ns-3 tutorial Acknowledgments

* Thanks to Mathieu Lacage and Craig
Presenter: Tom Henderson Dowell for assembling the tutorial source
University of Washington code and materials

: * Thanks to ns-3 development team!
Simutools Conference

March, 2008
* Tom Henderson is supported by NSF
CNS-0551686 (University of Washington)
nsnam ns-3 tutorial March 2008 il nsnam ns-3 tutorial March 2008 2
Goals of this tutorial Assumptions
* Learn about the ns-3 project and its goals * Some familiarity with C++ programming
* Understand the software architecture, language
conventions, and basic usage of ns-3 * Some familiarity with Unix Network
* Read and modify an example ns-3 script Programming (e g., sockets)
+ Learn how you might extend ns-3 to * Some familiarity with discrete-event
conduct your own research simulators
* Provide feedback to the ns-3 development
team
nsnam ns-3 tutorial March 2008 3 nsnam ns-3 tutorial March 2008 4
Outline What is ns (or ns-2)?

* nsis a discrete-event network simulator for
Internet systems
— protocol design, multiple levels of abstraction

* Introduction to ns-3
* Reading ns-3 code

* Tweaking ns-3 code —written in multiple languages (C++/OTcl)
* Extending ns-3 code * ns has a companion network animator
called nam

—hence, has been called the nsnam project

[ns-3 is a research-oriented, discrete event simulator]

nsnam ns-3 tutorial March 2008 5 nsnam ns-3 tutorial March 2008 6

ns-3 features

nsnam ns-3 tutorial March 2008 7

open source licensing (GNU GPLv2) and
development model
Python scripts or C++ programs

alignment with real systems (sockets, device
driver interfaces)

alignment with input/output standards (pcap
traces, ns-2 mobility scripts)

testbed integration is a priority
modular, documented core

ns-3 people

ns-3 models

nsnam ns-3 tutorial March 2008 B

* NSF Pls:

—Tom Henderson, Sumit Roy (University of
Washington), George Riley (Georgia Tech.),
Sally Floyd (ICIR)

* Associated Team: INRIA Sophia Antipolis,

Planete group

—Walid Dabbous, Mathieu Lacage (software
lead)

* Developers: Raj Bhattacharjea, Gustavo
Carneiro, Craig Dowell, Joseph Kopena,
Emmanuelle Laprise

ns-3 status (March 2008)

Project focus has been on the software core, to date

nsnam ns-3 tutorial March 2008 8

ns-3 relationship to ns-2

ns-3 is in a pre-alpha state

monthly development releases

APIs being finalized

emphasis has been on setting the architecture
new users should expect rough edges

many opportunities to work on the core models

nsnam ns-3 tutorial March 2008 1

ns-3 is not an extension of ns-2
* does not have an OTcl API
—C++ wrapped by Python

* synthesis of yans, ns-2, GTNetS simulators, and
new software

—example ns-2 models so far: random
variables, error models, OLSR
* guts of simulator are completely replaced
* new visualizers are in works

nsnam ns-3 tutorial March 2008 10

ns-3 status (March 2008)

What others are already using ns-3 for:

* wifi-based simulations of OLSR and other
MANET routing

* MANET routing (SMF and unicast protocols)

* OntoNet: Scalable Knowledge Based
Networking" by Joe Kopena and Boon Thau Loo
(UPenn)

nsnam ns-3 tutorial March 2008 12

ns-3 roadmap (2008)

near term (through June)

« finalize and release simulation core
(April/May)
—core APls

* ns-3.1 complete release (June timeframe)
—add Internet and Device models
—add validation framework

—some higher-level topology/scenario
APls
nsnam -3 tutorial March 2008 s

Resources

Web site:
Mailing list:
Tutorial:
Code server:
Wiki:

nsnam ns-3 tutorial March 2008 15

Questions so far?

