing window due to received SCI-1A (and PSSCH):
– If the received RSRP > current RSRP threshold, then exclude future

projections of those resources from SA
> (Step 7) If resulting SA is less than a threshold percentage,

increase threshold by 3 dB and go to step 4

4. Request
candidate
resources (sensing)

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

NrSlUeMacSchedulerDefault

1. Slot boundary occurs
2. Trigger Request

3. Determine and
prioritize which
LCs need grants

For each LC needing a grant...

5. Filter candidates for
already allocated resources

4. Request
candidate
resources (sensing)

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

NrSlUeMacSchedulerDefault

1. Slot boundary occurs
2. Trigger Request

3. Determine and
prioritize which
LCs need grants

For each LC needing a grant...

5. Filter candidates for
already allocated resources

6. Schedule grant and
any retransmissions

Sensing and Resource Selection

Selection windowSensing window

higher layer requests available
resources for transmission

Logical slots

Su
bc

ha
nn

el
s

Reservation period (RX)
Reservation period (TX)

Additional factors affecting the sensing and selection process include:
• Priorities of the transmissions
• Preemption capabilities
• Signal strength
• Remaining packet delay budget
• Size of the transmission (i.e., number of subchannels)
• Half duplex mode

Resources indicated by PSCCH (from 1st-stage SCI)
Resources indicated through reservation period (from 1st-stage SCI)
Resource excluded due to direct collision
Resource excluded due to collisions in future transmissions
Resource randomly selected
Resource selected through reservation period

71

Sensing and Resource Selection

Selection windowSensing window

higher layer requests available
resources for transmission

Logical slots

Su
bc

ha
nn

el
s

Reservation period (RX)
Reservation period (TX)

Additional factors affecting the sensing and selection process include:
• Priorities of the transmissions
• Preemption capabilities
• Signal strength
• Remaining packet delay budget
• Size of the transmission (i.e., number of subchannels)
• Half duplex mode

Resources indicated by PSCCH (from 1st-stage SCI)
Resources indicated through reservation period (from 1st-stage SCI)
Resource excluded due to direct collision
Resource excluded due to collisions in future transmissions
Resource randomly selected
Resource selected through reservation period

72

Recent sensing improvements

> Current nr-v2x branch code selects candidate ‘slots’,
not candidate ‘resources’

> For simulations with a single subchannel, no
difference, but necessary for simulations with
multiple subchannels

subch 0

subch 1

400 slots (10 ms) Time 2.11s
Selection window (T1=2, T2=33 slots)

Artificially filled
with sensing
data

Test scenario to illustrate the difference

Scheduling (resource selection)

> Previous ns-3 scheduler implementation was called
NrSlUeMacSchedulerSimple
– Capable of semi-persistent scheduling only
– Capable of handling single LC only
– Used same assumption of sensing; logic based on slots

occupied, not resources occupied (in multi-subchannel case)
– Only supported blind retransmissions (HARQ-based

retransmissions not supported)
> Proposed new scheduler implementation,

NrSlUeMacSchedulerDefault, removes above
limitations

> Schedulers are expected to be an area of active
research by users

Scheduling (resource selection)

> Some features are not implemented
– Re-evaluation
– Preemption
– Handling of differently sized slots (some with PSFCH, some

without)
> for transport block size calculation, a conservative assumption is

made that all slots only have nine symbols available for PSSCH
data

4. Request
candidate
resources (sensing)

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

NrSlUeMacSchedulerDefault

1. Slot boundary occurs
2. Trigger Request

3. Determine and
prioritize which
LCs need grants

For each LC needing a grant...

5. Filter candidates for
already allocated resources

6. Schedule grant and
any retransmissions

7. Notify (ConfigInd)
about new grant

4. Request
candidate
resources (sensing)

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

NrSlUeMacSchedulerDefault

1. Slot boundary occurs
2. Trigger Request

3. Determine and
prioritize which
LCs need grants

For each LC needing a grant...