nsnam ns-3 tutorial March 2008 17

ns-3 roadmap (2008)

planned for later this year

* emulation modes

* statistics

* support for real code

* additional ns-2 porting/integration
* distributed simulation

* visualization

nsnam ns-3 tutorial March 2008 1

Links to materials

* Today's code
—http://www.nsnam.org/tutorials/simutools08/ns-
3-tutorial.tar.gz
* Tutorial slides:
-PPT:
http://www.nsnam.org/tutorials/simutools08/ns-
3-tutorial.ppt

—PDF:
http://www.nsnam.org/tutorials/simutools08/ns

nsnaiitonialpdf o verenzos "

Outline

* Reading ns-3 code

nsnam ns-3 tutorial March 2008 18

Reading ns-3 code

* Browsing the source code
* Conceptual overview
* Script walkthrough

nsnam ns-3 tutorial March 2008

Browse the source

Basics

5 samples tutorial war seript
are weils wa.bat

Pause presentation to browse source code

http:/Aww. nsham.org/tutorials/simutools08/ns-3-tutorial.tar.gz

nsnam ns-3 tutorial March 2008

the waf build system

* ns-3 is written in C++

* Bindings in Python

* ns-3 uses the waf build system

* i.e., instead of . /configure ;make, type ./waf

» simulation programs are C++ executables
(python scripts)

nsnam ns-3 tutorial March 2008 20

Doxygen documentation

* Waf is a Python-based framework for
configuring, compiling and installing
applications.

—Itis a replacement for other tools such as
Autotools, Scons, CMake or Ant

—http://code.google.com/p/waf/

Pause presentation to build with waf

nsnam ns-3 tutorial March 2008

* Most of the ns-3 API is documented with
Doxygen

— http://www.stack.nl/~dimitri/doxygen/

Pause presentation to browse Doxygen
http://www.nsnam.org/doxygen/index.html

nsnam ns-3 tutorial March 2008 2

waf key concepts

* For those familiar with autotools:
configure -> ./waf -d [optimized|debug] configure
make -> ./waf

make test -> ./waf check (run unit tests)

Can run programs through a special waf
shell; e.g.
— ./waf --run simple-point-to-point

— (this gets the library paths right for you)

nsnam ns-3 tutorial March 2008 2

The basic model

Sockets-like
AP|

i D Packet(s)

nsnam

ns-3 tutorial March 2008

Node basics

A Node is a husk of a computer to which
applications, stacks, and NICs are added

- .vA:w“: - ‘-,
i = Q i ‘DTN’

ns-3 tutorial March

nsnam

Node basics

Two key abstractions are maintained:

1) applications use an (asynchronous, for
now) sockets API

2) the boundary between IP and layer 2
mimics the boundary at the device-
independent sublayer in Linux
i.e., Linux Packet Sockets

nsnam

ns-3 tutorial March 2008

Fundamentals

Key objects in the simulator are Nodes,
Packets, and Channels

Nodes contain Applications, “stacks”, and
NetDevices

nsnam

ns-3 tutorial March 2008

NetDevices and Channels

NetDevices are strongly bound to Channels
of a matching type

WifiNetDevice

Nodes are architected for multiple interfaces
nsnam

ns-3 tutorial March 2008 28

ns-3 Packets

» each network packet contains a byte buffer,

a list of tags, and metadata

—buffer: bit-by-bit (serialized) representation of
headers and trailers

—tags: set of arbitrary, user-provided data
structures (e.g., per-packet cross-layer
messages, or flow identifiers)

—metadata: describes types of headers and
and trailers that have been serialized
* optional-- disabled by default

nsnam

ns-3 tutorial March 2008

ns-3 Packets

* to add a new header, subclass from
Header, and write your Serialize() and
Deserialize() methods
—how bits get written to/from the Buffer

* Similar for Packet Tags

* Packet Buffer implements a (transparent)
copy-on-write implementation

nsnam ns-3 tutorial March 2008 3

example: UDP header

void
UdpHeader : :Serialize (Buffer::Iterator start) const
{
Buffer::Iterator i = start;
i.WriteHtonUl6é (m_sourcePort);
i.WriteHtonU1l6 (m_destinationPort);
i.WriteHtonUl6 (m_payloadSize + GetSerializedSize ());
i.Writeul6 (0);
if (m_calcChecksum)
{
uintlé_t checksum = IpvdChecksumCalculate (...);
i.Writevl6 (checksum);

i

}
nsnam ns-3 tutorial March 2008 3

Sample script walkthrough

WiFi (AdH oc network)
Backbone

CSMA (LAN)

WiFi @
(Infra-
structure

Hierarchical
mobility
1) AdHoc

WiFi
(Infra-
structure

movement in
backbone

2) Local
movement
relative to Access

Point
Applications: UDP flow, o
Routing: OLSR on backbond

nsnam ns-3 tutorial March 2008 35

example: UDP header

class UdpHeader : public Header
{
public:
void SetDestination (uintl6_t port);

void Serialize (Buffer::Iterator start) const;
uint32_t Deserialize (Buffer::Iterator start);
private:
uintl6_t m_sourcePort;
uintl6 t m destinationPort;
uintl6_t m payloadSize;

uintl6 t m initialChecksum;

1
nsnam ns-3 tutorial March 2008 32

Simulation basics

* Simulation time moves discretely from
event to event

* C++ functions schedule events to occur at
specific simulation times

* A simulation scheduler orders the event
execution

* Simulation::Run() gets it all started

» Simulation stops at specific time or when
events end
nsnam -3 tutorial Mareh 2008 3

Sample script walkthrough

Walk through mixed-wireless.cc

nsnam ns-3 tutorial March 2008 36

(aside) similar looking code in Python

nsnam P —

Outline

* Introduction to ns-3
* Reading ns-3 code
* Tweaking ns-3 code
* Extending ns-3 code

nsnam ns-3 tutorial March 2008

ns-3 logging example

* NS_LOG_UNCOND();

* NS_LOG environment variable
* per-source-file logging

* log levels

» example scripts

nsnam ns-3 tutorial March 2008

examples/ directory

« examples/ contains other scripts with similar themes

$ 1s

csma-broadcast .cc simple-point-to-point .cc
csma-multicast.cc tcp-large-transfer-errors.cc
csma-one-subnet . cc tep-large-transfe:

csma-packet -socket .cc tep-nonlisteni
mixed-global-Touting.cc tep-small-tran: cc
simple-alternate-routing.cc tcp-small-transfer.
simple-error-model.cc udp-echo.cc
simple-global-routing.cc waf

simple-point-to-point-olsr.cc wscript

nsnam ns-3 tutorial March 2008 38

ns-3 logging

* ns-3 has a built-in logging facility to stderr
* Features:

—can be driven from shell environment
variables

—Multiple log levels like syslog

—Function and call argument tracing

Intended for debugging, but can be
abused to provide tracing

—we do not guarantee that format is unchanging

nsnam ns-3 tutorial March 2008 40

attributes and tracing

* Next, we would like to talk about attributes
(default values, settable and gettable
values) and tracing

* To understand this, we'll introduce the ns-
3 Object system

nsnam ns-3 tutorial March 2008 2

Object metadata system

* ns-3 is, at heart, a C++ object system

* ns-3 objects that inherit from base class
ns3::0bject get several additional features
—dynamic run-time object aggregation
—an attribute system

—smart-pointer memory management

Disclaimer: This is not all main-line ns-3 code-- parts are in
a proposal in the mathieu/ns-3-param repository

nsnam

ns-3 tutorial March 2008 43

Object aggregation example

void

WifiChannel::Send (Ptr<WifiPhy> sender,

Ptr<const
Packet> packet, .

)
{
Ptr<MobilityModel> senderMobility = 0;

Ptr<MobilityModel> receiverMobility =

senderMobility = sender->GetNode ()->

GetObject<MobilityModel> ();

class Node does not need to know
1 about MobilityModel
nsnam

ns-3 tutorial March 2008 45

Use cases for attributes (cont.)