5. Filter candidates for
already allocated resources

6. Schedule grant and
any retransmissions

7. Notify (ConfigInd)
about new grant

8. Notify transmit opportunity

4. Request
candidate
resources (sensing)

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

NrSlUeMacSchedulerDefault

2. Trigger Request

3. Determine and
prioritize which
LCs need grants

For each LC needing a grant...

5. Filter candidates for
already allocated resources

6. Schedule grant and
any retransmissions

7. Notify (ConfigInd)
about new grant

8. Notify transmit opportunity

9. Dequeue
RLC PDU,
store in
HARQ buffer

1. Slot boundary occurs

Log output: Publishing grants
$
NS_LOG="NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_func:
NrUeMac=info|prefix_time|prefix_node|prefix_func" ./ns3 run nr-sl-simple-
multi-lc > log3.out 2>&1

7. Notify (ConfigInd) about new grant (line 33)

8. Notify transmit opportunity (line 34)

9. Dequeue from LC, store in HARQ buffer (line 35)

Log output: Publishing grants (cont.)
$
NS_LOG="NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_func:
NrUeMac=info|prefix_time|prefix_node|prefix_func" ./ns3 run nr-sl-simple-
multi-lc > log3.out 2>&1

7. Notify (ConfigInd) about new grant (more detail: lines 27-32)

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

1. Slot boundary occurs

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

1. Slot boundary occurs

2. Check if (granted)
data, or feedback,
is to be sent in this slot

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

1. Slot boundary occurs

2. Check if (granted)
data, or feedback,
is to be sent in this slot

3. Prepare PSCCH (SCI) messages,
and PSSCH messages, as needed

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

1. Slot boundary occurs

2. Check if (granted)
data, or feedback,
is to be sent in this slot

3. Prepare PSCCH (SCI) messages,
and PSSCH messages, as needed

4. Send PSSCH message
from HARQ buffer

Log output: Sending data
$ NS_LOG="NrUeMac=info|prefix_time|prefix_node|prefix_func" ./ns3 run nr-
sl-simple-multi-lc > log4.out 2>&1

Only one event on previous slide (#3) captured by logging at INFO level
Sending of PSSCH and PSCCH is logged at this level (lines 16-32)

SCI 1-A

SCI 1-A

1st transmission

1st retx

2 nd retx

3 rd retx

4th retx

HARQ overview

> Hybrid Automatic Repeat Request (HARQ) is provided in sidelink
for unicast and groupcast

> ACK or NACK feedback provided from receiver to transmitter
> Two modes of groupcast HARQ are defined

– Range-based NACK-only feedback (mode 1)
– ACK/NACK feedback (mode 2)

Figure source: A Tutorial on 5G NR V2X Communications, Garcia et al.

In ns-3, only mode 2
is implemented

PSFCH channel

> The feedback channel is a symbol that is periodically inserted
every PsfchPeriod (1, 2, or 4) sidelink slots

> Feedback is delivered on the next available PSFCH symbol after
the ‘MinTimeGapPsfch’ slots have occurred

Figure sources: A Tutorial on 5G NR V2X Communications, Garcia et al.

PSFCH encoding

> In practice, a complicated encoding exists to convey the
feedback for a set of PRBs into the limited PSFCH symbol
– In ns-3, we currently assume a perfect PSFCH channel

Figure sources: A Tutorial on 5G NR V2X Communications, Garcia et al.

PSFCH contention

> UEs may have multiple transmissions to make in the same
PSFCH symbol, or may want to transmit and receive in the same
symbol
– In ns-3, we do not model PSFCH collisions or contention

Figure sources: A Tutorial on 5G NR V2X Communications, Garcia et al.