* What would users like to do?

—Know what are all the attributes that affect the
simulation at run time

—Set a default initial value for a variable

—Set or get the current value of a variable

—Initialize the value of a variable when a
constructor is called

* The attribute system is a unified way of
handling these functions

nsnam

ns-3 tutorial March 2008

Object aggregation use case

* You can aggregate objects to one another

at run-time

—Avoids the need to modify a base class to
provide pointers to all possible connected
objects

* Object aggregation is planned to be the
main way to create new Node types
(rather than subclassing Node)

nsnam

ns-3 tutorial March 2008

Use cases for attributes

44

* An Attribute represents a value in our
system

An Attribute can be connected to an
underlying variable or function

—e.g. TepSocket::m_cwnd;

—or a trace source

nsnam ns-3 tutorial March 2008 45

How to handle attributes

* The traditional C++ way:

—export attributes as part of a class's public API

—walk pointer chains (and iterators, when
needed) to find what you need

—use static variables for defaults

* The attribute system provides a more

convenient API to the user to do these
things

nsnam

ns-3 tutorial March 2008 48

The traditional C++ way

FooiiFool) + mvarl(Feo:im initial varl), m var2(Foo::m_initial var2)

to modify an instance of Foo, g the pointer semehow, and uss the public accessor functions
10 modiy the defaut values, mody the tatics.
Defaut values may be available in a separate framework (2. ns2 Bind())

nsnam ns-3 tutorial March 2008 49

Navigating the attributes using paths

* Examples:
—Nodes with Nodelds 1, 3, 4, 5, 8,9, 10, 11:
“/NodeList/[3-5]|[8-11][1"
—UdpL4Protocol object instance aggregated to
matching nodes:
“/$UdpL4Protocol”
—EndPoints which match the SrcPort=1025
specification:
“/EndPoints/*:SrcPort=1025"

nsnam ns-3 tutorial March 2008 51

What users will see

» Set or get the current value of a variable

—Here, one needs the path in the namespace to
the right instance of the object

Config: :SetAttribute (“/NodeList/5/DeviceList/3/Phy
/TxGain”, Double (1.0));

Double d =
Config: :GetAttribute (“/NodeList/5/NetDevice/3/Phy
/TxGain”) ;

* Users can get Ptrs to instances also, and
Ptrs to trace sources, in the same way

nsnam ns-3 tutorial March 2008 5

Navigating the attributes

* Attributes are exported into a string-based
namespace, with filesystem-like paths
—namespace supports regular expressions

* Attributes also can be used without the
paths
—e.g. “WifiPhy::TxGain”

* A Config class allows users to manipulate
the attributes

nsnam ns-3 tutorial March 2008 50

What users will do

* e.g.: Set a default initial value for a
variable

* (Note: this replaces DefaultValue::Bind())

Config::Set (“WifiPhy::TxGain”, Double (1.0));
» Syntax also supports string values:
Config::Set (“WifiPhy::TxGain”, “1.07);

Attrl bute Vilue

nsnam ns-3 tutorial March 2008 52

CreateObject<> ();

* CreateObject<> is a wrapper for operator
new.

* ns3::Object objects must be created on the
heap using CreateObject<> (), which
returns a smart pointer; e.g.

Ptr<Node> rxNode = CreateObject<Node> ();

nsnam ns-3 tutorial March 2008 st

Create<> ();

* What is Create<> ()?

* Create<> provides some smart pointer
help for objects that use ns3::Ptr<> but
that do not inherit from Object.

* Principally, class ns3::Packet
Ptr<Packet> p = Create<Packet> (data,size);

nsnam ns-3 tutorial March 2008 55

How is all this implemented (overview)

nsnam ns-3 tutorial March 2008 57

Also part of Object: smart pointers

* ns-3 uses reference-counting smart
pointers at its APIs to limit memory leaks
—Or “pass by value” or “pass by reference to

const” where appropriate
* A “smart pointer” behaves like a normal
pointer (syntax) but does not lose memory
when reference count goes to zero
* Use them like built-in pointers:

Ptr<MyClass> p = CreateObject<MyClass> ();

p->method ();
nsnam ns-3 tutorial March 2008 59

Non-default constructors

* The attribute system allows you to also
pass them through the CreateObject<>
constructor.

* This provides a generic non-default
constructor for users (any combination of
parameters), e.g.:

Ptr<WifiPhy> phy = CreateObject<WifiPhy> (

“TxGain”, Double (1.0));:

nsnam ns-3 tutorial March 2008 56

A real Typeld example

eryp

nsnam ns-3 tutorial March 2008 58

Statements you should understand now

Allocator> ipadds AddressAllocator> ();

/ /

C++ Smart Pointer ns3::Object

Config

Config elist/*/Phy/TxGain”, Double(10.0));

Attribute namespace

nsnam ns-3 tutorial March 2008 60

Tracing model

* Tracing is a structured form of simulation output

— tracing format should be relatively static across simulator
releases

Example (from ns-2):
1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610
1.84375 0 2 --- 0 0.0 3.1 225 610
r 1.84471 2 --- 1 3.0 1.0 195 600
1 2
1 0

.84566 2 3.2 0.1 82 602

1
0
2 tep 1000 ——————— 2 0.1 3.2 102 611

.84566

Needs vary widely

nsnam ns-3 tutorial March 2008 o1

slightly less crude

#include <iostream>

int main ()

{

NS_LOG_UNCOND ("The value of x is " << x);

nsnam ns-3 tutorial March 2008)

Simple ns-3 tracing (pcap version)

* these are wrapper functions/classes
* see examples/mixed-wireless.cc

#include "ns3/pcap-trace.h"

PcapTrace pcaptrace ("mixed-wireless.pcap");

peaptrace.TraceRllIp ();

nsnam ns-3 tutorial March 2008 o5

Crude tracing

#include <iostream>

int main ()

{
std::cout << "The value of x is " << x <<
std::endl;
}
nsnam ns-3 tutorial March 2008 62

Simple ns-3 tracing

* these are wrapper functions/classes
* see examples/mixed-wireless.cc

#include "ns3/ascii-trace.h"

AsciiTrace asciitrace ixed-wireless.tr");
05

asciitrace.TraceAllNetDeviceRx ();

asciitrace.TraceAllQueue

nsnam ns-3 tutorial March 2008 ot

ns-3 tracing model (revisit)

* Fundamental #1: decouple trace sources
from trace sinks

* Fundamental #2: prefer standard trace

outputs for bui traces

configurable by
user

unchanging

nsnam ns-3 tutorial March 2008 66

Tracing overview

» Simulator provides a set of pre-configured
trace sources
—Users may edit the core to add their own

* Users provide trace sinks and attach to the
trace source
—Simulator core provides a few examples for

common cases
* Multiple trace sources can connect to a

trace sink
nsnam 53 tutoria March 2008 o

Highest-level of tracing

* Highest-level: Use built-in trace sources
and sinks and hook a trace file to them
/1 Also configure seme topdump tracess each interface will be traced

// The output files will be named

// simple-point-to-point .pcap-<node Id>—cinterfacs Id>

// and can be read by t cpdump -r" command (use "-tt" cption to

/ display timestamp: tly)

PeapTra =-point-to-point.pcap”) ;

peaptrace.TraceAlllp ()

nsnam ns-3 tutorial March 2008 69

Asciitrace: under the hood

nsnam ns-3 tutorial March 2008 "

Multiple levels of tracing

* Highest-level: Use built-in trace sources
and sinks and hook a trace file to them