HARQ processes

> HARQ is a ”stop-and-wait” protocol, using a small number of
“process IDs”

> Each process ID corresponds to a transport block (TB)
> A MAC instance has a maximum of four SL HARQ processes

Process ID = 0
1
2

3
Sender blocked
until one of the
HARQ processes
is ACKed or times
out

Number of HARQ (and blind) retransmissions

> A logical channel may be configured from between 1 and 32
transmissions per TB. (ns-3 default is 5 transmissions)

> In ns-3, blind retransmissions can be configured by enabling
HARQ in the SidelinkInfo parameter, and setting PSFCH period to
zero (disabling PSFCH)
– Blind retransmission configuration is not discussed in the standards

> Blind retransmissions are selected at random within the
selection window

Initial Tx
Rtx
Rtx
Rtx

Rtx No feedback
is returned

Blind retransmission example

HARQ scheduling implications

> When HARQ is enabled, TS 38.321 states that retransmission
slots must be selected such that there is an opportunity for
PSFCH feedback to be returned before retransmission
– This is implemented in ns-3 in the scheduler

(NrSlUeMacSchedulerDefault::IsMinTimeGapSatisfied())

– This may limit the number of retransmissions available in a selection
window

Figure sources: A Tutorial on 5G NR V2X Communications, Garcia et al.

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

NrSlUeMacSchedulerDefault

1. Slot boundary occurs
2. Trigger Request
(includes available
HARQ IDs)

3. Determine and
prioritize which
LCs need servicing

Only if available
HARQ IDs; else skip
to publishing grants

4. Request
candidate
resources (sensing)

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

NrSlUeMacSchedulerDefault

2. Trigger Request

3. Determine and
prioritize which
LCs need grants

For each LC needing a grant...

5. Filter candidates for
already allocated resources

6. Schedule grant and
any retransmissions

7. Check for grants
to publish

8. Notify transmit opportunity

9. Dequeue
RLC PDU,
store in
HARQ buffer

1. Slot boundary occurs

Scheduler claims
a HARQ ID for a grant
and its retransmissions

Typical sequence of simulation events

LteUeRlc

NrUeMac

NrUePhy

1. Slot boundary occurs

2. Check if (granted)
data, or feedback,
is to be sent in this slot

3. Prepare PSCCH (SCI) messages,
and PSSCH messages, as needed

4. Send PSSCH message
from HARQ buffer

• Start a timer to free the process ID in case of lack of response
• In case of positive ACK, cancel future retransmissions and

timer (and free the process ID)

sidelink-harq-example.cc overview

> Purpose: Demonstrate/contrast how groupcast mode
2, unicast, and broadcast (blind retransmission) can
be configured in a small network

> Topology: Two (unicast) or three (groupcast) UEs separated
by 20 meters

20 m

• One constant bit rate traffic (default 16 Kb/s, 200 byte UDP packets)
• Simulation runs for configured number of transmit packets (default 100)

20 m

20 m

sidelink-harq-example.cc overview (cont)

> Output: Summary output and detailed terminal
output
– Summary output: Packets sent and received, average throughput, TR

37.885 average packet inter-reception (PIR), and max/min delay

– Detailed trace of every process ID outcome

Log output: HARQ events
$
NS_LOG="NrSlUeMacSchedulerDefault=info|prefix_time|prefix_node|prefix_func:
NrSlUeMacHarq=info|prefix_time|prefix_node|prefix_func" ./ns3 run sidelink-
harq-example > log5.out 2>&1

Scheduler claims an unused HARQ ID (line 192)

HARQ process manager later assigns the ID and starts timer of 40 ms (line 194)

Positive ACK causes HARQ buffer to be flushed (line 199)

Summary

> CTTC’s NR V2X branches have been extended for improved
sensing, scheduling, and HARQ model operation

> Some level of abstraction still exists (e.g., PSFCH perfect
feedback channel), but sensing, scheduling, and HARQ
improvements should support a more accurate latency model
for sidelink

> Updates reviewed in this tutorial will be upstreamed to CTTC’s
public branches in the next month or two

> For more information, follow the CTTC-LENA nr branch (and
merge requests) evolve this summer
– User mailing list: 5g-lena-users@googlegroups.com
– Merge requests: https://gitlab.com/cttc-lena/nr/-/merge_requests

mailto:5g-lena-users@googlegroups.com
https://gitlab.com/cttc-lena/nr/-/merge_requests