* Mid-level: Customize trace source/sink
behavior using the tracing namespace

* Low-level: Add trace sources to the
tracing namespace
—Or expose trace source explicitly

nsnam ns-3 tutorial March 2008 o8

Mid-level of tracing

* Mid-level: Customize trace source/sink
behavior using the tracing namespace

Regular expression editing

void
PcapTrace: :Tracealllp (void) P
[o

NodeList::Connect ("/nodss/*/ipwd/(tx|r

HakeCallback (&PcapTrace::loglp, this)):

b ™

Hook in a different trace sink

nsnam ns-3 tutorial March 2008 1

Lowest-level of tracing

* Low-level: Add trace sources to the
tracing namespace

Config::Connect ("/Nodelist/

MakeCallback (&ConfigTest::ChangeNotification, this));

nsnam ns-3 tutorial March 2008 2

* Avoid large trace files
* Full statistics support planned for later in 2008
* Reuse tracing framework
* One similar approach: ns-2-measure project
— http://info.iet.unipi.it/~cng/ns2measure/
— Static “Stat” object that collects samples of variables
based on explicit function calls inserted into the code

— Graphical front end, and framework for replicating
simulation runs

nsnam ns-3 tutorial March 2008 s

Design patterns for topology scripts

Design approaches
* Use simple helper functions with attributes
* Use reusable “frameworks”

Note: This area of our AP is under discussion; feedback wanted

nsnam ns-3 tutorial March 2008 75

Helper Objects

* NodeContainer: vector of Ptr<Node>

* NetDeviceContainer: vector of Ptr<NetDevice>
* InternetStackHelper

* WifiHelper

* MobilityHelper

* OlsrHelper

* ... Each model provides a helper class

nsnam ns-3 tutorial March 2008 77

Revisit our script

WiFi (AdHoc network)
Backbone
CSMA LAN)

Hierarchical

@®

mobility
1) AdHoe
movement in

WiFi
(Infra-

structure backbone
2) Local
movement
relative to Access
Point
Applications: TCP flow, o
Routing: OLSR routing
nsnam ns-3 tutorial March 2008 7

The Helper approach

* |s not generic
* Does not try to allow code reuse

* Provides simple 'syntactical sugar' to make
simulation scripts look nicer and easier to
read for network researchers

* Each function applies a single operation on
a "set of same objects”

nsnam ns-3 tutorial March 2008 i

setup backbone

NodeContainer backbone;
backbone .Create (20);

MobilityHelper mobility;

mobility.SetPositionllocator (“GridPositionAllocator”, “Mink”,
Double (-100), ...):

mobility.SetMobilityModel (“RandombirectionMobilityModel”)
mobility.layout (backbone

WifiHelper wifi;

dhocwifiMac”) ;

iPhy”, “TxGain”, Double (10));

et RemoteStationManager (“ConstantRateWifiManager”, “DataMods”,
ing (“wifia-54mb”))

Ptr<WifiChannel> chamnel = .

NetDeviceContainer backboneD: wifi.Build (backbone, channel);

nsnam ns-3 tutorial March 2008 8

setup wifi subnets setup ip over backbone and subnets

for (uint32_t I = 0; I < 20; it+) IpNetworkiddressAllocator network;

NodeContainer subnet; network.SetMask (%192.168.0..07, “255.255.0.0");
subnet .Create (29); InternetStackHelper ip;
subnets.push_back (subnet); ip.SetAddressallocator (network.GetNext ());
mobility.PushReferenceModel (backbone.Get (i)); ip.Setup (backboneDev) ;

mobility.SetMobilityModel (...) for (uint32 t I = 0; I < 207 i++)
mobility.SetPositionAllocator (.

NetDeviceContainer subnetDev = subnetDevs[i];
mobility.Layout (subnet); ip.Setiddressillocator (network.GetNext ());
subnet .2dd (backbone .Get (i)); ip.Setup (subnetDev);
Pr<iifiChannel> subnetChannel = ...;
NetDeviceContainer subnetDev =

wifi.Build (subnet, subnetChannel);

subnetDevs.push_back (subnetDev);

nsnam ns-3 tutorial March 2008 79 nsnam ns-3 tutorial March 2008

setup olsr on backbone setup traffic sinks everywhere

OlsrHelper olsr; TrafficSinkHelper sink;
olsr.Enable (backbone); // listen on port 1026 for protocol udp
sink.EnableUdp (1026);

sink.Setup (NodeList::Begin (), NodeList::End ());

ns-3 tutorial March 2008

nsnam ns-3 tutorial March 2008 51 nsnam

setup trace sources

Frameworks
onof fApplicationHelper source;
;o:x:s.:‘etudpDestlnatlgn tﬁ“]aB.JQZ.A.?O", 1026); . Obsel’vatlon Many of the OperatIOnS
lodeContainer one subnets([2].Get ();
source.Setup (ons) ; executed by the helper class are
repetitively executed, in slightly different
ways

// Create Nodes

// Add NetDevice and Channel
// Add Protocol Stack

// Add Applications

// Add Mobility
nsnam ns-3 tutorial March 2008 83 nsnam

ns-3 tutorial March 2008

Frameworks

* Idea: Can we write the same flow of
operations once, but delegate them to a
Manager?

* The Manager implements the functions
* The functions are virtual

* Users wishing to specialize them can
override them as needed

nsnam 53 tutoria March 2008 o
Outline
* Introduction to ns-3

* Reading ns-3 code

* Extending ns-3 code

nsnam ns-3 tutorial March 2008 o7

Aside: C++ templates

» templates allow a programmer to write one
version of code that is applicable over
multiple types

templates are declared, defined and used

Declaration:

* template <typename T> T Add (T first, T s
* T Add (T first, T second);

o)
a

ond) ;

might eventually become

int Add (int first, int second);

nsnam ns-3 tutorial March 2008 8

Frameworks

* This design pattern is called Inversion Of
Control

* This provides more reusable
scenario/topology scripts than ones based
on the Helper classes

walk through mixed-wireless-topology.cc

and src/topology/

nsnam ns-3 tutorial March 2008 86

How do simulator objects fit together?

* ns-3 objects are C++ objects
—can be subclassed

* ns-3 Objects support aggregation

ns-3 models are composed of hooking C++ classes together
in the traditional way, and also with object aggregation

nsnam ns-3 tutorial March 2008 88

Aside: C++ templates

* Definition:
template <typename T>
T Add (T first, T second)
{
return first + second;
}
* Usage:
int x, ¥ %5

z = Add<int> (x, y);

nsnam ns-3 tutorial March 2008 %

Classes may also be templatized

* Declaration:
template <typename T>
class MyStack
{

void Push (T data);

T Pop (void);

b

« Definition:

template <typename T> void MyStack<T>::Push (T data)

k.Push (x);
y = stack.Pop ();

nsnam ns-3 tutorial March 2008

ns-3 callbacks

 Class template Callback<> implements the functor design

pattern
* Callbacks are like function pointers, but more type-safe
static double ChOne (double a, double b) {}
| - e
| | |
Callback<double, double, double> one;
« Bind a function with a matching signature to a callback
one = MakeCallback (&CbOne);

double returnOne = one (10.0, 20.0);

nsnam -3 tutorial March 2008 o
Path of a packet (receive)
nsnam -3 tutorial March 2008 o5

Scheduler and callbacks

* Let’s look at samples/main-simulator.cc
» Schedules a single event, then exits

int main (int arge, char *argv(l)

MyMode1 model;

Simulator::Schedule (Seconds (10.0), &random function, &model);

Simulator::Run ();

Simulator::Destro

nsnam ns-3 tutorial March 2008

Path of a packet (send)

NOrE— T
Functionjobject trace for sending a packet

TS T Aaaonar Work

3

for e ekt e,

322,
e e SAEIN
N AR TR

) dvine

2t 100)
1 e ppicatin has “reviossly cresced ket furs, 2 Jdtockst
2 et e o oz L
i
e
- gt e

. ~
D)
l Sl o s s
p | N meeaisestes
S R - e iserTe
{tirtomn v 3
Seal) s e kel o
2 aston i:
o et Y T s)
4 Jo el)
Sealy S —
Conteee s 15 e e sy o i

KoDorie g
] e e o e

 Lsends L e e,

nsnam -3 tutorial Mareh 2008 gA
current ns-3 routing model
classes Ipv4RoutingProtocol, Ipv4Route
* Each routing protocol maintains its own
RIB --> no common FIB
* Routing protocols are registered with
AddRoutingProtocol (Ptr<> protocol,
intl6_t priority)
* Routes are looked up by querying each
protocol for a route
—Ipv4L3Protocol::Lookup ()
nsnam ns-3 tutorial March 2008 %

Writing new ns-3 models

1) Define your requirements
—reusability
—dependencies
—functionality
2) APl review
—Provide sample header file for API review
—gather feedback from the ns-developers list

nsnam ns-3 tutorial March 2008 o7

Writing new ns-3 models

4) Build a skeleton
—header include guards
—namespace ns3
—constructor, empty function prototypes
—key variables
—Object/Typeld code
—write small test program
—start a unit test

nsnam ns-3 tutorial March 2008 %

Porting from ns-2

* Objects can be ported from ns-2 (or other
simulators)

* Make sure licensing is compatible
* Example:

—ns-2: queue/errmodel.{cc,h}

—ns-3: src/common/error-model.{cc,h}

nsnam ns-3 tutorial March 2008 101

Writing new ns-3 models

3) Create a non-functional skeleton
—review coding style
—decide which compilation unit it resides in
—add to waf
—build with body ifdeffed out
—copyright and headers
—initial doxygen

nsnam ns-3 tutorial March 2008 9

Writing new ns-3 models

5) Build core functions and unit tests
—use of logging, and asserts

6) Plumb into other modules, if needed

7) Post for review on developers list

8) Resolve comments and merge

nsnam ns-3 tutorial March 2008 100

Validation

* Can you trust ns-3 simulations?
—Can you trust any simulation?
—Onus is on the researcher to verify results

* ns-3 strategies:
—Open source benefits
—Validation of models on testbeds
—Reuse of code
—Unit tests
—Event driven validation tests

nsnam 153 tutorial March 2008 102

Walk through examples (time permitting) ns-3 goals for emulation

* Beyond simple simulation scenarios
real machine
* Add a new type of MAC+PHY:
* subclass a NetDevice and a Channel ns-3 ns-3
* Add new types of transport layers:
virtual vitual real real
* subclass Node and Socket machine = machine machine machine

subclass Ipv4 class to implement per-node Ipv4 forwarding table

and Ipv4
interface configuration ‘ ‘

for example, the Linux TCP stack could be easily integrated into a
new type of node, LinuxNode with a LinuxT cpSocket

Testbed

1) ns-3 interconnects virtual 2) testbeds |nterconect ns-3

+ Add anew typg of traffic generation and analysis: o s e
* subclass Application
HSI@EEMocket API ne-3 tutorial Narch 2008 109 nsnam ns-3 tutorial March 2008 10

Proposed Google Summer of Code

Summary projects

* ns-3 is an emerging simulator to replace ns-2

- Considerns B youareiitorested in: * Performance Evaluation and Optimization

— Open source and collaboration * Linux Kernel Network Stack Integration
= m%rrenfeatlthful representations of real computers and the « Parallel Simulations

— Integration with testbeds * GUI Development

— A powerful low-level API i

— Python scripting * Real World Code Integration

* ns-3 needs you!

nsnam ns-3 tutorial March 2008 105 nsnam ns-3 tutorial March 2008 108

Resources

Web site:
Mailing list:
Tutorial:
Code server:
Wiki:

nsnam ns-3 tutorial March 2008 107

